@@ -238,9 +238,34 @@ def test_canny(self):
238238
239239 original_image = image [- 3 :, - 3 :, - 1 ].flatten ()
240240
241- expected_image = np .array (
242- [0.43652344 , 0.4399414 , 0.44921875 , 0.45043945 , 0.45703125 , 0.44873047 , 0.43579102 , 0.44018555 , 0.42578125 ]
243- )
241+ if torch_device == "xpu" :
242+ expected_image = np .array (
243+ [
244+ 0.2944336 ,
245+ 0.30981445 ,
246+ 0.24389648 ,
247+ 0.2890625 ,
248+ 0.32006836 ,
249+ 0.2578125 ,
250+ 0.31469727 ,
251+ 0.34545898 ,
252+ 0.28515625 ,
253+ ]
254+ )
255+ else :
256+ expected_image = np .array (
257+ [
258+ 0.43652344 ,
259+ 0.4399414 ,
260+ 0.44921875 ,
261+ 0.45043945 ,
262+ 0.45703125 ,
263+ 0.44873047 ,
264+ 0.43579102 ,
265+ 0.44018555 ,
266+ 0.42578125 ,
267+ ]
268+ )
244269
245270 assert np .abs (original_image .flatten () - expected_image ).max () < 1e-2
246271
@@ -277,9 +302,24 @@ def test_pose(self):
277302
278303 original_image = image [- 3 :, - 3 :, - 1 ].flatten ()
279304
280- expected_image = np .array (
281- [0.4091797 , 0.4177246 , 0.39526367 , 0.4194336 , 0.40356445 , 0.3857422 , 0.39208984 , 0.40429688 , 0.37451172 ]
282- )
305+ if torch_device == "xpu" :
306+ expected_image = np .array (
307+ [0.59277344 , 0.6640625 , 0.75146484 , 0.74121094 , 0.7636719 , 0.7426758 , 0.6879883 , 0.6455078 , 0.6386719 ]
308+ )
309+ else :
310+ expected_image = np .array (
311+ [
312+ 0.4091797 ,
313+ 0.4177246 ,
314+ 0.39526367 ,
315+ 0.4194336 ,
316+ 0.40356445 ,
317+ 0.3857422 ,
318+ 0.39208984 ,
319+ 0.40429688 ,
320+ 0.37451172 ,
321+ ]
322+ )
283323
284324 assert np .abs (original_image .flatten () - expected_image ).max () < 1e-2
285325
@@ -316,9 +356,34 @@ def test_depth(self):
316356
317357 original_image = image [- 3 :, - 3 :, - 1 ].flatten ()
318358
319- expected_image = np .array (
320- [0.31982422 , 0.32177734 , 0.30126953 , 0.3190918 , 0.3100586 , 0.31396484 , 0.3232422 , 0.33544922 , 0.30810547 ]
321- )
359+ if torch_device == "xpu" :
360+ expected_image = np .array (
361+ [
362+ 0.7529297 ,
363+ 0.69628906 ,
364+ 0.62060547 ,
365+ 0.76708984 ,
366+ 0.7158203 ,
367+ 0.65185547 ,
368+ 0.74853516 ,
369+ 0.69628906 ,
370+ 0.6455078 ,
371+ ]
372+ )
373+ else :
374+ expected_image = np .array (
375+ [
376+ 0.31982422 ,
377+ 0.32177734 ,
378+ 0.30126953 ,
379+ 0.3190918 ,
380+ 0.3100586 ,
381+ 0.31396484 ,
382+ 0.3232422 ,
383+ 0.33544922 ,
384+ 0.30810547 ,
385+ ]
386+ )
322387
323388 assert np .abs (original_image .flatten () - expected_image ).max () < 1e-2
324389
@@ -356,8 +421,34 @@ def test_multi_controlnet(self):
356421 assert image .shape == (1024 , 1024 , 3 )
357422
358423 original_image = image [- 3 :, - 3 :, - 1 ].flatten ()
359- expected_image = np .array (
360- [0.43652344 , 0.44018555 , 0.4494629 , 0.44995117 , 0.45654297 , 0.44848633 , 0.43603516 , 0.4404297 , 0.42626953 ]
361- )
424+
425+ if torch_device == "xpu" :
426+ expected_image = np .array (
427+ [
428+ 0.28320312 ,
429+ 0.28125 ,
430+ 0.31347656 ,
431+ 0.29736328 ,
432+ 0.29077148 ,
433+ 0.33740234 ,
434+ 0.33911133 ,
435+ 0.35668945 ,
436+ 0.38452148 ,
437+ ]
438+ )
439+ else :
440+ expected_image = np .array (
441+ [
442+ 0.43652344 ,
443+ 0.44018555 ,
444+ 0.4494629 ,
445+ 0.44995117 ,
446+ 0.45654297 ,
447+ 0.44848633 ,
448+ 0.43603516 ,
449+ 0.4404297 ,
450+ 0.42626953 ,
451+ ]
452+ )
362453
363454 assert np .abs (original_image .flatten () - expected_image ).max () < 1e-2
0 commit comments