|
182 | 182 | ], |
183 | 183 | "source": [ |
184 | 184 | "eval_dataset = load_dataset(\"explodinggradients/prompt-engineering-guide-papers\")\n", |
185 | | - "eval_dataset = eval_dataset['test'].to_pandas()\n", |
| 185 | + "eval_dataset = eval_dataset[\"test\"].to_pandas()\n", |
186 | 186 | "eval_dataset.head()" |
187 | 187 | ] |
188 | 188 | }, |
|
244 | 244 | "outputs": [], |
245 | 245 | "source": [ |
246 | 246 | "import os\n", |
| 247 | + "\n", |
247 | 248 | "PATH = \"./prompt-engineering-guide-papers\"\n", |
248 | 249 | "os.environ[\"OPENAI_API_KEY\"] = \"your-open-ai-key\"" |
249 | 250 | ] |
|
266 | 267 | "\n", |
267 | 268 | "def build_query_engine(documents):\n", |
268 | 269 | " vector_index = VectorStoreIndex.from_documents(\n", |
269 | | - " documents, service_context=ServiceContext.from_defaults(chunk_size=512),\n", |
| 270 | + " documents,\n", |
| 271 | + " service_context=ServiceContext.from_defaults(chunk_size=512),\n", |
270 | 272 | " )\n", |
271 | 273 | "\n", |
272 | 274 | " query_engine = vector_index.as_query_engine(similarity_top_k=3)\n", |
273 | 275 | " return query_engine\n", |
274 | 276 | "\n", |
| 277 | + "\n", |
275 | 278 | "# Function to evaluate as Llama index does not support async evaluation for HFInference API\n", |
276 | 279 | "def generate_responses(query_engine, test_questions, test_answers):\n", |
277 | | - " responses = [query_engine.query(q) for q in test_questions]\n", |
| 280 | + " responses = [query_engine.query(q) for q in test_questions]\n", |
278 | 281 | "\n", |
279 | | - " answers = []\n", |
280 | | - " contexts = []\n", |
281 | | - " for r in responses:\n", |
282 | | - " answers.append(r.response)\n", |
283 | | - " contexts.append([c.node.get_content() for c in r.source_nodes])\n", |
284 | | - " dataset_dict = {\n", |
| 282 | + " answers = []\n", |
| 283 | + " contexts = []\n", |
| 284 | + " for r in responses:\n", |
| 285 | + " answers.append(r.response)\n", |
| 286 | + " contexts.append([c.node.get_content() for c in r.source_nodes])\n", |
| 287 | + " dataset_dict = {\n", |
285 | 288 | " \"question\": test_questions,\n", |
286 | 289 | " \"answer\": answers,\n", |
287 | 290 | " \"contexts\": contexts,\n", |
288 | | - " }\n", |
289 | | - " if test_answers is not None:\n", |
290 | | - " dataset_dict[\"ground_truth\"] = test_answers\n", |
291 | | - " ds = Dataset.from_dict(dataset_dict)\n", |
292 | | - " return ds" |
| 291 | + " }\n", |
| 292 | + " if test_answers is not None:\n", |
| 293 | + " dataset_dict[\"ground_truth\"] = test_answers\n", |
| 294 | + " ds = Dataset.from_dict(dataset_dict)\n", |
| 295 | + " return ds" |
293 | 296 | ] |
294 | 297 | }, |
295 | 298 | { |
|
299 | 302 | "metadata": {}, |
300 | 303 | "outputs": [], |
301 | 304 | "source": [ |
302 | | - "reader = SimpleDirectoryReader(PATH,num_files_limit=30, required_exts=[\".pdf\"])\n", |
303 | | - "documents = reader.load_data()\n" |
| 305 | + "reader = SimpleDirectoryReader(PATH, num_files_limit=30, required_exts=[\".pdf\"])\n", |
| 306 | + "documents = reader.load_data()" |
304 | 307 | ] |
305 | 308 | }, |
306 | 309 | { |
|
310 | 313 | "metadata": {}, |
311 | 314 | "outputs": [], |
312 | 315 | "source": [ |
313 | | - "test_questions = eval_dataset['question'].values.tolist()\n", |
314 | | - "test_answers = eval_dataset['ground_truth'].values.tolist()" |
| 316 | + "test_questions = eval_dataset[\"question\"].values.tolist()\n", |
| 317 | + "test_answers = eval_dataset[\"ground_truth\"].values.tolist()" |
315 | 318 | ] |
316 | 319 | }, |
317 | 320 | { |
|
0 commit comments