|
41 | 41 | }, |
42 | 42 | { |
43 | 43 | "cell_type": "code", |
44 | | - "execution_count": null, |
| 44 | + "execution_count": 2, |
45 | 45 | "id": "0b7179f7", |
46 | 46 | "metadata": {}, |
47 | 47 | "outputs": [], |
|
86 | 86 | { |
87 | 87 | "data": { |
88 | 88 | "application/vnd.jupyter.widget-view+json": { |
89 | | - "model_id": "c4a622ce9f774cf7b79b46d9fcf05f69", |
| 89 | + "model_id": "b445c1d1ed654516946e7c7f49850c0b", |
90 | 90 | "version_major": 2, |
91 | 91 | "version_minor": 0 |
92 | 92 | }, |
|
178 | 178 | }, |
179 | 179 | { |
180 | 180 | "cell_type": "code", |
181 | | - "execution_count": 8, |
| 181 | + "execution_count": 4, |
182 | 182 | "id": "22eb6f97", |
183 | 183 | "metadata": {}, |
184 | 184 | "outputs": [ |
|
187 | 187 | "output_type": "stream", |
188 | 188 | "text": [ |
189 | 189 | "Loading cached processed dataset at /home/jjmachan/.cache/huggingface/datasets/explodinggradients___fiqa/ragas_eval/1.0.0/3dc7b639f5b4b16509a3299a2ceb78bf5fe98ee6b5fee25e7d5e4d290c88efb8/cache-f5ed219a49e8fb1f.arrow\n", |
190 | | - "100%|█████████████████████████████████████████████████████████████| 1/1 [00:18<00:00, 18.95s/it]\n", |
191 | | - "100%|█████████████████████████████████████████████████████████████| 2/2 [01:09<00:00, 34.97s/it]\n", |
| 190 | + "100%|████████████████████████████████████████████████████████████| 1/1 [00:18<00:00, 18.28s/it]\n", |
| 191 | + "100%|████████████████████████████████████████████████████████████| 2/2 [00:34<00:00, 17.38s/it]\n", |
192 | 192 | "Loading cached processed dataset at /home/jjmachan/.cache/huggingface/datasets/explodinggradients___fiqa/ragas_eval/1.0.0/3dc7b639f5b4b16509a3299a2ceb78bf5fe98ee6b5fee25e7d5e4d290c88efb8/cache-2a93a2841bc4d586.arrow\n", |
193 | | - "100%|█████████████████████████████████████████████████████████████| 1/1 [00:07<00:00, 7.49s/it]\n" |
| 193 | + "100%|████████████████████████████████████████████████████████████| 1/1 [00:07<00:00, 8.00s/it]\n" |
194 | 194 | ] |
195 | 195 | }, |
196 | 196 | { |
197 | 197 | "data": { |
198 | 198 | "text/plain": [ |
199 | | - "{'ragas_score': 0.860, 'context_relavency': 0.817, 'faithfulness': 0.892, 'answer_relevancy': 0.874}" |
| 199 | + "{'ragas_score': 0.8629, 'context_relavency': 0.8167, 'faithfulness': 0.9028, 'answer_relevancy': 0.8738}" |
200 | 200 | ] |
201 | 201 | }, |
202 | | - "execution_count": 8, |
| 202 | + "execution_count": 4, |
203 | 203 | "metadata": {}, |
204 | 204 | "output_type": "execute_result" |
205 | 205 | } |
|
226 | 226 | }, |
227 | 227 | { |
228 | 228 | "cell_type": "code", |
229 | | - "execution_count": 12, |
| 229 | + "execution_count": 5, |
230 | 230 | "id": "8686bf53", |
231 | 231 | "metadata": {}, |
232 | 232 | "outputs": [ |
|
345 | 345 | "4 [The time horizon for your 401K/IRA is essenti... 0.737 \n", |
346 | 346 | "\n", |
347 | 347 | " faithfulness answer_relevancy \n", |
348 | | - "0 1.0 0.922 \n", |
349 | | - "1 1.0 0.923 \n", |
350 | | - "2 1.0 0.824 \n", |
351 | | - "3 1.0 0.830 \n", |
352 | | - "4 1.0 0.753 " |
| 348 | + "0 1.0 0.922 \n", |
| 349 | + "1 1.0 0.923 \n", |
| 350 | + "2 1.0 0.824 \n", |
| 351 | + "3 1.0 0.830 \n", |
| 352 | + "4 1.0 0.753 " |
353 | 353 | ] |
354 | 354 | }, |
355 | | - "execution_count": 12, |
| 355 | + "execution_count": 5, |
356 | 356 | "metadata": {}, |
357 | 357 | "output_type": "execute_result" |
358 | 358 | } |
|
0 commit comments