|
| 1 | +""" |
| 2 | +Simple Color Appearance Model (sCAM). |
| 3 | +
|
| 4 | +https://opg.optica.org/oe/fulltext.cfm?uri=oe-32-3-3100&id=545619 |
| 5 | +""" |
| 6 | +from __future__ import annotations |
| 7 | +import math |
| 8 | +import bisect |
| 9 | +from .. import util |
| 10 | +from .. import algebra as alg |
| 11 | +from .lch import LCh |
| 12 | +from ..cat import WHITES |
| 13 | +from ..channels import Channel, FLG_ANGLE |
| 14 | +from ..types import Vector, VectorLike |
| 15 | +from .cam16 import hue_quadrature, inv_hue_quadrature |
| 16 | + |
| 17 | +# LMS matrices |
| 18 | +TO_LMS = [ |
| 19 | + [0.4002, 0.7075, -0.0807], |
| 20 | + [-0.2280, 1.1500, 0.0612], |
| 21 | + [0.0000, 0.0000, 0.9184], |
| 22 | +] |
| 23 | +FROM_LMS = alg.inv(TO_LMS) |
| 24 | + |
| 25 | +# IAB transformation matrices |
| 26 | +TO_IAB = [ |
| 27 | + alg.divide([200.0, 100.0, 5.0], 3.05, dims=alg.D1_SC), |
| 28 | + [430.0, -470.0, 40.0], |
| 29 | + [49.0, 49.0, -98.0] |
| 30 | +] |
| 31 | +FROM_IAB = alg.inv(TO_IAB) |
| 32 | + |
| 33 | +SURROUND = { |
| 34 | + 'dark': (0.39, 0.85), |
| 35 | + 'dim': (0.5, 0.95), |
| 36 | + 'average': (0.52, 1) |
| 37 | +} |
| 38 | + |
| 39 | +HUE_QUADRATURE = { |
| 40 | + # Red, Yellow, Green, Blue, Red |
| 41 | + "h": (15.6, 80.3, 157.8, 219.7, 376.6), |
| 42 | + "e": (0.7, 0.6, 1.2, 0.9, 0.7), |
| 43 | + "H": (0.0, 100.0, 200.0, 300.0, 400.0) |
| 44 | +} |
| 45 | + |
| 46 | + |
| 47 | +def eccentricity(h: float) -> float: |
| 48 | + """Calculate eccentricity.""" |
| 49 | + |
| 50 | + return 1 + 0.06 * math.cos(math.radians(110 + h)) |
| 51 | + |
| 52 | + |
| 53 | +class Environment: |
| 54 | + """ |
| 55 | + Class to calculate and contain any required environmental data (viewing conditions included). |
| 56 | +
|
| 57 | + Usage Guidelines for CIECAM97s (Nathan Moroney) |
| 58 | + https://www.researchgate.net/publication/220865484_Usage_guidelines_for_CIECAM97s |
| 59 | +
|
| 60 | + `white`: This is the (x, y) chromaticity points for the white point. This should be the same |
| 61 | + value as set in the color class `WHITE` value. |
| 62 | +
|
| 63 | + `adapting_luminance`: This is the luminance of the adapting field. The units are in cd/m2. |
| 64 | + The equation is `L = (E * R) / π`, where `E` is the illuminance in lux, `R` is the reflectance, |
| 65 | + and `L` is the luminance. If we assume a perfectly reflecting diffuser, `R` is assumed as 1. |
| 66 | + For the "gray world" assumption, we must also divide by 5 (or multiply by 0.2 - 20%). |
| 67 | + This results in `La = E / π * 0.2`. You can also ignore this gray world assumption converting |
| 68 | + lux directly to nits (cd/m2) `lux / π`. |
| 69 | +
|
| 70 | + `background_luminance`: The background is the region immediately surrounding the stimulus and |
| 71 | + for images is the neighboring portion of the image. Generally, this value is set to a value of 20. |
| 72 | + This implicitly assumes a gray world assumption. |
| 73 | +
|
| 74 | + `surround`: The surround is categorical and is defined based on the relationship between the relative |
| 75 | + luminance of the surround and the luminance of the scene or image white. While there are 4 defined |
