most_similar() : strange results #12720
Answered
by
kadarakos
DataAndMaths
asked this question in
Help: Other Questions
-
With
I get strange results :
With other words :
|
Beta Was this translation helpful? Give feedback.
Answered by
kadarakos
Jun 13, 2023
Replies: 1 comment 2 replies
-
Hey DataAndMaths, For the ['country', 'country-', 'country\x92s', 'country`s', 'country"s', 'countryâ€', 'countrys', 'country—0,467', 'country--', 'countr', 'countryâ\x80\x99s', 'lowcountry', 'Upcountry', 'upcountry', 'countrywomen', 'countrywide', 'Lowcountry', 'thecountry', 'intercountry', 'countrywoman', 'countries-', 'nation', 'Westcountry', 'countrymen', 'countryman', 'countries', 'continent', 'countrysides', 'Kountry', 'countrified', 'nationâ\x80\x99s', 'countryCredit', 'nations', 'backcountry', 'nationalities', 'countryside', 'nationhood', 'cities', 'stateside', 'nationals', 'region', 'continents', 'states-', 'nationalising', 'nationally', 'world', 'homelands', 'governmentality', 'countout', 'region-'] |
Beta Was this translation helpful? Give feedback.
2 replies
Answer selected by
svlandeg
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Hey DataAndMaths,
For the
en_core_web_md
model we prune the the vector tables to save memory. For this usecase it might be worth trying out theen_core_web_lg
pre-trained model instead. Here is the similarity list it returns for"country"
: