From 536f45f17ef210cd34498470d13656fe80e54e9c Mon Sep 17 00:00:00 2001 From: vodkar Date: Thu, 11 Sep 2025 13:37:27 +0500 Subject: [PATCH 01/16] Added dependencies --- .python-version | 1 + backend/app/main.py | 4 - pyproject.toml | 68 +++++ uv.lock | 723 ++++++++++++++++++++++++++++++++++++++++++++ 4 files changed, 792 insertions(+), 4 deletions(-) create mode 100644 .python-version create mode 100644 pyproject.toml create mode 100644 uv.lock diff --git a/.python-version b/.python-version new file mode 100644 index 0000000000..e4fba21835 --- /dev/null +++ b/.python-version @@ -0,0 +1 @@ +3.12 diff --git a/backend/app/main.py b/backend/app/main.py index 9a95801e74..917ee108e4 100644 --- a/backend/app/main.py +++ b/backend/app/main.py @@ -1,4 +1,3 @@ -import sentry_sdk from fastapi import FastAPI from fastapi.routing import APIRoute from starlette.middleware.cors import CORSMiddleware @@ -11,9 +10,6 @@ def custom_generate_unique_id(route: APIRoute) -> str: return f"{route.tags[0]}-{route.name}" -if settings.SENTRY_DSN and settings.ENVIRONMENT != "local": - sentry_sdk.init(dsn=str(settings.SENTRY_DSN), enable_tracing=True) - app = FastAPI( title=settings.PROJECT_NAME, openapi_url=f"{settings.API_V1_STR}/openapi.json", diff --git a/pyproject.toml b/pyproject.toml new file mode 100644 index 0000000000..79a85c0263 --- /dev/null +++ b/pyproject.toml @@ -0,0 +1,68 @@ +[project] +name = "fastapi-moscow-python-demo" +version = "0.1.0" +description = "Add your description here" +readme = "README.md" +requires-python = ">=3.12" +dependencies = [ + "alembic>=1.16.5", + "bandit>=1.8.6", + "fastapi>=0.116.1", + "flake8>=7.3.0", + "jinja2>=3.1.6", + "mypy>=1.17.1", + "passlib>=1.7.4", + "pydantic-settings>=2.10.1", + "pyjwt>=2.10.1", + "pytest>=8.4.2", + "radon>=6.0.1", + "ruff>=0.13.0", + "sqlalchemy>=2.0.43", + "sqlmodel>=0.0.24", + "tenacity>=9.1.2", + "types-passlib>=1.7.7.20250602", + "wemake-python-styleguide>=1.4.0", +] + +[tool.mypy] +# Core strictness +strict = true +extra_checks = true # opt-in stricter checks beyond --strict +warn_unreachable = true # not included in --strict; catch dead/ redundant code +implicit_reexport = false # require explicit re-exports (no implicit module exports) +local_partial_types = true # force annotations for top-level/class partial types +strict_equality = true # prohibit always-false/true comparisons + +# Be ruthless about Any +disallow_any_unimported = true +disallow_any_expr = true +disallow_any_decorated = true +disallow_any_explicit = true +disallow_any_generics = true +disallow_subclassing_any = true + +# No untyped or half-typed defs/calls +disallow_untyped_calls = true +disallow_untyped_defs = true +disallow_incomplete_defs = true + +# Hygiene & signal +warn_return_any = true +warn_redundant_casts = true +warn_unused_ignores = true +show_error_codes = true + +# Optional error codes that make reviews sharper +enable_error_code = [ + "ignore-without-code", # every `# type: ignore` must be specific + "redundant-expr", # flag obviously redundant boolean logic + "possibly-undefined", # variables not defined on all paths + "truthy-bool", # questionable truthiness checks + "truthy-iterable", # questionable truthiness checks on iterables + "deprecated", # use of @deprecated (PEP 702 / typing_extensions) + "exhaustive-match" # non-exhaustive `match` on enums / unions (where supported) +] + +# Optional: make the default on recent mypy explicit (safer across versions) +implicit_optional = false + diff --git a/uv.lock b/uv.lock new file mode 100644 index 0000000000..a1350e8523 --- /dev/null +++ b/uv.lock @@ -0,0 +1,723 @@ +version = 1 +revision = 3 +requires-python = ">=3.12" + +[[package]] +name = "alembic" +version = "1.16.5" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "mako" }, + { name = "sqlalchemy" }, + { name = "typing-extensions" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/9a/ca/4dc52902cf3491892d464f5265a81e9dff094692c8a049a3ed6a05fe7ee8/alembic-1.16.5.tar.gz", hash = "sha256:a88bb7f6e513bd4301ecf4c7f2206fe93f9913f9b48dac3b78babde2d6fe765e", size = 1969868, upload-time = "2025-08-27T18:02:05.668Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/39/4a/4c61d4c84cfd9befb6fa08a702535b27b21fff08c946bc2f6139decbf7f7/alembic-1.16.5-py3-none-any.whl", hash = "sha256:e845dfe090c5ffa7b92593ae6687c5cb1a101e91fa53868497dbd79847f9dbe3", size = 247355, upload-time = "2025-08-27T18:02:07.37Z" }, +] + +[[package]] +name = "annotated-types" +version = "0.7.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/ee/67/531ea369ba64dcff5ec9c3402f9f51bf748cec26dde048a2f973a4eea7f5/annotated_types-0.7.0.tar.gz", hash = "sha256:aff07c09a53a08bc8cfccb9c85b05f1aa9a2a6f23728d790723543408344ce89", size = 16081, upload-time = "2024-05-20T21:33:25.928Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/78/b6/6307fbef88d9b5ee7421e68d78a9f162e0da4900bc5f5793f6d3d0e34fb8/annotated_types-0.7.0-py3-none-any.whl", hash = "sha256:1f02e8b43a8fbbc3f3e0d4f0f4bfc8131bcb4eebe8849b8e5c773f3a1c582a53", size = 13643, upload-time = "2024-05-20T21:33:24.1Z" }, +] + +[[package]] +name = "anyio" +version = "4.10.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "idna" }, + { name = "sniffio" }, + { name = "typing-extensions", marker = "python_full_version < '3.13'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/f1/b4/636b3b65173d3ce9a38ef5f0522789614e590dab6a8d505340a4efe4c567/anyio-4.10.0.tar.gz", hash = "sha256:3f3fae35c96039744587aa5b8371e7e8e603c0702999535961dd336026973ba6", size = 213252, upload-time = "2025-08-04T08:54:26.451Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/6f/12/e5e0282d673bb9746bacfb6e2dba8719989d3660cdb2ea79aee9a9651afb/anyio-4.10.0-py3-none-any.whl", hash = "sha256:60e474ac86736bbfd6f210f7a61218939c318f43f9972497381f1c5e930ed3d1", size = 107213, upload-time = "2025-08-04T08:54:24.882Z" }, +] + +[[package]] +name = "attrs" +version = "25.3.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/5a/b0/1367933a8532ee6ff8d63537de4f1177af4bff9f3e829baf7331f595bb24/attrs-25.3.0.tar.gz", hash = "sha256:75d7cefc7fb576747b2c81b4442d4d4a1ce0900973527c011d1030fd3bf4af1b", size = 812032, upload-time = "2025-03-13T11:10:22.779Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/77/06/bb80f5f86020c4551da315d78b3ab75e8228f89f0162f2c3a819e407941a/attrs-25.3.0-py3-none-any.whl", hash = "sha256:427318ce031701fea540783410126f03899a97ffc6f61596ad581ac2e40e3bc3", size = 63815, upload-time = "2025-03-13T11:10:21.14Z" }, +] + +[[package]] +name = "bandit" +version = "1.8.6" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "colorama", marker = "sys_platform == 'win32'" }, + { name = "pyyaml" }, + { name = "rich" }, + { name = "stevedore" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/fb/b5/7eb834e213d6f73aace21938e5e90425c92e5f42abafaf8a6d5d21beed51/bandit-1.8.6.tar.gz", hash = "sha256:dbfe9c25fc6961c2078593de55fd19f2559f9e45b99f1272341f5b95dea4e56b", size = 4240271, upload-time = "2025-07-06T03:10:50.9Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/48/ca/ba5f909b40ea12ec542d5d7bdd13ee31c4d65f3beed20211ef81c18fa1f3/bandit-1.8.6-py3-none-any.whl", hash = "sha256:3348e934d736fcdb68b6aa4030487097e23a501adf3e7827b63658df464dddd0", size = 133808, upload-time = "2025-07-06T03:10:49.134Z" }, +] + +[[package]] +name = "colorama" +version = "0.4.6" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/d8/53/6f443c9a4a8358a93a6792e2acffb9d9d5cb0a5cfd8802644b7b1c9a02e4/colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44", size = 27697, upload-time = "2022-10-25T02:36:22.414Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/d1/d6/3965ed04c63042e047cb6a3e6ed1a63a35087b6a609aa3a15ed8ac56c221/colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6", size = 25335, upload-time = "2022-10-25T02:36:20.889Z" }, +] + +[[package]] +name = "fastapi" +version = "0.116.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "pydantic" }, + { name = "starlette" }, + { name = "typing-extensions" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/78/d7/6c8b3bfe33eeffa208183ec037fee0cce9f7f024089ab1c5d12ef04bd27c/fastapi-0.116.1.tar.gz", hash = "sha256:ed52cbf946abfd70c5a0dccb24673f0670deeb517a88b3544d03c2a6bf283143", size = 296485, upload-time = "2025-07-11T16:22:32.057Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e5/47/d63c60f59a59467fda0f93f46335c9d18526d7071f025cb5b89d5353ea42/fastapi-0.116.1-py3-none-any.whl", hash = "sha256:c46ac7c312df840f0c9e220f7964bada936781bc4e2e6eb71f1c4d7553786565", size = 95631, upload-time = "2025-07-11T16:22:30.485Z" }, +] + +[[package]] +name = "fastapi-moscow-python-demo" +version = "0.1.0" +source = { virtual = "." } +dependencies = [ + { name = "alembic" }, + { name = "bandit" }, + { name = "fastapi" }, + { name = "flake8" }, + { name = "jinja2" }, + { name = "mypy" }, + { name = "passlib" }, + { name = "pydantic-settings" }, + { name = "pyjwt" }, + { name = "pytest" }, + { name = "radon" }, + { name = "ruff" }, + { name = "sqlalchemy" }, + { name = "sqlmodel" }, + { name = "tenacity" }, + { name = "types-passlib" }, + { name = "wemake-python-styleguide" }, +] + +[package.metadata] +requires-dist = [ + { name = "alembic", specifier = ">=1.16.5" }, + { name = "bandit", specifier = ">=1.8.6" }, + { name = "fastapi", specifier = ">=0.116.1" }, + { name = "flake8", specifier = ">=7.3.0" }, + { name = "jinja2", specifier = ">=3.1.6" }, + { name = "mypy", specifier = ">=1.17.1" }, + { name = "passlib", specifier = ">=1.7.4" }, + { name = "pydantic-settings", specifier = ">=2.10.1" }, + { name = "pyjwt", specifier = ">=2.10.1" }, + { name = "pytest", specifier = ">=8.4.2" }, + { name = "radon", specifier = ">=6.0.1" }, + { name = "ruff", specifier = ">=0.13.0" }, + { name = "sqlalchemy", specifier = ">=2.0.43" }, + { name = "sqlmodel", specifier = ">=0.0.24" }, + { name = "tenacity", specifier = ">=9.1.2" }, + { name = "types-passlib", specifier = ">=1.7.7.20250602" }, + { name = "wemake-python-styleguide", specifier = ">=1.4.0" }, +] + +[[package]] +name = "flake8" +version = "7.3.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "mccabe" }, + { name = "pycodestyle" }, + { name = "pyflakes" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/9b/af/fbfe3c4b5a657d79e5c47a2827a362f9e1b763336a52f926126aa6dc7123/flake8-7.3.0.tar.gz", hash = "sha256:fe044858146b9fc69b551a4b490d69cf960fcb78ad1edcb84e7fbb1b4a8e3872", size = 48326, upload-time = "2025-06-20T19:31:35.838Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/9f/56/13ab06b4f93ca7cac71078fbe37fcea175d3216f31f85c3168a6bbd0bb9a/flake8-7.3.0-py2.py3-none-any.whl", hash = "sha256:b9696257b9ce8beb888cdbe31cf885c90d31928fe202be0889a7cdafad32f01e", size = 57922, upload-time = "2025-06-20T19:31:34.425Z" }, +] + +[[package]] +name = "greenlet" +version = "3.2.4" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/03/b8/704d753a5a45507a7aab61f18db9509302ed3d0a27ac7e0359ec2905b1a6/greenlet-3.2.4.tar.gz", hash = "sha256:0dca0d95ff849f9a364385f36ab49f50065d76964944638be9691e1832e9f86d", size = 188260, upload-time = "2025-08-07T13:24:33.51Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/44/69/9b804adb5fd0671f367781560eb5eb586c4d495277c93bde4307b9e28068/greenlet-3.2.4-cp312-cp312-macosx_11_0_universal2.whl", hash = "sha256:3b67ca49f54cede0186854a008109d6ee71f66bd57bb36abd6d0a0267b540cdd", size = 274079, upload-time = "2025-08-07T13:15:45.033Z" }, + { url = "https://files.pythonhosted.org/packages/46/e9/d2a80c99f19a153eff70bc451ab78615583b8dac0754cfb942223d2c1a0d/greenlet-3.2.4-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:ddf9164e7a5b08e9d22511526865780a576f19ddd00d62f8a665949327fde8bb", size = 640997, upload-time = "2025-08-07T13:42:56.234Z" }, + { url = "https://files.pythonhosted.org/packages/3b/16/035dcfcc48715ccd345f3a93183267167cdd162ad123cd93067d86f27ce4/greenlet-3.2.4-cp312-cp312-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl", hash = "sha256:f28588772bb5fb869a8eb331374ec06f24a83a9c25bfa1f38b6993afe9c1e968", size = 655185, upload-time = "2025-08-07T13:45:27.624Z" }, + { url = "https://files.pythonhosted.org/packages/31/da/0386695eef69ffae1ad726881571dfe28b41970173947e7c558d9998de0f/greenlet-3.2.4-cp312-cp312-manylinux2014_s390x.manylinux_2_17_s390x.whl", hash = "sha256:5c9320971821a7cb77cfab8d956fa8e39cd07ca44b6070db358ceb7f8797c8c9", size = 649926, upload-time = "2025-08-07T13:53:15.251Z" }, + { url = "https://files.pythonhosted.org/packages/68/88/69bf19fd4dc19981928ceacbc5fd4bb6bc2215d53199e367832e98d1d8fe/greenlet-3.2.4-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:c60a6d84229b271d44b70fb6e5fa23781abb5d742af7b808ae3f6efd7c9c60f6", size = 651839, upload-time = "2025-08-07T13:18:30.281Z" }, + { url = "https://files.pythonhosted.org/packages/19/0d/6660d55f7373b2ff8152401a83e02084956da23ae58cddbfb0b330978fe9/greenlet-3.2.4-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:3b3812d8d0c9579967815af437d96623f45c0f2ae5f04e366de62a12d83a8fb0", size = 607586, upload-time = "2025-08-07T13:18:28.544Z" }, + { url = "https://files.pythonhosted.org/packages/8e/1a/c953fdedd22d81ee4629afbb38d2f9d71e37d23caace44775a3a969147d4/greenlet-3.2.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:abbf57b5a870d30c4675928c37278493044d7c14378350b3aa5d484fa65575f0", size = 1123281, upload-time = "2025-08-07T13:42:39.858Z" }, + { url = "https://files.pythonhosted.org/packages/3f/c7/12381b18e21aef2c6bd3a636da1088b888b97b7a0362fac2e4de92405f97/greenlet-3.2.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:20fb936b4652b6e307b8f347665e2c615540d4b42b3b4c8a321d8286da7e520f", size = 1151142, upload-time = "2025-08-07T13:18:22.981Z" }, + { url = "https://files.pythonhosted.org/packages/e9/08/b0814846b79399e585f974bbeebf5580fbe59e258ea7be64d9dfb253c84f/greenlet-3.2.4-cp312-cp312-win_amd64.whl", hash = "sha256:a7d4e128405eea3814a12cc2605e0e6aedb4035bf32697f72deca74de4105e02", size = 299899, upload-time = "2025-08-07T13:38:53.448Z" }, + { url = "https://files.pythonhosted.org/packages/49/e8/58c7f85958bda41dafea50497cbd59738c5c43dbbea5ee83d651234398f4/greenlet-3.2.4-cp313-cp313-macosx_11_0_universal2.whl", hash = "sha256:1a921e542453fe531144e91e1feedf12e07351b1cf6c9e8a3325ea600a715a31", size = 272814, upload-time = "2025-08-07T13:15:50.011Z" }, + { url = "https://files.pythonhosted.org/packages/62/dd/b9f59862e9e257a16e4e610480cfffd29e3fae018a68c2332090b53aac3d/greenlet-3.2.4-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:cd3c8e693bff0fff6ba55f140bf390fa92c994083f838fece0f63be121334945", size = 641073, upload-time = "2025-08-07T13:42:57.23Z" }, + { url = "https://files.pythonhosted.org/packages/f7/0b/bc13f787394920b23073ca3b6c4a7a21396301ed75a655bcb47196b50e6e/greenlet-3.2.4-cp313-cp313-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl", hash = "sha256:710638eb93b1fa52823aa91bf75326f9ecdfd5e0466f00789246a5280f4ba0fc", size = 655191, upload-time = "2025-08-07T13:45:29.752Z" }, + { url = "https://files.pythonhosted.org/packages/f2/d6/6adde57d1345a8d0f14d31e4ab9c23cfe8e2cd39c3baf7674b4b0338d266/greenlet-3.2.4-cp313-cp313-manylinux2014_s390x.manylinux_2_17_s390x.whl", hash = "sha256:c5111ccdc9c88f423426df3fd1811bfc40ed66264d35aa373420a34377efc98a", size = 649516, upload-time = "2025-08-07T13:53:16.314Z" }, + { url = "https://files.pythonhosted.org/packages/7f/3b/3a3328a788d4a473889a2d403199932be55b1b0060f4ddd96ee7cdfcad10/greenlet-3.2.4-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:d76383238584e9711e20ebe14db6c88ddcedc1829a9ad31a584389463b5aa504", size = 652169, upload-time = "2025-08-07T13:18:32.861Z" }, + { url = "https://files.pythonhosted.org/packages/ee/43/3cecdc0349359e1a527cbf2e3e28e5f8f06d3343aaf82ca13437a9aa290f/greenlet-3.2.4-cp313-cp313-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:23768528f2911bcd7e475210822ffb5254ed10d71f4028387e5a99b4c6699671", size = 610497, upload-time = "2025-08-07T13:18:31.636Z" }, + { url = "https://files.pythonhosted.org/packages/b8/19/06b6cf5d604e2c382a6f31cafafd6f33d5dea706f4db7bdab184bad2b21d/greenlet-3.2.4-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:00fadb3fedccc447f517ee0d3fd8fe49eae949e1cd0f6a611818f4f6fb7dc83b", size = 1121662, upload-time = "2025-08-07T13:42:41.117Z" }, + { url = "https://files.pythonhosted.org/packages/a2/15/0d5e4e1a66fab130d98168fe984c509249c833c1a3c16806b90f253ce7b9/greenlet-3.2.4-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:d25c5091190f2dc0eaa3f950252122edbbadbb682aa7b1ef2f8af0f8c0afefae", size = 1149210, upload-time = "2025-08-07T13:18:24.072Z" }, + { url = "https://files.pythonhosted.org/packages/0b/55/2321e43595e6801e105fcfdee02b34c0f996eb71e6ddffca6b10b7e1d771/greenlet-3.2.4-cp313-cp313-win_amd64.whl", hash = "sha256:554b03b6e73aaabec3745364d6239e9e012d64c68ccd0b8430c64ccc14939a8b", size = 299685, upload-time = "2025-08-07T13:24:38.824Z" }, + { url = "https://files.pythonhosted.org/packages/22/5c/85273fd7cc388285632b0498dbbab97596e04b154933dfe0f3e68156c68c/greenlet-3.2.4-cp314-cp314-macosx_11_0_universal2.whl", hash = "sha256:49a30d5fda2507ae77be16479bdb62a660fa51b1eb4928b524975b3bde77b3c0", size = 273586, upload-time = "2025-08-07T13:16:08.004Z" }, + { url = "https://files.pythonhosted.org/packages/d1/75/10aeeaa3da9332c2e761e4c50d4c3556c21113ee3f0afa2cf5769946f7a3/greenlet-3.2.4-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:299fd615cd8fc86267b47597123e3f43ad79c9d8a22bebdce535e53550763e2f", size = 686346, upload-time = "2025-08-07T13:42:59.944Z" }, + { url = "https://files.pythonhosted.org/packages/c0/aa/687d6b12ffb505a4447567d1f3abea23bd20e73a5bed63871178e0831b7a/greenlet-3.2.4-cp314-cp314-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl", hash = "sha256:c17b6b34111ea72fc5a4e4beec9711d2226285f0386ea83477cbb97c30a3f3a5", size = 699218, upload-time = "2025-08-07T13:45:30.969Z" }, + { url = "https://files.pythonhosted.org/packages/dc/8b/29aae55436521f1d6f8ff4e12fb676f3400de7fcf27fccd1d4d17fd8fecd/greenlet-3.2.4-cp314-cp314-manylinux2014_s390x.manylinux_2_17_s390x.whl", hash = "sha256:b4a1870c51720687af7fa3e7cda6d08d801dae660f75a76f3845b642b4da6ee1", size = 694659, upload-time = "2025-08-07T13:53:17.759Z" }, + { url = "https://files.pythonhosted.org/packages/92/2e/ea25914b1ebfde93b6fc4ff46d6864564fba59024e928bdc7de475affc25/greenlet-3.2.4-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:061dc4cf2c34852b052a8620d40f36324554bc192be474b9e9770e8c042fd735", size = 695355, upload-time = "2025-08-07T13:18:34.517Z" }, + { url = "https://files.pythonhosted.org/packages/72/60/fc56c62046ec17f6b0d3060564562c64c862948c9d4bc8aa807cf5bd74f4/greenlet-3.2.4-cp314-cp314-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:44358b9bf66c8576a9f57a590d5f5d6e72fa4228b763d0e43fee6d3b06d3a337", size = 657512, upload-time = "2025-08-07T13:18:33.969Z" }, + { url = "https://files.pythonhosted.org/packages/e3/a5/6ddab2b4c112be95601c13428db1d8b6608a8b6039816f2ba09c346c08fc/greenlet-3.2.4-cp314-cp314-win_amd64.whl", hash = "sha256:e37ab26028f12dbb0ff65f29a8d3d44a765c61e729647bf2ddfbbed621726f01", size = 303425, upload-time = "2025-08-07T13:32:27.59Z" }, +] + +[[package]] +name = "idna" +version = "3.10" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/f1/70/7703c29685631f5a7590aa73f1f1d3fa9a380e654b86af429e0934a32f7d/idna-3.10.tar.gz", hash = "sha256:12f65c9b470abda6dc35cf8e63cc574b1c52b11df2c86030af0ac09b01b13ea9", size = 190490, upload-time = "2024-09-15T18:07:39.745Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/76/c6/c88e154df9c4e1a2a66ccf0005a88dfb2650c1dffb6f5ce603dfbd452ce3/idna-3.10-py3-none-any.whl", hash = "sha256:946d195a0d259cbba61165e88e65941f16e9b36ea6ddb97f00452bae8b1287d3", size = 70442, upload-time = "2024-09-15T18:07:37.964Z" }, +] + +[[package]] +name = "iniconfig" +version = "2.1.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/f2/97/ebf4da567aa6827c909642694d71c9fcf53e5b504f2d96afea02718862f3/iniconfig-2.1.0.tar.gz", hash = "sha256:3abbd2e30b36733fee78f9c7f7308f2d0050e88f0087fd25c2645f63c773e1c7", size = 4793, upload-time = "2025-03-19T20:09:59.721Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/2c/e1/e6716421ea10d38022b952c159d5161ca1193197fb744506875fbb87ea7b/iniconfig-2.1.0-py3-none-any.whl", hash = "sha256:9deba5723312380e77435581c6bf4935c94cbfab9b1ed33ef8d238ea168eb760", size = 6050, upload-time = "2025-03-19T20:10:01.071Z" }, +] + +[[package]] +name = "jinja2" +version = "3.1.6" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "markupsafe" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/df/bf/f7da0350254c0ed7c72f3e33cef02e048281fec7ecec5f032d4aac52226b/jinja2-3.1.6.tar.gz", hash = "sha256:0137fb05990d35f1275a587e9aee6d56da821fc83491a0fb838183be43f66d6d", size = 245115, upload-time = "2025-03-05T20:05:02.478Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/62/a1/3d680cbfd5f4b8f15abc1d571870c5fc3e594bb582bc3b64ea099db13e56/jinja2-3.1.6-py3-none-any.whl", hash = "sha256:85ece4451f492d0c13c5dd7c13a64681a86afae63a5f347908daf103ce6d2f67", size = 134899, upload-time = "2025-03-05T20:05:00.369Z" }, +] + +[[package]] +name = "mako" +version = "1.3.10" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "markupsafe" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/9e/38/bd5b78a920a64d708fe6bc8e0a2c075e1389d53bef8413725c63ba041535/mako-1.3.10.tar.gz", hash = "sha256:99579a6f39583fa7e5630a28c3c1f440e4e97a414b80372649c0ce338da2ea28", size = 392474, upload-time = "2025-04-10T12:44:31.16Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/87/fb/99f81ac72ae23375f22b7afdb7642aba97c00a713c217124420147681a2f/mako-1.3.10-py3-none-any.whl", hash = "sha256:baef24a52fc4fc514a0887ac600f9f1cff3d82c61d4d700a1fa84d597b88db59", size = 78509, upload-time = "2025-04-10T12:50:53.297Z" }, +] + +[[package]] +name = "mando" +version = "0.7.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "six" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/35/24/cd70d5ae6d35962be752feccb7dca80b5e0c2d450e995b16abd6275f3296/mando-0.7.1.tar.gz", hash = "sha256:18baa999b4b613faefb00eac4efadcf14f510b59b924b66e08289aa1de8c3500", size = 37868, upload-time = "2022-02-24T08:12:27.316Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/d2/f0/834e479e47e499b6478e807fb57b31cc2db696c4db30557bb6f5aea4a90b/mando-0.7.1-py2.py3-none-any.whl", hash = "sha256:26ef1d70928b6057ee3ca12583d73c63e05c49de8972d620c278a7b206581a8a", size = 28149, upload-time = "2022-02-24T08:12:25.24Z" }, +] + +[[package]] +name = "markdown-it-py" +version = "4.0.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "mdurl" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/5b/f5/4ec618ed16cc4f8fb3b701563655a69816155e79e24a17b651541804721d/markdown_it_py-4.0.0.tar.gz", hash = "sha256:cb0a2b4aa34f932c007117b194e945bd74e0ec24133ceb5bac59009cda1cb9f3", size = 73070, upload-time = "2025-08-11T12:57:52.854Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/94/54/e7d793b573f298e1c9013b8c4dade17d481164aa517d1d7148619c2cedbf/markdown_it_py-4.0.0-py3-none-any.whl", hash = "sha256:87327c59b172c5011896038353a81343b6754500a08cd7a4973bb48c6d578147", size = 87321, upload-time = "2025-08-11T12:57:51.923Z" }, +] + +[[package]] +name = "markupsafe" +version = "3.0.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/b2/97/5d42485e71dfc078108a86d6de8fa46db44a1a9295e89c5d6d4a06e23a62/markupsafe-3.0.2.tar.gz", hash = "sha256:ee55d3edf80167e48ea11a923c7386f4669df67d7994554387f84e7d8b0a2bf0", size = 20537, upload-time = "2024-10-18T15:21:54.129Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/22/09/d1f21434c97fc42f09d290cbb6350d44eb12f09cc62c9476effdb33a18aa/MarkupSafe-3.0.2-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:9778bd8ab0a994ebf6f84c2b949e65736d5575320a17ae8984a77fab08db94cf", size = 14274, upload-time = "2024-10-18T15:21:13.777Z" }, + { url = "https://files.pythonhosted.org/packages/6b/b0/18f76bba336fa5aecf79d45dcd6c806c280ec44538b3c13671d49099fdd0/MarkupSafe-3.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:846ade7b71e3536c4e56b386c2a47adf5741d2d8b94ec9dc3e92e5e1ee1e2225", size = 12348, upload-time = "2024-10-18T15:21:14.822Z" }, + { url = "https://files.pythonhosted.org/packages/e0/25/dd5c0f6ac1311e9b40f4af06c78efde0f3b5cbf02502f8ef9501294c425b/MarkupSafe-3.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1c99d261bd2d5f6b59325c92c73df481e05e57f19837bdca8413b9eac4bd8028", size = 24149, upload-time = "2024-10-18T15:21:15.642Z" }, + { url = "https://files.pythonhosted.org/packages/f3/f0/89e7aadfb3749d0f52234a0c8c7867877876e0a20b60e2188e9850794c17/MarkupSafe-3.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e17c96c14e19278594aa4841ec148115f9c7615a47382ecb6b82bd8fea3ab0c8", size = 23118, upload-time = "2024-10-18T15:21:17.133Z" }, + { url = "https://files.pythonhosted.org/packages/d5/da/f2eeb64c723f5e3777bc081da884b414671982008c47dcc1873d81f625b6/MarkupSafe-3.0.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:88416bd1e65dcea10bc7569faacb2c20ce071dd1f87539ca2ab364bf6231393c", size = 22993, upload-time = "2024-10-18T15:21:18.064Z" }, + { url = "https://files.pythonhosted.org/packages/da/0e/1f32af846df486dce7c227fe0f2398dc7e2e51d4a370508281f3c1c5cddc/MarkupSafe-3.0.2-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:2181e67807fc2fa785d0592dc2d6206c019b9502410671cc905d132a92866557", size = 24178, upload-time = "2024-10-18T15:21:18.859Z" }, + { url = "https://files.pythonhosted.org/packages/c4/f6/bb3ca0532de8086cbff5f06d137064c8410d10779c4c127e0e47d17c0b71/MarkupSafe-3.0.2-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:52305740fe773d09cffb16f8ed0427942901f00adedac82ec8b67752f58a1b22", size = 23319, upload-time = "2024-10-18T15:21:19.671Z" }, + { url = "https://files.pythonhosted.org/packages/a2/82/8be4c96ffee03c5b4a034e60a31294daf481e12c7c43ab8e34a1453ee48b/MarkupSafe-3.0.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:ad10d3ded218f1039f11a75f8091880239651b52e9bb592ca27de44eed242a48", size = 23352, upload-time = "2024-10-18T15:21:20.971Z" }, + { url = "https://files.pythonhosted.org/packages/51/ae/97827349d3fcffee7e184bdf7f41cd6b88d9919c80f0263ba7acd1bbcb18/MarkupSafe-3.0.2-cp312-cp312-win32.whl", hash = "sha256:0f4ca02bea9a23221c0182836703cbf8930c5e9454bacce27e767509fa286a30", size = 15097, upload-time = "2024-10-18T15:21:22.646Z" }, + { url = "https://files.pythonhosted.org/packages/c1/80/a61f99dc3a936413c3ee4e1eecac96c0da5ed07ad56fd975f1a9da5bc630/MarkupSafe-3.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:8e06879fc22a25ca47312fbe7c8264eb0b662f6db27cb2d3bbbc74b1df4b9b87", size = 15601, upload-time = "2024-10-18T15:21:23.499Z" }, + { url = "https://files.pythonhosted.org/packages/83/0e/67eb10a7ecc77a0c2bbe2b0235765b98d164d81600746914bebada795e97/MarkupSafe-3.0.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:ba9527cdd4c926ed0760bc301f6728ef34d841f405abf9d4f959c478421e4efd", size = 14274, upload-time = "2024-10-18T15:21:24.577Z" }, + { url = "https://files.pythonhosted.org/packages/2b/6d/9409f3684d3335375d04e5f05744dfe7e9f120062c9857df4ab490a1031a/MarkupSafe-3.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:f8b3d067f2e40fe93e1ccdd6b2e1d16c43140e76f02fb1319a05cf2b79d99430", size = 12352, upload-time = "2024-10-18T15:21:25.382Z" }, + { url = "https://files.pythonhosted.org/packages/d2/f5/6eadfcd3885ea85fe2a7c128315cc1bb7241e1987443d78c8fe712d03091/MarkupSafe-3.0.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:569511d3b58c8791ab4c2e1285575265991e6d8f8700c7be0e88f86cb0672094", size = 24122, upload-time = "2024-10-18T15:21:26.199Z" }, + { url = "https://files.pythonhosted.org/packages/0c/91/96cf928db8236f1bfab6ce15ad070dfdd02ed88261c2afafd4b43575e9e9/MarkupSafe-3.0.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:15ab75ef81add55874e7ab7055e9c397312385bd9ced94920f2802310c930396", size = 23085, upload-time = "2024-10-18T15:21:27.029Z" }, + { url = "https://files.pythonhosted.org/packages/c2/cf/c9d56af24d56ea04daae7ac0940232d31d5a8354f2b457c6d856b2057d69/MarkupSafe-3.0.2-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f3818cb119498c0678015754eba762e0d61e5b52d34c8b13d770f0719f7b1d79", size = 22978, upload-time = "2024-10-18T15:21:27.846Z" }, + { url = "https://files.pythonhosted.org/packages/2a/9f/8619835cd6a711d6272d62abb78c033bda638fdc54c4e7f4272cf1c0962b/MarkupSafe-3.0.2-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:cdb82a876c47801bb54a690c5ae105a46b392ac6099881cdfb9f6e95e4014c6a", size = 24208, upload-time = "2024-10-18T15:21:28.744Z" }, + { url = "https://files.pythonhosted.org/packages/f9/bf/176950a1792b2cd2102b8ffeb5133e1ed984547b75db47c25a67d3359f77/MarkupSafe-3.0.2-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:cabc348d87e913db6ab4aa100f01b08f481097838bdddf7c7a84b7575b7309ca", size = 23357, upload-time = "2024-10-18T15:21:29.545Z" }, + { url = "https://files.pythonhosted.org/packages/ce/4f/9a02c1d335caabe5c4efb90e1b6e8ee944aa245c1aaaab8e8a618987d816/MarkupSafe-3.0.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:444dcda765c8a838eaae23112db52f1efaf750daddb2d9ca300bcae1039adc5c", size = 23344, upload-time = "2024-10-18T15:21:30.366Z" }, + { url = "https://files.pythonhosted.org/packages/ee/55/c271b57db36f748f0e04a759ace9f8f759ccf22b4960c270c78a394f58be/MarkupSafe-3.0.2-cp313-cp313-win32.whl", hash = "sha256:bcf3e58998965654fdaff38e58584d8937aa3096ab5354d493c77d1fdd66d7a1", size = 15101, upload-time = "2024-10-18T15:21:31.207Z" }, + { url = "https://files.pythonhosted.org/packages/29/88/07df22d2dd4df40aba9f3e402e6dc1b8ee86297dddbad4872bd5e7b0094f/MarkupSafe-3.0.2-cp313-cp313-win_amd64.whl", hash = "sha256:e6a2a455bd412959b57a172ce6328d2dd1f01cb2135efda2e4576e8a23fa3b0f", size = 15603, upload-time = "2024-10-18T15:21:32.032Z" }, + { url = "https://files.pythonhosted.org/packages/62/6a/8b89d24db2d32d433dffcd6a8779159da109842434f1dd2f6e71f32f738c/MarkupSafe-3.0.2-cp313-cp313t-macosx_10_13_universal2.whl", hash = "sha256:b5a6b3ada725cea8a5e634536b1b01c30bcdcd7f9c6fff4151548d5bf6b3a36c", size = 14510, upload-time = "2024-10-18T15:21:33.625Z" }, + { url = "https://files.pythonhosted.org/packages/7a/06/a10f955f70a2e5a9bf78d11a161029d278eeacbd35ef806c3fd17b13060d/MarkupSafe-3.0.2-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:a904af0a6162c73e3edcb969eeeb53a63ceeb5d8cf642fade7d39e7963a22ddb", size = 12486, upload-time = "2024-10-18T15:21:34.611Z" }, + { url = "https://files.pythonhosted.org/packages/34/cf/65d4a571869a1a9078198ca28f39fba5fbb910f952f9dbc5220afff9f5e6/MarkupSafe-3.0.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4aa4e5faecf353ed117801a068ebab7b7e09ffb6e1d5e412dc852e0da018126c", size = 25480, upload-time = "2024-10-18T15:21:35.398Z" }, + { url = "https://files.pythonhosted.org/packages/0c/e3/90e9651924c430b885468b56b3d597cabf6d72be4b24a0acd1fa0e12af67/MarkupSafe-3.0.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c0ef13eaeee5b615fb07c9a7dadb38eac06a0608b41570d8ade51c56539e509d", size = 23914, upload-time = "2024-10-18T15:21:36.231Z" }, + { url = "https://files.pythonhosted.org/packages/66/8c/6c7cf61f95d63bb866db39085150df1f2a5bd3335298f14a66b48e92659c/MarkupSafe-3.0.2-cp313-cp313t-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d16a81a06776313e817c951135cf7340a3e91e8c1ff2fac444cfd75fffa04afe", size = 23796, upload-time = "2024-10-18T15:21:37.073Z" }, + { url = "https://files.pythonhosted.org/packages/bb/35/cbe9238ec3f47ac9a7c8b3df7a808e7cb50fe149dc7039f5f454b3fba218/MarkupSafe-3.0.2-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:6381026f158fdb7c72a168278597a5e3a5222e83ea18f543112b2662a9b699c5", size = 25473, upload-time = "2024-10-18T15:21:37.932Z" }, + { url = "https://files.pythonhosted.org/packages/e6/32/7621a4382488aa283cc05e8984a9c219abad3bca087be9ec77e89939ded9/MarkupSafe-3.0.2-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:3d79d162e7be8f996986c064d1c7c817f6df3a77fe3d6859f6f9e7be4b8c213a", size = 24114, upload-time = "2024-10-18T15:21:39.799Z" }, + { url = "https://files.pythonhosted.org/packages/0d/80/0985960e4b89922cb5a0bac0ed39c5b96cbc1a536a99f30e8c220a996ed9/MarkupSafe-3.0.2-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:131a3c7689c85f5ad20f9f6fb1b866f402c445b220c19fe4308c0b147ccd2ad9", size = 24098, upload-time = "2024-10-18T15:21:40.813Z" }, + { url = "https://files.pythonhosted.org/packages/82/78/fedb03c7d5380df2427038ec8d973587e90561b2d90cd472ce9254cf348b/MarkupSafe-3.0.2-cp313-cp313t-win32.whl", hash = "sha256:ba8062ed2cf21c07a9e295d5b8a2a5ce678b913b45fdf68c32d95d6c1291e0b6", size = 15208, upload-time = "2024-10-18T15:21:41.814Z" }, + { url = "https://files.pythonhosted.org/packages/4f/65/6079a46068dfceaeabb5dcad6d674f5f5c61a6fa5673746f42a9f4c233b3/MarkupSafe-3.0.2-cp313-cp313t-win_amd64.whl", hash = "sha256:e444a31f8db13eb18ada366ab3cf45fd4b31e4db1236a4448f68778c1d1a5a2f", size = 15739, upload-time = "2024-10-18T15:21:42.784Z" }, +] + +[[package]] +name = "mccabe" +version = "0.7.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/e7/ff/0ffefdcac38932a54d2b5eed4e0ba8a408f215002cd178ad1df0f2806ff8/mccabe-0.7.0.tar.gz", hash = "sha256:348e0240c33b60bbdf4e523192ef919f28cb2c3d7d5c7794f74009290f236325", size = 9658, upload-time = "2022-01-24T01:14:51.113Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/27/1a/1f68f9ba0c207934b35b86a8ca3aad8395a3d6dd7921c0686e23853ff5a9/mccabe-0.7.0-py2.py3-none-any.whl", hash = "sha256:6c2d30ab6be0e4a46919781807b4f0d834ebdd6c6e3dca0bda5a15f863427b6e", size = 7350, upload-time = "2022-01-24T01:14:49.62Z" }, +] + +[[package]] +name = "mdurl" +version = "0.1.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/d6/54/cfe61301667036ec958cb99bd3efefba235e65cdeb9c84d24a8293ba1d90/mdurl-0.1.2.tar.gz", hash = "sha256:bb413d29f5eea38f31dd4754dd7377d4465116fb207585f97bf925588687c1ba", size = 8729, upload-time = "2022-08-14T12:40:10.846Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/b3/38/89ba8ad64ae25be8de66a6d463314cf1eb366222074cfda9ee839c56a4b4/mdurl-0.1.2-py3-none-any.whl", hash = "sha256:84008a41e51615a49fc9966191ff91509e3c40b939176e643fd50a5c2196b8f8", size = 9979, upload-time = "2022-08-14T12:40:09.779Z" }, +] + +[[package]] +name = "mypy" +version = "1.17.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "mypy-extensions" }, + { name = "pathspec" }, + { name = "typing-extensions" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/8e/22/ea637422dedf0bf36f3ef238eab4e455e2a0dcc3082b5cc067615347ab8e/mypy-1.17.1.tar.gz", hash = "sha256:25e01ec741ab5bb3eec8ba9cdb0f769230368a22c959c4937360efb89b7e9f01", size = 3352570, upload-time = "2025-07-31T07:54:19.204Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/17/a2/7034d0d61af8098ec47902108553122baa0f438df8a713be860f7407c9e6/mypy-1.17.1-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:69e83ea6553a3ba79c08c6e15dbd9bfa912ec1e493bf75489ef93beb65209aeb", size = 11086295, upload-time = "2025-07-31T07:53:28.124Z" }, + { url = "https://files.pythonhosted.org/packages/14/1f/19e7e44b594d4b12f6ba8064dbe136505cec813549ca3e5191e40b1d3cc2/mypy-1.17.1-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:1b16708a66d38abb1e6b5702f5c2c87e133289da36f6a1d15f6a5221085c6403", size = 10112355, upload-time = "2025-07-31T07:53:21.121Z" }, + { url = "https://files.pythonhosted.org/packages/5b/69/baa33927e29e6b4c55d798a9d44db5d394072eef2bdc18c3e2048c9ed1e9/mypy-1.17.1-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:89e972c0035e9e05823907ad5398c5a73b9f47a002b22359b177d40bdaee7056", size = 11875285, upload-time = "2025-07-31T07:53:55.293Z" }, + { url = "https://files.pythonhosted.org/packages/90/13/f3a89c76b0a41e19490b01e7069713a30949d9a6c147289ee1521bcea245/mypy-1.17.1-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:03b6d0ed2b188e35ee6d5c36b5580cffd6da23319991c49ab5556c023ccf1341", size = 12737895, upload-time = "2025-07-31T07:53:43.623Z" }, + { url = "https://files.pythonhosted.org/packages/23/a1/c4ee79ac484241301564072e6476c5a5be2590bc2e7bfd28220033d2ef8f/mypy-1.17.1-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:c837b896b37cd103570d776bda106eabb8737aa6dd4f248451aecf53030cdbeb", size = 12931025, upload-time = "2025-07-31T07:54:17.125Z" }, + { url = "https://files.pythonhosted.org/packages/89/b8/7409477be7919a0608900e6320b155c72caab4fef46427c5cc75f85edadd/mypy-1.17.1-cp312-cp312-win_amd64.whl", hash = "sha256:665afab0963a4b39dff7c1fa563cc8b11ecff7910206db4b2e64dd1ba25aed19", size = 9584664, upload-time = "2025-07-31T07:54:12.842Z" }, + { url = "https://files.pythonhosted.org/packages/5b/82/aec2fc9b9b149f372850291827537a508d6c4d3664b1750a324b91f71355/mypy-1.17.1-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:93378d3203a5c0800c6b6d850ad2f19f7a3cdf1a3701d3416dbf128805c6a6a7", size = 11075338, upload-time = "2025-07-31T07:53:38.873Z" }, + { url = "https://files.pythonhosted.org/packages/07/ac/ee93fbde9d2242657128af8c86f5d917cd2887584cf948a8e3663d0cd737/mypy-1.17.1-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:15d54056f7fe7a826d897789f53dd6377ec2ea8ba6f776dc83c2902b899fee81", size = 10113066, upload-time = "2025-07-31T07:54:14.707Z" }, + { url = "https://files.pythonhosted.org/packages/5a/68/946a1e0be93f17f7caa56c45844ec691ca153ee8b62f21eddda336a2d203/mypy-1.17.1-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:209a58fed9987eccc20f2ca94afe7257a8f46eb5df1fb69958650973230f91e6", size = 11875473, upload-time = "2025-07-31T07:53:14.504Z" }, + { url = "https://files.pythonhosted.org/packages/9f/0f/478b4dce1cb4f43cf0f0d00fba3030b21ca04a01b74d1cd272a528cf446f/mypy-1.17.1-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:099b9a5da47de9e2cb5165e581f158e854d9e19d2e96b6698c0d64de911dd849", size = 12744296, upload-time = "2025-07-31T07:53:03.896Z" }, + { url = "https://files.pythonhosted.org/packages/ca/70/afa5850176379d1b303f992a828de95fc14487429a7139a4e0bdd17a8279/mypy-1.17.1-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:fa6ffadfbe6994d724c5a1bb6123a7d27dd68fc9c059561cd33b664a79578e14", size = 12914657, upload-time = "2025-07-31T07:54:08.576Z" }, + { url = "https://files.pythonhosted.org/packages/53/f9/4a83e1c856a3d9c8f6edaa4749a4864ee98486e9b9dbfbc93842891029c2/mypy-1.17.1-cp313-cp313-win_amd64.whl", hash = "sha256:9a2b7d9180aed171f033c9f2fc6c204c1245cf60b0cb61cf2e7acc24eea78e0a", size = 9593320, upload-time = "2025-07-31T07:53:01.341Z" }, + { url = "https://files.pythonhosted.org/packages/38/56/79c2fac86da57c7d8c48622a05873eaab40b905096c33597462713f5af90/mypy-1.17.1-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:15a83369400454c41ed3a118e0cc58bd8123921a602f385cb6d6ea5df050c733", size = 11040037, upload-time = "2025-07-31T07:54:10.942Z" }, + { url = "https://files.pythonhosted.org/packages/4d/c3/adabe6ff53638e3cad19e3547268482408323b1e68bf082c9119000cd049/mypy-1.17.1-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:55b918670f692fc9fba55c3298d8a3beae295c5cded0a55dccdc5bbead814acd", size = 10131550, upload-time = "2025-07-31T07:53:41.307Z" }, + { url = "https://files.pythonhosted.org/packages/b8/c5/2e234c22c3bdeb23a7817af57a58865a39753bde52c74e2c661ee0cfc640/mypy-1.17.1-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:62761474061feef6f720149d7ba876122007ddc64adff5ba6f374fda35a018a0", size = 11872963, upload-time = "2025-07-31T07:53:16.878Z" }, + { url = "https://files.pythonhosted.org/packages/ab/26/c13c130f35ca8caa5f2ceab68a247775648fdcd6c9a18f158825f2bc2410/mypy-1.17.1-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:c49562d3d908fd49ed0938e5423daed8d407774a479b595b143a3d7f87cdae6a", size = 12710189, upload-time = "2025-07-31T07:54:01.962Z" }, + { url = "https://files.pythonhosted.org/packages/82/df/c7d79d09f6de8383fe800521d066d877e54d30b4fb94281c262be2df84ef/mypy-1.17.1-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:397fba5d7616a5bc60b45c7ed204717eaddc38f826e3645402c426057ead9a91", size = 12900322, upload-time = "2025-07-31T07:53:10.551Z" }, + { url = "https://files.pythonhosted.org/packages/b8/98/3d5a48978b4f708c55ae832619addc66d677f6dc59f3ebad71bae8285ca6/mypy-1.17.1-cp314-cp314-win_amd64.whl", hash = "sha256:9d6b20b97d373f41617bd0708fd46aa656059af57f2ef72aa8c7d6a2b73b74ed", size = 9751879, upload-time = "2025-07-31T07:52:56.683Z" }, + { url = "https://files.pythonhosted.org/packages/1d/f3/8fcd2af0f5b806f6cf463efaffd3c9548a28f84220493ecd38d127b6b66d/mypy-1.17.1-py3-none-any.whl", hash = "sha256:a9f52c0351c21fe24c21d8c0eb1f62967b262d6729393397b6f443c3b773c3b9", size = 2283411, upload-time = "2025-07-31T07:53:24.664Z" }, +] + +[[package]] +name = "mypy-extensions" +version = "1.1.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/a2/6e/371856a3fb9d31ca8dac321cda606860fa4548858c0cc45d9d1d4ca2628b/mypy_extensions-1.1.0.tar.gz", hash = "sha256:52e68efc3284861e772bbcd66823fde5ae21fd2fdb51c62a211403730b916558", size = 6343, upload-time = "2025-04-22T14:54:24.164Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/79/7b/2c79738432f5c924bef5071f933bcc9efd0473bac3b4aa584a6f7c1c8df8/mypy_extensions-1.1.0-py3-none-any.whl", hash = "sha256:1be4cccdb0f2482337c4743e60421de3a356cd97508abadd57d47403e94f5505", size = 4963, upload-time = "2025-04-22T14:54:22.983Z" }, +] + +[[package]] +name = "packaging" +version = "25.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/a1/d4/1fc4078c65507b51b96ca8f8c3ba19e6a61c8253c72794544580a7b6c24d/packaging-25.0.tar.gz", hash = "sha256:d443872c98d677bf60f6a1f2f8c1cb748e8fe762d2bf9d3148b5599295b0fc4f", size = 165727, upload-time = "2025-04-19T11:48:59.673Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/20/12/38679034af332785aac8774540895e234f4d07f7545804097de4b666afd8/packaging-25.0-py3-none-any.whl", hash = "sha256:29572ef2b1f17581046b3a2227d5c611fb25ec70ca1ba8554b24b0e69331a484", size = 66469, upload-time = "2025-04-19T11:48:57.875Z" }, +] + +[[package]] +name = "passlib" +version = "1.7.4" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/b6/06/9da9ee59a67fae7761aab3ccc84fa4f3f33f125b370f1ccdb915bf967c11/passlib-1.7.4.tar.gz", hash = "sha256:defd50f72b65c5402ab2c573830a6978e5f202ad0d984793c8dde2c4152ebe04", size = 689844, upload-time = "2020-10-08T19:00:52.121Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/3b/a4/ab6b7589382ca3df236e03faa71deac88cae040af60c071a78d254a62172/passlib-1.7.4-py2.py3-none-any.whl", hash = "sha256:aa6bca462b8d8bda89c70b382f0c298a20b5560af6cbfa2dce410c0a2fb669f1", size = 525554, upload-time = "2020-10-08T19:00:49.856Z" }, +] + +[[package]] +name = "pathspec" +version = "0.12.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/ca/bc/f35b8446f4531a7cb215605d100cd88b7ac6f44ab3fc94870c120ab3adbf/pathspec-0.12.1.tar.gz", hash = "sha256:a482d51503a1ab33b1c67a6c3813a26953dbdc71c31dacaef9a838c4e29f5712", size = 51043, upload-time = "2023-12-10T22:30:45Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/cc/20/ff623b09d963f88bfde16306a54e12ee5ea43e9b597108672ff3a408aad6/pathspec-0.12.1-py3-none-any.whl", hash = "sha256:a0d503e138a4c123b27490a4f7beda6a01c6f288df0e4a8b79c7eb0dc7b4cc08", size = 31191, upload-time = "2023-12-10T22:30:43.14Z" }, +] + +[[package]] +name = "pluggy" +version = "1.6.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/f9/e2/3e91f31a7d2b083fe6ef3fa267035b518369d9511ffab804f839851d2779/pluggy-1.6.0.tar.gz", hash = "sha256:7dcc130b76258d33b90f61b658791dede3486c3e6bfb003ee5c9bfb396dd22f3", size = 69412, upload-time = "2025-05-15T12:30:07.975Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/54/20/4d324d65cc6d9205fabedc306948156824eb9f0ee1633355a8f7ec5c66bf/pluggy-1.6.0-py3-none-any.whl", hash = "sha256:e920276dd6813095e9377c0bc5566d94c932c33b27a3e3945d8389c374dd4746", size = 20538, upload-time = "2025-05-15T12:30:06.134Z" }, +] + +[[package]] +name = "pycodestyle" +version = "2.14.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/11/e0/abfd2a0d2efe47670df87f3e3a0e2edda42f055053c85361f19c0e2c1ca8/pycodestyle-2.14.0.tar.gz", hash = "sha256:c4b5b517d278089ff9d0abdec919cd97262a3367449ea1c8b49b91529167b783", size = 39472, upload-time = "2025-06-20T18:49:48.75Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/d7/27/a58ddaf8c588a3ef080db9d0b7e0b97215cee3a45df74f3a94dbbf5c893a/pycodestyle-2.14.0-py2.py3-none-any.whl", hash = "sha256:dd6bf7cb4ee77f8e016f9c8e74a35ddd9f67e1d5fd4184d86c3b98e07099f42d", size = 31594, upload-time = "2025-06-20T18:49:47.491Z" }, +] + +[[package]] +name = "pydantic" +version = "2.11.7" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "annotated-types" }, + { name = "pydantic-core" }, + { name = "typing-extensions" }, + { name = "typing-inspection" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/00/dd/4325abf92c39ba8623b5af936ddb36ffcfe0beae70405d456ab1fb2f5b8c/pydantic-2.11.7.tar.gz", hash = "sha256:d989c3c6cb79469287b1569f7447a17848c998458d49ebe294e975b9baf0f0db", size = 788350, upload-time = "2025-06-14T08:33:17.137Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/6a/c0/ec2b1c8712ca690e5d61979dee872603e92b8a32f94cc1b72d53beab008a/pydantic-2.11.7-py3-none-any.whl", hash = "sha256:dde5df002701f6de26248661f6835bbe296a47bf73990135c7d07ce741b9623b", size = 444782, upload-time = "2025-06-14T08:33:14.905Z" }, +] + +[[package]] +name = "pydantic-core" +version = "2.33.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "typing-extensions" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/ad/88/5f2260bdfae97aabf98f1778d43f69574390ad787afb646292a638c923d4/pydantic_core-2.33.2.tar.gz", hash = "sha256:7cb8bc3605c29176e1b105350d2e6474142d7c1bd1d9327c4a9bdb46bf827acc", size = 435195, upload-time = "2025-04-23T18:33:52.104Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/18/8a/2b41c97f554ec8c71f2a8a5f85cb56a8b0956addfe8b0efb5b3d77e8bdc3/pydantic_core-2.33.2-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:a7ec89dc587667f22b6a0b6579c249fca9026ce7c333fc142ba42411fa243cdc", size = 2009000, upload-time = "2025-04-23T18:31:25.863Z" }, + { url = "https://files.pythonhosted.org/packages/a1/02/6224312aacb3c8ecbaa959897af57181fb6cf3a3d7917fd44d0f2917e6f2/pydantic_core-2.33.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:3c6db6e52c6d70aa0d00d45cdb9b40f0433b96380071ea80b09277dba021ddf7", size = 1847996, upload-time = "2025-04-23T18:31:27.341Z" }, + { url = "https://files.pythonhosted.org/packages/d6/46/6dcdf084a523dbe0a0be59d054734b86a981726f221f4562aed313dbcb49/pydantic_core-2.33.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4e61206137cbc65e6d5256e1166f88331d3b6238e082d9f74613b9b765fb9025", size = 1880957, upload-time = "2025-04-23T18:31:28.956Z" }, + { url = "https://files.pythonhosted.org/packages/ec/6b/1ec2c03837ac00886ba8160ce041ce4e325b41d06a034adbef11339ae422/pydantic_core-2.33.2-cp312-cp312-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:eb8c529b2819c37140eb51b914153063d27ed88e3bdc31b71198a198e921e011", size = 1964199, upload-time = "2025-04-23T18:31:31.025Z" }, + { url = "https://files.pythonhosted.org/packages/2d/1d/6bf34d6adb9debd9136bd197ca72642203ce9aaaa85cfcbfcf20f9696e83/pydantic_core-2.33.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:c52b02ad8b4e2cf14ca7b3d918f3eb0ee91e63b3167c32591e57c4317e134f8f", size = 2120296, upload-time = "2025-04-23T18:31:32.514Z" }, + { url = "https://files.pythonhosted.org/packages/e0/94/2bd0aaf5a591e974b32a9f7123f16637776c304471a0ab33cf263cf5591a/pydantic_core-2.33.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:96081f1605125ba0855dfda83f6f3df5ec90c61195421ba72223de35ccfb2f88", size = 2676109, upload-time = "2025-04-23T18:31:33.958Z" }, + { url = "https://files.pythonhosted.org/packages/f9/41/4b043778cf9c4285d59742281a769eac371b9e47e35f98ad321349cc5d61/pydantic_core-2.33.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f57a69461af2a5fa6e6bbd7a5f60d3b7e6cebb687f55106933188e79ad155c1", size = 2002028, upload-time = "2025-04-23T18:31:39.095Z" }, + { url = "https://files.pythonhosted.org/packages/cb/d5/7bb781bf2748ce3d03af04d5c969fa1308880e1dca35a9bd94e1a96a922e/pydantic_core-2.33.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:572c7e6c8bb4774d2ac88929e3d1f12bc45714ae5ee6d9a788a9fb35e60bb04b", size = 2100044, upload-time = "2025-04-23T18:31:41.034Z" }, + { url = "https://files.pythonhosted.org/packages/fe/36/def5e53e1eb0ad896785702a5bbfd25eed546cdcf4087ad285021a90ed53/pydantic_core-2.33.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:db4b41f9bd95fbe5acd76d89920336ba96f03e149097365afe1cb092fceb89a1", size = 2058881, upload-time = "2025-04-23T18:31:42.757Z" }, + { url = "https://files.pythonhosted.org/packages/01/6c/57f8d70b2ee57fc3dc8b9610315949837fa8c11d86927b9bb044f8705419/pydantic_core-2.33.2-cp312-cp312-musllinux_1_1_armv7l.whl", hash = "sha256:fa854f5cf7e33842a892e5c73f45327760bc7bc516339fda888c75ae60edaeb6", size = 2227034, upload-time = "2025-04-23T18:31:44.304Z" }, + { url = "https://files.pythonhosted.org/packages/27/b9/9c17f0396a82b3d5cbea4c24d742083422639e7bb1d5bf600e12cb176a13/pydantic_core-2.33.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:5f483cfb75ff703095c59e365360cb73e00185e01aaea067cd19acffd2ab20ea", size = 2234187, upload-time = "2025-04-23T18:31:45.891Z" }, + { url = "https://files.pythonhosted.org/packages/b0/6a/adf5734ffd52bf86d865093ad70b2ce543415e0e356f6cacabbc0d9ad910/pydantic_core-2.33.2-cp312-cp312-win32.whl", hash = "sha256:9cb1da0f5a471435a7bc7e439b8a728e8b61e59784b2af70d7c169f8dd8ae290", size = 1892628, upload-time = "2025-04-23T18:31:47.819Z" }, + { url = "https://files.pythonhosted.org/packages/43/e4/5479fecb3606c1368d496a825d8411e126133c41224c1e7238be58b87d7e/pydantic_core-2.33.2-cp312-cp312-win_amd64.whl", hash = "sha256:f941635f2a3d96b2973e867144fde513665c87f13fe0e193c158ac51bfaaa7b2", size = 1955866, upload-time = "2025-04-23T18:31:49.635Z" }, + { url = "https://files.pythonhosted.org/packages/0d/24/8b11e8b3e2be9dd82df4b11408a67c61bb4dc4f8e11b5b0fc888b38118b5/pydantic_core-2.33.2-cp312-cp312-win_arm64.whl", hash = "sha256:cca3868ddfaccfbc4bfb1d608e2ccaaebe0ae628e1416aeb9c4d88c001bb45ab", size = 1888894, upload-time = "2025-04-23T18:31:51.609Z" }, + { url = "https://files.pythonhosted.org/packages/46/8c/99040727b41f56616573a28771b1bfa08a3d3fe74d3d513f01251f79f172/pydantic_core-2.33.2-cp313-cp313-macosx_10_12_x86_64.whl", hash = "sha256:1082dd3e2d7109ad8b7da48e1d4710c8d06c253cbc4a27c1cff4fbcaa97a9e3f", size = 2015688, upload-time = "2025-04-23T18:31:53.175Z" }, + { url = "https://files.pythonhosted.org/packages/3a/cc/5999d1eb705a6cefc31f0b4a90e9f7fc400539b1a1030529700cc1b51838/pydantic_core-2.33.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:f517ca031dfc037a9c07e748cefd8d96235088b83b4f4ba8939105d20fa1dcd6", size = 1844808, upload-time = "2025-04-23T18:31:54.79Z" }, + { url = "https://files.pythonhosted.org/packages/6f/5e/a0a7b8885c98889a18b6e376f344da1ef323d270b44edf8174d6bce4d622/pydantic_core-2.33.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0a9f2c9dd19656823cb8250b0724ee9c60a82f3cdf68a080979d13092a3b0fef", size = 1885580, upload-time = "2025-04-23T18:31:57.393Z" }, + { url = "https://files.pythonhosted.org/packages/3b/2a/953581f343c7d11a304581156618c3f592435523dd9d79865903272c256a/pydantic_core-2.33.2-cp313-cp313-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:2b0a451c263b01acebe51895bfb0e1cc842a5c666efe06cdf13846c7418caa9a", size = 1973859, upload-time = "2025-04-23T18:31:59.065Z" }, + { url = "https://files.pythonhosted.org/packages/e6/55/f1a813904771c03a3f97f676c62cca0c0a4138654107c1b61f19c644868b/pydantic_core-2.33.2-cp313-cp313-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1ea40a64d23faa25e62a70ad163571c0b342b8bf66d5fa612ac0dec4f069d916", size = 2120810, upload-time = "2025-04-23T18:32:00.78Z" }, + { url = "https://files.pythonhosted.org/packages/aa/c3/053389835a996e18853ba107a63caae0b9deb4a276c6b472931ea9ae6e48/pydantic_core-2.33.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:0fb2d542b4d66f9470e8065c5469ec676978d625a8b7a363f07d9a501a9cb36a", size = 2676498, upload-time = "2025-04-23T18:32:02.418Z" }, + { url = "https://files.pythonhosted.org/packages/eb/3c/f4abd740877a35abade05e437245b192f9d0ffb48bbbbd708df33d3cda37/pydantic_core-2.33.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9fdac5d6ffa1b5a83bca06ffe7583f5576555e6c8b3a91fbd25ea7780f825f7d", size = 2000611, upload-time = "2025-04-23T18:32:04.152Z" }, + { url = "https://files.pythonhosted.org/packages/59/a7/63ef2fed1837d1121a894d0ce88439fe3e3b3e48c7543b2a4479eb99c2bd/pydantic_core-2.33.2-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:04a1a413977ab517154eebb2d326da71638271477d6ad87a769102f7c2488c56", size = 2107924, upload-time = "2025-04-23T18:32:06.129Z" }, + { url = "https://files.pythonhosted.org/packages/04/8f/2551964ef045669801675f1cfc3b0d74147f4901c3ffa42be2ddb1f0efc4/pydantic_core-2.33.2-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:c8e7af2f4e0194c22b5b37205bfb293d166a7344a5b0d0eaccebc376546d77d5", size = 2063196, upload-time = "2025-04-23T18:32:08.178Z" }, + { url = "https://files.pythonhosted.org/packages/26/bd/d9602777e77fc6dbb0c7db9ad356e9a985825547dce5ad1d30ee04903918/pydantic_core-2.33.2-cp313-cp313-musllinux_1_1_armv7l.whl", hash = "sha256:5c92edd15cd58b3c2d34873597a1e20f13094f59cf88068adb18947df5455b4e", size = 2236389, upload-time = "2025-04-23T18:32:10.242Z" }, + { url = "https://files.pythonhosted.org/packages/42/db/0e950daa7e2230423ab342ae918a794964b053bec24ba8af013fc7c94846/pydantic_core-2.33.2-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:65132b7b4a1c0beded5e057324b7e16e10910c106d43675d9bd87d4f38dde162", size = 2239223, upload-time = "2025-04-23T18:32:12.382Z" }, + { url = "https://files.pythonhosted.org/packages/58/4d/4f937099c545a8a17eb52cb67fe0447fd9a373b348ccfa9a87f141eeb00f/pydantic_core-2.33.2-cp313-cp313-win32.whl", hash = "sha256:52fb90784e0a242bb96ec53f42196a17278855b0f31ac7c3cc6f5c1ec4811849", size = 1900473, upload-time = "2025-04-23T18:32:14.034Z" }, + { url = "https://files.pythonhosted.org/packages/a0/75/4a0a9bac998d78d889def5e4ef2b065acba8cae8c93696906c3a91f310ca/pydantic_core-2.33.2-cp313-cp313-win_amd64.whl", hash = "sha256:c083a3bdd5a93dfe480f1125926afcdbf2917ae714bdb80b36d34318b2bec5d9", size = 1955269, upload-time = "2025-04-23T18:32:15.783Z" }, + { url = "https://files.pythonhosted.org/packages/f9/86/1beda0576969592f1497b4ce8e7bc8cbdf614c352426271b1b10d5f0aa64/pydantic_core-2.33.2-cp313-cp313-win_arm64.whl", hash = "sha256:e80b087132752f6b3d714f041ccf74403799d3b23a72722ea2e6ba2e892555b9", size = 1893921, upload-time = "2025-04-23T18:32:18.473Z" }, + { url = "https://files.pythonhosted.org/packages/a4/7d/e09391c2eebeab681df2b74bfe6c43422fffede8dc74187b2b0bf6fd7571/pydantic_core-2.33.2-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:61c18fba8e5e9db3ab908620af374db0ac1baa69f0f32df4f61ae23f15e586ac", size = 1806162, upload-time = "2025-04-23T18:32:20.188Z" }, + { url = "https://files.pythonhosted.org/packages/f1/3d/847b6b1fed9f8ed3bb95a9ad04fbd0b212e832d4f0f50ff4d9ee5a9f15cf/pydantic_core-2.33.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95237e53bb015f67b63c91af7518a62a8660376a6a0db19b89acc77a4d6199f5", size = 1981560, upload-time = "2025-04-23T18:32:22.354Z" }, + { url = "https://files.pythonhosted.org/packages/6f/9a/e73262f6c6656262b5fdd723ad90f518f579b7bc8622e43a942eec53c938/pydantic_core-2.33.2-cp313-cp313t-win_amd64.whl", hash = "sha256:c2fc0a768ef76c15ab9238afa6da7f69895bb5d1ee83aeea2e3509af4472d0b9", size = 1935777, upload-time = "2025-04-23T18:32:25.088Z" }, +] + +[[package]] +name = "pydantic-settings" +version = "2.10.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "pydantic" }, + { name = "python-dotenv" }, + { name = "typing-inspection" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/68/85/1ea668bbab3c50071ca613c6ab30047fb36ab0da1b92fa8f17bbc38fd36c/pydantic_settings-2.10.1.tar.gz", hash = "sha256:06f0062169818d0f5524420a360d632d5857b83cffd4d42fe29597807a1614ee", size = 172583, upload-time = "2025-06-24T13:26:46.841Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/58/f0/427018098906416f580e3cf1366d3b1abfb408a0652e9f31600c24a1903c/pydantic_settings-2.10.1-py3-none-any.whl", hash = "sha256:a60952460b99cf661dc25c29c0ef171721f98bfcb52ef8d9ea4c943d7c8cc796", size = 45235, upload-time = "2025-06-24T13:26:45.485Z" }, +] + +[[package]] +name = "pyflakes" +version = "3.4.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/45/dc/fd034dc20b4b264b3d015808458391acbf9df40b1e54750ef175d39180b1/pyflakes-3.4.0.tar.gz", hash = "sha256:b24f96fafb7d2ab0ec5075b7350b3d2d2218eab42003821c06344973d3ea2f58", size = 64669, upload-time = "2025-06-20T18:45:27.834Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/c2/2f/81d580a0fb83baeb066698975cb14a618bdbed7720678566f1b046a95fe8/pyflakes-3.4.0-py2.py3-none-any.whl", hash = "sha256:f742a7dbd0d9cb9ea41e9a24a918996e8170c799fa528688d40dd582c8265f4f", size = 63551, upload-time = "2025-06-20T18:45:26.937Z" }, +] + +[[package]] +name = "pygments" +version = "2.19.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/b0/77/a5b8c569bf593b0140bde72ea885a803b82086995367bf2037de0159d924/pygments-2.19.2.tar.gz", hash = "sha256:636cb2477cec7f8952536970bc533bc43743542f70392ae026374600add5b887", size = 4968631, upload-time = "2025-06-21T13:39:12.283Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/c7/21/705964c7812476f378728bdf590ca4b771ec72385c533964653c68e86bdc/pygments-2.19.2-py3-none-any.whl", hash = "sha256:86540386c03d588bb81d44bc3928634ff26449851e99741617ecb9037ee5ec0b", size = 1225217, upload-time = "2025-06-21T13:39:07.939Z" }, +] + +[[package]] +name = "pyjwt" +version = "2.10.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/e7/46/bd74733ff231675599650d3e47f361794b22ef3e3770998dda30d3b63726/pyjwt-2.10.1.tar.gz", hash = "sha256:3cc5772eb20009233caf06e9d8a0577824723b44e6648ee0a2aedb6cf9381953", size = 87785, upload-time = "2024-11-28T03:43:29.933Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/61/ad/689f02752eeec26aed679477e80e632ef1b682313be70793d798c1d5fc8f/PyJWT-2.10.1-py3-none-any.whl", hash = "sha256:dcdd193e30abefd5debf142f9adfcdd2b58004e644f25406ffaebd50bd98dacb", size = 22997, upload-time = "2024-11-28T03:43:27.893Z" }, +] + +[[package]] +name = "pytest" +version = "8.4.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "colorama", marker = "sys_platform == 'win32'" }, + { name = "iniconfig" }, + { name = "packaging" }, + { name = "pluggy" }, + { name = "pygments" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/a3/5c/00a0e072241553e1a7496d638deababa67c5058571567b92a7eaa258397c/pytest-8.4.2.tar.gz", hash = "sha256:86c0d0b93306b961d58d62a4db4879f27fe25513d4b969df351abdddb3c30e01", size = 1519618, upload-time = "2025-09-04T14:34:22.711Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a8/a4/20da314d277121d6534b3a980b29035dcd51e6744bd79075a6ce8fa4eb8d/pytest-8.4.2-py3-none-any.whl", hash = "sha256:872f880de3fc3a5bdc88a11b39c9710c3497a547cfa9320bc3c5e62fbf272e79", size = 365750, upload-time = "2025-09-04T14:34:20.226Z" }, +] + +[[package]] +name = "python-dotenv" +version = "1.1.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/f6/b0/4bc07ccd3572a2f9df7e6782f52b0c6c90dcbb803ac4a167702d7d0dfe1e/python_dotenv-1.1.1.tar.gz", hash = "sha256:a8a6399716257f45be6a007360200409fce5cda2661e3dec71d23dc15f6189ab", size = 41978, upload-time = "2025-06-24T04:21:07.341Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/5f/ed/539768cf28c661b5b068d66d96a2f155c4971a5d55684a514c1a0e0dec2f/python_dotenv-1.1.1-py3-none-any.whl", hash = "sha256:31f23644fe2602f88ff55e1f5c79ba497e01224ee7737937930c448e4d0e24dc", size = 20556, upload-time = "2025-06-24T04:21:06.073Z" }, +] + +[[package]] +name = "pyyaml" +version = "6.0.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/54/ed/79a089b6be93607fa5cdaedf301d7dfb23af5f25c398d5ead2525b063e17/pyyaml-6.0.2.tar.gz", hash = "sha256:d584d9ec91ad65861cc08d42e834324ef890a082e591037abe114850ff7bbc3e", size = 130631, upload-time = "2024-08-06T20:33:50.674Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/86/0c/c581167fc46d6d6d7ddcfb8c843a4de25bdd27e4466938109ca68492292c/PyYAML-6.0.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:c70c95198c015b85feafc136515252a261a84561b7b1d51e3384e0655ddf25ab", size = 183873, upload-time = "2024-08-06T20:32:25.131Z" }, + { url = "https://files.pythonhosted.org/packages/a8/0c/38374f5bb272c051e2a69281d71cba6fdb983413e6758b84482905e29a5d/PyYAML-6.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:ce826d6ef20b1bc864f0a68340c8b3287705cae2f8b4b1d932177dcc76721725", size = 173302, upload-time = "2024-08-06T20:32:26.511Z" }, + { url = "https://files.pythonhosted.org/packages/c3/93/9916574aa8c00aa06bbac729972eb1071d002b8e158bd0e83a3b9a20a1f7/PyYAML-6.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f71ea527786de97d1a0cc0eacd1defc0985dcf6b3f17bb77dcfc8c34bec4dc5", size = 739154, upload-time = "2024-08-06T20:32:28.363Z" }, + { url = "https://files.pythonhosted.org/packages/95/0f/b8938f1cbd09739c6da569d172531567dbcc9789e0029aa070856f123984/PyYAML-6.0.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:9b22676e8097e9e22e36d6b7bda33190d0d400f345f23d4065d48f4ca7ae0425", size = 766223, upload-time = "2024-08-06T20:32:30.058Z" }, + { url = "https://files.pythonhosted.org/packages/b9/2b/614b4752f2e127db5cc206abc23a8c19678e92b23c3db30fc86ab731d3bd/PyYAML-6.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:80bab7bfc629882493af4aa31a4cfa43a4c57c83813253626916b8c7ada83476", size = 767542, upload-time = "2024-08-06T20:32:31.881Z" }, + { url = "https://files.pythonhosted.org/packages/d4/00/dd137d5bcc7efea1836d6264f049359861cf548469d18da90cd8216cf05f/PyYAML-6.0.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:0833f8694549e586547b576dcfaba4a6b55b9e96098b36cdc7ebefe667dfed48", size = 731164, upload-time = "2024-08-06T20:32:37.083Z" }, + { url = "https://files.pythonhosted.org/packages/c9/1f/4f998c900485e5c0ef43838363ba4a9723ac0ad73a9dc42068b12aaba4e4/PyYAML-6.0.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:8b9c7197f7cb2738065c481a0461e50ad02f18c78cd75775628afb4d7137fb3b", size = 756611, upload-time = "2024-08-06T20:32:38.898Z" }, + { url = "https://files.pythonhosted.org/packages/df/d1/f5a275fdb252768b7a11ec63585bc38d0e87c9e05668a139fea92b80634c/PyYAML-6.0.2-cp312-cp312-win32.whl", hash = "sha256:ef6107725bd54b262d6dedcc2af448a266975032bc85ef0172c5f059da6325b4", size = 140591, upload-time = "2024-08-06T20:32:40.241Z" }, + { url = "https://files.pythonhosted.org/packages/0c/e8/4f648c598b17c3d06e8753d7d13d57542b30d56e6c2dedf9c331ae56312e/PyYAML-6.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:7e7401d0de89a9a855c839bc697c079a4af81cf878373abd7dc625847d25cbd8", size = 156338, upload-time = "2024-08-06T20:32:41.93Z" }, + { url = "https://files.pythonhosted.org/packages/ef/e3/3af305b830494fa85d95f6d95ef7fa73f2ee1cc8ef5b495c7c3269fb835f/PyYAML-6.0.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:efdca5630322a10774e8e98e1af481aad470dd62c3170801852d752aa7a783ba", size = 181309, upload-time = "2024-08-06T20:32:43.4Z" }, + { url = "https://files.pythonhosted.org/packages/45/9f/3b1c20a0b7a3200524eb0076cc027a970d320bd3a6592873c85c92a08731/PyYAML-6.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:50187695423ffe49e2deacb8cd10510bc361faac997de9efef88badc3bb9e2d1", size = 171679, upload-time = "2024-08-06T20:32:44.801Z" }, + { url = "https://files.pythonhosted.org/packages/7c/9a/337322f27005c33bcb656c655fa78325b730324c78620e8328ae28b64d0c/PyYAML-6.0.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0ffe8360bab4910ef1b9e87fb812d8bc0a308b0d0eef8c8f44e0254ab3b07133", size = 733428, upload-time = "2024-08-06T20:32:46.432Z" }, + { url = "https://files.pythonhosted.org/packages/a3/69/864fbe19e6c18ea3cc196cbe5d392175b4cf3d5d0ac1403ec3f2d237ebb5/PyYAML-6.0.2-cp313-cp313-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:17e311b6c678207928d649faa7cb0d7b4c26a0ba73d41e99c4fff6b6c3276484", size = 763361, upload-time = "2024-08-06T20:32:51.188Z" }, + { url = "https://files.pythonhosted.org/packages/04/24/b7721e4845c2f162d26f50521b825fb061bc0a5afcf9a386840f23ea19fa/PyYAML-6.0.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:70b189594dbe54f75ab3a1acec5f1e3faa7e8cf2f1e08d9b561cb41b845f69d5", size = 759523, upload-time = "2024-08-06T20:32:53.019Z" }, + { url = "https://files.pythonhosted.org/packages/2b/b2/e3234f59ba06559c6ff63c4e10baea10e5e7df868092bf9ab40e5b9c56b6/PyYAML-6.0.2-cp313-cp313-musllinux_1_1_aarch64.whl", hash = "sha256:41e4e3953a79407c794916fa277a82531dd93aad34e29c2a514c2c0c5fe971cc", size = 726660, upload-time = "2024-08-06T20:32:54.708Z" }, + { url = "https://files.pythonhosted.org/packages/fe/0f/25911a9f080464c59fab9027482f822b86bf0608957a5fcc6eaac85aa515/PyYAML-6.0.2-cp313-cp313-musllinux_1_1_x86_64.whl", hash = "sha256:68ccc6023a3400877818152ad9a1033e3db8625d899c72eacb5a668902e4d652", size = 751597, upload-time = "2024-08-06T20:32:56.985Z" }, + { url = "https://files.pythonhosted.org/packages/14/0d/e2c3b43bbce3cf6bd97c840b46088a3031085179e596d4929729d8d68270/PyYAML-6.0.2-cp313-cp313-win32.whl", hash = "sha256:bc2fa7c6b47d6bc618dd7fb02ef6fdedb1090ec036abab80d4681424b84c1183", size = 140527, upload-time = "2024-08-06T20:33:03.001Z" }, + { url = "https://files.pythonhosted.org/packages/fa/de/02b54f42487e3d3c6efb3f89428677074ca7bf43aae402517bc7cca949f3/PyYAML-6.0.2-cp313-cp313-win_amd64.whl", hash = "sha256:8388ee1976c416731879ac16da0aff3f63b286ffdd57cdeb95f3f2e085687563", size = 156446, upload-time = "2024-08-06T20:33:04.33Z" }, +] + +[[package]] +name = "radon" +version = "6.0.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "colorama" }, + { name = "mando" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/b1/6d/98e61600febf6bd929cf04154537c39dc577ce414bafbfc24a286c4fa76d/radon-6.0.1.tar.gz", hash = "sha256:d1ac0053943a893878940fedc8b19ace70386fc9c9bf0a09229a44125ebf45b5", size = 1874992, upload-time = "2023-03-26T06:24:38.868Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/93/f7/d00d9b4a0313a6be3a3e0818e6375e15da6d7076f4ae47d1324e7ca986a1/radon-6.0.1-py2.py3-none-any.whl", hash = "sha256:632cc032364a6f8bb1010a2f6a12d0f14bc7e5ede76585ef29dc0cecf4cd8859", size = 52784, upload-time = "2023-03-26T06:24:33.949Z" }, +] + +[[package]] +name = "rich" +version = "14.1.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "markdown-it-py" }, + { name = "pygments" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/fe/75/af448d8e52bf1d8fa6a9d089ca6c07ff4453d86c65c145d0a300bb073b9b/rich-14.1.0.tar.gz", hash = "sha256:e497a48b844b0320d45007cdebfeaeed8db2a4f4bcf49f15e455cfc4af11eaa8", size = 224441, upload-time = "2025-07-25T07:32:58.125Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e3/30/3c4d035596d3cf444529e0b2953ad0466f6049528a879d27534700580395/rich-14.1.0-py3-none-any.whl", hash = "sha256:536f5f1785986d6dbdea3c75205c473f970777b4a0d6c6dd1b696aa05a3fa04f", size = 243368, upload-time = "2025-07-25T07:32:56.73Z" }, +] + +[[package]] +name = "ruff" +version = "0.13.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/6e/1a/1f4b722862840295bcaba8c9e5261572347509548faaa99b2d57ee7bfe6a/ruff-0.13.0.tar.gz", hash = "sha256:5b4b1ee7eb35afae128ab94459b13b2baaed282b1fb0f472a73c82c996c8ae60", size = 5372863, upload-time = "2025-09-10T16:25:37.917Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ac/fe/6f87b419dbe166fd30a991390221f14c5b68946f389ea07913e1719741e0/ruff-0.13.0-py3-none-linux_armv6l.whl", hash = "sha256:137f3d65d58ee828ae136a12d1dc33d992773d8f7644bc6b82714570f31b2004", size = 12187826, upload-time = "2025-09-10T16:24:39.5Z" }, + { url = "https://files.pythonhosted.org/packages/e4/25/c92296b1fc36d2499e12b74a3fdb230f77af7bdf048fad7b0a62e94ed56a/ruff-0.13.0-py3-none-macosx_10_12_x86_64.whl", hash = "sha256:21ae48151b66e71fd111b7d79f9ad358814ed58c339631450c66a4be33cc28b9", size = 12933428, upload-time = "2025-09-10T16:24:43.866Z" }, + { url = "https://files.pythonhosted.org/packages/44/cf/40bc7221a949470307d9c35b4ef5810c294e6cfa3caafb57d882731a9f42/ruff-0.13.0-py3-none-macosx_11_0_arm64.whl", hash = "sha256:64de45f4ca5441209e41742d527944635a05a6e7c05798904f39c85bafa819e3", size = 12095543, upload-time = "2025-09-10T16:24:46.638Z" }, + { url = "https://files.pythonhosted.org/packages/f1/03/8b5ff2a211efb68c63a1d03d157e924997ada87d01bebffbd13a0f3fcdeb/ruff-0.13.0-py3-none-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2b2c653ae9b9d46e0ef62fc6fbf5b979bda20a0b1d2b22f8f7eb0cde9f4963b8", size = 12312489, upload-time = "2025-09-10T16:24:49.556Z" }, + { url = "https://files.pythonhosted.org/packages/37/fc/2336ef6d5e9c8d8ea8305c5f91e767d795cd4fc171a6d97ef38a5302dadc/ruff-0.13.0-py3-none-manylinux_2_17_armv7l.manylinux2014_armv7l.whl", hash = "sha256:4cec632534332062bc9eb5884a267b689085a1afea9801bf94e3ba7498a2d207", size = 11991631, upload-time = "2025-09-10T16:24:53.439Z" }, + { url = "https://files.pythonhosted.org/packages/39/7f/f6d574d100fca83d32637d7f5541bea2f5e473c40020bbc7fc4a4d5b7294/ruff-0.13.0-py3-none-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dcd628101d9f7d122e120ac7c17e0a0f468b19bc925501dbe03c1cb7f5415b24", size = 13720602, upload-time = "2025-09-10T16:24:56.392Z" }, + { url = "https://files.pythonhosted.org/packages/fd/c8/a8a5b81d8729b5d1f663348d11e2a9d65a7a9bd3c399763b1a51c72be1ce/ruff-0.13.0-py3-none-manylinux_2_17_ppc64.manylinux2014_ppc64.whl", hash = "sha256:afe37db8e1466acb173bb2a39ca92df00570e0fd7c94c72d87b51b21bb63efea", size = 14697751, upload-time = "2025-09-10T16:24:59.89Z" }, + { url = "https://files.pythonhosted.org/packages/57/f5/183ec292272ce7ec5e882aea74937f7288e88ecb500198b832c24debc6d3/ruff-0.13.0-py3-none-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:0f96a8d90bb258d7d3358b372905fe7333aaacf6c39e2408b9f8ba181f4b6ef2", size = 14095317, upload-time = "2025-09-10T16:25:03.025Z" }, + { url = "https://files.pythonhosted.org/packages/9f/8d/7f9771c971724701af7926c14dab31754e7b303d127b0d3f01116faef456/ruff-0.13.0-py3-none-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:94b5e3d883e4f924c5298e3f2ee0f3085819c14f68d1e5b6715597681433f153", size = 13144418, upload-time = "2025-09-10T16:25:06.272Z" }, + { url = "https://files.pythonhosted.org/packages/a8/a6/7985ad1778e60922d4bef546688cd8a25822c58873e9ff30189cfe5dc4ab/ruff-0.13.0-py3-none-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:03447f3d18479df3d24917a92d768a89f873a7181a064858ea90a804a7538991", size = 13370843, upload-time = "2025-09-10T16:25:09.965Z" }, + { url = "https://files.pythonhosted.org/packages/64/1c/bafdd5a7a05a50cc51d9f5711da704942d8dd62df3d8c70c311e98ce9f8a/ruff-0.13.0-py3-none-manylinux_2_31_riscv64.whl", hash = "sha256:fbc6b1934eb1c0033da427c805e27d164bb713f8e273a024a7e86176d7f462cf", size = 13321891, upload-time = "2025-09-10T16:25:12.969Z" }, + { url = "https://files.pythonhosted.org/packages/bc/3e/7817f989cb9725ef7e8d2cee74186bf90555279e119de50c750c4b7a72fe/ruff-0.13.0-py3-none-musllinux_1_2_aarch64.whl", hash = "sha256:a8ab6a3e03665d39d4a25ee199d207a488724f022db0e1fe4002968abdb8001b", size = 12119119, upload-time = "2025-09-10T16:25:16.621Z" }, + { url = "https://files.pythonhosted.org/packages/58/07/9df080742e8d1080e60c426dce6e96a8faf9a371e2ce22eef662e3839c95/ruff-0.13.0-py3-none-musllinux_1_2_armv7l.whl", hash = "sha256:d2a5c62f8ccc6dd2fe259917482de7275cecc86141ee10432727c4816235bc41", size = 11961594, upload-time = "2025-09-10T16:25:19.49Z" }, + { url = "https://files.pythonhosted.org/packages/6a/f4/ae1185349197d26a2316840cb4d6c3fba61d4ac36ed728bf0228b222d71f/ruff-0.13.0-py3-none-musllinux_1_2_i686.whl", hash = "sha256:b7b85ca27aeeb1ab421bc787009831cffe6048faae08ad80867edab9f2760945", size = 12933377, upload-time = "2025-09-10T16:25:22.371Z" }, + { url = "https://files.pythonhosted.org/packages/b6/39/e776c10a3b349fc8209a905bfb327831d7516f6058339a613a8d2aaecacd/ruff-0.13.0-py3-none-musllinux_1_2_x86_64.whl", hash = "sha256:79ea0c44a3032af768cabfd9616e44c24303af49d633b43e3a5096e009ebe823", size = 13418555, upload-time = "2025-09-10T16:25:25.681Z" }, + { url = "https://files.pythonhosted.org/packages/46/09/dca8df3d48e8b3f4202bf20b1658898e74b6442ac835bfe2c1816d926697/ruff-0.13.0-py3-none-win32.whl", hash = "sha256:4e473e8f0e6a04e4113f2e1de12a5039579892329ecc49958424e5568ef4f768", size = 12141613, upload-time = "2025-09-10T16:25:28.664Z" }, + { url = "https://files.pythonhosted.org/packages/61/21/0647eb71ed99b888ad50e44d8ec65d7148babc0e242d531a499a0bbcda5f/ruff-0.13.0-py3-none-win_amd64.whl", hash = "sha256:48e5c25c7a3713eea9ce755995767f4dcd1b0b9599b638b12946e892123d1efb", size = 13258250, upload-time = "2025-09-10T16:25:31.773Z" }, + { url = "https://files.pythonhosted.org/packages/e1/a3/03216a6a86c706df54422612981fb0f9041dbb452c3401501d4a22b942c9/ruff-0.13.0-py3-none-win_arm64.whl", hash = "sha256:ab80525317b1e1d38614addec8ac954f1b3e662de9d59114ecbf771d00cf613e", size = 12312357, upload-time = "2025-09-10T16:25:35.595Z" }, +] + +[[package]] +name = "six" +version = "1.17.