|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "98727749", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "# Langsmith Integrations\n", |
| 9 | + "\n", |
| 10 | + "[Langsmith](https://docs.smith.langchain.com/) in a platform for building production-grade LLM applications from the langchain team. It helps you with tracing, debugging and evaluting LLM applications.\n", |
| 11 | + "\n", |
| 12 | + "The langsmith + ragas integrations offer 2 features\n", |
| 13 | + "1. View the traces of ragas `evaluator` \n", |
| 14 | + "2. Use ragas metrics in langchain evaluation - (soon)\n", |
| 15 | + "\n", |
| 16 | + "\n", |
| 17 | + "### Tracing ragas metrics\n", |
| 18 | + "\n", |
| 19 | + "since ragas uses langchain under the hood all you have to do is setup langsmith and your traces will be logged.\n", |
| 20 | + "\n", |
| 21 | + "to setup langsmith make sure the following env-vars are set (you can read more in the [langsmith docs](https://docs.smith.langchain.com/#quick-start)\n", |
| 22 | + "\n", |
| 23 | + "```bash\n", |
| 24 | + "export LANGCHAIN_TRACING_V2=true\n", |
| 25 | + "export LANGCHAIN_ENDPOINT=https://api.smith.langchain.com\n", |
| 26 | + "export LANGCHAIN_API_KEY=<your-api-key>\n", |
| 27 | + "export LANGCHAIN_PROJECT=<your-project> # if not specified, defaults to \"default\"\n", |
| 28 | + "```\n", |
| 29 | + "\n", |
| 30 | + "Once langsmith is setup, just run the evaluations as your normally would" |
| 31 | + ] |
| 32 | + }, |
| 33 | + { |
| 34 | + "cell_type": "code", |
| 35 | + "execution_count": 1, |
| 36 | + "id": "27947474", |
| 37 | + "metadata": {}, |
| 38 | + "outputs": [ |
| 39 | + { |
| 40 | + "name": "stderr", |
| 41 | + "output_type": "stream", |
| 42 | + "text": [ |
| 43 | + "Found cached dataset fiqa (/home/jjmachan/.cache/huggingface/datasets/explodinggradients___fiqa/ragas_eval/1.0.0/3dc7b639f5b4b16509a3299a2ceb78bf5fe98ee6b5fee25e7d5e4d290c88efb8)\n" |
| 44 | + ] |
| 45 | + }, |
| 46 | + { |
| 47 | + "data": { |
| 48 | + "application/vnd.jupyter.widget-view+json": { |
| 49 | + "model_id": "dc5a62b3aebb45d690d9f0dcc783deea", |
| 50 | + "version_major": 2, |
| 51 | + "version_minor": 0 |
| 52 | + }, |
| 53 | + "text/plain": [ |
| 54 | + " 0%| | 0/1 [00:00<?, ?it/s]" |
| 55 | + ] |
| 56 | + }, |
| 57 | + "metadata": {}, |
| 58 | + "output_type": "display_data" |
| 59 | + }, |
| 60 | + { |
| 61 | + "name": "stdout", |
| 62 | + "output_type": "stream", |
| 63 | + "text": [ |
| 64 | + "evaluating with [context_relavency]\n" |
| 65 | + ] |
| 66 | + }, |
| 67 | + { |
| 68 | + "name": "stderr", |
| 69 | + "output_type": "stream", |
| 70 | + "text": [ |
| 71 | + "100%|████████████████████████████████████████████████████████████| 1/1 [00:04<00:00, 4.90s/it]\n" |
| 72 | + ] |
| 73 | + }, |
| 74 | + { |
| 75 | + "name": "stdout", |
| 76 | + "output_type": "stream", |
| 77 | + "text": [ |
| 78 | + "evaluating with [faithfulness]\n" |
| 79 | + ] |
| 80 | + }, |
| 81 | + { |
| 82 | + "name": "stderr", |
| 83 | + "output_type": "stream", |
| 84 | + "text": [ |
