|
| 1 | +"""SimpleCriteria metric for custom criteria-based evaluation.""" |
| 2 | + |
| 3 | +import typing as t |
| 4 | +from collections import Counter |
| 5 | + |
| 6 | +from pydantic import BaseModel, Field |
| 7 | + |
| 8 | +from ragas.metrics.collections.base import BaseMetric |
| 9 | +from ragas.metrics.result import MetricResult |
| 10 | + |
| 11 | +if t.TYPE_CHECKING: |
| 12 | + from ragas.llms.base import InstructorBaseRagasLLM |
| 13 | + |
| 14 | + |
| 15 | +class SimpleCriteriaOutput(BaseModel): |
| 16 | + """Output for simple criteria evaluation.""" |
| 17 | + |
| 18 | + reason: str = Field(description="Reason for the scoring") |
| 19 | + score: int = Field(description="The score for the submission") |
| 20 | + |
| 21 | + |
| 22 | +class SimpleCriteria(BaseMetric): |
| 23 | + """ |
| 24 | + Judges submissions using custom criteria with configurable scoring. |
| 25 | +
|
| 26 | + Usage: |
| 27 | + >>> from openai import AsyncOpenAI |
| 28 | + >>> from ragas.llms import llm_factory |
| 29 | + >>> from ragas.metrics.collections import SimpleCriteria |
| 30 | + >>> |
| 31 | + >>> # Setup dependencies |
| 32 | + >>> client = AsyncOpenAI() |
| 33 | + >>> llm = llm_factory("gpt-4o-mini", client=client) |
| 34 | + >>> |
| 35 | + >>> # Create metric instance |
| 36 | + >>> metric = SimpleCriteria( |
| 37 | + ... name="clarity", |
| 38 | + ... definition="Is the response clear and easy to understand?", |
| 39 | + ... llm=llm, |
| 40 | + ... ) |
| 41 | + >>> |
| 42 | + >>> # Single evaluation |
| 43 | + >>> result = await metric.ascore( |
| 44 | + ... user_input="What is machine learning?", |
| 45 | + ... response="Machine learning is a subset of artificial intelligence..." |
| 46 | + ... ) |
| 47 | + >>> print(f"Score: {result.value}") |
| 48 | +
|
| 49 | + Attributes: |
| 50 | + llm: Modern instructor-based LLM for evaluation |
| 51 | + name: The metric name |
| 52 | + definition: Criteria to judge the submission |
| 53 | + strictness: Number of times self consistency checks is made (default: 1) |
| 54 | + allowed_values: Score range for numeric validation |
| 55 | + """ |
| 56 | + |
| 57 | + llm: "InstructorBaseRagasLLM" |
| 58 | + |
| 59 | + def __init__( |
| 60 | + self, |
| 61 | + name: str, |
| 62 | + definition: str, |
| 63 | + llm: "InstructorBaseRagasLLM", |
| 64 | + strictness: int = 1, |
| 65 | + allowed_values: t.Tuple[float, float] = (0.0, 10.0), |
| 66 | + **kwargs, |
| 67 | + ): |
| 68 | + """Initialize SimpleCriteria metric with required components.""" |
| 69 | + self.llm = llm |
| 70 | + self.definition = definition |
| 71 | + self.strictness = strictness if strictness % 2 != 0 else strictness + 1 |
| 72 | + |
| 73 | + super().__init__(name=name, allowed_values=allowed_values, **kwargs) |
| 74 | + |
| 75 | + def _build_prompt( |
| 76 | + self, |
| 77 | + user_input: t.Optional[str] = None, |
| 78 | + response: t.Optional[str] = None, |
| 79 | + retrieved_contexts: t.Optional[t.List[str]] = None, |
| 80 | + reference: t.Optional[str] = None, |
| 81 | + reference_contexts: t.Optional[t.List[str]] = None, |
| 82 | + ) -> str: |
| 83 | + """Build the evaluation prompt from inputs.""" |
| 84 | + instruction = f"""Evaluate the input based on the criteria defined. |
| 85 | +Criteria Definition: {self.definition} |
| 86 | +
|
| 87 | +Provide your evaluation in the following format: |
| 88 | +- reason: Brief explanation for your score |
| 89 | +- score: Integer score for the submission |
| 90 | +""" |
| 91 | + |
| 92 | + input_parts = [] |
| 93 | + if user_input is not None: |
| 94 | + input_parts.append(f"User Input: {user_input}") |
| 95 | + if response is not None: |
| 96 | + input_parts.append(f"Response: {response}") |
| 97 | + if retrieved_contexts is not None and len(retrieved_contexts) > 0: |
| 98 | + contexts_str = "\n".join(f" - {ctx}" for ctx in retrieved_contexts) |
| 99 | + input_parts.append(f"Retrieved Contexts:\n{contexts_str}") |
| 100 | + if reference is not None: |
| 101 | + input_parts.append(f"Reference: {reference}") |
| 102 | + if reference_contexts is not None and len(reference_contexts) > 0: |
| 103 | + ref_contexts_str = "\n".join(f" - {ctx}" for ctx in reference_contexts) |
| 104 | + input_parts.append(f"Reference Contexts:\n{ref_contexts_str}") |
| 105 | + |
| 106 | + input_section = "\n\n".join(input_parts) if input_parts else "" |
| 107 | + |
| 108 | + return f"{instruction}\n{input_section}" |
| 109 | + |
| 110 | + async def ascore( |
| 111 | + self, |
| 112 | + user_input: t.Optional[str] = None, |
| 113 | + response: t.Optional[str] = None, |
| 114 | + retrieved_contexts: t.Optional[t.List[str]] = None, |
| 115 | + reference: t.Optional[str] = None, |
| 116 | + reference_contexts: t.Optional[t.List[str]] = None, |
| 117 | + ) -> MetricResult: |
| 118 | + """ |
| 119 | + Calculate simple criteria score asynchronously. |
| 120 | +
|
| 121 | + Args: |
| 122 | + user_input: The input to the llm system (optional) |
| 123 | + response: The response from the llm system (optional) |
| 124 | + retrieved_contexts: The retrieved contexts from the llm system (optional) |
| 125 | + reference: The reference answer for evaluation (optional) |
| 126 | + reference_contexts: The reference contexts for evaluation (optional) |
| 127 | +
|
| 128 | + Returns: |
| 129 | + MetricResult with score and reason |
| 130 | + """ |
| 131 | + prompt = self._build_prompt( |
| 132 | + user_input=user_input, |
| 133 | + response=response, |
| 134 | + retrieved_contexts=retrieved_contexts, |
| 135 | + reference=reference, |
| 136 | + reference_contexts=reference_contexts, |
| 137 | + ) |
| 138 | + |
| 139 | + scores = [] |
| 140 | + reasons = [] |
| 141 | + |
| 142 | + for _ in range(self.strictness): |
| 143 | + result = await self.llm.agenerate(prompt, SimpleCriteriaOutput) |
| 144 | + scores.append(result.score) |
| 145 | + reasons.append(result.reason) |
| 146 | + |
| 147 | + if self.strictness > 1: |
| 148 | + score = Counter(scores).most_common(1)[0][0] |
| 149 | + majority_score = score |
| 150 | + reason_idx = scores.index(majority_score) |
| 151 | + reason = reasons[reason_idx] |
| 152 | + else: |
| 153 | + score = scores[0] |
| 154 | + reason = reasons[0] |
| 155 | + |
| 156 | + return MetricResult(value=float(score), reason=reason) |
0 commit comments