Skip to content

Commit 794f7e4

Browse files
rootonchairPham Hong Vinha-r-r-o-w
authored
Implement framewise encoding/decoding in LTX Video VAE (huggingface#10488)
* add framewise decode * add framewise encode, refactor tiled encode/decode * add sanity test tiling for ltx * run make style * Update src/diffusers/models/autoencoders/autoencoder_kl_ltx.py Co-authored-by: Aryan <[email protected]> --------- Co-authored-by: Pham Hong Vinh <[email protected]> Co-authored-by: Aryan <[email protected]>
1 parent 9fc9c6d commit 794f7e4

File tree

2 files changed

+127
-41
lines changed

2 files changed

+127
-41
lines changed

src/diffusers/models/autoencoders/autoencoder_kl_ltx.py

Lines changed: 96 additions & 41 deletions
Original file line numberDiff line numberDiff line change
@@ -1010,10 +1010,12 @@ def __init__(
10101010
# The minimal tile height and width for spatial tiling to be used
10111011
self.tile_sample_min_height = 512
10121012
self.tile_sample_min_width = 512
1013+
self.tile_sample_min_num_frames = 16
10131014

10141015
# The minimal distance between two spatial tiles
10151016
self.tile_sample_stride_height = 448
10161017
self.tile_sample_stride_width = 448
1018+
self.tile_sample_stride_num_frames = 8
10171019

10181020
def _set_gradient_checkpointing(self, module, value=False):
10191021
if isinstance(module, (LTXVideoEncoder3d, LTXVideoDecoder3d)):
@@ -1023,8 +1025,10 @@ def enable_tiling(
10231025
self,
10241026
tile_sample_min_height: Optional[int] = None,
10251027
tile_sample_min_width: Optional[int] = None,
1028+
tile_sample_min_num_frames: Optional[int] = None,
10261029
tile_sample_stride_height: Optional[float] = None,
10271030
tile_sample_stride_width: Optional[float] = None,
1031+
tile_sample_stride_num_frames: Optional[float] = None,
10281032
) -> None:
10291033
r"""
10301034
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
@@ -1046,8 +1050,10 @@ def enable_tiling(
10461050
self.use_tiling = True
10471051
self.tile_sample_min_height = tile_sample_min_height or self.tile_sample_min_height
10481052
self.tile_sample_min_width = tile_sample_min_width or self.tile_sample_min_width
1053+
self.tile_sample_min_num_frames = tile_sample_min_num_frames or self.tile_sample_min_num_frames
10491054
self.tile_sample_stride_height = tile_sample_stride_height or self.tile_sample_stride_height
10501055
self.tile_sample_stride_width = tile_sample_stride_width or self.tile_sample_stride_width
1056+
self.tile_sample_stride_num_frames = tile_sample_stride_num_frames or self.tile_sample_stride_num_frames
10511057

10521058
def disable_tiling(self) -> None:
10531059
r"""
@@ -1073,18 +1079,13 @@ def disable_slicing(self) -> None:
10731079
def _encode(self, x: torch.Tensor) -> torch.Tensor:
10741080
batch_size, num_channels, num_frames, height, width = x.shape
10751081

1082+
if self.use_framewise_decoding and num_frames > self.tile_sample_min_num_frames:
1083+
return self._temporal_tiled_encode(x)
1084+
10761085
if self.use_tiling and (width > self.tile_sample_min_width or height > self.tile_sample_min_height):
10771086
return self.tiled_encode(x)
10781087

1079-
if self.use_framewise_encoding:
1080-
# TODO(aryan): requires investigation
1081-
raise NotImplementedError(
1082-
"Frame-wise encoding has not been implemented for AutoencoderKLLTXVideo, at the moment, due to "
1083-
"quality issues caused by splitting inference across frame dimension. If you believe this "
1084-
"should be possible, please submit a PR to https://github.com/huggingface/diffusers/pulls."
1085-
)
1086-
else:
1087-
enc = self.encoder(x)
1088+
enc = self.encoder(x)
10881089

10891090
return enc
10901091

@@ -1121,19 +1122,15 @@ def _decode(
11211122
batch_size, num_channels, num_frames, height, width = z.shape
11221123
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
11231124
tile_latent_min_width = self.tile_sample_stride_width // self.spatial_compression_ratio
1125+
tile_latent_min_num_frames = self.tile_sample_min_num_frames // self.temporal_compression_ratio
1126+
1127+
if self.use_framewise_decoding and num_frames > tile_latent_min_num_frames:
1128+
return self._temporal_tiled_decode(z, temb, return_dict=return_dict)
11241129

11251130
if self.use_tiling and (width > tile_latent_min_width or height > tile_latent_min_height):
11261131
return self.tiled_decode(z, temb, return_dict=return_dict)
11271132

1128-
if self.use_framewise_decoding:
1129-
# TODO(aryan): requires investigation
1130-
raise NotImplementedError(
1131-
"Frame-wise decoding has not been implemented for AutoencoderKLLTXVideo, at the moment, due to "
1132-
"quality issues caused by splitting inference across frame dimension. If you believe this "
1133-
"should be possible, please submit a PR to https://github.com/huggingface/diffusers/pulls."
1134-
)
1135-
else:
1136-
dec = self.decoder(z, temb)
1133+
dec = self.decoder(z, temb)
11371134

11381135
if not return_dict:
11391136
return (dec,)
@@ -1189,6 +1186,14 @@ def blend_h(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.
11891186
)
11901187
return b
11911188

1189+
def blend_t(self, a: torch.Tensor, b: torch.Tensor, blend_extent: int) -> torch.Tensor:
1190+
blend_extent = min(a.shape[-3], b.shape[-3], blend_extent)
1191+
for x in range(blend_extent):
1192+
b[:, :, x, :, :] = a[:, :, -blend_extent + x, :, :] * (1 - x / blend_extent) + b[:, :, x, :, :] * (
1193+
x / blend_extent
1194+
)
1195+
return b
1196+
11921197
def tiled_encode(self, x: torch.Tensor) -> torch.Tensor:
11931198
r"""Encode a batch of images using a tiled encoder.
11941199
@@ -1217,17 +1222,9 @@ def tiled_encode(self, x: torch.Tensor) -> torch.Tensor:
12171222
for i in range(0, height, self.tile_sample_stride_height):
12181223
row = []
12191224
for j in range(0, width, self.tile_sample_stride_width):
1220-
if self.use_framewise_encoding:
1221-
# TODO(aryan): requires investigation
1222-
raise NotImplementedError(
1223-
"Frame-wise encoding has not been implemented for AutoencoderKLLTXVideo, at the moment, due to "
1224-
"quality issues caused by splitting inference across frame dimension. If you believe this "
1225-
"should be possible, please submit a PR to https://github.com/huggingface/diffusers/pulls."
1226-
)
1227-
else:
1228-
time = self.encoder(
1229-
x[:, :, :, i : i + self.tile_sample_min_height, j : j + self.tile_sample_min_width]
1230-
)
1225+
time = self.encoder(
1226+
x[:, :, :, i : i + self.tile_sample_min_height, j : j + self.tile_sample_min_width]
1227+
)
12311228

12321229
row.append(time)
12331230
rows.append(row)
@@ -1283,17 +1280,7 @@ def tiled_decode(
12831280
for i in range(0, height, tile_latent_stride_height):
12841281
row = []
12851282
for j in range(0, width, tile_latent_stride_width):
1286-
if self.use_framewise_decoding:
1287-
# TODO(aryan): requires investigation
1288-
raise NotImplementedError(
1289-
"Frame-wise decoding has not been implemented for AutoencoderKLLTXVideo, at the moment, due to "
1290-
"quality issues caused by splitting inference across frame dimension. If you believe this "
1291-
"should be possible, please submit a PR to https://github.com/huggingface/diffusers/pulls."
1292-
)
1293-
else:
1294-
time = self.decoder(
1295-
z[:, :, :, i : i + tile_latent_min_height, j : j + tile_latent_min_width], temb
1296-
)
1283+
time = self.decoder(z[:, :, :, i : i + tile_latent_min_height, j : j + tile_latent_min_width], temb)
12971284

12981285
row.append(time)
12991286
rows.append(row)
@@ -1318,6 +1305,74 @@ def tiled_decode(
13181305

13191306
return DecoderOutput(sample=dec)
13201307

1308+
def _temporal_tiled_encode(self, x: torch.Tensor) -> AutoencoderKLOutput:
1309+
batch_size, num_channels, num_frames, height, width = x.shape
1310+
latent_num_frames = (num_frames - 1) // self.temporal_compression_ratio + 1
1311+
1312+
tile_latent_min_num_frames = self.tile_sample_min_num_frames // self.temporal_compression_ratio
1313+
tile_latent_stride_num_frames = self.tile_sample_stride_num_frames // self.temporal_compression_ratio
1314+
blend_num_frames = tile_latent_min_num_frames - tile_latent_stride_num_frames
1315+
1316+
row = []
1317+
for i in range(0, num_frames, self.tile_sample_stride_num_frames):
1318+
tile = x[:, :, i : i + self.tile_sample_min_num_frames + 1, :, :]
1319+
if self.use_tiling and (height > self.tile_sample_min_height or width > self.tile_sample_min_width):
1320+
tile = self.tiled_encode(tile)
1321+
else:
1322+
tile = self.encoder(tile)
1323+
if i > 0:
1324+
tile = tile[:, :, 1:, :, :]
1325+
row.append(tile)
1326+
1327+
result_row = []
1328+
for i, tile in enumerate(row):
1329+
if i > 0:
1330+
tile = self.blend_t(row[i - 1], tile, blend_num_frames)
1331+
result_row.append(tile[:, :, :tile_latent_stride_num_frames, :, :])
1332+
else:
1333+
result_row.append(tile[:, :, : tile_latent_stride_num_frames + 1, :, :])
1334+
1335+
enc = torch.cat(result_row, dim=2)[:, :, :latent_num_frames]
1336+
return enc
1337+
1338+
def _temporal_tiled_decode(
1339+
self, z: torch.Tensor, temb: Optional[torch.Tensor], return_dict: bool = True
1340+
) -> Union[DecoderOutput, torch.Tensor]:
1341+
batch_size, num_channels, num_frames, height, width = z.shape
1342+
num_sample_frames = (num_frames - 1) * self.temporal_compression_ratio + 1
1343+
1344+
tile_latent_min_height = self.tile_sample_min_height // self.spatial_compression_ratio
1345+
tile_latent_min_width = self.tile_sample_min_width // self.spatial_compression_ratio
1346+
tile_latent_min_num_frames = self.tile_sample_min_num_frames // self.temporal_compression_ratio
1347+
tile_latent_stride_num_frames = self.tile_sample_stride_num_frames // self.temporal_compression_ratio
1348+
blend_num_frames = self.tile_sample_min_num_frames - self.tile_sample_stride_num_frames
1349+
1350+
row = []
1351+
for i in range(0, num_frames, tile_latent_stride_num_frames):
1352+
tile = z[:, :, i : i + tile_latent_min_num_frames + 1, :, :]
1353+
if self.use_tiling and (tile.shape[-1] > tile_latent_min_width or tile.shape[-2] > tile_latent_min_height):
1354+
decoded = self.tiled_decode(tile, temb, return_dict=True).sample
1355+
else:
1356+
decoded = self.decoder(tile, temb)
1357+
if i > 0:
1358+
decoded = decoded[:, :, :-1, :, :]
1359+
row.append(decoded)
1360+
1361+
result_row = []
1362+
for i, tile in enumerate(row):
1363+
if i > 0:
1364+
tile = self.blend_t(row[i - 1], tile, blend_num_frames)
1365+
tile = tile[:, :, : self.tile_sample_stride_num_frames, :, :]
1366+
result_row.append(tile)
1367+
else:
1368+
result_row.append(tile[:, :, : self.tile_sample_stride_num_frames + 1, :, :])
1369+
1370+
dec = torch.cat(result_row, dim=2)[:, :, :num_sample_frames]
1371+
1372+
if not return_dict:
1373+
return (dec,)
1374+
return DecoderOutput(sample=dec)
1375+
13211376
def forward(
13221377
self,
13231378
sample: torch.Tensor,
@@ -1334,5 +1389,5 @@ def forward(
13341389
z = posterior.mode()
13351390
dec = self.decode(z, temb)
13361391
if not return_dict:
1337-
return (dec,)
1392+
return (dec.sample,)
13381393
return dec

tests/models/autoencoders/test_models_autoencoder_ltx_video.py

Lines changed: 31 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -167,3 +167,34 @@ def test_outputs_equivalence(self):
167167
@unittest.skip("AutoencoderKLLTXVideo does not support `norm_num_groups` because it does not use GroupNorm.")
168168
def test_forward_with_norm_groups(self):
169169
pass
170+
171+
def test_enable_disable_tiling(self):
172+
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
173+
174+
torch.manual_seed(0)
175+
model = self.model_class(**init_dict).to(torch_device)
176+
177+
inputs_dict.update({"return_dict": False})
178+
179+
torch.manual_seed(0)
180+
output_without_tiling = model(**inputs_dict, generator=torch.manual_seed(0))[0]
181+
182+
torch.manual_seed(0)
183+
model.enable_tiling()
184+
output_with_tiling = model(**inputs_dict, generator=torch.manual_seed(0))[0]
185+
186+
self.assertLess(
187+
(output_without_tiling.detach().cpu().numpy() - output_with_tiling.detach().cpu().numpy()).max(),
188+
0.5,
189+
"VAE tiling should not affect the inference results",
190+
)
191+
192+
torch.manual_seed(0)
193+
model.disable_tiling()
194+
output_without_tiling_2 = model(**inputs_dict, generator=torch.manual_seed(0))[0]
195+
196+
self.assertEqual(
197+
output_without_tiling.detach().cpu().numpy().all(),
198+
output_without_tiling_2.detach().cpu().numpy().all(),
199+
"Without tiling outputs should match with the outputs when tiling is manually disabled.",
200+
)

0 commit comments

Comments
 (0)