| 85 | + "100%|████████████████████████████████████████████████████████████| 1/1 [00:21<00:00, 21.01s/it]\n" |
| 86 | + ] |
| 87 | + }, |
| 88 | + { |
| 89 | + "name": "stdout", |
| 90 | + "output_type": "stream", |
| 91 | + "text": [ |
| 92 | + "evaluating with [answer_relevancy]\n" |
| 93 | + ] |
| 94 | + }, |
| 95 | + { |
| 96 | + "name": "stderr", |
| 97 | + "output_type": "stream", |
| 98 | + "text": [ |
| 99 | + "100%|████████████████████████████████████████████████████████████| 1/1 [00:07<00:00, 7.36s/it]\n" |
| 100 | + ] |
| 101 | + }, |
| 102 | + { |
| 103 | + "data": { |
| 104 | + "text/plain": [ |
| 105 | + "{'ragas_score': 0.1837, 'context_relavency': 0.0707, 'faithfulness': 0.8889, 'answer_relevancy': 0.9403}" |
| 106 | + ] |
| 107 | + }, |
| 108 | + "execution_count": 1, |
| 109 | + "metadata": {}, |
| 110 | + "output_type": "execute_result" |
| 111 | + } |
| 112 | + ], |
| 113 | + "source": [ |
| 114 | + "from datasets import load_dataset\n", |
| 115 | + "from ragas.metrics import context_relevancy, answer_relevancy, faithfulness\n", |
| 116 | + "from ragas import evaluate\n", |
| 117 | + "\n", |
| 118 | + "\n", |
| 119 | + "fiqa_eval = load_dataset(\"explodinggradients/fiqa\", \"ragas_eval\")\n", |
| 120 | + "\n", |
| 121 | + "result = evaluate(\n", |
| 122 | + " fiqa_eval[\"baseline\"].select(range(3)), \n", |
| 123 | + " metrics=[context_relevancy, faithfulness, answer_relevancy]\n", |
| 124 | + ")\n", |
| 125 | + "\n", |
| 126 | + "result" |
| 127 | + ] |
| 128 | + }, |
| 129 | + { |
| 130 | + "cell_type": "markdown", |
| 131 | + "id": "0b862b5d", |
| 132 | + "metadata": {}, |
| 133 | + "source": [ |
| 134 | + "Voila! Now you can head over to your project and see the traces\n", |
| 135 | + "\n", |
| 136 | + "\n", |
| 137 | + "this shows the langsmith tracing dashboard overview\n", |
| 138 | + "\n", |
| 139 | + "\n", |
| 140 | + "this shows the traces for the faithfullness metrics. As you can see being able to view the reasons why " |
| 141 | + ] |
| 142 | + }, |
| 143 | + { |
| 144 | + "cell_type": "code", |
| 145 | + "execution_count": null, |
| 146 | + "id": "febeef63", |
| 147 | + "metadata": {}, |
| 148 | + "outputs": [], |
| 149 | + "source": [ |
| 150 | + "\"../assets/langsmith-tracing-overview.png\"\n", |
| 151 | + "\"../assets/langsmith-tracing-faithfullness.png\"" |
| 152 | + ] |
| 153 | + } |
| 154 | + ], |
| 155 | + "metadata": { |
| 156 | + "kernelspec": { |
| 157 | + "display_name": "Python 3 (ipykernel)", |
| 158 | + "language": "python", |
| 159 | + "name": "python3" |
| 160 | + }, |
| 161 | + "language_info": { |
| 162 | + "codemirror_mode": { |
| 163 | + "name": "ipython", |
| 164 | + "version": 3 |
| 165 | + }, |
| 166 | + "file_extension": ".py", |
| 167 | + "mimetype": "text/x-python", |
| 168 | + "name": "python", |
| 169 | + "nbconvert_exporter": "python", |
| 170 | + "pygments_lexer": "ipython3", |
| 171 | + "version": "3.10.12" |
| 172 | + } |
| 173 | + }, |
| 174 | + "nbformat": 4, |
| 175 | + "nbformat_minor": 5 |
| 176 | +} |
0 commit comments