|
| 1 | +from __future__ import annotations |
| 2 | + |
| 3 | +import typing as t |
| 4 | +from dataclasses import dataclass, field |
| 5 | + |
| 6 | +from ragas.dataset_schema import MultiTurnSample, SingleTurnSample |
| 7 | +from ragas.experimental.llms.prompt import PydanticPrompt |
| 8 | +from ragas.metrics._domain_specific_rubrics import ( |
| 9 | + MultiTurnWithoutReferenceInput, |
| 10 | + MultiTurnWithoutReferencePrompt, |
| 11 | + MultiTurnWithReferenceInput, |
| 12 | + SingleTurnWithoutReferenceInput, |
| 13 | + SingleTurnWithoutReferencePrompt, |
| 14 | + SingleTurnWithReferenceInput, |
| 15 | + SingleTurnWithReferencePrompt, |
| 16 | +) |
| 17 | +from ragas.metrics.base import ( |
| 18 | + MetricType, |
| 19 | + MetricWithLLM, |
| 20 | + MultiTurnMetric, |
| 21 | + SingleTurnMetric, |
| 22 | +) |
| 23 | + |
| 24 | +if t.TYPE_CHECKING: |
| 25 | + from langchain_core.callbacks import Callbacks |
| 26 | + |
| 27 | + |
| 28 | +@dataclass |
| 29 | +class InstanceRubricsWithReference(MetricWithLLM, SingleTurnMetric, MultiTurnMetric): |
| 30 | + name: str = "labelled_rubrics_score" # type: ignore |
| 31 | + _required_columns: t.Dict[MetricType, t.Set[str]] = field( |
| 32 | + default_factory=lambda: { |
| 33 | + MetricType.SINGLE_TURN: {"user_input", "response", "reference", "rubrics"}, |
| 34 | + MetricType.MULTI_TURN: {"user_input", "reference", "rubrics"}, |
| 35 | + } |
| 36 | + ) |
| 37 | + single_turn_prompt: PydanticPrompt = field( |
| 38 | + default_factory=lambda: SingleTurnWithReferencePrompt() |
| 39 | + ) |
| 40 | + multi_turn_prompt: PydanticPrompt = field( |
| 41 | + default_factory=lambda: MultiTurnWithoutReferencePrompt() |
| 42 | + ) |
| 43 | + |
| 44 | + max_retries: int = 1 |
| 45 | + |
| 46 | + async def _ascore(self, row: t.Dict, callbacks: Callbacks) -> float: |
| 47 | + assert self.llm is not None, "LLM is not set" |
| 48 | + |
| 49 | + user_input, contexts, response, reference, rubrics = ( |
| 50 | + row["user_input"], |
| 51 | + row.get("retrieved_contexts"), |
| 52 | + row["response"], |
| 53 | + row["reference"], |
| 54 | + row["rubrics"], |
| 55 | + ) |
| 56 | + if contexts is not None: |
| 57 | + contexts = "\n".join(contexts) |
| 58 | + user_input = f"{user_input} answer using context: {contexts}" |
| 59 | + |
| 60 | + prompt_input = SingleTurnWithReferenceInput( |
| 61 | + user_input=user_input, |
| 62 | + response=response, |
| 63 | + reference=reference, |
| 64 | + rubrics=rubrics, |
| 65 | + ) |
| 66 | + |
| 67 | + response = await self.single_turn_prompt.generate( |
| 68 | + data=prompt_input, llm=self.llm, callbacks=callbacks |
| 69 | + ) |
| 70 | + return response.score |
| 71 | + |
| 72 | + async def _single_turn_ascore( |
| 73 | + self, sample: SingleTurnSample, callbacks: Callbacks |
| 74 | + ) -> float: |
| 75 | + row = sample.dict() |
| 76 | + return await self._ascore(row, callbacks) |
| 77 | + |
| 78 | + async def _multi_turn_ascore( |
| 79 | + self, sample: MultiTurnSample, callbacks: Callbacks |
| 80 | + ) -> float: |
| 81 | + assert self.llm is not None, "LLM is not set" |
| 82 | + assert sample.rubrics is not None, "Rubrics are not set" |
| 83 | + assert sample.reference is not None, "Reference is not set" |
| 84 | + |
| 85 | + interaction = sample.pretty_repr() |
| 86 | + reference = sample.reference |
| 87 | + rubrics = sample.rubrics |
| 88 | + prompt_input = MultiTurnWithReferenceInput( |
| 89 | + user_input=interaction, |
| 90 | + reference=reference, |
| 91 | + rubrics=rubrics, |
| 92 | + ) |
| 93 | + output = await self.multi_turn_prompt.generate( |
| 94 | + data=prompt_input, |
| 95 | + llm=self.llm, |
| 96 | + callbacks=callbacks, |
| 97 | + ) |
| 98 | + return output.score |
| 99 | + |
| 100 | + |
| 101 | +@dataclass |
| 102 | +class InstanceRubricsScoreWithoutReference( |
| 103 | + MetricWithLLM, SingleTurnMetric, MultiTurnMetric |
| 104 | +): |
| 105 | + name: str = "reference_free_rubrics_score" # type: ignore |
| 106 | + _required_columns: t.Dict[MetricType, t.Set[str]] = field( |
| 107 | + default_factory=lambda: { |
| 108 | + MetricType.SINGLE_TURN: {"user_input", "response", "rubrics"}, |
| 109 | + MetricType.MULTI_TURN: {"user_input", "rubrics"}, |
| 110 | + } |
| 111 | + ) |
| 112 | + single_turn_prompt: PydanticPrompt = field( |
| 113 | + default_factory=lambda: SingleTurnWithoutReferencePrompt() |
| 114 | + ) |
| 115 | + multi_turn_prompt: PydanticPrompt = field( |
| 116 | + default_factory=lambda: MultiTurnWithoutReferencePrompt() |
| 117 | + ) |
| 118 | + max_retries: int = 1 |
| 119 | + |
| 120 | + async def _ascore(self, row: t.Dict, callbacks: Callbacks) -> float: |
| 121 | + assert self.llm is not None, "LLM is not set" |
| 122 | + |
| 123 | + user_input, contexts, response, rubrics = ( |
| 124 | + row["user_input"], |
| 125 | + row.get("retrieved_contexts"), |
| 126 | + row["response"], |
| 127 | + row["rubrics"], |
| 128 | + ) |
| 129 | + if contexts is not None: |
| 130 | + contexts = "\n".join(contexts) |
| 131 | + user_input = f"{user_input} answer using context: {contexts}" |
| 132 | + |
| 133 | + prompt_input = SingleTurnWithoutReferenceInput( |
| 134 | + user_input=user_input, |
| 135 | + response=response, |
| 136 | + rubrics=rubrics, |
| 137 | + ) |
| 138 | + |
| 139 | + response = await self.single_turn_prompt.generate( |
| 140 | + data=prompt_input, llm=self.llm, callbacks=callbacks |
| 141 | + ) |
| 142 | + return response.score |
| 143 | + |
| 144 | + async def _single_turn_ascore( |
| 145 | + self, sample: SingleTurnSample, callbacks: Callbacks |
| 146 | + ) -> float: |
| 147 | + row = sample.dict() |
| 148 | + return await self._ascore(row, callbacks) |
| 149 | + |
| 150 | + async def _multi_turn_ascore( |
| 151 | + self, sample: MultiTurnSample, callbacks: Callbacks |
| 152 | + ) -> float: |
| 153 | + assert self.llm is not None, "LLM is not set" |
| 154 | + assert sample.rubrics is not None, "Rubrics are not set" |
| 155 | + interaction = sample.pretty_repr() |
| 156 | + rubrics = sample.rubrics |
| 157 | + prompt_input = MultiTurnWithoutReferenceInput( |
| 158 | + user_input=interaction, |
| 159 | + rubrics=rubrics, |
| 160 | + ) |
| 161 | + output = await self.multi_turn_prompt.generate( |
| 162 | + data=prompt_input, |
| 163 | + llm=self.llm, |
| 164 | + callbacks=callbacks, |
| 165 | + ) |
| 166 | + return output.score |
0 commit comments