| 76 | + surrounds, usually just `average`, `dim`, and `dark` are used. |
| 77 | +
|
| 78 | + Dark | 0% | Viewing film projected in a dark room |
| 79 | + Dim | 0% to 20% | Viewing television |
| 80 | + Average | > 20% | Viewing surface colors |
| 81 | +
|
| 82 | + `discounting`: Whether we are discounting the illuminance. Done when eye is assumed to be fully adapted. |
| 83 | + """ |
| 84 | + |
| 85 | + def __init__( |
| 86 | + self, |
| 87 | + *, |
| 88 | + white: VectorLike, |
| 89 | + adapting_luminance: float, |
| 90 | + background_luminance: float, |
| 91 | + surround: str, |
| 92 | + discounting: bool |
| 93 | + ): |
| 94 | + """ |
| 95 | + Initialize environmental viewing conditions. |
| 96 | +
|
| 97 | + Using the specified viewing conditions, and general environmental data, |
| 98 | + initialize anything that we can ahead of time to speed up the process. |
| 99 | + """ |
| 100 | + |
| 101 | + self.discounting = discounting |
| 102 | + self.ref_white = util.xy_to_xyz(white) |
| 103 | + self.output_white = util.xy_to_xyz(WHITES['2deg']['D65']) |
| 104 | + self.surround = surround |
| 105 | + |
| 106 | + # The average luminance of the environment in `cd/m^2cd/m` (a.k.a. nits) |
| 107 | + self.la = adapting_luminance |
| 108 | + # The relative luminance of the nearby background |
| 109 | + self.yb = background_luminance |
| 110 | + # Absolute luminance of the reference white. |
| 111 | + xyz_w = util.scale100(self.ref_white) |
| 112 | + self.yw = xyz_w[1] |
| 113 | + |
| 114 | + # Surround: dark, dim, and average |
| 115 | + self.c, self.fm = SURROUND[self.surround] |
| 116 | + |
| 117 | + # Factor of luminance level adaptation |
| 118 | + self.fl = 0.1710 * (self.la ** (1 / 3)) * (1 / (1 - 0.4934 * math.exp(-0.9934 * self.la))) |
| 119 | + self.n = self.yb / self.yw |
| 120 | + self.z = 1.48 + math.sqrt(self.n) |
| 121 | + self.cz = self.c * self.z |
| 122 | + |
| 123 | + |
| 124 | +def sucs_to_xyz(ich: Vector) -> Vector: |
| 125 | + """From sUCS to XYZ.""" |
| 126 | + |
| 127 | + i, c, h = ich |
| 128 | + c = (math.exp(0.0252 * c) - 1) / 0.0447 |
| 129 | + r = math.radians(h) |
| 130 | + a, b = c * math.cos(r), c * math.sin(r) |
| 131 | + lms = [alg.nth_root(x, 0.43) for x in alg.matmul_x3(FROM_IAB, [i, a, b], dims=alg.D2_D1)] |
| 132 | + return alg.matmul_x3(FROM_LMS, lms, dims=alg.D2_D1) |
| 133 | + |
| 134 | + |
| 135 | +def xyz_to_sucs(xyz: Vector) -> Vector: |
| 136 | + """From XYZ to sUCS.""" |
| 137 | + |
| 138 | + lms_p = [math.copysign(abs(i) ** 0.43, i) for i in alg.matmul_x3(TO_LMS, xyz, dims=alg.D2_D1)] |
| 139 | + i, a, b = alg.matmul_x3(TO_IAB, lms_p, dims=alg.D2_D1) |
| 140 | + c = (1 / 0.0252) * math.log(1 + 0.0447 * math.sqrt(a ** 2 + b ** 2)) |
| 141 | + h = math.atan2(b, a) % math.tau |
| 142 | + return [i, c, math.degrees(h)] |
| 143 | + |
| 144 | + |
| 145 | +def scam_to_xyz( |
| 146 | + J: float | None = None, |
| 147 | + C: float | None = None, |
| 148 | + h: float | None = None, |
| 149 | + Q: float | None = None, |
| 150 | + M: float | None = None, |
| 151 | + D: float | None = None, |
| 152 | + V: float | None = None, |
| 153 | + W: float | None = None, |
| 154 | + K: float | None = None, |
| 155 | + H: float | None = None, |
| 156 | + env: Environment | None = None |
| 157 | +) -> Vector: |
| 158 | + """ |
| 159 | + From sCAM to XYZ. |
| 160 | +
|
| 161 | + Reverse calculation can actually be obtained from a small subset of the sCAM components |
| 162 | + Really, only one suitable value is needed for each type of attribute: (lightness/brightness), |
| 163 | + (chroma/colorfulness/depth/vividness/whiteness/blackness), (hue/hue quadrature). If more than one for a given |
| 164 | + category is given, we will fail as we have no idea which is the right one to use. Also, |
| 165 | + if none are given, we must fail as well as there is nothing to calculate with. |
| 166 | + """ |
| 167 | + |
| 168 | + # These check ensure one, and only one attribute for a given category is provided. |
| 169 | + if not ((J is not None) ^ (Q is not None)): |
| 170 | + raise ValueError("Conversion requires one and only one: 'J' or 'Q'") |
| 171 | + |
| 172 | + if not ((C is not None) ^ (M is not None) ^ (D is not None) ^ (V is not None) ^ (W is not None) ^ (K is not None)): |
| 173 | + raise ValueError("Conversion requires one and only one: 'C', 'M', 'D', 'V', 'W', 'K'") |
| 174 | + |
| 175 | + # Hue is absolutely required |
| 176 | + if not ((h is not None) ^ (H is not None)): |
| 177 | + raise ValueError("Conversion requires one and only one: 'h' or 'H'") |
| 178 | + |
| 179 | + # We need viewing conditions |
| 180 | + if env is None: |
| 181 | + raise ValueError("No viewing conditions/environment provided") |
| 182 | + |
| 183 | + # Calculate hue |
| 184 | + if h is not None: |
| 185 | + h %= 360 |
| 186 | + if h is None and H is not None: |
| 187 | + h = inv_hue_quadrature(H) |
| 188 | + |
| 189 | + # Calculate `I` from one of the lightness derived coordinates. |
| 190 | + Ia = 0.0 |
| 191 | + if J is not None: |
| 192 | + Ia = J |
| 193 | + elif Q is not None: |
| 194 | + Ia = Q / ((2 * (env.fl ** 0.46)) / env.c) |
| 195 | + I = alg.nth_root(Ia * 0.01, env.cz) * 100 |
| 196 | + |
| 197 | + # Calculate the chroma component |
| 198 | + if W is not None: |
| 199 | + D = 100 - W |
| 200 | + elif K is not None: |
| 201 | + V = 100 - K |
| 202 | + if D is not None: |
| 203 | + C = alg.nth_root(((D / 1.3) ** 2 - (100 - Ia) ** 2) / 1.6, 2) |
| 204 | + elif V is not None: |
| 205 | + C = alg.nth_root((V ** 2 - Ia ** 2) / 3, 2) |
| 206 | + elif M is not None: |
| 207 | + et = eccentricity(h) |
| 208 | + C = M * alg.spow(Ia, 0.27) / ((env.fl ** 0.1) * et * env.fm) |
| 209 | + |
| 210 | + # Convert to XYZ from sUCS |
| 211 | + return sucs_to_xyz([I, C, h]) |
| 212 | + |
| 213 | + |
| 214 | +def xyz_to_scam(xyz: Vector, env: Environment, calc_hue_quadrature: bool = True) -> Vector: |
| 215 | + """From XYZ to sCAM.""" |
| 216 | + |
| 217 | + # Convert from XYZ to sUCS |
| 218 | + I, C, h = xyz_to_sucs(xyz) |
| 219 | + |
| 220 | + # Eccentricity |
| 221 | + et = eccentricity(h) |
| 222 | + |
| 223 | + # Lightness |
| 224 | + Ia = 100 * alg.spow(I * 0.01, env.cz) |
| 225 | + |
| 226 | + # Brightness |
| 227 | + Q = Ia * ((2 * (env.fl ** 0.46)) / env.c) |
| 228 | + |
| 229 | + # Colorfulness |
| 230 | + M = (C * (env.fl ** 0.1) * et) * alg.zdiv(1, alg.spow(Ia, 0.27), 0.0) * env.fm |
| 231 | + |
| 232 | + # Depth |
| 233 | + D = 1.3 * math.sqrt((100 - Ia) ** 2 + 1.6 * C ** 2) |
| 234 | + |
| 235 | + # Vividness |
| 236 | + V = math.sqrt(Ia ** 2 + 3 * C ** 2) |
| 237 | + |
| 238 | + # Whiteness |
| 239 | + W = 100 - D |
| 240 | + |
| 241 | + # Blackness |
| 242 | + K = 100 - V |
| 243 | + |
| 244 | + # Hue quadrature if required |
| 245 | + H = hue_quadrature(h) if calc_hue_quadrature else alg.NaN |
| 246 | + |
| 247 | + return [Ia, C, h, Q, M, D, V, W, K, H] |
| 248 | + |
| 249 | + |
| 250 | +def xyz_to_scam_jmh(xyz: Vector, env: Environment) -> Vector: |
| 251 | + """XYZ to sCAM JMh.""" |
| 252 | + |
| 253 | + scam = xyz_to_scam(xyz, env) |
| 254 | + return [scam[0], scam[4], scam[2]] |
| 255 | + |
| 256 | + |
| 257 | +def scam_jmh_to_xyz(jmh: Vector, env: Environment) -> Vector: |
| 258 | + """sCAM JMh to XYZ.""" |
| 259 | + |
| 260 | + J, M, h = jmh |
| 261 | + return scam_to_xyz(J=J, M=M, h=h, env=env) |
| 262 | + |
| 263 | + |
| 264 | +class sCAMJMh(LCh): |
| 265 | + """sCAM class (JMh).""" |
| 266 | + |
| 267 | + BASE = "xyz-d65" |
| 268 | + NAME = "scam-jmh" |
| 269 | + SERIALIZE = ("--scam-jmh",) |
| 270 | + CHANNEL_ALIASES = { |
| 271 | + "lightness": "j", |
| 272 | + "colorfulness": 'm', |
| 273 | + "hue": 'h' |
| 274 | + } |
| 275 | + WHITE = WHITES['2deg']['D65'] |
| 276 | + # Assuming sRGB which has a lux of 64: `((E * R) / PI) / 5` where `R = 1`. |
| 277 | + ENV = Environment( |
| 278 | + # Our white point. |
| 279 | + white=WHITE, |
| 280 | + # Assuming sRGB which has a lux of 64: `((E * R) / PI)` where `R = 1`. |
| 281 | + # Divided by 5 (or multiplied by 20%) assuming gray world. |
| 282 | + adapting_luminance=64 / math.pi * 0.2, |
| 283 | + # Gray world assumption, 20% of reference white's `Yw = 100`. |
| 284 | + background_luminance=20, |
| 285 | + # Average surround |
| 286 | + surround='average', |
| 287 | + # Do not discount illuminant |
| 288 | + discounting=False |
| 289 | + ) |
| 290 | + CHANNELS = ( |
| 291 | + Channel("j", 0.0, 100.0), |
| 292 | + Channel("m", 0, 105.0), |
| 293 | + Channel("h", 0.0, 360.0, flags=FLG_ANGLE) |
| 294 | + ) |
| 295 | + |
| 296 | + def lightness_name(self) -> str: |
| 297 | + """Get lightness name.""" |
| 298 | + |
| 299 | + return "j" |
| 300 | + |
| 301 | + def radial_name(self) -> str: |
| 302 | + """Get radial name.""" |
| 303 | + |
| 304 | + return "m" |
| 305 | + |
| 306 | + def is_achromatic(self, coords: Vector) -> bool: |
| 307 | + """Check if color is achromatic.""" |
| 308 | + |
| 309 | + return coords[0] == 0.0 or abs(coords[1]) < self.achromatic_threshold |
| 310 | + |
| 311 | + def normalize(self, coords: Vector) -> Vector: |
| 312 | + """Normalize.""" |
| 313 | + |
| 314 | + if coords[1] < 0.0: |
| 315 | + return self.from_base(self.to_base(coords)) |
| 316 | + coords[2] %= 360.0 |
| 317 | + return coords |
| 318 | + |
| 319 | + def to_base(self, coords: Vector) -> Vector: |
| 320 | + """From sCAM JMh to XYZ.""" |
| 321 | + |
| 322 | + return scam_jmh_to_xyz(coords, self.ENV) |
| 323 | + |
| 324 | + def from_base(self, coords: Vector) -> Vector: |
| 325 | + """From XYZ to sCAM JMh.""" |
| 326 | + |
| 327 | + return xyz_to_scam_jmh(coords, self.ENV) |
0 commit comments