|
| 1 | +"""String-based metrics v2 - Class-based implementations with automatic validation.""" |
| 2 | + |
| 3 | +from enum import Enum |
| 4 | + |
| 5 | +from ragas.metrics.collections.base import BaseMetric |
| 6 | +from ragas.metrics.result import MetricResult |
| 7 | + |
| 8 | + |
| 9 | +class DistanceMeasure(Enum): |
| 10 | + LEVENSHTEIN = "levenshtein" |
| 11 | + HAMMING = "hamming" |
| 12 | + JARO = "jaro" |
| 13 | + JARO_WINKLER = "jaro_winkler" |
| 14 | + |
| 15 | + |
| 16 | +class ExactMatch(BaseMetric): |
| 17 | + """ |
| 18 | + Check if reference and response are exactly identical. |
| 19 | +
|
| 20 | + This implementation provides automatic validation and pure async design |
| 21 | + without requiring LLM or embedding components. |
| 22 | +
|
| 23 | + Usage: |
| 24 | + >>> from ragas.metrics.collections import ExactMatch |
| 25 | + >>> |
| 26 | + >>> metric = ExactMatch() |
| 27 | + >>> |
| 28 | + >>> result = await metric.ascore( |
| 29 | + ... reference="Hello World", |
| 30 | + ... response="Hello World" |
| 31 | + ... ) |
| 32 | + >>> print(f"Score: {result.value}") # 1.0 |
| 33 | + >>> |
| 34 | + >>> results = await metric.abatch_score([ |
| 35 | + ... {"reference": "Text 1", "response": "Text 1"}, |
| 36 | + ... {"reference": "Text 2", "response": "Different"}, |
| 37 | + ... ]) |
| 38 | +
|
| 39 | + Attributes: |
| 40 | + name: The metric name |
| 41 | + allowed_values: Score range (0.0 to 1.0) |
| 42 | + """ |
| 43 | + |
| 44 | + def __init__( |
| 45 | + self, |
| 46 | + name: str = "exact_match", |
| 47 | + **base_kwargs, |
| 48 | + ): |
| 49 | + """Initialize ExactMatch metric.""" |
| 50 | + super().__init__(name=name, **base_kwargs) |
| 51 | + |
| 52 | + async def ascore( |
| 53 | + self, |
| 54 | + reference: str, |
| 55 | + response: str, |
| 56 | + ) -> MetricResult: |
| 57 | + """ |
| 58 | + Check if reference and response match exactly. |
| 59 | +
|
| 60 | + Args: |
| 61 | + reference: The reference/ground truth text |
| 62 | + response: The response text to evaluate |
| 63 | +
|
| 64 | + Returns: |
| 65 | + MetricResult with 1.0 if exact match, 0.0 otherwise |
| 66 | + """ |
| 67 | + score = float(reference == response) |
| 68 | + return MetricResult(value=score) |
| 69 | + |
| 70 | + |
| 71 | +class StringPresence(BaseMetric): |
| 72 | + """ |
| 73 | + Check if reference string is present in the response. |
| 74 | +
|
| 75 | + This implementation provides automatic validation and pure async design |
| 76 | + without requiring LLM or embedding components. |
| 77 | +
|
| 78 | + Usage: |
| 79 | + >>> from ragas.metrics.collections import StringPresence |
| 80 | + >>> |
| 81 | + >>> metric = StringPresence() |
| 82 | + >>> |
| 83 | + >>> result = await metric.ascore( |
| 84 | + ... reference="Paris", |
| 85 | + ... response="The capital of France is Paris." |
| 86 | + ... ) |
| 87 | + >>> print(f"Score: {result.value}") # 1.0 |
| 88 | + >>> |
| 89 | + >>> results = await metric.abatch_score([ |
| 90 | + ... {"reference": "cat", "response": "The cat sat on the mat"}, |
| 91 | + ... {"reference": "dog", "response": "The cat sat on the mat"}, |
| 92 | + ... ]) |
| 93 | +
|
| 94 | + Attributes: |
| 95 | + name: The metric name |
| 96 | + allowed_values: Score range (0.0 to 1.0) |
| 97 | + """ |
| 98 | + |
| 99 | + def __init__( |
| 100 | + self, |
| 101 | + name: str = "string_present", |
| 102 | + **base_kwargs, |
| 103 | + ): |
| 104 | + """Initialize StringPresence metric.""" |
| 105 | + super().__init__(name=name, **base_kwargs) |
| 106 | + |
| 107 | + async def ascore( |
| 108 | + self, |
| 109 | + reference: str, |
| 110 | + response: str, |
| 111 | + ) -> MetricResult: |
| 112 | + """ |
| 113 | + Check if reference is present in response. |
| 114 | +
|
| 115 | + Args: |
| 116 | + reference: The reference string to search for |
| 117 | + response: The response text to search in |
| 118 | +
|
| 119 | + Returns: |
| 120 | + MetricResult with 1.0 if reference is in response, 0.0 otherwise |
| 121 | + """ |
| 122 | + assert isinstance(reference, str), ( |
| 123 | + "StringPresence expects a valid reference string" |
| 124 | + ) |
| 125 | + assert isinstance(response, str), ( |
| 126 | + "StringPresence expects a valid response string" |
| 127 | + ) |
| 128 | + |
| 129 | + score = float(reference in response) |
| 130 | + return MetricResult(value=score) |
| 131 | + |
| 132 | + |
| 133 | +class NonLLMStringSimilarity(BaseMetric): |
| 134 | + """ |
| 135 | + Calculate string similarity between reference and response using various distance measures. |
| 136 | +
|
| 137 | + This implementation provides automatic validation and pure async design |
| 138 | + without requiring LLM or embedding components. Uses rapidfuzz library. |
| 139 | +
|
| 140 | + Usage: |
| 141 | + >>> from ragas.metrics.collections import NonLLMStringSimilarity, DistanceMeasure |
| 142 | + >>> |
| 143 | + >>> metric = NonLLMStringSimilarity(distance_measure=DistanceMeasure.LEVENSHTEIN) |
| 144 | + >>> |
| 145 | + >>> result = await metric.ascore( |
| 146 | + ... reference="The capital of France is Paris.", |
| 147 | + ... response="Paris is the capital of France." |
| 148 | + ... ) |
| 149 | + >>> print(f"Score: {result.value}") |
| 150 | + >>> |
| 151 | + >>> results = await metric.abatch_score([ |
| 152 | + ... {"reference": "Text 1", "response": "Response 1"}, |
| 153 | + ... {"reference": "Text 2", "response": "Response 2"}, |
| 154 | + ... ]) |
| 155 | +
|
| 156 | + Attributes: |
| 157 | + name: The metric name |
| 158 | + distance_measure: The distance measure to use (default: LEVENSHTEIN) |
| 159 | + allowed_values: Score range (0.0 to 1.0) |
| 160 | + """ |
| 161 | + |
| 162 | + def __init__( |
| 163 | + self, |
| 164 | + name: str = "non_llm_string_similarity", |
| 165 | + distance_measure: DistanceMeasure = DistanceMeasure.LEVENSHTEIN, |
| 166 | + **base_kwargs, |
| 167 | + ): |
| 168 | + """Initialize NonLLMStringSimilarity metric.""" |
| 169 | + super().__init__(name=name, **base_kwargs) |
| 170 | + self.distance_measure = distance_measure |
| 171 | + |
| 172 | + try: |
| 173 | + from rapidfuzz import distance |
| 174 | + except ImportError: |
| 175 | + raise ImportError( |
| 176 | + "rapidfuzz is required for string distance. " |
| 177 | + "Please install it using `pip install rapidfuzz`" |
| 178 | + ) |
| 179 | + |
| 180 | + self.distance_measure_map = { |
| 181 | + DistanceMeasure.LEVENSHTEIN: distance.Levenshtein, |
| 182 | + DistanceMeasure.HAMMING: distance.Hamming, |
| 183 | + DistanceMeasure.JARO: distance.Jaro, |
| 184 | + DistanceMeasure.JARO_WINKLER: distance.JaroWinkler, |
| 185 | + } |
| 186 | + |
| 187 | + async def ascore( |
| 188 | + self, |
| 189 | + reference: str, |
| 190 | + response: str, |
| 191 | + ) -> MetricResult: |
| 192 | + """ |
| 193 | + Calculate string similarity score asynchronously. |
| 194 | +
|
| 195 | + Args: |
| 196 | + reference: The reference/ground truth text |
| 197 | + response: The response text to evaluate |
| 198 | +
|
| 199 | + Returns: |
| 200 | + MetricResult with similarity score (0.0-1.0) |
| 201 | + """ |
| 202 | + assert isinstance(reference, str), ( |
| 203 | + "NonLLMStringSimilarity expects a valid reference string" |
| 204 | + ) |
| 205 | + assert isinstance(response, str), ( |
| 206 | + "NonLLMStringSimilarity expects a valid response string" |
| 207 | + ) |
| 208 | + |
| 209 | + score = 1 - self.distance_measure_map[ |
| 210 | + self.distance_measure |
| 211 | + ].normalized_distance(reference, response) |
| 212 | + |
| 213 | + assert isinstance(score, float), "Expecting a float" |
| 214 | + return MetricResult(value=float(score)) |
0 commit comments