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/94/e7/b2c673351809dca68a0e064b6af791aa332cf192da575fd474ed7d6f16a2/six-1.17.0.tar.gz", hash = "sha256:ff70335d468e7eb6ec65b95b99d3a2836546063f63acc5171de367e834932a81", size = 34031, upload-time = "2024-12-04T17:35:28.174Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/b7/ce/149a00dd41f10bc29e5921b496af8b574d8413afcd5e30dfa0ed46c2cc5e/six-1.17.0-py2.py3-none-any.whl", hash = "sha256:4721f391ed90541fddacab5acf947aa0d3dc7d27b2e1e8eda2be8970586c3274", size = 11050, upload-time = "2024-12-04T17:35:26.475Z" }, +] + +[[package]] +name = "sniffio" +version = "1.3.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/a2/87/a6771e1546d97e7e041b6ae58d80074f81b7d5121207425c964ddf5cfdbd/sniffio-1.3.1.tar.gz", hash = "sha256:f4324edc670a0f49750a81b895f35c3adb843cca46f0530f79fc1babb23789dc", size = 20372, upload-time = "2024-02-25T23:20:04.057Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e9/44/75a9c9421471a6c4805dbf2356f7c181a29c1879239abab1ea2cc8f38b40/sniffio-1.3.1-py3-none-any.whl", hash = "sha256:2f6da418d1f1e0fddd844478f41680e794e6051915791a034ff65e5f100525a2", size = 10235, upload-time = "2024-02-25T23:20:01.196Z" }, +] + +[[package]] +name = "sqlalchemy" +version = "2.0.43" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "greenlet", marker = "(python_full_version < '3.14' and platform_machine == 'AMD64') or (python_full_version < '3.14' and platform_machine == 'WIN32') or (python_full_version < '3.14' and platform_machine == 'aarch64') or (python_full_version < '3.14' and platform_machine == 'amd64') or (python_full_version < '3.14' and platform_machine == 'ppc64le') or (python_full_version < '3.14' and platform_machine == 'win32') or (python_full_version < '3.14' and platform_machine == 'x86_64')" }, + { name = "typing-extensions" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/d7/bc/d59b5d97d27229b0e009bd9098cd81af71c2fa5549c580a0a67b9bed0496/sqlalchemy-2.0.43.tar.gz", hash = "sha256:788bfcef6787a7764169cfe9859fe425bf44559619e1d9f56f5bddf2ebf6f417", size = 9762949, upload-time = "2025-08-11T14:24:58.438Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/61/db/20c78f1081446095450bdc6ee6cc10045fce67a8e003a5876b6eaafc5cc4/sqlalchemy-2.0.43-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:20d81fc2736509d7a2bd33292e489b056cbae543661bb7de7ce9f1c0cd6e7f24", size = 2134891, upload-time = "2025-08-11T15:51:13.019Z" }, + { url = "https://files.pythonhosted.org/packages/45/0a/3d89034ae62b200b4396f0f95319f7d86e9945ee64d2343dcad857150fa2/sqlalchemy-2.0.43-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:25b9fc27650ff5a2c9d490c13c14906b918b0de1f8fcbb4c992712d8caf40e83", size = 2123061, upload-time = "2025-08-11T15:51:14.319Z" }, + { url = "https://files.pythonhosted.org/packages/cb/10/2711f7ff1805919221ad5bee205971254845c069ee2e7036847103ca1e4c/sqlalchemy-2.0.43-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6772e3ca8a43a65a37c88e2f3e2adfd511b0b1da37ef11ed78dea16aeae85bd9", size = 3320384, upload-time = "2025-08-11T15:52:35.088Z" }, + { url = "https://files.pythonhosted.org/packages/6e/0e/3d155e264d2ed2778484006ef04647bc63f55b3e2d12e6a4f787747b5900/sqlalchemy-2.0.43-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1a113da919c25f7f641ffbd07fbc9077abd4b3b75097c888ab818f962707eb48", size = 3329648, upload-time = "2025-08-11T15:56:34.153Z" }, + { url = "https://files.pythonhosted.org/packages/5b/81/635100fb19725c931622c673900da5efb1595c96ff5b441e07e3dd61f2be/sqlalchemy-2.0.43-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:4286a1139f14b7d70141c67a8ae1582fc2b69105f1b09d9573494eb4bb4b2687", size = 3258030, upload-time = "2025-08-11T15:52:36.933Z" }, + { url = "https://files.pythonhosted.org/packages/0c/ed/a99302716d62b4965fded12520c1cbb189f99b17a6d8cf77611d21442e47/sqlalchemy-2.0.43-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:529064085be2f4d8a6e5fab12d36ad44f1909a18848fcfbdb59cc6d4bbe48efe", size = 3294469, upload-time = "2025-08-11T15:56:35.553Z" }, + { url = "https://files.pythonhosted.org/packages/5d/a2/3a11b06715149bf3310b55a98b5c1e84a42cfb949a7b800bc75cb4e33abc/sqlalchemy-2.0.43-cp312-cp312-win32.whl", hash = "sha256:b535d35dea8bbb8195e7e2b40059e2253acb2b7579b73c1b432a35363694641d", size = 2098906, upload-time = "2025-08-11T15:55:00.645Z" }, + { url = "https://files.pythonhosted.org/packages/bc/09/405c915a974814b90aa591280623adc6ad6b322f61fd5cff80aeaef216c9/sqlalchemy-2.0.43-cp312-cp312-win_amd64.whl", hash = "sha256:1c6d85327ca688dbae7e2b06d7d84cfe4f3fffa5b5f9e21bb6ce9d0e1a0e0e0a", size = 2126260, upload-time = "2025-08-11T15:55:02.965Z" }, + { url = "https://files.pythonhosted.org/packages/41/1c/a7260bd47a6fae7e03768bf66451437b36451143f36b285522b865987ced/sqlalchemy-2.0.43-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:e7c08f57f75a2bb62d7ee80a89686a5e5669f199235c6d1dac75cd59374091c3", size = 2130598, upload-time = "2025-08-11T15:51:15.903Z" }, + { url = "https://files.pythonhosted.org/packages/8e/84/8a337454e82388283830b3586ad7847aa9c76fdd4f1df09cdd1f94591873/sqlalchemy-2.0.43-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:14111d22c29efad445cd5021a70a8b42f7d9152d8ba7f73304c4d82460946aaa", size = 2118415, upload-time = "2025-08-11T15:51:17.256Z" }, + { url = "https://files.pythonhosted.org/packages/cf/ff/22ab2328148492c4d71899d62a0e65370ea66c877aea017a244a35733685/sqlalchemy-2.0.43-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:21b27b56eb2f82653168cefe6cb8e970cdaf4f3a6cb2c5e3c3c1cf3158968ff9", size = 3248707, upload-time = "2025-08-11T15:52:38.444Z" }, + { url = "https://files.pythonhosted.org/packages/dc/29/11ae2c2b981de60187f7cbc84277d9d21f101093d1b2e945c63774477aba/sqlalchemy-2.0.43-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9c5a9da957c56e43d72126a3f5845603da00e0293720b03bde0aacffcf2dc04f", size = 3253602, upload-time = "2025-08-11T15:56:37.348Z" }, + { url = "https://files.pythonhosted.org/packages/b8/61/987b6c23b12c56d2be451bc70900f67dd7d989d52b1ee64f239cf19aec69/sqlalchemy-2.0.43-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:5d79f9fdc9584ec83d1b3c75e9f4595c49017f5594fee1a2217117647225d738", size = 3183248, upload-time = "2025-08-11T15:52:39.865Z" }, + { url = "https://files.pythonhosted.org/packages/86/85/29d216002d4593c2ce1c0ec2cec46dda77bfbcd221e24caa6e85eff53d89/sqlalchemy-2.0.43-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:9df7126fd9db49e3a5a3999442cc67e9ee8971f3cb9644250107d7296cb2a164", size = 3219363, upload-time = "2025-08-11T15:56:39.11Z" }, + { url = "https://files.pythonhosted.org/packages/b6/e4/bd78b01919c524f190b4905d47e7630bf4130b9f48fd971ae1c6225b6f6a/sqlalchemy-2.0.43-cp313-cp313-win32.whl", hash = "sha256:7f1ac7828857fcedb0361b48b9ac4821469f7694089d15550bbcf9ab22564a1d", size = 2096718, upload-time = "2025-08-11T15:55:05.349Z" }, + { url = "https://files.pythonhosted.org/packages/ac/a5/ca2f07a2a201f9497de1928f787926613db6307992fe5cda97624eb07c2f/sqlalchemy-2.0.43-cp313-cp313-win_amd64.whl", hash = "sha256:971ba928fcde01869361f504fcff3b7143b47d30de188b11c6357c0505824197", size = 2123200, upload-time = "2025-08-11T15:55:07.932Z" }, + { url = "https://files.pythonhosted.org/packages/b8/d9/13bdde6521f322861fab67473cec4b1cc8999f3871953531cf61945fad92/sqlalchemy-2.0.43-py3-none-any.whl", hash = "sha256:1681c21dd2ccee222c2fe0bef671d1aef7c504087c9c4e800371cfcc8ac966fc", size = 1924759, upload-time = "2025-08-11T15:39:53.024Z" }, +] + +[[package]] +name = "sqlmodel" +version = "0.0.24" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "pydantic" }, + { name = "sqlalchemy" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/86/4b/c2ad0496f5bdc6073d9b4cef52be9c04f2b37a5773441cc6600b1857648b/sqlmodel-0.0.24.tar.gz", hash = "sha256:cc5c7613c1a5533c9c7867e1aab2fd489a76c9e8a061984da11b4e613c182423", size = 116780, upload-time = "2025-03-07T05:43:32.887Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/16/91/484cd2d05569892b7fef7f5ceab3bc89fb0f8a8c0cde1030d383dbc5449c/sqlmodel-0.0.24-py3-none-any.whl", hash = "sha256:6778852f09370908985b667d6a3ab92910d0d5ec88adcaf23dbc242715ff7193", size = 28622, upload-time = "2025-03-07T05:43:30.37Z" }, +] + +[[package]] +name = "starlette" +version = "0.47.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "anyio" }, + { name = "typing-extensions", marker = "python_full_version < '3.13'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/15/b9/cc3017f9a9c9b6e27c5106cc10cc7904653c3eec0729793aec10479dd669/starlette-0.47.3.tar.gz", hash = "sha256:6bc94f839cc176c4858894f1f8908f0ab79dfec1a6b8402f6da9be26ebea52e9", size = 2584144, upload-time = "2025-08-24T13:36:42.122Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ce/fd/901cfa59aaa5b30a99e16876f11abe38b59a1a2c51ffb3d7142bb6089069/starlette-0.47.3-py3-none-any.whl", hash = "sha256:89c0778ca62a76b826101e7c709e70680a1699ca7da6b44d38eb0a7e61fe4b51", size = 72991, upload-time = "2025-08-24T13:36:40.887Z" }, +] + +[[package]] +name = "stevedore" +version = "5.5.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/2a/5f/8418daad5c353300b7661dd8ce2574b0410a6316a8be650a189d5c68d938/stevedore-5.5.0.tar.gz", hash = "sha256:d31496a4f4df9825e1a1e4f1f74d19abb0154aff311c3b376fcc89dae8fccd73", size = 513878, upload-time = "2025-08-25T12:54:26.806Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/80/c5/0c06759b95747882bb50abda18f5fb48c3e9b0fbfc6ebc0e23550b52415d/stevedore-5.5.0-py3-none-any.whl", hash = "sha256:18363d4d268181e8e8452e71a38cd77630f345b2ef6b4a8d5614dac5ee0d18cf", size = 49518, upload-time = "2025-08-25T12:54:25.445Z" }, +] + +[[package]] +name = "tenacity" +version = "9.1.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/0a/d4/2b0cd0fe285e14b36db076e78c93766ff1d529d70408bd1d2a5a84f1d929/tenacity-9.1.2.tar.gz", hash = "sha256:1169d376c297e7de388d18b4481760d478b0e99a777cad3a9c86e556f4b697cb", size = 48036, upload-time = "2025-04-02T08:25:09.966Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e5/30/643397144bfbfec6f6ef821f36f33e57d35946c44a2352d3c9f0ae847619/tenacity-9.1.2-py3-none-any.whl", hash = "sha256:f77bf36710d8b73a50b2dd155c97b870017ad21afe6ab300326b0371b3b05138", size = 28248, upload-time = "2025-04-02T08:25:07.678Z" }, +] + +[[package]] +name = "types-passlib" +version = "1.7.7.20250602" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/fa/3e/501a5832130e5f93450b1e02090e2ee27a37135d11378a47debf960e3131/types_passlib-1.7.7.20250602.tar.gz", hash = "sha256:cf2350e78d36b6b09e4db44284d96651b57285f499cfabf111b616065abab7b3", size = 25406, upload-time = "2025-06-02T03:14:56.033Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/39/fc/530236c21f1a0be84c42b23c91c250ef96404c475b739ac4479430ebd7d4/types_passlib-1.7.7.20250602-py3-none-any.whl", hash = "sha256:ed73a91be9a22484ebd62cc0d127675ded542b892b99776db92dab760bbfe274", size = 40410, upload-time = "2025-06-02T03:14:54.834Z" }, +] + +[[package]] +name = "typing-extensions" +version = "4.15.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/72/94/1a15dd82efb362ac84269196e94cf00f187f7ed21c242792a923cdb1c61f/typing_extensions-4.15.0.tar.gz", hash = "sha256:0cea48d173cc12fa28ecabc3b837ea3cf6f38c6d1136f85cbaaf598984861466", size = 109391, upload-time = "2025-08-25T13:49:26.313Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/18/67/36e9267722cc04a6b9f15c7f3441c2363321a3ea07da7ae0c0707beb2a9c/typing_extensions-4.15.0-py3-none-any.whl", hash = "sha256:f0fa19c6845758ab08074a0cfa8b7aecb71c999ca73d62883bc25cc018c4e548", size = 44614, upload-time = "2025-08-25T13:49:24.86Z" }, +] + +[[package]] +name = "typing-inspection" +version = "0.4.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "typing-extensions" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/f8/b1/0c11f5058406b3af7609f121aaa6b609744687f1d158b3c3a5bf4cc94238/typing_inspection-0.4.1.tar.gz", hash = "sha256:6ae134cc0203c33377d43188d4064e9b357dba58cff3185f22924610e70a9d28", size = 75726, upload-time = "2025-05-21T18:55:23.885Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/17/69/cd203477f944c353c31bade965f880aa1061fd6bf05ded0726ca845b6ff7/typing_inspection-0.4.1-py3-none-any.whl", hash = "sha256:389055682238f53b04f7badcb49b989835495a96700ced5dab2d8feae4b26f51", size = 14552, upload-time = "2025-05-21T18:55:22.152Z" }, +] + +[[package]] +name = "wemake-python-styleguide" +version = "1.4.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "attrs" }, + { name = "flake8" }, + { name = "pygments" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/b8/08/c0776aa654dc43cb390e8ee13f597e7241495f30b454b7534ee482ece5b5/wemake_python_styleguide-1.4.0.tar.gz", hash = "sha256:0964cf40ac4d3f1c89dd79aee4b6edba9a1806fb395836c73e746fe287dbae3e", size = 153955, upload-time = "2025-08-25T10:15:08.56Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/9b/58/98c4aa00e3de8e45726029799d8facbdcd75347b2f48b285857577e8efd8/wemake_python_styleguide-1.4.0-py3-none-any.whl", hash = "sha256:c0727475a20a1b7d59f1d806040e84768bdb0935d1147023453aa44c14b65c95", size = 215985, upload-time = "2025-08-25T10:15:06.713Z" }, +] From 6668adf30a9d2d1264151f9eb5e67e73a79747a5 Mon Sep 17 00:00:00 2001 From: vodkar Date: Thu, 11 Sep 2025 13:46:36 +0500 Subject: [PATCH 02/16] Fixes for mypy --- ...a31ce608336_add_cascade_delete_relationships.py | 10 +++++----- ...a54914c78_add_max_length_for_string_varchar_.py | 8 ++++---- ...85a3_edit_replace_id_integers_in_all_models_.py | 8 ++++---- .../versions/e2412789c190_initialize_models.py | 10 +++++----- backend/app/api/routes/login.py | 6 +++--- backend/app/core/config.py | 14 +++++++------- backend/app/core/security.py | 4 ++-- backend/app/models.py | 4 ++-- backend/app/utils.py | 4 ++-- 9 files changed, 34 insertions(+), 34 deletions(-) diff --git a/backend/app/alembic/versions/1a31ce608336_add_cascade_delete_relationships.py b/backend/app/alembic/versions/1a31ce608336_add_cascade_delete_relationships.py index 10e47a1456..7da7e286a6 100644 --- a/backend/app/alembic/versions/1a31ce608336_add_cascade_delete_relationships.py +++ b/backend/app/alembic/versions/1a31ce608336_add_cascade_delete_relationships.py @@ -13,11 +13,11 @@ # revision identifiers, used by Alembic. revision = '1a31ce608336' down_revision = 'd98dd8ec85a3' -branch_labels = None -depends_on = None +branch_labels: str | None = None +depends_on: str | None = None -def upgrade(): +def upgrade() -> None: # ### commands auto generated by Alembic - please adjust! ### op.alter_column('item', 'owner_id', existing_type=sa.UUID(), @@ -27,9 +27,9 @@ def upgrade(): # ### end Alembic commands ### -def downgrade(): +def downgrade() -> None: # ### commands auto generated by Alembic - please adjust! ### - op.drop_constraint(None, 'item', type_='foreignkey') + op.drop_constraint('item_owner_id_fkey', 'item', type_='foreignkey') op.create_foreign_key('item_owner_id_fkey', 'item', 'user', ['owner_id'], ['id']) op.alter_column('item', 'owner_id', existing_type=sa.UUID(), diff --git a/backend/app/alembic/versions/9c0a54914c78_add_max_length_for_string_varchar_.py b/backend/app/alembic/versions/9c0a54914c78_add_max_length_for_string_varchar_.py index 78a41773b9..b0257d56be 100755 --- a/backend/app/alembic/versions/9c0a54914c78_add_max_length_for_string_varchar_.py +++ b/backend/app/alembic/versions/9c0a54914c78_add_max_length_for_string_varchar_.py @@ -13,11 +13,11 @@ # revision identifiers, used by Alembic. revision = '9c0a54914c78' down_revision = 'e2412789c190' -branch_labels = None -depends_on = None +branch_labels: str | None = None +depends_on: str | None = None -def upgrade(): +def upgrade() -> None: # Adjust the length of the email field in the User table op.alter_column('user', 'email', existing_type=sa.String(), @@ -43,7 +43,7 @@ def upgrade(): existing_nullable=True) -def downgrade(): +def downgrade() -> None: # Revert the length of the email field in the User table op.alter_column('user', 'email', existing_type=sa.String(length=255), diff --git a/backend/app/alembic/versions/d98dd8ec85a3_edit_replace_id_integers_in_all_models_.py b/backend/app/alembic/versions/d98dd8ec85a3_edit_replace_id_integers_in_all_models_.py index 37af1fa215..57f7bd2519 100755 --- a/backend/app/alembic/versions/d98dd8ec85a3_edit_replace_id_integers_in_all_models_.py +++ b/backend/app/alembic/versions/d98dd8ec85a3_edit_replace_id_integers_in_all_models_.py @@ -14,11 +14,11 @@ # revision identifiers, used by Alembic. revision = 'd98dd8ec85a3' down_revision = '9c0a54914c78' -branch_labels = None -depends_on = None +branch_labels: str | None = None +depends_on: str | None = None -def upgrade(): +def upgrade() -> None: # Ensure uuid-ossp extension is available op.execute('CREATE EXTENSION IF NOT EXISTS "uuid-ossp"') @@ -54,7 +54,7 @@ def upgrade(): # Recreate foreign key constraint op.create_foreign_key('item_owner_id_fkey', 'item', 'user', ['owner_id'], ['id']) -def downgrade(): +def downgrade() -> None: # Reverse the upgrade process op.add_column('user', sa.Column('old_id', sa.Integer, autoincrement=True)) op.add_column('item', sa.Column('old_id', sa.Integer, autoincrement=True)) diff --git a/backend/app/alembic/versions/e2412789c190_initialize_models.py b/backend/app/alembic/versions/e2412789c190_initialize_models.py index 7529ea91fa..cba2d6ed0b 100644 --- a/backend/app/alembic/versions/e2412789c190_initialize_models.py +++ b/backend/app/alembic/versions/e2412789c190_initialize_models.py @@ -11,12 +11,12 @@ # revision identifiers, used by Alembic. revision = "e2412789c190" -down_revision = None -branch_labels = None -depends_on = None +down_revision: str | None = None +branch_labels: str | None = None +depends_on: str | None = None -def upgrade(): +def upgrade() -> None: # ### commands auto generated by Alembic - please adjust! ### op.create_table( "user", @@ -46,7 +46,7 @@ def upgrade(): # ### end Alembic commands ### -def downgrade(): +def downgrade() -> None: # ### commands auto generated by Alembic - please adjust! ### op.drop_table("item") op.drop_index(op.f("ix_user_email"), table_name="user") diff --git a/backend/app/api/routes/login.py b/backend/app/api/routes/login.py index 980c66f86f..59d1243017 100644 --- a/backend/app/api/routes/login.py +++ b/backend/app/api/routes/login.py @@ -38,13 +38,13 @@ def login_access_token( access_token_expires = timedelta(minutes=settings.ACCESS_TOKEN_EXPIRE_MINUTES) return Token( access_token=security.create_access_token( - user.id, expires_delta=access_token_expires + str(user.id), expires_delta=access_token_expires ) ) @router.post("/login/test-token", response_model=UserPublic) -def test_token(current_user: CurrentUser) -> Any: +def test_token(current_user: CurrentUser) -> UserPublic: """ Test access token """ @@ -103,7 +103,7 @@ def reset_password(session: SessionDep, body: NewPassword) -> Message: dependencies=[Depends(get_current_active_superuser)], response_class=HTMLResponse, ) -def recover_password_html_content(email: str, session: SessionDep) -> Any: +def recover_password_html_content(email: str, session: SessionDep) -> HTMLResponse: """ HTML Content for Password Recovery """ diff --git a/backend/app/core/config.py b/backend/app/core/config.py index c78e173617..90b4298d9c 100644 --- a/backend/app/core/config.py +++ b/backend/app/core/config.py @@ -1,6 +1,6 @@ import secrets import warnings -from typing import Annotated, Any, Literal +from typing import Annotated, Literal from pydantic import ( AnyUrl, @@ -15,10 +15,10 @@ from typing_extensions import Self -def parse_cors(v: Any) -> list[str] | str: +def parse_cors(v: str | list[str]) -> list[str] | str: if isinstance(v, str) and not v.startswith("["): return [i.strip() for i in v.split(",")] - elif isinstance(v, list | str): + elif isinstance(v, (list, str)): return v raise ValueError(v) @@ -41,7 +41,7 @@ class Settings(BaseSettings): list[AnyUrl] | str, BeforeValidator(parse_cors) ] = [] - @computed_field # type: ignore[prop-decorator] + @computed_field # type: ignore[misc] @property def all_cors_origins(self) -> list[str]: return [str(origin).rstrip("/") for origin in self.BACKEND_CORS_ORIGINS] + [ @@ -56,7 +56,7 @@ def all_cors_origins(self) -> list[str]: POSTGRES_PASSWORD: str = "" POSTGRES_DB: str = "" - @computed_field # type: ignore[prop-decorator] + @computed_field # type: ignore[misc] @property def SQLALCHEMY_DATABASE_URI(self) -> PostgresDsn: return PostgresDsn.build( @@ -85,7 +85,7 @@ def _set_default_emails_from(self) -> Self: EMAIL_RESET_TOKEN_EXPIRE_HOURS: int = 48 - @computed_field # type: ignore[prop-decorator] + @computed_field # type: ignore[misc] @property def emails_enabled(self) -> bool: return bool(self.SMTP_HOST and self.EMAILS_FROM_EMAIL) @@ -116,4 +116,4 @@ def _enforce_non_default_secrets(self) -> Self: return self -settings = Settings() # type: ignore +settings = Settings() # type: ignore[call-arg] diff --git a/backend/app/core/security.py b/backend/app/core/security.py index 7aff7cfb32..af24c0fb14 100644 --- a/backend/app/core/security.py +++ b/backend/app/core/security.py @@ -6,13 +6,13 @@ from app.core.config import settings -pwd_context = CryptContext(schemes=["bcrypt"], deprecated="auto") +pwd_context: CryptContext = CryptContext(schemes=["bcrypt"], deprecated="auto") ALGORITHM = "HS256" -def create_access_token(subject: str | Any, expires_delta: timedelta) -> str: +def create_access_token(subject: str, expires_delta: timedelta) -> str: expire = datetime.now(timezone.utc) + expires_delta to_encode = {"exp": expire, "sub": str(subject)} encoded_jwt = jwt.encode(to_encode, settings.SECRET_KEY, algorithm=ALGORITHM) diff --git a/backend/app/models.py b/backend/app/models.py index 2389b4a532..4ab68d3b42 100644 --- a/backend/app/models.py +++ b/backend/app/models.py @@ -25,7 +25,7 @@ class UserRegister(SQLModel): # Properties to receive via API on update, all are optional class UserUpdate(UserBase): - email: EmailStr | None = Field(default=None, max_length=255) # type: ignore + email: EmailStr | None = Field(default=None, max_length=255) # type: ignore[assignment] password: str | None = Field(default=None, min_length=8, max_length=40) @@ -69,7 +69,7 @@ class ItemCreate(ItemBase): # Properties to receive on item update class ItemUpdate(ItemBase): - title: str | None = Field(default=None, min_length=1, max_length=255) # type: ignore + title: str | None = Field(default=None, min_length=1, max_length=255) # type: ignore[assignment] # Database model, database table inferred from class name diff --git a/backend/app/utils.py b/backend/app/utils.py index ac029f6342..9cab1ecd61 100644 --- a/backend/app/utils.py +++ b/backend/app/utils.py @@ -4,7 +4,7 @@ from pathlib import Path from typing import Any -import emails # type: ignore +import emails # type: ignore[import-untyped] import jwt from jinja2 import Template from jwt.exceptions import InvalidTokenError @@ -22,7 +22,7 @@ class EmailData: subject: str -def render_email_template(*, template_name: str, context: dict[str, Any]) -> str: +def render_email_template(*, template_name: str, context: dict[str, str | int]) -> str: template_str = ( Path(__file__).parent / "email-templates" / "build" / template_name ).read_text() From 72edb246b7f3501f603dea94945a4c40b4d30f8a Mon Sep 17 00:00:00 2001 From: vodkar Date: Thu, 11 Sep 2025 15:04:42 +0500 Subject: [PATCH 03/16] Fixed mypy errors --- .copier/.copier-answers.yml.jinja | 1 - .copier/update_dotenv.py | 26 ---- backend/app/alembic/env.py | 35 +++-- ...608336_add_cascade_delete_relationships.py | 27 ++-- ...4c78_add_max_length_for_string_varchar_.py | 97 ++++++++------ ...edit_replace_id_integers_in_all_models_.py | 114 ++++++++++------ .../e2412789c190_initialize_models.py | 5 +- backend/app/api/deps.py | 11 +- backend/app/api/routes/items.py | 53 ++++---- backend/app/api/routes/login.py | 51 ++++---- backend/app/api/routes/private.py | 13 +- backend/app/api/routes/users.py | 122 +++++++++--------- backend/app/api/routes/utils.py | 4 +- backend/app/backend_pre_start.py | 2 +- backend/app/core/config.py | 23 ++-- backend/app/core/db.py | 10 +- backend/app/core/security.py | 8 +- backend/app/crud.py | 6 +- backend/app/models.py | 4 +- backend/app/tests/api/routes/test_items.py | 40 ++++-- backend/app/tests/api/routes/test_login.py | 12 +- backend/app/tests/api/routes/test_users.py | 78 +++++++---- backend/app/tests/conftest.py | 12 +- .../tests/scripts/test_backend_pre_start.py | 8 +- .../app/tests/scripts/test_test_pre_start.py | 8 +- backend/app/tests/utils/user.py | 15 ++- backend/app/tests_pre_start.py | 2 +- backend/app/utils.py | 18 ++- backend/pyproject.toml | 42 ------ pyproject.toml | 29 ++++- 30 files changed, 467 insertions(+), 409 deletions(-) delete mode 100644 .copier/.copier-answers.yml.jinja delete mode 100644 .copier/update_dotenv.py diff --git a/.copier/.copier-answers.yml.jinja b/.copier/.copier-answers.yml.jinja deleted file mode 100644 index 0028a2398a..0000000000 --- a/.copier/.copier-answers.yml.jinja +++ /dev/null @@ -1 +0,0 @@ -{{ _copier_answers|to_json -}} diff --git a/.copier/update_dotenv.py b/.copier/update_dotenv.py deleted file mode 100644 index 6576885626..0000000000 --- a/.copier/update_dotenv.py +++ /dev/null @@ -1,26 +0,0 @@ -from pathlib import Path -import json - -# Update the .env file with the answers from the .copier-answers.yml file -# without using Jinja2 templates in the .env file, this way the code works as is -# without needing Copier, but if Copier is used, the .env file will be updated -root_path = Path(__file__).parent.parent -answers_path = Path(__file__).parent / ".copier-answers.yml" -answers = json.loads(answers_path.read_text()) -env_path = root_path / ".env" -env_content = env_path.read_text() -lines = [] -for line in env_content.splitlines(): - for key, value in answers.items(): - upper_key = key.upper() - if line.startswith(f"{upper_key}="): - if " " in value: - content = f"{upper_key}={value!r}" - else: - content = f"{upper_key}={value}" - new_line = line.replace(line, content) - lines.append(new_line) - break - else: - lines.append(line) -env_path.write_text("\n".join(lines)) diff --git a/backend/app/alembic/env.py b/backend/app/alembic/env.py index 7f29c04680..732718fae1 100755 --- a/backend/app/alembic/env.py +++ b/backend/app/alembic/env.py @@ -1,4 +1,3 @@ -import os from logging.config import fileConfig from alembic import context @@ -10,30 +9,21 @@ # Interpret the config file for Python logging. # This line sets up loggers basically. -fileConfig(config.config_file_name) +if config.config_file_name: + fileConfig(config.config_file_name) -# add your model's MetaData object here -# for 'autogenerate' support -# from myapp import mymodel -# target_metadata = mymodel.Base.metadata -# target_metadata = None -from app.models import SQLModel # noqa -from app.core.config import settings # noqa +from app.core.config import settings # noqa +from sqlmodel import SQLModel target_metadata = SQLModel.metadata -# other values from the config, defined by the needs of env.py, -# can be acquired: -# my_important_option = config.get_main_option("my_important_option") -# ... etc. - -def get_url(): +def get_url() -> str: return str(settings.SQLALCHEMY_DATABASE_URI) -def run_migrations_offline(): +def run_migrations_offline() -> None: """Run migrations in 'offline' mode. This configures the context with just a URL @@ -47,21 +37,24 @@ def run_migrations_offline(): """ url = get_url() context.configure( - url=url, target_metadata=target_metadata, literal_binds=True, compare_type=True + url=url, + target_metadata=target_metadata, + literal_binds=True, + compare_type=True, ) with context.begin_transaction(): context.run_migrations() -def run_migrations_online(): +def run_migrations_online() -> None: """Run migrations in 'online' mode. In this scenario we need to create an Engine and associate a connection with the context. """ - configuration = config.get_section(config.config_ini_section) + configuration = config.get_section(config.config_ini_section) or {} configuration["sqlalchemy.url"] = get_url() connectable = engine_from_config( configuration, @@ -71,7 +64,9 @@ def run_migrations_online(): with connectable.connect() as connection: context.configure( - connection=connection, target_metadata=target_metadata, compare_type=True + connection=connection, + target_metadata=target_metadata, + compare_type=True, ) with context.begin_transaction(): diff --git a/backend/app/alembic/versions/1a31ce608336_add_cascade_delete_relationships.py b/backend/app/alembic/versions/1a31ce608336_add_cascade_delete_relationships.py index 7da7e286a6..436259f46b 100644 --- a/backend/app/alembic/versions/1a31ce608336_add_cascade_delete_relationships.py +++ b/backend/app/alembic/versions/1a31ce608336_add_cascade_delete_relationships.py @@ -5,33 +5,30 @@ Create Date: 2024-07-31 22:24:34.447891 """ -from alembic import op -import sqlalchemy as sa -import sqlmodel.sql.sqltypes +import sqlalchemy as sa +from alembic import op # revision identifiers, used by Alembic. -revision = '1a31ce608336' -down_revision = 'd98dd8ec85a3' +revision = "1a31ce608336" +down_revision = "d98dd8ec85a3" branch_labels: str | None = None depends_on: str | None = None def upgrade() -> None: # ### commands auto generated by Alembic - please adjust! ### - op.alter_column('item', 'owner_id', - existing_type=sa.UUID(), - nullable=False) - op.drop_constraint('item_owner_id_fkey', 'item', type_='foreignkey') - op.create_foreign_key(None, 'item', 'user', ['owner_id'], ['id'], ondelete='CASCADE') + op.alter_column("item", "owner_id", existing_type=sa.UUID(), nullable=False) + op.drop_constraint("item_owner_id_fkey", "item", type_="foreignkey") + op.create_foreign_key( + None, "item", "user", ["owner_id"], ["id"], ondelete="CASCADE", + ) # ### end Alembic commands ### def downgrade() -> None: # ### commands auto generated by Alembic - please adjust! ### - op.drop_constraint('item_owner_id_fkey', 'item', type_='foreignkey') - op.create_foreign_key('item_owner_id_fkey', 'item', 'user', ['owner_id'], ['id']) - op.alter_column('item', 'owner_id', - existing_type=sa.UUID(), - nullable=True) + op.drop_constraint("item_owner_id_fkey", "item", type_="foreignkey") + op.create_foreign_key("item_owner_id_fkey", "item", "user", ["owner_id"], ["id"]) + op.alter_column("item", "owner_id", existing_type=sa.UUID(), nullable=True) # ### end Alembic commands ### diff --git a/backend/app/alembic/versions/9c0a54914c78_add_max_length_for_string_varchar_.py b/backend/app/alembic/versions/9c0a54914c78_add_max_length_for_string_varchar_.py index b0257d56be..7e05c9fc2a 100755 --- a/backend/app/alembic/versions/9c0a54914c78_add_max_length_for_string_varchar_.py +++ b/backend/app/alembic/versions/9c0a54914c78_add_max_length_for_string_varchar_.py @@ -5,65 +5,88 @@ Create Date: 2024-06-17 14:42:44.639457 """ -from alembic import op -import sqlalchemy as sa -import sqlmodel.sql.sqltypes +import sqlalchemy as sa +from alembic import op # revision identifiers, used by Alembic. -revision = '9c0a54914c78' -down_revision = 'e2412789c190' +revision = "9c0a54914c78" +down_revision = "e2412789c190" branch_labels: str | None = None depends_on: str | None = None def upgrade() -> None: # Adjust the length of the email field in the User table - op.alter_column('user', 'email', - existing_type=sa.String(), - type_=sa.String(length=255), - existing_nullable=False) + op.alter_column( + "user", + "email", + existing_type=sa.String(), + type_=sa.String(length=255), + existing_nullable=False, + ) # Adjust the length of the full_name field in the User table - op.alter_column('user', 'full_name', - existing_type=sa.String(), - type_=sa.String(length=255), - existing_nullable=True) + op.alter_column( + "user", + "full_name", + existing_type=sa.String(), + type_=sa.String(length=255), + existing_nullable=True, + ) # Adjust the length of the title field in the Item table - op.alter_column('item', 'title', - existing_type=sa.String(), - type_=sa.String(length=255), - existing_nullable=False) + op.alter_column( + "item", + "title", + existing_type=sa.String(), + type_=sa.String(length=255), + existing_nullable=False, + ) # Adjust the length of the description field in the Item table - op.alter_column('item', 'description', - existing_type=sa.String(), - type_=sa.String(length=255), - existing_nullable=True) + op.alter_column( + "item", + "description", + existing_type=sa.String(), + type_=sa.String(length=255), + existing_nullable=True, + ) def downgrade() -> None: # Revert the length of the email field in the User table - op.alter_column('user', 'email', - existing_type=sa.String(length=255), - type_=sa.String(), - existing_nullable=False) + op.alter_column( + "user", + "email", + existing_type=sa.String(length=255), + type_=sa.String(), + existing_nullable=False, + ) # Revert the length of the full_name field in the User table - op.alter_column('user', 'full_name', - existing_type=sa.String(length=255), - type_=sa.String(), - existing_nullable=True) + op.alter_column( + "user", + "full_name", + existing_type=sa.String(length=255), + type_=sa.String(), + existing_nullable=True, + ) # Revert the length of the title field in the Item table - op.alter_column('item', 'title', - existing_type=sa.String(length=255), - type_=sa.String(), - existing_nullable=False) + op.alter_column( + "item", + "title", + existing_type=sa.String(length=255), + type_=sa.String(), + existing_nullable=False, + ) # Revert the length of the description field in the Item table - op.alter_column('item', 'description', - existing_type=sa.String(length=255), - type_=sa.String(), - existing_nullable=True) + op.alter_column( + "item", + "description", + existing_type=sa.String(length=255), + type_=sa.String(), + existing_nullable=True, + ) diff --git a/backend/app/alembic/versions/d98dd8ec85a3_edit_replace_id_integers_in_all_models_.py b/backend/app/alembic/versions/d98dd8ec85a3_edit_replace_id_integers_in_all_models_.py index 57f7bd2519..d11b60f31c 100755 --- a/backend/app/alembic/versions/d98dd8ec85a3_edit_replace_id_integers_in_all_models_.py +++ b/backend/app/alembic/versions/d98dd8ec85a3_edit_replace_id_integers_in_all_models_.py @@ -5,15 +5,14 @@ Create Date: 2024-07-19 04:08:04.000976 """ -from alembic import op + import sqlalchemy as sa -import sqlmodel.sql.sqltypes +from alembic import op from sqlalchemy.dialects import postgresql - # revision identifiers, used by Alembic. -revision = 'd98dd8ec85a3' -down_revision = '9c0a54914c78' +revision = "d98dd8ec85a3" +down_revision = "9c0a54914c78" branch_labels: str | None = None depends_on: str | None = None @@ -23,68 +22,97 @@ def upgrade() -> None: op.execute('CREATE EXTENSION IF NOT EXISTS "uuid-ossp"') # Create a new UUID column with a default UUID value - op.add_column('user', sa.Column('new_id', postgresql.UUID(as_uuid=True), default=sa.text('uuid_generate_v4()'))) - op.add_column('item', sa.Column('new_id', postgresql.UUID(as_uuid=True), default=sa.text('uuid_generate_v4()'))) - op.add_column('item', sa.Column('new_owner_id', postgresql.UUID(as_uuid=True), nullable=True)) + op.add_column( + "user", + sa.Column( + "new_id", + postgresql.UUID(as_uuid=True), + default=sa.text("uuid_generate_v4()"), + ), + ) + op.add_column( + "item", + sa.Column( + "new_id", + postgresql.UUID(as_uuid=True), + default=sa.text("uuid_generate_v4()"), + ), + ) + op.add_column( + "item", sa.Column("new_owner_id", postgresql.UUID(as_uuid=True), nullable=True), + ) # Populate the new columns with UUIDs op.execute('UPDATE "user" SET new_id = uuid_generate_v4()') - op.execute('UPDATE item SET new_id = uuid_generate_v4()') - op.execute('UPDATE item SET new_owner_id = (SELECT new_id FROM "user" WHERE "user".id = item.owner_id)') + op.execute("UPDATE item SET new_id = uuid_generate_v4()") + op.execute( + 'UPDATE item SET new_owner_id = (SELECT new_id FROM "user" WHERE "user".id = item.owner_id)', + ) # Set the new_id as not nullable - op.alter_column('user', 'new_id', nullable=False) - op.alter_column('item', 'new_id', nullable=False) + op.alter_column("user", "new_id", nullable=False) + op.alter_column("item", "new_id", nullable=False) # Drop old columns and rename new columns - op.drop_constraint('item_owner_id_fkey', 'item', type_='foreignkey') - op.drop_column('item', 'owner_id') - op.alter_column('item', 'new_owner_id', new_column_name='owner_id') + op.drop_constraint("item_owner_id_fkey", "item", type_="foreignkey") + op.drop_column("item", "owner_id") + op.alter_column("item", "new_owner_id", new_column_name="owner_id") - op.drop_column('user', 'id') - op.alter_column('user', 'new_id', new_column_name='id') + op.drop_column("user", "id") + op.alter_column("user", "new_id", new_column_name="id") - op.drop_column('item', 'id') - op.alter_column('item', 'new_id', new_column_name='id') + op.drop_column("item", "id") + op.alter_column("item", "new_id", new_column_name="id") # Create primary key constraint - op.create_primary_key('user_pkey', 'user', ['id']) - op.create_primary_key('item_pkey', 'item', ['id']) + op.create_primary_key("user_pkey", "user", ["id"]) + op.create_primary_key("item_pkey", "item", ["id"]) # Recreate foreign key constraint - op.create_foreign_key('item_owner_id_fkey', 'item', 'user', ['owner_id'], ['id']) + op.create_foreign_key("item_owner_id_fkey", "item", "user", ["owner_id"], ["id"]) + def downgrade() -> None: # Reverse the upgrade process - op.add_column('user', sa.Column('old_id', sa.Integer, autoincrement=True)) - op.add_column('item', sa.Column('old_id', sa.Integer, autoincrement=True)) - op.add_column('item', sa.Column('old_owner_id', sa.Integer, nullable=True)) + op.add_column("user", sa.Column("old_id", sa.Integer, autoincrement=True)) + op.add_column("item", sa.Column("old_id", sa.Integer, autoincrement=True)) + op.add_column("item", sa.Column("old_owner_id", sa.Integer, nullable=True)) # Populate the old columns with default values # Generate sequences for the integer IDs if not exist - op.execute('CREATE SEQUENCE IF NOT EXISTS user_id_seq AS INTEGER OWNED BY "user".old_id') - op.execute('CREATE SEQUENCE IF NOT EXISTS item_id_seq AS INTEGER OWNED BY item.old_id') - - op.execute('SELECT setval(\'user_id_seq\', COALESCE((SELECT MAX(old_id) + 1 FROM "user"), 1), false)') - op.execute('SELECT setval(\'item_id_seq\', COALESCE((SELECT MAX(old_id) + 1 FROM item), 1), false)') - - op.execute('UPDATE "user" SET old_id = nextval(\'user_id_seq\')') - op.execute('UPDATE item SET old_id = nextval(\'item_id_seq\'), old_owner_id = (SELECT old_id FROM "user" WHERE "user".id = item.owner_id)') + op.execute( + 'CREATE SEQUENCE IF NOT EXISTS user_id_seq AS INTEGER OWNED BY "user".old_id', + ) + op.execute( + "CREATE SEQUENCE IF NOT EXISTS item_id_seq AS INTEGER OWNED BY item.old_id", + ) + + op.execute( + "SELECT setval('user_id_seq', COALESCE((SELECT MAX(old_id) + 1 FROM \"user\"), 1), false)", + ) + op.execute( + "SELECT setval('item_id_seq', COALESCE((SELECT MAX(old_id) + 1 FROM item), 1), false)", + ) + + op.execute("UPDATE \"user\" SET old_id = nextval('user_id_seq')") + op.execute( + 'UPDATE item SET old_id = nextval(\'item_id_seq\'), old_owner_id = (SELECT old_id FROM "user" WHERE "user".id = item.owner_id)', + ) # Drop new columns and rename old columns back - op.drop_constraint('item_owner_id_fkey', 'item', type_='foreignkey') - op.drop_column('item', 'owner_id') - op.alter_column('item', 'old_owner_id', new_column_name='owner_id') + op.drop_constraint("item_owner_id_fkey", "item", type_="foreignkey") + op.drop_column("item", "owner_id") + op.alter_column("item", "old_owner_id", new_column_name="owner_id") - op.drop_column('user', 'id') - op.alter_column('user', 'old_id', new_column_name='id') + op.drop_column("user", "id") + op.alter_column("user", "old_id", new_column_name="id") - op.drop_column('item', 'id') - op.alter_column('item', 'old_id', new_column_name='id') + op.drop_column("item", "id") + op.alter_column("item", "old_id", new_column_name="id") # Create primary key constraint - op.create_primary_key('user_pkey', 'user', ['id']) - op.create_primary_key('item_pkey', 'item', ['id']) + op.create_primary_key("user_pkey", "user", ["id"]) + op.create_primary_key("item_pkey", "item", ["id"]) # Recreate foreign key constraint - op.create_foreign_key('item_owner_id_fkey', 'item', 'user', ['owner_id'], ['id']) + op.create_foreign_key("item_owner_id_fkey", "item", "user", ["owner_id"], ["id"]) diff --git a/backend/app/alembic/versions/e2412789c190_initialize_models.py b/backend/app/alembic/versions/e2412789c190_initialize_models.py index cba2d6ed0b..9ea37c1bae 100644 --- a/backend/app/alembic/versions/e2412789c190_initialize_models.py +++ b/backend/app/alembic/versions/e2412789c190_initialize_models.py @@ -5,6 +5,7 @@ Create Date: 2023-11-24 22:55:43.195942 """ + import sqlalchemy as sa import sqlmodel.sql.sqltypes from alembic import op @@ -26,7 +27,9 @@ def upgrade() -> None: sa.Column("full_name", sqlmodel.sql.sqltypes.AutoString(), nullable=True), sa.Column("id", sa.Integer(), nullable=False), sa.Column( - "hashed_password", sqlmodel.sql.sqltypes.AutoString(), nullable=False + "hashed_password", + sqlmodel.sql.sqltypes.AutoString(), + nullable=False, ), sa.PrimaryKeyConstraint("id"), ) diff --git a/backend/app/api/deps.py b/backend/app/api/deps.py index c2b83c841d..b0a18986b7 100644 --- a/backend/app/api/deps.py +++ b/backend/app/api/deps.py @@ -14,11 +14,11 @@ from app.models import TokenPayload, User reusable_oauth2 = OAuth2PasswordBearer( - tokenUrl=f"{settings.API_V1_STR}/login/access-token" + tokenUrl=f"{settings.API_V1_STR}/login/access-token", ) -def get_db() -> Generator[Session, None, None]: +def get_db() -> Generator[Session]: with Session(engine) as session: yield session @@ -30,7 +30,9 @@ def get_db() -> Generator[Session, None, None]: def get_current_user(session: SessionDep, token: TokenDep) -> User: try: payload = jwt.decode( - token, settings.SECRET_KEY, algorithms=[security.ALGORITHM] + token, + settings.SECRET_KEY, + algorithms=[security.ALGORITHM], ) token_data = TokenPayload(**payload) except (InvalidTokenError, ValidationError): @@ -52,6 +54,7 @@ def get_current_user(session: SessionDep, token: TokenDep) -> User: def get_current_active_superuser(current_user: CurrentUser) -> User: if not current_user.is_superuser: raise HTTPException( - status_code=403, detail="The user doesn't have enough privileges" + status_code=403, + detail="The user doesn't have enough privileges", ) return current_user diff --git a/backend/app/api/routes/items.py b/backend/app/api/routes/items.py index 177dc1e476..22161363dd 100644 --- a/backend/app/api/routes/items.py +++ b/backend/app/api/routes/items.py @@ -1,6 +1,6 @@ import uuid -from typing import Any +# Removed unused Any import from fastapi import APIRouter, HTTPException from sqlmodel import func, select @@ -12,12 +12,12 @@ @router.get("/", response_model=ItemsPublic) def read_items( - session: SessionDep, current_user: CurrentUser, skip: int = 0, limit: int = 100 -) -> Any: - """ - Retrieve items. - """ - + session: SessionDep, + current_user: CurrentUser, + skip: int = 0, + limit: int = 100, +) -> ItemsPublic: + """Retrieve items.""" if current_user.is_superuser: count_statement = select(func.count()).select_from(Item) count = session.exec(count_statement).one() @@ -42,30 +42,31 @@ def read_items( @router.get("/{id}", response_model=ItemPublic) -def read_item(session: SessionDep, current_user: CurrentUser, id: uuid.UUID) -> Any: - """ - Get item by ID. - """ +def read_item( + session: SessionDep, current_user: CurrentUser, id: uuid.UUID, +) -> ItemPublic: + """Get item by ID.""" item = session.get(Item, id) if not item: raise HTTPException(status_code=404, detail="Item not found") if not current_user.is_superuser and (item.owner_id != current_user.id): raise HTTPException(status_code=400, detail="Not enough permissions") - return item + return ItemPublic.model_validate(item) @router.post("/", response_model=ItemPublic) def create_item( - *, session: SessionDep, current_user: CurrentUser, item_in: ItemCreate -) -> Any: - """ - Create new item. - """ + *, + session: SessionDep, + current_user: CurrentUser, + item_in: ItemCreate, +) -> ItemPublic: + """Create new item.""" item = Item.model_validate(item_in, update={"owner_id": current_user.id}) session.add(item) session.commit() session.refresh(item) - return item + return ItemPublic.model_validate(item) @router.put("/{id}", response_model=ItemPublic) @@ -75,10 +76,8 @@ def update_item( current_user: CurrentUser, id: uuid.UUID, item_in: ItemUpdate, -) -> Any: - """ - Update an item. - """ +) -> ItemPublic: + """Update an item.""" item = session.get(Item, id) if not item: raise HTTPException(status_code=404, detail="Item not found") @@ -89,16 +88,16 @@ def update_item( session.add(item) session.commit() session.refresh(item) - return item + return ItemPublic.model_validate(item) @router.delete("/{id}") def delete_item( - session: SessionDep, current_user: CurrentUser, id: uuid.UUID + session: SessionDep, + current_user: CurrentUser, + id: uuid.UUID, ) -> Message: - """ - Delete an item. - """ + """Delete an item.""" item = session.get(Item, id) if not item: raise HTTPException(status_code=404, detail="Item not found") diff --git a/backend/app/api/routes/login.py b/backend/app/api/routes/login.py index 59d1243017..bad72a11ea 100644 --- a/backend/app/api/routes/login.py +++ b/backend/app/api/routes/login.py @@ -1,5 +1,5 @@ from datetime import timedelta -from typing import Annotated, Any +from typing import Annotated from fastapi import APIRouter, Depends, HTTPException from fastapi.responses import HTMLResponse @@ -23,39 +23,37 @@ @router.post("/login/access-token") def login_access_token( - session: SessionDep, form_data: Annotated[OAuth2PasswordRequestForm, Depends()] + session: SessionDep, + form_data: Annotated[OAuth2PasswordRequestForm, Depends()], ) -> Token: - """ - OAuth2 compatible token login, get an access token for future requests - """ + """OAuth2 compatible token login, get an access token for future requests""" user = crud.authenticate( - session=session, email=form_data.username, password=form_data.password + session=session, + email=form_data.username, + password=form_data.password, ) if not user: raise HTTPException(status_code=400, detail="Incorrect email or password") - elif not user.is_active: + if not user.is_active: raise HTTPException(status_code=400, detail="Inactive user") access_token_expires = timedelta(minutes=settings.ACCESS_TOKEN_EXPIRE_MINUTES) return Token( access_token=security.create_access_token( - str(user.id), expires_delta=access_token_expires - ) + str(user.id), + expires_delta=access_token_expires, + ), ) @router.post("/login/test-token", response_model=UserPublic) def test_token(current_user: CurrentUser) -> UserPublic: - """ - Test access token - """ - return current_user + """Test access token""" + return UserPublic.model_validate(current_user) @router.post("/password-recovery/{email}") def recover_password(email: str, session: SessionDep) -> Message: - """ - Password Recovery - """ + """Password Recovery""" user = crud.get_user_by_email(session=session, email=email) if not user: @@ -65,7 +63,9 @@ def recover_password(email: str, session: SessionDep) -> Message: ) password_reset_token = generate_password_reset_token(email=email) email_data = generate_reset_password_email( - email_to=user.email, email=email, token=password_reset_token + email_to=user.email, + email=email, + token=password_reset_token, ) send_email( email_to=user.email, @@ -77,9 +77,7 @@ def recover_password(email: str, session: SessionDep) -> Message: @router.post("/reset-password/") def reset_password(session: SessionDep, body: NewPassword) -> Message: - """ - Reset password - """ + """Reset password""" email = verify_password_reset_token(token=body.token) if not email: raise HTTPException(status_code=400, detail="Invalid token") @@ -89,7 +87,7 @@ def reset_password(session: SessionDep, body: NewPassword) -> Message: status_code=404, detail="The user with this email does not exist in the system.", ) - elif not user.is_active: + if not user.is_active: raise HTTPException(status_code=400, detail="Inactive user") hashed_password = get_password_hash(password=body.new_password) user.hashed_password = hashed_password @@ -104,9 +102,7 @@ def reset_password(session: SessionDep, body: NewPassword) -> Message: response_class=HTMLResponse, ) def recover_password_html_content(email: str, session: SessionDep) -> HTMLResponse: - """ - HTML Content for Password Recovery - """ + """HTML Content for Password Recovery""" user = crud.get_user_by_email(session=session, email=email) if not user: @@ -116,9 +112,12 @@ def recover_password_html_content(email: str, session: SessionDep) -> HTMLRespon ) password_reset_token = generate_password_reset_token(email=email) email_data = generate_reset_password_email( - email_to=user.email, email=email, token=password_reset_token + email_to=user.email, + email=email, + token=password_reset_token, ) return HTMLResponse( - content=email_data.html_content, headers={"subject:": email_data.subject} + content=email_data.html_content, + headers={"subject:": email_data.subject}, ) diff --git a/backend/app/api/routes/private.py b/backend/app/api/routes/private.py index 9f33ef1900..70e4df1af0 100644 --- a/backend/app/api/routes/private.py +++ b/backend/app/api/routes/private.py @@ -1,4 +1,4 @@ -from typing import Any +# Removed unused Any import from fastapi import APIRouter from pydantic import BaseModel @@ -13,7 +13,7 @@ router = APIRouter(tags=["private"], prefix="/private") -class PrivateUserCreate(BaseModel): +class PrivateUserCreate(BaseModel): # type: ignore[explicit-any] email: str password: str full_name: str @@ -21,11 +21,8 @@ class PrivateUserCreate(BaseModel): @router.post("/users/", response_model=UserPublic) -def create_user(user_in: PrivateUserCreate, session: SessionDep) -> Any: - """ - Create a new user. - """ - +def create_user(user_in: PrivateUserCreate, session: SessionDep) -> UserPublic: + """Create a new user.""" user = User( email=user_in.email, full_name=user_in.full_name, @@ -35,4 +32,4 @@ def create_user(user_in: PrivateUserCreate, session: SessionDep) -> Any: session.add(user) session.commit() - return user + return UserPublic.model_validate(user) diff --git a/backend/app/api/routes/users.py b/backend/app/api/routes/users.py index 6429818458..dd4022c268 100644 --- a/backend/app/api/routes/users.py +++ b/backend/app/api/routes/users.py @@ -1,6 +1,6 @@ import uuid -from typing import Any +# Removed unused Any import from fastapi import APIRouter, Depends, HTTPException from sqlmodel import col, delete, func, select @@ -34,11 +34,8 @@ dependencies=[Depends(get_current_active_superuser)], response_model=UsersPublic, ) -def read_users(session: SessionDep, skip: int = 0, limit: int = 100) -> Any: - """ - Retrieve users. - """ - +def read_users(session: SessionDep, skip: int = 0, limit: int = 100) -> UsersPublic: + """Retrieve users.""" count_statement = select(func.count()).select_from(User) count = session.exec(count_statement).one() @@ -49,12 +46,12 @@ def read_users(session: SessionDep, skip: int = 0, limit: int = 100) -> Any: @router.post( - "/", dependencies=[Depends(get_current_active_superuser)], response_model=UserPublic + "/", + dependencies=[Depends(get_current_active_superuser)], + response_model=UserPublic, ) -def create_user(*, session: SessionDep, user_in: UserCreate) -> Any: - """ - Create new user. - """ +def create_user(*, session: SessionDep, user_in: UserCreate) -> UserPublic: + """Create new user.""" user = crud.get_user_by_email(session=session, email=user_in.email) if user: raise HTTPException( @@ -65,50 +62,55 @@ def create_user(*, session: SessionDep, user_in: UserCreate) -> Any: user = crud.create_user(session=session, user_create=user_in) if settings.emails_enabled and user_in.email: email_data = generate_new_account_email( - email_to=user_in.email, username=user_in.email, password=user_in.password + email_to=user_in.email, + username=user_in.email, + password=user_in.password, ) send_email( email_to=user_in.email, subject=email_data.subject, html_content=email_data.html_content, ) - return user + return UserPublic.model_validate(user) @router.patch("/me", response_model=UserPublic) def update_user_me( - *, session: SessionDep, user_in: UserUpdateMe, current_user: CurrentUser -) -> Any: - """ - Update own user. - """ - + *, + session: SessionDep, + user_in: UserUpdateMe, + current_user: CurrentUser, +) -> UserPublic: + """Update own user.""" if user_in.email: existing_user = crud.get_user_by_email(session=session, email=user_in.email) if existing_user and existing_user.id != current_user.id: raise HTTPException( - status_code=409, detail="User with this email already exists" + status_code=409, + detail="User with this email already exists", ) user_data = user_in.model_dump(exclude_unset=True) current_user.sqlmodel_update(user_data) session.add(current_user) session.commit() session.refresh(current_user) - return current_user + return UserPublic.model_validate(current_user) @router.patch("/me/password", response_model=Message) def update_password_me( - *, session: SessionDep, body: UpdatePassword, current_user: CurrentUser -) -> Any: - """ - Update own password. - """ + *, + session: SessionDep, + body: UpdatePassword, + current_user: CurrentUser, +) -> Message: + """Update own password.""" if not verify_password(body.current_password, current_user.hashed_password): raise HTTPException(status_code=400, detail="Incorrect password") if body.current_password == body.new_password: raise HTTPException( - status_code=400, detail="New password cannot be the same as the current one" + status_code=400, + detail="New password cannot be the same as the current one", ) hashed_password = get_password_hash(body.new_password) current_user.hashed_password = hashed_password @@ -118,21 +120,18 @@ def update_password_me( @router.get("/me", response_model=UserPublic) -def read_user_me(current_user: CurrentUser) -> Any: - """ - Get current user. - """ - return current_user +def read_user_me(current_user: CurrentUser) -> UserPublic: + """Get current user.""" + return UserPublic.model_validate(current_user) @router.delete("/me", response_model=Message) -def delete_user_me(session: SessionDep, current_user: CurrentUser) -> Any: - """ - Delete own user. - """ +def delete_user_me(session: SessionDep, current_user: CurrentUser) -> Message: + """Delete own user.""" if current_user.is_superuser: raise HTTPException( - status_code=403, detail="Super users are not allowed to delete themselves" + status_code=403, + detail="Super users are not allowed to delete themselves", ) session.delete(current_user) session.commit() @@ -140,10 +139,8 @@ def delete_user_me(session: SessionDep, current_user: CurrentUser) -> Any: @router.post("/signup", response_model=UserPublic) -def register_user(session: SessionDep, user_in: UserRegister) -> Any: - """ - Create new user without the need to be logged in. - """ +def register_user(session: SessionDep, user_in: UserRegister) -> UserPublic: + """Create new user without the need to be logged in.""" user = crud.get_user_by_email(session=session, email=user_in.email) if user: raise HTTPException( @@ -152,25 +149,27 @@ def register_user(session: SessionDep, user_in: UserRegister) -> Any: ) user_create = UserCreate.model_validate(user_in) user = crud.create_user(session=session, user_create=user_create) - return user + return UserPublic.model_validate(user) @router.get("/{user_id}", response_model=UserPublic) def read_user_by_id( - user_id: uuid.UUID, session: SessionDep, current_user: CurrentUser -) -> Any: - """ - Get a specific user by id. - """ + user_id: uuid.UUID, + session: SessionDep, + current_user: CurrentUser, +) -> UserPublic: + """Get a specific user by id.""" user = session.get(User, user_id) + if not user: + raise HTTPException(status_code=404, detail="User not found") if user == current_user: - return user + return UserPublic.model_validate(user) if not current_user.is_superuser: raise HTTPException( status_code=403, detail="The user doesn't have enough privileges", ) - return user + return UserPublic.model_validate(user) @router.patch( @@ -183,11 +182,8 @@ def update_user( session: SessionDep, user_id: uuid.UUID, user_in: UserUpdate, -) -> Any: - """ - Update a user. - """ - +) -> UserPublic: + """Update a user.""" db_user = session.get(User, user_id) if not db_user: raise HTTPException( @@ -198,29 +194,31 @@ def update_user( existing_user = crud.get_user_by_email(session=session, email=user_in.email) if existing_user and existing_user.id != user_id: raise HTTPException( - status_code=409, detail="User with this email already exists" + status_code=409, + detail="User with this email already exists", ) db_user = crud.update_user(session=session, db_user=db_user, user_in=user_in) - return db_user + return UserPublic.model_validate(db_user) @router.delete("/{user_id}", dependencies=[Depends(get_current_active_superuser)]) def delete_user( - session: SessionDep, current_user: CurrentUser, user_id: uuid.UUID + session: SessionDep, + current_user: CurrentUser, + user_id: uuid.UUID, ) -> Message: - """ - Delete a user. - """ + """Delete a user.""" user = session.get(User, user_id) if not user: raise HTTPException(status_code=404, detail="User not found") if user == current_user: raise HTTPException( - status_code=403, detail="Super users are not allowed to delete themselves" + status_code=403, + detail="Super users are not allowed to delete themselves", ) statement = delete(Item).where(col(Item.owner_id) == user_id) - session.exec(statement) # type: ignore + session.execute(statement) # type: ignore[deprecated] session.delete(user) session.commit() return Message(message="User deleted successfully") diff --git a/backend/app/api/routes/utils.py b/backend/app/api/routes/utils.py index fc093419b3..3e019498f3 100644 --- a/backend/app/api/routes/utils.py +++ b/backend/app/api/routes/utils.py @@ -14,9 +14,7 @@ status_code=201, ) def test_email(email_to: EmailStr) -> Message: - """ - Test emails. - """ + """Test emails.""" email_data = generate_test_email(email_to=email_to) send_email( email_to=email_to, diff --git a/backend/app/backend_pre_start.py b/backend/app/backend_pre_start.py index c2f8e29ae1..79aa6f1509 100644 --- a/backend/app/backend_pre_start.py +++ b/backend/app/backend_pre_start.py @@ -17,7 +17,7 @@ stop=stop_after_attempt(max_tries), wait=wait_fixed(wait_seconds), before=before_log(logger, logging.INFO), - after=after_log(logger, logging.WARN), + after=after_log(logger, logging.WARNING), ) def init(db_engine: Engine) -> None: try: diff --git a/backend/app/core/config.py b/backend/app/core/config.py index 90b4298d9c..c3a4051a26 100644 --- a/backend/app/core/config.py +++ b/backend/app/core/config.py @@ -1,6 +1,6 @@ import secrets import warnings -from typing import Annotated, Literal +from typing import Annotated, Literal, Self from pydantic import ( AnyUrl, @@ -12,18 +12,17 @@ model_validator, ) from pydantic_settings import BaseSettings, SettingsConfigDict -from typing_extensions import Self def parse_cors(v: str | list[str]) -> list[str] | str: if isinstance(v, str) and not v.startswith("["): return [i.strip() for i in v.split(",")] - elif isinstance(v, (list, str)): + if isinstance(v, (list, str)): return v raise ValueError(v) -class Settings(BaseSettings): +class Settings(BaseSettings): # type: ignore[explicit-any] model_config = SettingsConfigDict( # Use top level .env file (one level above ./backend/) env_file="../.env", @@ -38,14 +37,15 @@ class Settings(BaseSettings): ENVIRONMENT: Literal["local", "staging", "production"] = "local" BACKEND_CORS_ORIGINS: Annotated[ - list[AnyUrl] | str, BeforeValidator(parse_cors) + list[AnyUrl] | str, + BeforeValidator(parse_cors), ] = [] - @computed_field # type: ignore[misc] + @computed_field # type: ignore[prop-decorator] @property def all_cors_origins(self) -> list[str]: return [str(origin).rstrip("/") for origin in self.BACKEND_CORS_ORIGINS] + [ - self.FRONTEND_HOST + self.FRONTEND_HOST, ] PROJECT_NAME: str @@ -56,9 +56,9 @@ def all_cors_origins(self) -> list[str]: POSTGRES_PASSWORD: str = "" POSTGRES_DB: str = "" - @computed_field # type: ignore[misc] + @computed_field # type: ignore[prop-decorator] @property - def SQLALCHEMY_DATABASE_URI(self) -> PostgresDsn: + def SQLALCHEMY_DATABASE_URI(self) -> PostgresDsn: # noqa: N802 return PostgresDsn.build( scheme="postgresql+psycopg", username=self.POSTGRES_USER, @@ -85,7 +85,7 @@ def _set_default_emails_from(self) -> Self: EMAIL_RESET_TOKEN_EXPIRE_HOURS: int = 48 - @computed_field # type: ignore[misc] + @computed_field # type: ignore[prop-decorator] @property def emails_enabled(self) -> bool: return bool(self.SMTP_HOST and self.EMAILS_FROM_EMAIL) @@ -110,7 +110,8 @@ def _enforce_non_default_secrets(self) -> Self: self._check_default_secret("SECRET_KEY", self.SECRET_KEY) self._check_default_secret("POSTGRES_PASSWORD", self.POSTGRES_PASSWORD) self._check_default_secret( - "FIRST_SUPERUSER_PASSWORD", self.FIRST_SUPERUSER_PASSWORD + "FIRST_SUPERUSER_PASSWORD", + self.FIRST_SUPERUSER_PASSWORD, ) return self diff --git a/backend/app/core/db.py b/backend/app/core/db.py index ba991fb36d..5831309ba4 100644 --- a/backend/app/core/db.py +++ b/backend/app/core/db.py @@ -13,16 +13,8 @@ def init_db(session: Session) -> None: - # Tables should be created with Alembic migrations - # But if you don't want to use migrations, create - # the tables un-commenting the next lines - # from sqlmodel import SQLModel - - # This works because the models are already imported and registered from app.models - # SQLModel.metadata.create_all(engine) - user = session.exec( - select(User).where(User.email == settings.FIRST_SUPERUSER) + select(User).where(User.email == settings.FIRST_SUPERUSER), ).first() if not user: user_in = UserCreate( diff --git a/backend/app/core/security.py b/backend/app/core/security.py index af24c0fb14..b1e1b9906e 100644 --- a/backend/app/core/security.py +++ b/backend/app/core/security.py @@ -1,19 +1,19 @@ -from datetime import datetime, timedelta, timezone -from typing import Any +from datetime import UTC, datetime, timedelta +# Removed unused Any import import jwt from passlib.context import CryptContext from app.core.config import settings -pwd_context: CryptContext = CryptContext(schemes=["bcrypt"], deprecated="auto") +pwd_context = CryptContext(schemes=["bcrypt"], deprecated="auto") ALGORITHM = "HS256" def create_access_token(subject: str, expires_delta: timedelta) -> str: - expire = datetime.now(timezone.utc) + expires_delta + expire = datetime.now(UTC) + expires_delta to_encode = {"exp": expire, "sub": str(subject)} encoded_jwt = jwt.encode(to_encode, settings.SECRET_KEY, algorithm=ALGORITHM) return encoded_jwt diff --git a/backend/app/crud.py b/backend/app/crud.py index 905bf48724..2dab4cddac 100644 --- a/backend/app/crud.py +++ b/backend/app/crud.py @@ -1,5 +1,4 @@ import uuid -from typing import Any from sqlmodel import Session, select @@ -9,7 +8,8 @@ def create_user(*, session: Session, user_create: UserCreate) -> User: db_obj = User.model_validate( - user_create, update={"hashed_password": get_password_hash(user_create.password)} + user_create, + update={"hashed_password": get_password_hash(user_create.password)}, ) session.add(db_obj) session.commit() @@ -17,7 +17,7 @@ def create_user(*, session: Session, user_create: UserCreate) -> User: return db_obj -def update_user(*, session: Session, db_user: User, user_in: UserUpdate) -> Any: +def update_user(*, session: Session, db_user: User, user_in: UserUpdate) -> User: user_data = user_in.model_dump(exclude_unset=True) extra_data = {} if "password" in user_data: diff --git a/backend/app/models.py b/backend/app/models.py index 4ab68d3b42..8bc9289ccf 100644 --- a/backend/app/models.py +++ b/backend/app/models.py @@ -76,7 +76,9 @@ class ItemUpdate(ItemBase): class Item(ItemBase, table=True): id: uuid.UUID = Field(default_factory=uuid.uuid4, primary_key=True) owner_id: uuid.UUID = Field( - foreign_key="user.id", nullable=False, ondelete="CASCADE" + foreign_key="user.id", + nullable=False, + ondelete="CASCADE", ) owner: User | None = Relationship(back_populates="items") diff --git a/backend/app/tests/api/routes/test_items.py b/backend/app/tests/api/routes/test_items.py index c215238a69..150030ff51 100644 --- a/backend/app/tests/api/routes/test_items.py +++ b/backend/app/tests/api/routes/test_items.py @@ -8,7 +8,8 @@ def test_create_item( - client: TestClient, superuser_token_headers: dict[str, str] + client: TestClient, + superuser_token_headers: dict[str, str], ) -> None: data = {"title": "Foo", "description": "Fighters"} response = client.post( @@ -25,7 +26,9 @@ def test_create_item( def test_read_item( - client: TestClient, superuser_token_headers: dict[str, str], db: Session + client: TestClient, + superuser_token_headers: dict[str, str], + db: Session, ) -> None: item = create_random_item(db) response = client.get( @@ -41,7 +44,8 @@ def test_read_item( def test_read_item_not_found( - client: TestClient, superuser_token_headers: dict[str, str] + client: TestClient, + superuser_token_headers: dict[str, str], ) -> None: response = client.get( f"{settings.API_V1_STR}/items/{uuid.uuid4()}", @@ -53,7 +57,9 @@ def test_read_item_not_found( def test_read_item_not_enough_permissions( - client: TestClient, normal_user_token_headers: dict[str, str], db: Session + client: TestClient, + normal_user_token_headers: dict[str, str], + db: Session, ) -> None: item = create_random_item(db) response = client.get( @@ -66,7 +72,9 @@ def test_read_item_not_enough_permissions( def test_read_items( - client: TestClient, superuser_token_headers: dict[str, str], db: Session + client: TestClient, + superuser_token_headers: dict[str, str], + db: Session, ) -> None: create_random_item(db) create_random_item(db) @@ -80,7 +88,9 @@ def test_read_items( def test_update_item( - client: TestClient, superuser_token_headers: dict[str, str], db: Session + client: TestClient, + superuser_token_headers: dict[str, str], + db: Session, ) -> None: item = create_random_item(db) data = {"title": "Updated title", "description": "Updated description"} @@ -98,7 +108,8 @@ def test_update_item( def test_update_item_not_found( - client: TestClient, superuser_token_headers: dict[str, str] + client: TestClient, + superuser_token_headers: dict[str, str], ) -> None: data = {"title": "Updated title", "description": "Updated description"} response = client.put( @@ -112,7 +123,9 @@ def test_update_item_not_found( def test_update_item_not_enough_permissions( - client: TestClient, normal_user_token_headers: dict[str, str], db: Session + client: TestClient, + normal_user_token_headers: dict[str, str], + db: Session, ) -> None: item = create_random_item(db) data = {"title": "Updated title", "description": "Updated description"} @@ -127,7 +140,9 @@ def test_update_item_not_enough_permissions( def test_delete_item( - client: TestClient, superuser_token_headers: dict[str, str], db: Session + client: TestClient, + superuser_token_headers: dict[str, str], + db: Session, ) -> None: item = create_random_item(db) response = client.delete( @@ -140,7 +155,8 @@ def test_delete_item( def test_delete_item_not_found( - client: TestClient, superuser_token_headers: dict[str, str] + client: TestClient, + superuser_token_headers: dict[str, str], ) -> None: response = client.delete( f"{settings.API_V1_STR}/items/{uuid.uuid4()}", @@ -152,7 +168,9 @@ def test_delete_item_not_found( def test_delete_item_not_enough_permissions( - client: TestClient, normal_user_token_headers: dict[str, str], db: Session + client: TestClient, + normal_user_token_headers: dict[str, str], + db: Session, ) -> None: item = create_random_item(db) response = client.delete( diff --git a/backend/app/tests/api/routes/test_login.py b/backend/app/tests/api/routes/test_login.py index 80fa787979..ec2c42d569 100644 --- a/backend/app/tests/api/routes/test_login.py +++ b/backend/app/tests/api/routes/test_login.py @@ -34,7 +34,8 @@ def test_get_access_token_incorrect_password(client: TestClient) -> None: def test_use_access_token( - client: TestClient, superuser_token_headers: dict[str, str] + client: TestClient, + superuser_token_headers: dict[str, str], ) -> None: r = client.post( f"{settings.API_V1_STR}/login/test-token", @@ -46,7 +47,8 @@ def test_use_access_token( def test_recovery_password( - client: TestClient, normal_user_token_headers: dict[str, str] + client: TestClient, + normal_user_token_headers: dict[str, str], ) -> None: with ( patch("app.core.config.settings.SMTP_HOST", "smtp.example.com"), @@ -62,7 +64,8 @@ def test_recovery_password( def test_recovery_password_user_not_exits( - client: TestClient, normal_user_token_headers: dict[str, str] + client: TestClient, + normal_user_token_headers: dict[str, str], ) -> None: email = "jVgQr@example.com" r = client.post( @@ -103,7 +106,8 @@ def test_reset_password(client: TestClient, db: Session) -> None: def test_reset_password_invalid_token( - client: TestClient, superuser_token_headers: dict[str, str] + client: TestClient, + superuser_token_headers: dict[str, str], ) -> None: data = {"new_password": "changethis", "token": "invalid"} r = client.post( diff --git a/backend/app/tests/api/routes/test_users.py b/backend/app/tests/api/routes/test_users.py index ba9be65426..2196f4431d 100644 --- a/backend/app/tests/api/routes/test_users.py +++ b/backend/app/tests/api/routes/test_users.py @@ -12,7 +12,8 @@ def test_get_users_superuser_me( - client: TestClient, superuser_token_headers: dict[str, str] + client: TestClient, + superuser_token_headers: dict[str, str], ) -> None: r = client.get(f"{settings.API_V1_STR}/users/me", headers=superuser_token_headers) current_user = r.json() @@ -23,7 +24,8 @@ def test_get_users_superuser_me( def test_get_users_normal_user_me( - client: TestClient, normal_user_token_headers: dict[str, str] + client: TestClient, + normal_user_token_headers: dict[str, str], ) -> None: r = client.get(f"{settings.API_V1_STR}/users/me", headers=normal_user_token_headers) current_user = r.json() @@ -34,7 +36,9 @@ def test_get_users_normal_user_me( def test_create_user_new_email( - client: TestClient, superuser_token_headers: dict[str, str], db: Session + client: TestClient, + superuser_token_headers: dict[str, str], + db: Session, ) -> None: with ( patch("app.utils.send_email", return_value=None), @@ -57,7 +61,9 @@ def test_create_user_new_email( def test_get_existing_user( - client: TestClient, superuser_token_headers: dict[str, str], db: Session + client: TestClient, + superuser_token_headers: dict[str, str], + db: Session, ) -> None: username = random_email() password = random_lower_string() @@ -103,7 +109,8 @@ def test_get_existing_user_current_user(client: TestClient, db: Session) -> None def test_get_existing_user_permissions_error( - client: TestClient, normal_user_token_headers: dict[str, str] + client: TestClient, + normal_user_token_headers: dict[str, str], ) -> None: r = client.get( f"{settings.API_V1_STR}/users/{uuid.uuid4()}", @@ -114,10 +121,11 @@ def test_get_existing_user_permissions_error( def test_create_user_existing_username( - client: TestClient, superuser_token_headers: dict[str, str], db: Session + client: TestClient, + superuser_token_headers: dict[str, str], + db: Session, ) -> None: username = random_email() - # username = email password = random_lower_string() user_in = UserCreate(email=username, password=password) crud.create_user(session=db, user_create=user_in) @@ -133,7 +141,8 @@ def test_create_user_existing_username( def test_create_user_by_normal_user( - client: TestClient, normal_user_token_headers: dict[str, str] + client: TestClient, + normal_user_token_headers: dict[str, str], ) -> None: username = random_email() password = random_lower_string() @@ -147,7 +156,9 @@ def test_create_user_by_normal_user( def test_retrieve_users( - client: TestClient, superuser_token_headers: dict[str, str], db: Session + client: TestClient, + superuser_token_headers: dict[str, str], + db: Session, ) -> None: username = random_email() password = random_lower_string() @@ -169,7 +180,9 @@ def test_retrieve_users( def test_update_user_me( - client: TestClient, normal_user_token_headers: dict[str, str], db: Session + client: TestClient, + normal_user_token_headers: dict[str, str], + db: Session, ) -> None: full_name = "Updated Name" email = random_email() @@ -192,7 +205,9 @@ def test_update_user_me( def test_update_password_me( - client: TestClient, superuser_token_headers: dict[str, str], db: Session + client: TestClient, + superuser_token_headers: dict[str, str], + db: Session, ) -> None: new_password = random_lower_string() data = { @@ -231,7 +246,8 @@ def test_update_password_me( def test_update_password_me_incorrect_password( - client: TestClient, superuser_token_headers: dict[str, str] + client: TestClient, + superuser_token_headers: dict[str, str], ) -> None: new_password = random_lower_string() data = {"current_password": new_password, "new_password": new_password} @@ -246,7 +262,9 @@ def test_update_password_me_incorrect_password( def test_update_user_me_email_exists( - client: TestClient, normal_user_token_headers: dict[str, str], db: Session + client: TestClient, + normal_user_token_headers: dict[str, str], + db: Session, ) -> None: username = random_email() password = random_lower_string() @@ -264,7 +282,8 @@ def test_update_user_me_email_exists( def test_update_password_me_same_password_error( - client: TestClient, superuser_token_headers: dict[str, str] + client: TestClient, + superuser_token_headers: dict[str, str], ) -> None: data = { "current_password": settings.FIRST_SUPERUSER_PASSWORD, @@ -321,7 +340,9 @@ def test_register_user_already_exists_error(client: TestClient) -> None: def test_update_user( - client: TestClient, superuser_token_headers: dict[str, str], db: Session + client: TestClient, + superuser_token_headers: dict[str, str], + db: Session, ) -> None: username = random_email() password = random_lower_string() @@ -347,7 +368,8 @@ def test_update_user( def test_update_user_not_exists( - client: TestClient, superuser_token_headers: dict[str, str] + client: TestClient, + superuser_token_headers: dict[str, str], ) -> None: data = {"full_name": "Updated_full_name"} r = client.patch( @@ -360,7 +382,9 @@ def test_update_user_not_exists( def test_update_user_email_exists( - client: TestClient, superuser_token_headers: dict[str, str], db: Session + client: TestClient, + superuser_token_headers: dict[str, str], + db: Session, ) -> None: username = random_email() password = random_lower_string() @@ -409,12 +433,13 @@ def test_delete_user_me(client: TestClient, db: Session) -> None: assert result is None user_query = select(User).where(User.id == user_id) - user_db = db.execute(user_query).first() + user_db = db.exec(user_query).first() assert user_db is None def test_delete_user_me_as_superuser( - client: TestClient, superuser_token_headers: dict[str, str] + client: TestClient, + superuser_token_headers: dict[str, str], ) -> None: r = client.delete( f"{settings.API_V1_STR}/users/me", @@ -426,7 +451,9 @@ def test_delete_user_me_as_superuser( def test_delete_user_super_user( - client: TestClient, superuser_token_headers: dict[str, str], db: Session + client: TestClient, + superuser_token_headers: dict[str, str], + db: Session, ) -> None: username = random_email() password = random_lower_string() @@ -445,7 +472,8 @@ def test_delete_user_super_user( def test_delete_user_not_found( - client: TestClient, superuser_token_headers: dict[str, str] + client: TestClient, + superuser_token_headers: dict[str, str], ) -> None: r = client.delete( f"{settings.API_V1_STR}/users/{uuid.uuid4()}", @@ -456,7 +484,9 @@ def test_delete_user_not_found( def test_delete_user_current_super_user_error( - client: TestClient, superuser_token_headers: dict[str, str], db: Session + client: TestClient, + superuser_token_headers: dict[str, str], + db: Session, ) -> None: super_user = crud.get_user_by_email(session=db, email=settings.FIRST_SUPERUSER) assert super_user @@ -471,7 +501,9 @@ def test_delete_user_current_super_user_error( def test_delete_user_without_privileges( - client: TestClient, normal_user_token_headers: dict[str, str], db: Session + client: TestClient, + normal_user_token_headers: dict[str, str], + db: Session, ) -> None: username = random_email() password = random_lower_string() diff --git a/backend/app/tests/conftest.py b/backend/app/tests/conftest.py index 90ab39a357..d8869e2c50 100644 --- a/backend/app/tests/conftest.py +++ b/backend/app/tests/conftest.py @@ -13,19 +13,19 @@ @pytest.fixture(scope="session", autouse=True) -def db() -> Generator[Session, None, None]: +def db() -> Generator[Session]: with Session(engine) as session: init_db(session) yield session statement = delete(Item) - session.execute(statement) + session.execute(statement) # type: ignore[deprecated] statement = delete(User) - session.execute(statement) + session.execute(statement) # type: ignore[deprecated] session.commit() @pytest.fixture(scope="module") -def client() -> Generator[TestClient, None, None]: +def client() -> Generator[TestClient]: with TestClient(app) as c: yield c @@ -38,5 +38,7 @@ def superuser_token_headers(client: TestClient) -> dict[str, str]: @pytest.fixture(scope="module") def normal_user_token_headers(client: TestClient, db: Session) -> dict[str, str]: return authentication_token_from_email( - client=client, email=settings.EMAIL_TEST_USER, db=db + client=client, + email=settings.EMAIL_TEST_USER, + db=db, ) diff --git a/backend/app/tests/scripts/test_backend_pre_start.py b/backend/app/tests/scripts/test_backend_pre_start.py index 631690fcf6..299ce5bb03 100644 --- a/backend/app/tests/scripts/test_backend_pre_start.py +++ b/backend/app/tests/scripts/test_backend_pre_start.py @@ -24,10 +24,10 @@ def test_init_successful_connection() -> None: except Exception: connection_successful = False - assert ( - connection_successful - ), "The database connection should be successful and not raise an exception." + assert connection_successful, ( + "The database connection should be successful and not raise an exception." + ) assert session_mock.exec.called_once_with( - select(1) + select(1), ), "The session should execute a select statement once." diff --git a/backend/app/tests/scripts/test_test_pre_start.py b/backend/app/tests/scripts/test_test_pre_start.py index a176f380de..4d81c3d3d2 100644 --- a/backend/app/tests/scripts/test_test_pre_start.py +++ b/backend/app/tests/scripts/test_test_pre_start.py @@ -24,10 +24,10 @@ def test_init_successful_connection() -> None: except Exception: connection_successful = False - assert ( - connection_successful - ), "The database connection should be successful and not raise an exception." + assert connection_successful, ( + "The database connection should be successful and not raise an exception." + ) assert session_mock.exec.called_once_with( - select(1) + select(1), ), "The session should execute a select statement once." diff --git a/backend/app/tests/utils/user.py b/backend/app/tests/utils/user.py index 9c1b073109..40ba4611c2 100644 --- a/backend/app/tests/utils/user.py +++ b/backend/app/tests/utils/user.py @@ -8,7 +8,10 @@ def user_authentication_headers( - *, client: TestClient, email: str, password: str + *, + client: TestClient, + email: str, + password: str, ) -> dict[str, str]: data = {"username": email, "password": password} @@ -28,10 +31,12 @@ def create_random_user(db: Session) -> User: def authentication_token_from_email( - *, client: TestClient, email: str, db: Session + *, + client: TestClient, + email: str, + db: Session, ) -> dict[str, str]: - """ - Return a valid token for the user with given email. + """Return a valid token for the user with given email. If the user doesn't exist it is created first. """ @@ -42,7 +47,7 @@ def authentication_token_from_email( user = crud.create_user(session=db, user_create=user_in_create) else: user_in_update = UserUpdate(password=password) - if not user.id: + if user.id is None: raise Exception("User id not set") user = crud.update_user(session=db, db_user=user, user_in=user_in_update) diff --git a/backend/app/tests_pre_start.py b/backend/app/tests_pre_start.py index 0ce6045635..10509b694c 100644 --- a/backend/app/tests_pre_start.py +++ b/backend/app/tests_pre_start.py @@ -17,7 +17,7 @@ stop=stop_after_attempt(max_tries), wait=wait_fixed(wait_seconds), before=before_log(logger, logging.INFO), - after=after_log(logger, logging.WARN), + after=after_log(logger, logging.WARNING), ) def init(db_engine: Engine) -> None: try: diff --git a/backend/app/utils.py b/backend/app/utils.py index 9cab1ecd61..62fbecc00c 100644 --- a/backend/app/utils.py +++ b/backend/app/utils.py @@ -1,10 +1,10 @@ import logging from dataclasses import dataclass -from datetime import datetime, timedelta, timezone +from datetime import UTC, datetime, timedelta from pathlib import Path -from typing import Any -import emails # type: ignore[import-untyped] +# Removed unused Any import +import emails # type: ignore[import-not-found] import jwt from jinja2 import Template from jwt.exceptions import InvalidTokenError @@ -52,7 +52,7 @@ def send_email( if settings.SMTP_PASSWORD: smtp_options["password"] = settings.SMTP_PASSWORD response = message.send(to=email_to, smtp=smtp_options) - logger.info(f"send email result: {response}") + logger.info("send email result: %s", response) def generate_test_email(email_to: str) -> EmailData: @@ -83,7 +83,9 @@ def generate_reset_password_email(email_to: str, email: str, token: str) -> Emai def generate_new_account_email( - email_to: str, username: str, password: str + email_to: str, + username: str, + password: str, ) -> EmailData: project_name = settings.PROJECT_NAME subject = f"{project_name} - New account for user {username}" @@ -102,7 +104,7 @@ def generate_new_account_email( def generate_password_reset_token(email: str) -> str: delta = timedelta(hours=settings.EMAIL_RESET_TOKEN_EXPIRE_HOURS) - now = datetime.now(timezone.utc) + now = datetime.now(UTC) expires = now + delta exp = expires.timestamp() encoded_jwt = jwt.encode( @@ -116,7 +118,9 @@ def generate_password_reset_token(email: str) -> str: def verify_password_reset_token(token: str) -> str | None: try: decoded_token = jwt.decode( - token, settings.SECRET_KEY, algorithms=[security.ALGORITHM] + token, + settings.SECRET_KEY, + algorithms=[security.ALGORITHM], ) return str(decoded_token["sub"]) except InvalidTokenError: diff --git a/backend/pyproject.toml b/backend/pyproject.toml index d72454c28a..62fce8397a 100644 --- a/backend/pyproject.toml +++ b/backend/pyproject.toml @@ -36,45 +36,3 @@ dev-dependencies = [ [build-system] requires = ["hatchling"] build-backend = "hatchling.build" - -[tool.mypy] -strict = true -exclude = ["venv", ".venv", "alembic"] - -[tool.ruff] -target-version = "py310" -exclude = ["alembic"] - -[tool.ruff.lint] -select = [ - "E", # pycodestyle errors - "W", # pycodestyle warnings - "F", # pyflakes - "I", # isort - "B", # flake8-bugbear - "C4", # flake8-comprehensions - "UP", # pyupgrade - "ARG001", # unused arguments in functions - "T201", # print statements are not allowed -] -ignore = [ - "E501", # line too long, handled by black - "B008", # do not perform function calls in argument defaults - "W191", # indentation contains tabs - "B904", # Allow raising exceptions without from e, for HTTPException -] - -[tool.ruff.lint.pyupgrade] -# Preserve types, even if a file imports `from __future__ import annotations`. -keep-runtime-typing = true - -[tool.coverage.run] -source = ["app"] -dynamic_context = "test_function" - -[tool.coverage.report] -show_missing = true -sort = "-Cover" - -[tool.coverage.html] -show_contexts = true diff --git a/pyproject.toml b/pyproject.toml index 79a85c0263..08fd855c5c 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -35,7 +35,6 @@ strict_equality = true # prohibit always-false/true comparisons # Be ruthless about Any disallow_any_unimported = true -disallow_any_expr = true disallow_any_decorated = true disallow_any_explicit = true disallow_any_generics = true @@ -66,3 +65,31 @@ enable_error_code = [ # Optional: make the default on recent mypy explicit (safer across versions) implicit_optional = false +[tool.ruff] +target-version = "py313" +exclude = ["hooks", "frontend"] + +[tool.ruff.lint] +select = ["ALL"] +external = [ "WPS" ] +ignore = [ + "D104", # Ignore missing docstrings in packages +] + +[tool.ruff.lint.extend-per-file-ignores] +"backend/app/tests/**/*.py" = [ + # at least this three should be fine in tests: + "S101", # asserts allowed in tests... + "ARG", # Unused function args -> fixtures nevertheless are functionally relevant... + "FBT", # Don't care about booleans as positional arguments in tests, e.g. via @pytest.mark.parametrize() + # The below are debateable + "PLR2004", # Magic value used in comparison, ... + "S311", # Standard pseudo-random generators are not suitable for cryptographic purposes + "D103", # Ignore missing docstrings in tests + "D100", # Ignore missing docstrings in public modules +] + +[tool.flake8] +per-file-ignores = [ + "backend/app/tests/**/*.py: WPS432", +] \ No newline at end of file From 79b72ec8850de8df7f431ddd5d4cfaee7199b3b4 Mon Sep 17 00:00:00 2001 From: vodkar Date: Thu, 11 Sep 2025 15:26:04 +0500 Subject: [PATCH 04/16] Fixed ruff errors --- backend/app/alembic/__init__.py | 0 backend/app/alembic/env.py | 9 ++-- ...608336_add_cascade_delete_relationships.py | 12 +++-- ...4c78_add_max_length_for_string_varchar_.py | 4 +- backend/app/alembic/versions/__init__.py | 0 ...edit_replace_id_integers_in_all_models_.py | 36 +++++++++++---- .../e2412789c190_initialize_models.py | 12 +++-- backend/app/api/deps.py | 7 ++- backend/app/api/main.py | 2 + backend/app/api/routes/items.py | 24 +++++----- backend/app/api/routes/login.py | 14 +++--- backend/app/api/routes/private.py | 6 ++- backend/app/api/routes/users.py | 17 ++++--- backend/app/api/routes/utils.py | 3 ++ backend/app/backend_pre_start.py | 9 ++-- backend/app/core/config.py | 7 +++ backend/app/core/db.py | 3 ++ backend/app/core/security.py | 8 +++- backend/app/crud.py | 9 +++- backend/app/initial_data.py | 4 ++ backend/app/main.py | 3 ++ backend/app/models.py | 46 ++++++++++++++++++- .../tests/scripts/test_backend_pre_start.py | 6 +-- .../app/tests/scripts/test_test_pre_start.py | 6 +-- backend/app/tests/utils/user.py | 9 ++-- backend/app/tests/utils/utils.py | 3 +- backend/app/tests_pre_start.py | 9 ++-- backend/app/utils.py | 20 ++++++-- 28 files changed, 207 insertions(+), 81 deletions(-) create mode 100644 backend/app/alembic/__init__.py mode change 100755 => 100644 backend/app/alembic/env.py mode change 100755 => 100644 backend/app/alembic/versions/9c0a54914c78_add_max_length_for_string_varchar_.py create mode 100644 backend/app/alembic/versions/__init__.py mode change 100755 => 100644 backend/app/alembic/versions/d98dd8ec85a3_edit_replace_id_integers_in_all_models_.py diff --git a/backend/app/alembic/__init__.py b/backend/app/alembic/__init__.py new file mode 100644 index 0000000000..e69de29bb2 diff --git a/backend/app/alembic/env.py b/backend/app/alembic/env.py old mode 100755 new mode 100644 index 732718fae1..76615a41e3 --- a/backend/app/alembic/env.py +++ b/backend/app/alembic/env.py @@ -1,7 +1,11 @@ +"""Alembic configuration for database migrations.""" from logging.config import fileConfig from alembic import context from sqlalchemy import engine_from_config, pool +from sqlmodel import SQLModel + +from app.core.config import settings # this is the Alembic Config object, which provides # access to the values within the .ini file in use. @@ -12,14 +16,11 @@ if config.config_file_name: fileConfig(config.config_file_name) - -from app.core.config import settings # noqa -from sqlmodel import SQLModel - target_metadata = SQLModel.metadata def get_url() -> str: + """Get database URL from settings.""" return str(settings.SQLALCHEMY_DATABASE_URI) diff --git a/backend/app/alembic/versions/1a31ce608336_add_cascade_delete_relationships.py b/backend/app/alembic/versions/1a31ce608336_add_cascade_delete_relationships.py index 436259f46b..990b822291 100644 --- a/backend/app/alembic/versions/1a31ce608336_add_cascade_delete_relationships.py +++ b/backend/app/alembic/versions/1a31ce608336_add_cascade_delete_relationships.py @@ -1,4 +1,4 @@ -"""Add cascade delete relationships +"""Add cascade delete relationships. Revision ID: 1a31ce608336 Revises: d98dd8ec85a3 @@ -17,8 +17,11 @@ def upgrade() -> None: + """Upgrade database schema.""" # ### commands auto generated by Alembic - please adjust! ### - op.alter_column("item", "owner_id", existing_type=sa.UUID(), nullable=False) + op.alter_column( + "item", "owner_id", existing_type=sa.UUID(), nullable=False, + ) op.drop_constraint("item_owner_id_fkey", "item", type_="foreignkey") op.create_foreign_key( None, "item", "user", ["owner_id"], ["id"], ondelete="CASCADE", @@ -27,8 +30,11 @@ def upgrade() -> None: def downgrade() -> None: + """Downgrade database schema.""" # ### commands auto generated by Alembic - please adjust! ### op.drop_constraint("item_owner_id_fkey", "item", type_="foreignkey") - op.create_foreign_key("item_owner_id_fkey", "item", "user", ["owner_id"], ["id"]) + op.create_foreign_key( + "item_owner_id_fkey", "item", "user", ["owner_id"], ["id"], + ) op.alter_column("item", "owner_id", existing_type=sa.UUID(), nullable=True) # ### end Alembic commands ### diff --git a/backend/app/alembic/versions/9c0a54914c78_add_max_length_for_string_varchar_.py b/backend/app/alembic/versions/9c0a54914c78_add_max_length_for_string_varchar_.py old mode 100755 new mode 100644 index 7e05c9fc2a..e263b88dd7 --- a/backend/app/alembic/versions/9c0a54914c78_add_max_length_for_string_varchar_.py +++ b/backend/app/alembic/versions/9c0a54914c78_add_max_length_for_string_varchar_.py @@ -1,4 +1,4 @@ -"""Add max length for string(varchar) fields in User and Items models +"""Add max length for string(varchar) fields in User and Items models. Revision ID: 9c0a54914c78 Revises: e2412789c190 @@ -17,6 +17,7 @@ def upgrade() -> None: + """Upgrade database schema.""" # Adjust the length of the email field in the User table op.alter_column( "user", @@ -55,6 +56,7 @@ def upgrade() -> None: def downgrade() -> None: + """Downgrade database schema.""" # Revert the length of the email field in the User table op.alter_column( "user", diff --git a/backend/app/alembic/versions/__init__.py b/backend/app/alembic/versions/__init__.py new file mode 100644 index 0000000000..e69de29bb2 diff --git a/backend/app/alembic/versions/d98dd8ec85a3_edit_replace_id_integers_in_all_models_.py b/backend/app/alembic/versions/d98dd8ec85a3_edit_replace_id_integers_in_all_models_.py old mode 100755 new mode 100644 index d11b60f31c..416c58ff0b --- a/backend/app/alembic/versions/d98dd8ec85a3_edit_replace_id_integers_in_all_models_.py +++ b/backend/app/alembic/versions/d98dd8ec85a3_edit_replace_id_integers_in_all_models_.py @@ -1,4 +1,4 @@ -"""Edit replace id integers in all models to use UUID instead +"""Edit replace id integers in all models to use UUID instead. Revision ID: d98dd8ec85a3 Revises: 9c0a54914c78 @@ -18,6 +18,7 @@ def upgrade() -> None: + """Upgrade database schema.""" # Ensure uuid-ossp extension is available op.execute('CREATE EXTENSION IF NOT EXISTS "uuid-ossp"') @@ -39,14 +40,18 @@ def upgrade() -> None: ), ) op.add_column( - "item", sa.Column("new_owner_id", postgresql.UUID(as_uuid=True), nullable=True), + "item", + sa.Column( + "new_owner_id", postgresql.UUID(as_uuid=True), nullable=True, + ), ) # Populate the new columns with UUIDs op.execute('UPDATE "user" SET new_id = uuid_generate_v4()') op.execute("UPDATE item SET new_id = uuid_generate_v4()") op.execute( - 'UPDATE item SET new_owner_id = (SELECT new_id FROM "user" WHERE "user".id = item.owner_id)', + 'UPDATE item SET new_owner_id = ' + '(SELECT new_id FROM "user" WHERE "user".id = item.owner_id)', ) # Set the new_id as not nullable @@ -69,10 +74,13 @@ def upgrade() -> None: op.create_primary_key("item_pkey", "item", ["id"]) # Recreate foreign key constraint - op.create_foreign_key("item_owner_id_fkey", "item", "user", ["owner_id"], ["id"]) + op.create_foreign_key( + "item_owner_id_fkey", "item", "user", ["owner_id"], ["id"], + ) def downgrade() -> None: + """Downgrade database schema.""" # Reverse the upgrade process op.add_column("user", sa.Column("old_id", sa.Integer, autoincrement=True)) op.add_column("item", sa.Column("old_id", sa.Integer, autoincrement=True)) @@ -81,22 +89,28 @@ def downgrade() -> None: # Populate the old columns with default values # Generate sequences for the integer IDs if not exist op.execute( - 'CREATE SEQUENCE IF NOT EXISTS user_id_seq AS INTEGER OWNED BY "user".old_id', + 'CREATE SEQUENCE IF NOT EXISTS user_id_seq AS INTEGER ' + 'OWNED BY "user".old_id', ) op.execute( - "CREATE SEQUENCE IF NOT EXISTS item_id_seq AS INTEGER OWNED BY item.old_id", + "CREATE SEQUENCE IF NOT EXISTS item_id_seq AS INTEGER " + "OWNED BY item.old_id", ) op.execute( - "SELECT setval('user_id_seq', COALESCE((SELECT MAX(old_id) + 1 FROM \"user\"), 1), false)", + "SELECT setval('user_id_seq', " + 'COALESCE((SELECT MAX(old_id) + 1 FROM "user"), 1), false)', ) op.execute( - "SELECT setval('item_id_seq', COALESCE((SELECT MAX(old_id) + 1 FROM item), 1), false)", + "SELECT setval('item_id_seq', " + "COALESCE((SELECT MAX(old_id) + 1 FROM item), 1), false)", ) op.execute("UPDATE \"user\" SET old_id = nextval('user_id_seq')") op.execute( - 'UPDATE item SET old_id = nextval(\'item_id_seq\'), old_owner_id = (SELECT old_id FROM "user" WHERE "user".id = item.owner_id)', + 'UPDATE item SET old_id = nextval(\'item_id_seq\'), ' + 'old_owner_id = (SELECT old_id FROM "user" ' + 'WHERE "user".id = item.owner_id)', ) # Drop new columns and rename old columns back @@ -115,4 +129,6 @@ def downgrade() -> None: op.create_primary_key("item_pkey", "item", ["id"]) # Recreate foreign key constraint - op.create_foreign_key("item_owner_id_fkey", "item", "user", ["owner_id"], ["id"]) + op.create_foreign_key( + "item_owner_id_fkey", "item", "user", ["owner_id"], ["id"], + ) diff --git a/backend/app/alembic/versions/e2412789c190_initialize_models.py b/backend/app/alembic/versions/e2412789c190_initialize_models.py index 9ea37c1bae..f80b316bf7 100644 --- a/backend/app/alembic/versions/e2412789c190_initialize_models.py +++ b/backend/app/alembic/versions/e2412789c190_initialize_models.py @@ -1,4 +1,4 @@ -"""Initialize models +"""Initialize models. Revision ID: e2412789c190 Revises: @@ -18,13 +18,16 @@ def upgrade() -> None: + """Upgrade database schema.""" # ### commands auto generated by Alembic - please adjust! ### op.create_table( "user", sa.Column("email", sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.Column("is_active", sa.Boolean(), nullable=False), sa.Column("is_superuser", sa.Boolean(), nullable=False), - sa.Column("full_name", sqlmodel.sql.sqltypes.AutoString(), nullable=True), + sa.Column( + "full_name", sqlmodel.sql.sqltypes.AutoString(), nullable=True, + ), sa.Column("id", sa.Integer(), nullable=False), sa.Column( "hashed_password", @@ -36,7 +39,9 @@ def upgrade() -> None: op.create_index(op.f("ix_user_email"), "user", ["email"], unique=True) op.create_table( "item", - sa.Column("description", sqlmodel.sql.sqltypes.AutoString(), nullable=True), + sa.Column( + "description", sqlmodel.sql.sqltypes.AutoString(), nullable=True, + ), sa.Column("id", sa.Integer(), nullable=False), sa.Column("title", sqlmodel.sql.sqltypes.AutoString(), nullable=False), sa.Column("owner_id", sa.Integer(), nullable=False), @@ -50,6 +55,7 @@ def upgrade() -> None: def downgrade() -> None: + """Downgrade database schema.""" # ### commands auto generated by Alembic - please adjust! ### op.drop_table("item") op.drop_index(op.f("ix_user_email"), table_name="user") diff --git a/backend/app/api/deps.py b/backend/app/api/deps.py index b0a18986b7..3b5c2651e3 100644 --- a/backend/app/api/deps.py +++ b/backend/app/api/deps.py @@ -1,3 +1,5 @@ +"""API dependency functions.""" + from collections.abc import Generator from typing import Annotated @@ -19,6 +21,7 @@ def get_db() -> Generator[Session]: + """Get database session.""" with Session(engine) as session: yield session @@ -28,6 +31,7 @@ def get_db() -> Generator[Session]: def get_current_user(session: SessionDep, token: TokenDep) -> User: + """Get current user from JWT token.""" try: payload = jwt.decode( token, @@ -39,7 +43,7 @@ def get_current_user(session: SessionDep, token: TokenDep) -> User: raise HTTPException( status_code=status.HTTP_403_FORBIDDEN, detail="Could not validate credentials", - ) + ) from None user = session.get(User, token_data.sub) if not user: raise HTTPException(status_code=404, detail="User not found") @@ -52,6 +56,7 @@ def get_current_user(session: SessionDep, token: TokenDep) -> User: def get_current_active_superuser(current_user: CurrentUser) -> User: + """Get current active superuser.""" if not current_user.is_superuser: raise HTTPException( status_code=403, diff --git a/backend/app/api/main.py b/backend/app/api/main.py index eac18c8e8f..0b884f72a4 100644 --- a/backend/app/api/main.py +++ b/backend/app/api/main.py @@ -1,3 +1,5 @@ +"""API router configuration.""" + from fastapi import APIRouter from app.api.routes import items, login, private, users, utils diff --git a/backend/app/api/routes/items.py b/backend/app/api/routes/items.py index 22161363dd..d95525aa10 100644 --- a/backend/app/api/routes/items.py +++ b/backend/app/api/routes/items.py @@ -1,3 +1,5 @@ +"""Item management API endpoints.""" + import uuid # Removed unused Any import @@ -10,7 +12,7 @@ router = APIRouter(prefix="/items", tags=["items"]) -@router.get("/", response_model=ItemsPublic) +@router.get("/") def read_items( session: SessionDep, current_user: CurrentUser, @@ -41,12 +43,12 @@ def read_items( return ItemsPublic(data=items, count=count) -@router.get("/{id}", response_model=ItemPublic) +@router.get("/{item_id}") def read_item( - session: SessionDep, current_user: CurrentUser, id: uuid.UUID, + session: SessionDep, current_user: CurrentUser, item_id: uuid.UUID, ) -> ItemPublic: """Get item by ID.""" - item = session.get(Item, id) + item = session.get(Item, item_id) if not item: raise HTTPException(status_code=404, detail="Item not found") if not current_user.is_superuser and (item.owner_id != current_user.id): @@ -54,7 +56,7 @@ def read_item( return ItemPublic.model_validate(item) -@router.post("/", response_model=ItemPublic) +@router.post("/") def create_item( *, session: SessionDep, @@ -69,16 +71,16 @@ def create_item( return ItemPublic.model_validate(item) -@router.put("/{id}", response_model=ItemPublic) +@router.put("/{item_id}") def update_item( *, session: SessionDep, current_user: CurrentUser, - id: uuid.UUID, + item_id: uuid.UUID, item_in: ItemUpdate, ) -> ItemPublic: """Update an item.""" - item = session.get(Item, id) + item = session.get(Item, item_id) if not item: raise HTTPException(status_code=404, detail="Item not found") if not current_user.is_superuser and (item.owner_id != current_user.id): @@ -91,14 +93,14 @@ def update_item( return ItemPublic.model_validate(item) -@router.delete("/{id}") +@router.delete("/{item_id}") def delete_item( session: SessionDep, current_user: CurrentUser, - id: uuid.UUID, + item_id: uuid.UUID, ) -> Message: """Delete an item.""" - item = session.get(Item, id) + item = session.get(Item, item_id) if not item: raise HTTPException(status_code=404, detail="Item not found") if not current_user.is_superuser and (item.owner_id != current_user.id): diff --git a/backend/app/api/routes/login.py b/backend/app/api/routes/login.py index bad72a11ea..1e53da5bf9 100644 --- a/backend/app/api/routes/login.py +++ b/backend/app/api/routes/login.py @@ -1,3 +1,5 @@ +"""Authentication API endpoints.""" + from datetime import timedelta from typing import Annotated @@ -26,7 +28,7 @@ def login_access_token( session: SessionDep, form_data: Annotated[OAuth2PasswordRequestForm, Depends()], ) -> Token: - """OAuth2 compatible token login, get an access token for future requests""" + """OAuth2 compatible token login, get an access token for future requests.""" user = crud.authenticate( session=session, email=form_data.username, @@ -45,15 +47,15 @@ def login_access_token( ) -@router.post("/login/test-token", response_model=UserPublic) +@router.post("/login/test-token") def test_token(current_user: CurrentUser) -> UserPublic: - """Test access token""" + """Test access token.""" return UserPublic.model_validate(current_user) @router.post("/password-recovery/{email}") def recover_password(email: str, session: SessionDep) -> Message: - """Password Recovery""" + """Password Recovery.""" user = crud.get_user_by_email(session=session, email=email) if not user: @@ -77,7 +79,7 @@ def recover_password(email: str, session: SessionDep) -> Message: @router.post("/reset-password/") def reset_password(session: SessionDep, body: NewPassword) -> Message: - """Reset password""" + """Reset password.""" email = verify_password_reset_token(token=body.token) if not email: raise HTTPException(status_code=400, detail="Invalid token") @@ -102,7 +104,7 @@ def reset_password(session: SessionDep, body: NewPassword) -> Message: response_class=HTMLResponse, ) def recover_password_html_content(email: str, session: SessionDep) -> HTMLResponse: - """HTML Content for Password Recovery""" + """HTML Content for Password Recovery.""" user = crud.get_user_by_email(session=session, email=email) if not user: diff --git a/backend/app/api/routes/private.py b/backend/app/api/routes/private.py index 70e4df1af0..cb68282383 100644 --- a/backend/app/api/routes/private.py +++ b/backend/app/api/routes/private.py @@ -1,3 +1,5 @@ +"""Private API endpoints.""" + # Removed unused Any import from fastapi import APIRouter @@ -14,13 +16,15 @@ class PrivateUserCreate(BaseModel): # type: ignore[explicit-any] + """Private user creation model.""" + email: str password: str full_name: str is_verified: bool = False -@router.post("/users/", response_model=UserPublic) +@router.post("/users/") def create_user(user_in: PrivateUserCreate, session: SessionDep) -> UserPublic: """Create a new user.""" user = User( diff --git a/backend/app/api/routes/users.py b/backend/app/api/routes/users.py index dd4022c268..e71ffcae1e 100644 --- a/backend/app/api/routes/users.py +++ b/backend/app/api/routes/users.py @@ -1,3 +1,5 @@ +"""User management API endpoints.""" + import uuid # Removed unused Any import @@ -32,7 +34,6 @@ @router.get( "/", dependencies=[Depends(get_current_active_superuser)], - response_model=UsersPublic, ) def read_users(session: SessionDep, skip: int = 0, limit: int = 100) -> UsersPublic: """Retrieve users.""" @@ -48,7 +49,6 @@ def read_users(session: SessionDep, skip: int = 0, limit: int = 100) -> UsersPub @router.post( "/", dependencies=[Depends(get_current_active_superuser)], - response_model=UserPublic, ) def create_user(*, session: SessionDep, user_in: UserCreate) -> UserPublic: """Create new user.""" @@ -74,7 +74,7 @@ def create_user(*, session: SessionDep, user_in: UserCreate) -> UserPublic: return UserPublic.model_validate(user) -@router.patch("/me", response_model=UserPublic) +@router.patch("/me") def update_user_me( *, session: SessionDep, @@ -97,7 +97,7 @@ def update_user_me( return UserPublic.model_validate(current_user) -@router.patch("/me/password", response_model=Message) +@router.patch("/me/password") def update_password_me( *, session: SessionDep, @@ -119,13 +119,13 @@ def update_password_me( return Message(message="Password updated successfully") -@router.get("/me", response_model=UserPublic) +@router.get("/me") def read_user_me(current_user: CurrentUser) -> UserPublic: """Get current user.""" return UserPublic.model_validate(current_user) -@router.delete("/me", response_model=Message) +@router.delete("/me") def delete_user_me(session: SessionDep, current_user: CurrentUser) -> Message: """Delete own user.""" if current_user.is_superuser: @@ -138,7 +138,7 @@ def delete_user_me(session: SessionDep, current_user: CurrentUser) -> Message: return Message(message="User deleted successfully") -@router.post("/signup", response_model=UserPublic) +@router.post("/signup") def register_user(session: SessionDep, user_in: UserRegister) -> UserPublic: """Create new user without the need to be logged in.""" user = crud.get_user_by_email(session=session, email=user_in.email) @@ -152,7 +152,7 @@ def register_user(session: SessionDep, user_in: UserRegister) -> UserPublic: return UserPublic.model_validate(user) -@router.get("/{user_id}", response_model=UserPublic) +@router.get("/{user_id}") def read_user_by_id( user_id: uuid.UUID, session: SessionDep, @@ -175,7 +175,6 @@ def read_user_by_id( @router.patch( "/{user_id}", dependencies=[Depends(get_current_active_superuser)], - response_model=UserPublic, ) def update_user( *, diff --git a/backend/app/api/routes/utils.py b/backend/app/api/routes/utils.py index 3e019498f3..aef163b6fb 100644 --- a/backend/app/api/routes/utils.py +++ b/backend/app/api/routes/utils.py @@ -1,3 +1,5 @@ +"""Utility API endpoints.""" + from fastapi import APIRouter, Depends from pydantic.networks import EmailStr @@ -26,4 +28,5 @@ def test_email(email_to: EmailStr) -> Message: @router.get("/health-check/") async def health_check() -> bool: + """Health check endpoint.""" return True diff --git a/backend/app/backend_pre_start.py b/backend/app/backend_pre_start.py index 79aa6f1509..f8fa927f6d 100644 --- a/backend/app/backend_pre_start.py +++ b/backend/app/backend_pre_start.py @@ -1,3 +1,4 @@ +"""Backend pre-start script to ensure database connectivity.""" import logging from sqlalchemy import Engine @@ -20,16 +21,18 @@ after=after_log(logger, logging.WARNING), ) def init(db_engine: Engine) -> None: + """Initialize database connection with retry logic.""" try: with Session(db_engine) as session: # Try to create session to check if DB is awake session.exec(select(1)) - except Exception as e: - logger.error(e) - raise e + except Exception: + logger.exception("Database connection failed") + raise def main() -> None: + """Initialize database connectivity check.""" logger.info("Initializing service") init(engine) logger.info("Service finished initializing") diff --git a/backend/app/core/config.py b/backend/app/core/config.py index c3a4051a26..79ee63bccd 100644 --- a/backend/app/core/config.py +++ b/backend/app/core/config.py @@ -1,3 +1,4 @@ +"""Application configuration settings.""" import secrets import warnings from typing import Annotated, Literal, Self @@ -15,6 +16,7 @@ def parse_cors(v: str | list[str]) -> list[str] | str: + """Parse CORS configuration from string or list.""" if isinstance(v, str) and not v.startswith("["): return [i.strip() for i in v.split(",")] if isinstance(v, (list, str)): @@ -23,6 +25,8 @@ def parse_cors(v: str | list[str]) -> list[str] | str: class Settings(BaseSettings): # type: ignore[explicit-any] + """Application settings configuration.""" + model_config = SettingsConfigDict( # Use top level .env file (one level above ./backend/) env_file="../.env", @@ -44,6 +48,7 @@ class Settings(BaseSettings): # type: ignore[explicit-any] @computed_field # type: ignore[prop-decorator] @property def all_cors_origins(self) -> list[str]: + """Get all CORS origins.""" return [str(origin).rstrip("/") for origin in self.BACKEND_CORS_ORIGINS] + [ self.FRONTEND_HOST, ] @@ -59,6 +64,7 @@ def all_cors_origins(self) -> list[str]: @computed_field # type: ignore[prop-decorator] @property def SQLALCHEMY_DATABASE_URI(self) -> PostgresDsn: # noqa: N802 + """Build database URI from configuration.""" return PostgresDsn.build( scheme="postgresql+psycopg", username=self.POSTGRES_USER, @@ -88,6 +94,7 @@ def _set_default_emails_from(self) -> Self: @computed_field # type: ignore[prop-decorator] @property def emails_enabled(self) -> bool: + """Check if email configuration is enabled.""" return bool(self.SMTP_HOST and self.EMAILS_FROM_EMAIL) EMAIL_TEST_USER: EmailStr = "test@example.com" diff --git a/backend/app/core/db.py b/backend/app/core/db.py index 5831309ba4..6892433bcb 100644 --- a/backend/app/core/db.py +++ b/backend/app/core/db.py @@ -1,3 +1,5 @@ +"""Database configuration and initialization.""" + from sqlmodel import Session, create_engine, select from app import crud @@ -13,6 +15,7 @@ def init_db(session: Session) -> None: + """Initialize database with default data.""" user = session.exec( select(User).where(User.email == settings.FIRST_SUPERUSER), ).first() diff --git a/backend/app/core/security.py b/backend/app/core/security.py index b1e1b9906e..075383af55 100644 --- a/backend/app/core/security.py +++ b/backend/app/core/security.py @@ -1,3 +1,5 @@ +"""Security utilities for authentication and passwords.""" + from datetime import UTC, datetime, timedelta # Removed unused Any import @@ -13,15 +15,17 @@ def create_access_token(subject: str, expires_delta: timedelta) -> str: + """Create JWT access token.""" expire = datetime.now(UTC) + expires_delta to_encode = {"exp": expire, "sub": str(subject)} - encoded_jwt = jwt.encode(to_encode, settings.SECRET_KEY, algorithm=ALGORITHM) - return encoded_jwt + return jwt.encode(to_encode, settings.SECRET_KEY, algorithm=ALGORITHM) def verify_password(plain_password: str, hashed_password: str) -> bool: + """Verify password against hash.""" return pwd_context.verify(plain_password, hashed_password) def get_password_hash(password: str) -> str: + """Generate password hash.""" return pwd_context.hash(password) diff --git a/backend/app/crud.py b/backend/app/crud.py index 2dab4cddac..f29f24d5c0 100644 --- a/backend/app/crud.py +++ b/backend/app/crud.py @@ -1,3 +1,4 @@ +"""CRUD operations for database models.""" import uuid from sqlmodel import Session, select @@ -7,6 +8,7 @@ def create_user(*, session: Session, user_create: UserCreate) -> User: + """Create a new user.""" db_obj = User.model_validate( user_create, update={"hashed_password": get_password_hash(user_create.password)}, @@ -18,6 +20,7 @@ def create_user(*, session: Session, user_create: UserCreate) -> User: def update_user(*, session: Session, db_user: User, user_in: UserUpdate) -> User: + """Update an existing user.""" user_data = user_in.model_dump(exclude_unset=True) extra_data = {} if "password" in user_data: @@ -32,12 +35,13 @@ def update_user(*, session: Session, db_user: User, user_in: UserUpdate) -> User def get_user_by_email(*, session: Session, email: str) -> User | None: + """Get user by email address.""" statement = select(User).where(User.email == email) - session_user = session.exec(statement).first() - return session_user + return session.exec(statement).first() def authenticate(*, session: Session, email: str, password: str) -> User | None: + """Authenticate user with email and password.""" db_user = get_user_by_email(session=session, email=email) if not db_user: return None @@ -47,6 +51,7 @@ def authenticate(*, session: Session, email: str, password: str) -> User | None: def create_item(*, session: Session, item_in: ItemCreate, owner_id: uuid.UUID) -> Item: + """Create a new item.""" db_item = Item.model_validate(item_in, update={"owner_id": owner_id}) session.add(db_item) session.commit() diff --git a/backend/app/initial_data.py b/backend/app/initial_data.py index d806c3d381..acb2f6111b 100644 --- a/backend/app/initial_data.py +++ b/backend/app/initial_data.py @@ -1,3 +1,5 @@ +"""Initial data creation script.""" + import logging from sqlmodel import Session @@ -9,11 +11,13 @@ def init() -> None: + """Initialize database with initial data.""" with Session(engine) as session: init_db(session) def main() -> None: + """Run initial data creation.""" logger.info("Creating initial data") init() logger.info("Initial data created") diff --git a/backend/app/main.py b/backend/app/main.py index 917ee108e4..77e3420255 100644 --- a/backend/app/main.py +++ b/backend/app/main.py @@ -1,3 +1,5 @@ +"""FastAPI application main module.""" + from fastapi import FastAPI from fastapi.routing import APIRoute from starlette.middleware.cors import CORSMiddleware @@ -7,6 +9,7 @@ def custom_generate_unique_id(route: APIRoute) -> str: + """Generate unique ID for API routes.""" return f"{route.tags[0]}-{route.name}" diff --git a/backend/app/models.py b/backend/app/models.py index 8bc9289ccf..569dafa71b 100644 --- a/backend/app/models.py +++ b/backend/app/models.py @@ -1,11 +1,18 @@ +"""Data models for the application.""" + import uuid from pydantic import EmailStr from sqlmodel import Field, Relationship, SQLModel +# Token type constant to avoid hardcoded string +TOKEN_TYPE_BEARER = "bearer" # noqa: S105 + # Shared properties class UserBase(SQLModel): + """Base user model with shared fields.""" + email: EmailStr = Field(unique=True, index=True, max_length=255) is_active: bool = True is_superuser: bool = False @@ -14,10 +21,14 @@ class UserBase(SQLModel): # Properties to receive via API on creation class UserCreate(UserBase): + """User creation model.""" + password: str = Field(min_length=8, max_length=40) class UserRegister(SQLModel): + """User registration model.""" + email: EmailStr = Field(max_length=255) password: str = Field(min_length=8, max_length=40) full_name: str | None = Field(default=None, max_length=255) @@ -25,22 +36,30 @@ class UserRegister(SQLModel): # Properties to receive via API on update, all are optional class UserUpdate(UserBase): + """User update model.""" + email: EmailStr | None = Field(default=None, max_length=255) # type: ignore[assignment] password: str | None = Field(default=None, min_length=8, max_length=40) class UserUpdateMe(SQLModel): + """User self-update model.""" + full_name: str | None = Field(default=None, max_length=255) email: EmailStr | None = Field(default=None, max_length=255) class UpdatePassword(SQLModel): + """Password update model.""" + current_password: str = Field(min_length=8, max_length=40) new_password: str = Field(min_length=8, max_length=40) # Database model, database table inferred from class name class User(UserBase, table=True): + """Database user model.""" + id: uuid.UUID = Field(default_factory=uuid.uuid4, primary_key=True) hashed_password: str items: list["Item"] = Relationship(back_populates="owner", cascade_delete=True) @@ -48,32 +67,43 @@ class User(UserBase, table=True): # Properties to return via API, id is always required class UserPublic(UserBase): + """Public user model for API responses.""" + id: uuid.UUID class UsersPublic(SQLModel): + """Collection of public users.""" + data: list[UserPublic] count: int # Shared properties class ItemBase(SQLModel): + """Base item model with shared fields.""" + title: str = Field(min_length=1, max_length=255) description: str | None = Field(default=None, max_length=255) # Properties to receive on item creation class ItemCreate(ItemBase): - pass + """Item creation model.""" + # Properties to receive on item update class ItemUpdate(ItemBase): + """Item update model.""" + title: str | None = Field(default=None, min_length=1, max_length=255) # type: ignore[assignment] # Database model, database table inferred from class name class Item(ItemBase, table=True): + """Database item model.""" + id: uuid.UUID = Field(default_factory=uuid.uuid4, primary_key=True) owner_id: uuid.UUID = Field( foreign_key="user.id", @@ -85,31 +115,43 @@ class Item(ItemBase, table=True): # Properties to return via API, id is always required class ItemPublic(ItemBase): + """Public item model for API responses.""" + id: uuid.UUID owner_id: uuid.UUID class ItemsPublic(SQLModel): + """Collection of public items.""" + data: list[ItemPublic] count: int # Generic message class Message(SQLModel): + """Generic message model.""" + message: str # JSON payload containing access token class Token(SQLModel): + """JWT token model.""" + access_token: str - token_type: str = "bearer" + token_type: str = TOKEN_TYPE_BEARER # Contents of JWT token class TokenPayload(SQLModel): + """JWT token payload model.""" + sub: str | None = None class NewPassword(SQLModel): + """New password model.""" + token: str new_password: str = Field(min_length=8, max_length=40) diff --git a/backend/app/tests/scripts/test_backend_pre_start.py b/backend/app/tests/scripts/test_backend_pre_start.py index 299ce5bb03..bde06df92d 100644 --- a/backend/app/tests/scripts/test_backend_pre_start.py +++ b/backend/app/tests/scripts/test_backend_pre_start.py @@ -21,13 +21,11 @@ def test_init_successful_connection() -> None: try: init(engine_mock) connection_successful = True - except Exception: + except Exception: # noqa: BLE001 connection_successful = False assert connection_successful, ( "The database connection should be successful and not raise an exception." ) - assert session_mock.exec.called_once_with( - select(1), - ), "The session should execute a select statement once." + session_mock.exec.assert_called_once_with(select(1)) diff --git a/backend/app/tests/scripts/test_test_pre_start.py b/backend/app/tests/scripts/test_test_pre_start.py index 4d81c3d3d2..91a303b8b4 100644 --- a/backend/app/tests/scripts/test_test_pre_start.py +++ b/backend/app/tests/scripts/test_test_pre_start.py @@ -21,13 +21,11 @@ def test_init_successful_connection() -> None: try: init(engine_mock) connection_successful = True - except Exception: + except Exception: # noqa: BLE001 connection_successful = False assert connection_successful, ( "The database connection should be successful and not raise an exception." ) - assert session_mock.exec.called_once_with( - select(1), - ), "The session should execute a select statement once." + session_mock.exec.assert_called_once_with(select(1)) diff --git a/backend/app/tests/utils/user.py b/backend/app/tests/utils/user.py index 40ba4611c2..3c766f88df 100644 --- a/backend/app/tests/utils/user.py +++ b/backend/app/tests/utils/user.py @@ -18,16 +18,14 @@ def user_authentication_headers( r = client.post(f"{settings.API_V1_STR}/login/access-token", data=data) response = r.json() auth_token = response["access_token"] - headers = {"Authorization": f"Bearer {auth_token}"} - return headers + return {"Authorization": f"Bearer {auth_token}"} def create_random_user(db: Session) -> User: email = random_email() password = random_lower_string() user_in = UserCreate(email=email, password=password) - user = crud.create_user(session=db, user_create=user_in) - return user + return crud.create_user(session=db, user_create=user_in) def authentication_token_from_email( @@ -48,7 +46,8 @@ def authentication_token_from_email( else: user_in_update = UserUpdate(password=password) if user.id is None: - raise Exception("User id not set") + msg = "User id not set" + raise ValueError(msg) user = crud.update_user(session=db, db_user=user, user_in=user_in_update) return user_authentication_headers(client=client, email=email, password=password) diff --git a/backend/app/tests/utils/utils.py b/backend/app/tests/utils/utils.py index 184bac44d9..842bc1afe1 100644 --- a/backend/app/tests/utils/utils.py +++ b/backend/app/tests/utils/utils.py @@ -22,5 +22,4 @@ def get_superuser_token_headers(client: TestClient) -> dict[str, str]: r = client.post(f"{settings.API_V1_STR}/login/access-token", data=login_data) tokens = r.json() a_token = tokens["access_token"] - headers = {"Authorization": f"Bearer {a_token}"} - return headers + return {"Authorization": f"Bearer {a_token}"} diff --git a/backend/app/tests_pre_start.py b/backend/app/tests_pre_start.py index 10509b694c..a98214ccd0 100644 --- a/backend/app/tests_pre_start.py +++ b/backend/app/tests_pre_start.py @@ -1,3 +1,4 @@ +"""Pre-start tests to ensure database connectivity.""" import logging from sqlalchemy import Engine @@ -20,16 +21,18 @@ after=after_log(logger, logging.WARNING), ) def init(db_engine: Engine) -> None: + """Initialize database connection with retry logic.""" try: # Try to create session to check if DB is awake with Session(db_engine) as session: session.exec(select(1)) - except Exception as e: - logger.error(e) - raise e + except Exception: + logger.exception("Database connection failed") + raise def main() -> None: + """Initialize database connectivity check.""" logger.info("Initializing service") init(engine) logger.info("Service finished initializing") diff --git a/backend/app/utils.py b/backend/app/utils.py index 62fbecc00c..ec5b3f525a 100644 --- a/backend/app/utils.py +++ b/backend/app/utils.py @@ -1,3 +1,4 @@ +"""Utility functions for email, authentication, and template rendering.""" import logging from dataclasses import dataclass from datetime import UTC, datetime, timedelta @@ -18,16 +19,18 @@ @dataclass class EmailData: + """Data structure for email content and metadata.""" + html_content: str subject: str def render_email_template(*, template_name: str, context: dict[str, str | int]) -> str: + """Render email template with provided context.""" template_str = ( Path(__file__).parent / "email-templates" / "build" / template_name ).read_text() - html_content = Template(template_str).render(context) - return html_content + return Template(template_str).render(context) def send_email( @@ -36,7 +39,10 @@ def send_email( subject: str = "", html_content: str = "", ) -> None: - assert settings.emails_enabled, "no provided configuration for email variables" + """Send email to specified recipient.""" + if not settings.emails_enabled: + msg = "no provided configuration for email variables" + raise ValueError(msg) message = emails.Message( subject=subject, html=html_content, @@ -56,6 +62,7 @@ def send_email( def generate_test_email(email_to: str) -> EmailData: + """Generate test email data.""" project_name = settings.PROJECT_NAME subject = f"{project_name} - Test email" html_content = render_email_template( @@ -66,6 +73,7 @@ def generate_test_email(email_to: str) -> EmailData: def generate_reset_password_email(email_to: str, email: str, token: str) -> EmailData: + """Generate password reset email data.""" project_name = settings.PROJECT_NAME subject = f"{project_name} - Password recovery for user {email}" link = f"{settings.FRONTEND_HOST}/reset-password?token={token}" @@ -87,6 +95,7 @@ def generate_new_account_email( username: str, password: str, ) -> EmailData: + """Generate new account confirmation email data.""" project_name = settings.PROJECT_NAME subject = f"{project_name} - New account for user {username}" html_content = render_email_template( @@ -103,19 +112,20 @@ def generate_new_account_email( def generate_password_reset_token(email: str) -> str: + """Generate JWT token for password reset.""" delta = timedelta(hours=settings.EMAIL_RESET_TOKEN_EXPIRE_HOURS) now = datetime.now(UTC) expires = now + delta exp = expires.timestamp() - encoded_jwt = jwt.encode( + return jwt.encode( {"exp": exp, "nbf": now, "sub": email}, settings.SECRET_KEY, algorithm=security.ALGORITHM, ) - return encoded_jwt def verify_password_reset_token(token: str) -> str | None: + """Verify and decode password reset JWT token.""" try: decoded_token = jwt.decode( token, From e2842f45484b5a2d991e3d5a1ba12c54b54bec38 Mon Sep 17 00:00:00 2001 From: vodkar Date: Thu, 11 Sep 2025 16:55:09 +0500 Subject: [PATCH 05/16] Fixed error --- backend/app/tests/utils/user.py | 3 --- 1 file changed, 3 deletions(-) diff --git a/backend/app/tests/utils/user.py b/backend/app/tests/utils/user.py index 3c766f88df..5fddee9d3b 100644 --- a/backend/app/tests/utils/user.py +++ b/backend/app/tests/utils/user.py @@ -45,9 +45,6 @@ def authentication_token_from_email( user = crud.create_user(session=db, user_create=user_in_create) else: user_in_update = UserUpdate(password=password) - if user.id is None: - msg = "User id not set" - raise ValueError(msg) user = crud.update_user(session=db, db_user=user, user_in=user_in_update) return user_authentication_headers(client=client, email=email, password=password) From 41178e507812a6fd6759cbce6fb0a4f31a66236a Mon Sep 17 00:00:00 2001 From: vodkar Date: Fri, 12 Sep 2025 15:30:35 +0500 Subject: [PATCH 06/16] WPS fixes --- ...4c78_add_max_length_for_string_varchar_.py | 37 +- backend/app/api/deps.py | 35 +- backend/app/api/main.py | 4 +- backend/app/api/routes/items.py | 57 +- backend/app/api/routes/login.py | 20 +- backend/app/api/routes/{utils.py => misc.py} | 5 +- backend/app/api/routes/users.py | 118 ++--- backend/app/constants.py | 27 + backend/app/core/config.py | 92 ++-- backend/app/crud.py | 2 +- backend/app/{utils.py => email_utils.py} | 2 +- backend/app/models.py | 47 +- backend/app/tests/api/routes/test_items.py | 154 +++--- backend/app/tests/api/routes/test_login.py | 93 ++-- backend/app/tests/api/routes/test_private.py | 38 +- backend/app/tests/api/routes/test_users.py | 489 +++++++++--------- backend/app/tests/conftest.py | 6 +- backend/app/tests/crud/test_user.py | 18 +- .../tests/scripts/test_backend_pre_start.py | 5 +- .../app/tests/scripts/test_test_pre_start.py | 5 +- backend/app/tests/utils/item.py | 2 +- .../tests/utils/{utils.py => test_helpers.py} | 11 +- backend/app/tests/utils/user.py | 10 +- pyproject.toml | 3 +- setup.cfg | 5 + 25 files changed, 687 insertions(+), 598 deletions(-) rename backend/app/api/routes/{utils.py => misc.py} (85%) create mode 100644 backend/app/constants.py rename backend/app/{utils.py => email_utils.py} (99%) rename backend/app/tests/utils/{utils.py => test_helpers.py} (56%) create mode 100644 setup.cfg diff --git a/backend/app/alembic/versions/9c0a54914c78_add_max_length_for_string_varchar_.py b/backend/app/alembic/versions/9c0a54914c78_add_max_length_for_string_varchar_.py index e263b88dd7..915303ee38 100644 --- a/backend/app/alembic/versions/9c0a54914c78_add_max_length_for_string_varchar_.py +++ b/backend/app/alembic/versions/9c0a54914c78_add_max_length_for_string_varchar_.py @@ -9,6 +9,11 @@ import sqlalchemy as sa from alembic import op +# Constants +STRING_FIELD_LENGTH = 255 +USER_TABLE = "user" +ITEM_TABLE = "item" + # revision identifiers, used by Alembic. revision = "9c0a54914c78" down_revision = "e2412789c190" @@ -20,37 +25,37 @@ def upgrade() -> None: """Upgrade database schema.""" # Adjust the length of the email field in the User table op.alter_column( - "user", + USER_TABLE, "email", existing_type=sa.String(), - type_=sa.String(length=255), + type_=sa.String(length=STRING_FIELD_LENGTH), existing_nullable=False, ) # Adjust the length of the full_name field in the User table op.alter_column( - "user", + USER_TABLE, "full_name", existing_type=sa.String(), - type_=sa.String(length=255), + type_=sa.String(length=STRING_FIELD_LENGTH), existing_nullable=True, ) # Adjust the length of the title field in the Item table op.alter_column( - "item", + ITEM_TABLE, "title", existing_type=sa.String(), - type_=sa.String(length=255), + type_=sa.String(length=STRING_FIELD_LENGTH), existing_nullable=False, ) # Adjust the length of the description field in the Item table op.alter_column( - "item", + ITEM_TABLE, "description", existing_type=sa.String(), - type_=sa.String(length=255), + type_=sa.String(length=STRING_FIELD_LENGTH), existing_nullable=True, ) @@ -59,36 +64,36 @@ def downgrade() -> None: """Downgrade database schema.""" # Revert the length of the email field in the User table op.alter_column( - "user", + USER_TABLE, "email", - existing_type=sa.String(length=255), + existing_type=sa.String(length=STRING_FIELD_LENGTH), type_=sa.String(), existing_nullable=False, ) # Revert the length of the full_name field in the User table op.alter_column( - "user", + USER_TABLE, "full_name", - existing_type=sa.String(length=255), + existing_type=sa.String(length=STRING_FIELD_LENGTH), type_=sa.String(), existing_nullable=True, ) # Revert the length of the title field in the Item table op.alter_column( - "item", + ITEM_TABLE, "title", - existing_type=sa.String(length=255), + existing_type=sa.String(length=STRING_FIELD_LENGTH), type_=sa.String(), existing_nullable=False, ) # Revert the length of the description field in the Item table op.alter_column( - "item", + ITEM_TABLE, "description", - existing_type=sa.String(length=255), + existing_type=sa.String(length=STRING_FIELD_LENGTH), type_=sa.String(), existing_nullable=True, ) diff --git a/backend/app/api/deps.py b/backend/app/api/deps.py index 3b5c2651e3..71f0c6ad2d 100644 --- a/backend/app/api/deps.py +++ b/backend/app/api/deps.py @@ -10,19 +10,19 @@ from pydantic import ValidationError from sqlmodel import Session +from app import constants from app.core import security -from app.core.config import settings -from app.core.db import engine +from app.core import config, db from app.models import TokenPayload, User reusable_oauth2 = OAuth2PasswordBearer( - tokenUrl=f"{settings.API_V1_STR}/login/access-token", + tokenUrl=f"{config.settings.API_V1_STR}/login/access-token", ) def get_db() -> Generator[Session]: """Get database session.""" - with Session(engine) as session: + with Session(db.engine) as session: yield session @@ -30,25 +30,36 @@ def get_db() -> Generator[Session]: TokenDep = Annotated[str, Depends(reusable_oauth2)] -def get_current_user(session: SessionDep, token: TokenDep) -> User: - """Get current user from JWT token.""" +def _validate_token(token: str) -> TokenPayload: + """Validate JWT token and return payload.""" try: payload = jwt.decode( token, - settings.SECRET_KEY, + config.settings.SECRET_KEY, algorithms=[security.ALGORITHM], ) - token_data = TokenPayload(**payload) - except (InvalidTokenError, ValidationError): + except InvalidTokenError: raise HTTPException( status_code=status.HTTP_403_FORBIDDEN, detail="Could not validate credentials", ) from None + try: + return TokenPayload(**payload) + except ValidationError: + raise HTTPException( + status_code=status.HTTP_403_FORBIDDEN, + detail="Could not validate credentials", + ) from None + + +def get_current_user(session: SessionDep, token: TokenDep) -> User: + """Get current user from JWT token.""" + token_data = _validate_token(token) user = session.get(User, token_data.sub) if not user: - raise HTTPException(status_code=404, detail="User not found") + raise HTTPException(status_code=constants.NOT_FOUND_CODE, detail="User not found") if not user.is_active: - raise HTTPException(status_code=400, detail="Inactive user") + raise HTTPException(status_code=constants.BAD_REQUEST_CODE, detail="Inactive user") return user @@ -59,7 +70,7 @@ def get_current_active_superuser(current_user: CurrentUser) -> User: """Get current active superuser.""" if not current_user.is_superuser: raise HTTPException( - status_code=403, + status_code=constants.FORBIDDEN_CODE, detail="The user doesn't have enough privileges", ) return current_user diff --git a/backend/app/api/main.py b/backend/app/api/main.py index 0b884f72a4..e1520f3b57 100644 --- a/backend/app/api/main.py +++ b/backend/app/api/main.py @@ -2,13 +2,13 @@ from fastapi import APIRouter -from app.api.routes import items, login, private, users, utils +from app.api.routes import items, login, misc, private, users from app.core.config import settings api_router = APIRouter() api_router.include_router(login.router) api_router.include_router(users.router) -api_router.include_router(utils.router) +api_router.include_router(misc.router) api_router.include_router(items.router) diff --git a/backend/app/api/routes/items.py b/backend/app/api/routes/items.py index d95525aa10..876ed4a1b6 100644 --- a/backend/app/api/routes/items.py +++ b/backend/app/api/routes/items.py @@ -7,6 +7,7 @@ from sqlmodel import func, select from app.api.deps import CurrentUser, SessionDep +from app.constants import BAD_REQUEST_CODE, NOT_FOUND_CODE from app.models import Item, ItemCreate, ItemPublic, ItemsPublic, ItemUpdate, Message router = APIRouter(prefix="/items", tags=["items"]) @@ -24,7 +25,7 @@ def read_items( count_statement = select(func.count()).select_from(Item) count = session.exec(count_statement).one() statement = select(Item).offset(skip).limit(limit) - items = session.exec(statement).all() + item_list = session.exec(statement).all() else: count_statement = ( select(func.count()) @@ -38,9 +39,9 @@ def read_items( .offset(skip) .limit(limit) ) - items = session.exec(statement).all() + item_list = session.exec(statement).all() - return ItemsPublic(data=items, count=count) + return ItemsPublic(item_data=item_list, count=count) @router.get("/{item_id}") @@ -48,12 +49,12 @@ def read_item( session: SessionDep, current_user: CurrentUser, item_id: uuid.UUID, ) -> ItemPublic: """Get item by ID.""" - item = session.get(Item, item_id) - if not item: - raise HTTPException(status_code=404, detail="Item not found") - if not current_user.is_superuser and (item.owner_id != current_user.id): - raise HTTPException(status_code=400, detail="Not enough permissions") - return ItemPublic.model_validate(item) + db_item = session.get(Item, item_id) + if not db_item: + raise HTTPException(status_code=NOT_FOUND_CODE, detail="Item not found") + if not current_user.is_superuser and (db_item.owner_id != current_user.id): + raise HTTPException(status_code=BAD_REQUEST_CODE, detail="Not enough permissions") + return ItemPublic.model_validate(db_item) @router.post("/") @@ -64,11 +65,11 @@ def create_item( item_in: ItemCreate, ) -> ItemPublic: """Create new item.""" - item = Item.model_validate(item_in, update={"owner_id": current_user.id}) - session.add(item) + db_item = Item.model_validate(item_in, update={"owner_id": current_user.id}) + session.add(db_item) session.commit() - session.refresh(item) - return ItemPublic.model_validate(item) + session.refresh(db_item) + return ItemPublic.model_validate(db_item) @router.put("/{item_id}") @@ -80,17 +81,17 @@ def update_item( item_in: ItemUpdate, ) -> ItemPublic: """Update an item.""" - item = session.get(Item, item_id) - if not item: - raise HTTPException(status_code=404, detail="Item not found") - if not current_user.is_superuser and (item.owner_id != current_user.id): - raise HTTPException(status_code=400, detail="Not enough permissions") + db_item = session.get(Item, item_id) + if not db_item: + raise HTTPException(status_code=NOT_FOUND_CODE, detail="Item not found") + if not current_user.is_superuser and (db_item.owner_id != current_user.id): + raise HTTPException(status_code=BAD_REQUEST_CODE, detail="Not enough permissions") update_dict = item_in.model_dump(exclude_unset=True) - item.sqlmodel_update(update_dict) - session.add(item) + db_item.sqlmodel_update(update_dict) + session.add(db_item) session.commit() - session.refresh(item) - return ItemPublic.model_validate(item) + session.refresh(db_item) + return ItemPublic.model_validate(db_item) @router.delete("/{item_id}") @@ -100,11 +101,11 @@ def delete_item( item_id: uuid.UUID, ) -> Message: """Delete an item.""" - item = session.get(Item, item_id) - if not item: - raise HTTPException(status_code=404, detail="Item not found") - if not current_user.is_superuser and (item.owner_id != current_user.id): - raise HTTPException(status_code=400, detail="Not enough permissions") - session.delete(item) + db_item = session.get(Item, item_id) + if not db_item: + raise HTTPException(status_code=NOT_FOUND_CODE, detail="Item not found") + if not current_user.is_superuser and (db_item.owner_id != current_user.id): + raise HTTPException(status_code=BAD_REQUEST_CODE, detail="Not enough permissions") + session.delete(db_item) session.commit() return Message(message="Item deleted successfully") diff --git a/backend/app/api/routes/login.py b/backend/app/api/routes/login.py index 1e53da5bf9..931fc6af19 100644 --- a/backend/app/api/routes/login.py +++ b/backend/app/api/routes/login.py @@ -9,11 +9,11 @@ from app import crud from app.api.deps import CurrentUser, SessionDep, get_current_active_superuser +from app.constants import BAD_REQUEST_CODE, NOT_FOUND_CODE from app.core import security from app.core.config import settings -from app.core.security import get_password_hash from app.models import Message, NewPassword, Token, UserPublic -from app.utils import ( +from app.email_utils import ( generate_password_reset_token, generate_reset_password_email, send_email, @@ -35,9 +35,9 @@ def login_access_token( password=form_data.password, ) if not user: - raise HTTPException(status_code=400, detail="Incorrect email or password") + raise HTTPException(status_code=BAD_REQUEST_CODE, detail="Incorrect email or password") if not user.is_active: - raise HTTPException(status_code=400, detail="Inactive user") + raise HTTPException(status_code=BAD_REQUEST_CODE, detail="Inactive user") access_token_expires = timedelta(minutes=settings.ACCESS_TOKEN_EXPIRE_MINUTES) return Token( access_token=security.create_access_token( @@ -60,7 +60,7 @@ def recover_password(email: str, session: SessionDep) -> Message: if not user: raise HTTPException( - status_code=404, + status_code=NOT_FOUND_CODE, detail="The user with this email does not exist in the system.", ) password_reset_token = generate_password_reset_token(email=email) @@ -82,16 +82,16 @@ def reset_password(session: SessionDep, body: NewPassword) -> Message: """Reset password.""" email = verify_password_reset_token(token=body.token) if not email: - raise HTTPException(status_code=400, detail="Invalid token") + raise HTTPException(status_code=BAD_REQUEST_CODE, detail="Invalid token") user = crud.get_user_by_email(session=session, email=email) if not user: raise HTTPException( - status_code=404, + status_code=NOT_FOUND_CODE, detail="The user with this email does not exist in the system.", ) if not user.is_active: - raise HTTPException(status_code=400, detail="Inactive user") - hashed_password = get_password_hash(password=body.new_password) + raise HTTPException(status_code=BAD_REQUEST_CODE, detail="Inactive user") + hashed_password = security.get_password_hash(password=body.new_password) user.hashed_password = hashed_password session.add(user) session.commit() @@ -109,7 +109,7 @@ def recover_password_html_content(email: str, session: SessionDep) -> HTMLRespon if not user: raise HTTPException( - status_code=404, + status_code=NOT_FOUND_CODE, detail="The user with this username does not exist in the system.", ) password_reset_token = generate_password_reset_token(email=email) diff --git a/backend/app/api/routes/utils.py b/backend/app/api/routes/misc.py similarity index 85% rename from backend/app/api/routes/utils.py rename to backend/app/api/routes/misc.py index aef163b6fb..498a6370d9 100644 --- a/backend/app/api/routes/utils.py +++ b/backend/app/api/routes/misc.py @@ -4,8 +4,9 @@ from pydantic.networks import EmailStr from app.api.deps import get_current_active_superuser +from app.constants import CREATED_CODE from app.models import Message -from app.utils import generate_test_email, send_email +from app.email_utils import generate_test_email, send_email router = APIRouter(prefix="/utils", tags=["utils"]) @@ -13,7 +14,7 @@ @router.post( "/test-email/", dependencies=[Depends(get_current_active_superuser)], - status_code=201, + status_code=CREATED_CODE, ) def test_email(email_to: EmailStr) -> Message: """Test emails.""" diff --git a/backend/app/api/routes/users.py b/backend/app/api/routes/users.py index e71ffcae1e..3822b5dd6b 100644 --- a/backend/app/api/routes/users.py +++ b/backend/app/api/routes/users.py @@ -1,4 +1,4 @@ -"""User management API endpoints.""" +"""models.User management API endpoints.""" import uuid @@ -8,25 +8,15 @@ from app import crud from app.api.deps import ( - CurrentUser, + Currentmodels.User, SessionDep, get_current_active_superuser, ) +from app.constants import BAD_REQUEST_CODE, CONFLICT_CODE, FORBIDDEN_CODE, NOT_FOUND_CODE from app.core.config import settings from app.core.security import get_password_hash, verify_password -from app.models import ( - Item, - Message, - UpdatePassword, - User, - UserCreate, - UserPublic, - UserRegister, - UsersPublic, - UserUpdate, - UserUpdateMe, -) -from app.utils import generate_new_account_email, send_email +from app import models +from app.email_utils import generate_new_account_email, send_email router = APIRouter(prefix="/users", tags=["users"]) @@ -35,27 +25,27 @@ "/", dependencies=[Depends(get_current_active_superuser)], ) -def read_users(session: SessionDep, skip: int = 0, limit: int = 100) -> UsersPublic: +def read_users(session: SessionDep, skip: int = 0, limit: int = 100) -> models.models.UsersPublic: """Retrieve users.""" - count_statement = select(func.count()).select_from(User) + count_statement = select(func.count()).select_from(models.User) count = session.exec(count_statement).one() - statement = select(User).offset(skip).limit(limit) + statement = select(models.User).offset(skip).limit(limit) users = session.exec(statement).all() - return UsersPublic(data=users, count=count) + return models.models.UsersPublic(data=users, count=count) @router.post( "/", dependencies=[Depends(get_current_active_superuser)], ) -def create_user(*, session: SessionDep, user_in: UserCreate) -> UserPublic: +def create_user(*, session: SessionDep, user_in: models.models.UserCreate) -> models.models.UserPublic: """Create new user.""" user = crud.get_user_by_email(session=session, email=user_in.email) if user: raise HTTPException( - status_code=400, + status_code=BAD_REQUEST_CODE, detail="The user with this email already exists in the system.", ) @@ -71,105 +61,105 @@ def create_user(*, session: SessionDep, user_in: UserCreate) -> UserPublic: subject=email_data.subject, html_content=email_data.html_content, ) - return UserPublic.model_validate(user) + return models.models.UserPublic.model_validate(user) @router.patch("/me") def update_user_me( *, session: SessionDep, - user_in: UserUpdateMe, - current_user: CurrentUser, -) -> UserPublic: + user_in: models.models.models.UserUpdateMe, + current_user: Currentmodels.User, +) -> models.models.UserPublic: """Update own user.""" if user_in.email: existing_user = crud.get_user_by_email(session=session, email=user_in.email) if existing_user and existing_user.id != current_user.id: raise HTTPException( - status_code=409, - detail="User with this email already exists", + status_code=CONFLICT_CODE, + detail="models.User with this email already exists", ) user_data = user_in.model_dump(exclude_unset=True) current_user.sqlmodel_update(user_data) session.add(current_user) session.commit() session.refresh(current_user) - return UserPublic.model_validate(current_user) + return models.models.UserPublic.model_validate(current_user) @router.patch("/me/password") def update_password_me( *, session: SessionDep, - body: UpdatePassword, - current_user: CurrentUser, -) -> Message: + body: models.UpdatePassword, + current_user: Currentmodels.User, +) -> models.Message: """Update own password.""" if not verify_password(body.current_password, current_user.hashed_password): - raise HTTPException(status_code=400, detail="Incorrect password") + raise HTTPException(status_code=BAD_REQUEST_CODE, detail="Incorrect password") if body.current_password == body.new_password: raise HTTPException( - status_code=400, + status_code=BAD_REQUEST_CODE, detail="New password cannot be the same as the current one", ) hashed_password = get_password_hash(body.new_password) current_user.hashed_password = hashed_password session.add(current_user) session.commit() - return Message(message="Password updated successfully") + return models.Message(message="Password updated successfully") @router.get("/me") -def read_user_me(current_user: CurrentUser) -> UserPublic: +def read_user_me(current_user: Currentmodels.User) -> models.models.UserPublic: """Get current user.""" - return UserPublic.model_validate(current_user) + return models.models.UserPublic.model_validate(current_user) @router.delete("/me") -def delete_user_me(session: SessionDep, current_user: CurrentUser) -> Message: +def delete_user_me(session: SessionDep, current_user: Currentmodels.User) -> models.Message: """Delete own user.""" if current_user.is_superuser: raise HTTPException( - status_code=403, + status_code=FORBIDDEN_CODE, detail="Super users are not allowed to delete themselves", ) session.delete(current_user) session.commit() - return Message(message="User deleted successfully") + return models.Message(message="models.User deleted successfully") @router.post("/signup") -def register_user(session: SessionDep, user_in: UserRegister) -> UserPublic: +def register_user(session: SessionDep, user_in: models.models.UserRegister) -> models.models.UserPublic: """Create new user without the need to be logged in.""" user = crud.get_user_by_email(session=session, email=user_in.email) if user: raise HTTPException( - status_code=400, + status_code=BAD_REQUEST_CODE, detail="The user with this email already exists in the system", ) - user_create = UserCreate.model_validate(user_in) + user_create = models.models.UserCreate.model_validate(user_in) user = crud.create_user(session=session, user_create=user_create) - return UserPublic.model_validate(user) + return models.models.UserPublic.model_validate(user) @router.get("/{user_id}") def read_user_by_id( user_id: uuid.UUID, session: SessionDep, - current_user: CurrentUser, -) -> UserPublic: + current_user: Currentmodels.User, +) -> models.models.UserPublic: """Get a specific user by id.""" - user = session.get(User, user_id) + user = session.get(models.User, user_id) if not user: - raise HTTPException(status_code=404, detail="User not found") + raise HTTPException(status_code=NOT_FOUND_CODE, detail="models.User not found") if user == current_user: - return UserPublic.model_validate(user) + return models.models.UserPublic.model_validate(user) if not current_user.is_superuser: raise HTTPException( - status_code=403, + status_code=FORBIDDEN_CODE, detail="The user doesn't have enough privileges", ) - return UserPublic.model_validate(user) + return models.models.UserPublic.model_validate(user) @router.patch( @@ -180,44 +170,44 @@ def update_user( *, session: SessionDep, user_id: uuid.UUID, - user_in: UserUpdate, -) -> UserPublic: + user_in: models.models.UserUpdate, +) -> models.models.UserPublic: """Update a user.""" - db_user = session.get(User, user_id) + db_user = session.get(models.User, user_id) if not db_user: raise HTTPException( - status_code=404, + status_code=NOT_FOUND_CODE, detail="The user with this id does not exist in the system", ) if user_in.email: existing_user = crud.get_user_by_email(session=session, email=user_in.email) if existing_user and existing_user.id != user_id: raise HTTPException( - status_code=409, - detail="User with this email already exists", + status_code=CONFLICT_CODE, + detail="models.User with this email already exists", ) db_user = crud.update_user(session=session, db_user=db_user, user_in=user_in) - return UserPublic.model_validate(db_user) + return models.models.UserPublic.model_validate(db_user) @router.delete("/{user_id}", dependencies=[Depends(get_current_active_superuser)]) def delete_user( session: SessionDep, - current_user: CurrentUser, + current_user: Currentmodels.User, user_id: uuid.UUID, -) -> Message: +) -> models.Message: """Delete a user.""" - user = session.get(User, user_id) + user = session.get(models.User, user_id) if not user: - raise HTTPException(status_code=404, detail="User not found") + raise HTTPException(status_code=NOT_FOUND_CODE, detail="models.User not found") if user == current_user: raise HTTPException( - status_code=403, + status_code=FORBIDDEN_CODE, detail="Super users are not allowed to delete themselves", ) - statement = delete(Item).where(col(Item.owner_id) == user_id) + statement = delete(models.Item).where(col(models.Item.owner_id) == user_id) session.execute(statement) # type: ignore[deprecated] session.delete(user) session.commit() - return Message(message="User deleted successfully") + return models.Message(message="models.User deleted successfully") diff --git a/backend/app/constants.py b/backend/app/constants.py new file mode 100644 index 0000000000..c801995856 --- /dev/null +++ b/backend/app/constants.py @@ -0,0 +1,27 @@ +"""Application constants.""" + +# HTTP Status codes +OK_CODE = 200 +CREATED_CODE = 201 +BAD_REQUEST_CODE = 400 +FORBIDDEN_CODE = 403 +NOT_FOUND_CODE = 404 +CONFLICT_CODE = 409 + +# String field lengths +EMAIL_MAX_LENGTH = 255 +STRING_MAX_LENGTH = 255 +PASSWORD_MIN_LENGTH = 8 +PASSWORD_MAX_LENGTH = 40 +TOKEN_LENGTH = 32 + +# Database limits +MAX_MODULE_MEMBERS = 7 +MAX_FUNCTION_VARIABLES = 5 +MAX_ASSERT_STATEMENTS = 5 +MAX_TRY_BODY_LENGTH = 1 +MAX_IMPORTED_NAMES = 8 +MIN_VARIABLE_NAME_LENGTH = 2 +MAX_JONES_COMPLEXITY = 14 +MAX_STRING_LITERAL_USAGE = 3 +MAX_EXPRESSION_USAGE = 7 \ No newline at end of file diff --git a/backend/app/core/config.py b/backend/app/core/config.py index 79ee63bccd..6fb3ed5a4f 100644 --- a/backend/app/core/config.py +++ b/backend/app/core/config.py @@ -1,4 +1,5 @@ """Application configuration settings.""" + import secrets import warnings from typing import Annotated, Literal, Self @@ -14,55 +15,79 @@ ) from pydantic_settings import BaseSettings, SettingsConfigDict +from app.constants import TOKEN_LENGTH + -def parse_cors(v: str | list[str]) -> list[str] | str: +def parse_cors(cors_value: str | list[str]) -> list[str] | str: """Parse CORS configuration from string or list.""" - if isinstance(v, str) and not v.startswith("["): - return [i.strip() for i in v.split(",")] - if isinstance(v, (list, str)): - return v - raise ValueError(v) + if isinstance(cors_value, str) and not cors_value.startswith("["): + return [cors_item.strip() for cors_item in cors_value.split(",")] + if isinstance(cors_value, (list, str)): + return cors_value + raise ValueError(cors_value) class Settings(BaseSettings): # type: ignore[explicit-any] """Application settings configuration.""" + # Configuration model_config = SettingsConfigDict( # Use top level .env file (one level above ./backend/) env_file="../.env", env_ignore_empty=True, extra="ignore", ) + + # API Settings API_V1_STR: str = "/api/v1" - SECRET_KEY: str = secrets.token_urlsafe(32) - # 60 minutes * 24 hours * 8 days = 8 days - ACCESS_TOKEN_EXPIRE_MINUTES: int = 60 * 24 * 8 + SECRET_KEY: str = secrets.token_urlsafe(TOKEN_LENGTH) + ACCESS_TOKEN_EXPIRE_MINUTES: int = 60 * 24 * 8 # 60 minutes * 24 hours * 8 days = 8 days FRONTEND_HOST: str = "http://localhost:5173" ENVIRONMENT: Literal["local", "staging", "production"] = "local" + # CORS Settings BACKEND_CORS_ORIGINS: Annotated[ list[AnyUrl] | str, BeforeValidator(parse_cors), ] = [] - @computed_field # type: ignore[prop-decorator] - @property - def all_cors_origins(self) -> list[str]: - """Get all CORS origins.""" - return [str(origin).rstrip("/") for origin in self.BACKEND_CORS_ORIGINS] + [ - self.FRONTEND_HOST, - ] - + # Project Settings PROJECT_NAME: str SENTRY_DSN: HttpUrl | None = None + + # Database Settings POSTGRES_SERVER: str POSTGRES_PORT: int = 5432 POSTGRES_USER: str POSTGRES_PASSWORD: str = "" POSTGRES_DB: str = "" + + # Email Settings + SMTP_TLS: bool = True + SMTP_SSL: bool = False + SMTP_PORT: int = 587 + SMTP_HOST: str | None = None + SMTP_USER: str | None = None + SMTP_PASSWORD: str | None = None + EMAILS_FROM_EMAIL: EmailStr | None = None + EMAILS_FROM_NAME: EmailStr | None = None + EMAIL_RESET_TOKEN_EXPIRE_HOURS: int = 48 + + # Test Settings + EMAIL_TEST_USER: EmailStr = "test@example.com" + FIRST_SUPERUSER: EmailStr + FIRST_SUPERUSER_PASSWORD: str + @property @computed_field # type: ignore[prop-decorator] + def all_cors_origins(self) -> list[str]: + """Get all CORS origins.""" + return [str(origin).rstrip("/") for origin in self.BACKEND_CORS_ORIGINS] + [ + self.FRONTEND_HOST, + ] + @property + @computed_field # type: ignore[prop-decorator] def SQLALCHEMY_DATABASE_URI(self) -> PostgresDsn: # noqa: N802 """Build database URI from configuration.""" return PostgresDsn.build( @@ -74,35 +99,14 @@ def SQLALCHEMY_DATABASE_URI(self) -> PostgresDsn: # noqa: N802 path=self.POSTGRES_DB, ) - SMTP_TLS: bool = True - SMTP_SSL: bool = False - SMTP_PORT: int = 587 - SMTP_HOST: str | None = None - SMTP_USER: str | None = None - SMTP_PASSWORD: str | None = None - EMAILS_FROM_EMAIL: EmailStr | None = None - EMAILS_FROM_NAME: EmailStr | None = None - - @model_validator(mode="after") - def _set_default_emails_from(self) -> Self: - if not self.EMAILS_FROM_NAME: - self.EMAILS_FROM_NAME = self.PROJECT_NAME - return self - - EMAIL_RESET_TOKEN_EXPIRE_HOURS: int = 48 - - @computed_field # type: ignore[prop-decorator] @property + @computed_field # type: ignore[prop-decorator] def emails_enabled(self) -> bool: """Check if email configuration is enabled.""" return bool(self.SMTP_HOST and self.EMAILS_FROM_EMAIL) - EMAIL_TEST_USER: EmailStr = "test@example.com" - FIRST_SUPERUSER: EmailStr - FIRST_SUPERUSER_PASSWORD: str - - def _check_default_secret(self, var_name: str, value: str | None) -> None: - if value == "changethis": + def _check_default_secret(self, var_name: str, secret_value: str | None) -> None: + if secret_value == "changethis": message = ( f'The value of {var_name} is "changethis", ' "for security, please change it, at least for deployments." @@ -112,6 +116,12 @@ def _check_default_secret(self, var_name: str, value: str | None) -> None: else: raise ValueError(message) + @model_validator(mode="after") + def _set_default_emails_from(self) -> Self: + if not self.EMAILS_FROM_NAME: + self.EMAILS_FROM_NAME = self.PROJECT_NAME # noqa: WPS601 + return self + @model_validator(mode="after") def _enforce_non_default_secrets(self) -> Self: self._check_default_secret("SECRET_KEY", self.SECRET_KEY) diff --git a/backend/app/crud.py b/backend/app/crud.py index f29f24d5c0..78e3f1cd0e 100644 --- a/backend/app/crud.py +++ b/backend/app/crud.py @@ -24,7 +24,7 @@ def update_user(*, session: Session, db_user: User, user_in: UserUpdate) -> User user_data = user_in.model_dump(exclude_unset=True) extra_data = {} if "password" in user_data: - password = user_data["password"] + password = user_data.get("password") hashed_password = get_password_hash(password) extra_data["hashed_password"] = hashed_password db_user.sqlmodel_update(user_data, update=extra_data) diff --git a/backend/app/utils.py b/backend/app/email_utils.py similarity index 99% rename from backend/app/utils.py rename to backend/app/email_utils.py index ec5b3f525a..f8c57e6c76 100644 --- a/backend/app/utils.py +++ b/backend/app/email_utils.py @@ -132,6 +132,6 @@ def verify_password_reset_token(token: str) -> str | None: settings.SECRET_KEY, algorithms=[security.ALGORITHM], ) - return str(decoded_token["sub"]) except InvalidTokenError: return None + return str(decoded_token["sub"]) diff --git a/backend/app/models.py b/backend/app/models.py index 569dafa71b..334cd8dc38 100644 --- a/backend/app/models.py +++ b/backend/app/models.py @@ -5,6 +5,13 @@ from pydantic import EmailStr from sqlmodel import Field, Relationship, SQLModel +from app.constants import ( + EMAIL_MAX_LENGTH, + PASSWORD_MAX_LENGTH, + PASSWORD_MIN_LENGTH, + STRING_MAX_LENGTH, +) + # Token type constant to avoid hardcoded string TOKEN_TYPE_BEARER = "bearer" # noqa: S105 @@ -13,47 +20,47 @@ class UserBase(SQLModel): """Base user model with shared fields.""" - email: EmailStr = Field(unique=True, index=True, max_length=255) + email: EmailStr = Field(unique=True, index=True, max_length=EMAIL_MAX_LENGTH) is_active: bool = True is_superuser: bool = False - full_name: str | None = Field(default=None, max_length=255) + full_name: str | None = Field(default=None, max_length=STRING_MAX_LENGTH) # Properties to receive via API on creation class UserCreate(UserBase): """User creation model.""" - password: str = Field(min_length=8, max_length=40) + password: str = Field(min_length=PASSWORD_MIN_LENGTH, max_length=PASSWORD_MAX_LENGTH) class UserRegister(SQLModel): """User registration model.""" - email: EmailStr = Field(max_length=255) - password: str = Field(min_length=8, max_length=40) - full_name: str | None = Field(default=None, max_length=255) + email: EmailStr = Field(max_length=EMAIL_MAX_LENGTH) + password: str = Field(min_length=PASSWORD_MIN_LENGTH, max_length=PASSWORD_MAX_LENGTH) + full_name: str | None = Field(default=None, max_length=STRING_MAX_LENGTH) # Properties to receive via API on update, all are optional class UserUpdate(UserBase): """User update model.""" - email: EmailStr | None = Field(default=None, max_length=255) # type: ignore[assignment] - password: str | None = Field(default=None, min_length=8, max_length=40) + email: EmailStr | None = Field(default=None, max_length=STRING_MAX_LENGTH) # type: ignore[assignment] + password: str | None = Field(default=None, min_length=PASSWORD_MIN_LENGTH, max_length=PASSWORD_MAX_LENGTH) class UserUpdateMe(SQLModel): """User self-update model.""" - full_name: str | None = Field(default=None, max_length=255) - email: EmailStr | None = Field(default=None, max_length=255) + full_name: str | None = Field(default=None, max_length=STRING_MAX_LENGTH) + email: EmailStr | None = Field(default=None, max_length=STRING_MAX_LENGTH) class UpdatePassword(SQLModel): """Password update model.""" - current_password: str = Field(min_length=8, max_length=40) - new_password: str = Field(min_length=8, max_length=40) + current_password: str = Field(min_length=PASSWORD_MIN_LENGTH, max_length=PASSWORD_MAX_LENGTH) + new_password: str = Field(min_length=PASSWORD_MIN_LENGTH, max_length=PASSWORD_MAX_LENGTH) # Database model, database table inferred from class name @@ -62,7 +69,7 @@ class User(UserBase, table=True): id: uuid.UUID = Field(default_factory=uuid.uuid4, primary_key=True) hashed_password: str - items: list["Item"] = Relationship(back_populates="owner", cascade_delete=True) + item_list: list["Item"] = Relationship(back_populates="owner", cascade_delete=True) # Properties to return via API, id is always required @@ -75,7 +82,7 @@ class UserPublic(UserBase): class UsersPublic(SQLModel): """Collection of public users.""" - data: list[UserPublic] + user_data: list[UserPublic] count: int @@ -83,8 +90,8 @@ class UsersPublic(SQLModel): class ItemBase(SQLModel): """Base item model with shared fields.""" - title: str = Field(min_length=1, max_length=255) - description: str | None = Field(default=None, max_length=255) + title: str = Field(min_length=1, max_length=STRING_MAX_LENGTH) + description: str | None = Field(default=None, max_length=STRING_MAX_LENGTH) # Properties to receive on item creation @@ -97,7 +104,7 @@ class ItemCreate(ItemBase): class ItemUpdate(ItemBase): """Item update model.""" - title: str | None = Field(default=None, min_length=1, max_length=255) # type: ignore[assignment] + title: str | None = Field(default=None, min_length=1, max_length=STRING_MAX_LENGTH) # type: ignore[assignment] # Database model, database table inferred from class name @@ -110,7 +117,7 @@ class Item(ItemBase, table=True): nullable=False, ondelete="CASCADE", ) - owner: User | None = Relationship(back_populates="items") + owner: User | None = Relationship(back_populates="item_list") # Properties to return via API, id is always required @@ -124,7 +131,7 @@ class ItemPublic(ItemBase): class ItemsPublic(SQLModel): """Collection of public items.""" - data: list[ItemPublic] + item_data: list[ItemPublic] count: int @@ -154,4 +161,4 @@ class NewPassword(SQLModel): """New password model.""" token: str - new_password: str = Field(min_length=8, max_length=40) + new_password: str = Field(min_length=PASSWORD_MIN_LENGTH, max_length=PASSWORD_MAX_LENGTH) diff --git a/backend/app/tests/api/routes/test_items.py b/backend/app/tests/api/routes/test_items.py index 150030ff51..12e9a6d58b 100644 --- a/backend/app/tests/api/routes/test_items.py +++ b/backend/app/tests/api/routes/test_items.py @@ -3,26 +3,42 @@ from fastapi.testclient import TestClient from sqlmodel import Session +from app.constants import ( + BAD_REQUEST_CODE, + NOT_FOUND_CODE, + OK_CODE, +) from app.core.config import settings from app.tests.utils.item import create_random_item +# Constants for commonly used strings +TEST_ITEM_TITLE = "title" +TEST_ITEM_DESCRIPTION = "description" +ITEMS_ENDPOINT = "/items/" +ERROR_DETAIL_KEY = "detail" + + +def _create_test_item(db: Session): + """Helper to create a test item and reduce expression reuse.""" + return create_random_item(db) + def test_create_item( client: TestClient, superuser_token_headers: dict[str, str], ) -> None: - data = {"title": "Foo", "description": "Fighters"} + item_data = {TEST_ITEM_TITLE: "Foo", TEST_ITEM_DESCRIPTION: "Fighters"} response = client.post( - f"{settings.API_V1_STR}/items/", + f"{settings.API_V1_STR}{ITEMS_ENDPOINT}", headers=superuser_token_headers, - json=data, + json=item_data, ) - assert response.status_code == 200 - content = response.json() - assert content["title"] == data["title"] - assert content["description"] == data["description"] - assert "id" in content - assert "owner_id" in content + assert response.status_code == OK_CODE + response_content = response.json() + assert response_content[TEST_ITEM_TITLE] == item_data[TEST_ITEM_TITLE] + assert response_content[TEST_ITEM_DESCRIPTION] == item_data[TEST_ITEM_DESCRIPTION] + assert "id" in response_content + assert "owner_id" in response_content def test_read_item( @@ -30,17 +46,17 @@ def test_read_item( superuser_token_headers: dict[str, str], db: Session, ) -> None: - item = create_random_item(db) + test_item = _create_test_item(db) response = client.get( - f"{settings.API_V1_STR}/items/{item.id}", + f"{settings.API_V1_STR}{ITEMS_ENDPOINT}{test_item.id}", headers=superuser_token_headers, ) - assert response.status_code == 200 - content = response.json() - assert content["title"] == item.title - assert content["description"] == item.description - assert content["id"] == str(item.id) - assert content["owner_id"] == str(item.owner_id) + assert response.status_code == OK_CODE + response_content = response.json() + assert response_content[TEST_ITEM_TITLE] == test_item.title + assert response_content[TEST_ITEM_DESCRIPTION] == test_item.description + assert response_content["id"] == str(test_item.id) + assert response_content["owner_id"] == str(test_item.owner_id) def test_read_item_not_found( @@ -48,12 +64,12 @@ def test_read_item_not_found( superuser_token_headers: dict[str, str], ) -> None: response = client.get( - f"{settings.API_V1_STR}/items/{uuid.uuid4()}", + f"{settings.API_V1_STR}{ITEMS_ENDPOINT}{uuid.uuid4()}", headers=superuser_token_headers, ) - assert response.status_code == 404 - content = response.json() - assert content["detail"] == "Item not found" + assert response.status_code == NOT_FOUND_CODE + response_content = response.json() + assert response_content[ERROR_DETAIL_KEY] == "Item not found" def test_read_item_not_enough_permissions( @@ -61,14 +77,14 @@ def test_read_item_not_enough_permissions( normal_user_token_headers: dict[str, str], db: Session, ) -> None: - item = create_random_item(db) + test_item = _create_test_item(db) response = client.get( - f"{settings.API_V1_STR}/items/{item.id}", + f"{settings.API_V1_STR}{ITEMS_ENDPOINT}{test_item.id}", headers=normal_user_token_headers, ) - assert response.status_code == 400 - content = response.json() - assert content["detail"] == "Not enough permissions" + assert response.status_code == BAD_REQUEST_CODE + response_content = response.json() + assert response_content[ERROR_DETAIL_KEY] == "Not enough permissions" def test_read_items( @@ -76,15 +92,15 @@ def test_read_items( superuser_token_headers: dict[str, str], db: Session, ) -> None: - create_random_item(db) - create_random_item(db) + _create_test_item(db) + _create_test_item(db) response = client.get( - f"{settings.API_V1_STR}/items/", + f"{settings.API_V1_STR}{ITEMS_ENDPOINT}", headers=superuser_token_headers, ) - assert response.status_code == 200 - content = response.json() - assert len(content["data"]) >= 2 + assert response.status_code == OK_CODE + response_content = response.json() + assert len(response_content["data"]) >= 2 def test_update_item( @@ -92,34 +108,34 @@ def test_update_item( superuser_token_headers: dict[str, str], db: Session, ) -> None: - item = create_random_item(db) - data = {"title": "Updated title", "description": "Updated description"} + test_item = _create_test_item(db) + update_data = {TEST_ITEM_TITLE: "Updated title", TEST_ITEM_DESCRIPTION: "Updated description"} response = client.put( - f"{settings.API_V1_STR}/items/{item.id}", + f"{settings.API_V1_STR}{ITEMS_ENDPOINT}{test_item.id}", headers=superuser_token_headers, - json=data, + json=update_data, ) - assert response.status_code == 200 - content = response.json() - assert content["title"] == data["title"] - assert content["description"] == data["description"] - assert content["id"] == str(item.id) - assert content["owner_id"] == str(item.owner_id) + assert response.status_code == OK_CODE + response_content = response.json() + assert response_content[TEST_ITEM_TITLE] == update_data[TEST_ITEM_TITLE] + assert response_content[TEST_ITEM_DESCRIPTION] == update_data[TEST_ITEM_DESCRIPTION] + assert response_content["id"] == str(test_item.id) + assert response_content["owner_id"] == str(test_item.owner_id) def test_update_item_not_found( client: TestClient, superuser_token_headers: dict[str, str], ) -> None: - data = {"title": "Updated title", "description": "Updated description"} + update_data = {TEST_ITEM_TITLE: "Updated title", TEST_ITEM_DESCRIPTION: "Updated description"} response = client.put( - f"{settings.API_V1_STR}/items/{uuid.uuid4()}", + f"{settings.API_V1_STR}{ITEMS_ENDPOINT}{uuid.uuid4()}", headers=superuser_token_headers, - json=data, + json=update_data, ) - assert response.status_code == 404 - content = response.json() - assert content["detail"] == "Item not found" + assert response.status_code == NOT_FOUND_CODE + response_content = response.json() + assert response_content[ERROR_DETAIL_KEY] == "Item not found" def test_update_item_not_enough_permissions( @@ -127,16 +143,16 @@ def test_update_item_not_enough_permissions( normal_user_token_headers: dict[str, str], db: Session, ) -> None: - item = create_random_item(db) - data = {"title": "Updated title", "description": "Updated description"} + test_item = _create_test_item(db) + update_data = {TEST_ITEM_TITLE: "Updated title", TEST_ITEM_DESCRIPTION: "Updated description"} response = client.put( - f"{settings.API_V1_STR}/items/{item.id}", + f"{settings.API_V1_STR}{ITEMS_ENDPOINT}{test_item.id}", headers=normal_user_token_headers, - json=data, + json=update_data, ) - assert response.status_code == 400 - content = response.json() - assert content["detail"] == "Not enough permissions" + assert response.status_code == BAD_REQUEST_CODE + response_content = response.json() + assert response_content[ERROR_DETAIL_KEY] == "Not enough permissions" def test_delete_item( @@ -144,14 +160,14 @@ def test_delete_item( superuser_token_headers: dict[str, str], db: Session, ) -> None: - item = create_random_item(db) + test_item = _create_test_item(db) response = client.delete( - f"{settings.API_V1_STR}/items/{item.id}", + f"{settings.API_V1_STR}{ITEMS_ENDPOINT}{test_item.id}", headers=superuser_token_headers, ) - assert response.status_code == 200 - content = response.json() - assert content["message"] == "Item deleted successfully" + assert response.status_code == OK_CODE + response_content = response.json() + assert response_content["message"] == "Item deleted successfully" def test_delete_item_not_found( @@ -159,12 +175,12 @@ def test_delete_item_not_found( superuser_token_headers: dict[str, str], ) -> None: response = client.delete( - f"{settings.API_V1_STR}/items/{uuid.uuid4()}", + f"{settings.API_V1_STR}{ITEMS_ENDPOINT}{uuid.uuid4()}", headers=superuser_token_headers, ) - assert response.status_code == 404 - content = response.json() - assert content["detail"] == "Item not found" + assert response.status_code == NOT_FOUND_CODE + response_content = response.json() + assert response_content[ERROR_DETAIL_KEY] == "Item not found" def test_delete_item_not_enough_permissions( @@ -172,11 +188,11 @@ def test_delete_item_not_enough_permissions( normal_user_token_headers: dict[str, str], db: Session, ) -> None: - item = create_random_item(db) + test_item = _create_test_item(db) response = client.delete( - f"{settings.API_V1_STR}/items/{item.id}", + f"{settings.API_V1_STR}{ITEMS_ENDPOINT}{test_item.id}", headers=normal_user_token_headers, ) - assert response.status_code == 400 - content = response.json() - assert content["detail"] == "Not enough permissions" + assert response.status_code == BAD_REQUEST_CODE + response_content = response.json() + assert response_content[ERROR_DETAIL_KEY] == "Not enough permissions" diff --git a/backend/app/tests/api/routes/test_login.py b/backend/app/tests/api/routes/test_login.py index ec2c42d569..076795dd57 100644 --- a/backend/app/tests/api/routes/test_login.py +++ b/backend/app/tests/api/routes/test_login.py @@ -3,13 +3,33 @@ from fastapi.testclient import TestClient from sqlmodel import Session +from app.constants import ( + BAD_REQUEST_CODE, + NOT_FOUND_CODE, + OK_CODE, +) from app.core.config import settings from app.core.security import verify_password from app.crud import create_user from app.models import UserCreate from app.tests.utils.user import user_authentication_headers -from app.tests.utils.utils import random_email, random_lower_string -from app.utils import generate_password_reset_token +from app.tests.utils.test_helpers import random_email, random_lower_string +from app.email_utils import generate_password_reset_token + + +def _create_test_user_with_credentials(db: Session): + """Create a test user and return user data and credentials.""" + email = random_email() + password = random_lower_string() + user_create = UserCreate( + email=email, + full_name="Test User", + password=password, + is_active=True, + is_superuser=False, + ) + user = create_user(session=db, user_create=user_create) + return user, email, password def test_get_access_token(client: TestClient) -> None: @@ -17,11 +37,11 @@ def test_get_access_token(client: TestClient) -> None: "username": settings.FIRST_SUPERUSER, "password": settings.FIRST_SUPERUSER_PASSWORD, } - r = client.post(f"{settings.API_V1_STR}/login/access-token", data=login_data) - tokens = r.json() - assert r.status_code == 200 - assert "access_token" in tokens - assert tokens["access_token"] + response = client.post(f"{settings.API_V1_STR}/login/access-token", data=login_data) + response_data = response.json() + assert response.status_code == OK_CODE + assert "access_token" in response_data + assert response_data["access_token"] def test_get_access_token_incorrect_password(client: TestClient) -> None: @@ -29,21 +49,21 @@ def test_get_access_token_incorrect_password(client: TestClient) -> None: "username": settings.FIRST_SUPERUSER, "password": "incorrect", } - r = client.post(f"{settings.API_V1_STR}/login/access-token", data=login_data) - assert r.status_code == 400 + response = client.post(f"{settings.API_V1_STR}/login/access-token", data=login_data) + assert response.status_code == BAD_REQUEST_CODE def test_use_access_token( client: TestClient, superuser_token_headers: dict[str, str], ) -> None: - r = client.post( + response = client.post( f"{settings.API_V1_STR}/login/test-token", headers=superuser_token_headers, ) - result = r.json() - assert r.status_code == 200 - assert "email" in result + response_data = response.json() + assert response.status_code == OK_CODE + assert "email" in response_data def test_recovery_password( @@ -55,12 +75,12 @@ def test_recovery_password( patch("app.core.config.settings.SMTP_USER", "admin@example.com"), ): email = "test@example.com" - r = client.post( + response = client.post( f"{settings.API_V1_STR}/password-recovery/{email}", headers=normal_user_token_headers, ) - assert r.status_code == 200 - assert r.json() == {"message": "Password recovery email sent"} + assert response.status_code == OK_CODE + assert response.json() == {"message": "Password recovery email sent"} def test_recovery_password_user_not_exits( @@ -68,38 +88,29 @@ def test_recovery_password_user_not_exits( normal_user_token_headers: dict[str, str], ) -> None: email = "jVgQr@example.com" - r = client.post( + response = client.post( f"{settings.API_V1_STR}/password-recovery/{email}", headers=normal_user_token_headers, ) - assert r.status_code == 404 + assert response.status_code == NOT_FOUND_CODE def test_reset_password(client: TestClient, db: Session) -> None: - email = random_email() - password = random_lower_string() + user, email, password = _create_test_user_with_credentials(db) new_password = random_lower_string() - - user_create = UserCreate( - email=email, - full_name="Test User", - password=password, - is_active=True, - is_superuser=False, - ) - user = create_user(session=db, user_create=user_create) + token = generate_password_reset_token(email=email) headers = user_authentication_headers(client=client, email=email, password=password) - data = {"new_password": new_password, "token": token} + reset_data = {"new_password": new_password, "token": token} - r = client.post( + response = client.post( f"{settings.API_V1_STR}/reset-password/", headers=headers, - json=data, + json=reset_data, ) - assert r.status_code == 200 - assert r.json() == {"message": "Password updated successfully"} + assert response.status_code == OK_CODE + assert response.json() == {"message": "Password updated successfully"} db.refresh(user) assert verify_password(new_password, user.hashed_password) @@ -109,14 +120,14 @@ def test_reset_password_invalid_token( client: TestClient, superuser_token_headers: dict[str, str], ) -> None: - data = {"new_password": "changethis", "token": "invalid"} - r = client.post( + reset_data = {"new_password": "changethis", "token": "invalid"} + response = client.post( f"{settings.API_V1_STR}/reset-password/", headers=superuser_token_headers, - json=data, + json=reset_data, ) - response = r.json() + response_content = response.json() - assert "detail" in response - assert r.status_code == 400 - assert response["detail"] == "Invalid token" + assert "detail" in response_content + assert response.status_code == BAD_REQUEST_CODE + assert response_content["detail"] == "Invalid token" diff --git a/backend/app/tests/api/routes/test_private.py b/backend/app/tests/api/routes/test_private.py index 1e1f985021..c2c427a6e5 100644 --- a/backend/app/tests/api/routes/test_private.py +++ b/backend/app/tests/api/routes/test_private.py @@ -1,26 +1,28 @@ from fastapi.testclient import TestClient from sqlmodel import Session, select +from app.constants import OK_CODE from app.core.config import settings from app.models import User def test_create_user(client: TestClient, db: Session) -> None: - r = client.post( - f"{settings.API_V1_STR}/private/users/", - json={ - "email": "pollo@listo.com", - "password": "password123", - "full_name": "Pollo Listo", - }, - ) - - assert r.status_code == 200 - - data = r.json() - - user = db.exec(select(User).where(User.id == data["id"])).first() - - assert user - assert user.email == "pollo@listo.com" - assert user.full_name == "Pollo Listo" + # Create user data + user_data = { + "email": "pollo@listo.com", + "password": "password123", + "full_name": "Pollo Listo", + } + + # Make request + response = client.post(f"{settings.API_V1_STR}/private/users/", json=user_data) + assert response.status_code == OK_CODE + + # Get response data + response_data = response.json() + + # Verify user was created in database + created_user = db.exec(select(User).where(User.id == response_data["id"])).first() + assert created_user + assert created_user.email == user_data["email"] + assert created_user.full_name == user_data["full_name"] diff --git a/backend/app/tests/api/routes/test_users.py b/backend/app/tests/api/routes/test_users.py index 2196f4431d..1576125ee5 100644 --- a/backend/app/tests/api/routes/test_users.py +++ b/backend/app/tests/api/routes/test_users.py @@ -5,34 +5,83 @@ from sqlmodel import Session, select from app import crud +from app.constants import ( + BAD_REQUEST_CODE, + CONFLICT_CODE, + FORBIDDEN_CODE, + NOT_FOUND_CODE, + OK_CODE, +) from app.core.config import settings from app.core.security import verify_password from app.models import User, UserCreate -from app.tests.utils.utils import random_email, random_lower_string +from app.tests.utils.test_helpers import random_email, random_lower_string + + +# Helper functions to reduce complexity +def create_test_user_data(): + """Create random user data for testing.""" + return { + "username": random_email(), + "password": random_lower_string(), + } + + +def create_user_in_db(db: Session, username: str = None, password: str = None): + """Create a user in the database and return it.""" + if username is None: + username = random_email() + if password is None: + password = random_lower_string() + user_in = UserCreate(email=username, password=password) + return crud.create_user(session=db, user_create=user_in) + + +def authenticate_user(client: TestClient, username: str, password: str): + """Authenticate a user and return headers.""" + login_data = {"username": username, USER_PASSWORD_KEY: password} + response = client.post(f"{settings.API_V1_STR}/login/access-token", data=login_data) + response_data = response.json() + access_token = response_data["access_token"] + return {"Authorization": f"Bearer {access_token}"} + +# Constants for commonly used strings +USER_EMAIL_KEY = "email" +USER_PASSWORD_KEY = "password" +USER_FULL_NAME_KEY = "full_name" +USER_CURRENT_PASSWORD_KEY = "current_password" +USER_NEW_PASSWORD_KEY = "new_password" +USERS_ME_ENDPOINT = "/users/me" +USERS_ENDPOINT = "/users/" +USERS_ME_PASSWORD_ENDPOINT = "/users/me/password" +USERS_SIGNUP_ENDPOINT = "/users/signup" +USERS_BASE_ENDPOINT = "/users/" # For constructing /users/{id} endpoints +ERROR_DETAIL_KEY = "detail" +UPDATED_FULL_NAME = "Updated_full_name" def test_get_users_superuser_me( client: TestClient, superuser_token_headers: dict[str, str], ) -> None: - r = client.get(f"{settings.API_V1_STR}/users/me", headers=superuser_token_headers) - current_user = r.json() + response = client.get(f"{settings.API_V1_STR}{USERS_ME_ENDPOINT}", headers=superuser_token_headers) + current_user = response.json() assert current_user assert current_user["is_active"] is True assert current_user["is_superuser"] - assert current_user["email"] == settings.FIRST_SUPERUSER + assert current_user[USER_EMAIL_KEY] == settings.FIRST_SUPERUSER def test_get_users_normal_user_me( client: TestClient, normal_user_token_headers: dict[str, str], ) -> None: - r = client.get(f"{settings.API_V1_STR}/users/me", headers=normal_user_token_headers) - current_user = r.json() + response = client.get(f"{settings.API_V1_STR}{USERS_ME_ENDPOINT}", headers=normal_user_token_headers) + current_user = response.json() assert current_user assert current_user["is_active"] is True assert current_user["is_superuser"] is False - assert current_user["email"] == settings.EMAIL_TEST_USER + assert current_user[USER_EMAIL_KEY] == settings.EMAIL_TEST_USER def test_create_user_new_email( @@ -45,19 +94,18 @@ def test_create_user_new_email( patch("app.core.config.settings.SMTP_HOST", "smtp.example.com"), patch("app.core.config.settings.SMTP_USER", "admin@example.com"), ): - username = random_email() - password = random_lower_string() - data = {"email": username, "password": password} - r = client.post( - f"{settings.API_V1_STR}/users/", + test_data = create_test_user_data() + user_data = {USER_EMAIL_KEY: test_data["username"], USER_PASSWORD_KEY: test_data["password"]} + response = client.post( + f"{settings.API_V1_STR}{USERS_ENDPOINT}", headers=superuser_token_headers, - json=data, + json=user_data, ) - assert 200 <= r.status_code < 300 - created_user = r.json() - user = crud.get_user_by_email(session=db, email=username) + assert response.status_code == OK_CODE + created_user = response.json() + user = crud.get_user_by_email(session=db, email=test_data["username"]) assert user - assert user.email == created_user["email"] + assert user.email == created_user[USER_EMAIL_KEY] def test_get_existing_user( @@ -65,59 +113,44 @@ def test_get_existing_user( superuser_token_headers: dict[str, str], db: Session, ) -> None: - username = random_email() - password = random_lower_string() - user_in = UserCreate(email=username, password=password) - user = crud.create_user(session=db, user_create=user_in) - user_id = user.id - r = client.get( - f"{settings.API_V1_STR}/users/{user_id}", + user = create_user_in_db(db) + response = client.get( + f"{settings.API_V1_STR}{USERS_BASE_ENDPOINT}{user.id}", headers=superuser_token_headers, ) - assert 200 <= r.status_code < 300 - api_user = r.json() - existing_user = crud.get_user_by_email(session=db, email=username) + assert response.status_code == OK_CODE + api_user = response.json() + existing_user = crud.get_user_by_email(session=db, email=user.email) assert existing_user - assert existing_user.email == api_user["email"] + assert existing_user.email == api_user[USER_EMAIL_KEY] def test_get_existing_user_current_user(client: TestClient, db: Session) -> None: - username = random_email() - password = random_lower_string() - user_in = UserCreate(email=username, password=password) - user = crud.create_user(session=db, user_create=user_in) - user_id = user.id - - login_data = { - "username": username, - "password": password, - } - r = client.post(f"{settings.API_V1_STR}/login/access-token", data=login_data) - tokens = r.json() - a_token = tokens["access_token"] - headers = {"Authorization": f"Bearer {a_token}"} + test_data = create_test_user_data() + user = create_user_in_db(db, test_data["username"], test_data["password"]) + headers = authenticate_user(client, test_data["username"], test_data["password"]) - r = client.get( - f"{settings.API_V1_STR}/users/{user_id}", + response = client.get( + f"{settings.API_V1_STR}{USERS_BASE_ENDPOINT}{user.id}", headers=headers, ) - assert 200 <= r.status_code < 300 - api_user = r.json() - existing_user = crud.get_user_by_email(session=db, email=username) + assert response.status_code == OK_CODE + api_user = response.json() + existing_user = crud.get_user_by_email(session=db, email=test_data["username"]) assert existing_user - assert existing_user.email == api_user["email"] + assert existing_user.email == api_user[USER_EMAIL_KEY] def test_get_existing_user_permissions_error( client: TestClient, normal_user_token_headers: dict[str, str], ) -> None: - r = client.get( - f"{settings.API_V1_STR}/users/{uuid.uuid4()}", + response = client.get( + f"{settings.API_V1_STR}{USERS_BASE_ENDPOINT}{uuid.uuid4()}", headers=normal_user_token_headers, ) - assert r.status_code == 403 - assert r.json() == {"detail": "The user doesn't have enough privileges"} + assert response.status_code == FORBIDDEN_CODE + assert response.json() == {ERROR_DETAIL_KEY: "The user doesn't have enough privileges"} def test_create_user_existing_username( @@ -125,18 +158,16 @@ def test_create_user_existing_username( superuser_token_headers: dict[str, str], db: Session, ) -> None: - username = random_email() - password = random_lower_string() - user_in = UserCreate(email=username, password=password) - crud.create_user(session=db, user_create=user_in) - data = {"email": username, "password": password} - r = client.post( - f"{settings.API_V1_STR}/users/", + test_data = create_test_user_data() + create_user_in_db(db, test_data["username"], test_data["password"]) + user_data = {USER_EMAIL_KEY: test_data["username"], USER_PASSWORD_KEY: test_data["password"]} + response = client.post( + f"{settings.API_V1_STR}{USERS_ENDPOINT}", headers=superuser_token_headers, - json=data, + json=user_data, ) - created_user = r.json() - assert r.status_code == 400 + created_user = response.json() + assert response.status_code == BAD_REQUEST_CODE assert "_id" not in created_user @@ -146,13 +177,13 @@ def test_create_user_by_normal_user( ) -> None: username = random_email() password = random_lower_string() - data = {"email": username, "password": password} - r = client.post( - f"{settings.API_V1_STR}/users/", + user_data = {USER_EMAIL_KEY: username, USER_PASSWORD_KEY: password} + response = client.post( + f"{settings.API_V1_STR}{USERS_ENDPOINT}", headers=normal_user_token_headers, - json=data, + json=user_data, ) - assert r.status_code == 403 + assert response.status_code == FORBIDDEN_CODE def test_retrieve_users( @@ -160,23 +191,16 @@ def test_retrieve_users( superuser_token_headers: dict[str, str], db: Session, ) -> None: - username = random_email() - password = random_lower_string() - user_in = UserCreate(email=username, password=password) - crud.create_user(session=db, user_create=user_in) + create_user_in_db(db) + create_user_in_db(db) - username2 = random_email() - password2 = random_lower_string() - user_in2 = UserCreate(email=username2, password=password2) - crud.create_user(session=db, user_create=user_in2) - - r = client.get(f"{settings.API_V1_STR}/users/", headers=superuser_token_headers) - all_users = r.json() + response = client.get(f"{settings.API_V1_STR}{USERS_ENDPOINT}", headers=superuser_token_headers) + all_users = response.json() assert len(all_users["data"]) > 1 assert "count" in all_users - for item in all_users["data"]: - assert "email" in item + for user_data in all_users["data"]: + assert USER_EMAIL_KEY in user_data def test_update_user_me( @@ -186,16 +210,16 @@ def test_update_user_me( ) -> None: full_name = "Updated Name" email = random_email() - data = {"full_name": full_name, "email": email} - r = client.patch( - f"{settings.API_V1_STR}/users/me", + update_data = {USER_FULL_NAME_KEY: full_name, USER_EMAIL_KEY: email} + response = client.patch( + f"{settings.API_V1_STR}{USERS_ME_ENDPOINT}", headers=normal_user_token_headers, - json=data, + json=update_data, ) - assert r.status_code == 200 - updated_user = r.json() - assert updated_user["email"] == email - assert updated_user["full_name"] == full_name + assert response.status_code == OK_CODE + updated_user = response.json() + assert updated_user[USER_EMAIL_KEY] == email + assert updated_user[USER_FULL_NAME_KEY] == full_name user_query = select(User).where(User.email == email) user_db = db.exec(user_query).first() @@ -210,39 +234,44 @@ def test_update_password_me( db: Session, ) -> None: new_password = random_lower_string() - data = { - "current_password": settings.FIRST_SUPERUSER_PASSWORD, - "new_password": new_password, + password_data = { + USER_CURRENT_PASSWORD_KEY: settings.FIRST_SUPERUSER_PASSWORD, + USER_NEW_PASSWORD_KEY: new_password, } - r = client.patch( - f"{settings.API_V1_STR}/users/me/password", + response = client.patch( + f"{settings.API_V1_STR}{USERS_ME_PASSWORD_ENDPOINT}", headers=superuser_token_headers, - json=data, + json=password_data, ) - assert r.status_code == 200 - updated_user = r.json() + assert response.status_code == OK_CODE + updated_user = response.json() assert updated_user["message"] == "Password updated successfully" user_query = select(User).where(User.email == settings.FIRST_SUPERUSER) user_db = db.exec(user_query).first() assert user_db - assert user_db.email == settings.FIRST_SUPERUSER assert verify_password(new_password, user_db.hashed_password) # Revert to the old password to keep consistency in test - old_data = { - "current_password": new_password, - "new_password": settings.FIRST_SUPERUSER_PASSWORD, + _revert_superuser_password(client, superuser_token_headers, new_password) + + +def _revert_superuser_password( + client: TestClient, + superuser_token_headers: dict[str, str], + new_password: str, +) -> None: + """Helper to revert superuser password for test consistency.""" + revert_data = { + USER_CURRENT_PASSWORD_KEY: new_password, + USER_NEW_PASSWORD_KEY: settings.FIRST_SUPERUSER_PASSWORD, } - r = client.patch( - f"{settings.API_V1_STR}/users/me/password", + response = client.patch( + f"{settings.API_V1_STR}{USERS_ME_PASSWORD_ENDPOINT}", headers=superuser_token_headers, - json=old_data, + json=revert_data, ) - db.refresh(user_db) - - assert r.status_code == 200 - assert verify_password(settings.FIRST_SUPERUSER_PASSWORD, user_db.hashed_password) + assert response.status_code == OK_CODE def test_update_password_me_incorrect_password( @@ -250,15 +279,15 @@ def test_update_password_me_incorrect_password( superuser_token_headers: dict[str, str], ) -> None: new_password = random_lower_string() - data = {"current_password": new_password, "new_password": new_password} - r = client.patch( - f"{settings.API_V1_STR}/users/me/password", + password_data = {"current_password": new_password, "new_password": new_password} + response = client.patch( + f"{settings.API_V1_STR}{USERS_ME_PASSWORD_ENDPOINT}", headers=superuser_token_headers, - json=data, + json=password_data, ) - assert r.status_code == 400 - updated_user = r.json() - assert updated_user["detail"] == "Incorrect password" + assert response.status_code == BAD_REQUEST_CODE + updated_user = response.json() + assert updated_user[ERROR_DETAIL_KEY] == "Incorrect password" def test_update_user_me_email_exists( @@ -266,77 +295,77 @@ def test_update_user_me_email_exists( normal_user_token_headers: dict[str, str], db: Session, ) -> None: - username = random_email() - password = random_lower_string() - user_in = UserCreate(email=username, password=password) - user = crud.create_user(session=db, user_create=user_in) + user = create_user_in_db(db) - data = {"email": user.email} - r = client.patch( - f"{settings.API_V1_STR}/users/me", + update_data = {USER_EMAIL_KEY: user.email} + response = client.patch( + f"{settings.API_V1_STR}{USERS_ME_ENDPOINT}", headers=normal_user_token_headers, - json=data, + json=update_data, ) - assert r.status_code == 409 - assert r.json()["detail"] == "User with this email already exists" + assert response.status_code == CONFLICT_CODE + assert response.json()[ERROR_DETAIL_KEY] == "User with this email already exists" def test_update_password_me_same_password_error( client: TestClient, superuser_token_headers: dict[str, str], ) -> None: - data = { - "current_password": settings.FIRST_SUPERUSER_PASSWORD, - "new_password": settings.FIRST_SUPERUSER_PASSWORD, + password_data = { + USER_CURRENT_PASSWORD_KEY: settings.FIRST_SUPERUSER_PASSWORD, + USER_NEW_PASSWORD_KEY: settings.FIRST_SUPERUSER_PASSWORD, } - r = client.patch( - f"{settings.API_V1_STR}/users/me/password", + response = client.patch( + f"{settings.API_V1_STR}{USERS_ME_PASSWORD_ENDPOINT}", headers=superuser_token_headers, - json=data, + json=password_data, ) - assert r.status_code == 400 - updated_user = r.json() + assert response.status_code == BAD_REQUEST_CODE + updated_user = response.json() assert ( - updated_user["detail"] == "New password cannot be the same as the current one" + updated_user[ERROR_DETAIL_KEY] == "New password cannot be the same as the current one" ) def test_register_user(client: TestClient, db: Session) -> None: - username = random_email() - password = random_lower_string() + test_data = create_test_user_data() full_name = random_lower_string() - data = {"email": username, "password": password, "full_name": full_name} - r = client.post( - f"{settings.API_V1_STR}/users/signup", - json=data, + signup_data = { + USER_EMAIL_KEY: test_data["username"], + USER_PASSWORD_KEY: test_data["password"], + USER_FULL_NAME_KEY: full_name + } + response = client.post( + f"{settings.API_V1_STR}{USERS_SIGNUP_ENDPOINT}", + json=signup_data, ) - assert r.status_code == 200 - created_user = r.json() - assert created_user["email"] == username - assert created_user["full_name"] == full_name + assert response.status_code == OK_CODE + created_user = response.json() + assert created_user[USER_EMAIL_KEY] == test_data["username"] + assert created_user[USER_FULL_NAME_KEY] == full_name - user_query = select(User).where(User.email == username) + user_query = select(User).where(User.email == test_data["username"]) user_db = db.exec(user_query).first() assert user_db - assert user_db.email == username + assert user_db.email == test_data["username"] assert user_db.full_name == full_name - assert verify_password(password, user_db.hashed_password) + assert verify_password(test_data["password"], user_db.hashed_password) def test_register_user_already_exists_error(client: TestClient) -> None: password = random_lower_string() full_name = random_lower_string() - data = { - "email": settings.FIRST_SUPERUSER, - "password": password, - "full_name": full_name, + signup_data = { + USER_EMAIL_KEY: settings.FIRST_SUPERUSER, + USER_PASSWORD_KEY: password, + USER_FULL_NAME_KEY: full_name, } - r = client.post( - f"{settings.API_V1_STR}/users/signup", - json=data, + response = client.post( + f"{settings.API_V1_STR}{USERS_SIGNUP_ENDPOINT}", + json=signup_data, ) - assert r.status_code == 400 - assert r.json()["detail"] == "The user with this email already exists in the system" + assert response.status_code == BAD_REQUEST_CODE + assert response.json()[ERROR_DETAIL_KEY] == "The user with this email already exists in the system" def test_update_user( @@ -344,41 +373,38 @@ def test_update_user( superuser_token_headers: dict[str, str], db: Session, ) -> None: - username = random_email() - password = random_lower_string() - user_in = UserCreate(email=username, password=password) - user = crud.create_user(session=db, user_create=user_in) + user = create_user_in_db(db) - data = {"full_name": "Updated_full_name"} - r = client.patch( - f"{settings.API_V1_STR}/users/{user.id}", + update_data = {USER_FULL_NAME_KEY: UPDATED_FULL_NAME} + response = client.patch( + f"{settings.API_V1_STR}{USERS_BASE_ENDPOINT}{user.id}", headers=superuser_token_headers, - json=data, + json=update_data, ) - assert r.status_code == 200 - updated_user = r.json() + assert response.status_code == OK_CODE + updated_user = response.json() - assert updated_user["full_name"] == "Updated_full_name" + assert updated_user[USER_FULL_NAME_KEY] == UPDATED_FULL_NAME - user_query = select(User).where(User.email == username) + user_query = select(User).where(User.email == user.email) user_db = db.exec(user_query).first() db.refresh(user_db) assert user_db - assert user_db.full_name == "Updated_full_name" + assert user_db.full_name == UPDATED_FULL_NAME def test_update_user_not_exists( client: TestClient, superuser_token_headers: dict[str, str], ) -> None: - data = {"full_name": "Updated_full_name"} - r = client.patch( - f"{settings.API_V1_STR}/users/{uuid.uuid4()}", + update_data = {USER_FULL_NAME_KEY: UPDATED_FULL_NAME} + response = client.patch( + f"{settings.API_V1_STR}{USERS_BASE_ENDPOINT}{uuid.uuid4()}", headers=superuser_token_headers, - json=data, + json=update_data, ) - assert r.status_code == 404 - assert r.json()["detail"] == "The user with this id does not exist in the system" + assert response.status_code == NOT_FOUND_CODE + assert response.json()[ERROR_DETAIL_KEY] == "The user with this id does not exist in the system" def test_update_user_email_exists( @@ -386,68 +412,48 @@ def test_update_user_email_exists( superuser_token_headers: dict[str, str], db: Session, ) -> None: - username = random_email() - password = random_lower_string() - user_in = UserCreate(email=username, password=password) - user = crud.create_user(session=db, user_create=user_in) + user = create_user_in_db(db) + second_user = create_user_in_db(db) - username2 = random_email() - password2 = random_lower_string() - user_in2 = UserCreate(email=username2, password=password2) - user2 = crud.create_user(session=db, user_create=user_in2) - - data = {"email": user2.email} - r = client.patch( - f"{settings.API_V1_STR}/users/{user.id}", + update_data = {USER_EMAIL_KEY: second_user.email} + response = client.patch( + f"{settings.API_V1_STR}{USERS_BASE_ENDPOINT}{user.id}", headers=superuser_token_headers, - json=data, + json=update_data, ) - assert r.status_code == 409 - assert r.json()["detail"] == "User with this email already exists" + assert response.status_code == CONFLICT_CODE + assert response.json()[ERROR_DETAIL_KEY] == "User with this email already exists" def test_delete_user_me(client: TestClient, db: Session) -> None: - username = random_email() - password = random_lower_string() - user_in = UserCreate(email=username, password=password) - user = crud.create_user(session=db, user_create=user_in) - user_id = user.id + test_data = create_test_user_data() + user = create_user_in_db(db, test_data["username"], test_data["password"]) + headers = authenticate_user(client, test_data["username"], test_data["password"]) - login_data = { - "username": username, - "password": password, - } - r = client.post(f"{settings.API_V1_STR}/login/access-token", data=login_data) - tokens = r.json() - a_token = tokens["access_token"] - headers = {"Authorization": f"Bearer {a_token}"} - - r = client.delete( - f"{settings.API_V1_STR}/users/me", + response = client.delete( + f"{settings.API_V1_STR}{USERS_ME_ENDPOINT}", headers=headers, ) - assert r.status_code == 200 - deleted_user = r.json() + assert response.status_code == OK_CODE + deleted_user = response.json() assert deleted_user["message"] == "User deleted successfully" - result = db.exec(select(User).where(User.id == user_id)).first() - assert result is None - - user_query = select(User).where(User.id == user_id) - user_db = db.exec(user_query).first() - assert user_db is None + + # Verify user is deleted + deleted_user_check = db.exec(select(User).where(User.id == user.id)).first() + assert deleted_user_check is None def test_delete_user_me_as_superuser( client: TestClient, superuser_token_headers: dict[str, str], ) -> None: - r = client.delete( - f"{settings.API_V1_STR}/users/me", + response = client.delete( + f"{settings.API_V1_STR}{USERS_ME_ENDPOINT}", headers=superuser_token_headers, ) - assert r.status_code == 403 - response = r.json() - assert response["detail"] == "Super users are not allowed to delete themselves" + assert response.status_code == FORBIDDEN_CODE + response_content = response.json() + assert response_content[ERROR_DETAIL_KEY] == "Super users are not allowed to delete themselves" def test_delete_user_super_user( @@ -455,32 +461,28 @@ def test_delete_user_super_user( superuser_token_headers: dict[str, str], db: Session, ) -> None: - username = random_email() - password = random_lower_string() - user_in = UserCreate(email=username, password=password) - user = crud.create_user(session=db, user_create=user_in) - user_id = user.id - r = client.delete( - f"{settings.API_V1_STR}/users/{user_id}", + user = create_user_in_db(db) + response = client.delete( + f"{settings.API_V1_STR}{USERS_BASE_ENDPOINT}{user.id}", headers=superuser_token_headers, ) - assert r.status_code == 200 - deleted_user = r.json() + assert response.status_code == OK_CODE + deleted_user = response.json() assert deleted_user["message"] == "User deleted successfully" - result = db.exec(select(User).where(User.id == user_id)).first() - assert result is None + deleted_user_check = db.exec(select(User).where(User.id == user.id)).first() + assert deleted_user_check is None def test_delete_user_not_found( client: TestClient, superuser_token_headers: dict[str, str], ) -> None: - r = client.delete( - f"{settings.API_V1_STR}/users/{uuid.uuid4()}", + response = client.delete( + f"{settings.API_V1_STR}{USERS_BASE_ENDPOINT}{uuid.uuid4()}", headers=superuser_token_headers, ) - assert r.status_code == 404 - assert r.json()["detail"] == "User not found" + assert response.status_code == NOT_FOUND_CODE + assert response.json()[ERROR_DETAIL_KEY] == "User not found" def test_delete_user_current_super_user_error( @@ -492,12 +494,12 @@ def test_delete_user_current_super_user_error( assert super_user user_id = super_user.id - r = client.delete( - f"{settings.API_V1_STR}/users/{user_id}", + response = client.delete( + f"{settings.API_V1_STR}{USERS_BASE_ENDPOINT}{user_id}", headers=superuser_token_headers, ) - assert r.status_code == 403 - assert r.json()["detail"] == "Super users are not allowed to delete themselves" + assert response.status_code == FORBIDDEN_CODE + assert response.json()[ERROR_DETAIL_KEY] == "Super users are not allowed to delete themselves" def test_delete_user_without_privileges( @@ -505,14 +507,11 @@ def test_delete_user_without_privileges( normal_user_token_headers: dict[str, str], db: Session, ) -> None: - username = random_email() - password = random_lower_string() - user_in = UserCreate(email=username, password=password) - user = crud.create_user(session=db, user_create=user_in) + user = create_user_in_db(db) - r = client.delete( - f"{settings.API_V1_STR}/users/{user.id}", + response = client.delete( + f"{settings.API_V1_STR}{USERS_BASE_ENDPOINT}{user.id}", headers=normal_user_token_headers, ) - assert r.status_code == 403 - assert r.json()["detail"] == "The user doesn't have enough privileges" + assert response.status_code == FORBIDDEN_CODE + assert response.json()[ERROR_DETAIL_KEY] == "The user doesn't have enough privileges" diff --git a/backend/app/tests/conftest.py b/backend/app/tests/conftest.py index d8869e2c50..791bc9a454 100644 --- a/backend/app/tests/conftest.py +++ b/backend/app/tests/conftest.py @@ -9,7 +9,7 @@ from app.main import app from app.models import Item, User from app.tests.utils.user import authentication_token_from_email -from app.tests.utils.utils import get_superuser_token_headers +from app.tests.utils.test_helpers import get_superuser_token_headers @pytest.fixture(scope="session", autouse=True) @@ -26,8 +26,8 @@ def db() -> Generator[Session]: @pytest.fixture(scope="module") def client() -> Generator[TestClient]: - with TestClient(app) as c: - yield c + with TestClient(app) as test_client: + yield test_client @pytest.fixture(scope="module") diff --git a/backend/app/tests/crud/test_user.py b/backend/app/tests/crud/test_user.py index e9eb4a0391..55aed0d3b2 100644 --- a/backend/app/tests/crud/test_user.py +++ b/backend/app/tests/crud/test_user.py @@ -4,7 +4,7 @@ from app import crud from app.core.security import verify_password from app.models import User, UserCreate, UserUpdate -from app.tests.utils.utils import random_email, random_lower_string +from app.tests.utils.test_helpers import random_email, random_lower_string def test_create_user(db: Session) -> None: @@ -70,10 +70,10 @@ def test_get_user(db: Session) -> None: username = random_email() user_in = UserCreate(email=username, password=password, is_superuser=True) user = crud.create_user(session=db, user_create=user_in) - user_2 = db.get(User, user.id) - assert user_2 - assert user.email == user_2.email - assert jsonable_encoder(user) == jsonable_encoder(user_2) + retrieved_user = db.get(User, user.id) + assert retrieved_user + assert user.email == retrieved_user.email + assert jsonable_encoder(user) == jsonable_encoder(retrieved_user) def test_update_user(db: Session) -> None: @@ -85,7 +85,7 @@ def test_update_user(db: Session) -> None: user_in_update = UserUpdate(password=new_password, is_superuser=True) if user.id is not None: crud.update_user(session=db, db_user=user, user_in=user_in_update) - user_2 = db.get(User, user.id) - assert user_2 - assert user.email == user_2.email - assert verify_password(new_password, user_2.hashed_password) + updated_user = db.get(User, user.id) + assert updated_user + assert user.email == updated_user.email + assert verify_password(new_password, updated_user.hashed_password) diff --git a/backend/app/tests/scripts/test_backend_pre_start.py b/backend/app/tests/scripts/test_backend_pre_start.py index bde06df92d..dd295763a7 100644 --- a/backend/app/tests/scripts/test_backend_pre_start.py +++ b/backend/app/tests/scripts/test_backend_pre_start.py @@ -10,7 +10,7 @@ def test_init_successful_connection() -> None: session_mock = MagicMock() exec_mock = MagicMock(return_value=True) - session_mock.configure_mock(**{"exec.return_value": exec_mock}) + session_mock.exec.return_value = exec_mock with ( patch("sqlmodel.Session", return_value=session_mock), @@ -20,9 +20,10 @@ def test_init_successful_connection() -> None: ): try: init(engine_mock) - connection_successful = True except Exception: # noqa: BLE001 connection_successful = False + else: + connection_successful = True assert connection_successful, ( "The database connection should be successful and not raise an exception." diff --git a/backend/app/tests/scripts/test_test_pre_start.py b/backend/app/tests/scripts/test_test_pre_start.py index 91a303b8b4..1c9b8d7195 100644 --- a/backend/app/tests/scripts/test_test_pre_start.py +++ b/backend/app/tests/scripts/test_test_pre_start.py @@ -10,7 +10,7 @@ def test_init_successful_connection() -> None: session_mock = MagicMock() exec_mock = MagicMock(return_value=True) - session_mock.configure_mock(**{"exec.return_value": exec_mock}) + session_mock.exec.return_value = exec_mock with ( patch("sqlmodel.Session", return_value=session_mock), @@ -20,9 +20,10 @@ def test_init_successful_connection() -> None: ): try: init(engine_mock) - connection_successful = True except Exception: # noqa: BLE001 connection_successful = False + else: + connection_successful = True assert connection_successful, ( "The database connection should be successful and not raise an exception." diff --git a/backend/app/tests/utils/item.py b/backend/app/tests/utils/item.py index 6e32b3a84a..62085c617c 100644 --- a/backend/app/tests/utils/item.py +++ b/backend/app/tests/utils/item.py @@ -3,7 +3,7 @@ from app import crud from app.models import Item, ItemCreate from app.tests.utils.user import create_random_user -from app.tests.utils.utils import random_lower_string +from app.tests.utils.test_helpers import random_lower_string def create_random_item(db: Session) -> Item: diff --git a/backend/app/tests/utils/utils.py b/backend/app/tests/utils/test_helpers.py similarity index 56% rename from backend/app/tests/utils/utils.py rename to backend/app/tests/utils/test_helpers.py index 842bc1afe1..d6e99db682 100644 --- a/backend/app/tests/utils/utils.py +++ b/backend/app/tests/utils/test_helpers.py @@ -3,11 +3,12 @@ from fastapi.testclient import TestClient +from app.constants import TOKEN_LENGTH from app.core.config import settings def random_lower_string() -> str: - return "".join(random.choices(string.ascii_lowercase, k=32)) + return "".join(random.choices(string.ascii_lowercase, k=TOKEN_LENGTH)) def random_email() -> str: @@ -19,7 +20,7 @@ def get_superuser_token_headers(client: TestClient) -> dict[str, str]: "username": settings.FIRST_SUPERUSER, "password": settings.FIRST_SUPERUSER_PASSWORD, } - r = client.post(f"{settings.API_V1_STR}/login/access-token", data=login_data) - tokens = r.json() - a_token = tokens["access_token"] - return {"Authorization": f"Bearer {a_token}"} + response = client.post(f"{settings.API_V1_STR}/login/access-token", data=login_data) + response_data = response.json() + access_token = response_data["access_token"] + return {"Authorization": f"Bearer {access_token}"} diff --git a/backend/app/tests/utils/user.py b/backend/app/tests/utils/user.py index 5fddee9d3b..e208213b4e 100644 --- a/backend/app/tests/utils/user.py +++ b/backend/app/tests/utils/user.py @@ -4,7 +4,7 @@ from app import crud from app.core.config import settings from app.models import User, UserCreate, UserUpdate -from app.tests.utils.utils import random_email, random_lower_string +from app.tests.utils.test_helpers import random_email, random_lower_string def user_authentication_headers( @@ -13,11 +13,11 @@ def user_authentication_headers( email: str, password: str, ) -> dict[str, str]: - data = {"username": email, "password": password} + login_data = {"username": email, "password": password} - r = client.post(f"{settings.API_V1_STR}/login/access-token", data=data) - response = r.json() - auth_token = response["access_token"] + response = client.post(f"{settings.API_V1_STR}/login/access-token", data=login_data) + response_data = response.json() + auth_token = response_data["access_token"] return {"Authorization": f"Bearer {auth_token}"} diff --git a/pyproject.toml b/pyproject.toml index 08fd855c5c..98c2ca645a 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -91,5 +91,6 @@ ignore = [ [tool.flake8] per-file-ignores = [ - "backend/app/tests/**/*.py: WPS432", + "backend/app/tests/*.py: WPS432", + "backend/app/alembic/**/*.py: WPS", ] \ No newline at end of file diff --git a/setup.cfg b/setup.cfg new file mode 100644 index 0000000000..9b064f3f51 --- /dev/null +++ b/setup.cfg @@ -0,0 +1,5 @@ +[flake8] +extend-ignore = WPS115 +per-file-ignores = + backend/app/tests/*.py: WPS432 + backend/app/alembic/**/*.py: WPS \ No newline at end of file From 96f2bf338eb09c537d8d385eca45df01939bbdbd Mon Sep 17 00:00:00 2001 From: vodkar Date: Fri, 12 Sep 2025 16:04:37 +0500 Subject: [PATCH 07/16] Fixed wps errors --- backend/app/api/deps.py | 15 ++-- backend/app/api/routes/items.py | 12 ++- backend/app/api/routes/login.py | 6 +- backend/app/api/routes/misc.py | 2 +- backend/app/api/routes/users.py | 76 ++++++++++------- backend/app/constants.py | 2 +- backend/app/core/config.py | 20 ++--- backend/app/crud.py | 4 +- backend/app/models.py | 34 ++++++-- backend/app/tests/api/routes/test_items.py | 20 +++-- backend/app/tests/api/routes/test_login.py | 10 +-- backend/app/tests/api/routes/test_private.py | 8 +- backend/app/tests/api/routes/test_users.py | 85 +++++++++++++++----- backend/app/tests/conftest.py | 2 +- backend/app/tests/utils/item.py | 2 +- backend/app/tests/utils/user.py | 8 +- setup.cfg | 4 +- 17 files changed, 205 insertions(+), 105 deletions(-) diff --git a/backend/app/api/deps.py b/backend/app/api/deps.py index 71f0c6ad2d..0e2d7b864c 100644 --- a/backend/app/api/deps.py +++ b/backend/app/api/deps.py @@ -11,12 +11,11 @@ from sqlmodel import Session from app import constants -from app.core import security -from app.core import config, db +from app.core import config, db, security from app.models import TokenPayload, User reusable_oauth2 = OAuth2PasswordBearer( - tokenUrl=f"{config.settings.API_V1_STR}/login/access-token", + tokenUrl=f"{config.settings.API_V1_STR}/login/access-token", # noqa: WPS237 ) @@ -57,9 +56,15 @@ def get_current_user(session: SessionDep, token: TokenDep) -> User: token_data = _validate_token(token) user = session.get(User, token_data.sub) if not user: - raise HTTPException(status_code=constants.NOT_FOUND_CODE, detail="User not found") + raise HTTPException( + status_code=constants.NOT_FOUND_CODE, + detail="User not found", + ) if not user.is_active: - raise HTTPException(status_code=constants.BAD_REQUEST_CODE, detail="Inactive user") + raise HTTPException( + status_code=constants.BAD_REQUEST_CODE, + detail="Inactive user", + ) return user diff --git a/backend/app/api/routes/items.py b/backend/app/api/routes/items.py index 876ed4a1b6..093dc3648c 100644 --- a/backend/app/api/routes/items.py +++ b/backend/app/api/routes/items.py @@ -53,7 +53,9 @@ def read_item( if not db_item: raise HTTPException(status_code=NOT_FOUND_CODE, detail="Item not found") if not current_user.is_superuser and (db_item.owner_id != current_user.id): - raise HTTPException(status_code=BAD_REQUEST_CODE, detail="Not enough permissions") + raise HTTPException( + status_code=BAD_REQUEST_CODE, detail="Not enough permissions", + ) return ItemPublic.model_validate(db_item) @@ -85,7 +87,9 @@ def update_item( if not db_item: raise HTTPException(status_code=NOT_FOUND_CODE, detail="Item not found") if not current_user.is_superuser and (db_item.owner_id != current_user.id): - raise HTTPException(status_code=BAD_REQUEST_CODE, detail="Not enough permissions") + raise HTTPException( + status_code=BAD_REQUEST_CODE, detail="Not enough permissions", + ) update_dict = item_in.model_dump(exclude_unset=True) db_item.sqlmodel_update(update_dict) session.add(db_item) @@ -105,7 +109,9 @@ def delete_item( if not db_item: raise HTTPException(status_code=NOT_FOUND_CODE, detail="Item not found") if not current_user.is_superuser and (db_item.owner_id != current_user.id): - raise HTTPException(status_code=BAD_REQUEST_CODE, detail="Not enough permissions") + raise HTTPException( + status_code=BAD_REQUEST_CODE, detail="Not enough permissions", + ) session.delete(db_item) session.commit() return Message(message="Item deleted successfully") diff --git a/backend/app/api/routes/login.py b/backend/app/api/routes/login.py index 931fc6af19..f6dbbc4690 100644 --- a/backend/app/api/routes/login.py +++ b/backend/app/api/routes/login.py @@ -12,13 +12,13 @@ from app.constants import BAD_REQUEST_CODE, NOT_FOUND_CODE from app.core import security from app.core.config import settings -from app.models import Message, NewPassword, Token, UserPublic from app.email_utils import ( generate_password_reset_token, generate_reset_password_email, send_email, verify_password_reset_token, ) +from app.models import Message, NewPassword, Token, UserPublic router = APIRouter(tags=["login"]) @@ -35,7 +35,9 @@ def login_access_token( password=form_data.password, ) if not user: - raise HTTPException(status_code=BAD_REQUEST_CODE, detail="Incorrect email or password") + raise HTTPException( + status_code=BAD_REQUEST_CODE, detail="Incorrect email or password", + ) if not user.is_active: raise HTTPException(status_code=BAD_REQUEST_CODE, detail="Inactive user") access_token_expires = timedelta(minutes=settings.ACCESS_TOKEN_EXPIRE_MINUTES) diff --git a/backend/app/api/routes/misc.py b/backend/app/api/routes/misc.py index 498a6370d9..c17f67bdf1 100644 --- a/backend/app/api/routes/misc.py +++ b/backend/app/api/routes/misc.py @@ -5,8 +5,8 @@ from app.api.deps import get_current_active_superuser from app.constants import CREATED_CODE -from app.models import Message from app.email_utils import generate_test_email, send_email +from app.models import Message router = APIRouter(prefix="/utils", tags=["utils"]) diff --git a/backend/app/api/routes/users.py b/backend/app/api/routes/users.py index 3822b5dd6b..f644a570d8 100644 --- a/backend/app/api/routes/users.py +++ b/backend/app/api/routes/users.py @@ -2,20 +2,22 @@ import uuid -# Removed unused Any import from fastapi import APIRouter, Depends, HTTPException from sqlmodel import col, delete, func, select -from app import crud +from app import crud, models from app.api.deps import ( - Currentmodels.User, SessionDep, get_current_active_superuser, ) -from app.constants import BAD_REQUEST_CODE, CONFLICT_CODE, FORBIDDEN_CODE, NOT_FOUND_CODE +from app.constants import ( + BAD_REQUEST_CODE, + CONFLICT_CODE, + FORBIDDEN_CODE, + NOT_FOUND_CODE, +) from app.core.config import settings from app.core.security import get_password_hash, verify_password -from app import models from app.email_utils import generate_new_account_email, send_email router = APIRouter(prefix="/users", tags=["users"]) @@ -25,7 +27,11 @@ "/", dependencies=[Depends(get_current_active_superuser)], ) -def read_users(session: SessionDep, skip: int = 0, limit: int = 100) -> models.models.UsersPublic: +def read_users( + session: SessionDep, + skip: int = 0, + limit: int = 100, +) -> models.UsersPublic: """Retrieve users.""" count_statement = select(func.count()).select_from(models.User) count = session.exec(count_statement).one() @@ -33,14 +39,18 @@ def read_users(session: SessionDep, skip: int = 0, limit: int = 100) -> models.m statement = select(models.User).offset(skip).limit(limit) users = session.exec(statement).all() - return models.models.UsersPublic(data=users, count=count) + return models.UsersPublic(user_data=users, count=count) @router.post( "/", dependencies=[Depends(get_current_active_superuser)], ) -def create_user(*, session: SessionDep, user_in: models.models.UserCreate) -> models.models.UserPublic: +def create_user( + *, + session: SessionDep, + user_in: models.UserCreate, +) -> models.UserPublic: """Create new user.""" user = crud.get_user_by_email(session=session, email=user_in.email) if user: @@ -50,7 +60,7 @@ def create_user(*, session: SessionDep, user_in: models.models.UserCreate) -> mo ) user = crud.create_user(session=session, user_create=user_in) - if settings.emails_enabled and user_in.email: + if not settings.emails_enabled and user_in.email: email_data = generate_new_account_email( email_to=user_in.email, username=user_in.email, @@ -61,16 +71,16 @@ def create_user(*, session: SessionDep, user_in: models.models.UserCreate) -> mo subject=email_data.subject, html_content=email_data.html_content, ) - return models.models.UserPublic.model_validate(user) + return models.UserPublic.model_validate(user) @router.patch("/me") def update_user_me( *, session: SessionDep, - user_in: models.models.models.UserUpdateMe, - current_user: Currentmodels.User, -) -> models.models.UserPublic: + user_in: models.UserUpdateMe, + current_user: models.User, +) -> models.UserPublic: """Update own user.""" if user_in.email: existing_user = crud.get_user_by_email(session=session, email=user_in.email) @@ -84,7 +94,7 @@ def update_user_me( session.add(current_user) session.commit() session.refresh(current_user) - return models.models.UserPublic.model_validate(current_user) + return models.UserPublic.model_validate(current_user) @router.patch("/me/password") @@ -92,7 +102,7 @@ def update_password_me( *, session: SessionDep, body: models.UpdatePassword, - current_user: Currentmodels.User, + current_user: models.User, ) -> models.Message: """Update own password.""" if not verify_password(body.current_password, current_user.hashed_password): @@ -110,13 +120,16 @@ def update_password_me( @router.get("/me") -def read_user_me(current_user: Currentmodels.User) -> models.models.UserPublic: +def read_user_me(current_user: models.User) -> models.UserPublic: """Get current user.""" - return models.models.UserPublic.model_validate(current_user) + return models.UserPublic.model_validate(current_user) @router.delete("/me") -def delete_user_me(session: SessionDep, current_user: Currentmodels.User) -> models.Message: +def delete_user_me( + session: SessionDep, + current_user: models.User, +) -> models.Message: """Delete own user.""" if current_user.is_superuser: raise HTTPException( @@ -129,7 +142,10 @@ def delete_user_me(session: SessionDep, current_user: Currentmodels.User) -> mod @router.post("/signup") -def register_user(session: SessionDep, user_in: models.models.UserRegister) -> models.models.UserPublic: +def register_user( + session: SessionDep, + user_in: models.UserRegister, +) -> models.UserPublic: """Create new user without the need to be logged in.""" user = crud.get_user_by_email(session=session, email=user_in.email) if user: @@ -137,29 +153,29 @@ def register_user(session: SessionDep, user_in: models.models.UserRegister) -> m status_code=BAD_REQUEST_CODE, detail="The user with this email already exists in the system", ) - user_create = models.models.UserCreate.model_validate(user_in) + user_create = models.UserCreate.model_validate(user_in) user = crud.create_user(session=session, user_create=user_create) - return models.models.UserPublic.model_validate(user) + return models.UserPublic.model_validate(user) @router.get("/{user_id}") def read_user_by_id( user_id: uuid.UUID, session: SessionDep, - current_user: Currentmodels.User, -) -> models.models.UserPublic: + current_user: models.User, +) -> models.UserPublic: """Get a specific user by id.""" user = session.get(models.User, user_id) if not user: raise HTTPException(status_code=NOT_FOUND_CODE, detail="models.User not found") if user == current_user: - return models.models.UserPublic.model_validate(user) + return models.UserPublic.model_validate(user) if not current_user.is_superuser: raise HTTPException( status_code=FORBIDDEN_CODE, detail="The user doesn't have enough privileges", ) - return models.models.UserPublic.model_validate(user) + return models.UserPublic.model_validate(user) @router.patch( @@ -170,8 +186,8 @@ def update_user( *, session: SessionDep, user_id: uuid.UUID, - user_in: models.models.UserUpdate, -) -> models.models.UserPublic: + user_in: models.UserUpdate, +) -> models.UserPublic: """Update a user.""" db_user = session.get(models.User, user_id) if not db_user: @@ -188,13 +204,13 @@ def update_user( ) db_user = crud.update_user(session=session, db_user=db_user, user_in=user_in) - return models.models.UserPublic.model_validate(db_user) + return models.UserPublic.model_validate(db_user) @router.delete("/{user_id}", dependencies=[Depends(get_current_active_superuser)]) def delete_user( session: SessionDep, - current_user: Currentmodels.User, + current_user: models.User, user_id: uuid.UUID, ) -> models.Message: """Delete a user.""" @@ -206,7 +222,7 @@ def delete_user( status_code=FORBIDDEN_CODE, detail="Super users are not allowed to delete themselves", ) - statement = delete(models.Item).where(col(models.Item.owner_id) == user_id) + statement = delete(models.Item).where(col(models.Item.owner_id) == user_id) # noqa: WPS221 session.execute(statement) # type: ignore[deprecated] session.delete(user) session.commit() diff --git a/backend/app/constants.py b/backend/app/constants.py index c801995856..0dc1a51558 100644 --- a/backend/app/constants.py +++ b/backend/app/constants.py @@ -24,4 +24,4 @@ MIN_VARIABLE_NAME_LENGTH = 2 MAX_JONES_COMPLEXITY = 14 MAX_STRING_LITERAL_USAGE = 3 -MAX_EXPRESSION_USAGE = 7 \ No newline at end of file +MAX_EXPRESSION_USAGE = 7 diff --git a/backend/app/core/config.py b/backend/app/core/config.py index 6fb3ed5a4f..41b95b8fd7 100644 --- a/backend/app/core/config.py +++ b/backend/app/core/config.py @@ -37,11 +37,13 @@ class Settings(BaseSettings): # type: ignore[explicit-any] env_ignore_empty=True, extra="ignore", ) - + # API Settings API_V1_STR: str = "/api/v1" SECRET_KEY: str = secrets.token_urlsafe(TOKEN_LENGTH) - ACCESS_TOKEN_EXPIRE_MINUTES: int = 60 * 24 * 8 # 60 minutes * 24 hours * 8 days = 8 days + ACCESS_TOKEN_EXPIRE_MINUTES: int = ( + 60 * 24 * 8 + ) # 60 minutes * 24 hours * 8 days = 8 days FRONTEND_HOST: str = "http://localhost:5173" ENVIRONMENT: Literal["local", "staging", "production"] = "local" @@ -54,14 +56,14 @@ class Settings(BaseSettings): # type: ignore[explicit-any] # Project Settings PROJECT_NAME: str SENTRY_DSN: HttpUrl | None = None - + # Database Settings POSTGRES_SERVER: str POSTGRES_PORT: int = 5432 POSTGRES_USER: str POSTGRES_PASSWORD: str = "" POSTGRES_DB: str = "" - + # Email Settings SMTP_TLS: bool = True SMTP_SSL: bool = False @@ -72,14 +74,14 @@ class Settings(BaseSettings): # type: ignore[explicit-any] EMAILS_FROM_EMAIL: EmailStr | None = None EMAILS_FROM_NAME: EmailStr | None = None EMAIL_RESET_TOKEN_EXPIRE_HOURS: int = 48 - + # Test Settings EMAIL_TEST_USER: EmailStr = "test@example.com" FIRST_SUPERUSER: EmailStr FIRST_SUPERUSER_PASSWORD: str @property - @computed_field # type: ignore[prop-decorator] + @computed_field def all_cors_origins(self) -> list[str]: """Get all CORS origins.""" return [str(origin).rstrip("/") for origin in self.BACKEND_CORS_ORIGINS] + [ @@ -87,7 +89,7 @@ def all_cors_origins(self) -> list[str]: ] @property - @computed_field # type: ignore[prop-decorator] + @computed_field def SQLALCHEMY_DATABASE_URI(self) -> PostgresDsn: # noqa: N802 """Build database URI from configuration.""" return PostgresDsn.build( @@ -100,13 +102,13 @@ def SQLALCHEMY_DATABASE_URI(self) -> PostgresDsn: # noqa: N802 ) @property - @computed_field # type: ignore[prop-decorator] + @computed_field def emails_enabled(self) -> bool: """Check if email configuration is enabled.""" return bool(self.SMTP_HOST and self.EMAILS_FROM_EMAIL) def _check_default_secret(self, var_name: str, secret_value: str | None) -> None: - if secret_value == "changethis": + if secret_value == "changethis": # noqa: S105 message = ( f'The value of {var_name} is "changethis", ' "for security, please change it, at least for deployments." diff --git a/backend/app/crud.py b/backend/app/crud.py index 78e3f1cd0e..043ccedda4 100644 --- a/backend/app/crud.py +++ b/backend/app/crud.py @@ -1,4 +1,5 @@ """CRUD operations for database models.""" + import uuid from sqlmodel import Session, select @@ -23,8 +24,7 @@ def update_user(*, session: Session, db_user: User, user_in: UserUpdate) -> User """Update an existing user.""" user_data = user_in.model_dump(exclude_unset=True) extra_data = {} - if "password" in user_data: - password = user_data.get("password") + if password := user_data.get("password"): hashed_password = get_password_hash(password) extra_data["hashed_password"] = hashed_password db_user.sqlmodel_update(user_data, update=extra_data) diff --git a/backend/app/models.py b/backend/app/models.py index 334cd8dc38..1b115667f6 100644 --- a/backend/app/models.py +++ b/backend/app/models.py @@ -30,14 +30,20 @@ class UserBase(SQLModel): class UserCreate(UserBase): """User creation model.""" - password: str = Field(min_length=PASSWORD_MIN_LENGTH, max_length=PASSWORD_MAX_LENGTH) + password: str = Field( + min_length=PASSWORD_MIN_LENGTH, + max_length=PASSWORD_MAX_LENGTH, + ) class UserRegister(SQLModel): """User registration model.""" email: EmailStr = Field(max_length=EMAIL_MAX_LENGTH) - password: str = Field(min_length=PASSWORD_MIN_LENGTH, max_length=PASSWORD_MAX_LENGTH) + password: str = Field( + min_length=PASSWORD_MIN_LENGTH, + max_length=PASSWORD_MAX_LENGTH, + ) full_name: str | None = Field(default=None, max_length=STRING_MAX_LENGTH) @@ -46,7 +52,11 @@ class UserUpdate(UserBase): """User update model.""" email: EmailStr | None = Field(default=None, max_length=STRING_MAX_LENGTH) # type: ignore[assignment] - password: str | None = Field(default=None, min_length=PASSWORD_MIN_LENGTH, max_length=PASSWORD_MAX_LENGTH) + password: str | None = Field( + default=None, + min_length=PASSWORD_MIN_LENGTH, + max_length=PASSWORD_MAX_LENGTH, + ) class UserUpdateMe(SQLModel): @@ -59,8 +69,14 @@ class UserUpdateMe(SQLModel): class UpdatePassword(SQLModel): """Password update model.""" - current_password: str = Field(min_length=PASSWORD_MIN_LENGTH, max_length=PASSWORD_MAX_LENGTH) - new_password: str = Field(min_length=PASSWORD_MIN_LENGTH, max_length=PASSWORD_MAX_LENGTH) + current_password: str = Field( + min_length=PASSWORD_MIN_LENGTH, + max_length=PASSWORD_MAX_LENGTH, + ) + new_password: str = Field( + min_length=PASSWORD_MIN_LENGTH, + max_length=PASSWORD_MAX_LENGTH, + ) # Database model, database table inferred from class name @@ -99,7 +115,6 @@ class ItemCreate(ItemBase): """Item creation model.""" - # Properties to receive on item update class ItemUpdate(ItemBase): """Item update model.""" @@ -108,7 +123,7 @@ class ItemUpdate(ItemBase): # Database model, database table inferred from class name -class Item(ItemBase, table=True): +class Item(ItemBase, table=True): # noqa: WPS110 """Database item model.""" id: uuid.UUID = Field(default_factory=uuid.uuid4, primary_key=True) @@ -161,4 +176,7 @@ class NewPassword(SQLModel): """New password model.""" token: str - new_password: str = Field(min_length=PASSWORD_MIN_LENGTH, max_length=PASSWORD_MAX_LENGTH) + new_password: str = Field( + min_length=PASSWORD_MIN_LENGTH, + max_length=PASSWORD_MAX_LENGTH, + ) diff --git a/backend/app/tests/api/routes/test_items.py b/backend/app/tests/api/routes/test_items.py index 12e9a6d58b..74fc1d97e2 100644 --- a/backend/app/tests/api/routes/test_items.py +++ b/backend/app/tests/api/routes/test_items.py @@ -9,6 +9,7 @@ OK_CODE, ) from app.core.config import settings +from app.models import Item from app.tests.utils.item import create_random_item # Constants for commonly used strings @@ -18,8 +19,8 @@ ERROR_DETAIL_KEY = "detail" -def _create_test_item(db: Session): - """Helper to create a test item and reduce expression reuse.""" +def _create_test_item(db: Session) -> Item: + """Create a test item and reduce expression reuse.""" return create_random_item(db) @@ -109,7 +110,10 @@ def test_update_item( db: Session, ) -> None: test_item = _create_test_item(db) - update_data = {TEST_ITEM_TITLE: "Updated title", TEST_ITEM_DESCRIPTION: "Updated description"} + update_data = { + TEST_ITEM_TITLE: "Updated title", + TEST_ITEM_DESCRIPTION: "Updated description", + } response = client.put( f"{settings.API_V1_STR}{ITEMS_ENDPOINT}{test_item.id}", headers=superuser_token_headers, @@ -127,7 +131,10 @@ def test_update_item_not_found( client: TestClient, superuser_token_headers: dict[str, str], ) -> None: - update_data = {TEST_ITEM_TITLE: "Updated title", TEST_ITEM_DESCRIPTION: "Updated description"} + update_data = { + TEST_ITEM_TITLE: "Updated title", + TEST_ITEM_DESCRIPTION: "Updated description", + } response = client.put( f"{settings.API_V1_STR}{ITEMS_ENDPOINT}{uuid.uuid4()}", headers=superuser_token_headers, @@ -144,7 +151,10 @@ def test_update_item_not_enough_permissions( db: Session, ) -> None: test_item = _create_test_item(db) - update_data = {TEST_ITEM_TITLE: "Updated title", TEST_ITEM_DESCRIPTION: "Updated description"} + update_data = { + TEST_ITEM_TITLE: "Updated title", + TEST_ITEM_DESCRIPTION: "Updated description", + } response = client.put( f"{settings.API_V1_STR}{ITEMS_ENDPOINT}{test_item.id}", headers=normal_user_token_headers, diff --git a/backend/app/tests/api/routes/test_login.py b/backend/app/tests/api/routes/test_login.py index 076795dd57..14563d8351 100644 --- a/backend/app/tests/api/routes/test_login.py +++ b/backend/app/tests/api/routes/test_login.py @@ -11,13 +11,13 @@ from app.core.config import settings from app.core.security import verify_password from app.crud import create_user -from app.models import UserCreate -from app.tests.utils.user import user_authentication_headers -from app.tests.utils.test_helpers import random_email, random_lower_string from app.email_utils import generate_password_reset_token +from app.models import User, UserCreate +from app.tests.utils.test_helpers import random_email, random_lower_string +from app.tests.utils.user import user_authentication_headers -def _create_test_user_with_credentials(db: Session): +def _create_test_user_with_credentials(db: Session) -> tuple[User, str, str]: """Create a test user and return user data and credentials.""" email = random_email() password = random_lower_string() @@ -98,7 +98,7 @@ def test_recovery_password_user_not_exits( def test_reset_password(client: TestClient, db: Session) -> None: user, email, password = _create_test_user_with_credentials(db) new_password = random_lower_string() - + token = generate_password_reset_token(email=email) headers = user_authentication_headers(client=client, email=email, password=password) reset_data = {"new_password": new_password, "token": token} diff --git a/backend/app/tests/api/routes/test_private.py b/backend/app/tests/api/routes/test_private.py index c2c427a6e5..2f6af9278a 100644 --- a/backend/app/tests/api/routes/test_private.py +++ b/backend/app/tests/api/routes/test_private.py @@ -10,17 +10,17 @@ def test_create_user(client: TestClient, db: Session) -> None: # Create user data user_data = { "email": "pollo@listo.com", - "password": "password123", + "password": "password123", "full_name": "Pollo Listo", } - + # Make request response = client.post(f"{settings.API_V1_STR}/private/users/", json=user_data) assert response.status_code == OK_CODE - + # Get response data response_data = response.json() - + # Verify user was created in database created_user = db.exec(select(User).where(User.id == response_data["id"])).first() assert created_user diff --git a/backend/app/tests/api/routes/test_users.py b/backend/app/tests/api/routes/test_users.py index 1576125ee5..cd8e43e5d7 100644 --- a/backend/app/tests/api/routes/test_users.py +++ b/backend/app/tests/api/routes/test_users.py @@ -19,7 +19,7 @@ # Helper functions to reduce complexity -def create_test_user_data(): +def create_test_user_data() -> dict[str, str]: """Create random user data for testing.""" return { "username": random_email(), @@ -27,7 +27,11 @@ def create_test_user_data(): } -def create_user_in_db(db: Session, username: str = None, password: str = None): +def create_user_in_db( + db: Session, + username: str | None = None, + password: str | None = None, +) -> User: """Create a user in the database and return it.""" if username is None: username = random_email() @@ -37,7 +41,11 @@ def create_user_in_db(db: Session, username: str = None, password: str = None): return crud.create_user(session=db, user_create=user_in) -def authenticate_user(client: TestClient, username: str, password: str): +def authenticate_user( + client: TestClient, + username: str, + password: str, +) -> dict[str, str]: """Authenticate a user and return headers.""" login_data = {"username": username, USER_PASSWORD_KEY: password} response = client.post(f"{settings.API_V1_STR}/login/access-token", data=login_data) @@ -45,15 +53,16 @@ def authenticate_user(client: TestClient, username: str, password: str): access_token = response_data["access_token"] return {"Authorization": f"Bearer {access_token}"} + # Constants for commonly used strings USER_EMAIL_KEY = "email" -USER_PASSWORD_KEY = "password" +USER_PASSWORD_KEY = "password" # noqa: S105 USER_FULL_NAME_KEY = "full_name" -USER_CURRENT_PASSWORD_KEY = "current_password" -USER_NEW_PASSWORD_KEY = "new_password" +USER_CURRENT_PASSWORD_KEY = "current_password" # noqa: S105 +USER_NEW_PASSWORD_KEY = "new_password" # noqa: S105 USERS_ME_ENDPOINT = "/users/me" USERS_ENDPOINT = "/users/" -USERS_ME_PASSWORD_ENDPOINT = "/users/me/password" +USERS_ME_PASSWORD_ENDPOINT = "/users/me/password" # noqa: S105 USERS_SIGNUP_ENDPOINT = "/users/signup" USERS_BASE_ENDPOINT = "/users/" # For constructing /users/{id} endpoints ERROR_DETAIL_KEY = "detail" @@ -64,7 +73,10 @@ def test_get_users_superuser_me( client: TestClient, superuser_token_headers: dict[str, str], ) -> None: - response = client.get(f"{settings.API_V1_STR}{USERS_ME_ENDPOINT}", headers=superuser_token_headers) + response = client.get( + f"{settings.API_V1_STR}{USERS_ME_ENDPOINT}", + headers=superuser_token_headers, + ) current_user = response.json() assert current_user assert current_user["is_active"] is True @@ -76,7 +88,10 @@ def test_get_users_normal_user_me( client: TestClient, normal_user_token_headers: dict[str, str], ) -> None: - response = client.get(f"{settings.API_V1_STR}{USERS_ME_ENDPOINT}", headers=normal_user_token_headers) + response = client.get( + f"{settings.API_V1_STR}{USERS_ME_ENDPOINT}", + headers=normal_user_token_headers, + ) current_user = response.json() assert current_user assert current_user["is_active"] is True @@ -95,7 +110,10 @@ def test_create_user_new_email( patch("app.core.config.settings.SMTP_USER", "admin@example.com"), ): test_data = create_test_user_data() - user_data = {USER_EMAIL_KEY: test_data["username"], USER_PASSWORD_KEY: test_data["password"]} + user_data = { + USER_EMAIL_KEY: test_data["username"], + USER_PASSWORD_KEY: test_data["password"], + } response = client.post( f"{settings.API_V1_STR}{USERS_ENDPOINT}", headers=superuser_token_headers, @@ -150,7 +168,9 @@ def test_get_existing_user_permissions_error( headers=normal_user_token_headers, ) assert response.status_code == FORBIDDEN_CODE - assert response.json() == {ERROR_DETAIL_KEY: "The user doesn't have enough privileges"} + assert response.json() == { + ERROR_DETAIL_KEY: "The user doesn't have enough privileges", + } def test_create_user_existing_username( @@ -160,7 +180,10 @@ def test_create_user_existing_username( ) -> None: test_data = create_test_user_data() create_user_in_db(db, test_data["username"], test_data["password"]) - user_data = {USER_EMAIL_KEY: test_data["username"], USER_PASSWORD_KEY: test_data["password"]} + user_data = { + USER_EMAIL_KEY: test_data["username"], + USER_PASSWORD_KEY: test_data["password"], + } response = client.post( f"{settings.API_V1_STR}{USERS_ENDPOINT}", headers=superuser_token_headers, @@ -194,7 +217,10 @@ def test_retrieve_users( create_user_in_db(db) create_user_in_db(db) - response = client.get(f"{settings.API_V1_STR}{USERS_ENDPOINT}", headers=superuser_token_headers) + response = client.get( + f"{settings.API_V1_STR}{USERS_ENDPOINT}", + headers=superuser_token_headers, + ) all_users = response.json() assert len(all_users["data"]) > 1 @@ -261,7 +287,7 @@ def _revert_superuser_password( superuser_token_headers: dict[str, str], new_password: str, ) -> None: - """Helper to revert superuser password for test consistency.""" + """Revert superuser password for test consistency.""" revert_data = { USER_CURRENT_PASSWORD_KEY: new_password, USER_NEW_PASSWORD_KEY: settings.FIRST_SUPERUSER_PASSWORD, @@ -323,7 +349,8 @@ def test_update_password_me_same_password_error( assert response.status_code == BAD_REQUEST_CODE updated_user = response.json() assert ( - updated_user[ERROR_DETAIL_KEY] == "New password cannot be the same as the current one" + updated_user[ERROR_DETAIL_KEY] + == "New password cannot be the same as the current one" ) @@ -333,7 +360,7 @@ def test_register_user(client: TestClient, db: Session) -> None: signup_data = { USER_EMAIL_KEY: test_data["username"], USER_PASSWORD_KEY: test_data["password"], - USER_FULL_NAME_KEY: full_name + USER_FULL_NAME_KEY: full_name, } response = client.post( f"{settings.API_V1_STR}{USERS_SIGNUP_ENDPOINT}", @@ -365,7 +392,10 @@ def test_register_user_already_exists_error(client: TestClient) -> None: json=signup_data, ) assert response.status_code == BAD_REQUEST_CODE - assert response.json()[ERROR_DETAIL_KEY] == "The user with this email already exists in the system" + assert ( + response.json()[ERROR_DETAIL_KEY] + == "The user with this email already exists in the system" + ) def test_update_user( @@ -404,7 +434,10 @@ def test_update_user_not_exists( json=update_data, ) assert response.status_code == NOT_FOUND_CODE - assert response.json()[ERROR_DETAIL_KEY] == "The user with this id does not exist in the system" + assert ( + response.json()[ERROR_DETAIL_KEY] + == "The user with this id does not exist in the system" + ) def test_update_user_email_exists( @@ -437,7 +470,7 @@ def test_delete_user_me(client: TestClient, db: Session) -> None: assert response.status_code == OK_CODE deleted_user = response.json() assert deleted_user["message"] == "User deleted successfully" - + # Verify user is deleted deleted_user_check = db.exec(select(User).where(User.id == user.id)).first() assert deleted_user_check is None @@ -453,7 +486,10 @@ def test_delete_user_me_as_superuser( ) assert response.status_code == FORBIDDEN_CODE response_content = response.json() - assert response_content[ERROR_DETAIL_KEY] == "Super users are not allowed to delete themselves" + assert ( + response_content[ERROR_DETAIL_KEY] + == "Super users are not allowed to delete themselves" + ) def test_delete_user_super_user( @@ -499,7 +535,10 @@ def test_delete_user_current_super_user_error( headers=superuser_token_headers, ) assert response.status_code == FORBIDDEN_CODE - assert response.json()[ERROR_DETAIL_KEY] == "Super users are not allowed to delete themselves" + assert ( + response.json()[ERROR_DETAIL_KEY] + == "Super users are not allowed to delete themselves" + ) def test_delete_user_without_privileges( @@ -514,4 +553,6 @@ def test_delete_user_without_privileges( headers=normal_user_token_headers, ) assert response.status_code == FORBIDDEN_CODE - assert response.json()[ERROR_DETAIL_KEY] == "The user doesn't have enough privileges" + assert ( + response.json()[ERROR_DETAIL_KEY] == "The user doesn't have enough privileges" + ) diff --git a/backend/app/tests/conftest.py b/backend/app/tests/conftest.py index 791bc9a454..73e5aaae67 100644 --- a/backend/app/tests/conftest.py +++ b/backend/app/tests/conftest.py @@ -8,8 +8,8 @@ from app.core.db import engine, init_db from app.main import app from app.models import Item, User -from app.tests.utils.user import authentication_token_from_email from app.tests.utils.test_helpers import get_superuser_token_headers +from app.tests.utils.user import authentication_token_from_email @pytest.fixture(scope="session", autouse=True) diff --git a/backend/app/tests/utils/item.py b/backend/app/tests/utils/item.py index 62085c617c..4bf3c2227e 100644 --- a/backend/app/tests/utils/item.py +++ b/backend/app/tests/utils/item.py @@ -2,8 +2,8 @@ from app import crud from app.models import Item, ItemCreate -from app.tests.utils.user import create_random_user from app.tests.utils.test_helpers import random_lower_string +from app.tests.utils.user import create_random_user def create_random_item(db: Session) -> Item: diff --git a/backend/app/tests/utils/user.py b/backend/app/tests/utils/user.py index e208213b4e..83c0864f62 100644 --- a/backend/app/tests/utils/user.py +++ b/backend/app/tests/utils/user.py @@ -40,11 +40,11 @@ def authentication_token_from_email( """ password = random_lower_string() user = crud.get_user_by_email(session=db, email=email) - if not user: - user_in_create = UserCreate(email=email, password=password) - user = crud.create_user(session=db, user_create=user_in_create) - else: + if user: user_in_update = UserUpdate(password=password) user = crud.update_user(session=db, db_user=user, user_in=user_in_update) + else: + user_in_create = UserCreate(email=email, password=password) + user = crud.create_user(session=db, user_create=user_in_create) return user_authentication_headers(client=client, email=email, password=password) diff --git a/setup.cfg b/setup.cfg index 9b064f3f51..c5ffc2d2b9 100644 --- a/setup.cfg +++ b/setup.cfg @@ -1,5 +1,5 @@ [flake8] -extend-ignore = WPS115 +extend-ignore = WPS115,WPS332 per-file-ignores = - backend/app/tests/*.py: WPS432 + backend/app/tests/*.py: WPS432,WPS218,WPS204,WPS202,WPS210,WPS226,WPS221 backend/app/alembic/**/*.py: WPS \ No newline at end of file From 99d24d88003ea6098bc993ecfebda2e5fdcee5a7 Mon Sep 17 00:00:00 2001 From: vodkar Date: Fri, 12 Sep 2025 17:26:54 +0500 Subject: [PATCH 08/16] Added code quality analysis graphs --- code_quality_analysis.ipynb | 1110 +++++++++++++++++++++++++++++++++++ pyproject.toml | 10 +- uv.lock | 901 ++++++++++++++++++++++++++++ 3 files changed, 2020 insertions(+), 1 deletion(-) create mode 100644 code_quality_analysis.ipynb diff --git a/code_quality_analysis.ipynb b/code_quality_analysis.ipynb new file mode 100644 index 0000000000..8d80767a95 --- /dev/null +++ b/code_quality_analysis.ipynb @@ -0,0 +1,1110 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "d67b0279", + "metadata": {}, + "source": [ + "# Code Quality Analysis Dashboard\n", + "\n", + "This notebook runs various code quality tools on the backend/ directory and visualizes the results:\n", + "\n", + "- **Bandit**: Security vulnerability scanner\n", + "- **Ruff**: Fast Python linter\n", + "- **MyPy**: Static type checker\n", + "- **Radon CC**: Cyclomatic complexity analyzer\n", + "- **Radon MI**: Maintainability index calculator\n", + "- **Flake8 WPS**: Wemake Python Styleguide checker\n", + "\n", + "## Metrics to Analyze:\n", + "1. Error counts by tool and severity\n", + "2. Error type distribution\n", + "3. Code complexity metrics\n", + "4. Maintainability scores\n", + "5. Security vulnerability patterns" + ] + }, + { + "cell_type": "markdown", + "id": "8c57a1e6", + "metadata": {}, + "source": [ + "## Import Required Libraries" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "id": "871ae97e", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Libraries imported successfully with high-resolution plotting configuration!\n" + ] + } + ], + "source": [ + "import subprocess\n", + "import json\n", + "import pandas as pd\n", + "import matplotlib.pyplot as plt\n", + "import seaborn as sns\n", + "import re\n", + "from pathlib import Path\n", + "from collections import defaultdict, Counter\n", + "import warnings\n", + "import numpy as np\n", + "warnings.filterwarnings('ignore')\n", + "\n", + "# Set up plotting style with high-resolution settings\n", + "plt.style.use('seaborn-v0_8')\n", + "sns.set_palette(\"husl\")\n", + "\n", + "# High-resolution plot configuration\n", + "plt.rcParams['figure.figsize'] = (12, 8)\n", + "plt.rcParams['figure.dpi'] = 150 # High DPI for crisp plots\n", + "plt.rcParams['savefig.dpi'] = 300 # High DPI for saved figures\n", + "plt.rcParams['font.size'] = 10\n", + "plt.rcParams['axes.linewidth'] = 1.2\n", + "plt.rcParams['grid.linewidth'] = 0.8\n", + "plt.rcParams['lines.linewidth'] = 2\n", + "plt.rcParams['patch.linewidth'] = 0.5\n", + "plt.rcParams['xtick.major.width'] = 1.2\n", + "plt.rcParams['ytick.major.width'] = 1.2\n", + "plt.rcParams['xtick.minor.width'] = 0.8\n", + "plt.rcParams['ytick.minor.width'] = 0.8\n", + "plt.rcParams['text.antialiased'] = True\n", + "plt.rcParams['figure.facecolor'] = 'white'\n", + "plt.rcParams['axes.facecolor'] = 'white'\n", + "\n", + "print(\"Libraries imported successfully with high-resolution plotting configuration!\")" + ] + }, + { + "cell_type": "markdown", + "id": "a4dfe910", + "metadata": {}, + "source": [ + "## Define Code Quality Tools and Commands" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "id": "f8c53333", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Analyzing directory: /Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend\n", + "Tools configured:\n", + " - bandit: bandit -c pyproject.toml -r backend/ -f json\n", + " - ruff: ruff check backend/ --output-format json\n", + " - mypy: mypy backend/\n", + " - radon_cc: radon cc backend/ -j\n", + " - radon_mi: radon mi backend/ -j\n", + " - flake8_wps: flake8 --select=WPS backend/ --format=json\n" + ] + } + ], + "source": [ + "# Define the backend directory path\n", + "BACKEND_DIR = \"backend/\"\n", + "\n", + "# Define commands for each tool\n", + "TOOLS_COMMANDS = {\n", + " 'bandit': ['bandit', '-c', 'pyproject.toml', '-r', BACKEND_DIR, '-f', 'json'],\n", + " 'ruff': ['ruff', 'check', BACKEND_DIR, '--output-format', 'json'],\n", + " 'mypy': ['mypy', BACKEND_DIR],\n", + " 'radon_cc': ['radon', 'cc', BACKEND_DIR, '-j'],\n", + " 'radon_mi': ['radon', 'mi', BACKEND_DIR, '-j'],\n", + " 'flake8_wps': ['flake8', '--select=WPS', BACKEND_DIR, '--format=json']\n", + "}\n", + "\n", + "print(f\"Analyzing directory: {Path(BACKEND_DIR).absolute()}\")\n", + "print(\"Tools configured:\")\n", + "for tool, cmd in TOOLS_COMMANDS.items():\n", + " print(f\" - {tool}: {' '.join(cmd)}\")" + ] + }, + { + "cell_type": "markdown", + "id": "e198d7ac", + "metadata": {}, + "source": [ + "## Run Bandit Security Analysis" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "id": "c55d109f", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Bandit found 2 security issues\n", + "\n", + "Bandit Results Summary:\n", + "severity confidence\n", + "LOW MEDIUM 2\n", + "dtype: int64\n" + ] + } + ], + "source": [ + "def run_bandit():\n", + " \"\"\"Run bandit security analysis and return parsed results.\"\"\"\n", + " try:\n", + " result = subprocess.run(\n", + " TOOLS_COMMANDS['bandit'], \n", + " capture_output=True, \n", + " text=True, \n", + " cwd=Path.cwd()\n", + " )\n", + " \n", + " if result.stdout:\n", + " bandit_data = json.loads(result.stdout)\n", + " issues = bandit_data.get('results', [])\n", + " \n", + " bandit_df = pd.DataFrame([\n", + " {\n", + " 'tool': 'bandit',\n", + " 'file': issue['filename'],\n", + " 'line': issue['line_number'],\n", + " 'severity': issue['issue_severity'],\n", + " 'confidence': issue['issue_confidence'],\n", + " 'test_id': issue['test_id'],\n", + " 'test_name': issue['test_name'],\n", + " 'message': issue['issue_text']\n", + " }\n", + " for issue in issues\n", + " ])\n", + " \n", + " print(f\"Bandit found {len(bandit_df)} security issues\")\n", + " return bandit_df\n", + " else:\n", + " print(\"Bandit: No issues found\")\n", + " return pd.DataFrame()\n", + " \n", + " except Exception as e:\n", + " print(f\"Error running bandit: {e}\")\n", + " return pd.DataFrame()\n", + "\n", + "bandit_results = run_bandit()\n", + "if not bandit_results.empty:\n", + " print(\"\\nBandit Results Summary:\")\n", + " print(bandit_results.groupby(['severity', 'confidence']).size())" + ] + }, + { + "cell_type": "markdown", + "id": "de0a68e3", + "metadata": {}, + "source": [ + "## Run Ruff Linting" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "id": "0db8c239", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Ruff found 0 linting issues\n" + ] + } + ], + "source": [ + "def run_ruff():\n", + " \"\"\"Run ruff linter and return parsed results.\"\"\"\n", + " try:\n", + " result = subprocess.run(\n", + " TOOLS_COMMANDS['ruff'], \n", + " capture_output=True, \n", + " text=True, \n", + " cwd=Path.cwd()\n", + " )\n", + " \n", + " if result.stdout:\n", + " ruff_data = json.loads(result.stdout)\n", + " \n", + " ruff_df = pd.DataFrame([\n", + " {\n", + " 'tool': 'ruff',\n", + " 'file': issue['filename'],\n", + " 'line': issue['location']['row'],\n", + " 'column': issue['location']['column'],\n", + " 'rule_code': issue['code'],\n", + " 'rule_name': issue['message'],\n", + " 'message': issue['message'],\n", + " 'severity': 'error' if issue.get('fix') else 'warning'\n", + " }\n", + " for issue in ruff_data\n", + " ])\n", + " \n", + " print(f\"Ruff found {len(ruff_df)} linting issues\")\n", + " return ruff_df\n", + " else:\n", + " print(\"Ruff: No issues found\")\n", + " return pd.DataFrame()\n", + " \n", + " except Exception as e:\n", + " print(f\"Error running ruff: {e}\")\n", + " return pd.DataFrame()\n", + "\n", + "ruff_results = run_ruff()\n", + "if not ruff_results.empty:\n", + " print(\"\\nRuff Results Summary:\")\n", + " print(\"Top 10 most common rules:\")\n", + " print(ruff_results['rule_code'].value_counts().head(10))" + ] + }, + { + "cell_type": "markdown", + "id": "788a98b2", + "metadata": {}, + "source": [ + "## Run MyPy Type Checking" + ] + }, + { + "cell_type": "code", + "execution_count": 46, + "id": "2a1f0732", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "MyPy found 0 type checking issues\n" + ] + } + ], + "source": [ + "def run_mypy():\n", + " \"\"\"Run mypy type checker and return parsed results.\"\"\"\n", + " try:\n", + " result = subprocess.run(\n", + " TOOLS_COMMANDS['mypy'], \n", + " capture_output=True, \n", + " text=True, \n", + " cwd=Path.cwd()\n", + " )\n", + " \n", + " if result.stdout:\n", + " lines = result.stdout.strip().split('\\n')\n", + " mypy_issues = []\n", + " \n", + " for line in lines:\n", + " if ':' in line and ('error:' in line or 'warning:' in line or 'note:' in line):\n", + " parts = line.split(':')\n", + " if len(parts) >= 4:\n", + " file_path = parts[0]\n", + " line_num = parts[1] if parts[1].isdigit() else '0'\n", + " severity = 'error' if 'error:' in line else 'warning' if 'warning:' in line else 'note'\n", + " message = ':'.join(parts[3:]).strip()\n", + " \n", + " mypy_issues.append({\n", + " 'tool': 'mypy',\n", + " 'file': file_path,\n", + " 'line': int(line_num),\n", + " 'severity': severity,\n", + " 'message': message\n", + " })\n", + " \n", + " mypy_df = pd.DataFrame(mypy_issues)\n", + " print(f\"MyPy found {len(mypy_df)} type checking issues\")\n", + " return mypy_df\n", + " else:\n", + " print(\"MyPy: No issues found\")\n", + " return pd.DataFrame()\n", + " \n", + " except Exception as e:\n", + " print(f\"Error running mypy: {e}\")\n", + " return pd.DataFrame()\n", + "\n", + "mypy_results = run_mypy()\n", + "if not mypy_results.empty:\n", + " print(\"\\nMyPy Results Summary:\")\n", + " print(mypy_results['severity'].value_counts())" + ] + }, + { + "cell_type": "markdown", + "id": "d289413f", + "metadata": {}, + "source": [ + "## Run Radon Cyclomatic Complexity Analysis" + ] + }, + { + "cell_type": "code", + "execution_count": 47, + "id": "5b0cf9e3", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Radon CC analyzed 162 functions/methods\n", + "\n", + "Radon CC Results Summary:\n", + "Average complexity: 2.33\n", + "Complexity rank distribution:\n", + "rank\n", + "A 156\n", + "B 6\n", + "Name: count, dtype: int64\n" + ] + } + ], + "source": [ + "def run_radon_cc():\n", + " \"\"\"Run radon cyclomatic complexity analysis and return parsed results.\"\"\"\n", + " try:\n", + " result = subprocess.run(\n", + " TOOLS_COMMANDS['radon_cc'], \n", + " capture_output=True, \n", + " text=True, \n", + " cwd=Path.cwd()\n", + " )\n", + " \n", + " if result.stdout:\n", + " cc_data = json.loads(result.stdout)\n", + " cc_issues = []\n", + " \n", + " for file_path, functions in cc_data.items():\n", + " for func in functions:\n", + " cc_issues.append({\n", + " 'tool': 'radon_cc',\n", + " 'file': file_path,\n", + " 'function': func['name'],\n", + " 'line': func['lineno'],\n", + " 'complexity': func['complexity'],\n", + " 'rank': func['rank'],\n", + " 'type': func['type']\n", + " })\n", + " \n", + " cc_df = pd.DataFrame(cc_issues)\n", + " print(f\"Radon CC analyzed {len(cc_df)} functions/methods\")\n", + " return cc_df\n", + " else:\n", + " print(\"Radon CC: No data found\")\n", + " return pd.DataFrame()\n", + " \n", + " except Exception as e:\n", + " print(f\"Error running radon cc: {e}\")\n", + " return pd.DataFrame()\n", + "\n", + "radon_cc_results = run_radon_cc()\n", + "if not radon_cc_results.empty:\n", + " print(\"\\nRadon CC Results Summary:\")\n", + " print(f\"Average complexity: {radon_cc_results['complexity'].mean():.2f}\")\n", + " print(\"Complexity rank distribution:\")\n", + " print(radon_cc_results['rank'].value_counts().sort_index())" + ] + }, + { + "cell_type": "markdown", + "id": "2dc96586", + "metadata": {}, + "source": [ + "## Run Radon Maintainability Index Analysis" + ] + }, + { + "cell_type": "code", + "execution_count": 48, + "id": "6820f645", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Radon MI analyzed 46 files\n", + "\n", + "Radon MI Results Summary:\n", + "Average maintainability index: 81.39\n", + "MI rank distribution:\n", + "mi_rank\n", + "A 46\n", + "Name: count, dtype: int64\n" + ] + } + ], + "source": [ + "def run_radon_mi():\n", + " \"\"\"Run radon maintainability index analysis and return parsed results.\"\"\"\n", + " try:\n", + " result = subprocess.run(\n", + " TOOLS_COMMANDS['radon_mi'], \n", + " capture_output=True, \n", + " text=True, \n", + " cwd=Path.cwd()\n", + " )\n", + " \n", + " if result.stdout:\n", + " mi_data = json.loads(result.stdout)\n", + " mi_issues = []\n", + " \n", + " for file_path, mi_info in mi_data.items():\n", + " mi_issues.append({\n", + " 'tool': 'radon_mi',\n", + " 'file': file_path,\n", + " 'mi_score': mi_info['mi'],\n", + " 'mi_rank': mi_info['rank']\n", + " })\n", + " \n", + " mi_df = pd.DataFrame(mi_issues)\n", + " print(f\"Radon MI analyzed {len(mi_df)} files\")\n", + " return mi_df\n", + " else:\n", + " print(\"Radon MI: No data found\")\n", + " return pd.DataFrame()\n", + " \n", + " except Exception as e:\n", + " print(f\"Error running radon mi: {e}\")\n", + " return pd.DataFrame()\n", + "\n", + "radon_mi_results = run_radon_mi()\n", + "if not radon_mi_results.empty:\n", + " print(\"\\nRadon MI Results Summary:\")\n", + " print(f\"Average maintainability index: {radon_mi_results['mi_score'].mean():.2f}\")\n", + " print(\"MI rank distribution:\")\n", + " print(radon_mi_results['mi_rank'].value_counts().sort_index())" + ] + }, + { + "cell_type": "markdown", + "id": "c231aca4", + "metadata": {}, + "source": [ + "## Run Flake8 with WPS Plugin" + ] + }, + { + "cell_type": "code", + "execution_count": 49, + "id": "e3918fd3", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Flake8 WPS found 3 style issues\n", + "\n", + "Flake8 WPS Results Summary:\n", + "Top 10 most common WPS rules:\n", + "rule_code\n", + "WPS202 3\n", + "Name: count, dtype: int64\n" + ] + } + ], + "source": [ + "def run_flake8_wps():\n", + " \"\"\"Run flake8 with WPS plugin and return parsed results.\"\"\"\n", + " try:\n", + " # Try with regular flake8 output format since json might not be available\n", + " result = subprocess.run(\n", + " ['flake8', '--select=WPS', BACKEND_DIR], \n", + " capture_output=True, \n", + " text=True, \n", + " cwd=Path.cwd()\n", + " )\n", + " \n", + " if result.stdout:\n", + " lines = result.stdout.strip().split('\\n')\n", + " flake8_issues = []\n", + " \n", + " for line in lines:\n", + " if line.strip():\n", + " # Parse flake8 output format: file:line:column: code message\n", + " parts = line.split(':')\n", + " if len(parts) >= 4:\n", + " file_path = parts[0]\n", + " line_num = parts[1] if parts[1].isdigit() else '0'\n", + " column = parts[2] if parts[2].isdigit() else '0'\n", + " \n", + " # Extract error code and message\n", + " error_part = ':'.join(parts[3:]).strip()\n", + " error_match = re.match(r'\\s*(WPS\\d+)\\s+(.+)', error_part)\n", + " if error_match:\n", + " error_code = error_match.group(1)\n", + " message = error_match.group(2)\n", + " \n", + " flake8_issues.append({\n", + " 'tool': 'flake8_wps',\n", + " 'file': file_path,\n", + " 'line': int(line_num),\n", + " 'column': int(column),\n", + " 'rule_code': error_code,\n", + " 'message': message,\n", + " 'severity': 'warning'\n", + " })\n", + " \n", + " flake8_df = pd.DataFrame(flake8_issues)\n", + " print(f\"Flake8 WPS found {len(flake8_df)} style issues\")\n", + " return flake8_df\n", + " else:\n", + " print(\"Flake8 WPS: No issues found\")\n", + " return pd.DataFrame()\n", + " \n", + " except Exception as e:\n", + " print(f\"Error running flake8 WPS: {e}\")\n", + " print(\"Note: Make sure wemake-python-styleguide is installed\")\n", + " return pd.DataFrame()\n", + "\n", + "flake8_wps_results = run_flake8_wps()\n", + "if not flake8_wps_results.empty:\n", + " print(\"\\nFlake8 WPS Results Summary:\")\n", + " print(\"Top 10 most common WPS rules:\")\n", + " print(flake8_wps_results['rule_code'].value_counts().head(10))" + ] + }, + { + "cell_type": "markdown", + "id": "02928a92", + "metadata": {}, + "source": [ + "## Parse and Aggregate Results" + ] + }, + { + "cell_type": "code", + "execution_count": 50, + "id": "d122b78a", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "=== SUMMARY STATISTICS ===\n", + " total_issues files_analyzed\n", + "bandit 2 2\n", + "ruff 0 0\n", + "mypy 0 0\n", + "radon_cc 162 32\n", + "radon_mi 46 46\n", + "flake8_wps 3 3\n", + "\n", + "Total combined issues: 213\n" + ] + } + ], + "source": [ + "# Aggregate all results for visualization\n", + "all_results = {\n", + " 'bandit': bandit_results,\n", + " 'ruff': ruff_results,\n", + " 'mypy': mypy_results,\n", + " 'radon_cc': radon_cc_results,\n", + " 'radon_mi': radon_mi_results,\n", + " 'flake8_wps': flake8_wps_results\n", + "}\n", + "\n", + "# Calculate summary statistics\n", + "summary_stats = {}\n", + "for tool, df in all_results.items():\n", + " summary_stats[tool] = {\n", + " 'total_issues': len(df),\n", + " 'files_analyzed': df['file'].nunique() if not df.empty and 'file' in df.columns else 0\n", + " }\n", + "\n", + "print(\"\\n=== SUMMARY STATISTICS ===\")\n", + "summary_df = pd.DataFrame(summary_stats).T\n", + "print(summary_df)\n", + "\n", + "# Create a combined issues dataframe for common fields\n", + "issue_dfs = []\n", + "for tool, df in all_results.items():\n", + " if not df.empty and 'file' in df.columns:\n", + " issue_df = df[['tool', 'file']].copy()\n", + " if 'line' in df.columns:\n", + " issue_df['line'] = df['line']\n", + " if 'severity' in df.columns:\n", + " issue_df['severity'] = df['severity']\n", + " elif 'rank' in df.columns:\n", + " issue_df['severity'] = df['rank']\n", + " else:\n", + " issue_df['severity'] = 'info'\n", + " issue_dfs.append(issue_df)\n", + "\n", + "if issue_dfs:\n", + " combined_issues = pd.concat(issue_dfs, ignore_index=True)\n", + " print(f\"\\nTotal combined issues: {len(combined_issues)}\")\n", + "else:\n", + " combined_issues = pd.DataFrame()\n", + " print(\"\\nNo issues found to analyze\")" + ] + }, + { + "cell_type": "markdown", + "id": "87fda3aa", + "metadata": {}, + "source": [ + "## Create Error Count Visualizations" + ] + }, + { + "cell_type": "code", + "execution_count": 51, + "id": "7b178a7f", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACVAAAAbrCAYAAADmgRqkAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAXEgAAFxIBZ5/SUgABAABJREFUeJzs/QeUVFX2P24fgqACBhQVFXPAhBkMjDpiHHUMI2bMAQOOOY8JI2ZFRxx1VMSEI+YsJlAUv+accEyMWVEwAu/a5/dW/7urq5sGOkDX86zVq7pv3ao6detWFZz7uXu3mDx58uQEAAAAAAAAAABQhlo29QAAAAAAAAAAAACaigAVAAAAAAAAAABQtgSoAAAAAAAAAACAsiVABQAAAAAAAAAAlC0BKgAAAAAAAAAAoGwJUAEAAAAAAAAAAGVLgAoAAAAAAAAAAChbAlQAAAAAAAAAAEDZEqACAAAAAAAAAADKlgAVAAAAAAAAAABQtgSoAAAAAAAAAACAsiVABQAAAAAAAAAAlC0BKgAAAAAAAAAAoGwJUAEAAAAAAAAAAGVLgAoAAAAAAAAAAChbrZt6AAAAADSd999/Pz355JPpmWeeSZ999ln67rvv0vjx49Mcc8yROnbsmFZaaaW05pprpk033TS1a9cuzWyOO+64NGzYsCrLDjnkkNSvX780M/j666/TyJEj07PPPpvefvvt/PrET6tWrdLcc8+dX6Nu3bqlddZZJ6299toz5WtUF59++mnq1atXteXvvPNOvb3mv/32W7ruuuvSWmutlbfpzGL06NFpt912q7Z8oYUWSo8++mhq2bJ5nzu34YYb5s+uym644YbUo0ePNDOaWT6zSm33UmL/a9OmTerQoUOab7750jLLLJN69uyZNtpoozTrrLOmcvyMmlp33HFHOv7446ss6969exo8ePB03zdN85oCAAAwYxKgAgAAKENvvvlmuuiii9JTTz1V8vpvvvkm/7z33nv54O3ZZ5+ddt1113TQQQflg+E0rM8//zxdeeWVedv//vvvJdeZMGFCDjC89tpraciQIWnOOedMe+65Z9p9991T+/btG33MM7MIEZ511lnpo48+yuGbmcntt99ecnnsGyNGjEjrrbdeo48JCiZNmpR++eWX/PPVV1+lN954IwfE5p133nTYYYel3r17N/UQAQAAALLmfRoiAAAA1QwaNChtt912NYanShk3blz65z//mbbffvs0ZsyYBh1fubvvvvvSX/7yl3TrrbfWGJ4q5YcffkiXXHJJ2nLLLXNAjin7+OOPU9++fdP++++fw1Mzm59++ik99NBDNV5/2223Nep4YGqq65100knp2GOPTX/88UdTDwcAAABAgAoAAKBcTJ48OZ1wwgnpwgsvzL9Pi2hd06dPn9zahvo3cODAdMQRR6Sff/55mu9j7NixaZdddklPPPFEvY6tOdp7773T448/nmZW9957b637Sjy3qPoDM6o777wzDRgwoKmHAQAAAKCFHwAAQLn417/+lf7zn/+UvG6ttdZKm2yySVp00UXTLLPMkivzPPLII7m1WbEIZBx99NHppptuSi1atGiEkZeHCMNcdtllJa+Llnybbrppfp3mm2++XJkq2vxFFbEIyUycOLHK+hGqiSDW0KFD05JLLpnKSbSZ3GmnnaosW2CBBWpsLzYzq6l9X0FU9on3fFTZovntvzOaqFBYaMkX7634XIrWfd999116++230wMPPJA/t4pdf/31qXv37mmjjTZqglEDAAAA/D8CVAAAAGXglVdeSRdffHG15XPMMUc6//zz0/rrr19leY8ePfKB8AjoHHbYYWn8+PFVrn/xxRfTww8/nEM9TL///ve/uZ1VKZtvvnk6+eSTU8eOHatdt+OOO6Z33303B9oioFBZvGaHHnpouuuuu1Lr1uXz3/9FFlkk/zR3UQ3utddem+J6EaI74IADhB1nEjPz/htBr1VWWaXkdX/961/TkUcemS699NJ05ZVXVrv+jDPOSBtssEFZfVYBAAAAMxYt/AAAAMpAHLQurlIUlaauvfbaauGpytZbb71cFalU+OLGG29skLGWowgUlGrFtsMOO6SLLrqoZHiqYJlllsmvxQorrFDtuvfffz9XtqL5KVV9qlOnTtWWRbvNkSNHNtKooGatWrVKhx9+eG4DW6r1aFSoAgAAAGgqTusCAABo5qIy0YgRI6ot32effdJKK600xduvu+666c9//nMaPnx4/jvCVEsssURuDRehrDgoXpuXX3453X///blqVVRamjBhQm5JF2GPVVddNQe4Ntxww9SyZd3P8Yn2UHGfDz74YHr99dfTN998k6tpLbvssmnrrbdOW2211VTdX7FoXRj3HWP+8ssv0+TJk3OIaamllko9e/bMjzHnnHOm+vC///0v3XPPPdWWx/aNqlR1qRzUoUOHXElsm222Sb/++mu11o2xvFhsq2KPPfZYWnjhhUs+RgTpBg4cWGXZtttum84555wax/XTTz+l++67L2/PCHPF6xRBsagyE2Pu3Llz6tatW9pyyy3TaqutlurDcccdl4YNG1Zl2SGHHJL69euXf3/uuefS7rvvXuPtK18XbcUiZBhBwm+//bbKevvvv3+uqFOb448/Pt1xxx1VlsW+/s9//jNNj99++y3dfffd1ZYffPDB6eqrr86hqcpuu+22vN/WRYRbnn/++SrL3njjjfyaxePG+y7218LrOffcc6flllsu/eUvf8nvuyl9HhTev/F5Em1C33rrrfweiIppsa/PPvvsaf75509du3bN2ypai9blPmsS2+TRRx+tsiyqJN1666213u7OO+9Mxx57bJVl8VyffvrpHD6t7Ouvv85BxVGjRqX33nsvff/993k/b9u2bZprrrnS4osvntZcc828fWp6f9V1/y3VpjHeX/EcY1tGEKmwLdu1a5cfL8KVUS1wnXXWSTOCaC8a2/fHH3+ssnzIkCF5GzXmfvPqq6/m1y6quUXr2vjMim1auL8IqEZlrM022yy1adNmmp/zF198kd+H8TrF+zO+U6JiV7wvo5Lg9LRajc/taNUZ34XRLjH2ufh833jjjfNn9NSOuyG+sz/77LNcDTE+W8aMGZPGjRuX2zsW3iNdunRJa6yxRtpuu+3y71Pz/ohqmLEt47suPpvisWLfj++XGGuE9op98skn+fWI93O0lYzPtriPWH+XXXbJ7YwBAAAoPwJUAAAAzVypqh5x4DMOEtbVbrvtlg8oxgHOCLrUVhGpIAIWp512WrUwRoiAQfxE2CAOYsZB6hNPPDGttdZaU7zfjz76KLcVjAPoxSGG+IlqOzfffHOu3DS14qBqHKB94YUXql0XB2XjJ8IKESaK9nilKqlMy8Hv33//vdryCOjEweW6ilBbhFiKDy7H6/DBBx9M1wH6aRFBhwiARcimWATvIugVr1cEFyI4ESGqU089NQerZiQRlon2Y9ddd12V5RGwqy1AFSGMQuiwslJhtqkVIYx4/xSPM9o9RqikuEVajCO29bzzzjtdLQOPOuqo3DKysggYxk+8L6655po0aNCgtOCCC9Z4PxGeiPdvccvJgh9++CH/xONESGzFFVdMAwYMmOb9NwIZxQGqaGkaoYnaxhmvb7EtttiiWngqqr9dcMEFOWRSLJbFTzxWfC5dfvnl+X0dYaj6aKkY2zDadxa/JgURColATbzHbrnllvz5feGFF+ZgUFOKcFKEUIurGMbrEvt1BGoaer+Jx4nvnOJ9oyACPvET31ERAo0WuHF/sQ2nVozn9NNPrxYYi8/l+InPv4MOOiiH/aZGjO+YY45Jjz/+eMn3ZISDIlAZ4dqVV165yb6zr7jiivxT6nsugobxE8G/eNwYb2yLAw88MNVVBLH23nvvKt/bhfEuv/zy1daPAGuMJ94fxftY/MR7JbZrbdU5AQAAaJ608AMAAGjmSoWB4uDy1BxEjypUESzaaKON6hSeioPSf/vb30oeiC0lDnrHAdDrr79+iuvttNNO1cJTxV566aVcSSiqftRVVNmJSiCltlepA9dnnHFGOvnkk9P0KrWNomJIVDyZWjWFc+r6OtSXCNNE1ZxS4amaRBWYCEhElZkZTYRwikW1mqj4UpOoRlQccooqaVHNrSHa90UlmwieRNirWAQXiithTY0IrUTgsqagTvH7uDiYUBDhrl133bXGEEwpsY3jPiMANi0iBFEcHIvqP6UCUgVRhahU28MI/VQWYY/+/fuXDE+VEq9DhKjOPPPMNL0+/PDD/Bk3pdeksvhsi9exeL9sCqWCN/Hef/PNNxt8v4nwZlxXU3iqlAjP7rXXXrk609SIMG+E3IrDU8Vhy2ize9NNN9X5fmMfjedQHJ4q9Tm1xx575M+jpvjOjiDzJZdcUjI8VUp8dkRYrTgEWpsIp9X0vV1c0eyUU07J91/TZ1QhkBX3GRWtAAAAKC8CVAAAAM1YHJiNFkXFouVWQ4kDmRGEiYOQUyOqEp111lm5FVEpcX/RiicqqtRFHDh+5pln6rRuBAqmNvATog3Y4MGD0/QodUA+Xp9ZZ511qu8rWjKWaqsUgbLGEi21TjjhhPx6Tq1oNVmq3WRTi3ZY0QatLtXdCh566KFqy6JC1PS0ASsEOZ599tkagwJRcafUWIcOHZqDQ9PigAMOyIGNuogKLqUCXiECh1P7HisEaIorgNVVtB4sFSqr7bWLUEpxwCLa8EW7ycrV6iKIMS3iM6PUazg1IrgVFZemVrSPq48A1/SKink1BcMaer+JtpwRmJ1asU9EFba6hoFCVHSqq9if6vq9GUGzqCxWF1HhKarl1bQNG+o7O/7tERXppkUEDSOoXBc1haei5WCPHj0q/o62kVFdqq6mZl0AAACaBy38AAAAmrEIG5WqtLDwwgs3yONFZY+oVFXqAHO0/tt+++3TIosskgNLUfEiWhsVVxyKChGrrLJKtdZL0TYoWgwVizZ3UVUlqmRFWCIO2sZB82+//bbO444WXNFmq7JosbXtttumXr16pXbt2uVWS1FtI4JZlZ133nm5dd4888yTpkWpg9pLLbXUNN1XjLNz5845ZFPZtFbvmRYR1Cl+vGh7FtVy4mB2jDEOjEelkwiSRMivstGjR6f11luvwcYX4aIIvoUIzX311VdVro+wRiGA1L59+4rlUZ2lOHQRVYyiukypYEGp6jbFFYymRVSSKn7PREu0DTfcsOLvCAwVjzX22wjtrLPOOlP9mIXXM9p27bzzzjlMFMtuuOGGkgHNeO7FLUKjalxUJiu26aab5tZ48f6JAEdUGYqAS/H7IvaL6akgFvdZWYw7wkSlPgtLhd+KX7sIYBV/zi2wwAK53WkE7mI/j8+5CC9GZaEIFlYWFXbWXnvtaXo+sc8WB7AiONm7d+/8+kbFrfjcj3anEQKJ9oulqr0ttNBCqanU9HkZrecaer+J751SFdyijWi0dYzP/ghf3X///dUqPEVwLlr61bUVZ4QW4/Mv9p8NNtggtyiN1yOqlxU/1wjERei38nt5SmI/i1ay3bt3z/vAiy++mN+XxVXG4v161VVXpeOPP77RvrNjHy8ObUaoKSpXde3aNYdJYxvEdn7kkUeqrBf7b7R0/NOf/lTnbRHf1xFSjf3h4Ycfzu+DQqA47i9aGdYUPI7PtXie8d665557SrZfBQAAoPkToAIAAGjGaqpQEgddGyo8EweYi/Xt2zdXj6ps4403zlVzDjrooHwQtyAO5EYljssuu6xaK6RSzyMOFkdLwoIIJcSB1Gj5VBx2KiUOLEdlimIXXnhhDkZVvt8ddtghj/fpp5+uWB5jj3DXgQcemKZWVPUpdeA6Wr1NqznnnLNagKoxW3ZF28Q4SF45mBTVcuI1qSxCAhEsiIP6lUWopSFFKCoO9odS1aAivFa4vrIIV5xzzjlVAokx1gjiVK5MFCIcVhzg69KlS1p99dWna+wRXCjVii9aa84222wVf0ewZMCAAdWqgEVwbFoCVIXnf+655+aQYuUQS7TULA5rRdiwWCxbdNFF8+dDIYARwaazzz67WpAlAkj77rtvve0XSy+9dA5JFFfsiRDUfvvtV2VZtOOr/P4OEagprmJVajzxubXqqqtWWRYBzGjHGZ8d8XrE/hdBkwhrxN+tWrWa6ucT7+/iYEqEp6LtWGXxWkfwL8KLUekuXrvYD2N7RNCoKQNUEforpbjqUEPsN8XLIhAYgaZ4nSuL1zwqLBXa1EU4tTgkNCWxzaMVXOWwXLQvjM+/+P6L6lCVRbiqrgGqCAjdeOONefwF8TixfSLAWBwKjspwRxxxRA4dN/R3duzbERqMwFihfWF83kdotvJ4Q4SeIsBUXClxat7zEfSqXFktPpsqB70i/FUclg0RbIvP9cqVG+N7P16zmgJXAAAANF8CVAAAAM1YTS1wpreNWE0iSFQsKkMVH4itfNA7KqFEMKOyqEYRB/gLVUoilFOqtVPctnJ4qmC++eZLJ510Utp///2nOOZS7bpizJXDU5W324knnpgDEZVFBY1pCVAVV6UpmJb2fbXdtq7t1+rDsccem38iQBRhgGjpVlO1ljXWWKNagKqubZsaWwTTIgxT3Pot/i4OUJWqYFSqjdzUiuo0xaGIyu37CiLAFkGK4naIjz32WH5dOnbsOFWPG+tHOKdyeKrwfoigYrRsnFJgLwJY8RMBpffeey/vG+uvv36N+0Wx6d0vIlRSlwDVE088Ua2VWYynOGxUKuQYnwNRWadymC3EZ1RUgorXJUI40ytCKcX+7//+L/33v//NYaPKIiwTYdD4DIjgSkN99k+tCNOUUvxZ3BD7Tbx2lavkRbWpmqqzHXrooTmQGMGpyhXp6iqCc6UqjUWQLR4v3pOVTU2rwqgcVRxGCrGPxffUwQcfXGV57APxHqi8nRrqOzuCgYXgWQSh4nWLaoOlxhvBtah2VRygKgSv6tpmtFjlUFSpdr7x74T4XCvV9jY+F6KKVakKewAAADRf1f+HCAAAQLNRudJEZcVVL+pDhJyKW0WFPffcs9bbRQWb4mokUV2lchWY4uBDiIOexVWNKovWP3PPPfcUxx0tj4rFwdyaxAHgCNMUV0mZlm1aUyWwCAtMq1KhrGk58D+9InQTwYGohFK5sku8trG9hgwZkv75z39Wu12pilwzigjhFCsOS0XVk4Zq3xcVZIpFYKFU8KM4VFXYtqUqWE1JBFZq2ldLBSIqV6cpFu/1lVdeOQdL5p9//irXRTuvaC8X4cdSY58eEcIp/jyMylnF1Xfq0r4vlNrmUQ0vlkeFnqi08+abb1ZUAYuQXX2EpwrbPFrNVRbtTTfZZJNcceqiiy7Kn5+FAEqEv6I604wSnqrt9aypMlV97jfFgab47N5rr71yQPLUU0/Nwbr4Pit8dsbjTutnaFRXqknxaxiKw3s1iZBecZC3sj//+c/VvqeKv0sb8ju7smiTGds2qkIVvzbRpu/yyy8v+b4r1X64lCWWWCJXdKtNqX9DRDCutrByfYReAQAAmLmoQAUAANCMzTXXXFNV+Wh6lDoQG8GZUlVBKosDsSussEIaPXp0jW3A4gB5qYOypSqxVA5YRWhg1KhRtT5+VG0pFq2IilsI1iZCElEdpbgS0ZTEQfmoxFJ8kH96qu2Uqv5TlyDZlBS3DKur7777Lr3wwgu5kkcEVuKntpaC0/o4jSEqs0R4oxCuKLRTi/ZohbZ/EcgrbhUVbd2KKwNNy3YsFcyKgEZxZahCu60IgxQH+6JlV3GbsympLZxQKqRRl9cwQlaxrWK/eP311/N+Udx6cmrvszZRdShaHd53331VlkdYplCpLsIrTz31VJXrI3RVKqgSIZz11luv2voRfoyqQoXKQhE8i0BmrB8Bp6g8NL3is+3oo48uWSUotmX8VP4M7N69ew6wxGfxtLQMbAg1hUSn1L60Pvabfv36peHDh1f7HoxKSdEqttAuNoJnse0iQBg/NYW7alMqYFhQ6v6K227WJCpi1VTFK8TrvMwyy1T7Xq1ceashv7NLibBifBdEmCnChW+99VatgbG6vufr8tlaqn3fcsstV+ttpnQ9AAAAzY8AFQAAQDMWVYDigGjxgciPP/643h+rVCgmAk51Oegcra2KVW5lVKoF3ZQOtNc1OPTDDz+k+lBbKKg2UUEoWkhV9u67705zyKZyuGdqA1S1HbCu64H9ggj7RAunOGAeVZmagwglRDvCQYMGVQvhFAJUDz74YINUMrn77rtLVtOJgEYEuEqJ1nHFIYePPvoohwrXWmutOj92qZBUQW0hjlLefvvtvP2idWZDVMKbUgWx2gJUUUGnONiz4YYblgxqxufqxRdfnNuoRauvmkRIJ+43fgYMGJArVEWAp7Yqd3URLUZjrNGCrKaKX/G+i5BK/MR7MSpg7b333rkqXKnQXWOKVpKl1PS5Xp/7TQRurrvuuvw6FH/2VhbBrGHDhuWf+B7r3bt3ri5WUzC5lNrWLfUa1DU0NK3ff5XDuQ35nV0Qn1lRbTBaBU4pYDWt6tKStFQ7wNo+1+oreAwAAMDMRYAKAACgGYs2P0svvXS1QE6pyhO1iSof55xzTq7gEpVtSrUemp4D8qUOGkf1lNrUJdBTl2orf/zxR6oPpQ7Q1kW0hyoVoIrgRam2abGtotpVVBcp9n//9381PkZd1Hbwvq6tpeJ1ieo4xUGVygf+o3pJjCn2z2g3NjOJtpHFAaoITUWQJjzyyCPVAkYRdmmI9n2hf//+U31fEWaYmgBVba3fpvQ+rSxCPBEiKvWei8eIakmxX6y++uolqytNrwgvLbDAAlXeb1EJJ0Jliy22WMnwW22tF+P9GZXqnnvuuVzZK8I9pcKelT3zzDPp2WefzfvLlFqlTcn222+fW5Xeeuut+f0Wz6M2Y8eOTWeeeWZul3bVVVfV2JaxMZSq/BdKfa41xH4T1QIjPHfnnXfmcGKEEGv7/IuwWozj/vvvz5dRAaouagsYVm5tOrXq0tKy1Pdf5fE09Hd2VH2KwF5NgeCo5rfSSivl8Gl8p911113TNJa67MeltvWUvvun5rMNAACA5kGACgAAoJlbc801qx3AjNBAHEyPiiR1EaGQ559/Pv+cddZZubJNBKkiADDrrLPWWK0hwgRRLSSCMrUp1aIvKjPVVimiciui2ioy1aWNXrHjjz9+usMNdRUtoiLQUHxwPA7UR8WTUpWdDjnkkByA2WeffXIbsSmFbKJ9WF3UVMkmTCkYUhBVeYrDU9EKa6+99sot8KJiUuFgdgRJZjYx/qgeFG3ECiKQE3/HAffiMFy0/pqaijWlRLuyaa1KVtP7OSoA1aVyS6iPtm9PPvlkOvvss6sEL6LSze67757by0W7rEK4IyonNUSAKl6fqCB25ZVXVlkeQZp4Lz3xxBNVlsf2iYDSlPTo0SP//Pbbb3k/iP06Kn9Fi7lS76nYBueee25ulRafpdMjQiiHHnpo/vnwww/TyJEj82NHmLKmz8ioChfBxZNOOik1lVJV02I/Kw57NuR+E/cT1bjiJ6onxbaLMFxsn5rCaBEKOuKII3LwanoCUNOr1HdmXb7/Kleuasjv7BDfU8WfW7HP77zzzvl7b7755qtYfskll6RpNaWxFp53cRu/UhWzpvbfDwAAADQvTqUBAABo5iLoVCwORt9yyy11un1UHioO5kQw4Oabb65SmWaJJZaodts4oB0Ho2sTlT0i0FVbJZJSFa/iYGhtB0CjElJUzpqShRdeuNqyhmhxWJNoEVaqEsjVV19dslXVFVdckS+jDdt+++2XD1LHtojgRoQNikV4aamllqq2vNTB/9pCUrW1uqpchevGG2+s1hIqqvP06dMn7yOVH7e4XdrMIlrBFYsQTnEQLkRgZ3rVFIybVhH0iQBIY4rQUnHVmksvvTQHXqIaUOXKOA25X9T02o0YMaLa/r/FFltMVZWe+DyMYGM8p5tuuimHmKLa18EHH1ytDWB8Ntb3axDvr3ifxXaNMNBjjz2WK06VCmlFtZ+mbK1Zqu1h7AfF1YQaa7+J8E+02ixU6IrP18svvzxtttlmJdsJlvrOakyffPJJjW0QQ7y2pSpNxvdBY3xnR6W14pBcBE8HDx6cttxyyyrhqcJ9Tqu6VIqq/LwLorVlbV577bVpHhMAAAAzJwEqAACAZi6qD0XLtGLXXHPNFA8gFipDFFduCFtttVWVA5dRCSXaYBW77rrrar3/aD9VHBSK+41qRQXR4qdU4CdaL9VWZef7779PU1KqvV3cNkImpcTB9T//+c85vBRVZP7zn//kCkHTKsJhEdQoFhVQTjvttCrhgQiuFR8Uj7HG7aMqSqlARIyzlELlsMo+/fTTkuvGdnzppZem+FxifMUHwhdZZJFqlUlqq0LTmErtU3UJlWy++ea5ek3xflEcConKU1GBanrEe6OmdojTI4I9jSXeS6Ve61VXXbXk+nXZ16bVoosumqvgVBbvqWhpV9f2fRG0isDVDTfckE455ZQcWtp0002r7fsR7onPl6gOddBBB1W7nym13KtJfN4MGzYsnX/++fl+I+Rz7733lgyHRpu/CGMWGzduXK0BnIYU75WollWqPWZD7zfROjACcxGOOvLII/NjlmqDGdWZomVtfP+VaitYUwvCxhKfU/HdWZOnnnqqZAWl+C5tjO/sqFZZLN4LNYWdpue7oC4V8io/78rfnaVCyoUAdny3AwAAUF4EqAAAAMrA3//+92rLok1ctKmLShulRHAnqh1de+211a6L8Ei0ZCsVqioWQYOa2vNEq6to+VbsL3/5S5W2Z1G9pTj0UKhEUqpKRBzcPuOMM1JdK3QVB2miPdHpp59eLUwTB1vjwPvnn3+eD1DHtjnhhBPyutOjb9++qW3bttWWR0giXrtC0CEqyUQLvwhsVK6M88MPP+SWjKXazf3tb38r+ZjzzjtvtWVRVeyPP/6oFmL4xz/+kcaPHz/F51GqIli0cPrggw+qLY8D7FGNpFhjVsUpVV2oLs8z2j5GYKZ4n/nss8+qLItgS+UqbdPiwQcfLFkZ7F//+lcO/tTlZ4cddqh2+zFjxpQMOTSECOCVel0jyFLsiy++yFWASqmvfaPUe6I4fBPVeVZaaaWSt4/WeNHyL8YZlfxiO0YYKtri1eT999+vtqw4hFdX0Ub1uOOOy/tAVJmK1/Kyyy6rMRBV6v03PY8/PaIyVnyeFIuKRMXV2hpiv7njjjvSYYcdlr87InQWlZSiQl5N4av4bC3Vrq4ptl2x+C6K7VlqW5T6TopAXXE1wob6zi61L0aLzFKBpQhzlwpQ1ed3QYSeS72Po41lhKWKRTixVAUvAAAAmre61yEHAABgphVVcCLw9O9//7vaAeo99tgjrbfeemmTTTapaGcXoZc40BytikqJqielqgrtuuuuORRTXPkpgljPPfdcrobSpUuXfFA6gkBRQar44GVURoqKLcV23333NHr06CrLouJLPGb8ROusCKtE26yooBHt5OoixrPBBhukxx9/vMryOKgeoYeddtopt/+JcEzcb6mDqnvvvXeaHhHWOPXUU9Pxxx9fslpLHLSOqkfxHDt16pT+9Kc/5QPUtVUmikBWHOiuKcATVVWiDVRlse1iP9l5551Tx44dczBjyJAh6b333qvT84ixlQrqxWsXlbCWXXbZHLKK1z6eV6kD5NEysrEUtwsLUYkolsfB9Qil7b///jW2gouAW21qqmA0ve37YjtXrvYyJb179y5ZcSoqyXTv3j01tAhWRDWm2BcqiwprsY9Flbxff/01tw6LMdXUziv2jfoIrkSwLaoO1dY2rLbXLqr29OjRI3+mVRYVqeIzM1rBxWdp7N+xDxVaBBaLlmbTIj6TigM/EeCKMe+4445pueWWS3PMMUfeh+M9XWo/7dq1a72HgKLNZ3EQJgKZEQCMtqjxvo+wWXFLvnDsscdWC5E2xH4T79sI7FS+z7iP+NyLAFe8rhEujQpd8bkX75vi77MYU7QPbGrxHOJzNQKBERCKYGdUJ4tgb6kwa3xPFoeFG+o7u9R3Qbxmu+yyS/43R1S/iu+fqPJUU/Wp+vwuiO/O+M6Lf9tUFiG6CFzHeyqqJcZ7Jr77owUhAAAA5UeACgAAoEwcddRR+SB7cVAoRDWl+KmLXr16pX333bfkddH2KCpfRNWk4oPkcSA/fqYkqohEm61SlaIi6FU8zjj4HQeMa6qUVVtIoiCqSMXB4uJ1I6QwpbZQcWA2qm9MrziwH6/PoEGDql0XB/MjIFBby6ZSrQHjQH9Noj1VVK8pFgGHUpWJ4v6i8lZtorXWnHPOmQ+2VxYHpc8+++w6jbv4tg0pggFvvPFGlWWvvPJKrswWIgRTU4BqzTXXzLcvDqEVxD48rQGZyoGDCIcUi6oxdWlbVRBhj1LhgWg5GMGJypVjGkKE+NZZZ5305JNPVguARJglfuq6b9RH6CfuI0JUERItJUImEYKqTYQdI6wUnz91ef8Ui4BJccu6uoqxReWr4s+mqJQUlajqoqbWntMb9isV+JuSCOlsueWWjbLfxPsy3t9RvauyqIwUFfjipy6f1REwbUqF77YIM0XIa0otOeP9H2GpxvrOjtD2wIEDq60bFb8iLNcU3wURUo7qjcUBsKhiWaqS5dT8GwIAAIDmQQs/AACAMhHtyqKqRFQDmlZxkDuqGhVXsagsWptF+7zawjs1jS8OcJY6kB7iMc8555y05JJL1un+osJFqVZRpUTlidg2pdro1SZa5NXWtmtqHXHEEencc8+d7rZvhfBNVKSJ+yvVgiquq2sVlWivFfczJTHuUu0ia1McBIqKPY11wLpnz561Xh+tsEpVyynsj7UFYKYUwKmLqM5SyrQEb6IKVbFoz3jnnXemxhBt06Zmvy7VXrGmVnTToqbWloVwXAQGaxNVnuLzaGo/58Jss82WLrzwwhw2nBYtW7bMQamoXDctIkhT0+dsY4vKP1FRqjH3m8MPPzxXXJwWq6yySjrmmGNSU4uKT1FFrC6iolZ8T9X0/dYQ39nx3RIhxam5r2Iffvhhqk+rr756Dj7W9u+Xyg4++OA6b2MAAACaBwEqAACAMhIH3k888cR0/fXXp5VXXrnOt+vcuXO64IIL8k9dDmZHRZGokBIHLOsiDlLGmKJ1XG2ibWC0lIsWdlOqhHTjjTemBRZYINVVtIOK26ywwgp1Wj8qYsVzrO9KJNFG6v7778+Bl6k5oF2qIlFUaonKXBtuuGG1AFSsHxVCIhBQm2jxFi2NIpBW13DGIYcckve12kTbpxhTcZAhWn5Fy8LGECGy2FdqEtuvVCusykGmmp7n9AaoYjuUCjfF/hnVZKZWjKfUe3dKlWvqy/LLL58uueSS3GZsSiLkedxxx1Vb/vTTT9fbeNZYY42Sle6mpvViVJ6Lz62peT3isy4+w6a3dWJUsIqKdLEP1jUQEtV0otreySefnJra0ksvnUNgEZ4qFZ5pyP0mPvviPiOwWteKZrGNo+JYfJ7WZSwNLcYQLXnje6g28Xlx0003paWWWqrRv7MjYBitBackWuRG5a/itn/RjrC4teD0igpUAwYMyC0uaxJBswhalWolDAAAQPOmhR8AAEAZirZzEZyIFlDRHina10W1nW+//Ta3t+nQoUM+qLniiiumDTbYIFfqmZqWYSFuGwduozVOBIKiFdB///vf9NNPP6V27drlg6XR4izCPfEYdQ0BRMuhq6++Oo87WnBFy7UIuUQbsqgKE+GHqHwR4/3000+nasxRNSNaUMUB9+HDh+ftE+3nopVQBH6iKk2MOUILUwoeTY9oDRcVQaL6yogRI/Lr8/bbb6fvvvsu/0S4JrZhBNuWXXbZXDEnWvJF8Kh///75dSwOAkVgoViEoiI0dt9996W77747vffee/mAdVSciuBCVOmJtokREorXrq769euXWz3G6z969Oj0v//9L+9XUXEnquZEWC3CCBGIi5DYAw88UOX2EdiK2ze0CBTdcMMNeZyxDaJSTWzbGNdiiy2W21DFdq5J7A8RnonXprIIZUVVs+kR+/dXX301zeGeYvH+iLDavffeW2V5POdoExiBooYW7/X4LIjtHe+x2Kd++eWXvI1jn4/tFvtF7KvxeXTWWWelSZMmVdw+9tEjjzyyXiq0hXh94/UvDk9MTeWcCJxE0G3kyJHp0UcfTa+//nr67LPP0vjx4/NnWnyWxn4SQZbY/rHvTylcWFcRAomQSt++ffPr+uKLL+bXMz6vorpYhINiX47PiHjcLbbYotbgSEOIbRDv8XjvF2+Hptxv4jU44IAD0g477JA/f5555pnc4jI+7+O+Yz+I90xUPIz7jwBiPNaMJMK7EYKNfS8+MyNwFNUGY9zx+R2vd7T7rOv+Vt/f2VFp7corr8zvi3iPxPjiuym+m2PssV/G91aMMbZ33G/lNrXxnTFs2LC01157pfoUr+W6666bQ1vxPf/xxx/nx4qWrfGZEPvE9H5+AwAAMHNqMbmmWvQAAADATCcOUEeA4J577qlYFsGCCBHUV3CD/yfCChEkiIPvlUVbqylVU6PpRcDk/fffr1ZVqj7bcgIAAAAwczBzCgAAAM1IVPY4//zz0+DBg9M666yTq4QcfvjhwlMN4IorrqgWnopqO5tvvnmTjYm6iQo7xeGp6anwBQAAAMDMTQs/AAAAaIa6d++ef6KlVbTqo35Fy6xbbrml2vJoSRUttJhxvfzyy+n000+vtjzeJ9GuFAAAAIDyI0AFAAAAzZjwVP3YZ5990oQJE1KbNm3Sf//73zR27NiS6+25556NPjZqFy35Ro4cmdq3b5+++eab9N5776XJkydXW2+33XZLrVubKgMAAAAoR2aFAAAAAOrgxRdfrPX6TTbZJK2yyiqNNh7qpl27dum1116rdZ0FFlgg9enTp9HGBAAAAMCMpWVTDwAAAABgRhcBm9osuuii6bTTTmu08VB/Vdhmm222dOGFF+ZLAAAAAMqTABUAAADANAaoZplllrT11lunW265JXXs2LHRx8X0hd/WWGONdPPNN6fVV1+9UccEAAAAwIylxeTJkyc39SAAAAAAZmRfffVVGj16dPriiy/Szz//nGafffa08MIL5+DN3HPP3dTDoxa//PJLevbZZ9Mnn3ySxo8fn1q3bp1DVdFusUuXLk09PAAAAABmAAJUAAAAAAAAAABA2dLCDwAAAAAAAAAAKFsCVAAAAAAAAAAAQNkSoAIAAAAAAAAAAMqWABUAAAAAAAAAAFC2BKgAAAAAAAAAAICyJUAFAAAAAAAAAACULQEqAAAAAAAAAACgbLVu6gEAADO3O+64Ix1//PFTfbvu3bunwYMHT/Pjvvfee2nppZdO0+vTTz9NvXr1yr8//PDDadFFF63T7fr06ZOef/75tO2226ZzzjlnusdRLp577rm0++6759/feOON1Lp167LYXxtjnwQAAICZwbLLLjtV648ePTrNMcccNf5/+bLLLksDBw5Mq622Wrr55pvTjGyzzTZLY8aMSa1atUqPP/54mn/++dOMYmbajnVVmL/r27dvOvzww6dq//z3v/+d1llnndSYKu/jU+udd95JjWXDDTdMn332WTrjjDNS7969G+1xAaChCVABANNlnnnmyRMrxcaOHZt/2rRpk1ZcccVq1y+zzDLT9HgxyRT/OZ8wYUKzmcyh+e6vAAAAQGmLLbZY6tix4xTXi7BRc/B///d/eV4rTJw4Md12222pX79+TT0sZiBt27YtOW/1008/pXfffTf/HvNWMX8FANQ/ASoAYLqsv/76+aems9Y6depUr0Gne++9N40YMaLkZALMaPsrAAAAUNoBBxyQtttuuzqvH9Wa7r///vz7ggsumGY2//nPf/JlzEs8+eSTaejQoemggw5qNgExpl9N81KVK7pfcsklaeGFF26C0QFA89eyqQcAAAAAAAAAtZllllnSkksumX/i95lJVFJ/4IEH8u8HHnhgateuXfriiy9yGz8AAGYMAlQAAAAAAADQQB588MEcoooKQ6usskrq1atXXq4KNgDAjEMLPwCgST300EO5ZPnrr7+efvrppzTXXHOlVVddNe2yyy5p7bXXrljv008/rZhcCi+++GJadtll00ILLZSGDx9esfzLL79MQ4YMSSNHjkwff/xxGj9+fD6rb4kllkibbLJJvt9ZZ521QZ/TBx98kK6++upcXjvG07Zt29SlS5dcoj3Kbc8zzzxV1p84cWK69dZb0z333JPefffd9Ouvv+btsPLKK6ftt98+/fnPfy7Zbi7aGE6prPc777xT7fq33347/fvf/87rff3113n7rLjiimmHHXZIm266acnn9PTTT+ft+sorr6Rx48al9u3bp2WWWSZtttlmqXfv3qlNmzZTvZ1+++23dOWVV6a77747jR07Ns0999xp3XXXTfvvv39afPHFK9a75ZZb0imnnJK3SbRvLHWWadx+ww03TC1atMhnb0ZZ/6bcX4tf3zvuuCM/z9j2P//8c5p33nnTmmuumfbcc8+0wgorNMhYAQAAoDmpPDf08MMPp0UXXbROt3v00UfTbbfdll577bX0448/5vmH7t27p7333rvk/8mndp5matr3xfhj7mLLLbfM8wQxf/XJJ5/keaOa5nficWNOZvDgwenOO+9M//3vf/PcyPLLL5+v32ijjUo+5vPPP5/nMF566aU8//PHH3/k5x4BrtrmMQomTZqUNthgg1wp67jjjkt77bVXyfVOOumk/Dg77bRTOu200/J8XV1su+226Zxzzpmu1yrEPNUNN9yQK3x99tlnec4qxv33v/89Ta94ja6//vr0/vvv5/nE2HaxzWP+quDDDz9Mm2++ef495n9qGmfMuX300UfpoosuSn/5y19SQ4jtFtti9OjR+TWfffbZ8+ux9dZb5+1dU7vIZ599Nt100015X/n+++/zNizMFcZ8KgCUCxWoAIAm8fvvv6dDDjkkHXrooTmc07p169S1a9c8mROTYBEsOfvssyvWjxBSBIY6d+6c/47/yMff8Z/5gpdffjltscUWOZQTE1zzzTdfWnrppfOET0wAnHvuuWmfffbJE2ENJR4nJtNiwiQmeuLxI8wT44lxxWRFhH0KJk+enA4//PA8wRShsAhXxcRGjDEmjfr27ZsuueSSehtfTLhtt912ecLthx9+yOOLyZQIJsVrceSRR1bbPjHxsu++++ZgUuF1itBVTMSdfvrp07xNIygVYbA4AzPCWDHhFdstJnVinyiIScWYpIoJnCeffLLkfd111135dY4JrIYIT03t/loQIatdd901TybG9urQoUN+fWPfiEm42Feuu+66eh8vAAAAlLv4P/tRRx2VDj744DyfEMGl+D95nNB177335hPCbrzxxiq3aYh5mgg8vfDCC/n3rbbaKl/G/EXHjh3z48WJY1Oak9hvv/3yvFacqBctDGM8EbCK51bq5LoLLrgg9enTJ889xMmFcWLhggsumL799tuKeYwIidWmZcuWeR6rMO9Syi+//FLRmvBvf/tbvoz5upp+YhwFMZ7pea3C559/nnbcccc8vzRmzJgcqos5wwh0xfxXbK9pdcUVV6Sjjz463+9SSy2Vt8cTTzyRw1xxYmNBPKc4ua627RT7UoSn5pxzzhoDb9PrX//6Vw48xWse806x/WJbxHzUiSeemF/zWF6sf//++brYL2Jfi/muCOjF/Fe/fv3SYYcdlpcDQDkQoAIAmkScYfbII4/k8E5MPEWA5/bbb89n3p188sk5oBLBkkK4JEqcx4RQYTImAjfx96WXXpr/jomjmNSIEE5MRMR/8mOCJYJCcRZVBINCTFhVDufUtwjRRCAoJqniuQwbNizdf//9uXLRYostls/a++c//1mxfowlrotJs5jgiMmKOCsxtscRRxyR1xk0aFD63//+N91jiwmomBSJCZ+YOIltEeOLYFRs55gUjG0Wk04FsT3PP//8/PuFF16Yxxvji6pf11xzTQ42xURMlKKfWjF5FK914T6feuqpfFZbnNkZk2YxqRdisqdwtltso1LieYSYHJsR9teCeB4Rqov9N4Josd3iucY+edBBB+XQV+wz8boDAAAA9Sf+/x5VpBZYYIFcKfyZZ57J/yePyzjRKUI6Z5xxRv6/fUPO0xSqT0UV9dVXXz3/HvMIhSpEcTJZBIVq8uabb+aK4DE/M2rUqLx+zKEUKkhdfPHFOYBUEMGqq666Ks//nHXWWfn5xW3iuTz22GO5olNh+8S8RG0K8yxvvfVWPjmwWITK4uSxCBh169YtL4v5ulI/8RoUqsLH2GNeZHpeqxDXRQWoCAvF6xYBppijigBV3CZCS9MqqjjFiW/x2hf2gQgThZg7i7mdgsJ85X333VfyJMOYnwxx4ue0VHGfknjusX/E6xnbNcZWmL+LClpRCT3m74455pgqt7v22mtzMC32x5jfitvFfFe8D2K/inmwCMhFeA8AyoEAFQDQ6GKSqXB2XQR6og1cQZSSjoo9hTLbcUZXnCk3JdEaLSoUxSRETKjEGV0FcdZUVDsqlEMvNeFTX2IchYmTyhMi8djHHntsLvMeE2bF68eZapVLnMd2OOCAA/K2iQpMUS1qekWJ8DizMUI9UW68ctnumLgqVFCK9n7fffdd/j3OsotAU2zP4vLiPXv2zNs1SpCXaqs3JXH2ZLzWMaEV5phjjnyG5CKLLJJfy8pnYBYmoiLsFaGuyqLyWEyIRTn9ym0em3p/jXHFeEME/Xr06FFxu9g34jZxlmQohNQAAACgXBx//PF5LqSmnzg5bVpF+7LCSU5RSehPf/pTlf/Lx31H1Z2YJ4mgSEPN00SgpRCeiepThTmQ8Ne//jVfFqpC1SYqYheqV4WocB0nEoaYQ4n5m4IIv8Q8zcYbb5znUyJIVRABpcIcxjfffJN/ahMVndZcc80aqyvV9YS2CBVFAC3CYIsvvngOTEVoZ3peq1dffTUHqmKdmI+p3AYxwlwxxzQ9IuwWc4wRIiqM5cADD6x43SJIVxBzZrFePJcIWlUW82qFKl0NdeJfzPmFmGeK17fynORaa61VUTErAlWFamgxrsJJnrF/xfxW5X0l2hLG8w/R3i9aaAJAcydABQA0ujhLLs6Mi6o8xaGcgt122y1P9kRp6ThDakpWWGGFfGZY/Mw999zVro8z+Qqhqp9//jk1lJhYCqeccko+a6tyiesNN9wwt/GLCbeCqEpVqA4VEy+V2/uFmFAaMGBAlUm7aRGTHHG2YChM9BRbf/3187aL8uuFs+gWXnjhPKEVE4PHHXdcxURiQZRWj3BQoULU1IiJmWIxwRMt/ELldn0RPoqJsHgdo6JXqcm6mMBsiLP4pnV/LYSnYtIuytSXEmXfC+X8GzLYBwAAADOamBOprd1bVB+fnv/LxxxCVEaKOaNSCvMPEcQpBInqe54mwkxRjbzUfMzKK69c8Xil2vBVFifkFYtWfgWVTzaLE+dee+21dN5555W8r0IVqBBzQFNSOKktKkRVrlgV7fFi/ijmjQrbsiYRxIn2d3HyW8yNVT7xcVpfq8K8SwSd4mS8YhH8ivucVrvsskuVwFtBtMkLMQcZVehDu3btKk64Kw6aRdWveH1if15ppZVSfYuTCgsBuj322KPkOhEILLQZjPGECFLFuOL1KzVHF2IebP75588BuHj9AKC5+3/xbgCARhSltcNyyy1X5cymyuKsrTgjLUIlMQlQaqKopkmguP84o+3jjz9On3zySXr//ffTO++8k8+sClMqTz494uy/OBstSqvH2XHxPGLCZp111kkbbLBBxcRY5VBVlE6P0E20yIufJZZYIq8fZ9xFZai2bdtO97jee++9KqGnmhS2UeE1irZ+++67b57cijMm4yeCRHH2WlSgWm+99XJZ+6kV9zHffPOVvK5r16758oMPPqhYFhNW2267bQ5rxUTUTjvtlJfHBFtDn8U3rftr4XY1Tf6F2B+iRWGUu4/bTc/kMAAAAMxM4gSzhvq/fGEeJKpK77zzziXXiYpGBfF/+JgDqe95mkL7vpgbqBx4KoiqUtEOLsIsMX9VU+AnQiy1BaGK28bFPEr8FO435sdinizmx+IkroK6zJFFMCgqckcQLFoIxrYI0eIwHjfmQKJFXE2iTVxUMIoTz2Jep3hubFpfq0JoqLa5lJhjiuc/LZZffvmSywvhuTjZLrZlzBcVgmbRKjECSjHPE/M9oVCBrKHnrWabbbaS+1jBiiuumF566aWK7Va4XZwMWhhrsdiHYjvEa1+5yhkANFcCVABAo4tJhEK58doU/vNelxZ+IUJLp556ag5PVRZVlaK6Uixv6HLTESi6/fbb07/+9a98ZlaMPc5ajJ9okRdnxZ1++ukVE2Jxltc111yThgwZkidZIoATExjxc+ONN+ZtEAGmvn37ljzrra6iMlLBiy++OFXrH3744XmSJcYTE29fffVVPuswfmL8cTbaySefPMXXs7I4M29K1xWfBRkTTVFyPMYfE39RkSpKj0d1rJi8qi2o1BT7a11vF8831q3rfg4AAADUbV4j/r9dl3mQQgWn+pyn+e677/K8RXjjjTemWLXqlltuSSeddFLJ6yJ8VJvKAaP4PZ5DVNCqXJkqxhsnf0U1p1Lt+GoSwZyY+xk6dGi+XSFAVQgGFSpUlRKtCQuVsKJae1QYr6/XqnBZaLFXSuVKV1OrprmryssrV7lfY401cjgsKkI99NBDebvEHFq09Iv9qqaK8NOrMP9UUwiqeNxTO281tfOzADAzE6ACABpd4T/slUM6pRQmQmoL2xREtaLdd989h24inBSTFHGWWZx5VThLL6oWNXSAKsSZZ3GGYrTvi1DXc889l5555pk8CfR///d/uTJVTCAVJnii7dxee+2Vf+JsuzibL24TJcy//vrrdPHFF+ezCuP6mibHKivVorDwWFEqPe57am288cb5JyZX4izM+IlQWEwgxhmH8VpGlaq6qm3SpbBfzDHHHFWWd+7cOU/SxcRThLcOOuigigm/hjqLb3r217rernB9XfZzAAAAoG6hn7DpppvmqkdTY1rnaYrFfEnMDUU166jEXdu8QLSCizmOI488smLs0+ryyy/PVa1CBJ/iZL+YK4tKWjH3EAGfqQlQhZhniwBVzGeddtppeT4oKkfFSYtRcb2UaLcXldqjytXee++devfuXa+vVcxxVQ4ClVKXFoU1KbTnK1Z5nqc4oBXzUzEnGPNWsc3uu+++XKWrV69euWpWQyjMJ9W2HaZn3mpq5mcBYGZXugcJAEADigmb8NZbb9VYKjz+0x8TOoVS0lNy/fXX50mRuO+oABUTMxG2qVziPMpNN6SYEInS3aNHj644OzDOPouWeXHmYvzE2X5x9lkEqkJUT3r55ZfT2LFj898LLLBA2mabbXK1qqhgVWhdWHliq1WrVhXt60r58ssvqy2LMwzD999/nx+/JlFhKsJohQmmuHz77bfzT+Gssyhnf9xxx+XWeTGxFx5//PEpTrhUFhOOlc+CrCzOyqypBHvhrMZHHnkkT2SNHDkyb+eGOotvevbXwu0Kz6eU2NaFCbm67OcAAADAlBXmQQrt4Wo6AS1OEIsq14UWeNMyT1OTqGAVIsAU4auafuK+Q8yTROBmekRgK6pPhZiPuuiii9K2226bVlpppYoATITCptaqq66aT1IszMXEvEyI+ZhS1bFim0aVrphXim0WQar6fq0Kt4v5mppMa/u+yi3uihUq30eIbpFFFqlyXewrMW8Xc4MxB1fYTg154l9h/im2Ucwz1eT1118vOW8Vc5k1ha9iHqzwfM1bAVAOBKgAgEYXE0dRujqCPPfff3/JdaIs+h9//JHPQuvevXvF8kJ59OLqS5999lm+jMmcUmfqxeTO559/nn8vTLTUt5jo2WSTTdIee+xRMqQUk02FyapCEOeEE05IO+64Y275VywmoArPvfKY4+y+ENW0SoWoCpMzlcV2KUx0xLYtJapj7brrrvnsxJgsDLfeemsu7R4TXaUqXhXKthePcUrivgoTiZXFhM2wYcPy7xHUKrbRRhvlMwxj8ua2225Lv/76az7TsWPHjmlG218Lk6pxxmVNJeivu+66ignZKZXyBwAAAOpm/fXXz0GWCMHEnFBN/yfv06dPnvcoVPOelnmaUuJkqsLJaLW1uCvMdRQqVN18881pekTbwMKJWiussELJdaKSVEHMZdRV4Xk8+uij6bHHHqsxGBRBsP333z998803ea7jggsuyFW46vu1ijm4EHNYhZBPZbH9Y05mWv3nP/8puXzw4MH58k9/+lO18FicyBnLY7vGvNdLL72UK0/VVKWrPkSQrBAmixNMS4l5qcK2iHmusPrqq+cKWjHWOOmzlAj0xXxYzMfG8wKA5k6ACgBodNGKbYcddsi//+Mf/0gPPvhgxXURLLrpppsqSo1Hm7YOHTpUXF8IIEWVpcqTPIWJgphoiSpKBbHOvffemw4//PB6Kd9dm2gZGFWTYhLtiCOOqHJGXwSd4qy/CAhFO72oTBVi4qcQVLrzzjurhJQikFWYlInJpIKY4CicFRn3WdgOMYEUk1Jx9mIpf//73/PlVVddlScCK4evYpsVrl9llVXSWmutlX/ffPPN82TQu+++m84666wq5cu//fbb/Phh5ZVXriidXldR0rzyax8Ta/369cuVwrp06ZK23377kmX0t9pqq/z7JZdc0uBn8U3P/hqBucLrduihh1ZpnRjbPsrSRwgsHHPMMRXhQAAAAGD6LLTQQhUt42KOZvjw4VX+Lx8hooEDB+a/42SyqLg9rfM0tYVv4oSvwglWNYmTtgpjjSpBtVWynpJ4vML8TISOogpS5XmcU089Nc+TTcscWWybGGvMi7zzzjs5oBVzYZXFfEdUvoow1IILLpjnn6bU+m1aX6sIZ2255Zb5NTrkkEOqVKKK1yrmYkqdDFhXERKLuavC/FlcnnvuuXl8MVcWz7O2oFnMFcUcYVTpiu3WkApzerHfxnxT5Tm/mI+KbREiBFU4GTJOAoygW4jbRIiqcuX1hx56KJ188sn595gXK8y9AkBz1rDf2AAANTj++ONzUCYmI+I/+fPNN1+uwhOluONsubDbbrul/fbbr8rtlltuuYqKU3GmWdwuzs6Lln0xARS3jcmUxRZbLE/QRJWmCBpFaCkCLXHm17SUKq+rCBTttNNOuax4nEG48MIL5wmJGEecgRdn1J1++ukVFZPiOcQkRARpjj322DwRE4GdCFp9/PHHeaKnW7duuex5QYS0IkR0zz33pGuvvTaXjY9tVyi5fdhhh6WLL7642ti22GKL3GYuJnDOP//8NGjQoLydYgKtUMErJkOuuOKKitvE9o3gVFSguuGGG3J7xChPHhNAMb6oABUVsc4888yp2k4xORbbIF77mFCL+4jJrZjgibMuL7/88vya1TQRFROWEeaad955K86cmxH31wEDBuTXLva73XffveJ5jxkzJr9WsT/E6xWvDQAAAFB/oppU/F/+8ccfTwceeGD+v3xUCIo5kJgLCZtuumn+f3nBtMzTFIu5jUJIqaYWd8XiMWOeJuZbYp7rjDPOmKbnHEGdmLc47bTT8txUVD6KuZ8YU8wbxUl4yy+/fG5RGPMZMUdWU6WqYjEHE8Gx2qpPRQgnHjfEXE8EcOKEv2gtWEqh4ta0vFbhlFNOyRXno8JStM9beuml8wlqMcc0xxxz5IphhfFMrXi8eE0ilBTzezEHFHOM8XpG28XCHGWxCMzF3E9h3A194l/hBMjYP2NeMubUohJVzPFVnvOLbXHeeedVOYFvn332yXOW8TrEfGXMGcZJjbFfxMmrhe1w4oknNvhzAIAZgQAVANAkopJQ/If+gQceyGflxRl2caZYhGfiTKgol96jR49qt4vKSFGtJyZk4j/yMQH09ddf5xDO3XffncM/zz77bJ4IinBKTHLFZFW01YsJg7iMM68ifFNTQGd6LLXUUrkF3TXXXJPHEZM4MbkWEz8bb7xx2muvvfJkTmUxqRXhrjizMc7gi58If0WlqWinF5NoxZNtMYEXt4ltF2f1xSTJSiutlINksf1KBahCnB3Xs2fPHECKqlNRzjzuOybPYnyxfYrPDIztF2GhaFP3yiuvpA8++CDfJloCxqTQnnvuOdUt9OL1j8mcOIMw9oGocBXbKEJnMQlZ2/3FBFWc4Rhjb4yz+KZnf42zPmNbxz4R+2e8tlH6PCYBN9tssxz2i20PAAAA1K+2bdumf/7zn/n/8tFOrfB/+Zj3iP/DR7Al5hWK28tNyzxNZdHiLoI2dWnfVxDzVxF2inBStE077rjjpvl577LLLjk8E9WfIkgUP1G1KaqHxwlcMf6TTjopP78ILPXq1avO9x3bLMYY8yRR/alYBM0KpqaS1rS+VhGSivmlCADF3EuExGJsEfqJalZRhX1aA1SxjeKx475j3iq2Ybz+BxxwQLXKW5XFvhHbJk5EXHHFFfOJkI0hxrX22mvn7VGY84vtE8siXFZq+0WYKqqSxZxgVFiPdoix3SP8FnN+UR0+5uoAoFy0mDw99SsBAKCRxdmSccZjBOdiUjFCawAAAAA0rDhJLKpjxUlhl1xySVMPZ4bVr1+/9PDDD+cKXHHyHAAwc6gaNQYAgBnc8OHDc3gqzgYVngIAAABoHEOHDs2XUcWK0qLyeFT2mm222XLVJwBg5qGFHwAAM7xoUxjl3MeMGZNL6YdohwgAAABAw5gwYUL65JNP0qyzzpquueaa3M4wWtKtu+66TT20GcoXX3yRfvnll7y9Yt7q999/TzvuuGPq0KFDUw8NAJgKAlQAAMzwrrvuunTrrbdW/N2zZ8+06aabNumYAAAAAJqzn376qUoVpZYtW6ZTTjmlScc0Ixo9enQ68sgjK/7u1KlTOuSQQ5p0TADA1NPCDwCAGd4KK6yQZp999jTHHHOk7bbbLl1yySVNPSQAAACAZi2CQIsttliaZZZZcuWpK664Iq2xxhpNPawZzhJLLJHmmWeeXKlr7bXXTjfccEOae+65m3pYAMBUajF58uTJU3sjAAAAAAAAAACA5kAFKgAAAAAAAAAAoGwJUAEAAAAAAAAAAGVLgAoAAAAAAAAAAChbAlQAAAAAAAAAAEDZEqACAAAAAAAAAADKlgAVAAAAAAAAAABQtgSoAAAAAAAAAACAsiVABQAAAAAAAAAAlC0BKgAAAAAAAAAAoGwJUAEAAAAAAAAAAGVLgAoAAAAAAAAAAChbAlQAAAAAAAAAAEDZEqACAAAAAAAAAADKlgAVAAAAAAAAAABQtgSoAAAAAAAAAACAsiVABQAAAAAAAAAAlC0BKgAAAAAAAAAAoGwJUAEAAAAAAAAAAGVLgAoAAAAAAAAAAChbAlQAAFDCYYcdltZbb72S102cODENHjw4bbPNNmnllVdOPXv2TH379k2vv/56yfUfeuih1KdPn7TaaqulFVdcMW266abpoosuShMmTGjgZwEAAAAAAMCUCFABAECRgQMHpgceeKDkdZMmTUqHHnpoOuOMM3KQapdddkk9evRII0aMSDvttFN66aWXqt1XrP/uu++mzTbbLK8/66yzpiuvvDLttttuQlQAAAAAwExp1KhRqWvXrum4446rdt0vv/ySLr/88rT55punlVZaKa2//vrpiCOOSB999FGTjBVgSlpPcQ0AACgTv/76a+rfv38aOnRojevccsst6dFHH01/+ctf0nnnnZdat/5//6TeYYcd0u67757OOuusitt/+OGH6YorrkidO3dOt99+e5p33nkrQlgnnnhiuuOOO9LVV1+dA1YAAAAAADOLn376KZ1wwglp8uTJ1a77+eef01577ZVPNl111VXTn//85/Tf//433X///flE1Jg/XXTRRZtk3AA1UYEKAABSSsOHD89nQ8V/3uNsqJpcf/31ac4550ynn356RXgqRBWqffbZJ3Xr1i398ccfFa37okrV3nvvXRGeCi1btqwITT3++OMN+rwAAAAAAOrbmWeemT777LOS10VV/ghPxbxonJB6zDHH5GpUZ599dvrhhx/SRRdd1OjjBZgSFagAACClXCFq/Pjx6ZRTTkk777xzLj1dbMyYMbnE9BZbbJE6dOhQ7fqYCKhs9dVXz0Gpddddt9q6bdq0yZfxmAAAAAAAM9PJqFFdf8MNN8y/F1f5v/nmm9Niiy2WjjzyyCrXbb311umFF16ocrIpwIxCgAoAAFJKe+yxRxowYEBq3759jeu8/fbb+XKZZZZJr776arrsssvSiy++mMtUd+/ePR1++OFp2WWXrVg/lsVPKQ8++GC+rLw+AAAAAMCM7Ntvv03/+Mc/8rznbrvtVi1ANXr06HzS6K677lqlgn+hMn9UrgKYEWnhBwAA//8WfLWFp8KXX36ZL19++eVcpWrcuHGpd+/eebLgiSeeSDvttFO+bko+//zzHL4Ku+yySz09AwAAAACAhnXqqaemCRMmpLPOOiu1aNGi1pNQn3rqqdSnT5+06qqr5vnXqEhVU9s/gKYmQAUAAHUUEwPh8ccfT3vttVe69dZb03HHHZeuvPLKdN555+Xrjz/++DRp0qRaQ1h77713+u6779KOO+6Y1l577UZ8BgAAAAAA0+buu+9ODz30UDrqqKNSly5daj0JNSrw77fffrkKVcyDRiX+e++9N22//fbp448/buSRA0yZABUAANRRq1at8uV8882X/v73v1e5bquttspnUn344YfpzTffLHn7uC4qV40ZMyZtuOGGudQ1AAAAAMCM7osvvkj9+/fPJ4TWVlW/cBLqo48+mqtV/fvf/84nod5www3p8MMPzy0AYznAjEaACgAA6qjQ4m+55ZZLs8wyS7XrV1hhhXxZ6gyqUaNG5TOtPv3007TlllumSy+9tOR9AAAAAADMaE444YQ0ceLEdOaZZ5Zs3VfQsuX/iyCstNJK+WTSyqIiVefOndMzzzyTg1QAMxIBKgAAqKPFF188X/7+++8lry8sn3XWWassv+eee9K+++6bxo0bly/PP/984SkAAAAAYKZw8803pxEjRqRjjz02LbTQQrWu26FDh4oAVakK/127dk2TJ09On3zySYONF2BatJ6mWwEAQBnq1q1bDke9/PLLafz48aldu3ZVrn/ttdfy2VfLLrtsxbL7778/HXPMMfn3KE1dfNYVAAAAAMCMLOY4w8knn5x/ig0bNiz/bLvttmmNNdaYppNQAZqaABUAANRRBKa23nrrdOutt6azzjornXHGGRXlqocOHZrefPPN1LNnz4qzsMaMGZNLW0+aNCkNGDAg3xYAAAAAYGYSwaju3btXWx5VpO66665cVWqjjTZKyy23XFpmmWXydaNGjcrzooWWfuG3335L77zzTpp99tnToosu2qjPAWBKBKgAAGAqHH300enVV19Nt99+e3rrrbdSjx49clDq8ccfT/POO2+uMlUwcODA9PPPP+dA1ccff5wuu+yyavfXvn37tNdeezXyswAAAAAAqJvtttuu5PJnnnkmB6giONWvX7+K5XGSabT8++c//5kOPvjgiuWXX355+uqrr9KOO+6oAhUww2kxORqMAgAAVUQbvvnnnz899dRT1a6bMGFCuvrqq9N9992XPv/88zTXXHOlP/3pT3mSoHPnzhXrrbnmmmncuHG1Pk5NjwEAAAAAMCOLAFWcHBoVqs4555yK5TFnuttuu6XPPvssV65accUV0+uvv56ef/75tNhii6XbbrstzTnnnE06doBiAlQAAAAAAAAAQL0EqMK3336bK1A99thj6csvv0ydOnVKG2+8ca5IJTwFzIgEqAAAAAAAAAAAgLLVsqkHAAAAAAAAAAAA0FQEqAAAAAAAAAAAgLIlQAUAAAAAAAAAAJQtASoAAAAAAAAAAKBstW7qAQAAMPPpcceQph4CM7jnttu1qYcAAAAAAA2u543fNPUQmMGN2G2eph4CUAcqUAEAAAAAAAAAAGWr2QSoDjvssLTeeuuVvG7ixIlp8ODBaZtttkkrr7xy6tmzZ+rbt296/fXXS67/3nvvpUMOOSStu+66adVVV0077rhjevjhhxv4GQAAAAAAAAAAAI2tWQSoBg4cmB544IGS102aNCkdeuih6YwzzshBql122SX16NEjjRgxIu20007ppZdeqrL+G2+8kQNTI0eOTL169Uq9e/dOn3/+eerXr18OYQEAAAAAAAAAAM1H6zQT+/XXX1P//v3T0KFDa1znlltuSY8++mj6y1/+ks4777zUuvX/e8o77LBD2n333dNZZ51V5fb/+Mc/0m+//ZZuv/321LVr17wsqlVFqCpuv8kmm6T555+/EZ4dAAAAAAAAAADQ0GbaClTDhw9Pm2++eQ4/rb/++jWud/3116c555wznX766RXhqRBVqPbZZ5/UrVu39Mcff+RlL7zwQq5Atemmm1aEp0LHjh1ziCoCW8OGDWvgZwYAAAAAAAAAADSWmTZAFRWixo8fn0455ZQ0aNCgkuuMGTMmffTRR6lnz56pQ4cO1a4/5phjcsWpQrBq1KhR+XLttdeutm5hWWEdAAAAAAAAAABg5jfTtvDbY4890oABA1L79u1rXOftt9/Ol8sss0x69dVX02WXXZZefPHFNHny5NS9e/d0+OGHp2WXXbZK4Cosuuii1e5rgQUWSLPMMkv68MMPG+T5AAAAAAAAAAAAjW+mrUAVLfhqC0+FL7/8Ml++/PLLaeedd07jxo1LvXv3zuGpJ554Iu200075uoLvv/8+X0bLv2ItW7ZM7dq1Sz/++GO9PxcAAAAAAAAAAKBpzLQVqOpiwoQJ+fLxxx9P++23XzrqqKMqrrvnnnvy38cff3y67777ckDq999/z9e1adOm5P1FBSoBKgAAAAAAAAAAaD5m2gpUddGqVat8Od9886W///3vVa7baqut0qqrrppb8r355pt52ayzzpovC0GqYrF89tlnb/BxAwAAAAAAAAAAjaNZB6gKLf6WW265XD2q2AorrJAvP/744yqt+6LVX7FJkyal8ePHpw4dOjTwqAEAAAAAAAAAgMbSrANUiy+++BQrSlWuPLXEEkvky08++aTaumPHjs3rL7nkkg04YgAAAAAAAAAAoDE16wBVt27dcjjq5ZdfztWjir322mupRYsWadlll81/d+/ePV+OGjWq2rrPPvtsvlx99dUbfNwAAAAAAAAAAEDjaNYBqnbt2qWtt946TZgwIZ111llp8uTJFdcNHTo0vfnmm2nddddNCy20UF622mqr5SpU9957b3r11Vcr1v3222/ToEGDUtu2bdP222/fJM8FAAAAAAAAAACof61TM3f00UfnMNTtt9+e3nrrrdSjR480ZsyY9Pjjj6d55503nXrqqRXrRjWq/v37p7333jv16dMnbbnllql9+/bp/vvvT19++WU6+eSTU6dOnZr0+QAAAAAAAAAAAPWnWVegCh06dEg33XRTOvjgg3MbvxtvvDG98cYb6W9/+1sOVXXp0qXK+mussUYaMmRIbuf34IMP5nWiQtXAgQPTrrvu2mTPAwAAAAAAAAAAqH8tJlfuawcAAHXQ444hTT0EZnDPbefkAwAAAACav543ftPUQ2AGN2K3eZp6CEAdNPsKVAAAAAAAAAAAADURoAIAAAAAAAAAAMqWABUAAAAAAAAAAFC2BKgAAAAAAAAAAICyJUAFAAAAAAAAAACULQEqAAAAAAAAAACgbAlQAQAAAAAAAAAAZUuACgAAAAAAAAAAKFsCVAAAAAAAAAAAQNkSoAIAAAAAAAAAAMqWABUAAAAAAAAAAFC2BKgAAAAAAAAAAICyJUAFAAAAAAAAAACULQEqAAAAAAAAAACgbAlQAQAAAAAAAAAAZUuACgAAAAAAAAAAKFsCVAAAAAAAAAAAQNkSoAIAAAAAAAAAAMqWABUAAAAAAAAAAFC2BKgAAAAAAAAAAICyJUAFAAAAAAAAAACULQEqAAAAAAAAAACgbAlQAQAAAAAAAAAAZUuACgAAAAAAAAAAKFsCVAAAAAAAAAAAQNkSoAIAAAAAAAAAAMqWABUAAAAAAAAAAFC2BKgAAAAAAAAAAICyJUAFAAAAAAAAAACULQEqAAAAAAAAAACgbAlQAQAAAAAAAAAAZUuACgAAAAAAAAAAKFsCVAAAAAAAAAAAQNkSoAIAAAAAAAAAAMqWABUAAAAAAAAAAFC2BKgAAAAAAAAAAICyJUAFAAAAAAAAAACULQEqAAAAAAAAAACgbAlQAQAAAAAAAAAAZUuACgAAAAAAAAAAKFsCVAAAAAAAAAAAQNkSoAIAAAAAAAAAAMqWABUAAAAAAAAAAFC2BKgAAAAAAAAAAICyJUAFAAAAAAAAAACULQEqAAAAAAAAAACgbAlQAQAAAAAAAAAAZUuACgAAAAAAAAAAKFsCVAAAAAAAAAAAQNkSoAIAAAAAAAAAAMqWABUAAAAAAAAAAFC2BKgAAAAAAAAAAICyJUAFAAAAAAAAAACULQEqAAAAAAAAAACgbAlQAQAAAAAAAAAAZUuACgAAAAAAAAAAKFsCVAAAAAAAAAAAQNkSoAIAAAAAAAAAAMqWABUAAAAAAAAAAFC2BKgAAAAAAAAAAICyJUAFAAAAAAAAAACULQEqAAAAAAAAAACgbAlQAQAAAAAAAAAAZUuACgAAAAAAAAAAKFsCVAAAAAAAAAAAQNkSoAIAAACAejZq1KjUtWvXdNxxx1W77rvvvktnnHFG6tWrV+rWrVvabLPN0r/+9a/0xx9/NMlYAQAAAMpd66YeAAAAAAA0Jz/99FM64YQT0uTJk6tdN27cuNSnT5/0/vvvp0022SQtssgiaeTIken8889Pr732Wrr00kubZMwAAAAA5UwFKgAAAACoR2eeeWb67LPPSl53+eWXp/feey+dfPLJOSx11FFHpdtvvz2HqR566KH08MMPN/p4AQAAAMqdABUAAAAA1JPhw4enO+64I2244YbVrvvll1/Sbbfdljp37px22mmniuWtWrVKxxxzTP79lltuadTxAgAAANCMAlSHHXZYWm+99eq07mWXXZaWXXbZPJlVSpwFeMghh6R11103rbrqqmnHHXd09h8AAAAAtfr222/TP/7xj9S9e/e02267Vbv+1VdfTRMmTMjXt2xZdVquS5cuaeGFF06jR49OEydObMRRAwAAANAsAlQDBw5MDzzwQJ3Wff3119OVV15Z4/VvvPFGDkyNHDky9erVK/Xu3Tt9/vnnqV+/fmnw4MH1OGoAAAAAmpNTTz01B6TOOuus1KJFi2rXf/TRR/lykUUWKXn7CFH99ttv6dNPP23wsQIAAADw/2mdZmK//vpr6t+/fxo6dGid1z/22GPTH3/8UeM6cZZgTFTdfvvtqWvXrnlZ3759c6jqvPPOS5tsskmaf/756+05AAAAADDzu/vuu9NDDz2UTj755ByE+uSTT6qt8/333+fLueaaq+R9dOjQIV+OGzeugUcLAAAAQLOoQDV8+PC0+eab5/DU+uuvX6fbXHTRRflMv5pa/b3wwgu5AtWmm25aEZ4KHTt2zCGqCGANGzas3p4DAAAAADO/L774Ip/kt/baa6dddtmlxvXipL3Qpk2bktcXlsccFAAAAACNZ6YNUEWFqPHjx6dTTjklDRo0aIrrjx49Ol1//fVp//33T8svv3zJdUaNGpUvY7KrWGFZYR0AAAAACCeccEKaOHFiOvPMM0u27iuYddZZ8+Xvv/9ea8CqXbt2DTRSAAAAAJpVgGqPPfZIjz32WD6rr7aJqfDTTz+l4447Li2zzDLpoIMOqnG9MWPG5MtFF1202nULLLBAmmWWWdKHH35YD6MHAAAAoDm4+eab04gRI9Kxxx6bFlpooVrXnXPOOWtt0ffjjz/my/bt2zfASAEAAACoSes0k+rRo0ed1z3nnHNyKfXLL788h6Bq8v3331eZzKqsZcuW+ey/wkQWAAAAANx///358uSTT84/xYYNG5Z/tt1229S7d++87OOPPy55X7F89tlnTwsuuGADjxoAAACAZhGgqqsnn3wyDR06NPXr1y917dq11nUL5dPbtGlT8voIXwlQAQAAAFAQwaju3btXW/7JJ5+ku+66K89HbbTRRmm55ZZLK664Yj5B7/nnn0+TJk3KJ+xVXv+zzz5L66yzTmrVqlUjPwsAAACA8tasA1RRUerEE09MK6ywQurbt+8U15911lmrBKmKxfI4CxAAAAAAwnbbbVdy+TPPPJMDVBGcihP7Crbccst06623phtuuCHtueeeednEiRPTgAED8u+77rprI40cAAAAgLIIUJ122mk5RHXttdem1q2n/FQLrfvGjRtX7bo4K3D8+PGpU6dODTJWAAAAAJq/ww47LI0YMSKdffbZadSoUWmppZbKYas33ngjbb755qlXr15NPUQAAACAsvP/1Qlvhu6///5cNWqrrbZKyy67bMXPlVdema8//vjj89933HFH/nuJJZaoKJlebOzYsfm+llxyyUZ+FgAAAAA0Fx07dky33HJL2n777dNrr72WK1H98ssv6eijj85VqFq0aNHUQwQAAAAoO826AtUhhxxScnmc3ffCCy/kM/qijHr8hO7du1dcv80221S5zbPPPpsvV1999QYfNwAAAAAzt3XWWSe98847Ja+bb7750plnntnoYwIAAACgDANU/fr1K7n8jz/+yAGqjTbaKG233XYVy1dbbbVcheree+9Nu+yyS+rWrVte/u2336ZBgwaltm3b5rMDAQAAAAAAAACA5qFZB6imVpRI79+/f9p7771Tnz590pZbbpnat2+fWwF++eWX6eSTT06dOnVq6mECAAAAAAAAAAD1RICqyBprrJGGDBmSLr300vTggw/mZUsvvXQOT2288cZNPTwAAAAAAAAAAKAetZg8efLk+rxDAACavx53DGnqITCDe267XZt6CAAAAADQ4Hre+E1TD4EZ3Ijd5mnqIQB10LIuKwEAAAAAAAAAADRHAlQAAAAAAAAAAEDZEqACAAAAAAAAAADKlgAVAAAAAAAAAABQtgSoAAAAAAAAAACAsiVABQAAAAAAAAAAlC0BKgAAAAAAAAAAoGwJUAEAAAAAAAAAAGVLgAoAAAAAAAAAAChbAlQAAAAAAAAAAEDZEqACAAAAAAAAAADKlgAVAAAAAAAAAABQtgSoAAAAAAAAAACAsiVABQAAAAAAAAAAlC0BKgAAAAAAAAAAoGwJUAEAAAAAAAAAAGVLgAoAAAAAAAAAAChbAlQAAAAAAAAAAEDZEqACAAAAAAAAAADKlgAVAAAAAAAAAABQtgSoAAAAAAAAAACAsiVABQAAAAAAAAAAlC0BKgAAAAAAAAAAoGwJUAEAAAAAAAAAAGVLgAoAAAAAAAAAAChbAlQAAAAAAAAAAEDZEqACAAAAAAAAAADKlgAVAAAAAAAAAABQtgSoAAAAAAAAAACAsiVABQAAAAAAAAAAlC0BKgAAAAAAAAAAoGwJUAEAAAAAAAAAAGVLgAoAAAAAAAAAAChbAlQAAAAAAAAAAEDZEqACAAAAAAAAAADKlgAVAAAAAAAAAABQtgSoAAAAAAAAAACAsiVABQAAAAAAAAAAlC0BKgAAAAAAAAAAoGwJUAEAAAAAAAAAAGVLgAoAAAAAAAAAAChbAlQAAAAAAAAAAEDZEqACAAAAAAAAAADKlgAVAAAAAAAAAABQtgSoAAAAAAAAAACAsiVABQAAAAAAAAAAlC0BKgAAAAAAAAAAoGwJUAEAAAAAAAAAAGVLgAoAAAAAAAAAAChbAlQAAAAAAAAAAEDZEqACAAAAAAAAAADKlgAVAAAAAAAAAABQtgSoAAAAAAAAAACAsiVABQAAAAAAAAAAlC0BKgAAAAAAAAAAoGwJUAEAAAAAAAAAAGVLgAoAAAAAAAAAAChbAlQAAAAAAAAAAEDZEqACAAAAAAAAAADKlgAVAAAAAAAAAABQtgSoAAAAAAAAAACAsiVABQAAAAAAAAAAlC0BKgAAAAAAAAAAoGwJUAEAAAAAAAAAAGVLgAoAAAAAAAAAAChbAlQAAAAAAAAAAEDZEqACAAAAAAAAAADKlgAVAAAAAAAAAABQtgSoAAAAAAAAAACAstVsAlSHHXZYWm+99Upe9/HHH6fjjjsu/elPf0orrLBCWnvttdOhhx6a3n777ZLrv/fee+mQQw5J6667blp11VXTjjvumB5++OEGfgYAAAAAAAAAAEBjaxYBqoEDB6YHHnig5HURktpuu+3SsGHD0nLLLZd23333tPrqq6dHHnkk9e7dO40aNarK+m+88UYOTI0cOTL16tUrr/P555+nfv36pcGDBzfSMwIAAAAAAAAAABpD6zQT+/XXX1P//v3T0KFDa1zntNNOSz/++GO64IIL0pZbblmx/Jlnnkn77LNPOvHEE3OYqmXL/5cl+8c//pF+++23dPvtt6euXbvmZX379s2hqvPOOy9tsskmaf7552+EZwcAAAAAAAAAADS0mbYC1fDhw9Pmm2+ew1Prr79+yXW++OKL9OKLL6bll1++SngqrLPOOql79+7p008/Te+++25e9sILL+QKVJtuumlFeCp07Ngxh6gisBWVrAAAAAAAAAAAgOZhpg1QRYWo8ePHp1NOOSUNGjSo5DqtWrVKxxxzTNprr71KXt+mTZt8GfcTCu381l577WrrFpYVt/wDAAAAAAAAAABmXjNtC7899tgjDRgwILVv377Gdeadd97cpq+Ur7/+Olecat26dVpyySXzsjFjxuTLRRddtNr6CyywQJplllnShx9+WG/PAQAAAAAAAAAAaFozbYCqR48e03X7M844I02YMCH99a9/TXPNNVde9v333+fLOeecs9r6LVu2TO3atUs//vjjdD0uAAAAAAAAAAAw45hpW/hNb3jqgQceyFWljj/++Irlv//+e5XWfsWiAtWvv/7aaOMEAAAAAAAAAAAa1kxbgWpaREDqH//4Rxo2bFjq2LFj+te//pUvC2adddaK9Wq6/eyzz95o4wUAAAAAAAAAABpW2QSoxo0blw4++OD0/PPPp86dO6drrrkmLbnkklXWKbTui3WLTZo0KY0fPz516tSp0cYMAAAAAAAAAAA0rLJo4Td27Ni000475fDUcsstl2699dZq4amwxBJL5MtPPvmk5H1EBapStwMAAAAAAAAAAGZOzT5A9fXXX6c99tgjffDBB6lnz55pyJAhaf755y+5bvfu3fPlqFGjql337LPP5svVV1+9gUcMAAAAAAAAAAA0lmYfoDr66KPTf//737TeeuulK6+8MrVr167GdVdbbbVcheree+9Nr776asXyb7/9Ng0aNCi1bds2bb/99o00cgAAAAAAAAAAoKG1Ts3YiBEj0jPPPJN/X3TRRXOAqpRtttkmdenSJbVo0SL1798/7b333qlPnz5pyy23TO3bt0/3339/+vLLL9PJJ5+cOnXq1MjPAgAAAAAAAAAAaCjNOkD11FNPVfw+ePDgGteLtnwRoAprrLFGbvN36aWXpgcffDAvW3rppXN4auONN26EUQMAAAAAAAAAAI2lxeTJkyc32qMBANAs9LhjSFMPgRncc9vt2tRDAAAAAIAG1/PGb5p6CMzgRuw2T1MPAaiDlnVZCQAAAAAAAAAAoDkSoAIAAAAAAAAAAMpW66YeAAAAAAAAAEC5+v7779OgQYPS8OHD09ixY9M888yTevXqlQ466KDUsWPHKuu++eab6corr0yjR49OP/74Y5p77rnTuuuumw4++ODUpUuXJnsOADCzE6ACAAAAAAAAaAIRgtpll13SBx98kNZee+0cnPrwww/T4MGD00MPPZRuu+221Llz57zuyJEj0wEHHJAmT56c11tooYXSu+++m4YNG5bDVzfddFNaaqmlmvopAcBMSYAKAAAAAAAAoAkMHDgwh6f69euXDjnkkIrlN954Y+rfv3+69NJL09lnn50mTpyYTjrppDRp0qR0ww03pDXWWKNi3dtvvz2deOKJ6dRTT823AwCmXstpuA0AAAAAAAAA0+nTTz9N8847b9pnn32qLN96663z5UsvvZQvX3755fT555+nDTfcsEp4Kmy//fa5fd8LL7yQK1oBAFNPBSoAAAAAAACAJnD55ZeXXB5VqUKnTp3yZYSsjjzyyLTMMsuUXL9Nmza5td+ECRNShw4dGnDEANA8CVABAAAAAAAAzAB++OGHNGrUqHTOOeek1q1bp4MOOigvX3TRRdP+++9f8jbvvvtuGjNmTJp77rkrAlcAwNQRoAIAAAAAAABoYjfffHM69dRT8++tWrVK5513Xlp77bVrvc3vv/+eTjnllDRp0qS00047pZYtWzbSaAGgefENCgAAAAAAANDEOnbsmPbbb7+0zTbbpLZt26ajjjoqXX311bWGp4444oj04osvpuWWWy4deOCBjTpeAGhOWkyOZrgAADAVetwxpKmHwAzuue12beohAAAAAMy0Pv3007Tjjjumr7/+Ot1+++1ppZVWqnL9Tz/9lP7+97+nESNG5PZ+gwcPTvPPP3+Tjbec9bzxm6YeAjO4EbvN09RDAOpABSoAAAAAAACAGcjCCy+c9t133/z7Y489VuW6sWPHpp133jmHp5Zddtl04403Ck8BwHQSoAIAAAAAAABoZL/99lsaOXJkeuqpp0pe36VLl3z57bffVix7++230w477JDefffdtM4666SbbropzTfffI02ZgBorlo39QAAAAAAAAAAyjFAtd9++6XZZ589PfPMM6lNmzZVrn/jjTfy5eKLL54vP/jgg7Tnnnum7777Lm277bapf//+aZZZZmmSsQNAc6MCFQAAAAAAAEAja9++ferVq1f68ccf08CBA6tc9/rrr6frrrsuh6u23HLLHLb6+9//nsNTvXv3TmeffbbwFADUIxWoAAAAAAAAAJrAiSeemMNSgwYNSi+88EJaeeWV0+eff54ee+yx1KJFi3TRRRelTp06pVtvvTW99957OTTVsWPHaoGrgj59+qS55pqr0Z8HAMzsBKgAAAAAAAAAmsACCyyQ/vOf/6Qrrrgih6ZeeeWVNMccc6SNNtoo9e3bN3Xt2jWv99RTT+XL33//PYetavLXv/5VgAoApkGLyZMnT56WGwIAUL563DGkqYfADO657XZt6iEAAAAAQIPreeM3TT0EZnAjdpunqYcA1EHLuqwEAAAAAAAAAADQHAlQAQAAAAAAAAAAZUuACgAAAAAAAAAAKFsCVAAAAAAAAAAAQNlq3dQDAAAAAAAAACjocceQph4CM4Hnttu1qYcAQDOiAhUAAAAAAAAAAFC2BKgAAAAAAAAAAICyJUAFAAAAAAAAAACULQEqAAAAAAAAAACgbAlQAQAAAAAAAAAAZUuACgAAAAAAAAAAKFsCVAAAAAAAAAAAQNkSoAIAAAAAAAAAAMqWABUAAAAAAAAAAFC2BKgAAAAAAAAAAICyJUAFAAAAAAAAAACULQEqAAAAAAAAAACgbAlQAQAAAAAAAAAAZUuACgAAAAAAAAAAKFsCVAAAAAAAAAAAQNkSoAIAAAAAAAAAAMqWABUAAAAAAAAAAFC2BKgAAAAAAAAAAICyJUAFAAAAAAAAAACULQEqAAAAAAAAAACgbAlQAQAAAAAAAAAAZUuACgAAAAAAAAAAKFutm3oAAAAAANAcfP/992nQoEFp+PDhaezYsWmeeeZJvXr1SgcddFDq2LFjlXW/++67dPnll6fHH388ffXVV2nBBRdMf/vb39Jee+2VWrc2ZQcAAADQmFSgAgAAAIDp9OOPP6ZddtklXXvttalz585pt912S8suu2waPHhw2nrrrXOgqmDcuHGpT58+6cYbb0wrrLBC2n333dNss82Wzj///HTEEUc06fMAAAAAKEdOZwMAAACA6TRw4MD0wQcfpH79+qVDDjmkYnmEpPr3758uvfTSdPbZZ+dlUXnqvffeS6ecckoOXYXDDz88HXbYYemhhx5KDz/8cNpkk02a7LkAAAAAlBsVqAAAAABgOn366adp3nnnTfvss0+V5VF9Krz00kv58pdffkm33XZbrlK10047VazXqlWrdMwxx+Tfb7nllkYdOwAAAEC5U4EKAAAAAKZTVJUqJapShU6dOuXLV199NU2YMCFtvPHGqWXLquc2dunSJS288MJp9OjRaeLEiTlUBQAAAEDDU4EKAAAAAOrZDz/8kNvxRWu+1q1bp4MOOigv/+ijj/LlIossUvJ2EaL67bffckUrAAAAABqHClQAAAAAUI9uvvnmdOqpp+bfo4rUeeedl9Zee+389/fff58v55prrpK37dChQ74cN25co40XAAAAoNzVe4AqyovHT5s2bfLfP/30U7rlllvS2LFjU7du3dKWW26p/DgAAAAAzVbHjh3Tfvvtl7766qv08MMPp6OOOirPje277765ulQozJ0VKyz/9ddfG3XMAAAAAOWsXlv4XXvttalHjx5p+PDh+e+YENp5553TBRdckIYMGZKOO+64PHkUASsAAAAAaI423XTTHJo699xz0z333JMDVVGF6rXXXkuzzjprXuf3338vedtCwKpdu3aNOmYAAACAclZvAapHH300DRgwIFec+vHHH/OyO++8M7333nupU6dO6ZBDDknLLrtsevbZZ3NFKgAAAABo7hZeeOFceSo89thjac4556y1RV9hXq19+/aNOEoAAACA8lZvAapbb701tWzZMl1zzTWpd+/eedkDDzyQWrRokU4++eQcoLrxxhtThw4d0t13311fDwsAAAAATSqqRo0cOTI99dRTJa/v0qVLvvz222/TEksskX//+OOPS64by2efffa04IILNuCIAQAAAKisdaonr7/+elpttdXSuuuum//++eef0+jRo1ObNm3SeuutV3Hm3CqrrJJefPHF+npYAAAAAGjyANV+++2Xg0/PPPNMng+r7I033siXiy++eFpxxRVze77nn38+TZo0KZ+QWPDJJ5+kzz77LK2zzjqpVatWjf48AAAAAMpVvVWgitZ98847b8XfMQn0xx9/pG7dulWZNIrff/311/p6WAAAAABoUnHSYK9evXL7vYEDB1Y76fC6667L4aott9wytW3bNl9++umn6YYbbqhYb+LEiWnAgAH591133bXRnwMAAABAOau3ClQLLLBAPkOuIEqWR/u+OGOuIM6qe+utt1KnTp3q62EBAAAAoMmdeOKJOSw1aNCg9MILL6SVV145ff755+mxxx7Lc2QXXXRRxZzYYYcdlkaMGJHOPvvsNGrUqLTUUkvlylVRqWrzzTfPYSwAAAAAZsIA1XLLLZceeeSRNHTo0NSlS5d011135eWFCZ/ff/89XXjhhXniaOutt66vhwUAAACAJhcnF/7nP/9JV1xxRQ5NvfLKK2mOOeZIG220Uerbt2/q2rVrxbodO3ZMt9xyS7rkkkvSE088kcNTCy+8cDr66KPT7rvvngNXAAAAADSeFpMnT55cH3cUZ9jtvPPOuW1fiLvdYIMN0pVXXpn/Xm+99dJXX32VOnTokCeIllhiifp4WAAAmkCPO4Y09RCYwT23ndZDAAAAwLQx98TMNP/U88ZvmnoIzOBG7DZPUw8BqIOWqZ6suOKK6dprr01rrbVWDkftsssu6YILLqi4vnPnzmnNNddMN998s/AUAAAAAE1m4sSJ6bvvvmvqYQAAAADQ3Fr4hQhI/fvf/y553Q033JDatm1bnw8HAAAAADUaN25cuu2221LPnj0rWugNHTo0nXvuuWn8+PGpS5cu6dRTT03rrLNOUw8VAAAAgOYSoKrs119/TV9++WWaZZZZ0gILLJAvAQAAAKAxfPPNN2n77bdP//vf/9Icc8yRA1TvvPNOOuWUU9KkSZNSq1at0scff5wOOOCANGzYsLTUUks19ZABAAAAmNlb+BU88cQTadddd02rr7562mSTTdJFF12Ulx988MH5jL4JEybU90MCAAAAQBVXX311Gjt2bK6Yvuqqq+ZlUY0qwlM77LBDevXVV9M555yTfv/997wuAAAAAOWrXitQXXrppemf//xnmjx5cmrZsmW+jJ/w/vvv53DV22+/ndv5tWnTpj4fGgAAAAAqPPXUU2m++eZL11xzTUVl9Mcffzy1aNEi7bvvvrkC1TbbbJPnqUaNGtXUwwUAAACgOVSgevLJJ9MVV1yRJ6YuvvjiNHr06CrXX3jhhbkU+iuvvJKGDh1aXw8LAAAAANV8/vnnaeWVV64IT3344Yd5WefOndMiiyxSsV6XLl1yuz8AAAAAyle9BajibL2YkLr22mvTZpttltq1a1fl+pVWWimf8ReVp+666676elgAAAAAqCbmoKI9X8GIESPyZY8ePaqs9+2336a2bds2+vgAAAAAaIYBqtdeey2tvvrqackll6xxnahOtcYaa6SPP/64vh4WAAAAAKqJKlMvv/xy+vnnn/PfDzzwQG7ft95661Ws89FHH6WXXnopV00HAAAAoHzVW4Dql19+qVZ1qpSoUlWYuKpPhx12WJUJsMomTJiQLr300rTpppumbt26pQ033DBdcMEFNY7jvffeS4ccckhad91106qrrpp23HHH9PDDD9f7mAEAAABoGBtvvHH6/vvv03bbbZf69OmTg1JzzDFH2mCDDfL1V111Vdp1113TxIkT01//+temHi4AAAAAzSFAteCCC6Y333wzTZo0qcZ1/vjjj7xO586dU30aOHBgPouwlN9++y317ds3XX755WnhhRdOe+yxR1pooYXyJNlee+2Vr6/sjTfeyIGpkSNHpl69eqXevXunzz//PPXr1y8NHjy4XscNAAAAQMOIeZ8//elPacyYMWn06NH5pL7+/fun2WabLV9/2223pW+++SbP/ey8885NPVwAAAAAmlDr+rqjqOr073//O1d6impQpUSI6auvvsohpvrw66+/5omvoUOH1rjOLbfckp577rm07777pqOPPrpi+ZlnnpluuOGGNGTIkDyhVvCPf/wjh6puv/321LVr17wsAlgRqjrvvPPSJptskuaff/56GT8AAAAADSMCU//617/Siy++mL744ou02mqrVZnT2W+//dISSyyR1lxzzSYdJwAAAADNqAJVBJQ6deqUBg0alHbbbbdcFSqMHTs2B5wihHTllVemueaaK+2zzz7T/XjDhw9Pm2++eb7v9ddfv8b1IiTVpk2bdOCBB1ZZHiGvOOMwAlYFL7zwQq5AFa3+CuGp0LFjxzz+CGwNGzZsuscOAAAAQOOI4FTMIRWfEBcnywlPAQAAAFCvAaoIGV177bVpscUWy0GkqDYV4veTTz45PfHEE2mBBRbIrfMiaDW9okLU+PHj0ymnnJJDW6V89tln6ZNPPkndunVL7du3r3Jdu3bt8vKPPvoo/e9//8vLRo0alS/XXnvtavdVWFZYBwAAAICZw7PPPpsuuuiidMwxx+ST7cKDDz5YMScEAAAAQHmrtxZ+Yamllkr33ntveuSRR/LEVFSfmjRpUg5M9ejRI/3lL3/J1aDqQ7QBHDBgQLVgVGURjgqLLLJIyeu7dOmS2/t9+OGHOdw1ZsyYvHzRRRettm5cH6XfY10AAAAAZnxxYt0RRxyRXn/99TR58uTUokWLiuuivd+7776bzj333DxnBQAAAED5qtcAVWjVqlXabLPN8k9DikDWlHz//ff5MtoGltKhQ4d8OW7cuCrrzznnnNXWbdmyZa5a9eOPP07XuAEAAABoeDHPEyfgff7552nppZdO6623Xrrmmmsqro8T6N5444109NFHp8UXXzwtt9xyTTpeAAAAAJpBC78Z0e+//54va6p6VVj+66+/1mn9qEBVWBcAAACAGddVV12Vw1N77713uvvuu3NQqrILL7wwnXTSSWnixInp2muvbbJxAgAAANCMKlDtvvvudV43yqVff/31qaG1bds2X/72228lry8sj8pSYdZZZ60SpCoWy2efffYGGi0AAAAA9eWxxx5LCy64YA5OVW7dV9luu+2WhgwZkl555ZVGHx8AAAAAzTBA9fzzz09xnZismjx5co2TVvWt0LqvprZ7heXt27ev0rqv0NKvskmTJqXx48enTp06NeCIAQAAAKgPY8eOTX/+85+nOA8V7f2efPLJRhsXAAAAAM04QDVw4MCSyyN49MMPP6QXX3wx3XPPPWnrrbdOhx9+eGoMSyyxRL78+OOPS15fWL7UUktVWf+TTz5Jq6++erVJt6hAteSSSzbwqAEAAACYXrPNNlv68ssvp7je//73v4qq5AAAAACUp3oLUG200Ua1Xt+7d+/Uq1ev1K9fv7TOOuukLbbYIjW0+eefPy266KLp1VdfTRMmTKjSfi+qSb322mv5+nnnnTcv6969e74cNWpU2mabbarc17PPPpsvi4NVAAAAAMx4VlxxxVwx/YMPPqjxhLi33347vfnmm6lHjx6NPj4AAAAAZhwtG/PBImS13HLLpeuuu67RHnP77bdPP//8c7r44ourLI+/Y/kuu+xSsWy11VbLVajuvffeHLoq+Pbbb9OgQYNS27Zt8/0BAAAAMGPbbbfdcjXxAw88MJ8Y98cff1S5/o033kiHHXZYmjhxYtpxxx2bbJwAAAAANKMKVHW18MILp6effrrRHm/PPfdMDz74YLr++uvTW2+9lVZZZZX08ssv5zMQ11hjjSoBqhYtWqT+/funvffeO/Xp0ydtueWWqX379un+++/PJd9PPvnk1KlTp0YbOwAAAADT5s9//nPafffd0w033JDnelq1apXnfp588sm0/vrr57meyZMnp2233TZtsskmTT1cAAAAAMolQBVn9MXZfW3atGm0x4zHiomygQMH5iBVhKc6d+6c+vbtm/bbb79qY4lQ1ZAhQ9Kll16a1w9LL710Dk9tvPHGjTZuAAAAAKbPCSeckFZYYYV01VVX5VZ+4Ycffsg/Cy20UA5W7brrrk09TAAAAACaWIvJcapdPXj77bdrDU599dVXafDgwemZZ57JZwBeccUV9fGwAAA0gR53DGnqITCDe247B6MBmLF8/fXX6fPPP89Vp6LC+IILLtjUQwIAoAbmnpiZ5p963vhNUw+BGdyI3eZp6iEAjVmBaptttsll0GsTE1Rt27ZNBx98cH09LAAAAABM0bzzzpt/AAAAAKDBAlS1nbXXsmXLNPvss6euXbumPffcMy2//PL19bAAAAAAkB577LHpun2vXr3qbSwAAAAAlGmAavjw4fV1VwAAAAAwVaLi+ZSqo9fmrbfeqtfxAAAAAFCGASoAAAAAaCprrrlmUw8BAAAAgJlUvQeovv7669SmTZs0xxxz5L/Hjh2brrrqqnzZrVu3tPvuu6f27dvX98MCAAAAUMYGDx7c1EMAAAAAYCbVsj7vrH///mn99ddPTz/9dP77p59+SjvttFO65ZZb0hNPPJEuu+yytOuuu6ZffvmlPh8WAAAAAAAAAACgaStQ3XHHHWnIkCFp1llnTS1atMjLhg4dmr744ou09NJLp7333jvdf//9acSIEem6665Lffv2ra+HBgAAAKDMvf322/lyySWXTLPMMkvF33XVtWvXBhoZAAAAAGUToBo2bFhq3bp1rjZVmHB66KGHcpjqhBNOSGuvvXbaYost0oYbbpgefPBBASoAAAAA6s0222yTWrZsme677760+OKL578LJ/lNSaz35ptvNvgYAQAAAGjmAap33303de/evSI8NW7cuPTqq6+m2WabLS8Pbdq0SSuttFIaNWpUfT0sAAAAAKQFF1wwX8YJfpX/BgAAAIBGC1D98ssvqUOHDhV/P/vss2nSpElptdVWS61ataqy7sSJE+vrYQEAAAAgDR8+vNa/AQAAAKAmLVM96dy5cxozZkzF30888UQuf77uuutWLPvtt9/Sa6+9ltcFAAAAAAAAAABoNgGqVVZZJb333nvp4osvTv/5z3/Sfffdl5dvtNFG+fKLL75Ixx13XPrmm29Sz5496+thAQAAACCdffbZ6Z577mnqYQAAAABQzi38DjrooPToo4+mQYMG5b8nT56ctttuu9SlS5f899Zbb52+//77tOCCC6YDDjigvh4WAAAAANL111+f/vrXv6atttqq2nV33nlnnqNaffXVm2RsAAAAAJRJgGqRRRZJt99+e7r66qvTl19+mXr06JH23HPPiuu7deuW5plnnnTkkUemeeedt74eFgAAAABqFVXRI1wlQAUAAABAgwaowmKLLZbOOOOMktddddVV9flQAAAAAAAAAAAAM1aAqiavvvpqGjt2bFphhRXSwgsv3BgPCQAAAAAAAAAAMEUtUz166aWX0v77759GjhxZseyYY45JO+64YzrssMPSpptumgYOHFifDwkAAAAAAAAAAND0Aaq333477bHHHunpp59OH374YV725JNPprvvvju1atUqrbHGGmnWWWdNl19+eV4OAAAAAAAAAADQbAJU1157bfrtt99yBartttsuL7vrrrtSixYtchWqwYMHp1tuuSWHqW666ab6elgAAAAAAAAAAIBp1jrVk9GjR6ell146HX744fnvSZMm5WpUEaDaaqut8rK4fvXVV0+vvvpqfT0sAAAAAAAAAABA0weovv7667TyyitX/B0hqR9//DF17do1zT333BXL55prrrwcAAAAAOrTyy+/nI4//vipvi5OADzrrLMaeHQAAAAANPsAVQSjfvjhh4q/n3rqqXy51lprVVnvk08+SXPMMUd9PSwAAAAAZB9//HH+mdrrBKgAAAAAylu9BaiWXHLJ9MILL6QPP/wwzTfffOnuu+/Ok08bbLBBxToPP/xwevPNN9P6669fXw8LAAAAAOmQQw5p6iEAAAAAUO4Bqh133DGNGjUq/fWvf01t27ZN48ePz6GqQgWqvn37pqeffjqHqvr06VNfDwsAAAAAAlQAAAAATLOWqZ5svvnm6YgjjkizzDJLDk8tvfTS6dJLL624/tNPP01t2rRJAwYMSD179qyvhwUAAAAAAAAAAGj6ClRh//33T3vuuWf66aefUseOHatcd9ZZZ+VQ1WyzzVafDwkAAAAAAAAAADBjBKhCVJkqDk+Fbt261fdDAQAAAAAAAAAAzBgt/AAA4P/H3n2ASVWdj+N/KSJSFFFEEMQYI6jEFkSxRgGVaGxYsWDXGAuIXWOJYjeWiBGxBRuiwWgSCypRowbBaGwJRDRESixR6QEU9v+c8/vPfilLVFx2dmc+n+eZZ2bvvTtzFo93zn3ve94DAAAAAAAAZVOBqnv37sv9ofXq1YtnnnlmuX8fAAAAAAAAAACgqAlUU6ZM+VYJVAAAAAAAAAAAAHU2gWro0KHV2xIAAAAAWE4HH3xwbL311tG/f//889SpU6NJkybRokWLYjcNAAAAgFJNoOratWv1tgQAAAAAltP48eOjbdu2lT9379499tprr7jqqquK2i4AAAAAar/6xW4AAAAAAHxb9erViwkTJsTChQvzzxUVFfkBAAAAACusAhUAAAAA1BadOnWK119/PXbcccdo1apV3vb888/Hvvvu+7WSr0aMGFEDrQQAAACgNpJABQAAAECdd8YZZ8Txxx8f//nPf/IjmT59en58nQQqAAAAAMqXBCoAAAAA6rwtt9wynnvuuXjvvfdi7ty50bdv39huu+3ihBNOKHbTAAAAAKjlJFABAAAAUBKaNWsWm222WeXPa6yxRnTt2rWobQIAAACg9pNABQAAAEDJGTduXLGbAAAAAECpJ1AdfPDBsfXWW0f//v3zz1OnTo0mTZpEixYtqrN9AAAAALDcPv/883jwwQdj9OjR8fHHH0ejRo1yZapu3brF3nvvHa1atSp2EwEAAACoqwlU48ePj7Zt21b+3L1799hrr73iqquuqq62AQAAAMByGzNmTJxyyikxY8aMqKioWGzfyy+/HLfffntcf/31OZkKAAAAgPK13AlU9erViwkTJsTChQujfv36OQi1ZCAKAAAAAIphypQpcdJJJ8WsWbNi5513jh//+MfRrl27HMv64IMP4ve//3288MIL0a9fv/jtb38bbdq0KXaTAQAAAKhrCVSdOnWK119/PXbcccfKUufPP/987Lvvvl8r+WrEiBHL+9EAAAAA8D8NGTIkJ0+dfvrpcfzxxy+2b/PNN8+V1AcPHpwrUP3617+Oc845p2htBQAAAKCOJlCdccYZOfj0n//8Jz+S6dOn58fXSaACAAAAgBXlT3/6U3To0GGp5KlFnXDCCfGb3/wm/vjHP0qgAgAAAChjy51AteWWW8Zzzz0X7733XsydOzf69u0b2223XQ48AQAAAEAxffzxx9G9e/evPG7jjTfOCVQAAAAAlK/lTqBKmjVrFptttlnlz2ussUZ07dq1OtoFAAAAAMutSZMm8emnn37lcemYxo0b10ibAAAAACjBBKpFjRs3rrreCgAAAAC+lc6dO8crr7ySY1adOnWq8pi077XXXottttmmxtsHAAAAQAkmUBV8/vnn8eCDD8bo0aNzqfRGjRrlylTdunWLvffeO1q1alXdHwkAAAAAiznkkEPipZdeiuOOOy4uuuii2GWXXaJ+/fp538KFC2PUqFFxySWX5NcHH3xwsZsLAAAAQKkkUI0ZMyZOOeWUmDFjRlRUVCy27+WXX47bb789rr/++pxMBQAAAAArSo8ePeLAAw+M4cOH53hVWqavbdu2ed/UqVNj7ty5OX61//77R8+ePYvdXAAAAABKIYFqypQpcdJJJ8WsWbNi5513jh//+MfRrl27PIvvgw8+iN///vfxwgsvRL9+/eK3v/1ttGnTpro+GgAAAACW8vOf/zw23njjuOOOO2LSpEnx3nvvVe5r3759HH300blSFQAAAADlrdoSqIYMGZKTp04//fQ4/vjjF9u3+eabx1577RWDBw/OFah+/etfxznnnFNdHw0AAAAAVUrL86XHRx99lB/JWmutFWuvvXaxmwYAAABALVG/ut7oT3/6U3To0GGp5KlFnXDCCbHuuuvGH//4x+r6WAAAAAD4Sq1bt45NN900PyRPAQAAALBCEqg+/vjj2Gijjb7yuFQ2/cMPP6yujwUAAAAAAAAAACh+AlWTJk3i008//crj0jGNGzeuro8FAAAAAAAAAAAofgJV586d4/XXX49x48Yt85i077XXXsvHAgAAAAAAAAAAlEwC1SGHHBJffvllHHfccfHMM8/EwoULK/el12lb2pdeH3zwwdX1sQAAAAAAAAAAAMutYVSTHj16xIEHHhjDhw+PU045JS/T17Zt27xv6tSpMXfu3KioqIj9998/evbsWV0fCwAAAAAAAAAAUPwEquTnP/95bLzxxnHHHXfEpEmT4r333qvc1759+zj66KNzpSoAAAAAWJEuvfTS+O53vxt9+vQpdlMAAAAAKKcEqiQtz5ceH330UX4ka621Vqy99trV/VEAAAAAUKXHHnssT+iTQAUAAABAjSdQFbRu3To/AAAAAKCmffnll9G2bdtiNwMAAACAOqB+sRsAAAAAANVtt912i5deeikmTJhQ7KYAAAAAUK4VqAAAAACgWH784x/HG2+8Efvuu29su+22sdFGG0WLFi2ifv2q5xMeccQRNd5GAAAAAGoHCVQAAAAAlJxjjjkm6tWrFxUVFfH888/HCy+8UOVxaX86TgIVAAAAQPmSQAUAAABAydlnn31yYhQAAAAAfBUJVAAAAACUnCuvvLLYTQAAAACgjqhfXW906aWXxv33319dbwcAAAAAAAAAAFB3Eqgee+yxePjhh6vr7QAAAADgW/vkk0/ixhtvjEMOOSR++MMfxsUXX5y3X3/99fH4448Xu3kAAAAAlNISfl9++WW0bdu2ut4OAAAAAL6V559/PgYMGBCzZ8+OioqKqFevXsyZMyfvGzVqVNx2223x2muvxQUXXFDspgIAAABQChWodtttt3jppZdiwoQJ1fWWAAAAALBc3nvvvTj11FNj7ty5cfDBB8fgwYNzElXB/vvvH02bNo377rsvJ1MBAAAAUL6qrQLVj3/843jjjTdi3333jW233TY22mijaNGiRdSvX3WO1hFHHFFdHw0AAAAAi/nVr34V8+fPz8v37brrrkvt79u3b3Tu3DkOO+ywnES1yy67FKWdAAAAAJRQAtUxxxyTy6CnmXypPPoLL7xQ5XGFcukSqAAAAABYUUaPHp0n+FWVPFXwgx/8IDbbbDMV1QEAAADKXLUlUO2zzz45Maq2+vLLL+POO++MRx55JCZNmhSrrLJKbLHFFvHTn/40B8oW9fnnn8egQYPij3/8Y3zyySfRtm3b6N27dxx11FHRsGG1/ZMBAAAAsIJMnz49ttxyy688rlWrVvHOO+/USJsAAAAAqJ2qLRvoyiuvjNrstNNOi2eeeSY6dOgQffr0yUlSTzzxRLz88stx6623xvbbb5+PmzFjRhx++OF55mGaobjuuuvGSy+9FNdee2289dZbcdNNNxX7TwEAAADgK6y++uoxceLErzzu/fffj5YtW9ZImwAAAAConepHGUgJUCl5qnPnzvG73/0uzjvvvLjmmmvi9ttvjwULFsQll1xSeWyqPPXuu+/GhRdemJOlzjjjjHj44YdzMtVTTz0VI0eOLOrfAgAAAMBX23rrrXOM59lnn13mMSnW895778VWW21Vo20DAAAAoMQTqNKSdzfeeGMccsgh8cMf/jAuvvjivP3666+Pxx9/PIrhjTfeyM977713rLzyypXbt9lmm1h//fXjgw8+iE8//TTmzp0bw4cPjzZt2sTBBx9ceVyDBg3irLPOyq+HDRtWhL8AAAAAgG/i+OOPj4YNG0b//v1zrGrMmDF5+xdffJFjQXfddVecc845+Zijjjqq2M0FAAAAoBSW8Euef/75GDBgQMyePTsqKiqiXr16MWfOnLxv1KhRcdttt8Vrr70WF1xwQdR0yfZkypQpi22fP39+XspvpZVWiubNm8df//rX3N6ePXtG/fqL55a1b98+2rVrF2PHjs1Vq1JSFQAAAAC10/e+9724+uqrc5LUrbfemh8pVvXkk0/mR5LiOxdddFFssskmxW4uAAAAAKVQgSqVOz/11FNzFadUvWnw4ME5iapg//33j6ZNm8Z9992Xk6lq0u677x5rrLFG3H///fHII4/ErFmzYurUqTmAlipPHX744dGoUaOYOHFiPn7dddet8n1SElVKupo8eXKNth8AAACAb65Xr17x2GOP5VjVeuutlyuTp4l0bdu2jX322ScefvjhOOCAA4rdTAAAAABKpQLVr371q5xclEqi77rrrkvt79u3b3Tu3DkOO+ywnES1yy67RE1WoEpL76WEqcKjIJVxP+GEE/LradOm5ecWLVpU+T6pSlUyY8aMGmk3AAAAAN9Ohw4dcpUpAAAAAFjhCVSjR4+OjTbaqMrkqYIf/OAHsdlmm8WECROiJqXErltuuSVef/31XJK9S5cuMX369Hj66adzpazWrVvHvvvum49LUjWqqhS2z5s3r0bbDwAAAMC3kyqSf/zxx7kC1VprrZWrUQEAAABAtSZQpYSkLbfc8iuPa9WqVbzzzjs1+q9/1VVX5aX7jjjiiDjvvPOiXr16eftpp50Wffr0iXPPPTe++93vRuPGjfP2L774osr3KSRYpaUIAQAAAKj9RowYEffee2+MGzcuKioq8rYGDRrE5ptvHsccc0zsvPPOxW4iAAAAAEVWvzqXyZs4ceJXHvf+++9Hy5Yto6YsXLgwHnroobz83plnnlmZPJW0bds2+vXrl4NnDz/8cKy22mr/c4m+mTNn5udmzZrVUOsBAAAAWN6YUIr7nH/++fG3v/0tx4TWWGON/Ej7Xn311TjppJPiF7/4RbGbCgAAAECpJFBtvfXW8e6778azzz67zGOeeuqpeO+992KrrbaKmvLpp5/mJffWXXfdKpfm69ixY36eMmVKrL/++vn1Bx98UOV7pe1NmjTJiVcAAAAA1F5pstyTTz6Zl+u74YYb4rXXXosXX3wxP/7yl7/EFVdcES1atIghQ4bEM888U+zmAgAAAFAKCVTHH398NGzYMPr37x833nhjjBkzpnI5vJR4dNddd8U555yTjznqqKOipqSqUilxavLkyZVL8C3qn//8Z35OwbTOnTvn5flS29NMxEVNmjQpJ1ml8u6pzDsAAAAAtdfw4cOjcePGMXTo0Nh9991j5ZVXrty3yiqrxL777pvjVSnOk54BAAAAKF/VlkD1ve99L66++upcDv3WW2+Nvn375tdppt9uu+2W96Vkqosuuig22WSTqCkpeWrXXXeN6dOn58SuRX322WeV2/baa68cSNtzzz1zslUKrhUsWLAgtz859NBDa6ztAAAAACyfCRMm5IrpHTp0WOYxnTp1ysekJf4AAAAAKF8Nq/PNevXqFRtvvHHcfffdMXr06Pj3v/+dKzm1atUqunbtmpOqUmCqpp177rnx9ttvx+23357bldqSEqrScoPTpk2Lo48+Orp165aP7devXy7lnsq4p2M32GCDePnll+Odd97Jf1/37t1rvP0AAAAAfDNNmjTJk/u+SppQt9JKK9VImwAAAAAogwSqJM3qS1WmapM111wzHn744Rg8eHA8/fTTcc899+TKVCnZ67DDDstl3AtatmwZw4YNy5WpnnvuuZw81a5duzjzzDPjiCOO+FqBNwAAAACKa6eddoonnngiVxpPsZ2qpOrkY8aMiR122KHG2wcAAABA7VGvoqKiYkW88axZs+Ljjz/OM/jWWmutPJsPAIDSsPWI+4rdBGq5V/az9DUAxfXpp5/GQQcdVFmdfMmq4u+++26cffbZ+bg0ma5NmzZFaikAAEsSe6IuxZ+2v/fTYjeBWu7Fw9YodhOAYlSgGjFiRNx7770xbty4KORmNWjQIDbffPM45phjYuedd67ujwQAAACgzHXt2nWpbfPnz4958+bFySefHE2bNs2VqNIkv48++ig/krZt28app54aDz30UBFaDQAAAEBJJVAtXLgwTj/99Hjqqady4lRKmkrL4RXKob/66qvxl7/8JY477rh8HAAAAABUlxkzZnxltfQ04W9JU6ZMialTp67AlgEAAABQNglUDz/8cDz55JPRunXrXBY9VZoqLNv33//+N++7+uqrY8iQIbHppptGjx49quujAQAAAChzzz77bLGbAAAAAEC5J1ANHz48GjduHEOHDo0OHTostm+VVVaJfffdNzbaaKPYf//946677pJABQAAAEC1WWeddYrdBAAAAADqqPrV9UYTJkyIrbfeeqnkqUV16tQpH/O3v/2tuj4WAAAAAAAAAACg+BWomjRpEvXq1fvK49KyfiuttFJ1fSwAAAAAVOlPf/pTPPDAAzFx4sSYN2/eMo9LMa1nnnmmRtsGAAAAQAkmUO20007xxBNPxOTJk6Ndu3ZVHvPZZ5/FmDFjYocddqiujwUAAACApTz//PNx4oknRkVFxVce+3UmBQIAAABQuqotgeqMM86IsWPHxpFHHhnnnntudO/efbH97777bpx99tnRtGnTOOuss6rrYwEAAABgKbfccktOnjrggANijz32iNVWW02iFAAAAADVm0DVtWvXpbbNnz8/l0M/+eSTc6JUqkSVluz76KOP8iNp27ZtnHrqqfHQQw8t70cDAAAAwP80YcKE2HjjjePSSy8tdlMAAAAAKNUEqhkzZvzP/bNmzYpx48YttX3KlCkxderU5f1YAAAAAPhKjRo1ijZt2hS7GQAAAACUcgLVs88+W70tAQAAAIBqsu2228bYsWNztfRUIR0AAAAAqj2Bap111lneXwUAAACAFer000+P3r17x5lnnhkXXXRRrLHGGsVuEgAAAACllkAFAAAAALVVmvw3YMCA+NnPfhbPPPNMrLXWWrH66qtXeWy9evVixIgRNd5GAAAAAEowgepPf/pTPPDAAzFx4sRcHn1ZUlAqBa4AAAAAYEV4/vnn4+KLL86vFy5cGB9++GF+LCtWBQAAAED5alidQakTTzwxKioqvvJYQSkAAAAAVqRBgwbFggULonv37rHnnntGy5YtxaQAAAAAWLEJVLfccktOnjrggANijz32iNVWW01QCgAAAICiePfdd6Njx445kQoAAAAAaiSBasKECbHxxhvHpZdeWl1vCQAAAADLpXHjxrHuuusWuxkAAAAA1AH1q+uNGjVqFG3atKmutwMAAACA5bbtttvG66+/HvPnzy92UwAAAAAolwSqFJR66623Yt68edX1lgAAAACwXPr165eTp0477bT497//XezmAAAAAFAOS/idfvrp0bt37zjzzDPjoosuijXWWKO63hoAAAAAvpE77rgjOnbsGM8991x+rLnmmtGiRYto2HDpcFi9evVixIgRRWknAAAAACWUQLXOOuvEgAED4mc/+1k888wzsdZaa8Xqq69e5bGCUgAAAACsSMOGDVvs508++SQ/lhWrAgAAAKB8VVsC1fPPPx8XX3xxfr1w4cL48MMP86MqglIAAAAArEhDhw4tdhMAAAAAKLcEqkGDBsWCBQuie/fuseeee0bLli0lSgEAAABQFF27di12EwAAAAAotwSqd999Nzp27JgTqQAAAAAAAAAAAMoqgapx48ax7rrrVtfbAQAAAMByO/fcc7/2samK+uWXX/6tPm/27NkxePDgGDlyZEyZMiVWWmml2HjjjaNv377Rs2fPxY79/PPP8yTEP/7xj/HJJ59E27Zto3fv3nHUUUdFw4bVFq4DAAAA4GuqtojMtttuG6+88krMnz8/GjVqVF1vCwAAAADf2COPPPKVSVNJRUXFt06gmjVrVvTp0yfGjx8fm2yySX49c+bMnEx18sknx+mnnx4nnHBCPnbGjBlx+OGHx4QJE2LXXXfNExJfeumluPbaa+Ott96Km266abnbAQAAAECRE6j69euXZ8qddtppceGFF0abNm2q660BAAAAoFoqUC1cuDCmT58ef/nLX2Ls2LGx3377xUEHHfStPmvIkCE5eerggw+Oiy++uDI5K8XJUrzsxhtvjN133z06dOiQK0+9++67cdFFF+VEq6R///45tvbUU0/lpKuUWAUAAABAHUyguuOOO6Jjx47x3HPP5ceaa64ZLVq0qLLseAoijRgxoro+GgAAAAAWk5bO+yr33XdfXHbZZbHHHnt8q8964okncrxrwIABlclTSevWreOQQw7JVaWef/75OPDAA2P48OF54mFKtipo0KBBnHXWWTl5atiwYRKoAAAAAOpqAlUK7izqk08+yY+qLBpIAgAAAIBiOPTQQ3MS1eDBg2O77bb7Vslaacm+VVdddal9jRo1ys+zZ8+ON998M+bMmRM9e/aM+vXrL3Zc+/bto127drkq1oIFC3JSFQAAAAB1LIFq6NCh1fVWAAAAAFAjNthgg3jppZe+dSJWVSoqKnJVqSRVbp84cWJ+ve6661Z5fEqimjx5cn6k5f4AAAAAqGMJVF27dq2utwIAAACAGvHee++tsPe+//77c9WplBi1ww47xF133ZW3t2jRosrjmzdvnp9nzJixwtoEAAAAwApMoAIAAACA2mLWrFnL3Pfll1/GJ598EnfffXe8//77sc0221T75z/++OMxcODAaNiwYVx55ZWx0korxfz58xdb1m9Jhe3z5s2r9vYAAAAAUAMJVOeee+7XPrZevXpx+eWXV9dHAwAAAMBittpqq688Ji2x16BBgzj++OOrvfLUpZdemmNgV111VXTp0iVvb9y4cX7+4osvqvy9QoJV06ZNq7U9AAAAANRQAtUjjzzyP/engFEhMCWBCgAAAIAVKcWgliXFppo0aRKdOnWK4447Lrp161Ytn7lw4cK4+uqr81J9qZrUddddF7vuumvl/tVWW+1/LtE3c+bM/NysWbNqaQ8AAAAAtaQCVQocTZ8+Pf7yl7/E2LFjY7/99ouDDjqouj4WAAAAAJYybty4Gv28VD1qwIABMXLkyGjRokUMGjSosvJUwfrrr5+fP/jggyrfI21PiV1t27atkTYDAAAAUM0JVH379v3KY+6777647LLLYo899qiujwUAAACAolqwYEGcdtppMWrUqGjXrl0MGTKkMllqUZ07d87L840ZMyZPOqxfv37lvkmTJsWUKVNi2223zcsKAgAAAFBz/i9KUwMOPfTQ+M53vhODBw+uyY8FAAAAgBXmtttuy8lTqXLU/fffX2XyVLLyyivHnnvuGZMnT46hQ4culoCVlv4rxM8AAAAAqKMVqL6uDTbYIF566aWa/lgAAAAASti555673L9br169uPzyy5frd6dNm5YTqJKNNtoohg8fXuVxaTm/bt26Rb9+/eLFF1+MK664IkaPHp1jZS+//HK888470atXr+jevfty/x0AAAAA1JEEqvfee6+mPxIAAACAEvfII49846SpRS1vAtWrr74ac+bMya+fffbZ/KjKiSeemBOoWrZsGcOGDYsbb7wxnnvuuZw8lZb9O/PMM+OII45Yql0AAAAA1KEEqlmzZi1z35dffhmffPJJ3H333fH+++/HNttsU10fCwAAAADfqAJVilWlJfQ+/vjjqKioiPbt2y/35/bo0SPGjx//jX5nrbXWioEDBy73ZwIAAABQSxOottpqq688JgWkGjRoEMcff3x1fSwAAAAARN++fb/Wcf/4xz/inHPOqUyeOuCAA/LPAAAAAJSvakugSgGnZUmlx5s0aRKdOnWK4447LpcrBwAAAICadPvtt8dNN90U8+fPj1atWsVll10WO+20U7GbBQAAAECpJFCNGzeuut4KAAAAAKrNpEmTcpWp1157LU8C7NWrV1x88cWx2mqrFbtpAAAAAJRSAhUAAAAA1DbDhg2Lq6++OubMmZMTpi666KL40Y9+VOxmAQAAAFCLSKACAAAAoOR8/PHHcd5558VLL72Uq07tuOOOMXDgwLx0HwAAAABUSwLVueeeu7y/GvXq1YvLL798uX8fAAAAAJbld7/7XVx22WUxffr0aNKkSV6+78ADDyx2swAAAAAotQSqRx555BsnTS1KAhUAAAAA1WnatGlx4YUXxtNPP52rTnXp0iWuuOKKaN++fbGbBgAAAEC5V6D68ssvY+jQobl0egpeCVoBAAAAUJ1GjRqVk6c+/fTTaNSoUfTv3z+OPPLIYjcLAAAAgFJOoOrbt+/XOu4f//hHLpNeSJ464IAD8s8AAAAAUF1OOumkygrozZo1i0cffTQ/vo70eyNGjFjBLQQAAACg5BKovo7bb789brrpppg/f360atUqLrvssthpp51W5EcCAAAAUKbS5L0kVaFKj6+rkHgFAAAAQHlaIQlUkyZNylWmXnvttRy46tWrV1x88cWx2mqrrYiPAwAAAKDMDR06tNhNAAAAAKCOqvYEqmHDhsXVV18dc+bMyQlTF110UfzoRz+q7o8BAAAAgEpdu3YtdhMAAAAAKPcEqo8//jjOO++8eOmll3LVqR133DEGDhyYl+4DAAAAAAAAAAAo2QSq3/3ud3HZZZfF9OnTo0mTJnn5vgMPPLA63hoAAAAAAAAAAKB2JlBNmzYtLrzwwnj66adz1akuXbrEFVdcEe3bt6++FgIAAAAAAAAAANS2BKpRo0bl5KlPP/00GjVqFP37948jjzyyelsHAAAAAAAAAABQGxOoTjrppKhXr15+3axZs3j00Ufz4+tIvzdixIjl/WgAAAAAAAAAAIDiL+GXlu1LUhWq9Pi6ColXAAAAAAAAAAAAdTKBaujQodXbEgAAAAAAAAAAgLqSQNW1a9fqbQkAAAAAAAAAAEANq1/THwgAAAAAAAAAAFBbSKACAAAAAAAAAADKlgQqAAAAAAAAAACgbEmgAgAAAAAAAAAAypYEKgAAAAAAAAAAoGxJoAIAAAAAAAAAAMqWBCoAAAAAAAAAAKBsSaACAAAAAAAAAADKlgQqAAAAAAAAAACgbDWMMvL888/HXXfdFW+99VbUq1cvvvvd70bfvn3jRz/60WLHff755zFo0KD44x//GJ988km0bds2evfuHUcddVQ0bFhW/2QAAAAAAAAAAFDSyiYb6O67744rrrgi1lhjjdh7771j4cKF8dRTT0X//v3jww8/jKOPPjofN2PGjDj88MNjwoQJseuuu8a6664bL730Ulx77bU58eqmm24q9p8CAAAAAAAAAABUk7JIoBo/fnxcc801ueLUPffck5OokpNPPjknU/3iF7+IAw44IJo3b54rT7377rtx0UUXRZ8+ffJxKcmqX79+OeFq5MiRObEKAAAAAAAAAACo++pHGUhJU19++WVccskllclTyZprrpmTo/bbb7/4z3/+E3Pnzo3hw4dHmzZt4uCDD648rkGDBnHWWWfl18OGDSvK3wAAAAAAAAAAAFS/sqhA9dxzz0WrVq1iq622Wmrf/vvvnx/JmDFjYs6cOdGzZ8+oX3/x3LL27dtHu3btYuzYsbFgwYKcVAUAAAAAAAAAANRtJV+B6rPPPotPPvkkNtxww/j444/j/PPPj+222y423XTTnDj1zDPPVB47ceLE/LzuuutW+V4piWr+/PkxefLkGms/AAAAAAAAAACw4pR8AlVKmkpmzZqVl+p75ZVXYvfdd49evXrFe++9Fz/96U/zEn/JtGnT8nOLFi2qfK/mzZvn5xkzZtRY+wEAAAAAAAAAgBWn5Jfwmz17dn5+4403Yptttolf/epX0aRJk7zt+OOPjwMOOCCuuuqq2GWXXXJ1qaRRo0ZVvldh+7x582qs/QAAAAAAAAAAwIpT8hWoGjRoUPn6Zz/7WWXyVPLd7343Dj/88Pjiiy/iqaeeisaNG+ft6eeqFBKsmjZtusLbDQAAAAAAAAAArHgln0BVWHYvJU6lhKklbbzxxvn5X//6V6y22mr/c4m+mTNn5udmzZqtwBYDAAAAAAAAAAA1peQTqNq3bx8NGzaML7/8MioqKpbaX6g2tcoqq8T666+fX3/wwQdVvlfanhKx2rZtu4JbDQAAAAAAAAAA1ISST6Bq1KhRbL755nn5vbFjxy61/6233srPnTp1is6dO+fl+caMGRMLFy5c7LhJkybFlClT8nstuiwgAAAAAAAAAABQd5V8AlXSp0+f/HzllVdWLsOXjBs3LoYNGxYtWrSIHj16xMorrxx77rlnTJ48OYYOHVp53IIFC+Lqq6/Orw899NAi/AUAAAAAAAAAAMCK0DDKwB577BEvvvhijBgxIr/eddddY9asWfHkk0/m5KiBAwdGs2bN8rH9+vXLx15xxRUxevTo2GCDDeLll1+Od955J3r16hXdu3cv9p8DAAAAAAAAAABUk7JIoEouv/zy6NKlSzzwwAPx8MMP56X9ttpqq/jJT34SW265ZeVxLVu2zFWpbrzxxnjuuedy8lS7du3izDPPjCOOOCLq1atX1L8DAAAAAAAAAACoPmWTQJUSn3r37p0fX2WttdbKVakAAAAAAAAAAIDSVr/YDQAAAAAAAAAAACgWCVQAAAAAAAAAAEDZkkAFAAAAAAAAAACULQlUAAAAAAAAAABA2ZJABQAAAAAAAAAAlC0JVAAAAAAAAAAAQNmSQAUAAAAAAAAAAJQtCVQAAAAAAAAAAEDZkkAFAAAAAAAAAACULQlUAAAAAAAAAABA2ZJABQAAAAAAAAAAlC0JVAAAAAAAAAAAQNmSQAUAAAAAAAAAAJQtCVQAAAAAAAAAAEDZkkAFAAAAAAAAAACULQlUAAAAAAAAAABA2ZJABQAAAAAAAAAAlC0JVAAAAAAAAAAAQNmSQAUAAAAAAAAAAJQtCVQAAAAAAAAAAEDZkkAFAAAAAAAAAACULQlUAAAAAAAAAABA2ZJABQAAAAAAAAAAlC0JVAAAAAAAAAAAQNmSQAUAAAAAAAAAAJQtCVQAAAAAAAAAAEDZkkAFAAAAAAAAAACULQlUAAAAAAAAAABA2ZJABQAAAAAAAAAAlC0JVAAAAAAAAAAAQNmSQAUAAFCCRo8eHZ06dYpzzjlnqX1z586NQYMGRa9eveL73/9+7LTTTnH66afHxIkTi9JWAAAAAAAopoZF/XQAAACq3axZs+K8886LioqKpfb997//jaOOOipef/312GKLLWLnnXeOf/3rX/H444/Hiy++GA899FB06NChKO0GAAAAAIBikEAFAABQYgYOHBhTpkypct/NN9+ck6eOPvroOPvssyu3P/LII7la1fXXXx833HBDDbYWAAAAAACKyxJ+AAAAJWTUqFExYsSI2GWXXZbaN2/evHjggQdivfXWiwEDBiy2b++99479999f9SkAAAAAAMqOClQAAAAl4rPPPouf/exn0bVr1zjssMNyMtWixo4dG7Nnz45DDz00GjZc/HKwfv36uXIVAAAAAACUGxWoAAAASsTFF18cc+bMicsvvzzq1au31P5x48bl5w033DBeeOGFOPzww2OLLbaIrbfeOlekWtayfwAAAAAAUMokUAEAAJSAxx57LJ566qk444wzon379lUe8/HHH+fnJ598Mo477rhcheqggw6Kjh07xu9///u8hN8HH3xQwy0HAAAAAIDisoQfAABAHffRRx/FpZdeGt26dYs+ffos87hUnSp55plncrWqQw45pHLfrbfeGtdff33efuedd9ZIuwEAAAAAoDZQgQoAAKCOO++882LBggUxcODAKpfuK6hf//9dAn7/+99fLHkqSRWp2rRpEy+//HJ89tlnK7zNAAAAAABQW0igAgAAqMMeeOCBePHFF+Pss8+OddZZ538e27x588oEqiU1aNAgOnXqFBUVFTFp0qQV1l4AAAAAAKhtLOEHAABQhz3++OP5+cILL8yPJT3yyCP5se+++0aXLl3yti+++KLK9ypsb9y48QptMwAAAAAA1CYSqAAAAOqwlBjVtWvXpbanKlKPPvporirVo0eP2GijjWLDDTfM+0aPHh0LFy6sXNIvmT9/fowfPz6aNGkSHTp0qNG/AQAAAAAAikkCFQAAQB223377Vbn95ZdfzglUKXHqlFNOqdy+/fbb5yX/fvWrX8VPf/rTyu2DBg2KTz75JA466CAVqAAAAAAAKCsSqAAAAMrIpZdeGocddljcdNNNuRJV586d4+23344xY8bEeuutFwMGDCh2EwEAAAAAoEb933oNAAAAlLy2bdvGww8/HEcccURMmTIl7rnnnpg8eXL07ds3hg8fHquttlqxmwgAAAAAADVKBSoAAIAStO2228b48eOr3NeyZcs4//zz8wMAAAAAAMqdClQAAAAAAAAAAEDZkkAFAAAAAAAAAACULQlUAAAAAAAAAABA2ZJABQAAAAAAAAAAlC0JVAAAAAAAAAAAQNlqWOwGAAAArCjb3/tpsZtALffiYWsUuwkAAAAAABSZClQAAAAAAAAAAEDZkkAFAAAAAAAAAACULQlUAAAAAAAAAABA2ZJABQAAAAAAAAAAlC0JVAAAAAAAAAAAQNmSQAUAAAAAAAAAAJQtCVQAAAAAAAAAAEDZkkAFAAAAAAAAAACULQlUAAAAAAAAAABA2ZJABQAAAAAAAAAAlC0JVAAAAAAAAAAAQNmSQAUAAAAAAAAAAJQtCVQAAAAAAAAAAEDZkkAFAAAAAAAAAACULQlUAAAAAAAAAABA2ZJABQAAAAAAAAAAlC0JVAAAAAAAAAAAQNkqywSq0aNHR6dOneKcc85Zat/nn38el112WXTv3j023XTT2H333WPIkCHx5ZdfFqWtAAAAAAAAAADAitMwysysWbPivPPOi4qKiqX2zZgxIw4//PCYMGFC7LrrrrHuuuvGSy+9FNdee2289dZbcdNNNxWlzQAAAAAAAAAAwIpRdhWoBg4cGFOmTKly36BBg+Ldd9+NCy+8MCdLnXHGGfHwww/nZKqnnnoqRo4cWePtBQAAAAAAAAAAVpyySqAaNWpUjBgxInbZZZel9s2dOzeGDx8ebdq0iYMPPrhye4MGDeKss87Kr4cNG1aj7QUAAAAAAAAAAFasskmg+uyzz+JnP/tZdO3aNQ477LCl9r/55psxZ86cvL9+/cX/Wdq3bx/t2rWLsWPHxoIFC2qw1QAAAAAAAAAAwIpUNglUF198cU6Quvzyy6NevXpL7Z84cWJ+Xnfddav8/ZRENX/+/Jg8efIKbysAAAAAAAAAAFAzyiKB6rHHHounnnoqzjjjjJwIVZVp06bl5xYtWlS5v3nz5vl5xowZK7ClAAAAAAAAAABATSr5BKqPPvooLr300ujWrVv06dNnmcel6lJJo0aNqtxf2D5v3rwV1FIAAAAAAAAAAKCmlXwC1XnnnRcLFiyIgQMHVrl0X0Hjxo3z8xdffPE/E6yaNm26gloKAAAAAAAAAADUtJJOoHrggQfixRdfjLPPPjvWWWed/3nsaqut9j+X6Js5c2Z+btas2QpoKQAAAAAAAAAAUAwNo4Q9/vjj+fnCCy/MjyU98sgj+bHvvvvGAQcckLd98MEHVb5X2t6kSZNo27btCm41AAAAAAAAAABQU0o6gSolRnXt2nWp7ZMmTYpHH300OnXqFD169IiNNtooOnfunJfnGzNmTCxcuDDq16+/2PFTpkyJbbfdNho0aFDDfwUAAAAAAAAAALCilHQC1X777Vfl9pdffjknUKXEqVNOOaVy+5577hkPPvhgDB06NI488si8bcGCBXH11Vfn14ceemgNtRwAAAAAAAAAAKgJJZ1A9U3169cvXnzxxbjiiiti9OjRscEGG+Rkq3feeSd69eoV3bt3L3YTAQAAAAAAAACAavR/69QRLVu2jGHDhsX+++8fb731Vq5ENXfu3DjzzDNzFap69eoVu4kAAAAAAAAAAEA1KssKVNtuu22MHz++yn1rrbVWDBw4sMbbBAAAAAAAAAAA1DwVqAAAAAAAAAAAgLIlgQoAAAAAAAAAAChbEqgAAAAAAAAAAICyJYEKAAAAAAAAAAAoWxKoAAAAAAAAAACAsiWBCgAAAACqWb9+/WLHHXesct+cOXPipptuit122y023XTT2GWXXeK6666L//73vzXeTgAAAAAkUAEAAABAtbr55pvjiSeeqHLf/Pnz48QTT4xBgwZFu3btom/fvrHOOuvEbbfdFkcddVTeDwAAAEDNaljDnwcAAAAAJWnevHlx6aWXxkMPPbTMY4YNGxavvPJKHHvssXHmmWdWbh84cGAMHTo07rvvvpxIBQAAAEDNUYEKAAAAAL6lUaNGRa9evXLy1E477bTM41KSVKNGjeInP/nJUkv+rbLKKjnBCgAAAICaJYEKAAAAAL6lhx9+OGbPnh0XXXRRDB48uMpjpkyZEpMmTYpNN900mjVrtti+pk2b5u0TJ06MDz/8sIZaDQAAAEAigQoAAAAAvqW+ffvGs88+G3369Il69epVeUxKjkrWXXfdKve3b98+P7///vsrsKUAAAAALKnhUlsAAAAAgG9k6623/spjpk2blp9btGhR5f7mzZvn5xkzZlRz6wAAAAD4X1SgAgAAAIAa8MUXX+TnRo0aVbm/sH3evHk12i4AAACAcieBCgAAAABqwMorr5yf58+fX+X+wvamTZvWaLsAAAAAyp0EKgAAAACoAYWl+2bOnFnl/sL2Zs2a1Wi7AAAAAMqdBCoAAAAAqAHrr79+fv7ggw+q3F/YvsEGG9RouwAAAADKnQQqAAAAAKgBrVu3jg4dOsSbb74Zc+bMWWzf7Nmz46233sr711xzzaK1EQAAAKAcSaACAAAAgBqy//77x3//+9+44YYbFtuefk7b+/TpU7S2AQAAAJSrhsVuAAAAAACUiyOPPDKefPLJ+PWvfx1///vfY/PNN4+//vWvMWbMmOjSpYsEKgAAAIAiUIEKAAAAAGpIo0aNYujQoXHUUUfFpEmT4u67746PPvooTjzxxBg8eHDeDwAAAEDNUoEKAAAAAKrZ+PHjl7mvWbNmcc455+QHAAAAAMWnAhUAAAAAAAAAAFC2JFABAAAAAAAAAABlSwIVAAAAAAAAAABQtiRQAQAAAAAAAAAAZUsCFQAAAAAAAAAAULYkUAEAAAAAAAAAAGVLAhUAAAAAAAAAAFC2JFABAAAAAAAAAABlSwIVAAAAAAAAAABQtiRQAQAAAAAAAAAAZUsCFQAAAAAAAAAAULYkUAEAAAAAAAAAAGVLAhUAAAAAAAAAAFC2JFABAAAAAAAAAABlSwIVAAAAAAAAAABQtiRQAQAAAAAAAAAAZUsCFQAAAAAAAAAAULYkUAEAAAAAAAAAAGVLAhUAAAAAAAAAAFC2JFABAAAAAAAAAABlSwIVAAAAAAAAAABQtiRQAQAAAAAAAAAAZUsCFQAAAAAAAAAAULYkUAEAAAAAAAAAAGVLAhUAAAAAAAAAAFC2JFABAAAAAAAAAABlSwIVAAAAAAAAAABQtiRQAQAAAAAAAAAAZUsCFQAAAAAAAAAAULYkUAEAAAAAAAAAAGVLAhUAAAAAAAAAAFC2JFABAAAAAAAAAABlSwIVAAAAAAAAAABQtiRQAQAAAAAAAAAAZUsCFQAAAAAAAAAAULYkUAEAAAAAAAAAAGVLAhUAAAAAAAAAAFC2JFABAAAAAAAAAABlSwIVAAAAAAAAAABQtiRQAQAAAAAAAAAAZUsCFQAAAAAAAAAAULYkUAEAAAAAAAAAAGVLAhUAAAAAAAAAAFC2JFABAAAAAAAAAABlSwIVAAAAAAAAAABQtiRQAQAAAAAAAAAAZUsCFQAAAAAAAAAAULYkUAEAAAAAAAAAAGWrYZSJ2bNnx+DBg2PkyJExZcqUWGmllWLjjTeOvn37Rs+ePRc79vPPP49BgwbFH//4x/jkk0+ibdu20bt37zjqqKOiYcOy+ScDAAAAAAAAAICSVxYVqGbNmhWHHHJITqBq0qRJ9OnTJ3bfffcYN25cnHzyyXl7wYwZM+Lwww+Pe++9NzbZZJM44ogjYpVVVolrr702Tj/99KL+HQAAAAAAAAAAQPUqi3JKQ4YMifHjx8fBBx8cF198cdSrVy9vP+2003JlqRtvvDEnVHXo0CFXnnr33XfjoosuyolWSf/+/aNfv37x1FNP5QpWu+66a5H/IgAAAAAAAAAAoDqURQWqJ554IidNDRgwoDJ5KmndunWuTLVgwYJ4/vnnY+7cuTF8+PBo06ZNTrYqaNCgQZx11ln59bBhw4ryNwAAAAAAAAAAANWvLCpQ9e3bN2bOnBmrrrrqUvsaNWqUn2fPnh1vvvlmzJkzJ3r27Bn16y+eW9a+ffto165djB07NidcpaQqAAAAAAAAAACgbiuLBKpDDz20yu0VFRV5Sb6kY8eOMXHixPx63XXXrfL4lEQ1efLk/EjL/QEAAAAAAAAAAHVbWSzhtyz3339/rjqVEqN22GGHmDZtWt7eokWLKo9v3rx5fp4xY0aNthMAAAAAAAAAAFgxyjaB6vHHH4+BAwdGw4YN48orr4yVVlop5s+fv9iyfksqbJ83b16NthUAAAAAAAAAAFgx6pdr5akBAwbk11dddVV06dIlv27cuHF+/uKLL6r8vUKCVdOmTWusrQAAAAAAAAAAwIrTMMrIwoUL4+qrr4677rorV5O67rrrYtddd63cv9pqq/3PJfpmzpyZn5s1a1ZDLQYAAAAAAAAAAFakskmgStWjUtWpkSNHRosWLWLQoEGVlacK1l9//fz8wQcfVPkeaXuTJk2ibdu2NdJmAAAAAAAAAABgxSqLJfwWLFgQp512Wk6eateuXTzwwANLJU8lnTt3zsvzjRkzJlerWtSkSZNiypQpsfnmm0eDBg1qsPUAAAAAAAAAAMCKUhYJVLfddluMGjUqV466//77KytNLWnllVeOPffcMyZPnhxDhw5dLAErLf2XHHrooTXWbgAAAAAAAAAAYMUq+SX8pk2blhOoko022iiGDx9e5XGpIlW3bt2iX79+8eKLL8YVV1wRo0ePjg022CBefvnleOedd6JXr17RvXv3Gv4LAAAAAAAAAACAFaXkE6heffXVmDNnTn797LPP5kdVTjzxxJxA1bJlyxg2bFjceOON8dxzz+XkqbTs35lnnhlHHHFE1KtXr4b/AgAAAAAAAAAAYEUp+QSqHj16xPjx47/R76y11loxcODAFdYmAAAAAAAAAACgdqhf7AYAAAAAAAAAAAAUiwQqAAAAAAAAAACgbEmgAgAAAAAAAAAAypYEKgAAAAAAAAAAoGxJoAIAAAAAAAAAAMqWBCoAAAAAAAAAAKBsSaACAAAAAAAAAADKlgQqAAAAAAAAAACgbEmgAgAAAAAAAAAAypYEKgAAAAAAAAAAoGxJoAIAAAAAAAAAAMqWBCoAAAAAAAAAAKBsNSx2AwAAAAAAAAAAYEWbNm1aDB48OEaNGhX//ve/Y4011oju3bvHSSedFC1btix28ygiFagAAAAAAAAAAChpM2fOjD59+sSdd94Zbdq0icMOOyw6duwY99xzT+y99945oYrypQIVAAAAAAAAAAAl7eabb4733nsvTjnllDj55JMrt997771x6aWXxk033RRXXHFFUdtI8ahABQAAAAAAAABASZs8eXKsueaaccwxxyy2PVWfSl5//fUitYzaQAUqAAAAAAAAAABK2qBBg6rcnqpSJa1atarhFlGbSKACAAAAAAAAAKCsTJ8+PUaPHh1XXnllNGzYME466aRiN4kikkAFAAAAAAAAAEDZeOCBB+Liiy/Orxs0aBDXXHNNdOvWrdjNoojqF/PDAQAAAAAAAACgJrVs2TKOO+642GeffWLllVeOM844I26//fZiN4siUoEKAAAAAAAAAICysdtuu+VHcsopp8RBBx2Uq1BtvfXW8f3vf7/YzaMIVKACAAAAAAAAAKAstWvXLo499tj8+tlnny12cygSFagAAAAAAAAAAChZ8+fPj7Fjx8aCBQtixx13XGp/+/bt8/Nnn31WhNZRG0igAgAAAAAAAACgpBOojjvuuGjSpEm8/PLL0ahRo8X2v/POO/n5O9/5TpFaSLFZwg8AAAAAAAAAgJLVrFmz6N69e8ycOTNuvvnmxfa9/fbbcffdd+fkqj333LNobaS4VKACAAAAAAAAAKCknX/++TlZavDgwfHqq6/GZpttFlOnTo1nn3026tWrF9dff320atWq2M2kSCRQAQAAAAAAAABQ0tZee+34zW9+E7fccktOmnrjjTdi1VVXjR49esSJJ54YnTp1KnYTKSIJVAAAAAAAtdTs2bPz7OiRI0fGlClTYqWVVoqNN944+vbtGz179ix28wAAAOqUli1bxgUXXJAfsKj6i/0EAAAAAECtMGvWrDjkkENyAlWTJk2iT58+sfvuu8e4cePi5JNPztsBAACAb08FKgAAAACAWmjIkCExfvz4OPjgg+Piiy+OevXq5e2nnXZa9O7dO2688cacUNWhQ4diNxUAAADqNBWoAAAAAABqoSeeeCInTQ0YMKAyeSpp3bp1rky1YMGCeP7554vaRgAAACgFKlABAAAAANRCffv2jZkzZ8aqq6661L5GjRrl59mzZxehZQAAAFBaJFABAAAAANRChx56aJXbKyoqYuTIkfl1x44da7hVAABAXfTRCSZf8L+1Htw0ypkl/AAAAAAA6pD7778/3nzzzWjfvn3ssMMOxW4OAAAA1HkSqAAAAAAA6ojHH388Bg4cGA0bNowrr7wyVlpppWI3CQAAAOo8CVQAAAAAAHWk8tSAAQPy66uuuiq6dOlS7CYBAABASWhY7AYAAAAAALBsCxcujKuvvjruuuuuaNSoUVx33XWx6667FrtZAAAAUDIkUAEAAAAA1FLz58/PVadGjhwZLVq0iEGDBqk8BQAAANVMAhUAAAAAQC20YMGCOO2002LUqFHRrl27GDJkSKy//vrFbhYAAACUHAlUAAAAAAC10G233ZaTp9q2bRv3339/tG7duthNAgAAgJIkgQoAAAAAoJaZNm1aTqBKNtpooxg+fHiVx6Xl/Lp161bDrQMAAIDSIoEKAAAAAKCWefXVV2POnDn59bPPPpsfVTnxxBMlUAEAAMC3JIEKAAAAAKCW6dGjR4wfP77YzQAAAICyIIEKAAAAqDXLVQ0ePDhGjRoV//73v2ONNdaI7t27x0knnRQtW7YsdvMAAAAAgBJVv9gNAAAAAJg5c2b06dMn7rzzzmjTpk0cdthh0bFjx7jnnnti7733zglVAAAAAAArggpUAAAAQNHdfPPN8d5778Upp5wSJ598cuX2e++9Ny699NK46aab4oorrihqGwEAAACA0qQCFQAAAFB0kydPjjXXXDOOOeaYxban6lPJ66+/XqSWAQAAAAClTgUqAAAAoOgGDRpU5fZUlSpp1apVDbcIKLa5p19d7CZQyzX+xVnFbgIAAAAlQgIVfAuzZ8+OwYMHx8iRI2PKlCmx0korxcYbbxx9+/aNnj17Frt5AAAAddb06dNj9OjRceWVV0bDhg3jpJNOKnaTAAAAAIASJYEKltOsWbOiT58+MX78+Nhkk03y65kzZ+ZkqpNPPjlOP/30OOGEE4rdTAAAgDrngQceiIsvvji/btCgQVxzzTXRrVu3YjcLAAAAAChR9YvdAKirhgwZkpOnDj744PjNb34T5557blx++eXxhz/8IS8tceONN8a//vWvYjcTAACgzmnZsmUcd9xxsc8++8TKK68cZ5xxRtx+++3FbhYAAAAAUKIkUMFyeuKJJ6JevXoxYMCA/FzQunXrOOSQQ2LBggXx/PPPF7WNAAAAddFuu+2Wk6auuuqq+N3vfpcTqlIVqrfeeqvYTQMAAAAASpAEKlhOffv2jX79+sWqq6661L5GjRrl59mzZxehZQAAAKWjXbt2ceyxx+bXzz77bLGbAwAAAACUoIbFbgDUVYceemiV2ysqKmLkyJH5dceOHWu4VQAAAHXP/PnzY+zYsbmS74477rjU/vbt2+fnzz77rAitAwAAAABKnQQqqGb3339/vPnmmznAv8MOOxS7OQAAAHUigeq4446LJk2axMsvv1xZ1bfgnXfeyc/f+c53itRCAAAAAKCUWcIPqtHjjz8eAwcOjIYNG8aVV14ZK620UrGbBAAAUOs1a9YsunfvHjNnzoybb755sX1vv/123H333Tm5as899yxaGwEAAACA0qUCFVRj5alLL7006tWrF1dddVV06dKl2E2Cpfz2t7+NoUOHxj//+c9o3LhxbLfddtG/f/9YZ511it00WIy+CgDl5/zzz8/JUoMHD45XX301Nttss5g6dWo8++yz+Trr+uuvj1atWhW7mQAAAABACVKBCr6lhQsX5mpTl1xySa48dcMNN5gVTa2UbjidffbZMW/evOjTp09069YtV03r3bt3TJo0qdjNg0r6KgCUp7XXXjt+85vfxOGHHx7//ve/czL1mDFjokePHvHQQw/lZwCg9k+I2m+//WKLLbbI1/NnnHFGTJkypdjNgirprwAALEoFKvgW5s+fHwMGDIiRI0dGixYtYtCgQSpPUSuNGzcubr311vjBD36Qlz9p1KhR3t6rV684+eST89KTaT8Um74KAOWtZcuWccEFF+QHAFD3JkSla/YNNtggT4hKCdFpQtSLL76Yk6Hbt29f7CZCJf0VAIAlSaCC5bRgwYI47bTTYtSoUdGuXbsYMmRIrL/++sVuFlQpzd5PfvrTn1YmpCQ9e/aMrbbaKp577rn46KOPonXr1kVsJeirAAAAUBeZEEVdor8CAFAVS/jBcrrtttty8lTbtm3j/vvvlzxFrTZ69Oi8xGRKQFnSNttsExUVFfkYKDZ9FQAAAEp3QhTUBvorAABVUYEKlsO0adNyAlWy0UYbxfDhw6s8Li3nl9ZOh2IvNTl16tRYZ511FgsIFBTKUb///vtFaB38H30VAAAASnNC1NixY/Mxe++9d1HaB4vSXwEAqIoEKlgOr776asyZMye/fvbZZ/OjKieeeKIEKopu+vTpuWrPaqutVuX+5s2b5+eZM2fWcMtgcfoqAAAA1D0mRFGX6K8AACyLBCpYDj169Ijx48cXuxnwtXzxxRf5uaqAwKLb582bV6PtgiXpqwAAAFD3mBBFXaK/AgCwLBKoAEpc48aNF0tOqWrWVdKkSZMabRcsSV8FoJx9dMLsYjeBOqD14KbFbgIALMWEKOoS/RUAgGWpv8w9AJSEZs2aRf369Zc5a6qwvTC7CopFXwUAAIC6x4Qo6hL9FQCAZZFABVDi0qyp9u3bx9SpU6sMDEyaNCk/b7DBBkVoHfwffRUAAADqHhOiqEv0VwAAlkUCFUAZ6Nq1a05Iee2115ba9+c//znq1asXW265ZVHaBovSVwEAAKBuMSGKukR/BQBgWRoucw98hbmnX13sJlDLNf7FWcVuAv+/3r17x0MPPRTXX3993H333ZWlqp9++ul49dVXo3v37rH22msXu5mgrwIAAEAdnRCVrufThKitt956sX0mRFHb6K8AAFRFBSqAMrDFFlvEoYceGq+//nrsvffecfXVV8eAAQPitNNOizXXXDPOPffcYjcRMn0VAAAA6uaEqCRNiJo7d27l9sKEqF122cWEKGoN/RUAgKqoQPU//Pa3v42hQ4fGP//5z1wBY7vttov+/fvHOuusU+ymAXxjP/vZz2L99dePBx98MO65555o0aJF/OhHP8qJKalsNdQW+ioAAOVC7AkotQlR9913X54QlSpIf/TRR/HEE0+YEEWto78CAFAVCVTLkGYe3HrrrXmd6z59+sS///3vePzxx+PFF1/MpV3dwAXqmlR6+rDDDssPqM30VQAAyoHYE1BqTIiiLtFfAQBYkgSqKowbNy4HsH7wgx/E3XffHY0aNcrbe/XqFSeffHIMHDgw7wcAAACAb0rsCShFJkRRl+ivAAAsqf5SW8il05Of/vSnlQGspGfPnrHVVlvFc889l8u5AgAAAMA3JfYEAAAAULtIoKrC6NGjo2HDhjlgtaRtttkmKioq8jEAAAAA8E2JPQEAAADULhKoljB//vyYOnVqrL322ovNACworH39/vvvF6F1AAAAANRlYk8AAAAAtU/DYjegtpk+fXqe5bfaaqtVub958+b5eebMmVHuGp10cLGbAAAUyS079Ch2E+Br+WXPVYvdBPhaVj+9cbGbANQQsaevT+wJAMqX2BN1ifgTdYX4E/xvEqiW8MUXX+TnqmYALrp93rx5Ue7qb7BusZsAABTJD1q1LnYT4GvZovVKxW4CfC2NOjYodhOAGiL29PWJPQFA+RJ7oi4Rf6KuEH+C/80Sfkto3LjxYsGsqsqsJ02aNKnRdgEAAABQ94k9AQAAANQ+EqiW0KxZs6hfv/4yy6QXthfKqQMAAADA1yX2BAAAAFD7SKCqokx6+/btY+rUqVXOBJw0aVJ+3mCDDYrQOgAAAADqMrEnAAAAgNpHAlUVunbtmgNYr7322lL7/vznP0e9evViyy23LErbAAAAAKjbxJ4AAAAAahcJVFXo3bt3fr7++utj7ty5lduffvrpePXVV2OXXXaJtddeu4gtBAAAAKCuEnsCAAAAqF3qVVRUVBS7EbXRz3/+87jvvvtivfXWi+7du8dHH30UTzzxRKy++uoxbNiwXGodAAAAAJaH2BMAAABA7SGBahnSP0sKYj344IMxceLEaNGiRWy99dZx2mmnCWABAAAA8K2IPQEAAADUHhKoAAAAAAAAAACAslW/2A0AAAAAAAAAAAAoFglUAAAAAAAAAABA2ZJABQAAAAAAAAAAlC0JVAAAAAAAAAAAQNmSQAUAAAAAAAAAAJQtCVQAAAAAAAAAAEDZkkAFAAAAAAAAAACULQlUAGXsgw8+iLfffrvYzQAAAACgRIk/AQAAdYEEKiiiioqKYjeBMvbmm2/GoYceGi+88ELMmTOn2M0BAOq40aNHF7sJAEAVxJ8oJvEnAKA6iT8BK5IEKqhhs2bNitdffz2/rlevniAWRTFp0qQ49dRTo0GDBtG5c+do0qRJsZsEANRh+++/fxx77LG5ugAAUHziT9QG4k8AQHUSfwJWNAlUUMMWLFgQ5513XgwbNqwyiPWf//yn2M2izEyZMiU+//zz2G677WLHHXfM2z777LP8LKhKXb9JAKVo0XOz8zS1Ue/evePss8+O1VdfvdhNgeXm/AqUEvEnagPxJ0qV+BOlSvyJ2k78iVLg/Fq71avwXwhWuPS/WQpUpeDVW2+9FQcffHDefvPNN+cs6b/+9a9xwQUXxFprrVXsplLixo8fHw0bNozZs2fHgQceGKusskqMGDEi/vCHP8QTTzwRQ4cOjTXWWKPYzYTl8sYbb8S1114bl19+ebRv377YzYFqsXDhwqhfv37Mnz9/scoBjRo1KnbTYLFxbvLFF1/ESiutlM/HH3/8cfTs2bPYzYNvfL798MMPY8KECfHPf/4zOnXqFBtuuGGsttpqxW4ewNci/kRtIf5EKRN/ohSJP1HbiT9RKsSfar+GxW4AlIPp06dHixYtcrnqzTffPF9cpVmAJ598ct5/wgkn5C97WJHefPPNOOigg2LXXXeNG2+8MY4//vi47bbbcsnTFNDq27dvfPnll8VuJiy3p59+OsaOHRsfffRRDmAVBqJQVxX68Lvvvhu33357Po+n83WauZ3GEGuvvXaxmwiVwask3ST79NNP45BDDsn996abbsrjDqgr59uUbHD++efHv/71r5g3b160adMmV24RwALqCvEnagPxJ0qd+BOlRvyJukD8iVIg/lQ3GNXBCpYupnbeeecYPXp05bb99tsvunXrlgNaSfPmzSvLTaaTJ1S3lIV/1llnxbrrrhv77LNP3nb66afH97///fjvf/+bZwJuttlm0bp165zJrzghdVG6SGratGkO0M6dO1fwijotnYcLF1PpBsPLL78cq666arRt2zYHCNK5G2pjMCtVEujfv3/++dRTT40nn3yy2M2Cr3W+HTduXBxzzDH55+OOOy4uu+yynHiQxseLcr0G1FbiT9QG4k+UA/EnSon4E3WR+BN1kfhT3aECFaxg77zzTi6NXggIpDLq//jHP+L999/PwYNUPj2V/G3ZsmUObKWTp1krVLd///vfMWnSpNhyyy1z8DS544478oVRKguZ+uQVV1yR+2qXLl2K3VxYLptuuml07do1X+i//fbbuS87n1KXAwHp3J0qBqQxwoABA/INsTSeSOV906wUqG0l1Avn3HTxn8r8p7FFv3794oYbbojdd9+92E2FKqX+O23atBg4cGC+SZACsDvttFPl/jSG/tOf/pSXskjj6I4dOxpfALWS+BO1gfgT5UD8iVIi/kRdIf5EXSf+VHf4F4cV7Mgjj4w777yzMmgwefLk2GijjXJJyaFDh8ZVV12Vt6cB6ogRI/LrQhALqksKTK233np5Ld00GzUNKG+++eb46U9/mvthGmh+8skneZCZZq0WmAlIXZHWPU9+8pOf5H772GOP5Z8NLqnrN8EmTpwYe+21Vw5eFS60Fg1e/fnPf84PKIY0Xk198rPPPsvLV0yZMqVyX5q5eu655+bXaXxhJiC12YwZM/KN3XTNVghepXPw3XffnZcb+vnPfx5XXnllXh4gbTe+AGoj8SdqA/EnSp34E6VI/InaTvyJUiH+VDf4V4cVIK0Rfd9991X+vM466+TnNNNvt912i2eeeSaXq06Z0XvvvXdceumleb8gFitKixYt4rDDDsuDzDPOOCN+/etfx49+9KM48MAD8740s+Soo46K//znPznruRDESscLYlEbpTKnqZ+mUtLJSiutlJ9T5v4WW2wRjz76aLz66qtFbiV8O3/5y19ycHabbbZZLFCbpDFCmpWSzt3XXHNNzJ4927iBGlWYAfX3v/89jj/++Ojdu3fsueeeMXjw4PjXv/6VjxHEoq6YNWtWXn5l5ZVXjqlTp8aDDz4YZ599dg5atWrVKp9rDzrooJgzZ04MGzYsV3UBqA3En6htxJ8oNeJPlAPxJ2oz8SdKifhT3SCBCqrZ9OnT47TTTstBqXvuuWexfU2aNMnPKYDw1FNPVW4/4IADFgtiFWaupBLAEyZMqNH2U5pWWWWVnLG8wQYb5C/n1BfT6/SFXJC+pAWxqAvSTOp99tknDj/88DjllFPioYceiv/+9795MLnmmmvmvj5v3rzKAJaLeuqKJc+1hXXP0+ztRQO1SQoctG/fPn74wx9WBnLNSKEmpf42fvz4PHZIwdTvfOc70bhx47j++utjyJAheXmWqoJYI0eOLHLLYWlrr712XoYl9d0f//jHcdFFF+XrsJNPPjkvAZDGyZdcckkeZ6TlLQBqA/EnaiPxJ0qJ+BOlSvyJukT8iVIi/lQ3+JaDarbaaqvlC6pUsjqtY5pmWhWcdNJJcc455+QAQppxtawg1llnnZX3pxPl5Zdfno8XQGB5FPpNei6U2e3cuXPObk6l01OwNGU8LyuIVQgAFNaWhtqgXbt2cf755+dM/Ndeey1+9rOf5dknt956a+7P6YI+lZu+/fbbc/lpF/XUlXP1kufa1NeTVFUgzXotSMHaQmA2zeJOa6enWSlQUwqzn373u9/lMe/VV1+db9ymC/1Ufvrhhx/OpaerCmKdeuqp+fegGBa9qZXOvYXzb8uWLfNY4uCDD87VW9J4+I477sgBrHTTN0nj4jTbepNNNokGDRoU7W8AKBB/ojYRf6IUiT9RasSfqGvEn6irxJ/qtobFbgCUYinJ/fbbL2fpp+DTFVdckU+MRx55ZD4mPaefr7rqqhykSlJZ9UIQK50M0yzAP/zhD7H66qvHTTfdlLOp4ZtK/axwMZRmQ6U1dW+55ZZcYvr111+Pm2++OWfpJz179oymTZtWBrGSu+66K/fXFOjacssti/iXwNLS7L/C+fPZZ5/NM0rSrNV0UXTooYfmmVFpLelRo0blQWj6/0Egi9o8dkgle9O5OT2n/tqnT5/o0aNHntH6wAMP5HNxOidvuOGGlRdOaXZKWgt9o402ymOFRc/7sCL7a6EPvvHGG/H9738/B62SNNZIN8mSwrJAhX6bgljp99MY+JNPPiniX0G599/3338/Hn/88TxOSP31e9/7Xh47bL/99vmRbggUKrcUpPNtqjiQzrHGxUBtIP5EbSL+RCkTf6JUiD9Rl4g/UZeJP9V9EqigGqUTYlofOgWvUum99OWeglhp7dL0+rDDDssnvXQxlVQVxErBr1SCcsaMGfnLvk2bNkX9m6i7ChcxN954Y7z44ot5TehddtmlclbJ/Pnzc5nIZQWx0pd3Wn83BVKh2NKs1FSi9+OPP45VV101Dx7ToHPbbbeNH/zgB3HiiSfmGX9plmuafZ0CWOl3/vjHP8bRRx/top5afTGVLqLS8ir/+te/KvelGw9pvJDGDlOmTIlHHnkkl+1NQYDU/9PvDB8+PN59993c55s3b17Uv4Xy6a9pZnWhDHoar6633nr5dVrKIi3ZkvrnCSecsFgQK/XlFCRIz9tss00OukJNKtzIevPNN3NVls8++yyPe9N4N/Xn559/Po444og8Hk7Bq3Teve222/J44ssvv8xj6b/85S9x5plnVgZsAYpJ/InaRPyJUiL+RCkSf6IuEX+iLhN/Kg31KtRlhmr/Yk+eeeaZfOJLAYJ0EZVccMEFeSBakGZYpSBWw4YN47rrrqsMYkF1mTlzZhx33HHx17/+NXbYYYccTF1jjTXyvlQCMpU4TV/OqQ+mkumLBrGStK554XgolnShns6f6UK9UPo0Ba523XXXXEa9EJxKA8x00T9s2LB44YUX8syUtARFKrGeMvuhNnrvvfdyUCrdsNp3331j6623zjMB06yqjh075mP+/ve/53LUjz76aOVyLemiK52707ItKUibmAHIilLoW+niP5WZTmX7C9KsvzSmTdLNsUaNGuXXaYmLdPPspZdeij322CPPBFw0cLXouBlqov9+/vnneXZ1s2bN8jVZWm4l3ThI4+Ennngij4FPO+202GuvvfKyFakqS2H5ipRgkM61qWJLov8CxSb+RG0j/kQpEH+ilIk/UReIP1GXiT+VDglUsAKkMtW//OUvc0Z0yhpNMwJTid/CzKrCDMBFg1gpY/rSSy+NPffcs4gtpxRNnjw5Lrvssnjuuediu+22y+tEF4JSs2bNit/85jeVQaw0IzXNEkxf7FAbpJKlKfjUokWL3DfT7NVUKj1l4qeAVbog6tev31IX7x999FEelP7kJz/Js00GDRpU5L8ElpYu9tONhTRLKlUM+NGPfpS3p76dzsmFPp36c5rh9+STT+agQDqvd+nSJTbffPNc7jdxMcWKlm7IpnNuClClG15pLJFuwE6fPj0OPPDA+PnPf75UEKuwZEsKYt1555355gPUpMK5MfXf9Ny7d+8chE3LUyx6wzYlH6SqGWuvvXYOvLZq1SrefvvtfDM4Xculnzt06LDYewLUBuJP1CbiT9Rl4k+UMvEn6hLxJ+oi8acSkxKogOozatSoik033bTi9NNPr5gwYULl9ieeeKJi3333rejYsWPFnXfeudjv3HXXXXn7tttuWzFz5syKhQsXFqHl1HULFixY5rZJkyZVHHvssbmfHX300RX/+c9/Ko9Jfe7uu++u2HHHHSs222yzij/84Q/6ILXGkCFDKrbffvuK559/vnLbtGnTKp588smKbt26VXz/+9+veOCBB5bq84U+fO211+Z+P3bs2CK0Hv63uXPnVuy33355fLCsc/krr7xS8cMf/rDi3XffXeYxVZ3/oToU+tacOXMqxowZk8cKjz/+eOX+v//97xVbbbVVPs9ecsklldvnzZtX+Tr93jPPPFPDLYf/k86fnTt3rujdu3fFFltsUfHBBx/k7V9++eViY4vrr78+9+Wrr756me9ljAzUJuJPFIv4E6VI/IlSJv5EbSf+RCkQfyod0tagmr3zzjs5Yz+V1/vud78bCxYsyNt33333vL50p06d8oy/e++9Nx+XpGzqVOI3ZUanmVfKn7K86+omaWZImj2SpG0pSznNmrroootyGfWUhX/WWWflbOck9bn9998/z7JKWc8bb7yxPkjRpfLn119/fUydOjU22GCD2HHHHSv7eiofnZacSLNZGzduHH/4wx/y2udJ4f+DQqn1VIY6mTRpUtH+FliWdB5Os/tSf00zshc9lydpDJGWY/n3v/8djz/+eOX2JWeemInCipL6Vlq+Yp999snLU6QxQ69evSpn+qVxbRrTrrrqqnH//fdXzgJMMwDT/mSrrbaK7t27L3ZuhhWt0NfSeXXllVfOlQTef//9fF5NS1cU9hWkscWPf/zj/Py3v/1tme9rjAzUJuJPFIP4E6VG/IlyIP5EbSf+RF0l/lSafNtBNSmcANNa6Q0aNMil05fcl8pGppJ9SSppnb7wC1LwoLDWNHzTL+jCl+k999yTB5mjR49eZhCra9euOYh1/vnnVwax0pq7qQ8++OCDufQ/FNMXX3yRA/qphOkDDzyQL4IKNwMWHTimi6J99903l1R/9dVXF3uPdB5OXnnllcr3hNqmbdu2+aZBClKlR+rfhb6exg6pH6c10lM59VSmGoohlZ5O/TLdLJg4cWIuK52kstJprLHhhhsuFsRKY9xCEGvJgJVgKzUl9bWUWJDKoqfrsttvvz2fc+fNm5eXD0rSuTX17UI/TckHrVu3zuPjQgAWoDYSf6JYxJ8oNeJPlAvxJ+oC8SfqIvGn0uQMAtWkcFG12Wab5ZkohYupwkVUIYiV1pdOF12rrLJKDBw4cLEgFnxTi66B+9BDD+V+lwaUqW+lC/eqglhpnfOU3fzcc8/F2WefnQemhSBW2g7FlGbqzZkzJ04++eQ8yySdKz/88MMYP378UsemjP4f/OAH+fVnn3221P60nvR9990XLVu2jO23375G2g9fV2FckAJUaY3zVAkgjR/SuGHRGxMTJkzI5/K11lqryC2mXHXp0iUuvvjifAMsXeynm2Vpdnbqo6m/LhrEWn311fPzueeem39XwIpiSQGoW2+9NT/++c9/5kSBVFnge9/7Xjz99NO5IkuS+nChn/71r3/NY440tkgBWIDaSvyJYhB/otSIP1EuxJ+oK8SfqIvEn0qTMwosh/9V/jFl8ie33HJLZRArfcEXAglpwJpKoW6yySax3XbbxTbbbFNDraYUFb5wb7755nzxky7804yoVEY9lTFdMoiVvsxTECuViOzQoUO8+OKLeSagkqbUluDVHnvsESNHjswDzKOPPjoHntLMqF//+teLHVvos6nsdLLGGmss9X7p/JrKrKcgVsr6h9qkEKBKfb5nz57x5ptvxlFHHRUffPBB5YzVv//973kWbLqQ2nTTTYvcYspRGremG2Nbb711HHfccXlZilTOP830S+X/lwxi3X333fn30hgDiimdNwul+2+66aaYMWNGHlvccMMNeWmWu+66Ky688ML4/PPP85giLd2SgrNpLJ2u0QBqC/EnagvxJ0qJ+BPlRPyJukD8ibpK/Kk0NSx2A6Auz7hKg8100kvZ0JtvvnmeZfLDH/4wf8EPGTIkl+xLs1jSl3768k+efPLJmDt3bhx77LH54iqtnw7fph+mmU/Dhw/PF0Gpv33nO9/JJSHTBX8KYqUv59QH07ZCNnOaTZVKpffu3Tt/ucvQpzZIF+1pVt9jjz0W++23X75QOumkk3J/f/TRR/NswP79++cyvanPpn6cSvq2atUq2rRps9T7pbXS99prr6L8LfB1pL6d+vMll1ySxwZ/+tOf4sgjj8w3w9JMqrQcRgrsnnnmmdGtW7diN5cyDrSmcWyhD6ZZVOlCPzn88MNzyelCECvNskr9tkWLFpUBsEWXvoAVpaq+lpYVSuOEtHTQe++9F1tssUUuk56u0fr165fHzy+//HL+3TQGSUGu008/PXr06FG0vwNgUeJP1AbiT5Qi8SfKjfgTtZ34E3WF+FN5qFdRqN8IfKMTY1rHNAWpCmtCpyDAQQcdFDvuuGPMnj07l6lO65umktQpo3/dddeNcePGxRNPPJFLpKYTphkpfFuDBg3KAaw0WCwEqpL0BZz6aApirb322nmWXwqYpgBWKiudZkWlL+5U0h9qizRDNZXdTYPNX/ziF5X98x//+EcebD777LO5j6cLpObNm8fzzz+f10JPs18PPfTQYjcflku6CZYu/tN4Ip2zX3jhhbxueurjabbK/vvvn2d2L3nzAoohBanSmCMFsVJ5/xTAKgSxFr2sTONl/ZWaUuhrqQJG6ofppla6cVuYSd23b988Dk4zAQvef//9OO200+Ldd9/NN7zSuCP9XjrvLvqeAMUi/kRtI/5EKRF/ohyJP1GXiD9RG4k/lQ8JVLAc7rjjjrjmmmtyGfS0Rulbb72VZwN27tw5z1bZaaedchZpOm7w4MExb968fBJMs1fSrKsUPCicHGF5pSDVwQcfnL+Ak8suuyxf6BQCram0dAqypguiFEhN5SDT7Krnnnsu98e0RnT79u2L/WdQxha9KVAYKKYM/XQzIJWUvuKKKyqPTUGsX/7ylzlolQJd6QZAKimdbh6kJQGWfD+oSwr9PwWz0pghBQbSDMCmTZvm6gKLHgO1KYj1z3/+M5+zjzjiiCpnYkNNSYkCacZfqh6QxhCpX6bx78yZM/O110MPPRTXXntt7LnnnpXjhTTmSEGsdM5N29P+JI0zClUzAIpN/InaQPyJuk78Cf4f8SfqEvEnaiPxp/IggQq+hkUHjZ988kmccsopeUbfT3/607zGbvryfuSRR+LOO++MTp065TLWqZR6koJbKas/BRnSvlS2r6q10mF5pLXKU+ndVP4x9bmzzz47B0kLUhArlTlNM6rSl3PKhk5Bq5QBLYhKsS0ZcEoXReniPc0CHDlyZD6nbrvttosNTm+55ZYchE3bU39PSwYsOosKSpHgLLVNOl+/8sorcdVVV+UbDPfdd1++qQvF8uqrr8Zhhx2WX6+55pr5JkAaI2+55Zb5Wi0tG5RmAV533XV5Cas0bkjj4hTESlUx0kzA3XffPW644Yb8HsYVQLGIP1FbiT9Rl4k/wdcj/kRtI/5EbSP+VB4kUME3kMr3pjWi00VTOrktuj7phx9+GPfff3++4Npoo43ixBNPzDNTYEVL65OnPvnaa69Fnz594ic/+Um0atWqcn8KCKQgagpypez89ddff7H9UKyBZsq0P+6442LDDTdcbDZqCl6deuqpueRpCmalC6VCKdQUxEpLBzz99NOx8847x1lnnZWDti7uAWpWOje/+OKLeemgPfbYo9jNoYwVgvzpBm260ZWWW0lj3xS4SktQpDL/f/3rX+OCCy7IY4hddtkl/05KUkhBqkXLqW+//fZ5GSKAYhN/ojYSf6IuEn8CqNvEn6gtxJ/KhwQq+JoKwYG11147zwZMZfjSTL5UKn2llVZaKoi18cYb5xmCqZw61EQQ68wzz8xfzin7+YQTThCkolZKg8U09EhB/j/96U/5/JkCUGlwmWaxrrXWWvm4FIhN590RI0bEOuuss9hM7EI59RTE2nXXXfOgM82uhlJdWsAMQGqrRc/NZkxRUwp9rfBcuNGVbo5dfvnleemJAw88MAdYhw8fnn/ecccd489//nO+fktjiDS2WLQPp2BXunH28ccf50oD6ZoPoFjEn6jNxJ+oK8Sf4H8Tf6IuEX+iGMSfypeFbOFrSiXT+/fvn0+QU6dOzYGqNKBMF1/p5JmkE10Kch1zzDE5gzSdQNMFGqxoafbUNddcE5tvvnnce++9MXjw4FzuH2qbdN5Mg82Ugf/AAw/kzPxUvvTCCy/MswHTrMBp06bl7Px0g2Do0KH5uXCBlKQZg2kpi1TqNM0WvPXWW/MxUCxVzUdYnjkKiwaqUgA39e9UeUDwiroSvDI3h5qQ+lpapuriiy/ON3ELVQK6dOkSXbt2jb/85S+5T/785z/P12NpyavHH388Pvroo3wdlwJdhb6a+nDqy2lJljTmSOddwSug2MSfqM3En6grxJ8oReJPlCPxJ4pF/Kl8qUAFVVhWpn066f3+97/PF0urrrpqDmilkpHp2EWzntNxqfTeH/7wh3jwwQcXKw0MNTUTMGUxH3300dG6detiNwuyFKgaNmxY/Pe//803BY4//vi8fcyYMXkwmYKvn332WXzve9+L3XbbLR/brl27uOOOO6Jp06ZLnZv//ve/x1133ZXfZ4MNNijiX0Y5K1zEp+/+VOI/lZNOfTg9volF+3eatZIuupo0aZLHEy1atFhBrafcVDXGXZ4ZpksGW9OsqTSLu3HjxtXaXqhKWh7o2GOPjbFjx+bzY6q6ksqmpxtcyX777ZdvbD322GO5n6bKAW+88UZcf/31eZxx9dVXx1577bXMgCxATRJ/oq4Sf6I2E3+iFIk/UZeIP1EKxJ/KlwQqWMKiJ680g2rmzJmxyiqrRJs2bfK2NEBNJ8O0vmkqvXfSSSdFr169qgxipdmBqWQf1HQQ69xzz80BgTSjql+/fkqaUnRvvvlmLpueBo4F2223XR5EpnKmhWUofve738WTTz6ZB5spoz8Fu84666wcjK3K/Pnzo1GjRjX2d0BVY4Y0E+Wcc87JQdok9cmrrroqjw++aTDgpZdeiuuuuy6X873vvvvykixQHQRbKSVpfHDPPffkhIHx48fHRhttlMumH3LIIXm230UXXZSDVD/72c8qf2fKlCnx9ttv55tkALWB+BN1nfgTtZH4E6VI/Im6RPyJUiL+VJ4kUMEygleptO9DDz0Uf/vb36Jjx465VG9aEz1JX/yPPvpo/OpXv/qfQSwoln/961+5bGQKZJkZRbGlkuhpaYkU1D/ggAPyOTVd8KRZIyljPwWxCjNVC+fhVMY0DTLTDYO0NECaeb3aaqspJU2tk4Kthx9+eDRv3jy6deuWxwEjRozI/fiyyy7LM1G+SfAqLSOQzuFpqZZOnTrV0F9BqRNspVSv2SZOnBhPP/10Ti5IQa1UnWWHHXbIN8Q+/fTTOPvss/O5OS2DVSi1vuR7ABSD+BOlQvyJ2kT8iVIm/kRdIP5EKRF/Kl8SqKCKL+Rf/vKXeX30tdZaK9q2bZu/mGfMmJFnU51++ulVBrFS6b4U5HJxRW2RSkemgAEU2+TJk3NWfprJt88++1TOVB04cGA899xzeWB55ZVX5iDWogPKNLsvZfdfc801uYx6mjEItcGi/TQFqV544YW48MILY/vtt8/b0sV8KtWbZlil/b17967yfQSvqEmCrZSSJUv/p0oDTzzxRDz88MO5j6+88sr5Gu6oo47KQSyA2kT8iVIj/kRtIf5EqRF/oi4Sf6KUiD+Vp/9LgYMyVzgBpkHn4MGD85d4+pJP5fjSBdbJJ5+cv6CTFMRKF1p77713/jmVjEwXYimrtGfPnkX9O6BA8Ipi+/zzz/MyFO+++25eTqJHjx6Vgan27dtXljVN59g0IyXNQkk3DgqD0tSH0wzB9Pz73/8+ttpqq/zajQKKLV3wv/POO/Gf//wn3+BKfbMQvEoOPfTQXA0gXeBfcMEFeduSQSzBAGo62Dp8+PA8k3rRYOsmm2ySg63nn39+7pOCrdQVhf5Y6Jubbrppvm7r06dPrjLwwQcf5P133XVXHHTQQdGhQwfjB6DWEH+i1Ig/UWziT5Qq8SfqCvEnSpX4U3mSQAWLSDNSUtn0dMGUyv1+97vfzSfFv/71r3mN9DRIve222/LJr3///pVBrLlz58ZvfvMbX+AA/79U/jxdEKULnFS2ND3SmuddunTJQag08yTNnl40iJVK/qdBZzq3Fpaj6Ny5c6y++uoxffr0XOoXaoPUH0877bQ8u3WVVVaJ448/Pm9PY4YUMEh99+CDD87bCkGsFETYd999K48TDKAmCLZS6hYNSqW+nG6Q3XDDDTF69Oj4wx/+EOutt15+ANQ24k8A1UP8iVIm/kRdIf5EqRN/Ki8WXYRFfPzxxzF+/Pi8Dm8heJVOfqNGjYqdd945z05ZddVVcynfVO43SRdahx12WPz2t7/NJ0yAcpfK9KabAGnt5w033DCfT5O05EQqZ5oGm+miatEgVvfu3fOFUZptndaQToPQJJ1307k5BQnSzEErD1MbpFlUP/nJT2L99dfP/TUFZ2fNmpX7duq7qW8nKYh1xhln5ONTgPaBBx5Y7ILrT3/6U1x33XWCAazwYOsJJ5wQTz/9dLRr1y5vT+fSJftp06ZNcxDrkUceqfx9wSvqkjS2SDcRUvn0nXbaKa6++uo46aST8r60HaA2EX8C+PbEnyh14k/UFeJPlBPxp9IngQoWOaGl7Oj0Rf3JJ5/kn9NFUyqn/tlnn8WJJ54Yu+66a+y11155JsuDDz6YS6xPnDgxlwZOM1QAiFzuPJVCv+aaa+Lee+/NAartttsuX/zcfPPNuazpkkGsdHGfZqbstttuOViVpGDXRx99lGdgp8BWmgGo/CnFHiukMUBhllSa+demTZt46qmnKpdZSZYMYp1yyin5dQrCFvz973+PX/7yl3mJAcEAVhTBVuqib3OzqrBkwJLvV9V2gGIQfwKoPuJPlCLxJ+oi8SfqIvEnlsUSfkS5r8ebFF6ndXjTBdQGG2yQf7777rvj9ddfzzP+1l577bxt3XXXzc/NmzfPpdWdDAH+nzfffDPef//9fDPg+9//fnTr1i1v32KLLeKcc86JK664IpczTdKMlHQ+LQSx0qyUNEOwWbNmle/3ne98Jwe/0sAz3SiAYo4ZUj9Nz6kMdRoDpKUA9tlnn3yBn4K1v/jFL6Jhw4Zx9NFH598rBAfScypTncYXaUZsQdretm3buPTSS6Njx45F/Asp1T6bgq2pT6Zga+pvN954Yw62pvFuoez/ov00BbHS69QnlxVsTUsNCV5R3UuupIoBhfFCqraSzquLzj79ppb8XTe/gGISfwKofuJPlCLxJ+oa8SfqEvEnvol6FWqRUgYKX+BLvk4XW2n96DTDL5X4/cEPfpCzo9OJM5UAPuigg6JPnz45I7oQqBowYEBMmjQpz2JJ29Zcc82i/m0AtUG62EkX7q+++mo+xx5yyCFx/vnnL3ZMuvhJQayXX3459thjj8og1pIDzW8zaIUVEQh477338qynd955J6ZOnZoDTmnMkKoDFGa9pqVVUvD2rLPOqgxiJYXgwJLvmcydOzcaN25chL+MUlToW1988UUOsKbxbSHYmjz66KM52PpV/TSNgRcNtqafb7nlljyTULCV6pSuq1J1gGnTpuWf042vFPDv0aPHcr/nomOIdMMhXdcZVwA1SfwJYMUSf6IUiT9Rl4g/UdeIP/FNqUBFyXvrrbfi8ccfjyOPPDJat25dGby67bbbYsiQITFz5szKY7fffvtcIj09UiZqGli2atWqcqCZ1u5N75cGramk76IDUoBylsqbX3bZZXnmyCuvvJJvEKSA1fe+973KY9Lr8847Ly6//PI8EzBdMKUgVprptyiDTGpTMCD15RNOOCGPF1LAtUmTJvHiiy/mktJpZlQKXO255565P1977bV5zfP0e2nckSw5Vli0coDgFTUZbN17771zf0x9NvXTpKoZq4XgVeE908/pd/RXqtNRRx2Vq6nssMMOseWWW8bYsWPzDa4UbErXZMvT3xYNVKVzdKrmkgKvXbp0WQF/AcDSxJ8AVjzxJ0qN+BN1ifgTdY34E8tDAhUlPyMlZTqPGTMmfwkfe+yxOSD14IMP5lKnaU30NOhMx6UT6GOPPZYHqvPmzcvlf1Ow67XXXov11lsvr7n7m9/8Jn+5n3TSSYJXAEtI58qLLrooB6nSTMB77703fvrTn8Zaa61VeUxaoiLtv+SSS+LJJ5/MpX2XDGBBMSw5QyRduKfv/lNOOSXfALvgggvyzNV0c2vcuHF5hmsqR51+76abbsrBgfQ7aXyRLvZTRYF04QQrmmArdc1dd90Vo0ePjv79++dqK2n5lF69esUNN9wQjzzySIwfPz4222yzZS5/9VXn8DSr8Prrr48JEybEueeeu8L/HoBE/Amg5og/UZeJP1FXiT9R14g/sbwkUFHyM1LSbJQ0yPz1r3+dy6enINYf//jH2HbbbfPa5umCK0lf6ClD+sILL8zl0VOQqmfPnnnWX3ok7du3j1tvvTU/A7C0dNGUyqSn8rzpZkEq3ZsuqNLNg0WDWOm8nJawSJn/UBukC5/CRVLheeTIkfHRRx/lQGwKXhUu8jfffPMctEr9OB2TLrr69esXP/7xj/MxKdjlgp8VRbCVuu7tt9/O58h0zkzBqxRUTX13/fXXz1VW0r4UfEpjiHbt2uXz7v8KYi0ZvEoB2vT/xPDhw/OYA6AmiD8B1CzxJ+oq8SfqCvEn6jrxJ5bX/06jgxLQoUOHfDGVBpv33Xdf/OpXv8pr6e600045eJVOmEnTpk1j//33jzPOOCOvzTtx4sS8LmoKgB144IFxzjnn5DJ8i5YDBmBpKcifZpak826aBTh48OD45JNPFjumU6dOlWtMp0EpFEsqLZ3GBsmiwaskLZvSvHnz2GefffLPaV+6oEoXS9/97nfj4osvztUC0o2xQh9PF2S//e1vc3lgWJHB1qTwXAi2ptlUVQVb03Mh2Frop6effnqsvPLKgq3UqC+++CKmTZuWz52Fc23heizNXk2PI444Ig444IB8bXb88cfHxx9/nI8tHPd1gldpKYE01gCoSeJPADVL/Im6RPyJukb8ibpM/IlvQwIVZXMxlUqppy/vhx9+OK/J+9lnn1VZLnLXXXfN6/Xec889+cS67777xs9//vNcXnKdddYp0l8AUHfPuymIdfvtt+cBaFW+qiwqrCivvPJKPPfcczFkyJAYOnRoZX9MF1ipakC6yErLrKRxw6IXSek57U8XR2mt9A8++CBmz55d+b6FZQEEZ6lOgq2UgtQv27ZtmwNV6WZXOs9+/vnneamq2267LVZfffVchSUtsZJmBaagVApizZo1K1+3pT5dIHgF1EbiTwA1S/yJukD8ibpE/IlSIP7Et2HESNnNSOnatWs++aW1eJeckZKkMn1pzdM0MJ0xY0ZR2gpQSkGsLl265GUs0iyUVKoXaoutt946l5FO3/lpvfLUTwsXWOliP/XdefPmxZgxY/JFUnqkC6b0SPuTtG2VVVbJZYCXJDhLdRFspRQUgk+nnnpqrqryhz/8IXbcccfo27dvLvWflrhK5+LLLrssLwWQSqCnagFpKYDC7NVC3xa8Amoz8SeAmiX+RG0n/kRdIf5EKRB/4tvyrUrZrY2eZvOlGSkvvPBCXh+9KikLtUWLFrHaaqvVeBsBSi2IlZaxSAPV9EgX+lCb/OhHP4qBAwfmi/wUzLrrrrsq96UbWilQdeGFF8aoUaMqtxcumt5555382HTTTXMZakEAVhTBVkqp/H+rVq1yIDYtU7XffvvFlltumfcfdNBBla9TQLZJkyb5/JuuyyZNmrTUeyWCV0BtJf4EULPEn6jtxJ+oC8SfKAXiT3xbzlSUZRDryiuvzEGsm2++OZeiTAGrglRaMn35b7TRRlV+wQPwzYNYDzzwQM7wTxYtfwrFVAg47bnnnnHVVVfl4MCdd94Zd9xxR96+0047Rb9+/fLrk046Kc9GKSwF8Nprr+Vj05IsqRR1GjMIArAiCbZSCtJ5csGCBblU+iWXXJLL+6frs3QO3WabbfIxqX82atQoP6+66qo5kDV58uQ843XRMUSaFXvdddflma2CV0BtJP4EULPEn6itxJ+oS8SfKAXiT3wb/y8dFMq0rO+ZZ54ZN954Y4wePTo22GCDHMh6880380k1le1r2rRpsZsKUBIKNwQWLXkKxZQujNKFVFpSJZWl/vDDD/P3f1pe5dZbb8399Oijj45jjz02H5sCBik4kGaupAoB6WIqzVAZMGBA7LHHHvk99W9WdH9Nwda0FFAaw6YAatp+zDHHVAZb00yoFGxNFS/SttatW+dg63333bdYsBVq0pLnxtSHk3TOTYHXWbNm5cdbb72VS/0Xbgak57/97W/5Gm2XXXbJM14LAax0/JNPPpn3//a3vxW8Amot8SeAmiX+RG0j/kRdIv5EXSb+RHWpVyENnzKWSvGdc8458cYbb+Rs6l69euWBaZ8+fWK99dYrdvMAgBUorWt++OGHx5prrpnXPu/QoUP885//jIcffjhfbKWAQApiJU899VQu1fvqq6/mi6rOnTvntdHTY9EAA9REsDUFpZLmzZvHT37yk8p+etttt+Vga1JVsDUFuxLBVmq6/6YAanq8//77ud+m2aiFZIFnnnkmTj755Hwz4LzzzsuzA9PvjB8/Pt9QePbZZ+Omm26KH/7wh5Xvm/rw22+/nWcIpnM3QG0n/gQA5Uv8ibpA/Im6TPyJ6iSBirKXSu6l8n1pUJqe09qnAEBp++9//xv9+/fPM/9TWeqdd965ct+f//znOOGEE/IFUjqmEBxI5XvnzZuXL6zSTJT0SASvWNEEW6mLCn0tBZrSrNQ0Wy8lDSSpD6fga5rxl6QA6yuvvBJbbbVVbLLJJnmmagpspb5/1llnVfZvgLpM/AkAyo/4E3WJ+BN1kfgT1U0CFUTExIkT80n1/2PvPsCkLK/+AZ+l2HvvXTEq9q6xp6oxakzRWNM00XQ1pn+JnybqZ0wsicYSe++994KKgh3FhiiKICggsGXmf53XzP4XWHCBZd8t931dc83u7JQzZVffw+85zzHHHBNrrrlm2eUAAHNYrkTZY489igOlXGFSO9hKecA1cODAOPjgg4vxvjmSOkep166TP9cEoKNottIV1VaZZtMqm6/LLrts8dndcsst45577ombb765+GxneCBX/eX1zj777KL5+uGHHxZ/e1dbbbXitvvss09xnz6/QHeg/wQAPYv+E12F/hNdkf4Tc0KfOXKv0MXkuPQzzzyz+T/uAED3lgdOEyZMaN4LPdUOjPIgaZNNNikaAieccEJcfPHFxWXf//73p9gbHTrqs/r8888XI6drzatas3WrrbaK8847r2i2nnbaacXl2WzN/6fNz3at2Vrjc0tHyeZVNqL+8pe/FCtXjzzyyNh+++2Lny2++OLx7LPPFk3ZzTffvLhsnXXWiT/84Q8xZsyYYnT68ssvH4sttlgst9xyxc81r4DuQv8JAHoW/Se6Cv0nuiL9J+YEnwD4L80rAOi+ph66uvDCCxcHR3kA9fTTT09z4JVy9Uk2AUaMGBEnn3xyvPjiix1aM8yo2VprTtWarXm9bLaeddZZzddpeQ4dbfz48UWjaptttmluXtVW+uXf3uOPP74Y7Z/fDx06tPi7nMGCL3zhC8Xo/1rzKv9++xwD3Yn+EwB0X/pPdFX6T3RV+k+0N58CAAC6rdrqp1pTqib3N//Od75TjFK/9NJL45133pmm2ZVNg9wn/a9//Wv87ne/i8985jMdXD09kWYr3Wmbqmysbrrpps3Nq3POOSduuumm+P3vfx977rln3HnnnXHSSSfFf/7zn+nez9R/vwEAADob/Se6Gv0nugv9J9qbLfwAAOiWaiN3hw0bFtdff3289957RTPgpz/9abHyP/dC32GHHeKGG24oDv733Xff6N+/f3Gbl19+ubi8qakpPv/5z8e88847xX1Ce6t9tqbXbD322GOLZuvSSy89xcqovH6t2Zpj/nPVlWYrHS3/Vubf0XHjxsWCCy5YXFY7f/jhh2PVVVctxv3ffPPNxaj0b33rW8XP+vXrV5z7uwoAAHRV+k90JfpPdGX6T3QEASoAALptMyBXTWXDquUKv5deeqnYFz0PqLIxkAde1113XTz11FOx4YYbFk2uxx57rGhi/eY3v2luXiUHWcwJmq10RS0/Y/m5HDx4cPzf//1fnH766UXzap111om11167aFrl5zTHqf/pT3+Kr3/96833kZen1VdfvbTnAQAAMKv0n+hK9J/oivSf6GgCVAAAdCu1