|
| 1 | +# Cancelling Long-Running Tasks |
| 2 | + |
| 3 | +When working with large datasets or complex evaluations, some Ragas operations can take significant time to complete. The cancellation feature allows you to gracefully terminate these long-running tasks when needed, which is especially important in production environments. |
| 4 | + |
| 5 | +## Overview |
| 6 | + |
| 7 | +Ragas provides cancellation support for: |
| 8 | +- **`evaluate()`** - Evaluation of datasets with metrics |
| 9 | +- **`generate_with_langchain_docs()`** - Test set generation from documents |
| 10 | + |
| 11 | +The cancellation mechanism is thread-safe and allows for graceful termination with partial results when possible. |
| 12 | + |
| 13 | +## Basic Usage |
| 14 | + |
| 15 | +### Cancellable Evaluation |
| 16 | + |
| 17 | +Instead of running evaluation directly, you can get an executor that allows cancellation: |
| 18 | + |
| 19 | +```py |
| 20 | +from ragas import evaluate |
| 21 | +from ragas.dataset_schema import EvaluationDataset |
| 22 | + |
| 23 | +# Your dataset and metrics |
| 24 | +dataset = EvaluationDataset(...) |
| 25 | +metrics = [...] |
| 26 | + |
| 27 | +# Get executor instead of running evaluation immediately |
| 28 | +executor = evaluate( |
| 29 | + dataset=dataset, |
| 30 | + metrics=metrics, |
| 31 | + return_executor=True # Key parameter |
| 32 | +) |
| 33 | + |
| 34 | +# Now you can: |
| 35 | +# - Cancel: executor.cancel() |
| 36 | +# - Check status: executor.is_cancelled() |
| 37 | +# - Get results: executor.results() # This blocks until completion |
| 38 | +``` |
| 39 | + |
| 40 | +### Cancellable Test Set Generation |
| 41 | + |
| 42 | +Similar approach for test set generation: |
| 43 | + |
| 44 | +```py |
| 45 | +from ragas.testset.synthesizers.generate import TestsetGenerator |
| 46 | + |
| 47 | +generator = TestsetGenerator(...) |
| 48 | + |
| 49 | +# Get executor for cancellable generation |
| 50 | +executor = generator.generate_with_langchain_docs( |
| 51 | + documents=documents, |
| 52 | + testset_size=100, |
| 53 | + return_executor=True # Allow access to Executor to cancel |
| 54 | +) |
| 55 | + |
| 56 | +# Use the same cancellation interface |
| 57 | +executor.cancel() |
| 58 | +``` |
| 59 | + |
| 60 | +## Production Patterns |
| 61 | + |
| 62 | +### 1. Timeout Pattern |
| 63 | + |
| 64 | +Automatically cancel operations that exceed a time limit: |
| 65 | + |
| 66 | +```py |
| 67 | +import threading |
| 68 | +import time |
| 69 | + |
| 70 | +def evaluate_with_timeout(dataset, metrics, timeout_seconds=300): |
| 71 | + """Run evaluation with automatic timeout.""" |
| 72 | + # Get cancellable executor |
| 73 | + executor = evaluate(dataset=dataset, metrics=metrics, return_executor=True) |
| 74 | + |
| 75 | + results = None |
| 76 | + exception = None |
| 77 | + |
| 78 | + def run_evaluation(): |
| 79 | + nonlocal results, exception |
| 80 | + try: |
| 81 | + results = executor.results() |
| 82 | + except Exception as e: |
| 83 | + exception = e |
| 84 | + |
| 85 | + # Start evaluation in background thread |
| 86 | + thread = threading.Thread(target=run_evaluation) |
| 87 | + thread.start() |
| 88 | + |
| 89 | + # Wait for completion or timeout |
| 90 | + thread.join(timeout=timeout_seconds) |
| 91 | + |
| 92 | + if thread.is_alive(): |
| 93 | + print(f"Evaluation exceeded {timeout_seconds}s timeout, cancelling...") |
| 94 | + executor.cancel() |
| 95 | + thread.join(timeout=10) # Custom timeout as per need |
| 96 | + return None, "timeout" |
| 97 | + |
| 98 | + return results, exception |
| 99 | + |
| 100 | +# Usage |
| 101 | +results, error = evaluate_with_timeout(dataset, metrics, timeout_seconds=600) |
| 102 | +if error == "timeout": |
| 103 | + print("Evaluation was cancelled due to timeout") |
| 104 | +else: |
| 105 | + print(f"Evaluation completed: {results}") |
| 106 | +``` |
| 107 | + |
| 108 | +### 2. Signal Handler Pattern (Ctrl+C) |
| 109 | + |
| 110 | +Allow users to cancel with keyboard interrupt: |
| 111 | + |
| 112 | +```py |
| 113 | +import signal |
| 114 | +import sys |
| 115 | + |
| 116 | +def setup_cancellation_handler(): |
| 117 | + """Set up graceful cancellation on Ctrl+C.""" |
| 118 | + executor = None |
| 119 | + |
| 120 | + def signal_handler(signum, frame): |
| 121 | + if executor and not executor.is_cancelled(): |
| 122 | + print("\nReceived interrupt signal, cancelling evaluation...") |
| 123 | + executor.cancel() |
| 124 | + print("Cancellation requested. Waiting for graceful shutdown...") |
| 125 | + sys.exit(0) |
| 126 | + |
| 127 | + # Register signal handler |
| 128 | + signal.signal(signal.SIGINT, signal_handler) |
| 129 | + |
| 130 | + return lambda exec: setattr(signal_handler, 'executor', exec) |
| 131 | + |
| 132 | +# Usage |
| 133 | +set_executor = setup_cancellation_handler() |
| 134 | + |
| 135 | +executor = evaluate(dataset=dataset, metrics=metrics, return_executor=True) |
| 136 | +set_executor(executor) |
| 137 | + |
| 138 | +print("Running evaluation... Press Ctrl+C to cancel gracefully") |
| 139 | +try: |
| 140 | + results = executor.results() |
| 141 | + print("Evaluation completed successfully") |
| 142 | +except KeyboardInterrupt: |
| 143 | + print("Evaluation was cancelled") |
| 144 | +``` |
| 145 | + |
| 146 | +### 3. Web Application Pattern |
| 147 | + |
| 148 | +For web applications, cancel operations when requests are aborted: |
| 149 | + |
| 150 | +```py |
| 151 | +from flask import Flask, request |
| 152 | +import threading |
| 153 | +import uuid |
| 154 | + |
| 155 | +app = Flask(__name__) |
| 156 | +active_evaluations = {} |
| 157 | + |
| 158 | +@app.route('/evaluate', methods=['POST']) |
| 159 | +def start_evaluation(): |
| 160 | + # Create unique evaluation ID |
| 161 | + eval_id = str(uuid.uuid4()) |
| 162 | + |
| 163 | + # Get dataset and metrics from request |
| 164 | + dataset = get_dataset_from_request(request) |
| 165 | + metrics = get_metrics_from_request(request) |
| 166 | + |
| 167 | + # Start cancellable evaluation |
| 168 | + executor = evaluate(dataset=dataset, metrics=metrics, return_executor=True) |
| 169 | + active_evaluations[eval_id] = executor |
| 170 | + |
| 171 | + # Start evaluation in background |
| 172 | + def run_eval(): |
| 173 | + try: |
| 174 | + results = executor.results() |
| 175 | + # Store results somewhere |
| 176 | + store_results(eval_id, results) |
| 177 | + except Exception as e: |
| 178 | + store_error(eval_id, str(e)) |
| 179 | + finally: |
| 180 | + active_evaluations.pop(eval_id, None) |
| 181 | + |
| 182 | + threading.Thread(target=run_eval).start() |
| 183 | + |
| 184 | + return {"evaluation_id": eval_id, "status": "started"} |
| 185 | + |
| 186 | +@app.route('/evaluate/<eval_id>/cancel', methods=['POST']) |
| 187 | +def cancel_evaluation(eval_id): |
| 188 | + executor = active_evaluations.get(eval_id) |
| 189 | + if executor: |
| 190 | + executor.cancel() |
| 191 | + return {"status": "cancelled"} |
| 192 | + return {"error": "Evaluation not found"}, 404 |
| 193 | +``` |
| 194 | + |
| 195 | +## Advanced Usage |
| 196 | + |
| 197 | +### Checking Cancellation Status |
| 198 | + |
| 199 | +```py |
| 200 | +executor = evaluate(dataset=dataset, metrics=metrics, return_executor=True) |
| 201 | + |
| 202 | +# Start in background |
| 203 | +def monitor_evaluation(): |
| 204 | + while not executor.is_cancelled(): |
| 205 | + print("Evaluation still running...") |
| 206 | + time.sleep(5) |
| 207 | + print("Evaluation was cancelled") |
| 208 | + |
| 209 | +threading.Thread(target=monitor_evaluation).start() |
| 210 | + |
| 211 | +# Cancel after some condition |
| 212 | +if some_condition(): |
| 213 | + executor.cancel() |
| 214 | +``` |
| 215 | + |
| 216 | +### Partial Results |
| 217 | + |
| 218 | +When cancellation occurs during execution, you may get partial results: |
| 219 | + |
| 220 | +```py |
| 221 | +executor = evaluate(dataset=dataset, metrics=metrics, return_executor=True) |
| 222 | + |
| 223 | +try: |
| 224 | + results = executor.results() |
| 225 | + print(f"Completed {len(results)} evaluations") |
| 226 | +except Exception as e: |
| 227 | + if executor.is_cancelled(): |
| 228 | + print("Evaluation was cancelled - may have partial results") |
| 229 | + else: |
| 230 | + print(f"Evaluation failed: {e}") |
| 231 | +``` |
| 232 | + |
| 233 | +### Custom Cancellation Logic |
| 234 | + |
| 235 | +```py |
| 236 | +class EvaluationManager: |
| 237 | + def __init__(self): |
| 238 | + self.executors = [] |
| 239 | + |
| 240 | + def start_evaluation(self, dataset, metrics): |
| 241 | + executor = evaluate(dataset=dataset, metrics=metrics, return_executor=True) |
| 242 | + self.executors.append(executor) |
| 243 | + return executor |
| 244 | + |
| 245 | + def cancel_all(self): |
| 246 | + """Cancel all running evaluations.""" |
| 247 | + for executor in self.executors: |
| 248 | + if not executor.is_cancelled(): |
| 249 | + executor.cancel() |
| 250 | + print(f"Cancelled {len(self.executors)} evaluations") |
| 251 | + |
| 252 | + def cleanup_completed(self): |
| 253 | + """Remove completed executors.""" |
| 254 | + self.executors = [ex for ex in self.executors if not ex.is_cancelled()] |
| 255 | + |
| 256 | +# Usage |
| 257 | +manager = EvaluationManager() |
| 258 | + |
| 259 | +# Start multiple evaluations |
| 260 | +exec1 = manager.start_evaluation(dataset1, metrics) |
| 261 | +exec2 = manager.start_evaluation(dataset2, metrics) |
| 262 | + |
| 263 | +# Cancel all if needed |
| 264 | +manager.cancel_all() |
| 265 | +``` |
| 266 | + |
| 267 | +## Best Practices |
| 268 | + |
| 269 | +### 1. Always Use Timeouts in Production |
| 270 | +```py |
| 271 | +# Good: Always set reasonable timeouts |
| 272 | +results, error = evaluate_with_timeout(dataset, metrics, timeout_seconds=1800) # 30 minutes |
| 273 | + |
| 274 | +# Avoid: Indefinite blocking |
| 275 | +results = executor.results() # Could block forever |
| 276 | +``` |
| 277 | + |
| 278 | +### 2. Handle Cancellation Gracefully |
| 279 | +```py |
| 280 | +try: |
| 281 | + results = executor.results() |
| 282 | + process_results(results) |
| 283 | +except Exception as e: |
| 284 | + if executor.is_cancelled(): |
| 285 | + log_cancellation() |
| 286 | + cleanup_partial_work() |
| 287 | + else: |
| 288 | + log_error(e) |
| 289 | + handle_failure() |
| 290 | +``` |
| 291 | + |
| 292 | +### 3. Provide User Feedback |
| 293 | +```py |
| 294 | +def run_with_progress_and_cancellation(executor): |
| 295 | + print("Starting evaluation... Press Ctrl+C to cancel") |
| 296 | + |
| 297 | + # Monitor progress in background |
| 298 | + def show_progress(): |
| 299 | + while not executor.is_cancelled(): |
| 300 | + # Show some progress indication |
| 301 | + print(".", end="", flush=True) |
| 302 | + time.sleep(1) |
| 303 | + |
| 304 | + progress_thread = threading.Thread(target=show_progress) |
| 305 | + progress_thread.daemon = True |
| 306 | + progress_thread.start() |
| 307 | + |
| 308 | + try: |
| 309 | + return executor.results() |
| 310 | + except KeyboardInterrupt: |
| 311 | + print("\nCancelling...") |
| 312 | + executor.cancel() |
| 313 | + return None |
| 314 | +``` |
| 315 | + |
| 316 | +### 4. Clean Up Resources |
| 317 | +```py |
| 318 | +def managed_evaluation(dataset, metrics): |
| 319 | + executor = None |
| 320 | + try: |
| 321 | + executor = evaluate(dataset=dataset, metrics=metrics, return_executor=True) |
| 322 | + return executor.results() |
| 323 | + except Exception as e: |
| 324 | + if executor: |
| 325 | + executor.cancel() |
| 326 | + raise |
| 327 | + finally: |
| 328 | + # Clean up any temporary resources |
| 329 | + cleanup_temp_files() |
| 330 | +``` |
| 331 | + |
| 332 | +## Limitations |
| 333 | + |
| 334 | +- **Async Operations**: Cancellation works at the task level, not within individual LLM calls |
| 335 | +- **Partial State**: Cancelled operations may leave partial results or temporary files |
| 336 | +- **Timing**: Cancellation is cooperative - tasks need to check for cancellation periodically |
| 337 | +- **Dependencies**: Some external services may not respect cancellation immediately |
| 338 | + |
| 339 | +## Troubleshooting |
| 340 | + |
| 341 | +### Cancellation Not Working |
| 342 | +```py |
| 343 | +# Check if cancellation is set |
| 344 | +if executor.is_cancelled(): |
| 345 | + print("Cancellation was requested") |
| 346 | +else: |
| 347 | + print("Cancellation not requested yet") |
| 348 | + |
| 349 | +# Ensure you're calling cancel() |
| 350 | +executor.cancel() |
| 351 | +assert executor.is_cancelled() |
| 352 | +``` |
| 353 | + |
| 354 | +### Tasks Still Running After Cancellation |
| 355 | +```py |
| 356 | +# Give time for graceful shutdown |
| 357 | +executor.cancel() |
| 358 | +time.sleep(2) # Allow tasks to detect cancellation |
| 359 | + |
| 360 | +# Force cleanup if needed |
| 361 | +import asyncio |
| 362 | +try: |
| 363 | + loop = asyncio.get_running_loop() |
| 364 | + for task in asyncio.all_tasks(loop): |
| 365 | + task.cancel() |
| 366 | +except RuntimeError: |
| 367 | + pass # No event loop running |
| 368 | +``` |
| 369 | + |
| 370 | +The cancellation feature provides robust control over long-running Ragas operations, enabling production-ready deployments with proper resource management and user experience. |
0 commit comments