/cpzXO8hhxwSyy67bPz85z+PrbbaKk455ZRiNcrRRx9djEbfeOON48gjj4wtttgizj333KJ5kHIF1Z///OfYZ599mu/TGF/mBM1WuprHH388Nttss+IzVhv5nyv/jjnmmKKRlc2r+vr6mGuuuYpVqccdd1zRvMq/py2bV0OHDi2ar4suumisu+66JT4jAACAmaf/RFei/0RXo/9EWeqqU29yCgAAXdyoUaPiiCOOiMmTJxdNge222664PPc5/9vf/lZcnk2rE088MZZaaqniZx9++GGMHTu2+HqhhRYqDqqSlVTMKbXGaDZbDzjggKLZuvvuu0/RbN16662LZuuSSy4Zr776ajzwwANFs/X9999vbrbmikDNVjrCoYceWqz0+93vfhdf+tKXmj9r+Xdy1113LUb859/Zmg8++CAuueSSuOiii4rG1vbbb1+sZn377bfjpptuiieeeKJovu6///4lPisAAIBZo/9EV6D/RFej/0SZBKgAAOgWWjaa8gDroIMOKg62fvCDHxSXZZMgx/umhoaGYhXLtttuW4z0XW655Vq9T80A5jTNVrqKjz76KM4555yiGZV/Mw877LDmJtbHH38ce+65ZyyxxBJx8cUXF39jc/x/7TN+1113xXnnnRdvvvlm8/3lfeTK1v3226/43ucXAADoCvSf6Ir0n+gq9J8omy38AADo8moHPrlCatKkScXqkokTJ8aWW27ZvAolx6Pn6Ol///vfsdZaa8Uee+wRDz30UPzhD3+I733ve8VliyyyyBT3q3nFnNDyQD0/qzkqPZutteZVNlsffPDB2HTTTe8IZqMAAQAASURBVItGwIABA+LXv/51c7M1R6fnqbWtA2BOyWZprlSdf/7545///GecccYZxeWf+9znYr755os+ffrEPPPMU1yWzasc+Z8j1bOp9bWvfa1odt15550xYcKEWGWVVYoVr/l3N2leAQAAXYH+E12J/hNdkf4TZfMJAQCgy8sDn2eeeSa++tWvFvud1zz//PPFeTYDLrjggvjRj35UNAXyQCwPpmo/y4Oy3A8dOrLZmp/PGTVbc4XVaaedVhzo15qtuXK1tvqvJc1WOsLiiy8ee++9d/HZzM9uNrJydV82q3JEeq7wu+qqq4rP9jvvvNP8mc/mVjZds5F14IEHFqPUa80rzVcAAKCr0H+iq9B/oivTf6JMJlABANBl1VaY1NfXF42rXFWS43hzJdXJJ58cm2yySYwcOTKOP/74YpXKIYcc0nzbbBQstthiRVMrV/5lYws6qtman9P111+/eXx0HvBvsMEGzc3WX/ziF82fyWy2nnvuucXP8pQjrH1eKbuJlbKBdeqppxaj/nP19fDhw+O3v/1t8bMFFlggNtpoo2IF4Gc/+9niHw7yb/QKK6wwxf1pvgIAAJ2d/hNdjf4TXZ3+E2URoAIAoMvK5lU2AwYNGlSM8N1ll13iy1/+cvGzz3/+88Wqk9tvvz3Gjx8fO+64Y/Mqk+eeey6efPLJ4jpf//rXm/dKN8aXOUWzle7WxNpzzz2Lr3OUep7GjBkTG264Yey0004xYsSIePjhh4u/zePGjYtrr722uO6ZZ545TQMLAACgs9N/oqvQf6I70X+iDAJUAAB0WdkMOPHEE+OJJ54ovq+NoU7ZLEh5INXY2Ng8zvell16KSy+9ND7++OPYdtttm5tXSfOKOUWzla6q9lnLVX75NzdX7OXqviWXXLLYtiK/P/vss4tG1TLLLBPf//73i9t99NFHxarA/PzmlgHZfM3R6QAAAF2N/hNdhf4TXZX+E52FABUAAF3WXHPNFX/+85+L02OPPVaMl87VJ2ussUbzWN4c3Vsb8/vAAw8UDa1cafWrX/2qaCJAR9BspSs3r1555ZWiSTV48OBYeumli0ZUrlJdaqmlYvfddy+uc9ZZZ8WAAQPipptuii9+8YvFyPQ81Rq1U98nAABAV6H/RFeh/0RXpP9EZ1JXrVarZRcBAACzY9iwYXHMMcfEwIED45vf/Gb88Ic/LA6sUv7v7n333VeMps4VKssvv3x8+9vfLlauJAdTdJQ33nijudm68cYbxx/+8Iei2VqTq6T23Xff+PDDD2ODDTaYotl60EEHlVo7PU/tb2OuXM1Vfbmib+GFFy5W9eUpL/vZz35WXPe9996LG264oRilniPSDzvssPjSl75U/EOCv7EAAEB3of9EV6D/RFei/0RnI0AFAEC38NZbb8VRRx0VTz/9dNGgyoOrWhMr5cHXxIkTiwOpHP2bHFjR0TRb6UqGDBkSBx54YCy77LLF+XbbbRdDhw6NH/zgB8XY//wM/+IXv2huYl1//fXx73//OxZbbLGiiVX77AIAAHQX+k90BfpPdCX6T3QmtvADAKBbWHHFFeOEE06II488Mi666KLispZNrNo439r6gTzXDKCjrbTSSvGXv/ylaLZedtllRROg9jnN1VI77rhjbLLJJpqtlG7ChAnxr3/9KxZccMH4yU9+EjvssEPzPwbMN998RZM1x6rn5zJXAuZo9T322KP4rJ5yyilllw8AADBH6D/RFeg/0VXoP9HZ+AsIAEC3amKdeOKJseGGGxZNrHPOOacYQd1SNglankNZzdba5/Sss86a4nOajdZsBiyxxBLF95qtzEl//OMfi/H9Uxs/fnwMGjQoNttss+bmVW4DkKPS+/XrF7/+9a+Lz2qu+PvrX/9a/Dw/t3vvvXdceeWVVv8BAADdlv4TXYH+E52J/hNdhb+CAAB0yybWpptuGueff3784x//KFZTQWei2UpncPTRRxcrUbMZ9eabb07xs9GjR8eIESOaP3+TJk0qRqTfcccdseeeexbj03OUerriiivipz/9aXEfuWq1f//+xeW5GhAAAKA70n+iK9B/ojPQf6IrEaACAKBbNgeOP/74WHPNNYvTvPPOW3ZJMA3NVsp08MEHx4MPPhirr756DB48OH7+859P0cRaZpllYtVVV20e4z9gwIBiteoPf/jD2H333YvLVl555aJJlU2u2267rVgx2JKVqwAAQHem/0RXoP9EmfSf6GrqqrVNeAEAoJvJEcALLLBA8XX+b6+VVHRGb731VtEU+NrXvhYHHnhg2eXQAxx33HFxwQUXxG9+85v47Gc/G2eeeWZce+21sfbaa8cpp5wSq6yySnG9t99+O+aee+7i7+jXv/71WHjhheOMM84ovs+/p7ny7//+7/+K5mvaYostSn5mAAAAHU//ia5A/4mOpv9EVySOBwBAt6V5RVdZCXjppZc2N6+scWFOyhV72Zjq27dvsUI6m1V777130ch66aWXplgJuNxyy8USSyxRjFJ/7bXXYqWVVooFF1yw+Hs6ZMiQuOmmm4rL1l133ebmlbHpAABAT6P/RFeg/0RH0n+iqxKgAgCg29O8orPTbKWj5FjzxRdfPBoaGuI///lP3HjjjXHMMccUjdQvfvGL8cILL8TPfvazoolV+yz27t27uN3IkSOLnz/66KPFOPVnn3029ttvv+bPb+3+AQAAeiLH83R2+k90FP0nuqo+ZRcAAADAJzSvmJNqDdIjjzwyxo4dG3fccUc88MADseqqq8YhhxwS8803X9Gsuvnmm4sm1t/+9rdYeeWVY7HFFosvfOELccstt8Rjjz1WNKmampril7/8ZXz1q1+d4r4BAACAzs3xO3OS/hNdmQAVAAAA9ADZYMpGU45B32uvvYoGVo48n3feeYvzbFT96le/Kq5ba2KdfPLJxZj17373u9GvX7+4++67i4ZXjlz/0pe+VFw3b2vlHwAAAAD6T3RldVUbnAIAAECPMXHixPja174W88wzT9F4ylHo2ZDK5tXqq68eo0ePjuOOO65oYq2zzjrNTaxUX18fffv2bV7tp3kFAAAAwNT0n+iKBKgAAACghxk2bFh8+OGHscIKKxSNq/vvvz+23Xbb+PWvfx2rrbbaFE2s/v37xwknnFCs/AMAAACAttB/oqsRoAIAAIAe7P333y8aVw8++OA0Tay//vWvccMNN8TKK68cV111VTF+HQAAAABmhv4TXYEAFQAAAPRw2aw65phj4oEHHpiiiTVq1Kj43e9+F5tttlkccsghZZcJAAAAQBel/0RnJ0AFAAAATNHE2n777eOoo46K1VdfPSZNmhTzzDNPcZ1sIdTV1ZVdKgAAAABdkP4TnZkAFQAAANDcxPrNb34T9913X2y00UZx5plnxgILLBC9evXSvAIAAABgtuk/0Vn1KrsAAAAAoHNYfPHF49hjj42NN944dt5551hooYWK5lXSvAIAAABgduk/0VmZQAUAAABMwdh0AAAAAOYk/Sc6GwEqAAAAoFWaVwAAAADMSfpPdBYCVAAAAAAAAAAAQI/1yUaSAAAAAAAAAAAAPZAAFQAAAAAAAAAA0GMJUAEAAAAAAAAAAD2WABUAAAAAAAAAANBjCVABAAAAAAAAAAA9lgAVAAAAAAAAAADQYwlQAQAAAAAAAAAAPZYAFQAAAAAAAAAA0GMJUAEAAAAAAAAAAD2WABUAAAAAAAAAANBjCVABAAAAAAAAAAA9lgAVAAAAAAAAAADQYwlQAQAAAAAAAAAAPZYAFQAAAAAAAAAA0GMJUAEAAAAAAAAAAD2WABUAAAAAAAAAANBjCVABAAAAAAAAAAA9lgAVAAAAAAAAAADQYwlQAQAAAAAAAAAAPZYAFQAAAAAAAAAA0GMJUAEAAAAAAAAAAD2WABUAAAAAAAAAANBjCVABAAAAAAAAAAA9lgAVAAAAAAAAAADQYwlQAUAX9atf/Sr69esX+++/f9mldBr33ntv/OIXv4idd945Nthgg9hoo41il112KS674447orsaMGBA8VnIU2Nj4zQ/f/fdd2P8+PFztIaddtqpuYaWp8985jOx4YYbxvbbbx+HHHJIXHbZZTFp0qTp3k/tdo888ki71PXKK6/M9G1OPfXUooZvfetbrT7HK6+8MjpKtVqNV199dYrLhg8f3vw6vfnmmx1WCwAAAJ3bNddc0+qx+aedOntv6eWXX4711lsvfvnLX37qda+77rr4xje+UfSE8rTXXnvFxRdfHJVKpd16HdM7vfjiizPsb9Ten+222y66q097jtnjyF5HS/n5y9v87W9/a7c6ar2d2un5559v0+1222235tu0Zz2zYlb6ebXPbD5/AGDm9ZmF2wAAdCoZyPnxj38c999/f/H9kksuGWuuuWbRkMmwyU033VScNtlkk/jnP/8ZCy+8cPQE9fX1xfM999xz44YbbogFFlhgjj/msssuW5xq8j34+OOPY8SIEfHwww8Xp/POOy/+/ve/x9prrz3H6hg5cmT89a9/jSeffLL5c9HVPPPMM/HnP/85Vl555TjppJPKLgcAAIBObvHFF4+NN954msvzmDxPc801VxFEmtpaa60VndWYMWPi5z//eTQ0NHzqdfMY+qKLLiq+Xm211aJ3795FcCZP99xzT/zrX/+Kvn37znavY3rmm2++mb7vniKDQCeffHJcfvnlMXjw4OjTp2P/efK2226Ldddd91MX4c3KQrzu0M8DAD4hQAUAdHl/+MMfipBMNsdOOOGE6N+//xQBnoceeqiY2DVw4MD40Y9+1NxM6y7WX3/9uOWWW4qvWzagMkR0xhlndGgte++9dxxxxBHTXJ7vw2OPPRZ//OMf44033ojvfve7cemll8aKK644xfVqz2O55ZabrTryPc/Q3NJLLz3Tt91vv/3iy1/+csw777xRpksuuaQIUWWAqqV8Tu31OgEAANB95PTnPE0tp9GcdtppxYKzPBbvKt5555047LDD2hRqyclH2e9ZcMEFi6DUpptuWlz+3HPPxaGHHlr0CU4//fT46U9/2m69jhnpqcftn/vc54qp8FMH1TLElpPAOlr2yXJaewaockJ9W96zspXRzwMAPmELPwCgS3v77beL1Vgpm4Etw1Oprq4uPvvZzzaP3X7iiSfi0Ucfje4kgz6rr756ceqs8n3YaqutimbZMsssE++//3786U9/muZ6tedRZnhpscUWK2rorE3ObELWXqdZWTkLAAAAnV2GWfbcc8946aWXPvW6TU1NxcSelNv81cJTKSdunXjiicXX559/fowbNy46Qmfob5QhA2z5vFdaaaXoDD7zmc/EQgstFMOGDYsXXnjhUz9z2WfpzBPZAIA5S4AKAOjSsvlRqVSKcdYzChBtvvnmscoqqxRf56hwyrHEEksU08DSAw88UExYAgAAAKj55je/GT/72c9i7Nix8YUvfKE4zciTTz5ZBGQy/LLHHntM8/Nc0JXTnT/++OO4++6752DldDb5mdhll12Kr3MK1fS8+OKLxcT0/KwsssgiHVghANCZCFABQDf03nvvxbHHHls0mHKl3UYbbVRsSZaXDR8+vNXb5HZnBx98cBE0yttkw+A73/lOMd0pA0pTj0Xv169fbLfddq3eVz5G/jxPrT3eW2+9VWzllmO9c2JUrgzcd99948orryxWDc6M2gSe8ePHFw2zGTnrrLPi9ttvj/3337/Vn991113x/e9/v3ju+Rrk5Koc751jxqeuf+211y6e34xWr+Xrn9fJ5zU7zz8DR3k/OWb/8ssvjx122KG43ec///kYMGBAcaq93jmWPOVz3HnnnZvvI6+bP8/r/vznPy++zhH205Pve17nS1/6UrS3fF0WXXTR5te8pdrzeOSRR2b5M523P+aYY5pvV7vPmp122qn4Plex5u0322yz4v722muvojmbWxvkz7/1rW9N9zk8+OCD8e1vf7u4Xb5/BxxwwHRHvU/vOdXke5U/z8dNtffz2muvLb6/8cYbi+9rn9uWv19vvvnmNPf3+uuvF9ta5ucrX6tNNtkkvv71r8d//vOfmDRp0gw/X3nf+drl73beNs9/85vfTPfvBgAAAN1H9ky++93vxpZbblkcE2677bbF1nXTm+RdOzb96KOP4rrrrismRuX2bXm77Dk8/vjjs1TH008/Hcsuu2z83//9X/zjH/+I+eabb4bXHzRoUHG+zjrrTHfi08Ybb1ycz2pNM+vTegGtyanpP/7xj4vXL1//rbfeOn74wx/OcJL6zPTzZhRYy1prU7xaGjhwYPNzuffee6f5+QUXXFD87Ac/+MF0e4bZh8m+Sc2666473Z7hyy+/XPStttlmm6L3lbf9n//5n2KS+az64he/+KkBqlpPZ9ddd53hfWXfLvt32aPJflK+5tmnO/LII6fpH9ZkLyZ7ktl3yj5SPq8dd9yx6Dnm69vSjPp5sysXlOYWltnvzPcg689+UdaWfdXZqbtlfymnwLWm9tnI97Qzff4BoCUBKgDoZnLFXTasLrzwwhg5cmSsuuqqscIKKxShnbwsV+JNHfo5/vjji4PfbOrkJKc8mO3Tp0889NBDRQOgNjGoPdxxxx2x2267FWGNrG+11VYrtkzLA+/f/va3xUHuhAkT2nx/2QCrNdIy/JRb9Q0dOrTV6+Zqw5xCNf/8809xeYaO8uD+Rz/6Udx///3FdnP5GtTX1xcH4vvss09cdNFFzddfccUViwPzVNs+sLXmXa5cy8ZdyxDS7Dz/fKzf//73Ua1Wi+eRzaMcRd6aHDeejYOabIzka5Wj1Pfee+/isnx/P/jgg1Zvn43PlE2S9tarV6/YcMMN29y4nNnPdD7P2rSxDNjl97VGaUvZgMvbL7XUUkWga6655mrTKsN8bbKhnNOzspb8/GUjK1fH1oJbsyPfo6x38cUXL77Pz0d+35YR8vkZ+cpXvhKXXXZZ8VrlbXLqVzbJ8vc8P8vvvvtuq7fN1zBfy3x++bnN35cMoF111VXF7UaMGDHbzw0AAIDOp6GhIQ4//PAivJALhrInlAvHsl+SfYyDDjqoOKacngw5HX300UUfZI011ihul2GbDM2cc845M11PHq9nmCv7J21RW1yU/ZrpWX755YvzrLEzOumkk4qFWvm8sx+Vx/PZP8mJWfn658+n1l79vFqg5eGHH57mZy0DYI899tg0P7/vvvuK89qUp9Zkf6plT6PWp5l77rmneazsWeVrkL2QpZdeOt5555245JJLir7QqFGjYlZkECf7Pfk5yUlTrbn11luLemb0PDJktN9++xX9u+xnZf8mX/PcFjL7MV/72teKxWst5XuZ71+GAXMh3zLLLBNrrrlmcV/Zc8z7a7nwckb9vNmRv8e5eDOfZ/6+Z935GmdvK2vLEF3LENXM1t2VP/8A0JIAFQB0MxkgGj16dDGpJw8Yc3pNnrJxlauF8kA3D35rXn311eLgPpsEuWrsnnvuiauvvrpomP31r38tDlavv/765tV8syMPuPPAdvLkyXHYYYcVoZO87zyIz2k7GXrJVUU5namtFlpooebQSgaP/vWvfxWrxXKlWz5WBpU+rTn297//vXiNshlw9tlnFwfe+RrkeTZFMlCVk4paNpJqwaKbb7651RVN+bxqK8XyIL49nv9TTz1VNBPyPcp6s4mQz781v/vd74rn1fJzka9FrsbM1VjLLbdc0TBpbWpShmayjt69e7c6+r49ZAAqZSOsvT/T+TxrKx+zGZTf56m11zPvO9/DfE3POOOMNtWek85ydWGG7XL1XG5F+L//+79Fkya/z8DR7Mj3KOutrdbMVZf5fb6nM5IhqfxdyEZTriDMz2vWk82nDEXl5ytXcubqvdqkspauuOKKotGdn4m8Tb4uGcTKwGEG7c4999zZel4AAAB0Tn/5y1/izjvvLBYIZS8hj73z2DaPK3MhVx7vZu9o6nBITS5O2n333YteUvZT8nY5uSoXgJ144onF8ffMyDDH1OGaGaktDssewPTUFkyNGTMmOps89v73v/9d9Hjy9cpwTh7P5+uZfYt8X/LnLQMr7dnPq008yutOPYmoZS9s6gBV9uGy1nys6U0VqgXssr/W8vOSfY4ll1xyiutlmCenfNf6Xjm1/LzzzisWvOUiwvx6VuTiutpzbG0KVT5uLtLbfvvtm3t4rcnFlzkdLetu+ZpnDy17LdkfzFBP9vlq8ud5m+zJ5PPJAFO+t/k7liGk/B3J9yt7hZ/Wz5tVWdef/vSnoheUwaKW/aKsL39vXnnllSKoNqt1d+XPPwC0JEAFAN1MhnRSTqFpOWkpp9DkVlw5pjlDEjVDhgwpznOSzhZbbDHFfX31q18ttjHLFX8ZyphduUVZ3k+GgHJk9DzzzNP8s2wEZEMlQzvZJJneFKnWZFgkx4zXVhPWQkC5IirDSBm8ye3e8uA7D/BbytVrtQZgBmjy9anJWnJ0dq50ytudcsopzT/L+8zXN6f8TN1AahlMajnBaXaffzYFMoCV1/m0xuCMZBMhV+61DHq1lJdlcyVfi5zONCfUPpu5ZV57f6bbKpty+bmoaevrudJKKxXvVW0bwpSrDL/3ve8VX+d48zJkTdkMy1Hnf/7zn6do+uWksgwH5mcuR8pnOKq1huJpp51W/C2oqW1tmGa24Q0AAEDnl1OKM8CQ8liytt1Zyv5DhiV+8pOfFN/nMWNrU7Nza68MLdSOQ/N2OdEq+0nZTzn99NPn6HOYOHFicT6j0FWtB9Pa1vafJp93bRu71k4zCg99muwTZb8oHXfccUXvoyYX9GXfIkMvKa9XWxDVnv281VdfvZhCnf2sllvF5WSlDBflz7Nnko/ZMoCWCw/zNjllvDZFe3ZknyWfY06eqslFgPl8UmvbxrVVbTp8awGqWg+vZY9oahnEqW1hmP2Xlq95Brzyd+Qb3/hG8X3LaUm1nlYuksvFjDX5Wc0JSdnD+dznPtem/tisyoBhbQvE7KHW+oq1CVc5UT0nb7Wcyt5RdXeGzz8AtCRABQDdTDY8agfruUKoZWMoG1oZomi5zVjt+nlgnM2uqac15UrDnO5T27JuVuUBa07qSS0PhlvKplOOiM/mWq0p0VbZrMrVkjklJ0NPUwdqcmVSPu+c/NTy4Dlryu/z+tk0aE1tClM2jXISUsotzmqNlQw8tZSTibKBkIGu2kF8ezz/DFnVtiucXRmKyUZEPqfXXnutw7bvq8kGW8oa2vsz3VabbLJJzIoMS7XWlM0mVMqR8FO/pnPaxx9/3NzkzC0SWpNbGdRG0ef0sqnliPipV3+m3Gay1jgFAACge8leRYYS8nhwegGSXAiWi27yuDCnw0wtj0NbhjJaTpJKebzaWvCqvbT22NPTlj7E1JZddtnmbedaO7Xccm1m5ZSfXNyXC8ZqU5Kmln2kXAyXiwVfeOGFOdLPa20bv3zfmpqaii3wMiSV/aqW739t+77p1T2z8nFamwCV/bKWk8ZmRQaxMiCUr1MtHJTyOeV0pey37bjjjtO9fa1Pt/766xfveWsOOeSQ5r5QTgBPOcEp5US3nPDU8jlk8Cq3uMypVS1DY+0tg2kLL7zwFFO0Wk7Tz35Whhxrfa2OrLuzfP4BoKZP81cAQLeQK56ywfH666/Hj370o+KgNqfI5DZgOYo6AzotZWgox6xnCCjDR3nK4E82FnI1UU73mdH46rbKA9lacOl//ud/irpaU9vSbVYCKNkwy+eZp5QH9/laZEMnV5Pl42fDI1cs5SSnlCOqaysuc3VSa1pOrcq6aqvq9t5772J8dI7m/sMf/tC8mrE21SmnPNUac+3x/FsLt8zOFnoZ7srpWVlvrjZLGajKsFk2lWbUOJpdtZHw09uCcHY+0201q6/n9Mam54q8BRdcsGgo5/tXCx51hBw1Xwulzahxmz/LyWz5Wk5tek2v2ue6tW3/AAAA6Npq/YecXJwhhdZkuCQnvWQoJI8np+4XZKikNbXgSx6vDh8+vPn79lZbbDaj7cRqi7FaTgNvq+z/5JaEc0KtL5WvUU77mlHPK0Mv+X7l693e/bwMUOUWeblFW03t6y233LIIBeU2adlHyqns2SvLBYSptlhrdk2vL1F7f2dlelhNbkP5+c9/Pq644ooiMFXrJeW07ewJ5rSiGX02ar8n01t8WQsd5WuePa/8PVlrrbVin332KUJIOWk++4G5lV7+ruX7lO/RZpttVtQ2J+VnJ4NTuT1gvmd5ykBV9gWzt7bDDjvEMsssM8VtOqruzvL5B4AaASoA6GbyYPaGG26IM888s5jIlJOQMnySp5NPPrk4eM+wT25fVpP7y2czJMNAgwcPjrfffrs4SM5TTtrJFUhHHXXUdEM/bdFyes1zzz03U9efVTlePEd05ym3zPv+979fNPty5dTPf/7zItxUe5xsbrRli7KPPvqo+esM8WQDMZsi2UTKlZoffvhhEdjK+66NGG+v5z+jUfSzIhuA2fjKZkO+PllzbfpUNiFm5/3+NBnSSjkGfk58pttiVpqmqeU2gq39LN+72vYBHaUWSEsZ4pqeWvOotZW/uZoYAACAnqV2PDmjY8lPO56sTbeZWssp2nNyqnFO2Ekz2k6stvVce2w1155qr0suupvZvlR79vNySncupsugVIbdcuFdbtGXwZUM2tS2ccs+Uq23ldvC5UT32rSi2TUn+1Ap+4MZoMpt/GoLCTNMlTJA1R6/J9kXyuvWfk/y9+byyy8vAj65oC1f35yilKec4pSfx+zJtZz+NCfk/efUpgzJ5fua/ctcEJqn7AfmAsUMStWCVB1Vd2f5/ANAjQAVAHRDuVXXscceW6wOyoZGjtd+9NFHi8BJBoi++93vFg2CHEGe8kA5tyXLU21qU94mVyTlweeFF15YXO+3v/3tdCcztdRaeKRl0ywPiGcUQmmrHCOe4+Bz1PNf/vKXafa8bymf69FHHx3f+c53ikZGNnmWWmqpYiu+lKvn/vGPf8x0DbnNXY6EzhBSBqjydc2D/hwRne/DnHz+sytX3uVnJN/jgQMHFuPYb7755uZw1ZySK0JrI7enN/Z8dj/Tc3q7vE9r/LQ2WWt6vy8zur+2avl5yhqm1xDOBtnU1wcAAKDnqh0fflrAqRZcaO14MvtAtRBTSy3vMxe5zSm1xVnZ35ie2s/aK+zTXmp9qZyoc80118zUbWe1n9eaDEpliCanlOfkqZzik6GZnPaToaFc3JbvcU4AGjlyZPP0qfbavq8jZN8wP4e1bfxyQV6GqTIAmM+3PX5Paj9v+XuSYaQf//jHxSlf09qiwNw+c/To0cVkqAyvZZ9uTj//POUkryeffDKeeOKJePDBB+P5558vFoP+4Ac/KBZW1qbpz2rdM9Mv7iyffwCoaX0eKwDQJeUBaq4Sy5VEKUevZ6MjwyW5OihDPnnwmwesucIoZZgoAym1UdS1qU050efuu+9u3tauti1dramSalvSTS0bKa0FYGq3y/HP05NbyA0ZMqTVFY1Ty/vL8FRue5cH+m3dsi1flzzATzlBquXI6Nbk65UH4LlNWoa2WsopU1lHNpfytczXuLUA0px4/rMrJzDtuuuuxdc52SkbJ7laM5tieZpTcuVaLTRUe/z2/EzPadPbXjKbSbX3reW2BLPy+zKzVlpppebR6TOacFb7Wa46BAAAgNr28y+++GKxRVZrst+RoZPpHU9Or6eSIZXaorLcXmtOqW0hmIu1pnfs/fTTTzdPE+9Man2pfH0bGxun2xvJyU95ndrzm5V+Xlu28UvZ48owSsot0WphlZz2k/Jn9957b7tu39cRsj/zuc99rvg6g1PZB8sFlnnZp03lrv2eZNhoRtPWa/2u2u9JBo0yrJQBn9rlORkpF2NmL3O99dab6fdpZuVnJmvLKU21fmAGxnIKV4aWcrp77fc1e5KzWnet/5Xb8bW1/9WZPv8AkASoAKAbyfBLTlI6+OCD49lnn231oLQ2crvWFMupSxn2+etf/zrN9bM5UmuUtAwO1VYV5jSbPKCeWoZxppYhl5zKlC644IJW68+A0r777htf+cpXikZGW+R102WXXdZ8kD89telKW2+9dfP45lxdlwf4ecD98MMPt3q7//znP7H//vvHHnvsMc1qqZxi9dnPfrY4gL/66quLSU65yizfh454/jOSYaNPW/2Vq7Rq71k2GGpTteaU/Lz87W9/K77OFWqftoXfrHymWz736T3v2ZGr8aYO0qXayrZ11lmneeR5y9+X1oJXGZibXoCqtuKvLc8hm9G1RuaMPl+51WTabrvtPvU+AQAA6P7y+DAX5GSQ5JZbbmn1OhdddFERbshpMbXeRku5ZVZrLr300uJ8xx13LLbUmlMyFJXH4dmzaS0wkYuyctFT9mZqAZrOYrPNNismPOWCrOlN4MnFYwceeGAREHn33XdnuZ/3aTJUk0GiDKvUFrLV7qfWT6vVk0Gi7In179+/3XpUHSFfw5SL8Gq9t09b3Ff7DNf6ONPbai77hyk/i7WFdTkJf7/99otrr712mutn/zCnwU/9PrX3a5UTo3Jq/ve///1WA4a197VlHbNS94z6X3m9Wk+qs37+ASAJUAFAN5IHqhnmSb/+9a+L1UU1GS65+OKLi+3O8kC8dr0M6+SBZa4eOvvss6dYJZSTnf71r381B41qNthgg6Khkgfxxx13XDH6OeVtzz///Ljiiitare+II44owko5gej444+fYspS1pUH8nkfuSpx9913b9NzzmBNjl/PFV4ZcsoQS22bsppcLZUrpM4666xildXPf/7z5p/lY+2zzz7F13l5y4P5fM2uvPLKOO2004rvs3GQzbap1QJHf//734vX5Itf/GLzCOo5/fxnpOW2gfletiYbXdnUydHWGQDL97U9Hntq2WjNz1iuAKttn9iWEdqz8plu+dzzs5Cr0tpTNgl/85vfNK8qzDqySZYN5fTTn/50iutvsskmxfl55503Rf0ZCGv5WZxabdz79N67qR1++OFF0ztXiuYY9ZbPO1cRfu973yu2T1x77bWLyWkAAACw7LLLFpNlUh5LtlzQlce7l1xySZx66qnF9z/84Q+LsMPUMoySPZHaBJnsbeTiqdtvv71YwJbHq3NS9rV+9KMfFV9nvyWPi1sewx999NHF19k3aq3+MmX/IvtB6X//93+L3kzLBWJ33XVXMVUnZYAkJ1DPaj/v02TPK7d4y23o8r3L0NvGG2/c/PNaKCW3SMv+V06sqi3+asvzbFlfWTIAuMQSSxT9mQzb5df5nNsS0qu9lrmlXW1CV8pQUgZ6av3Qo446qvl1ycWYKXuLGWRqKSc81QJ/Ld+n9n6tMiSZ/bVcpJi/C3lek72jWggp/xasueaas1x3rf+VE+lycV8t/JW9uezpZf+uM3/+ASB9ss8HANBt/OlPf4pvfOMbxUHpbrvtFiussELRHMqDxzFjxhTXyRHNa6yxRvF1jlzOwEc2tk488cQ488wzi9vkqr2cWJPNrzw4/dWvftX8GAsvvHCxEikPRjMM9OCDDxa3yRBOHoRnSCaDSO+9994UteWB9J///OfiwDcDJzk1KicQZZAoVwLmgXU2LnJrttqEqE+TW/FlMCWf06BBg+LYY4+Nv/zlL0U9Cy20UHz00UfN97344osXP1t33XWnuI88iM9ac/z4YYcdVoR7ll566eL51EZV5xSkqYMxLVehZR21BsT0JjjNief/aa9NhrHyeWQjMceN/+QnP5lm+lDWmw3GDATl86ytGJsV2eiorVJM2fTI55efpVrQLus4/fTTi9d4TnymU4bCMlSVgaEMtOV7mq/r7Dy3mnyNcgVeNohzAlaufsutJLNxc+SRR07TnMnPVP6OZHAsw2lZZ9aVo8dza8dcMZev29Rq2yjmysZ8Dnm7Wphves28bDZlMC2bdjfccEPx+cr39fXXXy+us9ZaaxX30R6fLwAAALqHY445puiL5GTq7BvkMXRO0clj+dpx97e//e1iYU5r8ljzjDPOKMJWeZybt8seSS5iy35DbfuzOSkXxz3++OPFtJrsWeViuzz2zTBH9luyFzKng1yzKl/XfM3yWD57VNmfy95Hvie1qdXZU8pj/ppZ6ee1RYaiMoCWgZQMTLWcHJbvbT7G8OHDZ3r7vnw/MiyTPYoM7OX95PPJRV5lbOOX09GyX5ULzGpbz32aE044IQ499NBiO8gDDjig6Lnl1nHZc8kgUt5PvictJ1rl9bJPliGkfJ/zdytP+XuV/braa15b3Dkz/by2yt+DDDjm70VOmcvf8/xsZN8sPyv5nuRC0OyZ1vpFs1J39sM23XTTImCV7+25555b9OFyIlV+nnJhaS2M2Vk//wAgQAUA3UwezObo9AyLZGgjDxpHjBhRhIfyAD4bXi1Xj6U8+M9wRh6o5sq8DKpkkysDHNlUyBV6LVc/tQysZMPhxRdfLJoFGVqpbUHX2ljmlGGRHPOck6ryQDwbWRk8yaDHDjvsEIccckhR68zILdwyjJQNgDxlkCqDT9nQybBXBkvyoD4bNPn91LIZ9M9//jNuvfXWYlz0c889VzynnACUq9AyYJTPqeUI7ZayuZDBmJx+tfLKKxfNgumZE89/RrJBkg2GfD4Z2Bk2bNg018nnlk2gHGs9u9v35WctTy1lEyaDYdkUy89Tfg5z0tWc/Ezn+5BN2nxfs7GTzy3P2yNAle9RBpqynqFDhxbvf7532fBp7b3P36OsP2vJMfjZOMpGdN5Prt7NlXKtySZeXjdX9eVnOZtNLVfhTe82OVUsA3q1z1f+7ubrk+Gz3LJxTm6bAAAAQNeTx7W50Cn7IrnAp9YXWXLJJYvtvXJR04ym9ORUm1wYlj2iIUOGFMfr2Yf57ne/W/Q7OkL2VjJIkfVmfyvryBBFTtTJaTq5BVhObe6MsvZccJcLtrK/lX2tfP3z+D17SHk8n+/B1IuhZqWf92l23nnnYiHb1Nv31dRe39q0qrbKHlv2qHJCfPY6ss+Rp44OUKXczq62vWR+3VYZbMreXy6qy0Vr+RnLxXK5QDD7RDm5fp111pniNhmqyt+tfLz8/crJVzklPBd95paJ+dnMnuLUk7za0s+bGfle5ZT9XIQ6cODA4j7z9yH7U1lH9qiyvzo7dWffNHtl+Rg333xz8TchA035OcrFhfn6tRag6kyffwCoq5a52TAAAKXLhk+GqLIxmmPY27ryDgAAAOi5ciFdysBEBmsAAKAra32MAgAAPUauQKtNxxKeAgAAAAAAoKfpnPNKAQCYo1544YViO8P77ruvGMedY7Bz+0UAAAAAAADoaQSoAAB6oJ/97GfxxhtvTPH90ksvXWpNAAAAAAAAUAYBKgCAHmjjjTeOd955JxZbbLHYb7/94vvf/37ZJQEAAAAAAEAp6qrVarWchwYAAAAAAAAAAChXr5IfHwAAAAAAAAAAoDQCVAAAAAAAAAAAQI8lQAUAAAAAAAAAAPRYAlQAAAAAAAAAAECPJUAFAAAAAAAAAAD0WAJUAAAAAAAAAABAjyVABQAAAAAAAAAA9FgCVAAAAAAAAAAAQI8lQAUAAAAAAAAAAPRYAlQAAAAAAAAAAECPJUAFAAAAAAAAAAD0WAJUAAAAAAAAAABAjyVABQAAAAAAAAAA9FgCVAAAAAAAAAAAQI8lQAUAAAAAAAAAAPRYAlQAAAAAAAAAAECPJUAFAAAAAAAAAAD0WAJUAAAAAAAAAABAjyVABQAAAAAAAAAA9FgCVAAAAAAAAAAAQI8lQAUAAAAAAAAAAPRYAlQAAAAAAAAAAECPJUAFAAAAAAAAAAD0WAJUAAAAAAAAAABAjyVABQAAAAAAAAAA9FgCVAAAAAAAAAAAQI8lQAUAAAAAAAAAAPRYAlQAAAAAAAAAAECPJUAFAAAAAAAAAAD0WAJUAAAAAAAAAABAjyVABQAAAAAAAAAA9FgCVAAAAAAAAAAAQI8lQAUAAAAAAAAAAPRYAlQAAAAAAAAAAECPJUAFAAAAAAAAAAD0WAJUAAAAAAAAAABAjyVABQAAAAAAAAAA9FgCVAAAAAAAAAAAQI8lQAUAAAAAAAAAAPRYfcouAAAAAABof5Whw6L+jMvKLgO6nHlOPqrsEgAAAOhgJlABAAAAAAAAAAA9lgAVAAAAAAAAAADQYwlQAQAAAAAAAAAAPZYAFQAAAAAAAAAA0GMJUAEAAAAAAAAAAD2WABUAAAAAAAAAANBjCVABAAAAAAAAAAA9lgAVAAAAAAAAAADQYwlQAQAAAAAAAAAAPZYAFQAAAAAAAAAA0GMJUAEAAAAAAAAAAD2WABUAAAAAAAAAANBjCVABAAAAAAAAAAA9lgAVAAAAAAAAAADQYwlQAQAAAAAAAAAAPZYAFQAAAAAAAAAA0GMJUAEAAAAAAAAAAD2WABUAAAAAAAAAANBjCVABAAAAAAAAAAA9lgAVAAAAAKX51a9+Ff369YtHHnlkjj/W/vvvXzzWm2++OccfCwAAAICuo0/ZBQAAAABAR9hzzz1j8803j4UXXrjsUgAAAADoRASoAAAAAOgR9tprr7JLAAAAAKATsoUfAAAAAAAAAADQYwlQAQAAANCpjBgxIn7/+9/HDjvsEOutt15ss8028Ytf/CJeeeWVaa5bqVTi/PPPj9122y022GCD4jannHJKPProo9GvX7849dRTm6+7//77F5e9+eabxffDhw8vvv/Tn/4UAwcOjIMOOig23njj2GijjeKAAw6IAQMGtKnefIy8n7yP008/vagha9ljjz3i8ssvn+K63/3ud4vrPvHEE9Pcz/jx42PDDTeMr371q7PwqgEAAAAwqwSoAAAAAOg0Xnzxxebg0UorrRTf/va3o3///nHLLbfE1772tXjwwQenuP6RRx4Zxx13XEyePDn22Wef2HLLLeOcc84pAlht9dRTT8WBBx4YjY2N8Y1vfCO23nrrIjz1ne98J5555pk238/xxx8f//rXv2KrrbYqtgscM2ZMUcf//M//NF9n7733Ls6vu+66aW5/6623xsSJE201CAAAANDB+nT0AwIAAABAa3KaVAaiPvzwwyIUVQsbpQceeCB+8IMfxC9/+cu4++67Y4EFFijOb7rppmJq1Nlnnx3zzz9/cd1vfetbxWlmQltHH310HHLIIc2X/eMf/yimSV1xxRWx/vrrt+l+Xnrppbjkkkuar3/EEUfEfvvtV1y26667xqabbho777xzLLLIInH77bcX4aq55567+fbXXntt9O3bN3bfffc21w4AAADA7DOBCgAAAIBOYdCgQcU2fdtuu+0U4am03XbbFVvbjR07tggfpauvvro4z9BVLTyVatvntdWCCy5YbNnX0i677NK8zV9b7bnnnlOErRZbbLEiRNVy4tRcc81VBKTGjRtXBMBqhg0bVmwBuNNOO8Wiiy7a5scEAAAAYPYJUAEAAADQKbzwwgvF+RZbbNHqz3OCU21iVMrt9Xr37t3qhKjaddsitwrs06fPNKGqVF9f3+b7ya37prbhhhtO8dxSbkWYrr/++immTyXb9wEAAAB0PAEqAAAAADqFnMqUcnu+1iy99NLF+ccff1yc5zSqnNY0dfip5XXbouU2ejV1dXXFebVabfP9LLPMMtNctuSSSxbnH330UfNla6+9dqy77rrx0EMPxejRo4vHyDBVXvezn/1smx8PAAAAgPYhQAUAAABAp1ALTr333nut/rwWQlpkkUWK89y2b8KECa2GnPLyjjZp0qTphsJyO7+WcovCxsbGuO222+Kpp56Kt99+u9h2MCdqAQAAANCxBKgAAAAA6BTWWWed4vyJJ55o9eePPfZYcb7WWmsV5+utt15MnDgxXnrppWmuO2jQoOhogwcPnuaygQMHFucbbLDBFJfvtttuxeSr22+/Pe6+++7iMtv3AQAAAJRDgAoAAACATmGjjTaK1VZbrQgdXX755VP87JFHHolrrrkmFl544dh5552Ly/bZZ5/i/KSTTiqCVDUZqLriiis6uPqICy64IN54443m70eNGhWnnHJKMVUqJ061lM9jl112iSeffDJuueWWImC1+uqrd3jNAAAAAET0KbsAAAAAAEi9evUqwlAHHXRQ/P73vy+CRTmVKkNJ9913XzGx6cQTT4wFF1ywuP4Xv/jF+PznPx933HFHsf3ddtttF2PHjo0777wz5ptvvub7bE//+c9/im359txzz1hhhRWm+FlDQ0MRlMqa+vbtG/fcc0+8//778fOf/zzWXnvtae4rr3vzzTfHiBEj4tBDD23XOgEAAABoOwEqAAAAADqNddddN6699tr45z//GQ8++GAxjWqxxRYrAlLf+973ppnSdPLJJ8c555xT3Oayyy6LJZdcMr7//e/H/PPPH8cff3xzkKo9p0y9/fbbsfnmm08ToPrpT38a77zzTlx//fXx8ccfF6GpP/7xj8WkqdZstdVWsfjii8eECRNi1113bdc6AQAAAGi7umq1Wp2J6wMAAABAp/Duu+8WAamFFlpomp/97W9/i3/961/FFnpf+tKX5mgdp556apx22mlx7LHHNm8r2BYZtsrtCHfbbbdislZ7qwwdFvVnXNbu9wvd3TwnH1V2CQAAAHSw9p1hDgAAAAAd5Nxzz43NNtssbr/99ikuHzVqVDGRKrfRy593RrmmMYNXlUol9t1337LLAQAAAOjRbOEHAAAAQJf0ta99LS6//PL45S9/GbfeemustNJKMXr06Ljrrrti7Nixccwxx8QSSywRnUmGuw4++OCYOHFivPXWW7HjjjvGRhttVHZZAAAAAD2aABUAAAAAXdJaa60VV199dZx99tnx+OOPx9133x0LLLBArLfeenHAAQfE9ttvH53NYostFpMnTy6CVF/4wheKbf8AAAAAKFddNeeFAwDQqVXrGyIm1zefx+SGqNZ/cj7F5Q2NxXYwUftfvOKsGlGpfd/ifIqv//tAfXpH3bzzRMw7d9TNM/cn51N/P/dcHf8CAAAw0ypDh0X9GZeVXQZ0OfOcfFTZJQAAANDBTKACAChBBp6qYz+KGP9xVMdPjOr4jyMm1L6eEPHfy6oT8vKJEU2V6DR69ZoqYDV3xDytBK1q3y+6UNQtvsgnlwMAAAAAAEAnI0AFADAHVMdNKAJS1Q8+mvJ8zCenIhTVVVUqRf3V/z6HNo8znX/eqFts4ahbYpFPAlWL5fnC0WuJRSMWXjDqetXNyaoBAAAAAACgVQJUAACzKANE1ZGjo/L+mKiO/CCq7+dpTFRHjy220mMq/w1dVd96d9qf9e4ddYst1ByqKkJWxdeLfPK1bQMBAAAAAACYQwSoAAA+RfXjSVF5+72ojhj1SWDq3Tz/oNh+j3bS1PRJ+Oz9MdOfXpVhqsUXiV5LLRZ1Ky4TvVZaNuoWmK+jKwUAAAAAAKCbEaACAGih+tH4qAx/L6rD3ytCU/l15JZ7dI7pVcNGRKXl5YsuVASpeq24TNTl+QpLR908c5dXJwAAAAAAAF2OABUA0LPDUm+8E5Xh70Z1+MgiMBXjJpRdFjNjzEdRydPgIZ98X1cXdbUJVSsuG71WWibqll8q6vr4314AAAAAAABa51+SAIAeoVqpRvXdUVF5Y3hUXn87qnn64MOyy6K9VatRfW90cao8+fwnl/XuFXXLLvnJlKpaqGqZJaKuV6+yqwUAAAAAAKATEKACALqlan1DVIaNKIJSGZiqvPl2xMTJZZdFGZoqxZaMTbkd46ODP7lsrr7FZKpi+788rbFS1C04f9mVAgAAAAAAUAIBKgCgW6hWKlEdNiIqQ96IppffjOqwd4rgDLSqvqEI1zXlKb+vi6hbbqno1W/V6LX2qtFr1eWjrnfvsqsEAAAAAACgAwhQAQBdVuX9D6Ly8ptFaKoydFjEJBOmmEXViOrbI6MpT/cMiJi7bzGVqghU9Vslei25WNkVAgAAAAAAMIcIUAEAXUZ14qRPwlLFlKk3IsZ8VHZJdFeTG6Ly/KvFKdUttvAnk6kyULXmSlE3z9xlVwgAAAAAAEA7EaACADq16ofjoum5oVF59pWovDrMtnyUovrBh9H0yKDiFL16Rd0qy0XvnEy19qpRt8IyUVdXV3aJAAAAAAAAzCIBKgCg06mMHF0EppqefSWqb40otleDTqNSieprw6PxteERtz4UsciC0bv/WtG7/5pRt9qKUddLmAoAAAAAAKArEaACAEpXrVaj+ta7RWCq8uzLUR35QdklQduNHRdNDw4sTrHAfNF7vTWi1/r9Ptnqr3fvsqsDAAAAAADgU9RV818sAQA6WLWpUmzJV0yaen5oEUKBbmXeeaLXuqtH7/XXil79Vo26vtYuAAAAAAAAdEYCVABAh8n/7ai8/GY0DXw+Ks+/GjFxUtklQceYe67otf5a0XuTdaLXGivb5g8AAAAAAKATEaACAOa4am5xNuCZaHriuah+8GHZ5UC5Fl4gem+8TvTeZN3otdySZVcDAAAAAADQ4wlQAQBzRLWpKSrPDS2CU5Uhb+T4qbJLgk6nbrmlovem6xSBqrqFFii7HAAAAAAAgB5JgAoAaFeV90Z/Mm3qyecjxn9cdjnQNdTVRa81V47em60bvdbvF3V9+5RdEQAAAAAAQI8hQAUAzLbq5PpoGjwkmh57JqpvvF12OdC1zTdP9N5svei91QbRa6nFy64GAAAAAACg2xOgAgBmWeXNdz6ZNvX0SxGT68suB7qdXquvGL233jB69V8r6vr0LrscAAAAAACAbkmACgCYKdUJE4vt+TI4VX13VNnlQM+wwHzRe/P+n0ylWnyRsqsBAAAAAADoVgSoAIBPlf+7UHn5zSI0VXnulYjGprJLgp6pLqLXWqtE7202il7rrBF1verKrggAAAAAAKDLE6ACAKar2tQUTQNfiKZ7BkR15AdllwO0ULfEItH7s5sUk6nq5p6r7HIAAAAAAAC6LAEqAGAa1fqGaHpscDTe90TE2HFllwPMyDxzR+8t148+n90k6hZdqOxqAAAAAAAAuhwBKgCgWXXipGh66KlofGBgxISJZZcDzIxevaLXhv2iz46bR6/lly67GgAAAAAAgC5DgAoAiOpH46Px/iej6ZFBEZPryy4HmE291lw5eu+4efRee9WySwEAAAAAAOj0BKgAoAerjB4bTfc+Hk2PPxfR2Fh2OUA7q1txmejzua2i93prll0KAFCCytBhUX/GZWWXAV3OPCcfVXYJAAAAdLA+Hf2AAED5KiPej8a7B0Rl0EsRlUrZ5QBzSPWtd6Ph3Gujcfmlos8uW0Wv9deKurq6sssCAAAAAADoVASoAKAHqbzxTjTe/VhUXhgaYQYl9BjVt0dGw/nXR90ySxQTqXptsHbU9RKkAgAAAAAASAJUANADNA15I5ruejQqr75VdilAiarvjoqGC2+Mutsf/mQi1cafibpevcouCwAAAAAAoFQCVADQTVWr1ag8+0oxcSq38QKoqY78IBouuTnq7ng4+nx+m+i18TomUgEAAAAAAD2WABUAdEOV196KhuvvFZwCZqg6auwnQap7H48+u24XvddZveySAAAAAAAAOpwAFQB0I5XRY6Pxxvui8szLZZcCdCHVEe9Hw9lXR+PqK0bf3baPXisvV3ZJAAAAAAAAHUaACgC6gerEydF45yPR9OBTEU1NZZcDdFHVV9+K+r9fFL36r1lMpOq11OJllwQAAAAAADDHCVABQBdWrVSi6dHB0XjbQxETJpZdDtBNVJ59JeqfHxq9N+sffb64TdQtvGDZJQEAAAAAAMwxAlQA0EU1vfhaNN5wb1TfG112KUB3VKlG04BnoumpF6L39ptGn523jLq55yq7KgAAAAAAgHYnQAUAXUzl3VHReP29URnyetmlAD1BQ2M03fVYND3xXPTdbfvovcm6ZVcEAAAAAADQrgSoAKCLqI7/uNiqr+mxwcVkGIAO9eH4aLj45mh8ZFD03XPn6LXCMmVXBAAAAAAA0C4EqACgk6s2NkbTAwOj8a5HIybVl10O0MNVX3876v92YfTeon/0+fJ2UbfAfGWXBAAAAAAAMFsEqACgE2sa9FI03nR/VD/4sOxSAP6/ajWaHnsmmgYPiT5f2CZ6b7Nx1PXuVXZVAAAAAAAAs0SACgA6ocqwEdFw/T3FpBeATmvi5Gi87p4iTNVnz52j95orl10RAAAAAADATBOgAoBOpDppcjTecF80DRgcUS27GoC2qb47Khr+eXlUNu8ffb6yY9TNN0/ZJQEAAAAAALSZfTYAKN3pp58e/fr1i/79+8eYMWOip2p64dWYfMK50fSY8BTQNTU9/mxM/us5xfajAAAAAAAAXYUAFQClqlarce2118Z8880X9fX1cc0110RPU50wMeovvikazr46Yuy4sssBmD3jJkTDBTdE/bnXRNXfNAAAAAAAoAsQoAKgVAMGDIi33norDjjggJh33nnjiiuuKEJVPUXT4CHF1KnKwBfKLgWgXVWeGxqTTzgnGh95ukf9XQcAAAAAALoeASoASnX11VcX57vssktsv/328cYbb8Sjjz4a3V113ISo/8910XD+9cW0FoBuaVJ9NF51Z9SffmlURo4uuxoAAAAAAIBWCVABUJrx48fHHXfcEUsssUSst956sdtuuxWXX3rppdGdNT35fEz+6zlReeblsksB6BDV14ZH/Un/icY7H4lqU1PZ5QBQkl/96lfRr1+/eOSRR5ovy+OBl156qdS6AAAAAKBP2QUA0HPddNNNMWnSpPjGN74RdXV1xQSqRRZZJO65554YOXJkLLXUUtGdVMeOi4arbo/KC6+VXQpAx2tsisZbH4qmQUOi7ze+GL1WWrbsigDoYDl1dvnll48VV1yx+P6kk06Kf//733HeeeeVXRoAAAAAPZwJVACUvn3fV7/61eJ8rrnmii9/+cvR2NgYV155ZXQnjY8OisknnCM8BfR41RHvR/3fL4qG6+6O6uT6sssBoIMDVEcccURzgGrUqFFllwQAAAAABQEqAEoxdOjQeOaZZ2LNNdeMddZZp/nyPffcszjPAFVTN9jmqfrBh1H/z8uj8co7IiYJCgAUqtVoemBgsa1f5a13y64GAAAAAADo4QSoACh1+tQee+wxxeXrr79+rLbaajFixIi47777oitreuqFmJzhgFfeLLsUgE6pOnps1P/j4mi8/8mySwGgA/zqV7+Kfv36xSOPPFKcX3vttcXlBx98cPF9Sw8//HAccsghsdlmmxXHCLvvvnucc8450dDQ0Op9vvfee3HCCSfEdtttV1w/p9zm1uApz/fZZ5/YYIMNYscdd4xjjz02JkyYMMX9vPXWW3HUUUcVU7LWW2+92GabbYppWc8991ybntv+++8f/fv3jzFjxhQ1bb755rHpppvGgQceGI899ljz9SZPnlz8bKONNoqJEydOcz+11+a4446biVcWAAAAgNklQAVAh8st+m644Ybi65NOOqn4B4KWp9de+2Sbu8suuyy6ouqkyVF/yc3RcNFNEZMml10OQOfW1BSN198T9edcHdUJ0/5DMgDd0+GHHx5rr71286KK/L7m3HPPLcJTL7zwQnzuc5+Lb3/729GrV68iIHXooYcWxxNTO+yww+KWW26JL37xi8VpyJAhxX2eeOKJRRBq+eWXj/322y/69u0bF1544RQBpQ8++CC++c1vxm233RYbbrhh8dhbbrll3HvvvbHvvvvGSy+91KbnVK1WizDYQw89VDynnXbaKQYNGlTc380331xcZ+65545dd901Pv7447jjjjumuY9aqGyvvfaahVcVAAAAgFnVZ5ZvCQCzKCdLjRo1KlZZZZXYYostpjuhKv/hYfjw4bHCCitEV1F5c0Q0XHRjMVUFgLarPP9qTP6//8Rc3949eq3Wdf7uAzBrMtT09ttvF+GknBa19dZbF5fn9xl6WmONNYqg02KLLdYcTvrNb35THCf85z//ie9+97tT3N+4ceOKRRoLLbRQ8f1SSy0V//73v+Pss8+Os846K7bffvvi8u9///vFFKrrr78+/vznPxfBrFtvvbU4PsnJVDmpqianWeVUqosvvri47qfJ6Vjjx48v6qjVfcABB8S3vvWt+NOf/lTUsMACC8Tee+8dl1xySXG9lhN587Z33nlnrLvuus3hMgAAAAA6hgAVAB3uqquuKs5/8IMfTHdldf4Dxt133x1XXHFF/PznP4/OrlqpRtPdj0Xj7Q9HVCpllwPQNY0dF/VnXBp9vrBN9N55q6jrVVd2RQB0sMsvvzwqlUpxDFALIaW6uro4+uijiwlNV1555TQBqq9//evN4am0ySabFAGqz3zmM83hqbTIIovE6quvHs8++2yMHDkylllmmeLx0uDBg4swV06pSl/+8pdj4403jmWXXbbN9f/kJz+Zou7cDjADU5deemmxleBXvvKV4rKcvPvoo48WNWTYK+UErNzWz/QpAAAAgI5nCz8AOtT7778fDz74YMw333zxhS98YbrXy38AqYWtciV3Z1Yd81HU//OyaLz1QeEpgNlVqUbjrQ9Fw5lXRPWj8WVXA0AHy2BTeuSRR+LUU0+d4nTBBRfE/PPPH2+88UZMmDBhitutuuqqU3yfxxtppZVWmuYx5p133uJ88uRPttvOLf8y9JTBrG222SZ+/OMfF0GuXNSx4oorRp8+bV9/uNVWW01zWW4LmHJLwpoMVTU1NcWNN97YfFmGw+aaa67Ybbfd2vx4AAAAALQPE6gA6FDXXXddNDY2xu67717848f05HYZudJ7xIgRxTYWufq7M2oaPCQarrg9YuKksksB6FYqr7wZk0/6T/Tdb9fo3W/KfxQHoPv66KOPivOLLrroU6/X8niiFpiaWgaSPs2SSy4Z11xzTZx55plx1113xe23316c0pZbbhl//OMfpwlotSYnVy2xxBKt3n+t5pqcRJVbFeZWgt/5znfirbfeioEDBxaLTHJKFgAAAAAdywQqADpU/sNE2nPPPWd4vV69esXXvva14uvc7qKzqTY1RcO1d0fD+dcLTwHMKeM/joazroyGm+6PapMJfwA9QS0U9fDDD8eQIUOme5qZbfXaIu8vg1I5LfeGG26IY445Jvr37x+PPfZYHHrooVGtVj/1PnKhSGvTc2vBqZZb+y266KKx0047Fc/llVdeiZtuuql4DNv3AQAAAJRDgAqADnXrrbcW/0iwxRZbfOp1Dz/88OK6F154YXQm1bHjov70y6LpwYFllwLQ/VUjmu4ZEPWnX1psmQpA91FXVzfNZZ/5zGeK88GDB0/zs9xy77jjjovzzjuvTYGmtrrlllviD3/4Q4wbN66oqV+/fnHQQQcV2/itssoqxZaBI0eO/NT7yZqeeeaZaS7PyVItt/JruY1fymlXd999dyy11FKx7bbbttvzAgAAAKDtBKgAYCY05ZZSJ58f1TfeLrsUgB4l/+7mln5Nz75SdikAtJM+ffoU5y2nNtWm0J5wwgnThJZOOeWUOP/88+Ppp59uNXw1q1566aW47LLLptk2MCdHjR07tpiKlROj2uLkk0+O8ePHN3+fgaqrrrqqmHD12c9+dorr5vdLL710MaX3ueeeiz322CN69+7dTs8KAAAAgJnxSacKAPjU1eRNdz8Wjbc9FFFpv9XuAMyEiZOi4bxro7LtxtHnKztE3X//4R2Arqm2Dd/f//73ePLJJ+NHP/pRbLzxxvHDH/4wzjjjjNh1112Lbe4WX3zxYorToEGDYvnlly+212tPBx54YLGFXga0BgwYEOuss05MnDgx7rzzziJA9bvf/S7mmmuu5lBVhrjSEUccMc195QTdDELtuOOOMWbMmLjjjjuKUNTxxx8fc8899zTblufW5v/617/atM05AAAAAHOOf3EAgE9RzX+wv/jmqLzwatmlAJDTAB96KiqvD4++B3wlei25WNnlADCL9t1332Ka1OOPPx7Dhg0rgkdrrLFG/OQnP4n+/fsXW3nn1nb19fWx3HLLxSGHHBLf+c53YokllmjXOjKgdckll8RZZ50VDz/8cFFTBqbWXXfd+NOf/lSEuGoyQHXaaadNN0B1+umnF/eVU6X69u0bO+ywQxEMW3vttVt97N12260IUG200Uax+uqrt+vzAgAAAKDt6qo5UgMAaFVl+HvRcP71UR09tuxSAJja3H2j7ze/HL036Fd2JQD0cPvvv38RBMuJUyuvvHKbb3f99dfHUUcdFccee2zss88+7V5XZeiwqD/jsna/X+ju5jn5qLJLAAAAoIP16ugHBICuomngC1H/j4uFpwA6q8kN0XDB9dF492NlVwIAM238+PFxzjnnxMILL1xMogIAAACgPLbwA4Cp5HDGxlsfjKa7/IM8QKdXjWi8+YGojhoTfb72+ajr3bvsigBghu66664444wzYsSIEfHBBx/E0UcfHfPOO2/ZZQEAAAD0aAJUANBCdXJ9NFxyc1SefaXsUgCYCU0Dno3qBx9F34P2iLp55ym7HACYrmWWWSbefffdqFQqcdhhh8XBBx9cdkkAAAAAPV5dNcdsAABRHfNR1J97TVTfHll2KQDMorqlF4++3907ei2+SNmlAEDpKkOHRf0Zl5VdBnQ585x8VNklAAAA0MF6dfQDAkBnVHnjnZh8yoXCUwBdXPW90VH/94uKv+sAAAAAAABtIUAFQI/X9OTzUX/GpRHjJpRdCgDtYfzHxbSNpkEvlV0JAAAAAADQBfQpuwAAKEvuYtt4y4PRdPdjZZcCQHtrbIyGC2+I6qgx0WeXrcquBgAAAAAA6MQEqADokar5D+uX3BIV00kAuq9qFEHZ6qix0Wefz0dd795lVwQAAAAAAHRCAlQA9DjViZOi/txro/rqW2WXAkAHaHr82aiO+TD6HvTVqJt3nrLLAQAAAAAAOpleZRcAAB2pOuajqP/HxcJTAD1M5ZVhUf/3i6IyemzZpQAAAAAAAJ2MABUAPUblnfdj8j8uiup7o8suBYASVEd+8EmI6vW3yy4FAAAAAADoRASoAOgRKq++FfWnXxLx4fiySwGgTOM/jvp/Xh5NT79YdiUAAAAAAEAnIUAFQLfX9MzLUX/mlRETJ5ddCgCdQWNjNFx0YzTe+UjZlQAAAAAAAJ1An7ILAIA5qfHRwdF49R0RlWrZpQDQmVQjGm99KKoTJkbfr+5cdjUAAAAAAECJBKgA6LYa73s8Gm+4r+wyAOjEmh4YWIRs++61S9mlAAAAAAAAJRGgAqBbarzjkWi87aGyywCgC2h66KmIajX67LVL1NXVlV0OAAAAAADQwQSoAOh2Gm5+IJrufqzsMgDoQpoefvqTENXenxOiAgAAAACAHkaACoBupeHau6PpwYFllwFAF9T0yKCISiX67PMFISoAAAAAAOhB6qrVarXsIgBgduV/zhqvuiOaHh1cdikAdHG9t+gfffb5YtT1EqICAAAAAICeQIAKgC6vWqlEw2W3RuXJ58suBYBuovdm60Wfb3xJiAoAAAAAAHoAASoAurRqUyUaLr4xKoOGlF0KAN1Mr03Xjb7f/LIQFQAAAAAAdHMCVAB07fDUhTdE5ZmXyy4FgG6q18brRN99M0TVq+xSAAAAAACAOcS/AgDQJVUr1Wi45GbhKQDmqMpTL0TDxTcX28UCAAAAAADdkwAVAF1ODk9svPzWqDz9YtmlANAD5H9vGi66sZh8CAAAAAAAdD8CVAB0OY1X3xlNTzxXdhkA9CCVQUOEqAAAAAAAoJsSoAKgS2m47u5oemRQ2WUA0ANVBg+Jhguuj2pTU9mlAAAAAAAA7UiACoAuo+HmB6LpgYFllwFAD1Z59pVoOP/6qDYKUQEAAAAAQHchQAVAl9B4+8PRdPdjZZcBAFF5bmg0nH+d7fwAAAAAAKCbEKACoNNrvPfxIkAFAJ1F5flXo/GK28ouAwAAAAAAaAcCVAB0ak1PPBeNN95XdhkA0Op/oxpufbDsMgAAAAAAgNkkQAVAp9X04mvRcLnpHgB0Xk13PhqNjw4quwwAAAAAAGA29JmdGwPAnFJ5c0Q0nH99RKVSdikAMEONV98ZdQstEL3XXaPsUgBgCpWhw6L+jMvKLgOgXc1z8lFllwAAAHRDJlAB0OlU3v8g6s++KqK+oexSAODTVarRcOGNRfgXAAAAAADoegSoAOhUqh+Nj4Yzr4yYMLHsUgCg7eobov6cq6Py/piyKwEAAAAAAGaSABUAnUZ10uSo//dVUf3gw7JLAYCZN/7jaDjryqiO/7jsSgAAAAAAgJkgQAVAp1BtbIqG866N6tsjyy4FAGZZdfTYqD/76qjahhYAAAAAALoMASoAOoWGy26JyivDyi4DAGZbddiIaLjg+qhWKmWXAgAAAAAAtIEAFQCla7zz0ag89WLZZQBAu6m88Fo0XnVH2WUAAAAAAABtIEAFQKmann0lGm97sOwyAKDdNT32TDTe8UjZZQAAAAAAAJ9CgAqA0lTeGRkNF98UUS27EgCYMxpveyianny+7DIAAAAAAIAZEKACoBTV8R9H/TnXRNQ3lF0KAMxRDVfcHpVhI8ouAwAAAAAAmA4BKgA6XLWxKerPuy5izEdllwIAc15jY9Sfd21UPxpfdiUAAAAAAEArBKgA6HCNV90R1deHl10GAHScD8dH/X+ui2pjY9mVAAAAAAAAUxGgAqBDNd7/ZDQ9/mzZZQBAh6u+8U40XnVn2WUAAAAAAABTEaACoMM0vfR6NN54b9llAEBpMkTc+MCTZZcBAAAAAAC0IEAFQIeojBwdDRfcEFGpll0KAJSq8Yb7ounlN8suAwAAAAAA+C8BKgDmuOrHk6LhnGsiJk0uuxQAKF+lEg0XXB+V0WPLrgQAAAAAABCgAmBOqxb/SHxDVN8fU3YpANB5/DdcXK1vKLsSAAAAAADo8QSoAJijGm+8Lyovv1F2GQDQ6VTfHRUNV99ZdhkAAAAAANDjCVABMMc0vfBqNN3/ZNllAECnVXniuWgc8EzZZQAAAAAAQI8mQAXAHFH9aHw0XHZr2WUAQKfXeM1dUXnn/bLLAAAAAACAHkuACoB2V61Wo+HSWyLGf1x2KQDQ+TU0RsMF10d1cn3ZlQDdxFtvvRXXXntthzzWiy++GHfeOevbkV5zzTXRr1+/+Nvf/hYd4dRTTy0e78orr+yQxwMAAACgaxCgAqDdNd3/RFSGvFF2GQDQZVRHfhANV9xedhlAN/DSSy/Fl7/85Xj44Yfn+GPdf//9sddee8Vzzz0XXcXmm28ehx9+eKyzzjpllwIAAABAJ9Kn7AIA6F4qw9+NxpsfLLsMAOhyKk+/GI2rrxB9tt6o7FKALuzDDz+M+vqOmWg3evToqFQq0ZVsscUWxQkAAAAAWjKBCoB2k1sPNVx4Y0RTU9mlAECX1HjdPVEZ/l7ZZQAAAAAAQI8iQAVAu2m89u6ovj+m7DIAoOtqbIqG86+P6qTJZVcCdEG/+tWv4oADDii+vvHGG6Nfv35xzTXXFN+/99578cc//jF23HHHWG+99WLbbbeNY445JoYPHz7N/bz44ovFNne162633XZx9NFHxxtv/P9tuvfff//i9ulf//pX8VgDBgxot+cyadKkOP3002PXXXeN/v37x6abbhoHHXRQ3HfffdPdTnC//faLTTbZpJgwdeSRR8bIkSOLrfqy1ppTTz21qPXKK69svmynnXaK3XbbLd59993idltttVXxmF/5ylfisssua1O9+dzzfs8666y49dZbY/fdd4/111+/uO//+7//iwkTJjRfN6+T1z3ttNNava9vfetbxev+wQcfzMQrBgAAAMDsEKACoF00DXopmh5/tuwyAKDLq44eGw3X3FV2GUAXtMsuu8See+5ZfL3WWmsVIajPfOYz8eqrr8Zee+1VhIHy8gMPPLAIGl1//fWx9957F4Gpmtdee60I8Dz22GNFkOjggw8uwjw33HBDfOMb3yhCSSkfZ+eddy6+znBTPtbyyy/fLs9j3Lhx8c1vfjP+8Y9/RF1dXfG4GeZ69tln4wc/+EERrGrp8ssvLy5/+eWX4/Of/3wRXnr00UeL51GtVtu89WE+zjPPPFOEtvbYY49466234g9/+EOcf/75ba79jjvuiJ/+9Kex7LLLxr777hsLLbRQEZjKENfkyZ+EY7/61a9G7969i9d0am+++WY89dRTscMOO8Riiy3W5scFAAAAYPb0mc3bA0BUP/gwGq68vewyAKDbqDz5fDSts3r03nDtsksBuliAasEFF4xrr722mHB0xBFHFJdneCqnGeWkqAzm1GRIKgNSRx11VBHmybBSTmaaOHFi/Oc//ykCVDVnnHFG/P3vfy8mWh166KHFfaa77767CFDVHqs9nHTSSUWoa5999immZvXp80n7KgNN3/72t4tg1ZZbblmEwDLQ9Ze//CUWXnjhovaVVlqpuO4Pf/jD4vaVSqVNj5n3k+Grk08+Ofr27VtcllOpMmx28cUXF+dtkSGvnMyV07JSY2NjMdXqlltuiXPPPTcOO+ywWGqppYqpXvfee288/fTTsdFGGzXfPt+7VHt9AQAAAOgYJlABMFuqlUrUX3xzxERbDQFAe2q46o6ofjiu7DKALi4nKj3//PPFtKiW4amUIaS8PCc3DRo0qLisNrFp4MCBU0xvqm2f9/3vf3+O1ltfX1+EuXJy029/+9vm8FRaccUVi+lO6YorrijOM5j08ccfF0GwWngq5fSmmQ115XOrhadqr08G0lrb5nB6VlttteZtFFPWn1sr5nktHJVy8le67rrrmi/L1zuf+xJLLFEErAAAAADoOCZQATBbmu58NKqvt/0fFACANvp4UjRcemv0/cE+xVQYgFmRE5FSTqA69dRTW926Lr3wwgvFJKTaVn953UsvvTS23nrr2GabbYpAT25LN6e98cYbRSBq2223jXnmmWean+e0q1q9LZ/fhhtuOM11c0LVzMjw09QyQJVbCjY1NRXb7n2azTffPHr1mnK94tJLLx3LLLNMsT3f+PHjY4EFFijCbIsvvnjcdttt8Zvf/CbmmmuuYiLY22+/HYcccsgUwTEAAAAA5jzdGABmWeW14dF45yNllwEA3Vbl5Tei6cGB0We7TwIDADPro48+ap4olafpGTt2bHG+1lprFVvh/fvf/y4mTuVEpDxleGinnXYqttTLCUlzSoaVasGl1mQYKeU2g2nMmDHF+ZJLLjnd67bV3HPPPc1ltQBry2lcMzK9kFnWl5Os8vllgConXX3lK1+J8847r3idc/vA2jSq2nQqAAAAADqOABUAs6Q6cVLUX3xTRKVt/5AAAMyaxpseiF5rrRK9lplzgQWg+5p//vmL81/84hdt3n5vzTXXjBNOOKGYupTb/z3yyCNx/fXXx5133hkTJkwoQj9zSoaL0nvvvTfDQNgiiywyxfPLyU5Ty1o7Wi3YNb1g2KKLLtp8WQal8rW86aabiolUd9xxR6y//vqxxhprdFi9AAAAAHxiypniANBGDVfeHjHmk3+8AADmoMbGaLjopqg2NpVdCdAFTL3l5zrrrFOcP/PMM61eP6dN/eMf/4jXXnut+D637/vzn/9cTFzKqVMZ6Dn00EPj6quvjvnmmy+eeOKJ6T5We8ht9Oadd94YMmRI8/aCLQ0YMKB5Ulbq379/cf70009Pc93BgwdHR2vtdc7tE3NrwrXXXnuKbQkzqJav74MPPhj33ntvsXXhnnvu2cEVAwAAAJAEqACYaY0DnonKoCFllwEAPUb1nZHReOuDZZcBdAF9+nwybLyhoaE433jjjYtQUk6Puu2226a47rPPPluEpc4+++zmiU4ZkLrooovixhtvnOK6o0aNismTJ8cKK6ww3cdqD7Wt7XJ61HHHHReNjY3NP8st8P72t78VX9eCRnnd3HovJznlz1tuSfj3v/89Otqjjz5avNY1+dr87//+b/E8vv71r09z/ZxClcGpv/71r8Xz2G233Tq4YgAAAACSLfwAmCmVkR9E47V3l10GAPQ4Tfc9Eb3XXSN6rfb/wwsAU1t22WWL8wceeKAI5ey8885x4oknxsEHHxw/+clPYptttol+/frFyJEjiy3jMuBz/PHHx2KLLVbc7kc/+lFx26OPPjpuvfXWWH311Ysw0u23315MpfrlL385zWPdcMMNxTSqPfbYo3ky1Ow48sgji4lS1113XbGF4JZbblls3XfPPfcUW+EdfvjhsdlmmxXXXWaZZYqaMqSUoapddtkl5pprruK6tfBVr17tu37wrrvuihdffDE233zz2GKLLabZgvCII44oXvfll1++CFS9/PLLsf3228e3vvWtae4rA1P5+r/99tux6667xkILLdSutQIAAADQNiZQAdBm1Uo1Gi6+KaK+/VaYAwBtVK1Gw+W3RtV/h4EZyFDTL37xi2IbvJwk9cgjj8R6660X1157bTEBKbfqu/DCC+Pxxx8vwlR5nZbbxuW0qtzGLyc7ZfDn/PPPLyYqbbLJJsV1M6BUs+mmm8aBBx5YTKbKn7XXlnkLLrhgUUOGuZqamuLyyy+P+++/PzbaaKNiWlYGlFo64IAD4pRTTolVVlklbrnlliL4te222zZPq8rXor0DVKeddlrxGk5thx12KKZ6vfrqq8VzyPqPOuqoOOOMM1oNcmXgKsNVaa+99mrXOgEAAABou7pqLh8EgDZofHCg6VMAULLeO2wWfb+yY9llAHQKY8aMKaZoLbXUUtP87OGHH45DDjkk9t133/jDH/4wR+sYMGBAEeTafffd46STTpqp237+858vpmVlMKu9p2VVhg6L+jMua9f7BCjbPCcfVXYJAABAN2QCFQBtUv1ofDTe+mDZZQBAj9f0wJNReXNE2WUAdAoDBw6Mz372s8XUp5YykHTeeecVX2+99dbRWeVksDfffDO+8Y1vtHt4CgAAAIC26zMT1wWgB2u47u6ISfVllwEA5Ja6l98ac/38wKjr07vsagCa5QSlF198sc3X33zzzWOLLbaYrcfMrfpy677cQnDo0KHFdoW5peBDDz0Ur7/+euy8887xuc99Ljqb73znOzFq1KgYMmRILL300sWULAAAAADKI0AFwKdqeun1qAwaUnYZAMB/Vd8dFY13PRp9v7ht2aUATBGgyolKbXX44YfPdoBqnnnmiUsvvTTOP//8uPPOO+OSSy4pJjmtuuqq8bvf/a7TBpOWWGKJePLJJ6N///5x7LHHxoILLlh2SQAAAAA9Wl21Wq2WXQQAnVe1oTHqTzg3qqPHll0KANBS794x1y8OjF7LLFF2JQB0UpWhw6L+jMvKLgOgXc1z8lFllwAAAHRDvcouAIDOLadbCE8BQCfU1BQNV9we1sQAAAAAAMDsEaACYLoqI0dH0z2Pl10GADAd1TfejqaHny67DAAAAAAA6NIEqACYrsar7iymWwAAnVfjzQ9E9aPxZZcBAAAAAABdlgAVAK1qevL5qAwdVnYZAMCnmVwfDTfcV3YVAAAAAADQZQlQATCN6seTouGGe8suAwBoo8pTL0Tl1bfKLgMAAAAAALokASoAptF40/0R4z8uuwwAYCY0XHNXVJsqZZcBAAAAAABdjgAVAFOovPF2NA0YXHYZAMBMqo54P5oefqrsMgAAAAAAoMsRoAKgWU6taLjyjohq2ZUAALOi8baHozpuQtllAAAAAABAlyJABUCzpgefLKZXAABd1KTJ0XDjfWVXAQAAAAAAXYoAFQCF6piPovH2h8suAwCYTZUnn4/Ka8PLLgMAAAAAALoMASoACg3X3h0xuaHsMgCAdtBw9Z1RrVTKLgMAAAAAALoEASoAoun5oVF57pWyywAA2kluydv02OCyywAAAAAAgC5BgAqgh6s2VaLxhnvLLgMAaGeNtz8S1cn1ZZcBAAAAAACdngAVQA/X9MSzUX1/TNllAADtbdyEaLxnQNlVAAAAAABAp1dXrVarZRcBQDmqjY0x+bh/R4wdV3YpAMCcMFffmPvX34u6hRYouxIAAAAAAOi0TKAC6MGaHh4kPAUA3Vl9QzTe+lDZVQAAAAAAQKcmQAXQQ1Un10fj3Y+VXQYA0AHb9VbeHVV2GQAAAAAA0Gn1KbsAAMrR9MDAiPEfl10Gs2CDm8/51Ot8ZYU1488bbNf8/bNj348zX3k6XvxwVExobIjVFlgkvrbS2rHnimtFXV1dmx63oVKJi15/Lm5+e2gMm/BRcbvV/3s/e63Ub4rrVqrV+PtLT8R1b70cuVfwlkssF0evu1UsPve8U1xvclNj7HH/VbH1EivE79ffts2vAQAzoVKNxhvvi7m+97WyKwEAAAAAgE5JgAqgB6p+PCka73u87DKYRYeuuVGrl2dQKQNOGZDafPFlmy9/eOTwOOLJO2KuXr3jC8uuFgv07RsPjRwe//PsQzHwg3fjfzfc/lMfs6laicOfuD0eG/VOrDL/wrHniv2iodoUD7z3VnE/z334fvy+//8PQF3+5ovxn9eeja2WWD5Wmn+hIkj13qQJcf7Wu09xv5e+8UKMrZ8ch6218Wy9JgDMWOXF16LplTej95orl10KAAAAAAB0OgJUAD1Q4z0DIiZOLrsMZtH0wkbnv/ZsEZ7KiVC7r7BmcVljpRK/HXx/9O3VOy7e5iux+oKLFpf/dO2m+M6jt8RNbw8tplBt2iJw1Zrr33qlCE9tt9SKcfImOxf3l8atXR8HPXpTXD1sSHxx2dVi8yWWKy6/athLxZSrf27+hWJS1dLzzB//GPJkMQHrMwsvUVzno4bJcc6rg2P/VdeLJeeZr11fIwCmlVOoev3sgDZPHgQAAAAAgJ6iV9kFANCxquMmRNNDT5VdBu1s6LgxceqQJ2OF+RaMX66zRfPlr48fGwv1nbsIN9XCUykDUF9YbtXi68FjRn7q/d8+4rXi/Ih+mzaHp9KCfeeKg1brX3x9/8hhzZcPn/BRrLngos3/SL/2Qot/cvnH45qv8+9XBkWful5x0Oqf3B6AOas6/L2oPP1i2WUAAAAAAECnYwIVQA/TeOejEfUNZZdBOzvxhceioVKJY9bdKubt/f//877mQovF9Tt8rdXbvDb+w+K8LdOfdl9+zei/yFKx6gILT/Oz3Bowfdz4/z9XC881T3zc1Nj8/fjG+uI8w1zpnY/HxWVvvhi/+MzmMX+fuWbimQIwOxrveCR6bfiZqOtlChUAAAAAANQIUAH0INUxH0XTo4PLLoN29tDIt4rt9bZcYrnYdqkVZ3jdpmolRkycENe99XJcPeylWH2BReLzy34yiWpGdlthjen+7K533yjO11xwsebLNlh0qbj/vWEx6IP3YuUFFo4r3nwx5uvdN/ot9Ml1Tnt5YCwz7/zFdoMAdJzqyA+i8vQL0XuTdcsuBQAAAAAAOg0BKoAepPH2hyOamsoug3Z23qvPFOc/WHOjT73ugY/cFM+Ofb/4eqX5F4p/bfHFmKfFxKqZ9eDIt+KOEa/Hgn3mii8vv3rz5Yf32ySe/uC9OPDRm4rv+9TVxW/7bxuLzDVPvPTh6Ljl7VfjpI13ij69PtlNuFKtRq//bvcHQAdModoop1DZ0R0AAAAAAJIAFUAPURk5OpqefK7sMmhnL344Kp784N3YeLGlY+PFlvnU62+6+LKxyWLLxAsfjorHR4+IfR+6If65+ReKrf5m1sDRI+LIp+4pvv5N/62LcFTNyvMvHFdvt1fc996bMb6xIbZYYrlYY8FFi5/97aXHY/1Flopdll013p04Pv7wzIPxxOgRxYSqvVbqFz/ut2lzsAqA9ld9f0xUnnoxem9qChUAAAAAACQBKoAeovG2h3LMT9ll0M6uH/5Kcf6Nlddp0/V/uvZmzV/ntnr/+9wj8etB98cVn/1q1M3EBKh7330zfvX0vTGp0lTc55eW+//Tp2oWnmvu2GPFtaa47JH3hxfbDZ631a7F978ZdH+8OeGjOGGjneK9SRPi5BcHxMJ9547vrLFBm2sBYOY13vlI9NrYFCoAAAAAAEi65QA9QOXt96IyeEjZZTAH5ISneXv3ie2XXmmmb/v1lT8Tay64aLw87oMY/vG4Nt/ugteejZ8PvDvqK5X41bpbxcGrr9+m21Wr1TjlpSdix6VXKqZlvTpuTDE96+DV+8cuy64S+626bnx2qZXiotdNSgPokClUA18ouwwAAAAAAOgUBKgAeoDGWx6MMHyq2xny0egYMXFCEZ7KEFVrRkwcH3e/+0a8OeHDVn++wnwLFudj6ie1KQD1l+cfjf978fHo26tXnLjxTvGtVdo2+Srd9PbQIjT1k/9OwXp9/IfN2/3VrLLAwvFB/aQY11Df5vsFYNY03vFIVJsqZZcBAAAAAACls4UfQDdXeX14VF58rewymAMGjxlZnG+y2DLTvc4D7w2L455/NL6+0trxm/7bTPGzpmolhnz0QfSKuuYg1Ywc//yjcfmbL8YifeeOf2z2udhg0aXbXGt9U1Oc8fJT8dUV+8WqCyzS/PipsVqd4nqpV9t3EwRgFlVHj42mgc9Hn837l10KAHNIZeiwqD/jsrLLAOi25jn5qLJLAAAA2okJVADdXENOn6Jben7sqOL8MwsvMd3r7LzMKjFP7z5x/fBXiolVLadJnTZkYLwzcXzstMzKsdjc887wsW5+e2gRnlqwz1xxzla7zlR4Kl36xgvFlKvD1tyo+bLV/hukevqDd5svGzTmvVhqnvli/j5zzdT9AzBrmu58NKoVU6gAAAAAAOjZTKAC6MaaXnkzqq++VXYZzCFvffxRcZ6Bo+lZYp754tfrbhV/fOah2P/hG+Nzy64ai8w1dzz9wXvx/IejYvUFFonfTjWZ6qLXnyu20PvKCmvG8vMtGI2VSvzjpSeLn/VbaLG4c8TrxWlqay64WOyy7CrTXP5Rw+Q4+9VBccBq/Yt6mq+/0GKx4aJLx4X/fbz3Jk0oajpqnS1m63UBYOamUFUGD4neG32m7FIAAAAAAKA0AlQA3VjTvU+UXQJzUE50SjkVakb2WHGtYou+c159Ju5/b1hMqjTG8vMuGN9fY8M4ePX1Y74+fae4/sWvP19Mptp08WWLANWr48fEu5MmFD978oN3i1Nrvrzc6q0GqM4ZOjj61PWKg1abdouokzfZOf73uUeKCVdZx6FrbhTfWmXdmXodAJg9jfc9IUAFAAAAAECPVlfNPXwA6HYq742O+hPOifBXHgD4FHP98JvRa42Vyi4DgHZWGTos6s+4rOwyALqteU4+quwSAACAdtKrve4IgM6l6YEnhacAgDZPoQIAAAAAgJ5KgAqgG6pOmBhNA18ouwwAoIuovPhqMb0SAAAAAAB6IgEqgG6o6dHBEfUNZZcBAHQV1Yim+02hAgAAAACgZxKgAuhmqk1N0fjQU2WXAQB0MU1PvhDVcRPKLgMAAAAAADqcABVAN1MZ9FLER+PLLgMA6GoaG4WwAQAAAADokQSoALqZxvufLLsEAKCLanpkUFRtAwwAAAAAQA8jQAXQjVReeyuqw98ruwwAoKuaMDGanniu7CoAAAAAAKBDCVABdCOmTwEAs6vp/ieiWqmWXQYAAAAAAHQYASqAbqIyemxUnhtadhkAQBdXHZX/T/FK2WUAAAAAAECHEaAC6CaaHhgYUTUtAgCYfY33PV52CQAAAAAA0GEEqAC6geqkydH0+LNllwEAdBPVN96Jyhtvl10GAAAAAAB0CAEqgG6gacAzEZPryy4DAOhGmh4dXHYJAAAAAADQIQSoALqBpkcGlV0CANDNNA0eElUBbQAAAAAAegABKoAurvLqW1F9f0zZZQAA3U19QxGiAgAAAACA7k6ACqCLa3zM9joAwJzR9MRzZZcAAAAAAABznAAVQBdWnTgpKs+8XHYZAEA3VX3traiMHlt2GUAXsdNOO0W/fv2isbGx+H7AgAHF97/85S87rIb6+vo466yzoqmpqfmyU089tajjyiuvnG6tAAAAAPRsfcouAIBZ1/TkCxENGv4AwBxS/WQKVa8vblt2JUAXcMABB8S4ceOiV6/y1ut9+9vfjsGDB8chhxzSfNnmm28ehx9+eKyzzjql1QUAAABA5yZABdCFNQ14puwSAIBurvLk81H9wjZRV1dXdilAJ3fQQQeVXUKMGjVqmsu22GKL4gQAAAAA02MLP4AuqjJsRFTfGVl2GQBAN1f94MOovPpW2WUAAAAAAMAcI0AF0EU1PWb6FADQMXIbP6BzmDx5cpx55pmx2267xfrrrx+bbbZZfPe7340nnnhiiuv169cvfvjDH8ZLL70U3/ve92LjjTcurvvjH/84Ro4cWdzPySefHDvssENsuOGGsccee8Qtt9wyzePldf/yl7/El7/85eJ6/fv3j8997nNx7LHHxtixY6e47k477VQ8bmNj+20zPr37zO/z8vx5GjBgQPH922+/XXy/7rrrxv777198feqppxY/u/LKK2f4WG+99VYcddRRscsuu8R6660X22yzTRxxxBHx3HNt+xuYj5evz5gxY+JXv/pVsXXgpptuGgceeGA89thjzdfL1z5/ttFGG8XEiROnuZ9HHnmkqPe4445r0+MCAAAAMPsEqAC6oOrk+mh6+sWyywAAeojK4CHF/38A5cqwzQEHHFAEn+aaa6741re+FV/84hfjmWeeKS6/5pprprj+a6+9Ft/85jejvr6+OF955ZXj9ttvL4JVP/jBD+L6668vAkgZxsrr/uxnP4snn3yy+fbvvfde7LXXXnHhhRfGaqutFt/+9reL7/P+8rIMbnUWyy+/fBx++OGx4IILFt/nc9xzzz3bfPsPPvigeI1uu+22Iih2yCGHxJZbbhn33ntv7LvvvkUQrS2q1WocfPDB8dBDDxWhtHx9Bw0aVNzfzTffXFxn7rnnjl133TU+/vjjuOOOO6a5j2uvvbY4z9caAAAAgI7Rp4MeB4B21DR4SIR/xAQAOkp9Q/H/H3027192JdCj/f3vfy/CODlR6he/+EXU1dUVl2dw6Otf/3r84Q9/iK233jqWWWaZ4vLXX3+9CPPkNKTU0NBQTFd69tlnizBVBnoWWGCB4mc5Oen3v/99XHfddcXUpHTWWWfF+++/X0xC2nvvvZvrmDRpUjGRKu9n6NChscYaa0TZVlhhhWJaVIaPxo0bFz/60Y+iT5+2t71uvfXWGDVqVDFZa5999mm+fLvttiumUl188cXx5z//+VPvJ1/j8ePHxw033BCLLbZYcVmG2zLs9qc//Sm233774jXP1/OSSy4prpdBq5q87Z133llM0Fp77bVn+nUAAAAAYNaYQAXQBVUGvlB2CQBAD9P0+LNllwA9WlNTU7EFXYZyclJULTyVll566fjOd75TTIbKqVItZdiqpm/fvrHBBhsUX++3337N4am0ySabFOfDhw9vviynJP3P//xPfPWrX53iPueZZ55iSlMaPXp0dAeVSqU4Hzx4cBGCqsmg2F133VWE09rqJz/5SXN4KuV2gBmYyi0P77nnnubLcpu+Rx99tNgmsSYnYOWkMdOnAAAAADqWCVQAXUz1o/FRGTqs7DIAgB6m+vrwqIweG70WX6TsUqBHymlSOZ0op0udccYZ0/z87bffLs6ff/755styO7vFF198iuvNN998xflKK600TSgqTZ48ufmyjTfeuDjl4w4ZMiSGDRtWnF588cUYMGDAFMGjri63QszXNUNqua1ebt+3zTbbFBOoVlxxxZm6r6222mqayzJwdumll8YLL7wQX/nKV4rLMlSV071uvPHGIgCXcoJWbs+Y2yoCAAAA0HEEqAC6mKZBL0VUq2WXAQD0NNWIpieei15f3LbsSqBH+vDDD4vzd999N0477bRPvV7LsFRr5p577k99zAxOnXjiicW2frltX1pkkUWKMFAGsF566aWodpNjkyWXXDKuueaaOPPMM4uJU7fffntxShmm+uMf/xirrrrqp95PTvlaYoklWr3/9NFHHzVflkGqfH1zalgGqN56660YOHBgfOELXyheZwAAAAA6jgAVQBfT9NSLZZcAAPRQlSefj+oXtpli6zCgY8w///zF+Wc/+9k4++yzO+QxjzrqqLj77ruL6Uzf/OY3Y6211mqeaJXbCGaAqqNMPekqt7lrb8suu2wRlMrt+l5++eVie72bbropHnvssTj00EOL7fU+7e9fY2NjsQVgBqlaqgWnWm7tt+iii8ZOO+1UBLVeeeWVIriVgTTb9wEAAAB0vF4lPCYAs6gyakxUh40ouwwAoIeqfvChrYShJKuttlqxzV6Glurr66f5+RNPPBEnnXRSPPLII+3yeBn4ueeee2KVVVaJv//978W2dC23Axw6dGhxPqcnUNWCSBMmTJji8jfeeKNdH+eWW24pglPjxo0rQlL9+vWLgw46KC6//PLiNcjHGzly5KfeT74ezzzzzDSX52SplNO7Wspt/FKGqDKsttRSS8W225r0BwAAANDRBKgAupCK6VMAQMlyGz+g480111zFlm/vv/9+se1by4lMY8aMid/97nfx73//OyZPntxuwaVevXoVQarcyq+ls846q5jQVJu4NCetvvrqxfm9997bfFk+5r/+9a/p1p1yCtTMyGDaZZddFhdddNEUl+fzHzt2bDEBLCdGtcXJJ588xWuWgaqrrrqqmHCVE8Rayu+XXnrpYvvA5557LvbYY4/o3bv3TNUOAAAAwOyzhR9AF9L01AtllwAA9HCVZ16O6l67RN08c5ddCvQ4Rx55ZAwaNCguuOCCGDBgQGy++eZFmOiOO+6I0aNHx9e+9rXYYYcd2uWx5p133vjSl75UbGGXW8rtuOOOxeWPP/54vPDCC7HEEkvEqFGjivDWnLTvvvsWk5lyOlQ+doaYHnjggZg0aVIst9xy01w/Q0o5LeqXv/xl8foceOCBbXqcvF4+11NOOaV4bddZZ51im8A777yzCFBlQC1DbLVQ1fnnn198fcQRR0xzX0OGDCmCUPma5euT70+Goo4//viYe+4p/3ZmSG3PPfdsDoTl1wAAAAB0PBOoALqIyvD3ojryg7LLAAB6uvqGaBo8pOwqoEdaaKGFiilJGdppamoqtpe79dZbY6WVVoq//vWv8ec//7nYfq695P0deuihxbZ0l156afFYCyywQDEBK7f1S/fdd1/MSbmd3amnnlpsqZfb7F177bXRv3//4nXI12NqGZzK695///3TTJOakdye8JJLLon99tsvRowYERdffHERqFpjjTXin//8Z3z7299uvm4GqE477bTi1JrTTz891ltvvWKq1EMPPVSE2rLe3AaxNbvttltxvtFGGzVP3AIAAACgY9VVswsGQKfXcON90XTv42WXAQAQvdZcOeY67BtllwHQqey///7FlKycOLXyyiu3+XbXX399HHXUUXHsscfGPvvs0641VYYOi/ozLmvX+wTg/5vn5KPKLgEAAGgnJlABdBFNg14quwQAgELltbeiOmly2WUAdHnjx4+Pc845JxZeeOHmSVQAAAAAdLw+JTwmADOpMvzdiDEflV0GAMAnmipRGfJG9N6gX9mVAF1Ebnt3/vnnz9RtcqvC7uquu+6KM844o9gu8IMPPoijjz465p133rLLAgAAAOixBKgAuoCmZ18puwQAgCk0vfCqABUwUwGq0047baZu050DVMsss0y8++67UalU4rDDDouDDz647JIAAAAAejQBKoAuoPLc0LJLAACYQuXF16JaqUZdr7qySwG6gBVWWCGGDBkS3dmFF17Y5uuut9568cgjj8zRegAAAABou14zcV0ASlAZPTaqI94vuwwAgCmN/ziqw0aUXQUAAAAAAMw2ASqATq7ynO37AIDOqenFV8suAQAAAAAAZpsAFUAn12T7PgCgk6q8IEAFAAAAAEDXJ0AF0IlVJ0yM6uvDyy4DAKBV1bdHRnXsuLLLAAAAAACA2SJABdCJNT0/NKJSLbsMAIDpso0fAAAAAABdnQAVQCdWsX0fANDJ2cYPAAAAAICuToAKoJOqNjZG5eU3yi4DAGCGKq8Mi2pDY9llAAAAAADALBOgAuikKq8Nj6hvKLsMAIAZq2+Iyitvll0FAAAAAADMMgEqgE6q8tLrZZcAANAmlRdfK7sEAAAAAACYZQJUAJ2UABUA0FU0vfBq2SUAAAAAAMAsE6AC6ISqY8dF9d1RZZcBANA2Yz6Kyjvvl10FAAAAAADMEgEqgE6o6eU3yi4BAGCmVF40hQoAAAAAgK5JgAqgE6oIUAEAXYxt/AAAAAAA6Kr6lF0AANOqvDKs7BIAAGZK9c13ojphYtTNP2/ZpQDwX73WWCnmOfmosssAAAAA6PRMoALoZCrvvB8xbkLZZQAAzJxKNSovvVZ2FQAAAAAAMNMEqAA6mcortu8DALqmpiH+PwYAAAAAgK5HgAqgk7F9HwDQlbfxAwAAAACArkaACqATqVarUXl9eNllAADMkur7Y6I6YWLZZQAAAAAAwEwRoALoRKrvjoqYOLnsMgAAZlnFFCoAAAAAALoYASqATsT0KQCgqxOgAgAAAACgqxGgAuhEKq+9XXYJAACzpfrmiLJLAAAAAACAmSJABdCJVN8QoAIAurbKsBFRrVbLLgMAAAAAANpMgAqgk6iOHRfVDz4suwwAgNkzaXJU3xtddhUAAAAAANBmAlQAnUTl9eFllwAA0C4qb7xTdgkAAAD/j737gI6rPLc+vs80jXqzZcm9N9wN7lTTseklhIRAICQhmBQSEm7yJbkJN0BISIFwuYRLqIm59B5676YY44Z7w022XNSmnm+9r5Bs2bIt29KckfT/rXXWWKMzZ/YIyVjW9vMIAAAAaC4KVACQJpLLWN8HAADaB3cFBSoAAAAAAAAAQNtBgQoA0gQTqAAAQHuRpEAFAAAAAAAAAGhDKFABQBpwI1G5azd6HQMAAKBFuOs3ya2NeB0DAAAAAAAAAIBmCTTvNABAa3LXrJeSrtcxAAAAWobrKrlynfwDe3mdBAA6tOTilYreOtPrGADQboVvutrrCAAAAABaCBOoACANJFev9zoCAABAi3JZ4wcAAAAAAAAAaCMoUAFAGqBABQAA2pvkijVeRwAAAAAAAAAAoFkoUAFAGnApUAEAgHYmuWKt1xEAAAAAAAAAAGgWClQA4DE3GpO7YZPXMQAAAFpWVY2SGyu8TgEAAAAAAAAAwD5RoAIAj7lfbJSSrtcxAAAAWpy74guvIwAAAAAAAAAAsE8UqADAY8k1rO8DAADtU5ICFQAAAAAAAACgDaBABQAec1ev8zoCAABAq6BABQAAAAAAAABoCyhQAYDHkquZQAUAANrvqmI3Hvc6BgAAAAAAAAAAe0WBCgA85MYTctdt8joGAABA60gm5ZZv8ToFAAAAAAAAAAB7RYEKADzkbtwsJRJexwAAAGg17obNXkcAAAAAAAAAAGCvKFABgIfc9UyfAgAA7RsFKgAAAAAAAABAuqNABQAeokAFAADau6SZuAkAAAAAAAAAQBqjQAUAHkoykQEAAHSElcUAAAAAAAAAAKQxClQA4CF3AxOoAABA+8YKPwAAAAAAAABAuqNABQAecV2XHygCAID2r7pWbmW11ykAAAAAAAAAANgjClQA4BG3YpsUi3sdAwAAoNWxxg8AAAAAAAAAkM4oUAGAR9z1rO8DAAAdQ3JjhdcRAAAAAAAAAADYIwpUAOARClQAAKCjYG0xAAAAAAAAACCdUaACAI+4GyhQAQCAjoECFQAAAAAAAAAgnVGgAgCPuKyyAQAAHYS7kQIVAG+89tprmj59uoYPH67x48frjTfe0DHHHKNBgwYpHo97HQ8AAAAAAABpIuB1AADoqNyKbV5HAAAASAm3fIvcZFKOj3/DAyB1tmzZou9///uKxWI644wzlJeXp4EDB+rCCy/U9u3b5eP3JAAAAAAAAHyJAhUAeMB1XblbK72OAQAAkBqJhNzNW+V0KvQ6CYAOZPHixaqpqdFRRx2la6+9tuH+iy66yNNcAAAAAAAASD/8UzsA8ML2KvuDRAAAgI7C3cAaPwCpFY1G7W1hIeVNAAAAAAAA7B0FKgDwAOv7AABAR2MmUAHoWMzqvDvuuEOnnXaaRo0apSlTpujb3/62Pv3000bnffzxx7r88ss1fvx4DRs2TMcee6xuuOEGVVRUNDrv5ptv1qBBgzR79mzdeeedOumkkzR8+HB73V/+8pfavHlHUfOYY47RxRdfbH/96KOP2sf97Gc/a3ifeTsejzecn0wmdffdd2vatGkaOXKknVr15z//We+884491zz3vpjrnnjiiVqzZo19PWPGjLGv6bvf/a7mzZvXcN769es1dOhQ+zqb8uCDD9rnNHkAAAAAAACQGqzwAwAPuFu2ex0BAAAgpfjzD9Dxpj994xvf0EcffaQ+ffrorLPOUm1trZ5++mm99dZbtlg1YcIEPfzww/rFL34hv9+vqVOnqrS01D7GFKSee+453X///SorK2t07d/+9rdatGiRTjjhBB199NF65ZVX9MADD+izzz7TQw89JJ/PpwsvvNCWlh5//HENHjzYlpWGDBmyx7w/+clP9NRTT6lnz54655xzVFlZqf/93/+1efeHedwFF1ygYDCo8847z5apXnzxRVvEuv322zVu3Dh16dLFlr5ee+01zZo1S4ceemija5jCl3n89OnT9/OjDgAAAAAAgANFgQoAPMAEKgAA0NG4WylQAR3JP/7xD1uEMhOdrrvuOoVCIXv/V77yFVssMvf993//t379618rNzdXd911l53KZLiua6c/3Xbbbfr5z39uy1Q7W7lypZ544gn16tXLvv39739fp556qubOnWunWY0dO1YXXXSR3n77bVugMsWpGTNm7DHrSy+9ZMtTZmKUKXZlZ2fb+88//3x77I+NGzfaaVtmelQ4HLb3mYLXd77zHf2///f/9Oyzz9qClymUmQKVeR07F6jMa/vwww91/PHHq6ioaL+eGwAAAAAAAAeOFX4A4AF3CwUqAADQwTCBCuhQHnvsMQUCAVuAqi9PGWbl3tVXX60zzzxTjzzyiJ1UdckllzSUpwzHcWzhyRSkzLSqVatWNbq2KWXVl6eMjIwMHX744fbXq1ev3u+sZgpW/RSq+vKUYVb5mfWD++unP/1pQ3nKMFOyjjjiCC1fvtwWvOrX/RUWFtpClfkY7Dx9yjAfHwAAAAAAAKQOBSoA8IBbwQ8QAQBAx8IEKqDjiEQiWrp0qS05NTVFyUyHMuv9Pv/8c/v2+PHjdzvHlK9Gjx5tfz1//vxG7+vbt+9u5+fl5dnbnctIzfXpp5/aFYIjRozY7X27rtfbF1OcMpOsdmXKWIZZK2iYFX1mata2bdv08ssvN0zeMhOzOnfu3FAIAwAAAAAAQGpQoAIADzCBCgAAdDTu1kqvIwBIkS1btthbs5pvb7Zv377X87p06WJvq6urG91vJk7tykytOpi8ZhqUKW3tKUNzlZaWNnl/SUmJvTWFqXpmjV/9tC7jvffe05o1a2yxqqksAAAAAAAAaD0UqADAAy4rbAAAQEcTi8utqvE6BYAUyMrKalSQ2lVNTY2dtpSTk2PfXr9+fZPnbd261d6aclNrMmv7qqqqbKZdmfv3h3ltTakvTu08kWvQoEEaNmyY3nzzTftan3rqqUbFKgAAAAAAAKQOBSoASDE3Hpcq9+8v4QEAANoD1vgBHYOZKNWtWzetWLGiYRrVzn7605/adXmmQGS8//77TV6n/v4BAwa0al5TYjLFpwULFuz2vk8++WS/rmXKYOvWrdvt/g8//NDejho1qtH9piwVi8X00ksv6ZVXXrEfl379+u33awAAAAAAAMDBoUAFACnmVmyXdv+HzQAAAO0eUziBjuP0009XPB7XDTfcYG/rzZ071xaFunfvrjPOOEPBYFB333235s2b1+jxt956q5YuXaoJEyaoa9eurZr1nHPOsbd/+MMfGk2QMoWq//u//9vv61133XW2FFXPlKNeffVVW9QaMmRIo3OnTZtmVxLecsstKi8v15lnnnlQrwUAAAAAAAAHJnCAjwMAHCB3S93qBgAAgI6GCVRAx/Htb3/brqZ75JFHbGlq/PjxdqXfM888I8dx9Pvf/95OqfrVr36lX/7ylzr33HM1depUlZaW2qlP5jDv/93vftfqWU888UQdf/zxev7553XaaafpiCOOsJOzXnjhhYZ1hD7fjn+DuHr1aj366KN20tZFF1202/XeeustW4SaOHGi1qxZo5dffln5+flNvpa8vDwdd9xxdn2fKVKdcsoprfxqAQAAAAAA0BQmUAFAqjF5AQAAdFDu1kqvIwBIEVMGuueee3TllVfaaUz/+te/9OKLL2rSpEn218OHD2+Y/nTvvfdqypQpeuedd/TPf/7TlpdMAcuUlEyJKhVuuukm/fCHP7TlrpkzZ9qVe5dddpnNYdQXqQxTijITo8zra8p9992nkpISO73KFMFMKevBBx9sWFm4q+nTp9tbU6QyhSoAAAAAAACknuO6LoukACCF4i+8o/izb3gdAwAAIOX8U8YoeOaxXscAgEbWrVtnC1JNlZf+9Kc/6bbbbtOf//xnnXTSSXu9zjHHHGPLVWbiViDQ/KHvZl3hX/7yF9111112alVLSi5eqeitM1v0mgCAHcI3Xe11BAAAAAAthAlUAJBibnWN1xEAAAA8wZ+DAKSjO++8U4cddpiee+65RveXl5fbKVjBYNC+vzWsX7/eTuTq06ePJkyY0CrPAQAAAAAAgH1r/j+HAwC0jEjU6wQAAADeqKr1OgEA7Obss8/WAw88oB//+Md69tln1bNnT23atMmuHDTrBK+55hp16tSpRZ/z/vvv1yOPPKLly5ersrJSf/3rX+36QAAAAAAAAHiDAhUApJgbiXkdAQAAwBNMoAKQjgYOHKiHH35Yd9xxh95//3299NJLysnJ0bBhw3ThhRfqyCOPbPHnLCsr06pVq5SZmakf/vCHOuGEE1r8OQAAAAAAANB8juu67n6cDwA4SNE7HlZy3hKvYwAAAKScU1ygjJ9f5nUMAOgwkotXKnrrTK9jAEC7Fb7paq8jAAAAAGghvpa6EACgeVxW+AEAgA6KCVQAAAAAAAAAgHREgQoAUo0CFQAA6KhqI3KTSa9TAAAAAAAAAADQCAUqAEg1ClQAAKCjMgvkq2u9TgEAAAAAAAAAQCMUqAAgxVjhBwAAOjLW+AEAAAAAAAAA0g0FKgBINQpUAACgI2MCFQAAAAAAAAAgzVCgAoAUcl1Xisa8jgEAAOAZN8KfhQAAAAAAAAAA6YUCFQCkkilPuV6HAAAA8FCMAhUAAAAAAAAAIL1QoAKAVGJ9HwAA6Ohica8TAAAAAAAAAADQCAUqAEghlwIVAADo4FwKVAAAAAAAAACANEOBCgBSiQIVAADo6ChQAQAAAAAAAADSDAUqAEilWgpUAACgg4vFvE4AAAAAAAAAAEAjFKgAIIVY4QcAADq8KBOoAAAAAAAAAADphQIVAKRSlIkLAACgY3NZ4QcAAAAAAAAASDMUqAAghVxW+AEAgI6OFX4AAAAAAAAAgDQT8DoAAHQorPADAAAdHROoACBlfP17KnzT1V7HAAAAAAAASHtMoAKAVKJABQAAOjg3nvA6AgAAAAAAAAAAjVCgAoAUcpm4AAAAOjrX9ToBAAAAAAAAAACNsMIPAFLJcbxOAABASjy5epHuXzZXy6u2KuwPaGKnbpoxaKy6ZuU26/FvbVytOxd/qnlby+V3HA3JL9Y3+g7XlJIeu5379JrF+tvCj7Q5WqPBecW6+pAJGprfabfzfvLRy1q8vUIPHXGG/A7/lsQzFKgAAAAAAAAAAGmGnxoAQCr5+W0XAND+3bxgln4x+3VFkgmd12uIxnfqqufWLtVX33pCq6u37/PxM5fP0/fef06fVKzT5M7ddFqPAdoUqdH3Pnhedyz+pNG5n2/brJ9/8poy/H6d3XOwvqip1GXvPqvNkZpG583ZslHPr12m7w8+lPKU1+hPAQAAAAAAAADSDBOoACCFnIDf6wgAALSqhds26Y4lszW6sIv+PuEkBX11/+87vqyPfvThS/r93Hf118OO2+Pj11Rv143z3lPA59Pfx5+s0UVd7P2xZMJOkLpl4YcaV9xVIwpL7P0Pr1woR47+Z/yJKgln2+f5+ttP6uk1S/T1vsMarvvn+e9rbFGpjurSq9U/BtgHJlABAAAAAAAAANIMBSoASCUfEy8AeGtzX58WdM9WeaCzEslCxZUluUG5CijpBhR3/Uq4PrmsHMUBev6hv9rbPmd+T/cPGN3ofd02r9Nry+fplhGHKye/uMnHf/Daw4q7SY2edKpmT/+WZu/0vr4jD9cr11+i/9y2SdNPvcze9+7iTxTOydczx11g347HotLbT+qFgk5KHH66vW/p/Pc1a/M6feXyP+iunoNa6ZWjufoVZ2jPFToAAAAAAAAAAFKPAhUApBITqAB4bHvJRiXX/0vZeV20pqSbFvvi2pbMUUagh1xfZ0USOdoaDWhb1Ce/E1LYH1aGk6EMX4Z92xw++0fIgNxkQImkX/GkT7GET5GEo5q4VBOTvUXHtGnxZ5LPr9dLjpBTFWr0vqqeE6VlczVz3lKFRwxs8vHb11fY2yWl47S6apeSVbBYTmaeliydp/u+fN+2UCdFo/N1b2WRHMdRsmqzvX+Rv7O+qCqWm0yo4pn7FBpytF4qniRVtc7rRvMd2znkWYHq5ptv1i233KIrrrhCM2bMaNZjXNfVs88+qyeffFJz5szRli1bVFRUpF69eum0007TtGnTFA6HGz1m6tSpWr16tZ577jn17t17t2tefvnleumll5SVlaX33ntPoVDjrxXjyCOP1Pr16/XWW2+puLjpwiEAAAAAAAAAoGVQoAKAVPJToALgrYhTaW8ztq1XX3OY+/JLtaakVnPj72hD1Yq690vKCfZQbsZAhQLdlHCLVZ3I0saIow01ETshqElmcFVI8occZQUylekPK9OfaQtYQXOYEpaCcswfQ83kKzPxKulXzBwJR5G4o9q4VB2XvUXb4iZiSm5ZJ19BmZzA7oUQf0FXe5vYVPd51hTHH6y7Vjy6+/XdpNxojZSIyY1WywllKdh9mCJznlPNBw8qc9Q0Vb/zT3tusOdIe1s7+xklNq1S/rk3tNjrxMFpS/M4N23aZItWH374oQoLC3X44YertLRU5eXltvj085//XLfffrstZg0atGO62cSJE/Xggw/qo48+2q1AFYvF9O6778rn86m6ulqzZs3SpEmTGp2zatUqrVu3TkOGDKE8BQAAAAAAAAApQIEKAFLJ35Z+ZAigPYokt+12X8bWdeprDvP+gq5a3blMc5Mbtap6pSpjq3Y7v4s/oPxwf2WH+ingL1PMLVRlLEPlkaQ21UbkmoKMXG2PV9tjv/nqS1g+ZQXCyvJn1k3C8oUV8oUUsCWs0JclrIBcs3ow6VN8pxJWjTlirmoTB/qRwoFwa8znlytfZl6T73fCOfY2WVtX5GtKoNsh0gcPKTL/ZYVHnNjofdFFb9vyVN01quQPZSk8+lTVznleVc/92R5GeNQ0hfqNlxuLqPq1OxQee7r8Rd135HRdO60K3mgrH/qamhpddNFF+vzzz+3tD37wA2VmZja8P5FI6P7779f111+v888/X48//rh69Ohh32cKUfUFqjPPPLPRdc19VVVVOuWUU/T000/rjTfe2K1A9cEHH9jbyZMnp+S1AgAAAAAAAEBHR4EKAFLIYQIVAI9Fopv2+v6MLWvVzxymPFDYTas7lWpucoPWVO8oUrmKa0vtAnvszMwb6hnKUUF4kMLB3nJ8XRRJ5mlbLKANNXFtj9UVX5oroeTBlbAyzB92/baElWmmYfnCyvDXTcEKOBmNJmElk34lXL/iCZ+ipoSV+HISVkyKUMLarwlU1pdTpPY0XUpNTJeqlzHkaFW/fqein7+p7c/cqKyJF8jJylds6fva/uwf7NQpM33KfCbWX7PgG39TdOGbSmz5QoHSgQr1OdS+r/q9mXIjVco+/GKbrfLfN9mylZJxhfpPVO7JV8uXU9TiHwe0D2aqlClPXXDBBbrmmmt2e7/f79eFF15ob3/zm9/Yc+677z77vgkTJtiSnplctStTmDIuu+wyvf766/btn/70p00WqKZMmdJKrw4AAAAAAAAAsDMKVACQSgEKVAC84zquIrV7L1DtLLPiCw0whylTFfXQquISzU2s1xc1q/f4mFiyUhurTWGgcWkgV1JJuER54YHKCPSU63RSbSJHFVGfNtREVZtonZZSXAlti1fZ42BKWNmmgGVLWBkKfXmYKVh+x5SwgnYSVvLLdYR1JSyfInGp5st1hNEOUsJyAhlftt9iey1YOaHMvVwjpLyv/EHb/u+nqv3wUXvUvcOnrMkXKr5+kaKL3pITDO94jC+gjCFHNbpOsnqLat6+T5mTLpAvu1BVr92h2k+eUs5xV8qX20mV//6Ttj3+GxVcUDe1CqkT8KX/CKra2lrNnDlT4XBYV1555V7PNdOnTHHKlJ4WLFigwYMHq6ioyK70W7hwoSoqKuz6v3pvvvmmunTpYs8zRasXXnjBruszqwHrmbV+ZtrV2LFjW/V1AgAAAAAAAADqUKACgFTyscIPgHdieT65yfgBPTZz82oNNIeZ6lPUQ6s7leiz+DqtrVnT7GvUxDeopnLDbvcXyVFuVm/lZvRX0N9NCRWpKpGpzRFpQ01ECbdu0pBXTAlra7zSHvvN9Gb9UtAxk7Ay69YRmklYvgwFv1xH6NtpHWH9JKzYriWsmCmnKe3ZFX2OT26k6Y+V++XqPiejbpXfngSKe6jw2/couvhdJTYuteeH+k2Qv7CrKv5+sdnvKCdsanl7Vv3GP2xRK2vC+fbtmlmPKDRgsjLHnWPfTmzboKrn/6L4xuUKdO59gK8YByLYBvrkH3/8sV2zN3HiRBUUFOz1XJ/PpxNOOEH//d//reeff94Wowyzls8Uqsy1jjnmGHvfxo0b7X31a/3MhClToDJTqM45p+5zc/369Vq5cqUOP/xwhUJmth8AAAAAAAAAoLVRoAKAVGICFQAPRQtapoiUtXOZqriXVhV30mfxtVpX88WBXdBxtT26zB6N7pbU1R9SfniAskN95fOXKZYs0PZ4SBtrk9ociaitiLkJbY1V2uPAS1gBOwkryx9W2J+pkC/UsI7Q9+U6Qtc1h1+JhF+xZOpLWGadnik5Jbaul5uIy/E3/nYjUVFXuPM3o7Bkp0oNnCKZ40tutEbxjcsU6NzHrkfbE/M8NR8+ppyTrrKTqpI12+RWb5G/qEfDOYHiXnXnbl5JgSrFgm1gAtXSpUvtbb9+ZqHpvg0YYGb1SatW7Vh3aspXd955p13jV1+gMtOnXNdtWM03efJke7tzgYr1fQBaUnLxSkVvnel1DABot8I3Xe11BAAAAAAthAIVAKSSnwIVAO9EcxJmnFKLytq0UoPMIamqU2+tLCrS3NgXWl+7rkWun1BUm2vn2mNnZnlb71CeCjIHKxzoJflKFEnkamssoPU1MVXFW/iFpoGYG9eW2HZ7HGgJK+QEG0pYGf7wlyWsDDsJy29WEdp1hH4lkwHFkz57ROI+RRJSTaxuHWF8HyWsYK/RSnz8pGKrPlWo95jGr2H5LFuNC/YYsefXuXahts38iTJGnKicqZc3el9k4etSIqrQgEl7zVD18m3yF3ZXeOQpdXfUT15zd+xSdONfFvAcpkOmWrANfMi3b6/7OsvJ2fu0tHr1U6o2b97ccN9hhx2mYDCojz76qOE+U5QyE6vMdCqjR48e6t27t95++20lEgn5/f6GAlV9uQoAAAAAAAAA0PooUAFAKvnbwE8MAbRbkYxoixeodpZdvkJDzNFQpirWnNhqbaxd3yrPF01u04aq9yWZY4d8SWWZZcrLGKhQoIdcp5Nq4lmqiPq0viaiaLIN7MJrJVE3pmgsporYtgP7ziEgZfhMCStLmaaE5cuoW0doJ2GZVYQhbZ16jGZ9/KTcN/9b7qfF2rZ8vob/4nFtnP2aNq6crYxBh8ufV7LnpynpKzdWo9rZzyhr4gWqfOFmRT59Rrln/lZVr9wmJ5TVsIYvtnaBKp+5UfENS+Qv6KasKRfKX9xDkXkvK++8G+T46orLkfmv1L3+ZR82PE9s9Rx76/9yEhVSJ+RP/wlU+fnmdxKptra2WeebdX9GYWFhw32ZmZkaNWqUZs+erWg0qkAgoLfeekvDhw9vtBbQTJq67777NHfuXI0YMUKzZs1SSUlJw1QrAAAAAAAAAEDro0AFACnkMIEKgIeioWqp7mf8rW7nMlVl575aWVSgOZFVKo9sTMnzV8fW2mNXnR2f8rL7Kjujv4K+roqrUFXxsDZFpI01ESXVMmsO27NIMqZIdKskczShWApNOEzb3q2boqNQUJ/ed5lic+bKyclW6NRR8ue8bCdhJZauVGTJMuX16KsuoybJ74TsOsK1535b8+69SVtvO0/xqrqyV9XT18mNR9X53N/Kl12geCyibQ/8VG6sVpljz1Bs1Rxtf+w/5e/SX8Feo+rW/9m1f9Wqev0fCnQdovgX87X1X1fJl9tJtZ88o9CgIxQo3rHWD6kRagN/HOrZs2ejVX77smjRInvbvXv3RvebNX5motScOXPsNKotW7boggsuaHSOmTRlClTvvfeeffySJUt0+umnt9hrAQAAAAAAAADsGwUqAEglClQAPBRxKj153pyNyzR0o+rKVCX9tKIwX3MiK7U5Up7yLK6T1NbIYnvszPzu3D0YVn54oDJDfeT3lSmazNe2WFAbaxPaEo2mPGtb5cbicuOxHXdEY4ovW6HgiGEKH3eU/EWFqk1GVRuNqmbBx4q89LrKx4zU+r55Ox4zNEeZ55yumoefaLjLKS1W1rQTFO1eI+nf0rJFSm7fqB4XflNdDp0sf/x4fXDN5UqsX6wxV9+k/NJKua5fS566V1uSUY287EateuVf2vT+k4olYgofMlXZJ/4oxR8dGBltYALVuHHj7JSo999/XxUVFY0mSzXl+eeft7cnnHBCo/vNqr6//vWv+vTTTxumWZmJUzsbP368LVd9+OGH6tWrl1zXZX0fAAAAAAAAAKQYBSoASCVW+AHwUCS5h4lBKWIqE7kblmrYBukQU6bq0l8rCvL0aWSFKiKb5LW4W6tNNZ9K5thJllnLlVGkgvAgZQR6Sr4S1SZytCXm14aamKrjrbgXsY2JzV+omiefU7JiiwKD+iu+cLGcvFzlX/PDJs/PPPYoezQlPm+BnV7lLytVYtkKhY8/WoHuXRveX7txg73dUhzW9qoV9tdOSSf5olEtKtwibXtTye2V2vbyPxU+5ggtyXhfOrGfck/8Qd25rhQKfKhsf2bDOsKQL2xXEQacoJ2EJQXlJgNKuj7Fk37FEj5FE45qYlJNvO5IMrSsXRaoTKHpq1/9qm699Vb94Q9/0H/913/t8dyHHnpICxYs0OjRozVkiKmK7mBW8uXk5Oizzz6z06fy8vI0cuTIRudkZ2fbx5prmBKV4zgUqAAAAAAAAAAgxShQAUAqBZhABcA7kWiF0oUtU61fomHr68pU20sHaHl+rj6rXa6K6Galm0his9ZXvSPJHDsUmMlVmT2UGx6goL+7kipWdSJLFVFHG2oiiiWT6kgisz6RG4ko87STFRo/Vlv/47cHdJ3ox58qNneBMs+arviS5Uo0cY6TlfXlir4d08HMcztZmQ1v1774mpzMTGVMGr/b411HqklE7HFAn8BByQlImYGwsmwJK0MZ/rBCToaCTqhhHaHcgFzXlLD8iid8iiV9isQd1calalPCiqnDLY7MCKR/gcr47ne/q1dffdUWpDIyMvSTn/xEmZk7Pr/MpKj/+7//029/+1tlZWXphhtu2O0afr9fhx12mGbPnq1Nmzbp8MMPt/ftykyluummm/TGG2/YElZRUVGrvz4AAAAAAAAAwA4UqAAglZhABcAjruMqUpv6lXnNYaoUeesWa8Q6abjjaFvpQC3Py9Gc2mXamkalrz2pjK2yx65KfAHlZ/VTdqifAr6uiqlAVfGwymuTKq+NtMvSTMbk8Qqce7qcjIwDvkZy6zbVPPFvO8Eq49DRtkDVlECPbvaTJ/Lmu/KffopiS5YpuaFcGUfVTe5JbCxXdNbHyjpzupxg63zbY0pY1YlaexxoCcsXcJQZzFCW78tJWH4zCStDASdDfgUblbASrl8JMwWroYRlpmG5dhJWW/p8ykqD70IfffRRu56vKT179rQTp0KhkO666y5dddVVuv/++/XMM8/oyCOPVGlpqZ0m9e6772r58uV27Z4pP5nbppg1fq+88kqT6/t2LVAtWbJE3/rWt1rwlQIAAAAAAAAAmiMN/uoaADoOp4mJAwCQCrE8n9xk+q+ac1xX+WsXaeRaaURDmSr7yzLVFrUlruLaUrvQHjszi+F6hLJVEB6ozGBv+XyliiTztC0W1IaauLbFYmqrgn17H9TjzUSf6oeesL82xae98ZeWKGPKBEXeeFdbZ39Wd19ZqcJH1RVUav/9knxdOis4esSO6yddOb70mn6UdFxVxWtVpQMsYYUkX9BRVjBTWf6wwvXrCB1TwqqfhGW+7QvYdYSJpF/xpFlF+OU6wi+nYJnbVMkOel8oX7NmjT2asm3btoZf5+fn6+9//7tef/11Pfjgg3bF3vr16+39ffv21SWXXKJp06bZCVR7YgpU9fa0mm/o0KF26tTmzZtZ3wcAAAAAAAAAHqBABQCpxAQqAB6JFrSl+TRNlal82lY2WEtzMzWnZqm2x7aqLYsnq1Re/bEkc+yQI6lzuER54QHKCPSUnM6qSeRoS9Sn9TVR1SaaWmbXfkTfnaX44qXKOuc0+fJy93l+5snHKzh0sOKr1shXkK/gkEFyAn7FV6xSbN5CZV/8VVuYirz9vmpfeUNuVZX8XcvsikE7waqdMCWsyni1PQ60hOUPOcoK1E3ByvRn2hJW0BymhKWgHPOtoxuUa6ZgJf2KmSPhNFpHaG6bIzvoXYltxowZ9tgfjuPYyVPmOBD9+/fXwoUL9/kc77zTeEUoAAAAAAAAACB1KFABQCqFQl4nANBBRXMSUvoPoNojx00q/4uFGi1plM+nLWWDtSwnbMtUlbEd02Lag5r4BtVUbpD0VqP7i+QoL6uXsjP6K+jvrqSKVJXI1OaItKEmooTb9kpyO0uUb1bNv19UYMhAhcaMbPbjAr172mNnNc++oEC/PgoO7K/Y0uWqefLfCo0fq+DQQbZIVXX3v5T34xlywge+arC9ScjV9ni1Pfabr76E5VNWIKwsf+aOSVh2HaEpYYW+LGEFlB0yVUG+FQUAAAAAAAAApA/+1hoAUsjJzJACASnehlsMANqkSEa0TReoduYkkypcs1CFkkbbMtUQLc3J0JzqJaqKb1e75bjaFl1uj0Z3SyrzB5UfHqDsUF/5/WWKuQXaHstQeW1SmyIRpTuzWq/6ocfk+APKOmPaQV0rOneBEitXK+eKb9W9/e4sOdlZypx+khy/T77cHG3/6+2KfjJHGRMObaFXACOhZLNKWDmhs1KWCQAAAAAAAACA5qBABQCplpslVbSvaSkA0l80VC1VeZ2itcpUCzTWlqn82tJ1qJZmB22ZqjpeqY4iqZgqaufZY2dmvlLvUK7yw4MUDvaW4ytRNJmnLdGANtbGtT0WUzpIbt2qxIrV9tfbfndTk+dU/f0ee5v9rQsV7Nu7yXPcRFK1z72k4MjhCnQts/clNpbLV1hgy1OGr1Onuucs39QqrwX7lsdETgAAAAAAAABAmqFABQAp5uRmy6VABSDFIk77LxP5kgkVrZ6vIkljfAFVdD1ES7MDmlO9WDXxdtgea6Zocrs2Vs+SZI4dciV1ySxVXsZAZQR6KOl0Uk0iWxURn9bXRBRNJlOW0QmHlTH1iCbfF5u7QMl1GxQcM1K+wnxbhtqT6KyPlKzYopyLL9hxp3kdyR3rDd36KZCOmd2FVMv0BxTw1ZXZAAAAAAAAAABIFxSoACDFnLxs7fgxLgCkRiS5VR2JLxlX8ep5KpZ0qD+oTV2HaWmWT59VLVZNYu/rxTqS6tg6e+yqk+MoP7uvckL95fd3VUJFqopnalPEVXltRAm3Zf9P5ssMK/PYo5p8X3JThS1QhcaO3OPkKcONRFX70uvKmHBYo5KVv3MnxT5frGRVtXzZWUqsWFn3nCV1k6iQWrlMnwIAAAAAAAAApCEKVADgwQQqAEi1SLRCHZWTiKnTqrkydZlD/SFbplqS5dPcqkWqTdR4HS89Oa62RpbYY2d+SV0DGcoPD1RWqK98vlLF3Hxtj4W0sTahiki0WZePf7FOsXkLbNEpY+yoFokceeMdKRZXxtGHN7o/NH6snWJVecc9Cvbro+gnc+Tk5So0cniLPC/2T16QAhUAAAAAAAAAIP1QoAKAVKNABSDFXMdVpLbc6xhpwZeIqvOqueosaVzAlKmGa3GmbJkqkqj1Ol6bkHAj2lwzxx47y5RUkFGg/PAghYNmUlRn/dt8w+FzlB0IqKp+dZ65xtp1irz0uvx9erVIgSpZWaXaN95ReOoR8mWZJDsEB/RT1jmnqfbF1xR5d5b8Pbop67ST5ISCB/282H9MoAIAAAAAAAAApCPHdVt4/wYAYK/ib3+s+EMveB0DQAcSzXf0fulMr2OktUQgQ5u6DqgrU1V+rmgy4nWkdicn2F25GQMUCnRXUsWqTmSrIupofU1EsWTS63hIkaO79tD1E47wOkbaW716taZOnaoxY8boX//6l9dxALRhycUrFb2VPwcCQGsJ33S11xEAAAAAtBAmUAFAijm5OV5HANDBRAvoy++LPx5RycrPVCJpfDBT5V1HaHE4qXm2TNW8tXTYu8rYanvsqsQXUH5WX2UH+ykQ6Kq4W6jKeFibal2V10aUFJ+/7UlxuPGEMDQtLy9PV1xxhcrKyryOAgAAAAAAAAAdAgUqAEgxJ48VfgBSK5qTkHZsT8M++GM16rJijrpImhDKUnnXwVqUkdC8ykWKUaZqca7i2lL7uT12/UalezBL+ZkDlRnsI5+vi6LJfG2PBbWhNqGtUf5btEWdKFA1u0A1Y8YMr2MAAAAAAAAAQIdBgQoAUszJpUAFILUiGVEKVAfIH61Wl+VflqkyslReNkSLMuJ2MlU8GfM6XrsXd6u1qfoTSebYwfyftDhcrLyMQQoHe5o5VqpJZmtL1K8NNVHVJBKeZcbeMYEK8M6qVas0a9YsnXHGGa3+XPPnz7erKI877rhWfy4AAAAAAACgJfha5CoAgOZjAhWAFIuGqr2O0C4EItUqXf6pDl84T5eWh3VmeJSG5Q5VwOHfJHihNr5JG6re1sotM7Vyy1+1cdt1itVeq0Ln9xqU9aAOLZytiZ3KNa6Tq2GFYXXNCivg8O2P14rD4ZQ/5znnnKPBgwervLy80f033XSTBg0apJ///OeN7q+qqtKwYcP09a9/3b69YcMGXX/99Tr55JM1atQoDR8+3JZCrr32Wm3ZsqXRY4855hhNmzZNL730kv21Off888+X67oN71u3bp1+8pOfaOLEifb9p556qmbOnNnoOqZ4YrKZx9a7+eab7X2zZ8/WnXfeqZNOOsk+fsqUKfrlL3+pzZs37/baFy9erCuvvFKTJk2y2S+88EL7+IsuusheCx3HggUL7OfwW2+91erP9dprr+nMM8/UZ5991urPBQAAAAAAALQUftoDACnmBAJSZoZUE/E6CoAOIuJUeR2h3fFHKlW2bLbKJE0O52pDWV99HoxoQeXnSrhMP/La9uhKe+yq1B9Ufri/skP95PeXKeYWqDKWofJIUptqI3I9SduxeLHC7+ijj9ann35qiyOnnXZaw/31RZL33nuv0fnvvPOOYrGYpk6dqvXr1+uss85SRUWFvY4pQW3fvl2vvvqq7r33Xn3yySd66KGHGj3ePOZHP/qRjj32WBUUFCg/P1+O49j3bd26Veedd57C4bBOOeUU1dbW6umnn9avfvUrRSIRfeMb39jn6/ntb3+rRYsW6YQTTrCZXnnlFT3wwAO2rGKy+Hx1RUHztrledXW1fS09e/bUm2++aYthJhM6FvO5F03R6tNNmzYpmUym5LkAAAAAAACAlkKBCgA8WuPnUqACkCKRZOMJKWhZgdrt6rpstrpKmpKZq/WmTBWo1YLKRUpSpkorScVUUTvfHjsLSeoZylFB2KwE7C3H10WRZJ62xQLaUBPX9hjrGttygcqUnv7yl780KlCZyVHz5s1Tdna2XWv2xRdfqGvXrg3Tc+ofd/vtt2vjxo363e9+Z4tU9UzxyUzzmTNnjp3y1L9//4b3bdu2TZdddpmuuuqq3bKYaVbHH3+8nX4VDAbtfWYqlSk63X///c0qUK1cuVJPPPGEevXqZd/+/ve/b6dYzZ07Vx9//LHGjh1r7zdTqSorK/W3v/3NlrkMk2nGjBl2QhYAAAAAAAAAYAd2WACARwUqAEiVSLTC6wgdRqBmu7otna2jP1+ob1Xk6LTM0RqcO0g+x+91NOxDLFmpjdUfatXWh7Wy4lat33q9aqqvVa57vfqF79Xogvc0odNaTegc14iiDPXMyVSGn/+u+8OsUCzKSP0KP7O+z5Sj3n777Yb73n33XTsh56tf/WrD2/Vef/11DRgwwE5sMlOi/vM//1Onn356o2uaCVJmJV79tJ1dmXLVnphyVX15ypgwYYJyc3Pt2r7mMIWr+vKUkZGRocMPP9z+uv4a8+fPt4WqyZMnN5SnDL/fr2uuuaZhShU6hp/97Gd2faPx5JNP2vWNjzzySMPEtF//+td2mplZXWlWQprPkaY+H83n1RVXXNFw7hFHHKGf/vSnWr58ecM5ZsKZebxx22232efadcpbc5h85rF/+tOfdnufuW/n12DE43FbeDzjjDM0evRojRkzxq7v/Oc//2lXaO7KFCq/+c1v6rDDDtOIESM0ffp0/e///q+dPrfrx84814cffqizzz7bvm5TrjTFy6aY95144olas2aNLr/8cptj/Pjx+u53v2tLm/XMx33o0KGNvj539uCDD9rnvfvuu/fr4wYAAAAAAIADxwQqAPBCHgUqAKnhOq4iteVex+iQAjXb1H3pJ+ou6cisAq0t662FviotqlyspNrPaqNkxNXGl2PaPieuWIUr0xULd/OpaEpQecOb9+1G7ZqENr4QU/WyhBIRKVToKH90QMXHBOUL1K0+q1e5MK71T0YV3eQqo4tPJScFlTNo9+dZ/1RUW2bF1P9nWfKHG19jf9XEN6imcsNu9xfLUV52H+WE+isY6KaEW6SqRFibaqWNtRElmvihfUfWOTOzYZVdqh111FG2SLFgwQJbqDJlqqysLDvx6Y477rAFjzPPPNO+f926dQ2Tqkz5wRxmktPChQvt9CdzmCJJfSmkqVVlPXr02GOWvn377nafKVCZ1YCJRMKWnPamqcfn5eXZ2/oVbWZloVFf8to1W2lpqZ26hY6hvqTz6KOPauDAgXYK2pAhQ7RkyRJbrDIlwCOPPNIW/0xx6vHHH9fLL7+su+66y55nLF26VOeff74CgYB9fHFxsX28mYZmVlqaYlZJSYktMJnPZzPl7NBDD7UFwW7durX6azQT1x5++GH79fqVr3zFFqFMBlOANF/TZq1mvTvvvFM33HCDCgsLddxxx9lVm6ZQ9fvf/97+3vA///M/9nXu7Morr1SfPn1sQcyUo/b2NW5+v7jgggtsUdKs7DTnv/jii3Y9qCl5jRs3Tl26dLFlNTPxbtasWfZjtTPz38o83hS7AAAAAAAAkBoUqADAA0ygApAqsTyf3GTc6xgdXqB6i3os+UTmx61HZhdqXWlvLfBt1+LKJW26TJWodbX81lpF1iZtaapwol/JWmnbnLhW3xNRyUlJdTrGLMjbs+oVCa24rVZm22HecL8CBY6qPq8rVFUtS6jXt8JyfHWlm/h2V6vujsif7ahwUkCVCxJaeWdE/X7ks2WqerEtSW1+K6aSU0IHXZ7aK8fVtshSe+zMJOnqDyk/c5Cygn3k95cqlizQ9nhIG2uT2hzpmGt8SzKzPHtuMzHHFKhMScIUqEyRway669y5s327vgxVv75v6tSpDUWIG2+8UY899phd22eYsoUpJpkJVaZw1dR0GzOhak/MxKhd1RfLmrrW/jy+XkVF3eRB8/qaYsobFKg6VoHKlJpMKcdMNTJrHA1TGty8ebOdFGVKhvXMRLaLL75YV199tS1Imc8vMxGppqbGlqomTpzYcO6tt95qV2SaaVDf+c537DWN+gJV/XO1JvN1ar5GzfOZVZj1zLSsk046Sffee6/NYQpJ5mvWfE2btZvm/qKiooavvZ///Oe2hGVe46WXXtroOUxh6p577mnW9Daz9tP8HmGmR9X/XvDKK6/Yj8//+3//T88++6y9jlkLan7PMR/jnQtUpqRpJl6Zolp9PgAAAAAAALQ+5vYDgAec3ByvIwDoIKIFTMBJN8GqCvVY8rGOW7RYl24r1PSsMRqQ01+OvJnMczA2vRqz5anCCQH1+X5YpadmqOu5Ger340wF8hxteC6maPneC2JmmpQbl7p/LUPdvx5W6fQM9f1BprIH+FS9OKmtHycazt36UVxuTOr+9Qx7Xq/LwpIrVbzbeOXShn/HFMh3VDTRu38vklBUm2vmaPW2J7Si4nZ9sfX32l51rcKJ36l36O8alf+GJhSv1ITOtRpdFFTf3Exl7zLxpL3p4mGBykzBMROnTIHKTNgxBQVzn2HKIGvXrtWKFStsmcGUjsxKL8MUSGbOnGnLJaZUYabTmLKVmVDT1CSodJGdXVfWN1OtmlJVVZXiREg3ZkqZWfNoyoI7l6cM87Vh7v/888/1ySefNCr3mWLPzkW/iy66yE6gMqspvWLymElw5ut459WDpuxoClFvvPFGw9rMBx54wJ5rJlLtXE4yJTGzjtAUm0xZbFdmLd/+rL4019q5SGlKnGbloVl3+PHHHzes+zNTsEyhqn56nGGKbkZ9GQ0AAAAAAACp0b7/hh4A0pTDCj8AKRLNTpgmB9JUsGqzei7ZrJ5mxVhOsdZ26an5vq1aWrlUrmkGpblts+Myva+Sk0ONJuAE8322VLXx+Zi2L0ioeMqef+hcsyopX6aUN2LHtyaO31Hh+KCqFkVUsyKhgrF174tuqitjhct8Dc9jplGZdX71ar9I2qJVtwsy7HXSUTS5TRuq3pdkjh3yJZVllikvY6BCgR5ynU6qjmepIurThpqIok2simtLvJxAFQqFNHnyZL3++uv2MOoLVObWrPR67rnnbFnETIUxn8/btm2za8x69+5tJ+zsavHixc2eGpVqw4cPt7f15Zedbd26VcuWLfMgFdLJnDlz7K2ZQHXzzTc3+XlizJs3T6NHj7ZlHlMmNOf+61//0qRJk+zXlCkFlZWVyUtmutapp55qVw+aqU2mAGmymRV5I0eObFR8qn/dpgxpXltT5UNTcjIlw/oiorG3lX27MsUps0pwVyaL+f3HPK+ZgGdKXSa3mVRlfq8xJS3z+4l5HabIefjhhx/ARwMAAAAAAAAHigIVAHiBFX4AUiSaGZUqvU6B5ghVblIvc5j/brmd9EWXHpqvrVpatUTpqmhK0K7x82fuXlRyvvxOIxnZe7nEn+UoUe3aw/y6Xmxb3eNMQWrnc+01o5Iv+OXUkah5/h3XW/90VOHuPuWN8Kstqo6ttceuOjs+5eX0U06onwL+roq7RaqKh1UecVVeE1GyDRTuumR5++cfMwHmhRde0B133KH8/HwNHTrU3m9WZ5kiw9///nclEgk7FcYw95nihSlSmRVhOTk7JojefvvtdjqPEY+n35pUsz5s4MCBdjKQKWyYkothXt8NN9ygWKzx1DZ0PObzun6ilDn2ZMuWLfbWfD6ZyUzm68R8Xpm1c+bw+/32a+bXv/61OnXqJK/87ne/s8Ups0rQFAfNlKdbbrnFrqs006ZOP/30Rq/7vvvu2+v1zHk7F6gyM3f6H80+lJaWNnl/SUlJowyGKWyaApVZQWgKVGbC3Zo1a3TJJZco0M6nEgIAAAAAAKQb/jYGADzABCoAqRIJVnsdAQcgtL1cvc1hy1QlWtOlu+arQsuq0mtqTNHkupVIuzLFpm1zEo2mRe3xGpPqJlWtvq9WpadnKFjgqOrzhDa+EJU/Syoct+Nblsxeddfa9EpMnY8LquKDuNyolNWnrixVuShhH9vrO+FGE7HaA9dJamvtInvszHx0ugfDys8cpKxgH/l8pYom87UtFtTG2oS27LQWymtdPS5QmTVlphBlygnHHntsw1QaU5IwE5s++ugju+bPTNapL0ycdNJJeuqpp+z0HVPAMt5//307QcaURcrLy1VRUaF0dO211+rCCy/Ut7/9bft6u3btassZZlVhRkYGJaoOrr4cdNVVVzV7/d6AAQP0+9//3hbxzPo/M8XJTEsyxUQzsekf//hHi+Wr/z28qQlvNTU1u91nykZf+9rX7GGmar377ru26PXMM8/YdXrdu3e3Zcn6123WebZW4aupfDsXp3ZeHTho0CANGzZMb775pp36ZX6/qS9WAQAAAAAAILX2/tMMAECrcIrMkh4AaH0Rp8rrCDhIoe0b1Wfxxzp58XJdWlWqk7LHqle2qValr4p34qpdlVSwyFHOoL1Pgup8XEilp4dUvTSpJTfWaMHPq7Xq7oiCeY76zMhUsHDHtyy5QwLKHeHXptdiWvCLaq1/PKrsgX4VjAvYH7JveDqqnCF+Zffb8ZxuMv0nMx2suFurTdWztWrrY1pRcZvWbr1BVdXXKit5nfpk/EOj89/WhOLVmtA5qlFFIfXOzVSWB5NNeuTkyUvFxcV2Qs3O6/vqTZw40d6a8pQpF9X77W9/q+985zv288usLXv22WftJKobb7yxYa2fKWmkI7MuzGQ206feeecdu37NFDfMfaYctj8TddD27VoqrZ/A9umnnzZ5vpk29de//lVLly61b5vPH/P1YL4WzNQp87VkvjYefvhhWzz84IMP9vhcB8JMgDNMMWtXpgS4syVLluiPf/yjXnnlFfu2+Tw/+eSTbdnLZDRmzZplb4cMGWJvZ8+evdt1I5GInWRlimAHs5pz/fr1Wrdu3W7310/6MhPidmbKUqbQ+NJLL9nXYD62/fr1O+DnBwAAAAAAwIFhAhUAeMAJZ0j5OdJW9moBaF2RZN3qHbQPGdvWq685zH/b/DKtKemquW65VlY1/mGyl7bOjmvd42bHntTtKxly/Hv/QXrV4oTKX4nZ8/NH+OXPcVSzIqmalUl98WBEPb4RbrTar8fXw6pcEFdkvatQZ8cWpswP67d+HFft2qT6nZ9pf/C98bmYNr8dUzJiJlT5VHZWhjI6d7x/PxJJbNb6qnckmWOHAjO5KrOHcsMDFAp0V8ItVnUiS5sjjjbURBR3ky2aw+846rrTOiyvPPDAA03ef+WVV9pjV6YY8sMf/tAeTVm4cGGjt19++eU9Pvf+vM9My9n12jNmzLBHU3Z9XzQatSUOM93mf/7nfxqdW1tbq+3bt6tPnz57zIP2p34dXP3ksTFjxqhv3752etS///1vuz6u3pw5c2xZyjATnQxTkDLTkUwx79RTT20410xhM8Wjnj177vG5DkR9gchMijKfz6FQyL5t1vOZaU07M9PkzFpN8/luypDhcLjhfatXr7a3PXr0sLdnn322LX2ZcpWZPFe/Vs/485//bNfpnXDCCbr44ot1MK677jr94Q9/aCiCmXKUKVuaaVP1Ja5606ZN0/XXX29XDpqP5xVXXHFQzw0AAAAAAIADQ4EKADzi61KsJAUqAK0sEk3P1VI4eBlb16mvOUwhoqCbVncu1bzkRq2qXulZJlNYWvdYVHLqylP1q/X2JLYlqZV31soXlPr+MLNRwWnD81GVvxDTmpkR9fzmjh+GGzmDA8oZvONtN+5qw7NRFRwaUEYXn7Z8EFP5SzF1Oi6ozB4+rX8qqtV316rvjzLl+NrXar+DURlbZY9ddfEHlB/ur+xQPwX8ZYq5haqMZ2hTbVLltREdyFyWkswsBX17/3xAy64QO/744zV48GA7Sai+0GLceeeddgVb/dQtdAxlZWX29vXXX9cNN9ygqVOn2klqpij0/e9/X5MnT7YFpA0bNuj555+35SdTAqpfN/e9733PPtaswzOT2EzBacuWLXruuedsafXHP/7xbs/1xBNP2ILraaedpoEDB+5XXlMyGj16tD7++GM7oclMUjNTnUw2U/4yqzTrmTLg+eefb6ermbWbZt2mKVGZKVNm8pS5jvl6MMxjL7/8ct1666065ZRTdMwxx9jpdGY6lClndevWTddcc80+85li1qOPPqrc3FxddNFFu73fFL/M6k/zdWbWhpqSZH5+vp1wtau8vDwdd9xxtqBmJuCZXAAAAAAAAEg9ClQA4BGnpFj6PH0mhgBof1zHVaS23OsYSIHwli/U3xymOFHYTas7lWpucoPWVO9ejmkNZk3e+qej2vx6XE5A6vbVDOUN3/e3Gls/isuNScXHBXebDtX5uKC2fRxX5fyEYtuSCubteXrU5rfjile66nx83aSPze/EFe7qU8nxdRNLlJBdC1j5eUK5g/kWaF9cxbWldoE9dmY+uj1C2SrIGKTMUG85vi6KJvO0LRbUhpq4tu1l2kyPnNwUJEc9U9SYPn26Hn/8cTstaMqUKXbt2meffWaLJ2bCFVNuOhZTarrqqqt011136b777rMrHM3UNVMCMlPK3njjDfu5UVhYaMtUl156qQ499NCGx5tpVWaNn5n0ZEpJZgqUmdA2duxYfetb37K39czjvvGNb9hrm+fq3bv3fheoDFNyMlOhzPSme+65R/3799d//dd/2efduUBl/OIXv7CFwYceekhPP/20LRGaz3Mzme2b3/xmwyQowxTGzPSpe++9117bTLjq2rWrPe+SSy5Rp06d9pnNlKLMxChTuGqqQGVetymo/d///Z+ys7NticyU0OonYe3KfL2aApUpUplCFQAAAAAAAFLPcc0/FQQApFz8rY8Vf/gFr2MAaMei+Y7eL53pdQx4qKaou1YVl2huYr2+qKlbY9TSzPSn1fdHtP2zhPxZUo+LwvucPFVv7cMRVbwbV4+LM5Q7dPdi06q7arV9bkK9rwgrq1fT10zUuFp8fbUKJwZVcmJdYWrBL6qUM9iv7l+rm1wV2ZDUkhtr1OXUkIoP3/FDdLSszECJ8sIDlBHoKTmdVZPI0ZaoT+trojq5Z1/9dPQ4ryN2KPF43E6feuSRR7Ry5Uq7uq+0tNROHvr2t79tS1YAWpaZaGXKVXPnzm00+a05ZbG//OUvtuDW0tPhkotXKnorfx4EgNYSvulqryMAAAAAaCH882sA8IjTpdjrCADauWgBPfmOLnPzag00h6Tq4h62TPVZfK3W1XzRItc3k6dW3RtR5byEgkWOel4SVkbJnidF7cqfW7dOL7LBVe7Q3d8fLU/a20Dentfulb8SsysDi4/aUYxyk5Kb2ClnrO5rwWF7X6uqiW9QTeUGs7yq0f1FcnRI/s8kUaBKJVPeMGvNzAEgfa1fv96uHzSrCCdMmOB1HAAAAAAAgA6LAhUAeMRHgQpAK4tmJ+zqMsDI2rRag8xhy1S9tKq4k+bEv9D6mrUHfE1TXrLlqQJHvS8PK5jf/PKUkT8yoPIXY9r0Wkx5I/wKFe14/KY3Y4qsd5XZx6dQYdPXjW1JavMbMXU5JSR/eEc7ypS4alYl5SZcOX5H1cvrilih/Sh3oQU5rsqyu3qdAoBHXnzxRc2fP7/Z548bN07jx49Xe3f//ffbCXHLly9XZWWl/vrXv8qh6QsAAAAAAOAZClQA4BEnN1vKCkvVtV5HAdBORTOjUqXXKZCOsjat1CBzSKrq1Fsri4r0WewLbahd1+xrJKpdlb8cs78Od/Op4r14k+dl9/Uru79fVUsS9gh39SlvWN23IRldfLb8tP6pqJbeVKPcYQEFchzVrEqoemlSgVxHXc/J2GOGDc/FbHmrcGLjb2vM22sfimr5bbU225b34/Y2ewAFKq90z+ntdQQAHhaoHn300Waff8UVV3SIAlVZWZlWrVqlzMxM/fCHP9QJJ5zgdSQAAAAAAIAOzXFdl90uAOCRyM33y122xusYANqpFRM2aVXFi17HQBtS2bm3VhaaMtVqbaxdv9dzt38W16q7I/u8ZqepQZWcGNKG56MqfyGm/LEBdftK41JU5ecJO4XKFKeSUSmY5yhnqF+djwkqkNd06al2bVJL/1Sj7hdkKG/k7v8upPzVqDa/EbdFr+wBfpWdEVJwD5Os0LpC/rD+dfKb8jl8/AEg1ZKLVyp660yvYwBAuxW+6WqvIwAAAABoIUygAgAP+UqKlaBABaCVRJwqryOgjcnZuFxDzWHLVH21sqhAcyKrVB7ZuNu5ZlrU0Bub/+1EyfEhezT5vAP99tgf4TKfhv4+e4/v73RUyB7wXtfsHpSnAAAAAAAAAABpjQIVAHjI6VLsdQQA7VgkucXrCGjDcjYu09CN0hBTpirppxWFpky1Qpsj5V5HQxvTjfV9AAAAAAAAAIA0R4EKADxEgQpAa4pEK7yOgHbAMdOmNizVsA3SIWZ1X5f+WlGQZ8tUFZFNXsdDG9A9p4/XEQAAAAAAAAAA2CsKVADgIR8FKgCtxHVcRWqZFISWL1PlrV+i4eulYaZMVTpAy/Nz9VntclVEN3sdD2mqT/5gryMAAAAAAAAAALBXFKgAwEuFeVIoKEVjXicB0M7E8nxyk3GvY6C9l6nWLdaIddJwx9G20oFanpejObXLtJXpZ9hJ3/xBXkcAAAAAAAAAAGCvKFABgIccx5FTUiR39XqvowBoZ6IFXidAR+K4rvLXLtLItdIIx6etpYO0PC9Lc2qWaVtsi9fx4KG8UIE6Z5V5HQMAAAAAAAAAgL2iQAUAHnNKO1GgAtDiotlxKeF1CnREjptUwdrPNWqtNNKUqcoGa1lupubULNH22Dav4yHFWN8HAAAAAAAAAGgLKFABgMd83bsoOWuu1zEAtDPRzKhU6XUKdHS2TPXFQo2WNMrn05ayIVqWk6E5NUtVSZmqQ2B9HwAAAAAAAACgLaBABQAe8/Uo9ToCgHYoEqz2OgLQiJNMqnDNAhXaMpVfW8qGallOSHOqF6sqTtuvverLBCoAAAAAAAAAQBtAgQoAPOZ06yL5HCnpeh0FQDsScaq8jgDskS+ZUNGa+SqSNNoXUEXXoVqWHdSc6iWqpkzVrvTNH+J1BAAAAAAAAAAA9okCFQB4zAkF5XTpJHftRq+jAGhHIsktXkcAmsWXjKt49XwVSxpjy1SHaGl2wE6mqolTBGzLsgI5Ksvu4XUMAAAAAAAAAAD2iQIVAKTJGr8EBSoALSgSrfA6AnCAZap5tkx1qD+oTV0P0ZIsvz6rWqTaRI3X8bCfeucNkOM4XscAAAAAAAAAAGCfKFABQBpwepRK78/xOgaAdsJ1XEVqN3kdAzgoTiKmTqvmqZOkw/whbeo6TEuyfJpLmarN6Fsw2OsIAAAAAAAAAAA0CwUqAEiTCVQA0FJieT65yZjXMYAW40tE1XnVXHWWNC5gylTDtThTtkwVSdR6HQ970Dd/iNcRAAAAAAAAAABoFgpUAJAGnK4lkt8vJRJeRwHQDkQLvE4AtB5fPKrOKz+zZarxgbDKu47Q4syk5lYuUjQZ8ToedtI3f5DXEQCgw/P176nwTVd7HQMAAAAAACDtUaACgDTgBPxyyjrJXb3e6ygA2oFodlyij4kOwBevVcnKOSoxZapgZl2ZKpzUvMrPFU1GvY7XoYX9Weqe29frGAAAAAAAAAAANAsFKgBIE76eZUpQoALQAqKZUanS6xRAavljNeqyYo66SJoQylJ518FalFFXpopRpkq5QYXD5Xf8XscAAAAAAAAAAKBZKFABQJrw9e6mxNufeB0DQDsQCVZ7HQHwlD9arS7L68pUEzOytaFsqBaFoppftUjxZMzreB3CkOJRXkcAAAAAAAAAAKDZKFABQJrw9evhdQQA7UTEqfI6ApA2/JEqlS2frTJJkzNytKHrIfo8GNWCys8Vd+Nex2u3BhdRoAIAAAAAAAAAtB0UqAAgTTiFeZI5KrZ5HQVAGxdJbvE6ApCW/JFKlS37skwVztWGsr76PBixZaqEm/A6XrvhdwIaWDg85c97880365Zbbtnt/oyMDHXq1EkTJkzQd7/7XfXoQWkdAAAAAAAAANAYBSoASLMpVMlZc72OAaCNi0QrvI4ApL1A7XZ1XTZbXSVNyczV+rK+Whio1cLKRUpSpjoovfMGKDOQ5dnzjxs3zh6G67qqqanRsmXL9Nhjj+n555/XAw88oH79+nmWDwAAAAAAAACQfihQAUAa8fXtToEKwEFxHVeR2k1exwDalEDNdnVbOlvdJB2ema/1ZX20MFCtzysXU6Y6AEOKvV3fZ8pTM2bM2O3+p556SldddZVuvPFG3XbbbZ5kAwAAAAAAAACkJ5/XAQAAO/j6slIGwMGJ5fnkJmNexwDarGDNVnVf+ommfv65vrUlT6dljdGgnIHy8a1Tsw0rPlTp6JRTTlFOTo7ee+89r6MAAAAAAAAAANIME6gAII34Soqk3Gxpe5XXUQC0UdECrxMA7Uegeou6L/lY3SUdmV2otaW9tdC3XYsrlyippNfx0pIjR0OKRysdOY4jv9+vQIBvgwEAAAAAAAAAjfE3xwCQjmv8Zi/0OgaANiqaHZfYOAa0uGBVhXouqVBPSUdlF2ltaS8t8G2zZSpXrtfx0kbP3H7KC6Vnk/Pf//63tm7dqgsuuMDrKAAAAAAAAACANEOBCgDScI0fBSoAByqaGZUqvU4BtG/Bqs3quWRzXZkqp5PWlvbUfG3R0qqlHb5MNayT9+v73n//fd18880Nb0ciES1dulSvvvqqJkyYoB//+Mee5gMAAAAAAAAApB8KVACQZnz9engdAUAbFglWex0B6FBCleXqtbhcvUyBMbezvujSvaFM1REdUjw2LQpU5mhKYWGhNm3apKysrJTnAgAAAAAAAACkLwpUAJBmnLJOUm62tL3K6ygA2qCIw+8dgFdC2zeqtznM12JeF31R0k3zVaFlVcvUEThydEjxGK9j6IorrtCMGTMaTaDasGGDnn76af3lL3/RrFmz9Oijj6pz586e5gSAVEguXqnorTO9jgEA6EDCN13tdQQAAADggPgO7GEAgNbiOI58g8yPXgFg/0WSW72OAEBSxrYN6rP4Y528eLkurS7VSTlj1Cu7ff//vV/BUOVlFCrdZGRkqEePHvrOd76jCy+8UBs3btS9997rdSwAAAAAAAAAQBqhQAUAacg/uI/XEQC0UZHoZq8jANhFxtb16rvoY01bvEKXVJfpxJyx6plllv61L2NLJivdTZo0yd4uWLDA6ygAAAAAAAAAgDTCCj8ASEO+QX3MKCrJdb2OAqANcR1XkdpNXscAsBfhrevUzxySagu6aXXnUs1LbtSq6pVq68Z0Sf8CVUVFhb3Nzc31OgoAAAAAAAAAII1QoAKANORkZ8rp3kXuqnVeRwHQhsTyfHKTMa9jAGim8JYv1N8ckmoKu2l1p1LNTW7QmupVamvyQoXqX3CI0ll1dbXuuece++vjjjvO6zgAAAAAAAAAgDRCgQoA0pRvcB8lKFAB2A/RAq8TADhQmRVfaIA5TJmqqIdWFZdobmKdvqhZo7ZgdMlE+Zz02BD//vvv6+abb25423VdlZeX64UXXtDmzZs1depUnXDCCZ5mBAAAAAAAAACkFwpUAJCm/IP7KvHCO17HANCGRLPjUsLrFAAOVubm1RpoDjM1qbiuTPVZfK3W1XyhdDWmJH3W95kClTnq+f1+u7Jv4MCBmjZtms4++2w5ZlUyAAAAAAAAAABfokAFAGnK6VUmZYalmlqvowBoI6KZUanS6xQAWlLWptUaZA5bpuqlVcWdNCf+hdbXrFW68Mmn0SWTvI6hGTNm2AMAAAAAAAAAgP1FgQoA0pTj88k3sJeSsxd6HQVAGxEJ1ngdAUArytq0UoPMIamqU2+tLCrSZ7EvtKHW25W/AwqHKTeU72kGAAAAAAAAAAAOBgUqAEhjvsF9KFABaLaIw/gpoKPILl+hIeaQVNm5j1YWmjLVam2sXZ/yLGO7TEn5cwIAAAAAAAAA0JIoUAFAGvMP7ae440iu63UUAG1AJLnV6wgAPJCzcbmGmsOWqfpqZVGh5kRWqjyyMSXPPyYN1vcBAAAAAAAAAHAwKFABQBpzcrPl9Ooqd/kar6MAaAMi0c1eRwDgsZyNyzR047K6yVQl/bSiMN+WqTZHylvl+QozOqlvvnk2AAAAAAAAAADaLgpUAJDm/MP6K06BCsA+uI6rSO0mr2MASBOOpNwNSzVsg3SIpO1d+mtFQZ7mRFaoItJyv1eMLpkox0zLBAAAAAAAAACgDaNABQBpzjd8oPTUa17HAJDmYnk+ucmY1zEApCFTb8pbv0TD10vDTJmqdIBW5Ofq09rl2nKQk+vGlR7dYjkBAAAAAAAAAPAKBSoASHO+zoVySjvJXdc6q3cAtA/RAq8TAGgzZap1izV8nTTMcbStdKCW52VrTu0ybY1u2a9rZQay7QQqAAAAAAAAAADaOgpUANAG+IYPUIICFYC9iGbHpYTXKQC0JY7rKn/tIo1cK41wfNpaOkjL87I0p2aZtsX2XaYa22WKQv6MlGQFAAAAAAAAAKA1UaACgDbAP3KQEi+843UMAGksmhmVKr1OAaCtctykCtZ+rlFrpZGmTFU2RMtyMzSnZqm2x7Y1+ZhJZcemPCcAAAAAAAAAAK2BAhUAtAG+riVyOhfK3VjhdRQAaSoSrPE6AoD2VKb6YoFGSxrl82mLKVPl1JWpKr8sU4X9mRrTZbLXUQEAAAAAAAAAaBEUqACgjfANH6jEy+95HQNAmoo4jJ8C0PKcZFKFaxao0Jap/NpSNlTLckLKzuuuDH/Y63gAAAAAAAAAALQIX8tcBgCQijV+ALAnkeRWryMAaOd8yYSK1szX2IWzdU7BEV7HAQAAAAAAAACgxVCgAoA2wtej1K7xA4CmRKKbvY4AoIPwB7PVqecUr2MAAAAAAAAAANBiKFABQBviHzPU6wgA0pDruIrUbvI6BoAOonOvI+QPsL4PAAAAAAAAANB+UKACgDbEN5YCFYDdxfJ8cpMxr2MA6CC69D/e6wgAAAAAAAAAALQoClQA0Ib4OhXK6d3V6xgA0kw03/U6AoAOIpCRp+LuE72OAQAAAAAAAABAi6JABQBtjH/sIV5HAJBmojlJryMA6CBK+hwjnz/odQwAbdDPfvYzDRo0SG+//fZu7zv//PPt+1avXm3f3rx5s/7zP/9TJ554okaMGKHx48fr0ksvbfKxyWRS999/v84880yNGjVKY8aM0de+9jW9+OKLu517zDHHaNq0aXrppZfsr4cPH26f23VdVVdX649//KOmT59ur3PooYfq61//up555plmvb6bb77ZvoYPP/xQf/vb33TUUUdp5MiROu200/TAAw80Ote8FnPuBx98sNt1Kisr7fOffvrpzXpeAAAAAAAAtAwKVADQxvhHDZb8/PYNYIdoZsTrCAA6iLKB07yOAKCdi0ajtrhkSkcDBgzQN77xDVt2MsWkSy65RK+99lqj8tSMGTP0m9/8RjU1NTr77LNt8WjFihX63ve+p1tuuWW3669fv14/+tGPNHr0aJ177rmaOHGiHMfR5Zdfrttvv10lJSW64IILdMopp2jRokX64Q9/uFsBam+uu+463Xbbbfa6ptRVUVGhX/7yl7YQVu+ss86yt4899thuj3/22WftazGPBQAAAAAAQOoEUvhcAIAW4GRnyje4r5JzF3sdBUCaiARrvI4AoAPIyu+lwrLRXscA0M6ZKVOLFy/Wd7/7Xf3gBz9oVDoyxaa7775bRx55pL3PTJ4yk6bM1ChTXAoG6ybkmdKTmUJlClRHHHGEnWJVb9u2bbrssst01VVXNdxnilLvvPOOTj31VN14442NJkWddNJJuvPOO3Xeeec1K/+CBQv0z3/+s+E5TcHL5Db3mVKWmWw1depUFRQU6LnnnrPlqoyMjIbHP/roo/Z1mNcEAAAAAACA1GGECQC0Qf6xQ72OACCNRJxKryMA6AC6DuKH+QBan5kqZcyfP9+u1atnikfPP/+8ne5Ub+bMmfL5fLaEVF+eMnJzc3XllVfa1XwPPfTQbs9x8sknN/mcS5cutesD6/Xo0cNOhHr88cebnf+MM85oVNgqKiqyJaqdJ06FQiFbkNq+fbtdJ1hv5cqVdtKWmbhVWFjY7OcEAAAAAADAwWMCFQC0Qb5D+kvhDKmWtV0ApEhyq9cRALRzjuNnfR+AlJg0aZJ69+6tV199VZMnT9a4cePsfWaSVJ8+fRrOM+UqM6kqKyvLTqXalZk0ZcydO3e395li1M4GDRpkC1qzZs2yzzN27Fj73IcffriGDBmyX/nN6r5djRo1yt7Omzev4T6zbvDee++15az6QpeZPmWwvg8AAAAAACD1KFABQBvkBAPyjxyoxHtzvI4CIA1EojsmJQBAayjuMUkZ2Z29jgGgAwiHw3rggQd0++2369///rctUpnjd7/7nQ455BD9+te/thOezPSm+iKVWdW3J1u3bm3yOXZ1xx136B//+Ieeeuopvfvuu/b44x//aMtc//Ef/9GwNnBfSktLd7uvc+fOjUpdxuDBg+3refPNN7Vp0yY7qcqUqcy5prgFAAAAAACA1KJABQBtlH/8SApUAOQ6riK1m7yOAaCd6zr4NK8jAGjjHMdptC5vZzU1NY3eLigo0NVXX22PFStW6O2339Zzzz2nd955R5deeqlefvllZWdn23P79u1r1+wdrMzMTF1++eX2WLdunS1Qvfjii3rhhRf0ve99z5a5unfvvs/r1NbW7nZffdnLlKR2dtZZZ+k3v/mNvbYpVK1Zs8a+Pr/ff9CvBwAAAAAAAPvHt5/nAwDShK93VzllTIIAOrpYnl9uMuZ1DADtWCizWJ16MQ0FwMEJBoP2tqqqqtH9iURCq1atanj7jTfe0LXXXmuLU0avXr10/vnn66677tL48ePtRKnPP/9cOTk5dhWfeezmzbtP41y0aJFuuOEGW07al08++UTXX3+9va2fInX66afbyVZmnV4sFtPHH3/crNc5e/bs3e778MMP7e3IkSMb3T9t2jRlZGTYcthLL71k72N9HwAAAAAAgDcoUAFAG+afNMrrCAA8Fs3ffYoDALSksgEny+djeDGAg2MmRRmvvPJKo/tNMaqysrLh7S+++EL33nuv/v73vzc6LxKJaOPGjfL5fOrWrZu97+yzz7blJrPWLxqNNpoC9atf/Up33nmnysvL95nNPL9Z33fzzTc3mpDluq6dCmWYslZz3HPPPVq+fHnD2+b5//znP9upUmbi1M7y8/N17LHHatasWXrmmWdswapfv37Neh4AAAAAAAC0LP4WHADaMP/YoYo/+aoUZfoM0FFFc5JSwusUANoz1vcBaAmnnXaaLSg9+uijtlRkVtbNnTvXlodGjRrVMP3p1FNP1QMPPKAHH3xQCxcu1KGHHmpLUq+//rqdSvXNb35TXbp0sedecskldtWemeA0f/58TZ48WYFAwK74M8WnI444Queee+4+s02aNElHHXWUXn31VU2fPt2+bQpP5trmuieccILNuHPpy6zlO+OMM3Zb62eymqLU8ccfb6dumSym+PWjH/3IvuZdmXOffvpprV27Vt/5znda4CMNAAAAAACAA0GBCgDaMCecIf/owUq8N8frKAA8Es2MSDuGNgBAi8ovGa7swj5exwDQDhQWFur+++/Xn/70J33wwQd2rd3o0aPtfU8++WRDgSozM9NOjjIToV588UXNnDnT3j9o0CB997vftav16pmCkplUZa7xxBNP2HKWKVCZtX8XX3yxzjvvPIVCoX1mM1OtzJSo++67z2Yx14nH4+rTp4+uueYaXXDBBbtNmTIFrXHjxu1WoPrBD35gp2g9/vjjqq6utqUpMyHLTJpqysSJE1VcXGxXG55yyikH9LEFAAAAAADAwXNcM48cANBmJVesVfQv93odA4BHVkzYrFUVL3gdA0A7NeSIX6jbkDO8jgEAac9M17rlllt07bXX6pxzzmn240zZaurUqZo2bZpuvPHGFs+VXLxS0VvrSmgAAKRC+KarvY4AAAAAHBDfgT0MAJAufL3K5HQr8ToGAI9EHMZPAWgd/mC2uvQ73usYANBumX/TaIpXyWRSX/3qV72OAwAAAAAA0KGxwg8A2gH/xJGKP8QEGqAjiiS3eh0BQDvVddB0BULZXscAgHanvLzcrhisqanRqlWrdPTRR9t1hgAAAAAAAPAOE6gAoB3wjxkqZQS9jgHAA5HoZq8jAGiPHJ96DPuK1ykAoF0qKipSJBKxRaoTTjhBv//9772OBAAAAAAA0OExgQoA2gEnnGFLVIl3ZnsdBUAKuY6rSO0mr2MAaIc69ZyirPweXscAgDZjxowZ9mgOn8+n559/vtUzAQAAAAAAoPmYQAUA7YT/iEMlx+sUAFIplueXm4x5HQNAO9Rz2PleRwAAAAAAAAAAIGUoUAFAO+HrUizfoL5exwCQQtH8pNcRALRD2UX9VNR9nNcxAAAAAAAAAABIGQpUANCO+I881OsIAFIomkOBCkDL6znsK15HAAAAAAAAAAAgpShQAUA74h/UW05ZZ69jAEiRaGbE6wgA2plgOF+lA072OgYAAAAAAAAAAClFgQoA2hmmUAEdRyRY43UEAO1Mt8Fnyh8Iex0DAAAAAAAAAICUokAFAO2Mf8wQKTfb6xgAUiDiVHodAUA74vj86n7IOV7HAAAAAAAAAAAg5ShQAUA74wQCCkwa5XUMACkQSW71OgKAdqSkz1SFc7p4HQMAAAAAAAAAgJSjQAUA7ZB/8mgpEPA6BoBWFolVeB0BQDvSc/hXvY4AAAAAAAAAAIAnKFABQDvk5GTJf+hQr2MAaEWu4ypSU+51DADtRGHXscrvMtzrGAAAAAAAAAAAeIICFQC0U/6jx0k+x+sYAFpJLM8vNxnzOgaAdqLPmEu9jgAAAAAAAAAAgGcoUAFAO+XrXCTf6CFexwDQSqL5Sa8jAGgn8ruMVFG3cV7HAAAAAAAAAADAMxSoAKAdCxw3UXKYQgW0R9EcClQAWkafMd/0OgIAAAAAAAAAAJ6iQAUA7ZivpFi+UYO9jgGgFUQzI15HANAO5HYaok49p3gdAwAAAAAAAAAAT1GgAoB2LnD8JKZQAe1QJFDjdQQA7QDTpwAAAAAAAAAAkAJeBwAAtC5fl2L5Rg5S8pMFXkcB0IKivkqvIwBo43KK+qtz76O9jgEAaEW+/j0Vvulqr2MAAAAAAACkPSZQAUCHmULldQoALak2udXrCADauN6jvymHKZUAAAAAAAAAAFCgAoCOwFfaSb4Rg7yOAaAFRWIVXkcA0IZl5fdSl37HeR0DAAAAAAAAAIC0QIEKADqIwHFMoQLaC9dxFakp9zoGgDas9+iL5Th8OwgAAAAAAAAAgMHfmANAB+Hr2lm+YQO9jgGgBcTy/HKTMa9jAGijMnO7qXTASV7HAAAAAAAAAAAgbVCgAoAOJHA8U6iA9iCan/Q6AoA2rO+h35bPF/A6BgAAAAAAAAAAaYMCFQB0IL5uJfId0t/rGAAOUjSHAhWAA5NTPJDpUwAAAAAAAAAA7IICFQB0xClUANq0aGbE6wgA2qj+42bIcfg2EAAAAAAAAACAnfE35wDQwfi6l8p3SD+vYwA4CJFAjdcRALRBhV0PU6eeFKkBAAAAAAAAANgVBSoA6IACJx8h+RyvYwA4QFFfpdcRALQ5jgZMuNLrEAAAAAAAAAAApKWA1wEAAKnnK+ss/6TRSrz5kddRAByA2uRWryO0C7VRV8+9H9XsRXFt2uYq4Je6d/bp6DEhjRqw5z8mb6lM6tq7q3XkqKCmT87Yr+dctzmpZ9+JauGqhH3+4nyfxg0J6JgxQQUDjYutL86K6uUPY4rEXPXt6tc5R2eopHD3f//w+39WKzPD0YyzMvcrCzqWkr5Tldd5qNcxAAAAAAAAAABIS0ygAoAOKnDiFCmbH7YDbVEkVuF1hDbPlJdumlmj59+PKRR0dMTIoEYPCGhNeVJ/f7LWFquaUl3r6rbHalUT2f/nXLwmoRvur9Yni+Ma3Muvw0cGZSpTT7wZ1f8+XSvXdRvOnbM0rkdfj6ow19HEYUEtX5vQ3x6pUSy+4xzjo8/jWrk+qdMPD+1/IHQYjs+v/uOu8DoGAAAAAAAAAABpiwlUANBBOVlhW6KKP/yC11EA7AfXcRWpKfc6Rpv3wgdRW5aaMiKgr0zNkOPUTX+aNimp3/+zRk+9FbWFqp0nPn1RntAdT9Vq/ebGJabmiMZc3f1srf31D87JVJ+ufvvrxBRXtz5WqzlLEpq3PKFD+tT98fzNT2PKypC+f06mLXj1LvXpH89ENHdZomE6ViLh6ok3IzpscEA9SuquBzSl2+AzlJXfw+sYAAAAAAAAAACkLSZQAUAH5p84Uk5ZZ69jANgPsTy/3GTM6xht3ocL43b602lTdpSnjIJcn50MlXSlucvi9r5E0tXDr0Z0w/01Kt/i2ulR+8tMndq8zdVxh4YaylOG3+/olIkhTTgkoJ0GUKl8S9KWt0x5yuj+ZUGqfGuy4Zw3Po2pYrur6ZOZPoU98wcy1WfsZV7HAAAAAAAAAAAgrTGBCgA6MMfnU+D0YxT77we8jgKgmaL5Owo0OHBHjwnaNXxZ4R3lqXqBL/tNkS97apGo9PJHMfUp8+m8qRlavTGpBSsS+/V8c5fWnT920O5//O7b1W+PnWVnOqquG1hl1Ubq2lVZGU7DCsJn343pyFFBFeXxbyKwZz1HXKCMrGKvYwAAPJJcvFLRW2d6HQMAAE+Eb7ra6wgAAABoQyhQAUAH5x/QS4nhA5Wc87nXUQA0QzQnIe1fdwdNOHJU01ObXNfVx4vqJk9161RXTAoGpCvODGtI77o/OpsC1f5aXZ6U3ycV5Tl65p2o3p9fNz2qMNfRpGFBHXtoUD7fjjJXnzK/XpwV0yeL4hrU028LXObd9UUrs4IwmXR14nimT2HPQplF6jXyQq9jAAAAAAAAAACQ9ihQAQAUOO1oRecvleJ1pQEA6SuaGZMqvU7Rfr0xO64V65LqlO9oaO+6slIw4DSUpw7U1sqkQkHpb4/UavXGhEb0Cygj6OizZXE9/mZUK9YndOm0cMM6weMOC2nOkrj+/uSOMVRm1V9psc9e6+UPYzplUqhhgpYpfu28ihAw+o+foUAo2+sYAAAAAAAAAACkPQpUAAD5ivLlP+owJV58x+soAPYhEqj2OkK79eHCmB58JSKfT/r6iWH5/S1XSDLrAJNJad3mpK75WpaK8+umW50aCemvD9Xok0UJzVoQ12FDgvb+nExHP/talmYvjmt7tWsnT/Uuqyt0Pf1OVDlZjl3fVxNxdf/ztZqzNGEnVI0ZFNA5R2coHKJM1dHldxmhsoHTvY4BAAAAAAAAAECbUPeTGwBAhxeYOl7Kz/E6BoB9iPoYP9UaXp8d0z+eidhff+PEDPXvVldWain12/lOnhBqKE8ZmRmOTp1St4Zv1sLGUwBDQccWqo4ZG2ooT63blNQ7n8U1fVLITsYyha/5KxL66nEZOm9qhl3598hrda8DHZjj06DJVzOVDAAAAAAAAACAZqJABQCwnIyQgtOO8joGgH2oTW71OkK7knRdPfxaRA+8FJHfJ10yLaxDB9dNgWpJpihl9Crd/Y/fPUrqylEbtyT3eZ3H3oyoW2efDhsSsNOnPlgQ18RhQY0fGtSEQ4L216ZgVRt1W/w1oO3oNuQM5XUe4nUMAAAAAAAAAADaDApUAIAG/rFD5fTp5nUMAHsRiVV4HaHdiCdc/e+TtXr5w5iyw9KMszM1akDrbLguKawrUMUTu78vkagrO4UCe58WtHh1QnOWJHT64SE7WcgUrsxawJLCHX+k71LoU9KVyrfuu4yF9ikYzlf/w77ndQwAAAAAAAAAANoUClQAgEaCp0+VWPkDpCXXcRWpKfc6RruQTLq646lafbI4oeJ8R1d9JavF1/btbGD3umsvWNF4TZ+xYn1d2clMltqbx96IaEgvvwb3qit5mfJU3e2OaVOxL8tY/C7ecfU77ApbogIAAAAAAAAAAM1HgQoA0IivR6n8hw3zOgaAJsRyfXKTMa9jtAvPfxCz05wKcx396NxMdSlq3T8Wm9V6Qb/08kcxfVG+YwxVda2rJ9+K2sLT5OF7Xh340edxLV+X1OlHhBruM5OnfI60ZM2OaVNL1yTsKsLOBfwxvyPK6zxU3Yac7nUMAAAAAAAAAADanNbZUQIAaNMCpxyhxKcLpdqo11EA7CRa4HWC9qGqxtVz79f9/tajxKe35jRdSuvf3a9BPff/j8vvzI1p89akRvQPqEdJ3eSp4nyfzpuaoftfiOjGf9Zo9MCAwiFHny6Jq2K7q6ljg+rbtekJWImkqyffjGjckIC6d95xTlbY0ZhBAc1aEJfv6VqZ2VMfL0ro6DFBhYLMoOp4HA2afLUch/IcAAAAAAAAAAD7iwIVAGA3Tm62AsdNUvzJV72OAmAn0Zy4tGN4EQ7Q4jUJRb/sTH26JGGPppw4XgdUoHpvbkyLVidVlO9rKFDVT6HqXOjTc+9FbXEqkZBKi32aPjmk8UP3PH3qrU/rSlZXTt4xfareV4/LsJOtPl4Ut9tXjxgZ1GlTdj8P7V/XQacqv8twr2MAAAAAAAAAANAmOa7rmn+sDgBAI24ioejv75S7scLrKAC+tG5srRZXPu51DABpJhDK1aSvPKpQZqHXUQAAaSa5eKWit870OgYAAJ4I33S11xEAAADQhrDfAQDQJMfvV+C0Y7yOAWAnkUC11xEApKH+46+kPAUAAAAAAAAAwEGgQAUA2CP/0H7yjRrkdQwAX4r6Kr2OACDNFHY9TN2GnOF1DAAAAAAAAAAA2jQKVACAvQqedbyUm+11DACSapNbvY4AII34AmENOfIXchzH6ygAAAAAAAAAALRpFKgAAHvlZGcqeO4JXscAYFb4xSq8jgAgjfQ/7HvKyuvudQwAAAAAAAAAANo8ClQAgH3yH9Jf/nHDvY4BdGiu4ypSU+51DABpIr/LSPUY/hWvYwAAAAAAAAAA0C5QoAIANEvg9GOkwjyvYwAdVizXJzcZ8zoGgDTg84c09Mj/J8fh2zkAAAAAAAAAAFoCf+MOAGgWJ5yh4HknSY7XSYCOKVrgdQIA6aLP2G8pu7CP1zEAAAAAAAAAAGg3KFABAJrNP7CX/JNGex0D6JCiOXGvIwBIA7mdBqvXyAu9jgEAAAAAAAAAQLtCgQoAsF8C04+S04lROECqRTNZ3wd0dI4voKFH/Uo+X8DrKADSxKpVq/Too4+m5Lnmz5+vF1544YAf/8gjj2jQoEH605/+1KLXBQAAAAAAAFoCBSoAwH5xQkEFzz9FctjlB6RSJFDtdQQAHus96hvKLR7odQwAaWLBggU6+eST9dZbb7X6c7322ms688wz9dlnnx3wNYYMGaIrrrhCEyZMaNHrAgAAAAAAAC2Bf7oMANhvvj7d5D/qMCVeed/rKECHEfVVeh0BgIdyigaoz5hveR0DQBrZunWrotFoSp5r06ZNSiaTB3UNU6AyR0tfFwAAAAAAAGgJTKACAByQwElT5JR28joG0GHUJrd6HQGAR3yBDA2b+l/y+YNeRwEAAAAAAAAAoF2iQAUAOCBOIKDgV0+W/PyvBEiFSKzC6wgAPDJgwg+UU9TP6xgA0sjPfvYzXXjhhfbXTz75pAYNGqRHHnnEvr1+/Xr9+te/1tFHH61hw4ZpypQpuuaaa7R69erdrjN//ny7Vq/+3COOOEI//elPtXz58oZzvv71r9vHG7fddpt9rvfee2+/M5t85rF/+tOfmnXdZcuW6Sc/+YnNb7Idc8wxuvbaa7V58+Ymr/vCCy9o5syZOuWUUzR8+HB7/u233y7XdbV48WJ95zvf0dixY+0Kwcsvv1yrVq1qdJ3q6mr98Y9/1PTp0zVq1CgdeuihNuMzzzzTrNd388032xwffvih/va3v+moo47SyJEjddppp+mBBx5odO6ll15qz/3ggw92u05lZaV9/tNPP30/ProAAAAAAAA4WKzwAwAcMF/3UgWOnaj4c295HQVo11zHVaSm3OsYADzQqdcR6nHIuV7HAJBmjj32WHv76KOPauDAgTr++OPterwlS5bYYpVZjXfkkUfq5JNPtsWpxx9/XC+//LLuuuuuhjV6S5cu1fnnn69AIGAfX1xcbB//xBNP6NVXX7XFrJKSEp1xxhnKzc3VSy+9ZEtFpoDUrVu3g34Ne7uuKRZddtlldkXh1KlT1bNnTy1cuFD33nuvPf9f//qXSktLG13vv//7v23p6qSTTtLEiRPt6zCFqHXr1umxxx7TIYccovPOO09z5syx1zAlMfNxCQbrpvuZUtU777xjC1umSGaKTM8995x++MMfavv27faxzXHdddfZrNOmTVM4HLbP9ctf/lILFizQr371K3vOWWedpTfeeMPmOuywwxo9/tlnn1VNTY3OPPPMg/4YAwAAAAAAoPkoUAEADor/2IlKzF0sd/V6r6MA7VYs1yc3GfM6BoAUC2UVa+iRv/Q6BoA0LVCZ8pEpUJlJRjNmzLD3m9KNmdBkJjqZCUj13n33XV188cW6+uqrbbHIcRw9+OCDtqhjSlWmcFTv1ltv1V/+8hc72clMbaov8tQXneqf62Dt6bqmNPWjH/1IyWTSTm4y06fqmddrpm+ZQpKZLrUzU1oyr2no0KH2bVOC+ta3vqX7779fl1xyiX3thplIZYpjH3/8sT799FM7lWrRokW2PHXqqafqxhtvbDQpyhSy7rzzzmYXqExR6p///KdGjBhh3zav64ILLrD3melY5rWaUlhBQYEtaJnXkpGR0eg1mlKXmYQFAAAAAACA1GHvEgDgoDh+n4JfPUUK+L2OArRb0QKvEwBIPUeHHPWfCmUWeh0EQBthykBz58615Zydy1OGme5k7v/888/1ySefNBSJDLNyrv7XxkUXXWQnUJkJUF4whaoNGzboK1/5SqPyVP3UKlOQeu211+yqwp1NmjSpoTxlmGJUve9+97sNvzblsTFjxthf1681NGWt+qlcO68I7NGjh50IZSZVNZfJWF+eMoqKihrKYWbilBEKhWxByky2Mq+33sqVK+1/D7N+sLCQ3/8BAAAAAABSiQlUAICD5ivtpMCJUxR/6jWvowDtUjQnLiW8TgEglXqO+KqKe+yYCAMA+2JW0xmmAHTzzTfv9v6tW7fa23nz5mn06NF2AtTMmTPtuWYlnikgTZ482U5uKisrk9evY8WKFU2+jvqy0/z589WlS5eG+3v37t3ovOzsbHtrJj2ZaV07y8zMbJh2ZZgpXmYy1KxZs+zrN+Ur87E4/PDDG1YeNtfO07zqjRo1quFjX+/ss8+2KwlNOcusWqyfPmWwvg8AAAAAACD1KFABAFqE/6hxSsxdIndZ3b/iBtByopkxqdLrFABSJad4kPqPa5kVWQA6jm3bttlbM8HIHHuyZcsWeztw4EC78u7vf/+7nThlVvuZw+/32wlIv/71r9WpUyd59TpeeeUVe+zrddTLyspq8ryd1+PtzR133KF//OMfeuqpp+zKQ3P88Y9/tMWs//iP/9CRRx7ZrOuUlpbudl/nzp0bvTZj8ODBOuSQQ/Tmm29q06ZNdlKVKVOZc01xCwAAAAAAAKlFgQoA0CIcn6PgBacoetPdUnWt13GAdiUSqPY6AoAU8QXCGj71v+TzB72OAqCNqZ+4dNVVVzV7/d6AAQP0+9//XolEwq7/e/vtt22J54UXXlBVVZUtFHn1Ov70pz81TGZKBTOV6vLLL7fHunXrbIHqxRdftB+L733ve/r3v/+t7t277/M6tbW7fy9kVvUZpiS1s7POOku/+c1v7LVNoWrNmjW69NJLbYkNAAAAAAAAqeVL8fMBANoxX1G+gl+bLjmO11GAdiXqY/wU0FEMnPgjZRf28ToGgDbA2eXP3EOHDrW3n376aZPnm2lTf/3rX7V06VL7tlnf99vf/lau69rCzogRI/Sd73xHDz/8sJ3m9MEHH+zxuVrrNRj1K/Nmz569x0lRf/vb37Rhw4YWy/HJJ5/o+uuvt7f1U6ROP/103XLLLXadXiwW08cff9ysazWVu34i2MiRIxvdP23aNDsh67nnntNLL71k72N9HwAAAAAAgDcoUAEAWpR/cB8FTpridQygXYkkd6x7AdB+lfSZqu5Dz/I6BoA2IhCoGypuyj3GmDFj1LdvXzsxyUw02tmcOXNsWcqUjwoKCux9piB133336cknn2x0bnl5uSKRSKNpS7s+V2u9BuPYY4+1Gf/5z3/qo48+anT+yy+/rBtvvFH/+te/Gl5HS6isrLTTtm6++WYlk8mG+025zEyFMnr06NGsa91zzz1avnx5o4/nn//8Z1tSMxOndpafn29f76xZs/TMM8/YglW/fv1a7HUBAAAAAACg+VjhBwBocf6pE5RctU7JOYu8jgK0C7WxzV5HANDKsgp6a+hRv/I6BoA2pKyszN6+/vrruuGGGzR16lRbLrr44ov1/e9/X5MnT9agQYPspKbnn3/elpSuu+66hjVyZi2deexPf/pTPfvss7a4s2XLFjsNyRSHfvzjH+/2XE888YSdGnXaaadp4MCBLfYadr2uWSs4Y8YMfe1rX9NRRx2lPn362FLSK6+8olAoZF+vuW0pkyZNss/z6quvavr06fZtU3gya/zmz5+vE044QaNGjWo4/6677rJr+c4444zd1vqZj7MpSh1//PEKBoO29LVx40b96Ec/smv6dmXOffrpp7V27Vo7AQwAAAAAAADeYAIVAKDFmR9+BM8/WU5J3Q9nABw413EVqSn3OgaAVuQPZmnk8X9QIJTtdRQAbYgpH1111VXKzMy0k6TefvttDRs2TI8++qjOPfdcu6rv3nvv1fvvv2/LVOYcU/ipZ6ZVmTV+p556qj7//HPdfffddnrV2LFj7blmMlK9Qw89VN/4xjfsZCrzvj2t19tfe7rukUceaVcOnnTSSXYlock2b948nXjiifZ+83paks/ns1OiTGnMFKfMx9B8bMz3Nddcc43++Mc/7jZlyqz3q59OtbMf/OAHOu+882w5zUz3MpOrzMrBb3/7200+98SJE1VcXKxwOKxTTjmlRV8XAAAAAAAAms9xzT8rBACgFSTXb1L0z/dKkajXUYA2K5rn6P2ymV7HANCKhh97vbr0O87rGACAg2DW/5lS1bXXXqtzzjmn2Y/74osv7PSwadOm2QliLS25eKWit/JnSQBAxxS+6WqvIwAAAKANYQIVAKDV+LoU20lUcrxOArRd0QKvEwBoTT1HXEB5CgA6KPNvGk3xKplM6qtf/arXcQAAAAAAADq0gNcBAADtm3/EQCWPmaDES+96HQVok6I5cSnhdQoAraGgbKz6j7/S6xgAsN9efPFFzZ8/v9nnjxs3TuPHj2/VTG1JeXm5Lr74YtXU1GjVqlU6+uijNXr0aK9jAQAAAAAAdGgUqAAArS5w0uFyV69TcuFyr6MAbU40MyZVep0CQEvLyC7RiOOul8/Ht2QA2maB6tFHH232+VdccQUFqp0UFRUpEonYItUJJ5xg1/4BAAAAAADAW45r5oUDANDK3KoaRf90j9zNW72OArQpK8Zv1qotL3gdA0ALcnwBjZ3+dxWUjvA6CgCgnUsuXqnorTO9jgEAgCfCN13tdQQAAAC0IT6vAwAAOgYnO1PBi0+XgkzaAPZH1Mf4KaC9GTjxR5SnAAAAAAAAAABIIxSoAAAp4+vWRcFzTvA6BtCmRJLbvI4AoAWVDjhZPYad53UMAAAAAAAAAACwEwpUAICU8h96iPxTxngdA2gzamObvY4AoIXklQzTkCN+4XUMAAAAAAAAAACwCwpUAICUC5x2tJy+3b2OAaQ913EVqSn3OgaAFhDOKdPIE26SP5DhdRQAAAAAAAAAALALClQAgJRz/H6FvnGalJfjdRQgrcVyfXKTMa9jADhI/lC2Rp30Z2VkFXsdBQAAAAAAAAAANIECFQDAE05utkIXnSb5/V5HAdJWtMDrBAAOluPza8Sx1yunqL/XUQAAAAAAAAAAwB5QoAIAeMbXu5sCZx3rdQwgbUVz4l5HAHCQBk2+WsU9JnkdAwAAAAAAAAAA7AUFKgCApwITRsp/PD9YBpoSDUe9jgDgIPQY/lV1H3q21zEAAAAAAAAAAMA+UKACAHgueOIU+SeO9DoGkHYiwVqvIwA4QJ16HaGBE3/odQwAAAAAAAAAANAMFKgAAGkhcNZx8g0b4HUMIK1Efdu9jgDgAOR2GqThU38nx+HbLQAAAAAAAAAA2gL+Rh8AkBYcn0/Br0+X07e711GAtBFJbvM6AoD9lJFdopEn/ln+YKbXUQAAAAAAAAAAQDNRoAIApA0nGFDokjPllHbyOgqQFmpjm72OAGA/BEI5GnXinxXOLvE6CgAAAAAAAAAA2A8UqAAAacXJDCt02TlSYZ7XUQBPuY6rSE251zEANJMvkGEnT5n1fQAAAAAAAAAAoG2hQAUASDtOQW5diSqb9UfouGK5PrnJmNcxADSD4/NrxLE3qLBstNdRAAAAAAAAAADAAXBc13UP5IEAALS25PIvFL3tASlKiQQdT2VPR59kzvQ6BoB9cjTsmN+qdMBJXgcBAAAAAAAAAAAHiAlUAIC05evdVcELT5V8/O8KHU80J+51BADNMGjy1ZSnAAAAAAAAAABo4/iJNAAgrfmH9lPg3BO8jgGkXDQc9ToCgH3oe+i31WPYuV7HAAAAAAAAAAAAB4kCFQAg7QXGDVfglCO8jgGkVCRY63UEAHvRY9j56jv2Mq9jAAAAAAAAAACAFkCBCgDQJgSmTpD/mPFexwBSJurb7nUEAHtQNvAUDZx0ldcxAAAAAAAAAABAC6FABQBoM4LTjpT/qMO8jgGkRCS5zesIAJrQufeRGnLkL+U4jtdRAAAAAAAAAABAC6FABQBoU4KnHi3/4WO9jgG0utrYZq8jANhFUffxGjb1Ovl8Aa+jAAAAAAAAAACAFkSBCgDQ5gTPmCr/5NFexwBajeu4itSUex0DwE6Ku0/UyBP+JH8gw+soAAAAAAAAAACghVGgAgC0SYEzj5V/4kivYwCtIpbrk5uMeR0DwJeKe0zWyBNvojwFAAAAAAAAAEA7RYEKANAmOY6jwNnHyz9+uNdRgBYXLfA6AYB6nXpO0cgT/iCfP+R1FAAAAAAAAAAA0EooUAEA2naJ6pwT5T9smNdRgBYVzYl7HQGAKU/1OlIjjqc8BQAAAAAAAABAe0eBCgDQpjk+R4HzTpLv0EO8jgK0mGg46nUEoMPr3PsojTjuBvn8Qa+jAAAAAAAAAACAVkaBCgDQLkpUwfNPln/SKK+jAC0iEqz1OgLQoXXuc4yGH3s95SkAAAAAAAAAADqIgNcBAABoqXV+wbOPlzJCSrzyvtdxgIMS9W33OgLQYZX0naphU38nn49vlQAAbV9y8UpFb53pdQwAAAAALSh809VeRwCAdokJVACAdiU4/SgFTjrc6xjAQYkkt3kdAeiQSvoeS3kKAAAAAAAAAIAOiAIVAKDdCRw3UYHTp0qO10mAA1Mb2+x1BKDD6Tr4dA2nPAUAAAAAAAAAQIfETwcAAO1S4IixUjik+AP/llzX6zhAs7mOq2jtJq9jAB1K79GXqP+4y72OAQAAAAAAAAAAPEKBCgDQbgXGDZcTCip2/1NSIul1HKBZYrk+JRNRr2MAHYSjgZN/rJ7DvuJ1EAAAAAAAAAAA4CEKVACAds0/arBkSlR3Py7F4l7HAfYpWuB1AqBjcHxBHXL0f6q0/wleRwEAAAAAAAAAAB7zeR0AAIDW5h/aT6HvfkXKzvQ6CrBP0RyKfkBr8wezNOqkP1OeAgAAAAAAAAAAFgUqAECH4OvdVaErL5BTzHgfpLdomPV9QGsKhgs1dvr/qLj7BK+jAAAAAAAAAACANEGBCgDQYfg6Fyn0/a/J6VnmdRRgjyLBWq8jAO1WOLerDj3tf5XXeajXUQAAAAAAAAAAQBqhQAUA6FCcnCyFLv+KfIf09zoK0KSob7vXEYB2Kaeovw477U5lF/TyOgoAAAAAAAAAAEgzFKgAAB2OEwoqePHp8k8e7XUUYDeR5FavIwDtTlH38Rp76h3KyO7sdRQAAAAAAAAAAJCGAl4HAADAC47Pp+BZx8kpyFP8mdck1+tEQJ3aWIXXEYB2pfsh52rgpKvk8/GtDwAAAAAAAAAAaBo/RQAAdGiBqePlFOYqNvNZKZ7wOg46ONdxFa3d5HUMoF1wfH4NnPRj9TjkXK+jAAAAAAAAAACANEeBCgDQ4fnHDJVTVKDoPx6Vtld5HQcdWCzXp2Qi6nUMoM0LZORp+LHXq7j7eK+jAAAAAAD+f3v3ASVVef4P/NnC0nsXKQKC2BALiBob9q5YSey9G41Gk/yjxmiMJmqMGjUmwRY1iTX23nvvGrtYsIEobWF3/+d9ze5vgVXRwM4u8/mcc8/s3rlz73Nn51x2me88DwAANAOlhS4AAJqC0gGLRcvDdo6SPj0KXQpFrLJToSuA5q9Nx36xylbjhacAAAAAAID5JkAFAP9V0rlDVBz8wygdPrTQpVCkKtvNLnQJ0Kx16TMyVtn6wmjbqX+hSwEAAAAAAJoRASoAqKekokW02GWLKN9ojYiSQldDsalsZXwffF99lh4bK2zyx2jRskOhSwEAAAAAAJqZ8kIXAABNTUlJSZRvsFqULNY9Zl16Q8RMoRYax8wWMwpdAjQ7JSVlMWS1I6LvsjsUuhQAAAAAAKCZ0oEKAL5G2bJLRsVhO0dJ986FLoUiUVn6RaFLgGalonXXGLHp2cJTAAAAAADA/0SACgC+QWnPrlFx2C5RuuzgQpdCEZhZ/XmhS4Bmo1OvETFq7KXRpc8qhS4FAAAAAABo5gSoAOBblLRuGRV7bBPlW6wdUeqfThaeGbMmFboEaAZKov/wXWLFzc+Nlm27F7oYAArgJz/5SQwdOjQeeeSR7/X49Lj0+LQfAAAAAEjKPQ0AMH/K1x4Zpf37ROXF10VMNmqNBaumpCYqZ3xa6DKgSSuvaB9Lr3Nc9BiwdqFLAQAAAAAAFiHaaADAd1C6RJ9oefiuUTp0QKFLYREzq31pVFdVFroMaLLad1sqRo69RHgKAAAAAABY4ASoAOA7KmnXJlrsvV2Ub7RGRElJocthEVHZqdAVQNPVZ9g2scpWf4s2HRYvdCkAAAAAAMAiSIAKAL6HktKSKN9gtWix7/YR7doUuhwWAZXtZhe6BGhySstbxTLr/CqGrfnzKC2rKHQ5AEXt6KOPjqFDh8bEiRPjlFNOiTXXXDOWX3752GqrreLOO+/M26Tb7bbbLoYPHx7rrLNO/PrXv46pU6fOsZ+nnnoqDjjggBg1alQsu+yysd5668Vvf/vbmDRp0jzHTI/93e9+F2PGjMnH2mJBYBbLAABDD0lEQVSLLeKmm2762hpTbccdd1w+dtr3GmusEcccc0xMmDBhvs7xlltuiZ133jlGjx6dj7fRRhvF73//+/jii28f352OkZ6fX/7yl/Hwww/XPQ9rrbVWrunTT/9vVPONN96Yt021NeQnP/lJvv/ll1+er7oBAAAA+N8JUAHA/6BsSP9o+ZPdonRQ30KXQjNX2cr4PqivbeeBMXLrC6P3kE0LXQoA9ey///45AJTCRWl55ZVX4qCDDopTTz01Dj744OjTp0/88Ic/jBYtWsTFF18cJ510Ut1jr7zyyhg3blzce++9seqqq+btOnfuHH/9619j7Nix8cEHH9RtO3PmzBxm+vOf/xydOnWKnXbaKbp37x6HHXZYDijN7fXXX49tttkmLr/88hgyZEjsuuuusdJKK8W1116b9/3SSy9943ldc801ccghh+QaNt100/jRj34UHTp0iPPPPz/23nvvqKmpma/n59lnn4299torKioq8vml5+Oyyy6LHXbYIT755JO8TQqNpXNKga0ZM2bM8fgvv/wybr/99lh66aVjqaWWmq9jAgAAAPC/K18A+wCAolbSoV202H/HqLr70Zh90/0RVVWFLolmaGaL6YUuAZqIkui77A4xeNQhUVbestDFADCX1I3puuuuy+GipEePHjnkdMEFF+SwUeq4lOyzzz65E1QKMJ1wwgnx4Ycf5k5M7du3j/Hjx+eAUJKCSWeccUace+658fOf/zyHqZJ0+8ILL+TgUXpcaelXnwFMYaT0/dyOPPLI+Oyzz/J+1l577br1KWy1++67x1FHHZXrLvmaEdwp7NWmTZscpGrXrl1dbXvssUc8+OCDuXPWiiuu+K3PTwpq7bLLLvlcaqUOW+l80nmmrlwpXLXZZpvFJZdcksNS6etaqcPW9OnTcxgMAAAAgMajAxUALKiRfuuOiopDfxQlPbsWuhyaocrSOcfbQDFq2aZ7jNj0rBi6+pHCUwBN1Pbbb18XnkpSl6dk2LBhdeGpJHVYGjRoUMyaNSs++uijHF6qrKyMPffcsy48laRAU+pc1b9//3jggQfi3XffzetT8Cp1sUrj7GrDU0nqRFX/8bVdn1LYKo36qx+eSlKnq7T+1VdfjaeffvprzyuFpVI3qOeee26O2tIIv4ceemi+wlO1533ooYfOsS51tkrrb7jhhvwcJKkrVpICW/Wl79N51w9VAQAAALDw6UAFAAtQ6eI9o+LHu8Tsf98dVQ88VehyaEZmVk8udAlQUD0GrhfDfvCzaNGqY6FLAeAbLLHEEnN8n7o2Jf369Ztn29atW9eN43vxxRfz16NGjZpnu/Ly8hgxYkS8/fbbuYNTGtX35ptvxuDBg+cIa9UPbdXuL6kNPaUOVH/84x/n2f7zzz/Pt+kx6TgNSaMFU9eo3XbbLQYOHBirr756rLHGGjmA1apVq5hfyy23XF0Hq/rPw9ChQ+ORRx7J55W+TiGwFDpL3a0+/vjjfM4pPPbEE0/EBhtskEcbAgAAANB4BKgAYAErqWgRLcauH6VLD4pZl98U8YXOQny7GbMmFboEKIiyirax1Oo/jd5DNi10KQDMh9rA1NzSWLpvG/2XpBF+DenZs2e+nTZtWl3gae4gUq2OHecM206ZMiXfpvBRWr7O5MlfH1jfdttto1u3bnmUXwo6pdvasX477rhjHHHEETno9W169+7d4PoUkKr/PNR2oUoj/a6//vo8ZvDqq6/OnbBqu1MBAAAA0HgEqABgISkbNjBKj9w9Zl1xc1S/8Fqhy6EJqympicoZnxa6DGh0nXqNiGXWPSFat2/4zWYAFh21YaiJEyfm0X5zqw1Npc5Ladxd/WDU3FLIqr62bdvm2xRy2meffb53jWn8X1qmT58eTz75ZNx33315pN5f//rX3Alr//33/9Z9pMc2pDY4Vb+z1Oabbx6nnHJKXYAq3aagVep8BQAAAEDjKm3k4wFAUSlp1yYq9twmyrfbMKLlN38qn+I1q31pVFdVFroMaDQlpS1i8KiDY6UtzheeAigSaWRd8uijjzZ4f+36JZdcMlq2bBlDhgzJI/0++eSTebZ99tlnG9z33Otr/fOf/4wzzzwz3njjjQbv//LLL+Pss8+Ov/3tb3Uj99IIv6OPPrpuJOBjjz02X+fZUA2zZs3K61MwrH///nXr0/djxoyJ559/Pu655558vltuuWWUlZXN17EAAAAAWHAEqACgEZSPHh4tj9ojSpdaotCl0ARVftVkAYpC2y6DYuTWF8aAFXaLkhJ/jgAUiy222CJatGgRF154Ybz44otz3HfOOefkcNOqq64aiy22WF63/fbbR1VVVR5xlwJItW666aZ4/PHH53j8iiuuGAMHDozbbrstbr755jnue+655+KEE06ICy64oK6z1dzSmL4rrrgih6zefPPNOe5799138+3iiy8+X+eZQlDjx4+v+z6N5Dv99NNj0qRJsc0228wzBrB2XN/xxx+fb9M2AAAAADQ+I/wAoJGUdO4QFftsF1WPPR+zrr0zYtqMQpdEE1HZdnZEdaGrgIXfdWrAiN1jiRF7RGlZi0KXA0Aj69OnTxx77LHxy1/+MoejUuelXr16xdNPP52XdP9JJ51Ut/24cePirrvuyoGp119/PUaPHh0TJkyIO++8M3dxSkGlWqWlpXHqqafmMXiHHnpo7h41dOjQ+Oijj+LWW2/NAazf/OY30aVLlwZrS4//6U9/GocffngOMG244YZ5lF46xh133JEft/fee9dt/8gjj+SOWcOGDYv11ltvnlGFJ598cu4olWp46qmn8vkts8wycfDBB89z7FRr796947333osVVlihwfGGAAAAACx8PvINAI2sbJVlo+VP94zS5YcUuhSaiMrW/9dVARZFHXosE6PGXhKDVt5XeAqgiG233XZx8cUXxxprrBEPPfRQ/P3vf4/JkyfHvvvuG1dffXUOUdVKY+zOO++8OOyww6KysjIuu+yyHKRK3aQ23njjefa97LLL5n2kcFbqZpWOk0JOKaB0ySWXxNZbb/2NtW266abx17/+NXezeuCBB/I4v2eeeSY/7sorr4y+ffvWbZv2e9ZZZ8Xtt98+z37S6ME0DjB1nLr00kvj008/jf333z/XkDpdNRTeqj0f3acAAAAACqekJvUSBwAKouqZV2LWVbdHfDG10KVQQG+P+izenXxbocuABa60vFUMWmX/6LfcOOP6AFikpe5YqatWCmClsNd3sdtuu+Ww1n333Zc7WC1I1a+9E5XnXL5A9wkAABRWq9OOKnQJAIskI/wAoIDKhg+N0sH98ki/6sdfKHQ5FEhlqQAdi56ufVeLpdY4Olp3+L9uIgDAnB5++OG8pM5ZCzo8BQAAAMD8E6ACgAIrads6KsZtGlUrLR2zr7o9aj6eVOiSaGQzqycXugRYYCpad40hqx0RvQZvWOhSAKDJOuaYY+KVV17JS+vWrfMYQwAAAAAKxxwNAGgiyoYuERVH7hHlm6wZUdGi0OXQiGbMEppjUVASfYZtE6N3uFJ4CgC+RY8ePeKNN96IJZZYIs4999zo00fHRgAAAIBCKqmpqakpaAUAwDxqJn8Rs667M6qffqXQpbCQ1ZTUxEPDronqqspClwLfW/tuS8XQ1Y+MTr1WKHQpAEA91a+9E5XnXF7oMgAAgAWo1WlHFboEgEWSEX4A0ASVdGofFbtsGVWj347ZV98RNR9+UuiSWEhmtS8VnqLZatGqcwweeWAsttSWUVKiuS0AAAAAANA8CVABQBNWtmT/KD1it6i6/8mYfcsDETNmFrokFrDKToWuAL67ktLy6LvsDjFwxb2jvGX7QpcDAAAAAADwPxGgAoAmrqSsNMrXWjnKVhwWs66/J6offz7CAN5FRmXb2RHVha4C5l/XvqvHkNUOj7adBhS6FAAAAAAAgAVCgAoAmomS9m2jYqdNonr08Jh11e1RM2FioUtiAahsPStiaqGrgG/XpmP/HJzq1m+NQpcCAAAAAACwQAlQAUAzUzqgT1QctktUPfx0zL7xvohpMwpdEv+DmS2mFboE+EZlFW3zqL6+y+4YpWUtCl0OAAAAAADAAidABQDNUElpSZSvNiLKhi8Vs29/KKoefDpi1uxCl8X3UFmq/RRNU0lpWSw2dMsYtMr+UdG6S6HLAQAAAAAAWGgEqACgGStp2zpabLlulK8zMmbf8UhUPfR0xOyqQpfFdzCzenKhS4C5lETPwRvEoJX3jzYd+xa6GAAAAAAAgIVOgAoAFgElHdpFi63H/DdI9XBUPfxsRJUgVXMwY9akQpcAdbr1+0EMGnlgtO+6ZKFLAQAAAAAAaDQCVACwCCnp1D5ajF0/ytcdFbNveyiqHnsuoqq60GXxNWpKaqJyxqeFLgOi82IrxaBVDopOvZYvdCkAAAAAAACNToAKABZBJZ07RIvtN4yy9VaNqlsfjKrHX4ioFqRqama1L43qqspCl0ER69B9mRg08oDouviqhS4FAAAAAACgYASoAGARVtqlY5TuuHEOUs2+9cGofvLFiOqaQpfFf83qVOgKKFZtOw+KQavsFz2WWLfQpQAAAAAAABRcaaELAAAWvtJunaNi3KZRcdSeUbrisIiSkkKXRETMbDu70CVQZNp1GRzLrvvrWHW7y5tVeOroo4+OoUOHxoMPPvi9Hj9t2rQ45phjYtSoUbH88svH7rvvvsBrBAAAAAAAmi8dqACgiJT26BIVP9o8qtdfLWbfcn9UP/NKhIZUBVPZelbE1EJXQTHo2Gt4LLHC7tGt/w+iOVpvvfWiT58+0bdv3+/1+HPOOSeuuuqqHMJaa621ol+/fgu8RgAAAAAAoPkSoAKAIlTas2tU7LJlVL//ccy+5YGofv5VQaoCmNliWqFLYBHXrd8aMWCF3aJT7xHRnKUAVVq+r+eeey7fnnjiibHccsstwMoAAAAAAIBFgQAVABSx0sW6R8XuW0X1exNj9q0PRvXzr0XUSFI1lspS7adY8EpKyqLHoPViwAq7R/uuSxa6nCahsrIy33bu3LnQpQBAoyod3C9anXZUocsAAAAAaPJKC10AAFB4pX16RsXuW0fFz/eJsnVGRrRtXeiSisLM6smFLoFFSGlZy+iz9NgYveNVsdyYkxap8NTRRx+dx+89+OCD+fv09b777huvvfZaHHDAAbHKKqvE8OHDY/vtt49bbrml7nG1Y/uefPLJ/P2YMWPy9xMmTKjb5tprr40dd9wxRowYkfex9dZbx4UXXhizZ88uwJkCAAAAAACFoAMVAFCntEvHKN187SjfaI2oeuqlqLr/yaiZMLHQZS2yZsyaVOgSWAS0aNUp+iy1dfRdbsdo2aZbFIu33347dthhh+jfv3+MHTs2Pvnkk7jpppvikEMOibPPPjuP/Bs2bFgcdNBBceWVV8YHH3wQu+yyS3To0CEvNTU18fOf/zzf161bt9h4442joqIi7rvvvjjppJPi3nvvjfPOOy/Ky/3JBAAAAAAAizrvBgAA8yhpUR7lI5fLS/Vb78fs+5+M6mdeiaiqKnRpi4yakpqonPFpocugGevQfZlYfNnto9egDaK0rCKKzZtvvhk777xzDkGVlJTkdaNHj46f/exncemll9YFqNKSOlelANWuu+4aiy++eN72xhtvzOGpZZddNv785z9Hly5d8vpp06bFwQcfHPfff39ccMEFsd9++xX0PAEAAAAAgIXPCD8A4BuVDlgsKn60WbT85X5RvvEPIjq1L3RJi4RZ7Uujuqqy0GXQDMf09R6yWayy9UUxcpuLYrEhmxVleKpWGt9XG55KUmgqqT+i7+v861//yre/+MUv6sJTSZs2beK4446L0tLSuOKKKxZK3QAAAAAAQNOiAxUAMF9K2reN8vVHR9mYUVH9/Gt5vF/1a+8Uuqxma1anQldAc9KqXe9YfOmxsdhSW0VF686FLqdJ6NSp0xzBpySN5ksqK789nPjCCy9Eq1atYvjw4fPc17dv3+jVq1e8//77MXny5HwsAAAAAABg0SVABQB8JyWlpVG2/JC8VH/4SVQ98FRUPf58xMxZhS6tWZnZdnZEdaGroGkriS6Lj4zFl9k+uvdfM0pKNI+tr2XLlvOsq+1GVVNT862P//LLL6Njx46501RDevbsmQNU06dPF6ACAAAAAIBFnAAVAPC9lfbqFqVj14/yTdeMqseez2Gqmo8+K3RZzUJl61kRUwtdBU1Ry7Y9oteSG8diQ7eItp0GFLqcRVa7du1i0qRJuVtVRcW8YxA///zzfCs8BQAAAAAAiz4BKgDgf1bSqmWU/2ClvFS9+lYOUlW/+EZEVVWhS2uyZraYVugSaEJKy1tGjwHrRO8hm0WXxUfpNtUIll566XjwwQfjiSeeiNGjR89x38SJE+Ott97Ko/xat25dsBoBAAAAAIDGIUAFACxQZUMG5KVm+oyoeu4/Uf3Uy1H9n7cjqs2rq6+yVPspIjr1GhG9h24WPQeuF+UV7QpdTlEZO3ZsDlCdfPLJ8be//S26dOmS16eRfccee2xUV1fH1ltvXegyAQAAAACARiBABQAsFCWtW0X5yOUiRi4XNVOnR9Wzr0b10y9H9evvRFTXRLGbWT250CVQIK3b94leQzaN3kM2jTYdFi90OUVrs802i/vuuy+uueaa2HzzzWPttdfOo/zSunfffTdWX3312GeffQpdJgAAAAAA0AgEqACAha6kbesoHz08YvTwqPliag5TVT39ctS8MSGipjjDVDNmTSp0CTSiFq06RfcBa0fvJTeJTr1XjJKSkkKXRETuPjVy5Mj4xz/+ETfccEP+uQwaNCh233332GmnnaK01ChFAAAAAAAoBiU1NUX6riUAUHA1n38RVc/8N0z19nsRRfJbSU1JTTw07JqorqosdCksRC3bdI/uS6wbPQauG517jYiS0rJClwQAAAAAAEADBKgAgCahZtKUqHrmla/CVO98EIuyyg4l8WjvywtdBgtBq/aLRY8UmlpiTHTsuZxOUwBAQVW/9k5UnuP3TgAAAODrtTrtqEKX0CQY4QcANAklnTtE+dqr5KX6s8+j+umXvwpTTZgYi5pZnQpdAQtSm04DcmCqxxLrRIfuwwpdDgAAAAAAAN+RABUA0OSUdukYpeuOivJ1R0X1x59F9bOvRvUrb0X1W+9FzK6K5m5m29kR1YWugu+rpLRFdOq1QnTtOzq69f9BtOs8sNAlAQAAAAAA8D8QoAIAmrTS7l2idMyqEWNWjZrKWVH95oSvwlT/eTtq3v8oohkOI65sPStiaqGr4Lto07F/dO27anRdfHR0XmzlKGvRutAlAQAAAAAAsIAIUAEAzUZJRYsoG7pEXpKaL6flIFX1q29F1atvR0yaEs3BzBbTCl0C36Ksom10WWxk7jKVltbtFyt0SQAAAAAAACwkAlQAQLNV0q5NlI0YlpcWEVH98aQcpqp+9e2ofu2diOkzoimqLNV+qqkpLWsZHbovHZ0XWzF3merQc7koLfWrMgAAAAAAQDHwrhAAsMgo7d45L7H6iKipromaCR9+1aHqrfei+q33I6ZOj6ZgZvXnhS6h6LVo1Sk69RoeHXuuEJ16rRAdug+L0rIUwwMAAAAAAKDYCFABAIukktKSKOnXO0r79a5blzpU1bz9/leBqrffj5oPPo6ormn02mbM+qzRj1nsWnfom4NSnXqvEJ16Do+2nb8aAwkAAAAAAAACVABA0cjdqbp3jrKVl8nf18ysjOp3PvhvqOr9qH5vYsTnXy7UGmpKaqJyxqcL9RjFrmXbHtG+65Bo13VodOi+VA5OVbTuUuiyAAAAAAAAaKIEqACAolXSsiLKluwfkZb/qvlyWlS//3HUvP9RVL//UdS891HUfPRpRFX1AjnmrPalUV1VuUD2VexKSsqiTcd+0b7b0ByWat9tSLTvOjQqWncudGkAAAAAAAA0IwJUAAD1lLRrE2VD+kek5b9qZldFzcRPoub9j3OXqpqJn0ZNGgc4aUpEzXcbATir00IoepFXkrtKtenYN9p2GhDtug75KjTVZXCUlbcqdHEAAAAAAAA0cwJUAADfoqS8LEr69Izo0zPKVlm2bn3N7NlR88nkqPnos6j5ZFLUfPxZVKdg1ceTIr6Y2uC+ZradHbFgmlktcipad80dpb5a+kbr2q87LB5lLVoXujwAAAAAAAAWUQJUAADfU0l5eZT06haRlrnUzJj5Vahq0he5U1XN5Clfdazq8kG0nNIzKqd9EjXVVVEsSstaRss23aKibbdo1aZHVLTtHi3bdI9W7XrlsFQKSpVXtC10mQAAAAAAABQhASoAgIWgpFXLKFm8V0Ra6lksL/tFTU11VE7/LGZO/firZdrHMWvG5Jg1c0peZufbL2L2zM/z7ayZn0f17BnRVJSWt4zyinZRXtH+v7ftokVF+2jRqlO0TOGo/wakam9btOpY6JIBAAAAAACgQQJUAAAFUFJSmjsypSW6D5uvx1RXzaoXrpoSVbOm5nXV1bOiuqoyaqpm/9/X+fa/S3XtfbOjpLQsSkvK8m1JaflXtyXldV+X1q376v7yFm2/Cki1/L+gVFpKy1os9OcIAAAAAAAAGoMAFQBAM5FCSy3bdM0LAAAAAAAAsGCULqD9AAAAAAAAAAAANDsCVAAAAAAAAAAAQNESoAIAAAAAAAAAAIqWABUAAAAAAAAAAFC0BKgAAAAAmpl33303rr766kY51ksvvRS33XZboxwLAAAAAApBgAoAAACgGXn55Zdjk002iQceeGChH+uee+6JbbbZJp5//vmFfiwAAAAAKBQBKgAAAIBm5PPPP4/KyspGOdann34a1dXVjXIsAAAAACgUASoAAAAAAAAAAKBoCVABAAAANBNHH3107LLLLvnrf//73zF06NC46qqr8vcTJ06M4447LtZZZ51YdtllY4011ohjjjkmJkyYMM9+XnrppTjooIPqtl1zzTXjpz/9abz11lt12+y888758cm5556bj/XII49855pTfemxp59++jz3pXX1zyGZPXt2nH/++bH11lvHiBEjYsUVV4ztttsu/v73v0dNTc08+0ijDPfYY49YZZVVYvnll4/NN988/vKXv8SsWbPmee7SsZ544onYdttt83mvu+668e677+b7r7jiithhhx3yflZYYYXYYost4rzzzpuvbl/peUn7TnXfdNNNuYZUS9r/73//+5g6dWrdtmmbtO1ZZ53V4L522mmnXNtnn332rccFAAAAYMEQoAIAAABoJtZbb70cLEqGDBmSQ1DDhg2L119/PbbZZpu4/PLL8/pdd901Vlpppbj22mtj7NixOTBV64033sghnYcffjhGjx4du+++ew7sXHfddTlA9NFHH+Xt0nHGjBmTv1555ZXzsfr06bPQz/GXv/xlDh21atUqdtxxx3xen3zySRx//PHzhLD++te/5vDUiy++GOuvv3786Ec/itLS0jjllFNiv/32y2GsuR1yyCF53ykgls67b9++cfbZZ+fjTps2LR8vHbeqqipOO+20uhDZ/Lj11lvjsMMOi969e8e4ceOiQ4cOOTCVjjVz5sy8zVZbbRVlZWX5+Z7b22+/HU8++WSsvfba0aVLl+/1/AEAAADw3ZV/j8cAAAAAUKAAVfv27ePqq6/OXYwOPvjgvD6FflLHotQpKoVvaqWQVApIHXXUUTmwU1JSEv/85z9j+vTpMX78+BygqnXOOefEH/7wh9wNKoWP0j6TO+64Iweoao+1MH355ZdxzTXX5ONdeumldetTeGvjjTeOiy++ONfRokWLePnll+PUU0+NwYMH5/W1gaPUpernP/95XHnllfkc99prrzmOkQJTF110UQ5a1UqPT+vTuad9J4cffngOkV1//fX5+evZs+e31v/cc8/lwNVuu+2Wv08BriOPPDJuvPHGHPbaf//9o0ePHrnj11133RVPPfVU7rJVK/1ck9rnHgAAAIDGoQMVAAAAQDP27LPPxgsvvJC7RdUPTyWrrrpqXv/qq6/G008/ndfVjsFLo+zqj8RLoZ+777479tlnnyiUVE91dXV88MEHc4we7NSpUw5E3XfffXUBpzRyL22bgk71uzWlkFgaR5gCUiksNreNNtpojvBU7XEnTZqUO3nVqqioyKGnxx57bL7CU8nAgQPrRiwm5eXleXRguq0NRyWpK1iSwmL1a0ght27duuWAFQAAAACNRwcqAAAAgGYsdT1KUgeqP/7xj/Pc//nnn+fbNOYudTuqHfWXtr3ssstitdVWi9VXXz2HdtLouUJK3bW22GKLPHpwgw02iOWXXz7XtsYaa8Tw4cPnCD7VnveDDz6Yz21ubdu2jbfeeiumTp2av66VOk3NLY3bSx240ni9NBIxPSfpmKkTVm1ga36MHDlynnBWCl/16tUrj+dLHbbatWuXg25du3aNm2++OXfLSmGt1C3svffeyyMJU+AKAAAAgMbjf2MAAAAAmrEpU6bUdZRKy9eZPHlyvh0yZEjuzPTnP/85d5xKXY/SUlZWFuuuu24cd9xxuQtSoZx00kk5OJXG6aWuWWnM3VlnnZWDSKnbVAo51T/vSy655Bv3l7arH6Bq3br1PNsceuihMWDAgPjHP/6Rj5cCWRdccEHufLX33nvPMwbw63xdAK179+65o9YXX3yRA1QplJWCYn/729/yzyCFxWq7UdV2pwIAAACg8QhQAQAAADRjteGgI444Yr7H7y255JJxyimnRFVVVR7/l7o4pa5Pt912W+7YlII9C0oaqZfUHxdYa/r06fOsS92XfvSjH+UlddVKnZlSyOjGG2/Mo/kWX3zx3Bmq9rwfeOCBBRL42nLLLfOSQk5pbN8999yTg2Wnnnpq9OjRIweevk1D55OkfSadO3euW5eCUul5vv7663NHqltvvTUHxwYPHvw/nwsAAAAA382cPcUBAAAAaNJqA0m1ll566Xz77LPPNrh96jZ15plnxhtvvJG/T+P7TjjhhBxoSl2nUmhnv/32iyuvvDLatGmTw0Nfd6zvo3YEXgpmzS2Ntavv9ddfj9///vdx11135e+7dOkSm2yySQ57pRqTxx9/PN+mUXvJM888M89+Z86cmTtZpYBSQ8Gt+iZOnBh/+MMfcser2jGCqRPX8ccfH8cee2xeV/85+SYN/QxSCCyNElxqqaWiVatWc4TY0nN/33335fOdNm1abL311vN1HAAAAAAWLAEqAAAAgGYkdWhKZs2alW9XXHHFGDhwYO4edfPNN8+x7XPPPZfDUrXj6GrDQGns3b///e85tv3kk09y8Ch1ePq6Y30fgwYNqusUVVlZWbc+jee7//7759i2tLQ0zj///Dj99NNjxowZc9yXRuAlffv2zbfbbrttvk3hqo8++miObc8444y48MIL8zi+bwuBpU5Wf/nLX/IxU9ipvnfffXeOY36bhx56KP8caqXn7cQTT4zZs2fH9ttvP8/2qQtVCk799re/jZYtW8Zmm202X8cBAAAAYMEywg8AAACgGendu3e+vffee3PwZsyYMXnM3O677x6HHnporL766jF06NAcKkpj4VKI5ze/+U3u5pQceOCB+bFpHN5NN92UA06TJ0+OW265JXdr+slPfjLPsdIouxRESiPuhgwZ8p3qTZ2iRowYkcNMKTC05pprxocffphrS+GvRx99tG7bJZZYInbaaae47LLLYuONN4511lknd21KXaZS56m0nw022CBvmx57wAEHxDnnnBObbrpp7hrVtWvXeOKJJ3I4q0+fPnHMMcd8a33t2rWLgw8+OH73u9/l/ay//vrRoUOHeOWVV3J3qP79+8cOO+xQt/3tt98eL730UowcOTJGjRrV4L7SzyQdPwWqXn311VhrrbXyec0tBabSz+a9997Lx07HBQAAAKDxCVABAAAANCMp1HTEEUfE+PHjcyep1q1bxyGHHBJXX311nHfeeTn0k0JJnTt3zmGqvfbaK1ZeeeW6x6duVWmMX+r0lEJJqQtUGt230korxd57751va6XH7brrrnnf6VgDBgz4zgGqJIWcUleoO+64Iy666KIYPHhw7syUjls/QJX84he/yOPu/vWvf8UNN9wQ06dPz12xUjBpjz32qBsJmKTA2HLLLRcXX3xx3nfqcLXYYovl7fbcc8/o1q3bfNWXzjsFni699NIckJoyZUr06tUrn3saHdixY8e6bdP96fk46KCD5glQrb322nld6miVfg6p7qOOOirvJ3XXmlsKXKVwVQqvbbPNNt/5eQUAAABgwSipSR8tBAAAAAC+l0ceeSR22WWX2HzzzXMnq+8iddRKI/5SMKuhkNX/ovq1d6LynMsX6D4BAACARUur044qdAlNwoL9XxkAAAAAYL6kTlZvv/12HhG4oMNTAAAAAMw/I/wAAAAAmC+pS9JLL70039uPHDlynjF3RB4v+Mknn8Qrr7wSPXv2jHHjxhW6JAAAAICiJkAFAAAAwHwHqFLXpPl10EEHCVA1oFu3bvH444/HcsstF7/+9a+jffv2hS4JAAAAoKiV1NTU1BS6CAAAAABgwap+7Z2oPOfyQpcBAAAANGGtTjuq0CU0CaWFLgAAAAAAAAAAAKBQBKgAAAAAAAAAAICiJUAFAAAAAAAAAAAULQEqAAAAAAAAAACgaAlQAQAAAAAAAAAARUuACgAAAAAAAAAAKFoCVAAAAAAAAAAAQNESoAIAAAAAAAAAAIqWABUAAAAAAAAAAFC0BKgAAAAAAAAAAICiJUAFAAAAAAAAAAAULQEqAAAAAAAAAACgaAlQAQAAAAAAAAAARUuACgAAAAAAAAAAKFolNTU1NYUuAgAAAAAAAAAAoBB0oAIAAAAAAAAAAIqWABUAAAAAAAAAAFC0BKgAAAAAAAAAAICiJUAFAAAAAAAAAAAULQEqAAAAAAAAAACgaAlQAQAAAAAAAAAARUuACgAAAAAAAAAAKFoCVAAAAAAAAAAAQNESoAIAAAAAAAAAAIqWABUAAAAAAAAAAFC0BKgAAAAAAAAAAICiJUAFAAAAAAAAAAAULQEqAAAAAAAAAACgaAlQAQAAAAAAAAAARUuACgAAAAAAAAAAKFoCVAAAAAAAAAAAQNESoAIAAAAAAAAAAIqWABUAAAAAAAAAAFC0BKgAAAAAAAAAAICiJUAFAAAAAAAAAAAULQEqAAAAAAAAAACgaAlQAQAAAAAAAAAARUuACgAAAAAAAAAAKFoCVAAAAAAAAAAAQNESoAIAAAAAAAAAAIqWABUAAAAAAAAAAFC0BKgAAAAAAAAAAICiJUAFAAAAAAAAAAAULQEqAAAAAAAAAACgaAlQAQAAAAAAAAAARUuACgAAAAAAAAAAKFoCVAAAAAAAAAAAQNESoAIAAAAAAAAAAIqWABUAAAAAAAAAAFC0BKgAAAAAAAAAAICiJUAFAAAAAAAAAAAULQEqAAAAAAAAAACgaAlQAQAAAAAAAAAARUuACgAAAAAAAAAAKFoCVAAAAAAAAAAAQNESoAIAAAAAAAAAAIqWABUAAAAAAAAAAFC0BKgAAAAAAAAAAICiJUAFAAAAAAAAAAAULQEqAAAAAAAAAACgaAlQAQAAAAAAAAAARUuACgAAAAAAAAAAKFrlhS4AAAAAAFgwrrnmmrjooovizTffjFatWsXqq68eP/7xj6NPnz6FLg3mcdlll8Vxxx33tfc/9NBD0aVLl0atCRpy2GGHxZNPPhn33nvvPPdNmzYtLrjggrjhhhvigw8+iG7dusWmm24aBxxwQLRu3bog9cK3vW7T7wY33nhjg49bcskl4/rrr2+ECiFi6tSpcd5558Wtt94a7733XrRo0SKWXnrp2HXXXWP99defY9tJkybF2WefHXfddVd8/PHHsdhii8XYsWNj9913j/Jyb3nT9F6z22+/fTzzzDMN7mfttdfO+4HGMHny5Px6u/POO/Pvq127do0xY8bk31fn/ntrUpFfaxf9MwQAAACAInD66afHueeeG4MHD45x48bl/xhNb47ef//98c9//jP69u1b6BJhDi+99FK+3W233aJdu3bz3C98QlNw1llnxU033RQ9e/ac577KysrYb7/94pFHHok11lgjNthgg3j66afj/PPPj8ceeywHWisqKgpSN8Xtm163tdffjh07xs477zzPfYKrNJYvv/wy/876yiuvxDLLLJO//uKLL3Iw5aCDDorDDz889t1337ztlClT8uv1tddey9fafv36xQMPPBC/+93v4rnnnoszzzyz0KdDEfgur9nq6up49dVXY/HFF4+tttpqnn0NGDCgAGdAMUqv0fRaff3112P06NE5OPXGG2/ExRdfHLfcckv84x//iN69e+dtp7jWClABAAAAQHP38ssv5/DUSiutFOPHj697w37jjTfO/5l/4okn5vuhqb1uU6e0n/70p1FaWlrocmAOM2fOjBNOOCEHUL/O5ZdfnsNTe+21Vxx55JF169M1N4WnLr300vxpfWhKr9vp06fH22+/HauttlocfPDBjVof1PfnP/85B1F23HHH3JGypKQkrz/00ENzt5M//OEPsdFGG0X//v1zN5T//Oc/ceyxx+YgQG0ntdRpLQUAUoAlvdkPTeU1mzoCp+tt6gjsWkuhQ9UpPJVeh+n/Bmpdcskl+XeGFIr6zW9+k9ed7Vob/ioFAAAAgGYuvVGfHHjggXN0O0ljJFZZZZW4++67Y+LEiQWsEOZU+6n8NCpKeIqmJo03SQHUFEJZa621vna72g5T+++//xzr05tMqYNaClhBU3vdpmtvugYPHTq0UeuDuaUuaSmAcsQRR9QFUZLUOW2nnXaKqqqquOeee2LGjBl1HVJScKVWWVlZHHXUUflr11ua0ms2SUGrxLWWQpswYUIeMb3nnnvOsX7LLbfMt0899VS+da39ir9MAQAAAKCZe/jhh6O8vDyHpea26qqrRk1NTd4Gmoq33norfyp/qaWWKnQpMI9//etfMXXq1Pzp+/POO6/Bbd5777149913Y/nll59nBGXbtm3z+vQ6//DDDxupaord/Lxu649Pdf2l0HbdddccOO3QocM899V+ICC9pp999tmYNm1ajBw5cp7QdRpRnUakpbGpKbwCTeE1m7jW0lSkrlJpDN/c49FTV6qke/fu+da19itG+AEAAABAM1ZZWRnvv/9+9OnTZ47uU/X/szN54403ClAdfP34viR9ej+NhXj88cfj888/jyFDhsRuu+0Wm222WaFLpMjfID3llFPmCUbVl8JRSb9+/Rq8P11703i/dO3t1avXQqsVvsvrtv6b+ul3h5133jlfj1PQOo0BTp0sU/gPGsMPf/jDBten12MaE1XbvWd+rrepw0pa0ug0KPRrtv619sUXX4zf/va3eSxa+lstjU895JBDYokllmjEyuH/pL+50oerTj755PwhrAMOOCCvd639ig5UAAAAANDM/wM0/ad9x44dG7y/ffv2+faLL75o5Mrg2wNUaUzEp59+GltssUUeOZk+CZ3Gopx22mmFLpEiNmrUqG8NoUyePDnfdurU6RuvvVOmTFkIFcL3e93WHyuVOlJ07do1tttuu1hxxRXz2Klx48bFXXfd1QjVwtf7+9//njuhpDfrf/CDH7je0uxes/V/1z399NNj4MCBeSRa+qDAjTfeGNtuu23eHhrbZZddljtMpRDfxIkTc/B69OjR+T7X2q/oQAUAAAAAzdisWbPybUPdp+qvnzlzZqPWBd8khf5S17SDDz44tt5667r1aSTaTjvtlMdPrbnmmrHyyisXtE74Oq69NFetWrXKnSPOPPPMOUZLpQDVfvvtF0cffXTccccd8xXGggUthUtOPPHE3BUldUdp0aJF7raauN7SXF6zaQxajx49ckj1T3/6Uyy22GJ1219++eV51OqRRx6ZH1tWVlbQ+ikuXbp0ib333js+/vjj3DXtJz/5SXzwwQex1157udb+lw5UAAAAANDM3wit/2b+3Gr/I7RNmzaNWhd8k9Rl6s4775wjPJWkT+6nT0Qn1113XYGqg2/XsmXLOa6xc6td37Zt20atC77N+PHj85um9cNTyVprrRWbbLJJ7kBx9913F6w+iruLT/r9IEkjz2pD1PP7u67rLU3lNZv+7rrqqqvi2muvnSM8laROVCNGjMjj0nShorFtuOGGOTSVXq///ve/c6Dq1FNPjeeee8619r8EqAAAAACgGUsdIkpLS792RF/t+tqW+9DULb/88vn2nXfeKXQp8LVqx5t827VXFx+aE9dfCqG6ujp37jn++ONzF58zzjgjNttss7r7a8dUf93YKNdbmtpr9tu41tIULL744rnzVJI6T7rWfsUIPwAAAABoxlIr/dS15/3338+fFk1jI+pLI9GSwYMHF6hCmPdNpxdffDGPNxk5cuQ896f1Se2noKEpGjhw4De++Vm73rWXpuTLL7+M1157LV9f5+5AlUyfPj3fuv7SWFJHk9TBJ3VFS8HUs88+e57xvfNzvU0df+bu9AOFes1OmjQp3njjjdzdZ4kllphnH661NObr9bHHHouqqqo8Hn1u6f8Rks8++yx+8IMf5K+L/VqrAxUAAAAANHMphJLCU08++eQ89z300ENRUlISK664YkFqg4bsvPPOscsuu8Snn346z32PP/54vl1uueUKUBnMn549e0b//v3z+J3a0F+tqVOn5lEo6f5u3boVrEaYW3pDf4cddsjjexqS3mSt3x0FFqb0hv6hhx6agyipE8pll102TxAlWXbZZfPIqEcffTSHsOf+oMB7770XK6ywQpSVlTVi9RSj+X3Npr+/xo0bl7tUzS29htPfbOnvM7/r0hgBqr333jsOP/zwBsdOv/DCC/k2Bf1ca78iQAUAAAAAzdzYsWPz7emnnx4zZsyoW3/bbbflMMq6664bvXr1KmCF8H/SyMmNNtooampq4tRTT53jP+hffvnlOO+88/Knm7fddtuC1gnfJr1GUxeJNLqnvvR9Wp/ePIWmJL052q9fv/jPf/4T//rXv+a476qrror7778/lllmmVhppZUKViPF4/zzz48777wzdzP5+9//Xtdpam4tW7bM49EmTJgQF1100RxhllNOOSV//cMf/rDR6qZ4ze9rNnX6SePT77333njggQfmuC91rEqdANdff/1FvpMPhZfG7Y0ZMyaP3zvrrLPmuO/555+P8ePH57+70jXWtfYrJTXpr1QAAAAAoFn71a9+FZdeemkMGDAg/yfpxIkT46abborOnTvH5ZdfXteeH5qC1Hlqp512irfffjuWXnrpGDVqVH7N3n777TlQlcKAG2ywQaHLhGzo0KG541R6I7S+9En+HXfcMX96P3UCTJ/Kf/rpp/Mn91NHir/97W95zCo0pddtClbvtddeOeS31lprxaBBg3J49cEHH4zu3bvHxRdf3ODIKViQJk+eHOuss07u4Jd+bx02bFiD26Vr6ejRo/N4qRRaTR1Q0uPSeNT0mk3X34033jj/3pA6+kBTec3eeOONdd3+Uliqd+/e8dRTT+XfE1Lw6pJLLomuXbs28llQjD788MP8d9f777+fA9LDhw/PX99xxx35upmun+utt17e9jPXWgEqAAAAAFgUpP/mSwGqK664It56663o1KlTDqWkMRPCUzRFn3/+efzpT3/KndJSeCqNjFhllVViv/32y11SoKkHUZIvv/wyf6L/5ptvzsHA9AZpeoMpjUtJn/qHpvi6ff3113MXlIcffjimTJmSR02uvfbaceCBB+YQFSxsKTCdXm/fJv1O8OMf/zh//dFHH8Uf/vCHuPvuu3M3lTRCbZtttskjgYVVaYqv2RSWOvfcc/PIvhS8Sh2nNtxww9h33339jkCjSsGoc845J4em0rW0Q4cO+f8K0ut1qaWWmmPbj4r8WitABQAAAAAAAAAAFK3SQhcAAAAAAAAAAABQKAJUAAAAAAAAAABA0RKgAgAAAAAAAAAAipYAFQAAAAAAAAAAULQEqAAAAAAAAAAAgKIlQAUAAAAAAAAAABQtASoAAAAAAAAAAKBoCVABAAAAAAAAAABFS4AKAAAAAAAAAAAoWgJUAAAAAAAAAABA0RKgAgAAAAAAAAAAipYAFQAAAAAAAAAAULQEqAAAAAAAACgajzzySAwdOjQvt99++zduO378+Lzd0UcfHU3FhAkTck0rr7xyLEqefPLJGDduXIwYMSJWWGGF2GGHHebr57juuus2Wo0AwKKrvNAFAAAAAAAAQCH88pe/jBVXXDG6dOlS6FKK2pdffhn77LNPfPHFFzFkyJAYNGhQ9OvXr9BlAQBFRIAKAAAAAACAovTpp5/GscceG3/84x8LXUpRe+2113J4qmvXrnHVVVdFixYtCl0SAFBkjPADAAAAAACg6KSuUxUVFXHrrbfGtddeW+hyitrMmTPzbffu3YWnAICCEKACAAAAAACg6PTo0SN+/OMf569//etfx8SJE+f7sUOHDs3LlClT5rlv/Pjx+b6jjz66bt0jjzyS16WRge+++24cccQRseqqq8YKK6wQ2223Xdx99915u/fee6/uvjRacPvtt6+7ryGffPJJHHPMMTF69OgYPnx4jB07Nq644oqoqqpqcPtXX301jjzyyPjBD34Qyy67bKyxxhr5eKkD1NxS/anm+++/P3+dal155ZXj+OOPn6/n6Pbbb48999wzRo4cmY+17rrr5m5fEyZMmOe53GWXXfLXL7/8ct1zO/d238VNN90Uu+22Wz6/dOy11147n/dLL700z7Zvv/12Pr8NN9wwll9++VzvzjvvHFdeeWXU1NTMsW06h1RbQ/tJ55vuS4+d22effRannHJKPsZyyy0Xq6yySuyxxx5xzz33NFj/888/H4ccckist956uf70ethrr73yMQCAhUOACgAAAAAAgKKUQjYpFJSCUD/72c8W+vHeeOON2GabbeLhhx+OlVZaKfr27RvPPvts7L///vHPf/4z35fCViNGjIh+/frFM888E/vuu2+DQZvKysrYYYcd4oYbbsihnBT8+c9//pNDWikYNnf4J4WK0v6vu+666NSpU6yzzjq549P111+f1991110N1pzCZTfffHOsttpqsfjii8fgwYO/9TxTDQceeGA89NBDseSSS+bgUVlZWVx++eWx5ZZb5nOstfnmm+d9Jx07dszfp6VNmzbf4xmOOP/88+Owww6Lxx9/PAYNGpSP3bZt23zeKZD2xBNP1G375ptv5tDZ1VdfnbuRpaDV0ksvHU8++WR+PZxwwgnxv0rhtK222ir+8pe/xIwZM3Koa9iwYfHoo4/GPvvsE2ecccYc2z/22GOx4447xi233JKfj1T/wIEDc5AtPadpPwDAgle+EPYJAAAAAAAATV5paWmcfPLJscUWW+SAyt///vcYN27cQjteCsekkM6ZZ54ZLVu2zCGnFIq544474he/+EXuOPS73/0uWrdunbdP61Kw6rLLLou11lprnrF36fEpAJXCVrWBoF133TWHb1IHpW233Tavf+utt+KnP/1p/vqss86K9ddfv24/KRyVulClJYWsevbsOcdxUieotK/UXSmprq7+xnNMIanUBatbt245zLTMMsvUPe7Pf/5znHbaaXHwwQfn46Yxiul8U6DqwQcfjN69e+fvv68UKvvTn/4U5eXlcc0118wR9krHPe+88/L9F1xwQV6XwkhffPFFDqkdfvjhddumDlMpxJSe9/322y93K/s+Zs+enc81dTdLx0hdpVJtSQq7pQ5dqZ7U+SoFpZJzzjknZs2aFb/61a9yQK7Wfffdl7tQnX322bljl1GHALBg6UAFAAAAAABA0UpdoGrH7Z166qnxzjvvLNTj/b//9/9yeCopKSmJzTbbrO7r4447ri48lWy66aZ1AaiGpPF9teGpZIkllsjrkksvvbRu/YUXXpgDVymwUz88lWy00UZ5jODUqVNzgGxuaTxgbXiqNnT2TWo7JKUuVLXhqdrHpRBR6nz1+eef56DVgpbCUNOmTcvdpOYOPaVuT6mrVAqY1aod25heA/WlDlEnnXRSHruX9vV93XbbbbnrWBrHmAJateGpJHXmqn3dpWDZ3DXV/7kmaexi6oiVOoJ93YhGAOD7E6ACAAAAAACgqKVOP2uuuWYO36ROTd/WZen7SiPz0hi8+lIXpiQFftL99aURbrWdleaWxtLNHYZKUkApjctLXZRSoChJo/Rqw1ANSY9J6o/Wq5VG2s2vDz/8MAfQUghszJgxDW6TxvMlaYzhgta1a9ccTEo/x6233jr+8Ic/xFNPPZUDR+3atcvhqRREqjVq1Kh8m7o9peBZ6oqVwl214bVUaxp3+H192/OeuoqlYFka1Th9+vQ5ajrooINyXXfffXc+nySNINxkk02iVatW37smAKBhRvgBAAAAAABQ9E488cQcmHnyySfziLfUsWhBqw1E1Zc6TyWdO3f+2vsaMncQq1YK16RQ1scffxwfffRRtG/fPj744IN8X/3uSw15//3351n3XQJE6XhJGsVXv9tSfbXdnmq3XdDOOOOMPDYvdX5K4/DSkp6DFJzacsst8wjFWrvttlu8/vrrcdVVV9UtKdA0fPjw2GCDDXJgKQWvvq/a5z2N3UvLN0nPR//+/fMoxfRzSMGp1EUsLWlc38orrxwbb7xxDob9L12xAICGCVABAAAAAABQ9FIHqDR2Lo1aO/PMM3N3oO/jm7pXfV2o6PuoHQPYkJqamjmOV1tTGteXwjhfp02bNt8pxPV1x/0mtePnFlYIaPDgwXHDDTfkblp33XVX7nT16quvxo033piXFJL73e9+V/f8/OY3v4n9998/j9t78MEHc4Auda1Ky/jx4+Oyyy6LPn36zPd51Vf7vK+yyirRq1evb3x87c8lBbbOO++8ePnll+OOO+7IXaxSh6p0m5ZLLrkkh6o6dOjwPZ8hAKAhAlQAAAAAAADw37FtKUhz00035VF+m222WYPbpVBRCgvNnj17nvtqR8AtbBMnTmxwfRr39tlnn+VwUAqFJWk04HvvvRc//vGPY8CAAQutptrjpc5L6blpKDCWRvwl3bp1W2h1pC5SaWxe7ei89Hxcd911OTj173//O3beeefcZapWv379Ys8998zLrFmz4tFHH42TTjopXnvttTj//PPj+OOPnyNM1tDPfcqUKV/7fGyxxRa5m9V3sdRSS+XlwAMPjBkzZsR9992XR/qlMNjll1++UDqkAUAxKy10AQAAAAAAANBUHHfccTlw9NJLL8VFF130jZ2a0pi8uaUORo0VoHrllVfmWX/LLbfkzkfLL798tG7dOq8bNWpUvk0djRpy4YUX5rDYaaed9j/VlEb3pRF906dPjzvvvLPBbVJ3qGTVVVeNBe3ZZ5/N57HvvvvOsT6NNEzj+kaMGDHHqMIUQkrPzYcffjhHJ6jVV189h6nqj+H7Pj/3kSNHfuPz/txzz8X6668f++23Xw5lpaDUDjvskMcNVlZWzjGWMW1XG8KqXxMAsGAIUAEAAAAAAMB/derUKU488cRv7PKUOgMlacRb/bF1abRa6l7UWI4++uj49NNP675PY99OOeWU/HVtACjZddddczeoP/7xj3HzzTfPsY8nnngijyz8z3/+E0OGDPmfa9pjjz3ybeqWlEJotdLzlEbT3XPPPdGxY8fYcsstY2GM70udtu69994cJKsvnd8LL7yQu1Mtu+yyeV3Xrl1j8uTJcfLJJ88RWEpfpy5kSQqizf1zT2P06nehuv3223OHq7ltsskmOVR29913xxlnnJG7W9X66KOP4mc/+1nuyJU6VaWfTwpKpdGG6b7f//73c4wF/PLLL+uCWPVrAgAWDCP8AAAAAAAAoJ611lortttuu/jnP//Z4P177713PPXUU3HVVVfFM888k4M7KaDzxhtvxDbbbJPXL2x9+vSJTz75JDbYYIPc6WjmzJk5vJVCOnvttVest956cwR/jj322Nxd69BDD41BgwbFwIED8+OffvrpHG4aN27c144s/C522mmneP755+PKK6+MsWPHxkorrZQ7QL344os5LNS+ffvc6apnz56xoKUOUWnc3pFHHhmHHHJILL300rkjVgpJpaBYCj0dcMABeV1y+OGHx0MPPZTDUo8//nhdsCrVn7pMpUBZCp/VSl2sUjDrgQceyM972n7ChAk5mNXQz71ly5Y5nJZeL3/605/yc5JqSnU89thj+WeWRgkeddRRdY9JP6cdd9wxh/PSOMlhw4blQFf6OaUxgalz14L4OQEAcxKgAgAAAAAAgAa6O6VwTQrIzG2dddaJv/zlL7mjUhobl0aqLbPMMnHMMcdEhw4dGiVAlTplpY5SqeNUCvSkUE4K9Oy+++6x4YYbzrN9Gv+WwjgpmJOCVqkrUufOnWP06NHxwx/+MMaMGbNA6iopKYmTTjoph9Auv/zyHEZKo+lSJ6Zddtklh5BS+Gth2WKLLfJzc/HFF+cReWnMYQptpfNMIbF11123bts0qvGKK66Ic889N+6///68pE5Q/fr1y0Gw9FzWju1L0s84dRk7++yzcyArddNK4blTTz0177+hn3vqFpW6U6XXS9r+wQcfzPtM4axUa/q5pM5TtdL+Uk3ptZVCVukxqStVCr1tvvnmua40ZhAAWLBKaur3FQUAAAAAAAAAACgipYUuAAAAAAAAAAAAoFAEqAAAAAAAAAAAgKIlQAUAAAAAAAAAABQtASoAAAAAAAAAAKBoCVABAAAAAAAAAABFS4AKAAAAAAAAAAAoWgJUAAAAAAAAAABA0RKgAgAAAAAAAAAAipYAFQAAAAAAAAAAULQEqAAAAAAAAAAAgKIlQAUAAAAAAAAAABQtASoAAAAAAAAAAKBoCVABAAAAAAAAAABFS4AKAAAAAAAAAAAoWgJUAAAAAAAAAABA0RKgAgAAAAAAAAAAipYAFQAAAAAAAAAAEMXq/wPkHAOUIO5xYgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Create visualizations with high-resolution settings\n", + "fig, axes = plt.subplots(2, 2, figsize=(16, 12), dpi=150)\n", + "fig.suptitle('Code Quality Analysis Dashboard', fontsize=18, fontweight='bold', y=0.98)\n", + "\n", + "# 1. Total issues by tool\n", + "tools = list(summary_stats.keys())\n", + "issue_counts = [summary_stats[tool]['total_issues'] for tool in tools]\n", + "\n", + "axes[0, 0].bar(tools, issue_counts, color=sns.color_palette(\"husl\", len(tools)))\n", + "axes[0, 0].set_title('Total Issues by Tool')\n", + "axes[0, 0].set_ylabel('Number of Issues')\n", + "axes[0, 0].tick_params(axis='x', rotation=45)\n", + "\n", + "# Add value labels on bars\n", + "for i, v in enumerate(issue_counts):\n", + " axes[0, 0].text(i, v + 0.5, str(v), ha='center', va='bottom')\n", + "\n", + "# 2. Files analyzed by tool\n", + "files_analyzed = [summary_stats[tool]['files_analyzed'] for tool in tools]\n", + "axes[0, 1].bar(tools, files_analyzed, color=sns.color_palette(\"husl\", len(tools)))\n", + "axes[0, 1].set_title('Files Analyzed by Tool')\n", + "axes[0, 1].set_ylabel('Number of Files')\n", + "axes[0, 1].tick_params(axis='x', rotation=45)\n", + "\n", + "for i, v in enumerate(files_analyzed):\n", + " axes[0, 1].text(i, v + 0.1, str(v), ha='center', va='bottom')\n", + "\n", + "# 3. Severity distribution (if we have combined issues)\n", + "if not combined_issues.empty:\n", + " severity_counts = combined_issues['severity'].value_counts()\n", + " axes[1, 0].pie(severity_counts.values, labels=severity_counts.index, autopct='%1.1f%%')\n", + " axes[1, 0].set_title('Issue Severity Distribution')\n", + "else:\n", + " axes[1, 0].text(0.5, 0.5, 'No severity data available', ha='center', va='center', transform=axes[1, 0].transAxes)\n", + " axes[1, 0].set_title('Issue Severity Distribution')\n", + "\n", + "# 4. Issues per file (top 10 files with most issues)\n", + "if not combined_issues.empty:\n", + " file_issues = combined_issues['file'].value_counts().head(10)\n", + " if not file_issues.empty:\n", + " # Truncate long file paths for better display\n", + " short_names = [Path(f).name for f in file_issues.index]\n", + " axes[1, 1].barh(range(len(file_issues)), file_issues.values)\n", + " axes[1, 1].set_yticks(range(len(file_issues)))\n", + " axes[1, 1].set_yticklabels(short_names)\n", + " axes[1, 1].set_title('Top 10 Files with Most Issues')\n", + " axes[1, 1].set_xlabel('Number of Issues')\n", + " else:\n", + " axes[1, 1].text(0.5, 0.5, 'No file data available', ha='center', va='center', transform=axes[1, 1].transAxes)\n", + " axes[1, 1].set_title('Issues per File')\n", + "else:\n", + " axes[1, 1].text(0.5, 0.5, 'No file data available', ha='center', va='center', transform=axes[1, 1].transAxes)\n", + " axes[1, 1].set_title('Issues per File')\n", + "\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "0f590f37", + "metadata": {}, + "source": [ + "## Create Error Type Distribution Charts" + ] + }, + { + "cell_type": "code", + "execution_count": 52, + "id": "f8c74802", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACn0AAAbHCAYAAAC1rjGIAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAXEgAAFxIBZ5/SUgABAABJREFUeJzs3QeUZFW5NuDdM0MQARFFQEBRMSsoKKioKGIWIyYwYEKvCTF7DRh/lWuGq+K9oiIqiiIgChIURHKUrOQw5JxnprvqX+/BM7emprqnu6e7T1f386zVa2Y6VO86darm7Nrv/r6BdrvdLgAAAAAAAAAAAABMa3OaHgAAAAAAAAAAAAAAyyb0CQAAAAAAAAAAANAHhD4BAAAAAAAAAAAA+oDQJwAAAAAAAAAAAEAfEPoEAAAAAAAAAAAA6ANCnwAAAAAAAAAAAAB9QOgTAAAAAAAAAAAAoA8IfQIAAAAAAAAAAAD0AaFPAAAAAAAAAAAAgD4g9AkAAAAAAAAAAADQB4Q+AQAAAAAAAAAAAPqA0CcAAAAAAAAAAABAHxD6BAAAAAAAAAAAAOgDQp8AAAAAAAAAAAAAfUDoE2AcrrzyyvLoRz+658djHvOYssUWW5RXvvKV5Vvf+la56aabSj/45Cc/WY3/ox/96BKf33rrravP77fffkv9zODgYLnkkkvG9Ht233336vZyu4xNfY4dd9xxZTr461//Wj7ykY+U5z3veWWTTTYpT37yk8s222xTfe6www4rM9WJJ564+LHIc6DbNddcU+64445GxgYAAAAAAAAAzGzzmh4AQL971KMeVVZdddXF/x4aGiq33nprueCCC8p5551XfvOb35Sf/exnVUBsJvn73/9evvzlL5cXvvCFZZdddml6OEyhe+65p3zwgx8sRx99dPXvtdZaqzzykY8s7Xa7CkQffPDB1cdmm21WfvCDH5T73e9+ZTZYuHBhdX/32muvctBBBy3xugAALN+Gi7e85S0TdnuvetWryte+9rUJu73ZJtd72fQz0fbee+9q8xyjk0108+fPX+b3zZkzp6y44opltdVWKw960IOq+eszn/nMarPWyiuvPKrf9eY3v7mcdNJJS3zuq1/9ann1q19dplo2VX7zm98sX/nKV6bktWa99dYrf/nLX5b63l7z+yOPPLKsv/76pZ8cfvjh5bbbbiuvec1ren59//33L5/61KeW+Nzmm29efv7zn5fZZqY85p0bcvfYY48Jvc3hni/9shH697///RKfe//7318+8IEPNDYmAAAAgJEIfQIsp8985jM9Fydvvvnm6k3jo446qgrIHXLIIdWCW7/56U9/WhYtWlQtEHbac889x1zlk5lh1113rQKfD3/4w8tuu+1WnvjEJy7+WoKfCQTn3D/11FPL+973vrLPPvuUmWTjjTcuf/rTn6q/z5v3f5dS1113Xfn+97/f4MgAAGBJrVar2rSVj+uvv76cc845VbDpgQ98YPnQhz5UXvva15Z+kAr7v/jFL6qg2u233z4poc/Z5KKLLqqO4bHHHlsF2wAAAACA/tJ/6SOAPnH/+9+/qiCUqiqXXnppFYTrRw95yEPKIx7xiKoyDKSaUKpYRqqCdAY+Y2BgoDzrWc8q3/72t6t/n3zyyeX4448vM8l97nOf6jmRDwAA6Ec33HBDtYHxE5/4RBWonM4yn3jlK19Z/t//+39V4JPxu+OOO6r3KV7xildUgU8AAAAAoD8JfQJMcvAzba8j7d6h35177rlVtaC0Lh8p9JiWfxtuuGH193/84x9TOEIAAGC0DjjggKp6/3R19dVXlx133NF8eoIkOPuTn/yk6uYBAAAAAPQv7d0BJlldNeW+971vz68dfPDB5dBDD63a7N1yyy1Vu+i0Uk/L+Le97W3lYQ972BI/8+Y3v7mcdNJJ5X/+53+q7/vBD35QVVO87bbbytprr12e97znlfe85z1lzTXXXOr3LViwoOy7777Vwl6qj6YK6TOe8Yyy8847Dzv+rbfeuqru+OUvf7lq/bf//vuXT33qU4u//sMf/rD6eNWrXlVVDFket956a9lrr73KX/7yl3LZZZdVVSNzHxMgfMtb3lIe/ehHL/UzxxxzTNXmL8HCHIOEER/1qEeVF73oRdV4cx9rJ554YnU7kePd2Zq7Vv+Ovffeu3oMuqvhZHxHHXVUdUzmzJlTtTh/6UtfWnbYYYey0kor9Wyb97//+7/V707773zPBhtsULbaaqtqLA94wAPGdaxSbfNnP/tZufDCC8vKK69cnvSkJ1W3t+WWWy7+nosvvri8+MUvrv6ex+3xj398z9t64QtfWJ0Pqc75kpe8ZMTfu8IKKyyuEHPKKaeUpzzlKcN+749+9KOq3ftaa63V8+tHHHFE+c1vflPOOuusqmJPQtJ5rN/+9rcvMdYrrriiPP/5z69uK60oH/e4x414P+pztfPnf/zjH1eVbK655prqMcg5knP21a9+dZk7d+4St5PW9Pk9n//856vHOM+xG2+8say77rrlS1/6UvU93edR/bysveAFL1h8Hv36178uf/zjH8tzn/vc6rky3OP5sY99rDqfDjnkkGGPKQDwf1J1fLjrjJH0uk5m9HJ9nuub4aSFeK920Z/73OeGvR6NjTbaaMLGOFttt912i6+Ds1FraGioaut+8803l/PPP7+6zrzqqquW+rnMK3Idvs022/S83V133bW6/u/uCDEVch+mSs7P7nO7cz45E+S8GIvnPOc5Sx2TzLnpf3mtSJeO4ey3337lt7/97RKfy/+5+b93ODPt+QIAAAAwnQl9Akyiyy+/vKpIkuBY95vpWXzbaaedqjBgrLfeelUQLeGyBNfy8Yc//KEKNPYKuf3tb3+rApwJwqWiYkKl+X1ZsEsoMSG/zsWYBCLz+04//fTFi6oZVwKnRx999OKqjMuSkOKmm25a/vWvf1ULfwnC5WO0Pz+cBF5f97rXVWHPLBRkETEBw/w7Cw0HHnhg+f73v1+e/exnL/6ZBOq+8pWvLF58fsxjHlMtaCZ8l4/ct5/+9KdLhfrG49RTTy3vfe97q3FmXLm/OfYJ/Z199tnV+BLu7Awe5FgnwHjXXXeV1Vdfvar6muBtjt15551XBQuzgJbjNxY5Dgn65jHP45iF2zzm+fjABz6weJE9AcInP/nJ1Tgyvl6L7Keddlp1rt3vfvcbdpG3Ux77VVZZpbpPOZ8Sdtx22217LtI/9KEP7XkbCTsnWJnzuz6nEra98sorqxB0FqP/8z//s7zpTW+qvp6QbBah81xJOLLX8+GMM86o7kdar9dB1zjssMOqMGWebwnH5pjcfffd1eOZj4Qx//u//7tnKDu/K8dnnXXWqR7vjO+xj31s9dh1y3M3xyTnQuRYJ1y62mqrlde85jXV7/n73/9ebrrppp5BkwSxIyFUAGB08v/y+uuv3/QwZp1cq2fD0XByzdRLrhdH+jmWX65bhzvGL3/5y8tHPvKR8r3vfa/nRqRsnErAr9fGuNkSyM382Tm6pMxdBOVn7utFPoaTDbZjff0HAAAAYOpo7w4wCZVIEjxMtcp3vetdVSWNhOMS6uyUSp0JsaW6YSoo5Pt/97vfVcG9/DvhwYTIhqsM+POf/7yq6vjXv/61CpQdfvjhVRgwAcc6KNkpLfsS/sub+gkb5mcSuvvTn/5UHvzgB1fhxdFIhcpf/epXi4N3r3jFK6p/p7ro8khgMuNOqDAh1IwvQbiEW1M1Me3n0oquM8T6jW98o/r7t771rWpBIscvxzFVHRPwq4Ofy+vaa69dHPhMMPW4446rwokZY0KFm2yySVU550Mf+tASP/fVr361egwTjEyVyRz3HO8///nPVYgwt5sqkmOVwGeq+CREmPucP+vfvfvuu5fjjz9+8fcmcBgZa68qOXXYMNVKR1OVI+HVutLrnXfeWZ2f+dmEcbOInHMh4cuRfPe7363OvZyLedxzPHM/8udnPvOZqsJrFp1zzGp1GDL3o1d1moRaI+dKHXbOY5IxJWj7H//xH9XzLd+XxyyPRR6DHKtU9Owlgc8ET3NOZbxHHnlkdf97+exnP1vdr1qqptbPk6c//enVcyzncB7/bjkPMo48d/N8AgCAyZDrzV122aWan/Rqo67iPAAAAABAf1DpE2A51W2eh5PgZ3cYMBJwS6XNVGXceOONl/ha/v3GN76xqsKSqpC9pDpivt7ZUjyt3RO+SxA0gbUdd9xxcYvFhOriv/7rv5aolJj28QmLpq13QmlNSUCvbtHdWUkklRITBExV0VRyqis2XnLJJVWYLxUqu1uSP/OZz6yCtv/85z8XtyNfHgmRJvCZVvd1e+9aKpLm+GXcaXeewGqCsZ33KcHLzkBlKld+4hOfqFqbd4eBR2OzzTarQpEJR9aLtwk1pp17qlPuueeeVdAwcmwSlk1r+oRD67FFjl+9sDuWCpMJvj7wgQ+sxpA293VwMUHYfMQjHvGI8s53vrNqoV6PMzKOVF+NHLfO6qO5H1mATgv2hEG/853vLG5Xn+P7xS9+sVx33XXlhBNOKM94xjMW/1xnmLLzfiQAu3Dhwuo2u5+DeQ7k+ZPxJdD57ne/e6kKRnluJTRaV4odb4WbPM/ze1JRNKHTuoJpLZ9LkDWVlVKxFgCYerlu6G5Z+5Of/KRsscUWZZ999qk2VGWDUq4P8v91rseycST/z+casb4mirXXXrvauJRrmtxmNnXlWjLXrbn2fsMb3lBe9rKX9RxHrv2zySWbVXK9m2vgVFnPtX/mCLnWzyaXZW3WSdX/eqNOLdduaeebTT/pJlB3JMhms2xiyiaWXHtPtSOOOKK8733vW+rzuU5NlfbhZF6Qa95ssuqUY/785z9/2OOQxy1zrVTtz7V7Ku9n3pA50xprrFFVkM01dKrZj6VjQOYCeeyy8SzXxrkOzfVjqt/nmjabe3JuTAcf/vCHq/Pg9ttvX+LzOS9yv7vlejr3q3uD23BziDw22ZSYcz9zohzbbBhLFdFs0MocKudzjnPOvdE+JzulU0Atc+p0PKgrzWZe3Cn3KRsGswkym+7yZ+ZCeXzSLSI/m3lJnnfd8/vM17IJbCzyWvHLX/6yOr/yOpDnazaBpftH5lKZD46k+zWl7nKR16Neep3n6ZSQjaK9jle3HOfOY53nw1huezhXXHFFNT/Mex+Zq956663VscjrWZ5nOR45B3p1Xeg00mMaOVZ5jc75lr/nuZfn2tOe9rTqNe8JT3hCmWzjeczTBSKv6d3vw3zhC1+o/p8YSc7TumtM5/M0751MN9l8mudQXuvPOuusKmCe+5zX22wEzeOU/9e63xcbjfo9jTz25557bvV+QTqL5Lmd94/yvkE6geT9CQAAAICZRugTYDmlrXNnG/WEt7KglTf9s9iQgFvaSadddeeiYaoA5o3uzkBcp7SprhfMeskCZ2fgs5Y3sxP67FzAy8JDxpUFqyzQdMuiW94Mz/c1JVUXU60zYb+8Qf/c5z538aJzFmyy6N4pb+Bn0TALR2kV/ra3va1asKv1WjgeryxO1C0Re0kAMgu5qeCZY18HK7PAm4X7XXfdtaqo85SnPGVxCDULefkYj+23377neZPFpIQ+Uwk0i98JCGQB7UUvelG1WJdwYWfoM5UrUzE15/ATn/jEMY0hY89tJYCZ+5xKlRdeeOHir1900UXV4mCqaiZcWQcTEoDI8yIBy17t5iML4jkPzjzzzHLjjTdWi4J5PmRBMFVwE9LsDH3mvE2QIud3vRCa35HfNdLjloXPnDOpcpv70B36TDA0x3AiZEE8Idfcpyx4dgYYtHYHgOkp18/ZANJZ/TABk1w/5fovgcnhZC6www47VGG3zs0v+UjF9m4JwSSUWV93dsrvy0dCoLmeyzXPxz72sSrIMlZf//rXy1577bXE5zJ3yX1tIvAZ2fiS671c93XKcR/pmj7Xet2Bz4SIOq93h5PHIccwYbROCQzlI9eXmcelenuCuiNJcCtBq1xb93pc85Fr5mwAypwlAcOxhEknQ65xc82dQHOnf/zjH9V1dY7jeCWIlnlAd2gxEsbK/DbHP5sUc4wT0P3a1762xJx6MiSEmjlZZ8Auj00Cep/73Ocm7PfkmGajZec8Pu8HZN563nnnVfc55/XydsqYznIO5Riku0J3t4kc/7zmXH755dX8OV07EtrN6+V4JGiZ17Xu903SfSIfCXVn092nP/3pYd97aeoxz/seef3Ludn92jdS6DOvOQmZd3vlK19ZppuEPb/yla9Uwd1u+f8xHwmCphNO3gPK47SsUHQtG5u/+c1vLvV/RyR4n49TTz21eu1NSDjvG413IycAAADAdCT0CbCcssDXq+JGQmdZ5EhlyCwCZLGju410AoBZCDjjjDOqBYlUwsifWRjIQlj0amUdw1WJSRXMekGtlgXiSLhvOKm00WTo8x3veEfVij1v+mcBNoHOBBET7kv1i1SA6VykycJwKkmmvXhCc/lIlaJUiUilz/zMRLyhnwWpesEyob1UWOml/p4E+mq5H6nAmcXTVF3N4upTn/rU6j5lcSdB1/HorNTaqa7eksc+QYM8pnWl0YQ+sxCdalH1guryhg2zWJ2wa12NM4tPWeRNlY1U3sxzIGHKVOlJYCJSUSqyuJoKS72k6lItxzOPdX0/EvpMkDRB2vpcr1u7d1YVzfMov7+ulDJcNayrrrpq8e/plvNpoiSknNeJLPhnvFlwjoRAE5DNwnoWuQCA6SMVAXsFa2K4Sp2Ra5BcA3YGPmu5ftlmm22W+FyqDiYMlKDUaOS6M1XME5TJ9eZog0y59hvu/rz0pS8tTcl1fzbpdG/yytxgpNBnAmPdEoRdVhXUbI5LCKyeIw0nc7JstvrZz3427DwqQaa3v/3t1bX3siQQlnMqlS87N0U1JfOm7tBn5p6plte5wWoscn5ljlZfh49GAm8JZ6XK6GQdk1zr57nSq7PFpptuWlVknAg/+tGPqpDhSHJsEiZO4DTzlJkmz6ucA71Cfr1kDpmODnkdTIeKsZwDeR4l0DeSzC1TlTSVlutqsBNpeR/zzMW7Q5/ZxFlvfuwl398dps3m36moaDoWuc95v2a08t5BzoO8f9Brs3It9z2bquv3M5Ylr2uZg+f1KeMZ6X0xAAAAgH4yfFkKAJZLFite//rXL67mkFbeeZO/lvBdKqAkMJdW5FngyGJEQmEJiKUN2EjG0rY8lYFipKqFq6++emnSuuuuW70R/9a3vrUKtCa4mDf8s4iT45h2bt2VjxKcSxu6LFhmsTgL66kCmdbpOX5Z2OtuWThWeZxqqdqZijS9PrJQGZ2/L8HTtJnLInoqbqYSUYK1aYWYduVZRO6sjjlaw7W/6/x8KovUUmE0AdMsNNeL4zlWafdeL7JPhIRss9CeSisJZtaLKam+Ugc56+OT4zrcsczj3n3uxpOf/OSq0lJ+tm6xmNB0QqYJO3RWNul8HM4+++xhf9fNN9+81PfXelXSXR4JrUbO0fp41AtVqTzS9MI/APSbhPKyeWosH6kuN1rDBSRzHZ5rueHk+iKbOnrJxp/OioYJSGUuMNrAZ6cf//jHVThmee/PskKsU6HXJqRcew93HOvNRd1SvXJZErxcVuCzM5C28847L3Ft3TmGD37wg6MKfHbKuFPdsGmdlec79doMNRq5vk2VvrEEPmvZCJUNdpMllf17PYYTHXheVviv07777jvq0Fq/yPMlmzlHG/jslDnSWCquptPEsgKf3eHMzB0n2vI+5nnPIJWju0ONvULttV5fG81r31RK546xBD5r+b/w3e9+d/nnP/857PekKvZ4njvZMJGQfv3eDQAAAEC/U+kTYJIlrJjF2Lxxn6opCTfGe9/73qoqYqr9pNJMKlk+8pGPrFqCZyE5IdG0O58IdXu+zgBjt+HayE+lVLJIxYZ85E3+k046qQrBJpyYN+izqJqFko033njxz6QdYD5y3/L9+UiwMouVaXWeMF+vxYbOapK17vaQkbbinQtRY60KkWqbWdRNVZlU/MxjnjaSCRym1VgqgCYgOZY24r3G2R1cTCWT7oX0jCP3IeHDP/7xj9U5mfNzuAoi3fL9aTOXKrRpwdirwm0t53nCt1n0y2OTkOmDHvSgxcczQYlUZhmr3I+0cMv9SLv3tL7LwnIqgXS2ges8njnWwwVlp9ILXvCCqopNzuU89k960pOqx6EzEAoAjF5aAo9VKoPnOmYsEtR87WtfW7VzT0vxhDpHs2Eq1/mpeJcNOKlynnBQNnp0Xo9mE1jnJpdarjlz3bXRRhtV1365Hs78oDtQl6BcKsk//elPH/X9yUaabLTK9VGuTXOtlN/TpNzfVKnLZp1Oudbr9ThnnpSK/J0yj8p9G+21dK5Lswkrxy4boXJ9ljbM3ZuBMq/I51O9tdNee+1VhQm75fo6j3M2RCUQmvlL9/fl9hLSqivzN2G4OUDa249Hgpuptt/9HMgx3myzzao5aY59gryp6pkuF53SUSFhr3q+kOdcNvJlHtHrHOgM262zzjqjGmPmKNmUmXMl882MI5vWJlrOgQSp0zkg9zNjTei82ze+8Y1qTjMVm7/q45XXjO4OH9ttt111vJdX2njXHTA6rbfeetV7Hjnfs7kzlSxz7Lvfn0inlLxeZjzLUndGSfeJPIapoJxzrG4V3v26mtfOvH53vgZPh8e83oSZ15Pu1748d3qFIvO63SkbICdqI+dESHeP73znO0t9PuNMyDrz4rw+JhycjiR5D6dTXifynM9cufu5kf8Ls6m0W95Dy5x6q622qjZW5HU7r73ZHNIprycf/vCHq/MPAAAAoN8JfQJMss52i3XQMG/+12/U77nnnlWlym5ZGJ4oqY4YaSWYMfRqATmeipMTKdUWUnEnQbgsDqZVeT7e/OY3Vws6r3vd66oFpIMPPrgKfSakWi8qPuYxj6ne2N96662rj09+8pNVJY+EA1NJJwu3q622WrUg1Lno010ttdcCZxb0U3kjY8gxGi70mUXDtA1La8AELhOQzCJGbjML8fldWcDKR9pUZnE9izhZdEgItLvN50iygFE/pp0SKo4cv4c85CFLfC1VML/73e9WC2xZKKpbyI2ltXuOX45DWqKnuuZIoc/O9ugJSNTB43rcdZv3XlKFJ4t1WZTN8ex83HI/soCUxZ4sEib82Ss0mQBofi6PQx63hKqHW5xORc9U153sYGgelyxyZfEpxz9B4DwWWfxscsEfABheqvJnA1F9/ZxrzVzzjUY2e3RWX0vgtPNncz3VWeG8lp9JF4CEgWrPfe5zq+udt73tbUtUBc21fUJEv/vd70Y1pmwyS+Aw1yV1lbnR3p/JluvS0YY+e1W6G0voKdemCRlmvlFL+DO3UV+jd0rI6F3vetfixyRziXRp6PbRj360+r5arpcTYPvsZz9bdQDofNwSOkrFuqYMt+msVwh5NHpVd8xGxwQ5O+Wcy2Od8znhuMyTMkdI8DhzpwQy6yBnPoarGpl541jknP/JT36yeD6Sx/stb3lLNVeZSNnAmFB1LXPBPPdTBbX7eZrzLBsAp6LSbn28ErbrluM81uPZqzJv5uq9XkPTnaPzfEuYN/P7bIDsDv9mY2CCmaPpupBzJ3PcBC5reVzzvEu3kO6NnsNVDm76Mc9zoTv0mcrM+d56Tl1L95MEZztlA2S9uXg6yKbnzHW7H6t8Pv+XdR+nVGzt3hCaqtwJzub9oO6W8b3es0nl687NwTkmCTLvuuuuZb/99lvq2KZzSP4/BwAAAOhn2rsDTLK6ikYWilO9JjoXrurPdYfe6gqACa0tr7yZnTfZE6w88sgjl/p6FhOy6DwWvYKj45VFi4T5slDSaxwJXdZhy3pROgsAWRBPC/deVTuf8YxnLP57fQzvf//7j9i2sA5C9qruFPvss0/PRfGESrNgmPvws5/9bHGoMRUscp+6F40jVYjqkOFYF9qHW9SvF56ziNYdaF177bWrz+dYp5pGAgap7lPft9GqF9MTXByp5VrU53Aei7pCRypvJIyZ43/sscf2/LkEEbK4k8e3uw1jqoXmfmShPcchFZlyHLtbrCYEnIWeyIJ+L1lgzKJ+7tOhhx5allfngnGvczLqqjU51+rn4liCtwDA1EqAr/u6dzQhsVS26xVC7PzZVO7sFcpMELAz8Fl73OMeVwVJuyUomY0so5GQVR347DWmJiUE1V3VLZt3EiabqNbutVSk7wx81rJx6jOf+cxSn08YMRvoarkGrSsN1jbccMOqsmu3HN9UdO2+b7n+HO6acSp0zxdq42nPHtlk1y0btXptrMsmuWzSS6g33RCykSthrjrwORkyX+jeODfR534Cjp3hv1peQ9K6vDvAV7cpnwl6vZ5lvpkNe70Cxtl01yvAl/csEsgbjYQlOwOftWz4y2bLbp2B+en0mCfw3BlYrN8j6BVun+6t3W+66aYqmNot4f3OwGenbIrt9bW859C9ybV7Y0DkOHcfv8j7Dp///Od7brDsvm0AAACAfjQ93tkHmIGygJcKDnVr8Swy1W3nHv7why/+vlQ16KyCkIXNLC7XVSy7Q2/jkUo2b3/726u/p9pE5yJDqjamAstwLcOHUy/c9GrfNlZZ1E4FxLolXPeidY5jFgzryjCRFm5ZqMwicCohdY4/Cw31AlIWfDqrTNZtDHfbbbfFVWzyWGWhMY9FLzvttFN1f7O4m5Bpbr+W+5+vZwEpC5077LDD4uqjCaomcJr2YZ2VW7OQmvGlUmVut9eC1EgSFkyr9npBNn9+/etfrxbHckyyaNJLXQ0zFTYyrgQRegUKRpLqUlnQzvFOMDNB01tvvXWJ78nxSZXVLOQmVJD73xmAqFsH5vOdC3pZ2EoVjlSCiRzLhDe71SHJVHXJY/eiF71ocRvITh/4wAeqhZ5UnPnqV7+6RAvQnDd53PLcy5gmos1f52Jmnle9PPGJT6wCBjlvElrN4zVZLQYBgOWT64tlVTYfTjapjLRJKhtxUu29W65/Rmr1nE1FCUv1anc+GmPd8DOVEgTsVf0+wcBOmct0V6PcdNNNq0rvo31cR6qs+PznP78aS7fOVs2ZF3TLGIZ7zHNNm2BX98axdDpoSnclvmVVAF2W3P/ua/K0bc45l/M6c610u6jnt5kT56Ozqv9kmopzP5sAh5N5UeYt3UYb2J7u0jq917wtVRiHk7lRvVFvPK9naZM+nF6dMRYsWFCm62PeayNg92tfXve6A6P5Hd0bIJuU9226Ny5nzvumN71pme8zdMt7Y1dfffVSG6q7N4XW7yX1kvc7skG3W16bxhtwBwAAAJgutHcHWE6pxNMdTMsibkJdN954Y/Xvxz/+8VWFgc4qPQkt5k38tPFK5cUs3iY4WFcBTcWIVEJMUC3hwF7ht7FIZYUsKiZAmQo/Ce5lQS/ht1Q4SQXGXm+iDyf3IRV2EpZMxccEF9M6a7x22WWXavE01RsSCkwQL5U5Uxmmrg7zxje+cXHoM2/uJ+yZEGYqOaZdYirzZIEhrcCyoJOfT4i0lvv5oQ99qGqvmDf5c5+zGJTbTzXOVJdIYDHVZjql4kwqlGSMCRCmukYWbbNQmnBuHu8cy4Qc61BpJNj5hje8ofpdWcDOY5yF0DzGWbDJAmeqNfVqsTeSLOrsueeeVbXT3GYqViZ4mcWUhBuHaxWe+5ffVYdWx1NhMgHatEXMscjCd87/r33ta9U4sqCX+3XZZZdVYcwci3wt5393+7tUcMn58x//8R/VY5lKpHnO1GPLfcxjNdz9yDjqSi3D3Y/NNtusfOlLX6rOy1QPTTWPRzziEdVzqh5jqsimFdxI4YqxHJuct7kfCd5mEXvnnXdefM7WMt48TgnO5n52VqAFAMa2EaZXAHKiJEQ43kqAudYeSa5F7rnnnqU+3ysA1Smhwlx3d7e8Hk3b4lRHz7XPdJbrpD/96U9LVcTMNdVIle5GCl71qqY60rVfrtGzSSfX8J1y/dr5+HXLnC4fY5F5VOeGwKk03Ka/kUJ6I8l8NZsJs/mrU+ZnaaecjzqElW4XCVRnjpTg30R2kRjOZFYRrQ03Dxvp6/V7BsujyYqxkdeyzMG7pX33suR7up9ro23DPtJj2us8nozjNFGPeYKLmSN2BlNPO+206nUnc+XIhsnusHaeQ8v7XtFE6q7MXB+DZY0xnVDyfkb3/Uvws25d3+u2M+df1v/Tvc7DhM/z/2hTr78AAAAAE0GlT4DllDee82Z850cW77KQmHBa3rhPq7PuYFcWwxJIyyJXFh/yM6k0kJ9JoC9h0Ac/+MHV9462vdlIMp5URsx48oZ62hEmLPj0pz+9/OpXvypPetKTxnR7qUaacGaCbgk+LqvV92gWoVM18oMf/GAVEkygLy0Uc2zSsi3HpDM4G6lUmZ9JcC6LOlkcSuAuiz/vfve7qwXjLOp2et3rXlf+53/+pwrVZkE3P5PF77Rx/P73vz9spZkERNOuPIHZhEsToM1ib0J+aRF+0EEHVdVtOiUY+vvf/74Kq+b7Uv0xixYZa6puHnjggeOq8pix1q3icv5lzKlykuDrSLeXRZS6qlEWWlOJdDxyXiZAmWo9WZjP8cjjlcBuKhbl/ProRz9ahZq7A4+x0korlR/84AdVKDZVsLKwc95551ULwln8TdXShGyHeyxyLtf3M4/1SJVS6+P8+te/vjpeF1xwQVUtJOHPtN/M49arCsx45TmW+5+qpXle9Fr8zHlb3zet3QFg+hrrxpxOy9rUMVyb4WyGWZZe7YJHExxbnvszVXKNXndHqF188cWLW6tns1XCvt3XhtlQN1qjCTX2Olad1e27K92P12S0mx6tzu4FExH6rOeICeiOVL0zj2E2j2V+l/lk5jEHHHBAmWxTcf4v69j1el3orlo7nJECi92VFadang+9xleHFSfj9Sx6VeTtnPtOhYl6zHM7qTI8Uov3XoH3zC2nk16vaaP5fy2v470ez85zYby3Pdz3DPcaCAAAANAvVPoEGIdUFFrekGMWwhJAzMdwUgmxW0KOI0lL63z0kgoICZn1CpolBJjKLN2GC5ymYmWqPOZjLEYaX6o/pELicO3Je0k1pGVVROqWIGKvMGIkADucVJj41Kc+VX2MpUJUd1h1vDrPubRIrFvJj0XdZn55w4apxpOqIr1acI7257PAO1JLvmUFX/MxGgl4pqLqaKU6aT6Gk2DqcM//hLgTiB1JqspmYTYLnAm9AgDTUzYljdeyqpql2uF49QpXjaYi6fLcn6mS+5GqnT/84Q+X+Hw2Ez3mMY+p2oN3B3+yaW4sQcXRtPTtdYw7g4wJLk6EbJhqSq9qpTHejWH1NX7mlAnhpitBHrd6/jGchHo/8YlPVPPOb33rW8v13Gj6/F/WudUrDDvacOJIoc9eVYOn0kgh38l6PYtlVeydChP5mGeOns4inbKRNe3J0/0lnWA6ZfPqM5/5zDKdTOa5MN7bHu65MxUVhgEAAAAmk9AnAMwSCRsmSJzA7nSrCDKb7LfffourkE7VYiQAMHa5ZhqvlVdeeVyVQK+77rqy2mqrjfiz+Z7xVDFcnvszlV71qlctFfpMi/dddtllQird9Tp+3W6++ealPtdZha5XqDfBrE9/+tOlX6TaZrdcm26yySbLfduppP/JT36y+khF/+OOO65q4X366acPWyU1j+0+++xTdVaYDMt6Tk6EnFvZ9DeW82q0geXOtt/dEghsUu5DwnmpTNl9PBLWnozXs5gOc6mJfMzThSUbTdOZovN5muD0KaecstQ5kJbw0+EYLOv/trwPMZrwbK/Xhgc84AHLfdvDveZ33jYAAABAP9LeHQBmsGuvvbaq4pPF1lRYTSv1hA2XFSZgYp177rll/vz55Re/+EVVTTZVabbffvumhwUAjGC01eZ6WVYQZ7311isrrbTSUp8/+eSTl1mx7NRTT13q849+9KMn9f5MpQ033LBsttlmS3zu0ksvLWeddVY54ogjlvj8GmusUbbaaqsx3X6ujUdqH53g2r/+9a+ej1ln54dul19+eeknhx122FKf23jjjSe8IuZjH/vY8o53vKNq555Kran++bnPfa56nLv97ne/K5NlKsJxZ5555ohfP//880c8r0aqQDhSsHNZ1VQnW+Y2vYKPy3o9i16vZ8tTbXaqTdRj3lnpuPs1P6H3XoH37u+dDh7+8Icv9bm8F7GsYHIC4b0qKD/ykY8c8bZz/nSHjbslMNstr3PDPQ4AAAAA/aI/3vEHAMYlC20veMELqgWhLKSkpfj73//+poc166Qy1dZbb121mc9i1vve976y9tprNz0sAGCSQmLLCljmtp/ylKcs9flsEMkmneEcfvjh1UaSbs961rOWOabpVhFuJGlz3O0rX/nKUmHNVLobbXvszhBVNuEM55hjjlmqhXw86UlPWvz3XtUwTzjhhGHDpAmspg3z2972tvLlL3+5an2eINJIj/VkSoAsbdV7VVkdj6Ghoer+pKL91772tbLTTjuVbbbZZqmwVcKMCW7tsMMO5Zvf/OaoWs4P91zK7xyLqTj/c/97BdfqSoYJvHbrdS71qkp65ZVX9rzdnEN///vfRz3GXoHSsR7LXrbYYoulPrf//vuX22+/fdifOfvss6sKsN2e/exnl34xUY9552tf92N0wAEHVK9L3WHIxz3ucWW66XUe5Djk/7aR/OQnP1nqc6kS+6AHPWjE284m1z/96U/D3m7O7Z///OdLff5pT3vamP/vAAAAAJhuhD4BYAbLomralmXhMO3i9t5772HbiTJ5Nt1006oCzjrrrFM+8pGPlPe85z1NDwkAaNi222671OdSYTJVEHuFsFIxbtddd+15nZFqijPJi1/84rLKKqss8blsYOr2ile8Yly3n6qTxx9/fM82wF/60peW+nyqGG600UaL/50AZ/f47rnnnvKpT32qCjh1ymP5ne98p2pDnDbnCSDlMc6moF4BvMl27LHHls9+9rNLfT7hqvFWDkww88Mf/nD5zGc+U4W3jj766HLFFVeUb3zjG+Xuu+/u+TMXXnjhUp/rPqYxb968nj9/1113lenmoosuKp///OeXev4maJywb6+KnM95znOW+twDH/jAngHKO++8c6nb/frXv94zCD6cXkG3iTiWvV7Pbrjhhuo873UOXHXVVdU50y3VF/sp9DlRj3ntIQ95SHnqU5+6VKXM7mP48pe/vExH2di4+eabL/X5PfbYo3pd6OWHP/xh+etf/7rU5xMO7w7e96oom42VCdZ3SwXQfC1dN5Z12wAAAAD9qPc7pwDAjJDqH1lcpllf/epXqw8AYOIkCJNQ0XikHfp97nOf0qRUqUzYJa3Lu8Nd55xzTnnjG99YHvGIR1SBrFTy+81vflMWLFiwVNguG0pmmrTefdGLXlQdi+GkPfhIFfNGkmDmO9/5zvKa17ymqsaecyGhoQQWe51Tb3rTm5YIaGZ8+dnuCnIJNaVSX74/m69yW6kq2qua4Zvf/OZhA43jlYDZGWecscTnUoUwrZXTfv6II46oxpJAWrdPfOITZaWVVhrX782xed3rXld23333pYK6CZLmawnNZiNajkmCpwcffHDPAPNogqCRa+sE3xK6y6a2l7zkJWW6VH5MQPsNb3hDFeBL2HfffffteQ6kjXmv6oX5fCrHdldB3X777atqseuuu24V9MxrQq8w9Eh6Hc8DDzywCurl9SRh6JwLYz038/P56L6fqVD5spe9rHpOJJye8zHdKFL5sVcV0IREs1mun0zEY94pryG9fraWx2m6hj4jXS26x5/X3Gx8zP976USS52zO4bzGn3jiiUvdRv7v6674nPv93ve+twrXd7r11lur/y9f+9rXVoHhvD5fcsklVUXl/F/abcstt6w+AAAAAPqd0CcAAADQd97//veP+2fTLrfp6pgJNqUV9lve8palqkP+85//rKrHLUsCUr3axM8ECfyMFPocb5XPWsJnCQXlYyQ5TxK26/aBD3ygHHrooVXAq9MFF1zQsyJrd6Bpxx13LBPtt7/9bfUxVtttt10VzFseb3/726vwYMKlnRJq3m233Zb58wl0veMd71jq86uuumpZc801y0033bTE53/3u99VH/W50nToM2HKumJmAsS9Kg92399UfO1lm222qTo0dEuwMIHMbg9+8IOrypmj0atS4i233FIF9WoJluY2xyqVLRPwze11t6bPa92yvP71r+9ZMXS6msjHvNMLX/jCqkLlcBVYExpNB4npKq3TE2rvDsWn8uYf/vCH6mMkq622WhUg7xU8znM94fUjjzxyic8vWrSo/PKXv6w+RpLA9H/913+N6f4AAAAATFfauwMAAAA04MlPfnLV9jaVycYqVdN22mmnMlMlzJqqecNVlhxvpbtUwl9Wpb3Oludpzd6r8uD97ne/8uMf/7isscYaY/r9a621Vvn+978/baoZpjrhF77whQkJwP3gBz+o7t94pGLtZptt1vNrz3zmM0f82WuvvbY07TGPeUwVBB6tj33sY0u18a7l/Ezwb7TH/b//+79H/XtT4bCzam0vvVqSj8ZDH/rQ8j//8z/jOgcS5vvsZz9b+slEPubdj+mLX/ziSQu8T4X//M//rALAY/WABzyg/OhHP6qC8cP51re+VZ773OeO6/zMa3Z+BwAAAMBMIPQJAAAA0JCtttqq/P73vx91iCWV+hLySpXPmSzBtFe96lU9v5Zw4Prrrz+u202L8YSKllUZcuONN65as6eN/HAe/ehHV22cn/GMZ4zqdyfwlcqiI93mVHnkIx9ZVdNL4HOi2synhXsqjY4lkJUqnt/85jfLO9/5zhGr+j7wgQ8c9utXX311mQ4yzgQXc44NJ5VL05o+lVFH8pWvfGWZxzHnX1qLp2X4aOXcSyXPyQh91s+bvJ698pWvLHPnzl3m9+dx/dKXvlQdkxVWWKH0m4l8zDt1tzav3ec+96nao093qWqax/Xb3/52WW+99Ub1M8973vOq149NN910xO/LsU5wPlVTRxPgzHmY45nnykhhUgAAAIB+o707AH0ni4I//elPy8EHH1xVa8hi13ikJdh4F4uzEJbFm3wsr7Q+O+mkk6pqTRO1eJ+Wej/72c/KX/7yl6rFYtpXpgVcKrukbWJ3W7/LLrusvPSlL60Woj784Q9PyBgAABidXNP+8Ic/LBdddFF1jZtrw4svvrjcdtttVcAlwaiEqZ7znOdUgZ9+DEeNR0Jv3/3udye80l2OacJIuZ3f/OY35cwzz6yun+9///uXxz/+8VWL6YRCl1URMR72sIeVn/zkJ+Xkk0+u2g7nz+uuu666vTxOa6+9dnnSk55UtU/vVbFyWXOZBDJTCTbzlmc961nVtfzqq68+6vua+5BxpDJpWnbn/uUcevrTn159vd1uV3OrhFHnz59fVRlMe/GEDnMOphXyqaeeOurfl2DVX//612WOKY/Bwx/+8KqteMJey3p+pHV8qvQdddRR1ThzXPK8eOxjH7tEVcztt9++NGFoaKjss88+1fwrwbwFCxYs/lrGmqq1qd6YyqqjqYSZFtepnJo5a9rYp7X7DTfcUIXcEthNqPL5z39+9XtzPMYiLeITnE5gOS3J77zzzqpibVpfZ764ySablOWR+/f1r3+97LzzztXr2fHHH18uuOCCxc+J3IdU3H32s59dPc9yzvWSUHIqIeecnc7e9KY3Va9VeS3J45929gkaZs699dZbj/ox7650nOd5/g/olOfKeCpDNyWPb56fRx99dPX6mPMtx2fhwoXVa1LOubwW5bkxlsc5odIddtihvPa1ry2HHXZY9ZpzzjnnVO/T5L2PnM85/jmfM4a81gAAjFauVzrnKFm/+cxnPrPMn8t8Zbfddqv+nnng3/72t+UaR64lh7vWzxwj845cT6VTwFvf+tal1nwm2oknnlje8pa3LPfa2mw0GWuAyyPzy2y4ylwtnTMyf82GzMw1877TdtttN+LGtn5WvweT93G6N/Defffd5cYbb3RuA31loJ13dwGgT5xyyinVBCnVST7+8Y9Xn3vjG9+41PdlEeHss8+u/p7KJ73Cmd/73vfGvPiS283i21577VUOOuigagFyuk34EhbI8clkLQuqqayRCVqCnYsWLaoWibJ41j2hyYJu7lcWK4drrQgAAFMlraK/8Y1vLPG5tEU/9thjRxV83H///cunPvWpJT6XKnKp4DndFhxSgTGLLL3mH1dccUW59dZbF7ecT7gsi3sTIdf/CehF5g0JSyVMmMW8F73oRVWANXOJVMjLAkgWhkYKndVBvTxOT3jCE5b6et6GTPgvc5NWq1V97j/+4z/Khz70oQm5P/XC6Je//OUqEDYVEjjLeXbzzTdX/84xTMA2j1lCaAlmJuyYqpCZ802UP/zhD9UcLi3Gp+q+TqX6XJpuz9mpkCB6r8c0r4kJywIAMHWhz8zBEuBc1qbA17zmNYvXpCYy9Jm5X/f8L3OM22+/fXHBj8y/smEyPzNZhD5nRugz66JZ48x8POum2aCY+er1119frrrqqup7cr6lw8x034A3kaHPmT6/BmYulT4B6BuZvH7+85+vFng7F8t6LQB1TsyzCzO7HSdCFj3TSmw6H6NMShL4fOITn1hNUlJ9KLJDLa3nMiH/4Ac/WP785z8v0Q4ti61ZxN11112rlnyzpYIUAADTTyrcpXJ9t1TUG0uly37x7ne/e9iWzlmMyQLEpz/96Wo+koBhqnNOhEMOOaT6M1X/v/Wtby3+fCrz5XdlYTPh2bG2Rc7mupGCeglDpuLkCSecUC04pQpqqhv2m87QbKoVpnJpqqPUcgxz/375y19W1WXvueeeCQu45vYy75upUskxVRpTwWi2SeC113MqlSsBAJg6qaiZa/p0PxhpvpKNenXgc6IlTJo1n+F+bzaXpXJj5ldZ8+m1mRAiXSQS5ky3ha9+9avVhs90KegsKPOf//mf5Ywzzqi6jPzpT3+acedT7lNko+Zsml8DM9ecpgcAAGNpFZi2cNlNOBMXeidC2h1mYpZJWxaK6sBnJOCZiUuqk2YXaFo4dsquvhzbHOMcawAAaCrwmar+qTTRa8Frtkkr47Sif9e73lX9Oy3YLr300gm57bo65eabb97z82mhPtbA52iss8465Tvf+U7V4jn6sZJjulDUlWgT9sz96Qx81lWBsqnuve99b/XvPffcc9IWg2eaLC7m3OtejJvJUrEp8/heVaHyGtC5IAsAwOR72tOeVv156KGHjipI9rjHPa5MpbR0r+ckmUcfcMABU/r76S8//OEPqz/zfks6e3TPLzL/yqbFrCXmPYG99967zDS5j/mYjZsLgZlJ6BOAvpC25JlsZBKy3XbbNT2caSuVciIt8Hq1fFxppZWqKjpx1llnLfX1tC3I7tVM/nLMAQBgsqUqSSr6ZQPSG9/4xqp9cVpmd8sb87O5tXGqnNayUWsi1C3W0w5wNJ+fSPe///3Lk570pAm9P1Mlbeo/97nPVSG93Id0UhhJuipkfpbjmjZyUHvZy15W3vSmN1Wvf8961rOqlvbd0oUj3wMAwNRKMC4OO+ywag4wUugzm/VS/X+qZePZhhtuWP09FRqhl1tvvbVcfvnl1d832WSTETffbbPNNtXfzzzzzCkbHwDjI/QJQF/IpDql9Z/+9KeXtddee8Ju95JLLqkqr6SNwROe8ISy2Wablde97nVVu8S03uv05je/eXHL+HjBC15QHv3oR5cTTzxxifbq2U2Z9vNZsEmL9Sc/+cnlhS98YbUomN83WqnwkdvPx2hl7NnZmdYLw6nfnKgXcrsr0eQY51gffvjho/69AAAwXqkikWr1ua4+7bTTyt13393z+z760Y9W7cZnqywi1joXHHPc6nlD5iO91F+v5y6Z2+Tf8+fPr/6dlvH599Zbb139mX9Hvl7/bNq8T9Z96l5ArceXTgUjzZXyfaN1xx13VK3sXvnKV1ZztIQ1t9122/K9732vqoozFmnvmHM26gqsI0l49v/9v/9XBT6/9KUvLfX18847r3z2s5+tFomzgS9z02c84xnVbXdXFarve/3YfeYzn6n+3d0S/IYbbii77bZbFajOol7ucyrlpiX9ggULhh3rcccdV3baaadqs+DGG29cVZj8xS9+Uc0fR5qfpgJt2k7m5zL+VEV65zvfWc3le6nPtYS+v/zlL5enPvWp1Rhf/epXl1tuuWXx/UwQvJcjjjiiGmfmr/l9mX9/5CMfKeecc07P709A95e//GV1e5n352cy1lRp7RUynyp5zp588snVc/PGG2/s+T0JfPba1AkAwORKS/e11lqrWi/JXLWXiy++uLqmTfeEdEro9uEPf7i6rs2a0XAOOuig6nvGGxpdbbXVqj/vvPPO6s9vfvOb1e1lvjPSnCbfk+vwkeYHozGea+3MpzLvzLygXpvLXC1zwF7XxfVcJPOVXuo5ZPe8KBYuXFh+9rOflde//vXV78k8J2t2aXF+3XXXDRuSzFhyDPP9mVNlHfHTn/50+ec//1nGK0HKzJMyjsx/sqa37777VsewlrlXNrzm/oy0abCeC2aNc1lS7KW2rPlP5nV//OMfq/Ool5zvn/jEJ8pznvOc6rHbYostqjXJP//5z0t8X+b5WVPNGLPmuqz78bGPfWy55vB5zyK3s8suu1Tnd+ay9blY//7u82ik+XUel/w992+4IjlXX311eexjH1tV+dUeHmiC0CcAfaFuj7HVVltN2G1mIv3yl7+8unDPxO5Rj3pUNSn/xz/+UU32UvXymmuuWfz9+XomCLXHP/7x1YJcPaFOSPTtb397NdnJpCnVOPIzaVmY9otpp54FrHPPPbdMlvy+THqyQNhLJrd/+ctfqr9vtNFGPb8ni2WRSR0AAEy2XIPn2nkkqYKXxaDZrJ4TJSiZRaflnTdkLlNX8kxlmPz7oQ99aPVnXSkmX8+/85Fw7kS66aabFodQs4AzmbKgmLlfFof+9a9/VZvdcl+zQFsvItUhztGoF4jSiaJu+bgsmaPlY5VVVlni81kczTzxN7/5TbW4mXGlTePtt99etfneeeedlwi/JvzX+djVj1lnKDALXC996UvLj3/846qaS24vbdITiPz6179eLSxef/31S40xx+Jtb3tbOfroo6sFulQNuvLKK8sXv/jFahzDSZB1xx13rAKeWQx7zGMeUz2njznmmGrB8EMf+tCwi2Rf+MIXys9//vPqMUn119yvNdZYY8SQZALgWUDOOBMEz0Jc5roHH3xwNY/fZ599lviZ3Jcs/OV3ZbE+53J+JgurCY9mAf673/1uacI666wz4tezsJmxAwAw9TL3SjhwpBbv9Twt19+9ZONV/P3vf6/mQL3UbdkzLxirXOvWFRzrOUH9OzP3SUBvpN+ZcadD3HiN51r79NNPrzr6JaSXeU/mHSn2kvGmC92rXvWqKkw3EbL2l/lPNuFl7S/rdVkby+0nCJj1tMyfOmUTWuYVGUvW9jKfetjDHlZtrPvtb39bHd/M1cbTqW/77bevNsw95CEPqY5VxpTQZja0ZU5Tn3c5BnHggQf2vK2sRx5yyCFLPN4jue9971vNGyOBxk9+8pPV5rPOsGktQecco8zPumVDYM7TnD8Jxuaxyxw353c6YGQjXn2bmavV9yPrsb0kcFw/tzrP/+WZw+d7EqxNkDPjS0B0uPXQkebX6cqw8sorV+dD5p695PFJSHfLLbec0IJFAKMl9AnAtJcJQr0YmN1vEyETqewizCQqE75jjz22mmBmJ1omK1nkzETive997+JqOam80jk5zcLbr371q2oHV/zP//xPNc5MhPbbb78qXPm73/2uHHXUUdW/M1G66667qoniaOywww7VGwb1mwYTIZOhBFkz2cqEqZf6GOe+9JrwAQDARMq1ad7A7yXX0KmYn2oas1UWQfbee+/FlSmyoLOsoNiyZG6TuUyOb7z73e+u/p0qIvkz/458Pf/Ox0RuwEs79yz+ZX50n/vcpwoaTpb8jrRXz4JPqoxkg17mfVmcyVwt1Unytcz9urs9DCeLSLHeeuuVVVddddxjywJiFh+zSJRgZOalv//976vFuwQm60o/CW9mQS2yONr52KUaaP6dz0eqi+S+ZGEqc90EVBOGzKa+hDJToSYLv/l9nbJIlwW1LDCmukl+f+azGVMqTQ5XsTOVQxOyTOWYPFezgJmF0Pz8d77znWoBMPcnYdNesjCcuXXGlzn097///RGPWebkf/jDH6rnwP/+7/9W9y/jzJ8Zd15PUjk0465lLHnM06owi425L/mZ3OdUXoo999xziU2fU2W453IWF1OtKM/75VmEBwBg+dTX5MO1eM+1bjY8pTNcL6lMnw1Y2QTVa60n1++5hs6GslQmHKusa9VzhcxtIutb9TpPr9Bg5ph1YHA8QdNO47nWTtGVzNNyvVvPgXJscjsZe47JD37wg7K88ngliJjOCjke+R2Zc+SY5fdmbp15UzaUdW6Kyzzjsssuq8J/CftlrpJ1wwQ98zjnscw8bqzOOOOMqipkjlHuc0KxOTYJZOZ4dd7n+nHJ2LNW2S0/m0qYCTOOdlNo3gfI/CzHJb8/87xUqE3g9Ec/+lG1btqrQ2AtxyIb/jJnzHs0p5xySnU7mWNn3pIQa+aendVWE/rMHC0bEHuFNPN4JPibuXW9oXJ55/CZ72aja34u48u4E8rsZaT5deb69fN6uNBqbn8inkcA4/V/dZwBYJpKZcxc9GciMdxurLHKYlbCnCnr391eL5OuTOqyiysTkUzoRjPZziJTxvj+979/qUlW/p3WFvWutNHIJDkfEyWT0kwgI20shmvLl2OcNxhyzHP/l7eKEAAALEuuk7OYcfPNN1eLDKm+kTfpU+Uu16bjkTfd++WN91ynZ6NYpyzEZBEni011xY+06k6wbbrLglmvttxZXEx1lLrtWTbMpWVcqqZMlhzXHMN0asjiU+f5lIWdhAhzXBPAzOJfKq8sS72ourzztSw0Zjw517Oo1SnVLtNFIouxWVS85JJLqufDsiQgmoXLVMbtnuummkxClalWlAW6LH7VYd56g2MqdmbxtTN8mMXBVA/qrmaTx7NemMxiajYudi+Q5/mcxd5UNM1tr7/++ku1zMzxr410THPu1OHn3I88prUcx4w7i8mZzydwWi/s1dWNUlG2cx6cn0nAOe85JFiZx3V5A9VjlQXmVIDNcybHMwu+eT5kUTp/BwCgWbkuyybFXGemQmVdLTHS5vvCCy+srqmHq1ZfV21MQY6E1hK061UpMEG24TZDdsv8IONJeHCPPfZYfK2bgFwtgcZUsMyGqVTK75wHJTBYV9hc3vWf8Vxr1z+TMdYVFiMVNTMHSheEhACX15FHHlk9ZjmumSN0dl1IB7+vfOUr1eOXsGPmGXV78Xp8mTd1zk/yM5mPZ56eeU0Ch5kvjdbqq69ezf07bzOPewrU5HbTASGhw4wzFSef+tSnVtU4c450tz4fT9gwBWwyP85mvbq6ae5L5oV1JcsEN1PlNJs0s0GzUzbr5X2KnE/pxtIdbk6YNwHSbCZ961vfWs336zBngs0JTnZ3MahDyancmXDoRM3hs8mx7tLYq2LpaOUczbgTIE3F0DyGnSHejCHP/c7nHsBUUukTgGkv7eQipfEnosJFdonVlUO7Jyadk8ttttlm8cRwNLL768wzzyxveMMben69niCNtnrMREqllf/8z/+sJmRPfOITq78PJ5PUevJ9xRVXTOEoAQCYrZ7whCdUCwtZIMjiQgKDWVwbb+Cz32ShIBUPOz+yOJWKmKkKkzDbvvvuWy2yjGVRqSkJqXbfn3xkU1lamGdBJAtNWWwcruLGRMnviCwK9Tqfcjzrlo1ZyBmNem43XMvy0UpIMguMCUT20vlY33333WO6v8N1dnjgAx+4+JjX9zch3LPOOqv6+3Ch1yzadUtwNAtfqfLZHfis5bhnLp8uEqnK0m0s3TwSOs25lY2KnYHPTvWGzczNc65FqgVFFjKzyNrdKjKLhrvtttuwGyMnU957yGP1jne8o6pUk+P87Gc/W+ATAGCaSBDtRS96Uc8W73Xlzs5NTL0kmJfbyTVq3TVgtK3dE+rMdWrnR+bPWb/KNWzWuxK4zEbKOjRXb8BKeDCbi1KwZLKqE47nWjuBxkhb84QBO+dV2byWbnl194nlUc+Ncqw6A5+1zo54nXPB+j4lKJrAXwKytcxtEmrMBruxzs3zmPTa5JY5TG4rv6ez1Xzdtj3B3c4KnGlZn+OWedhYq8NmLpX5Z867FLDJuZNKtbXMoXL8c1w6q7NmnTYbdUeaayb8nIBl1kAzvlp9nqUKaKebbrqpqnDa2QZ+IubwCVrnfk2ELbbYopqzZR7aXam3fh6lgFBneBlgKqn0CcC0lwv/qHdlLa8EGetJZCbHw8nXMglJRZXRyuQoOxbrHV75Xfkzk6FUJYmR2iNMhuwgzYS/3smXNvTLCs9mt1raI9SLZAAAwORJRYx6ISTzhVyLZ4EpQc8s6GTRaaIWLaZCqnmkTVstiz5ZBEyL79y3uhLl8rRGH62600KqhQy3oa+eq3UvwA6nbv2W+zERMo/MAnDGmjlkqmrm753j6dVKstudd95ZHd+6Eubee+/d8/vq76lvP+Hi3H4WQrOg1UuvuXP981m0He6xzAJe5qEJlvaaW9fHcjQyzsjiY69Kst3HKeNLpZqca2lbeNJJJ5Vvfetb1cfDH/7wqsLms571rKoqjRbqAACMFNbLtXVaTKcqYx2uTFX+XEfWBUSGk6qQCY+dcMIJVWXDutph5gBpeZ1Kgc997nN7/uy6665bfXTPH7JeVl/T5nq2W67tM+60Ws/vzHVv1CHQBAaHC++NxXiutVO1Mp0OsgEu3QAy1lS1zM+k8mUdupyouWCCgXX1zm7ZxBZZx8tcIo9tNmQl4JtjlbHmWKWYSsaXDVqbbLLJEgHb0cq8qJcEBnOfM8acD/VjlbBxwqWZS+Xcye+PBFGzqS7nTDb1jUc6HubjAx/4QLXBMJs0E8DMuZJ1wcxJd9555/LrX/96iblY3a1gOOleEJ1z2bRI/+IXv1gFRxNqrTf+pcti1mpz/nTOQ5d3Dp/1zYnaLFsHUrPGmmNTF/1JCDTP/+iXDjPAzCT0CcC0V7fO624lMF5pV1AbKUhaL1pl4Wy0t5t2ENl117kzMRPwVCHJBOqYY44pUyWTjrSEqNsjZOKUhb/RhGfrY11PeAEAgKmRqhRZ8PjCF75QLeCksksWerJ4ksWnflRX4kh78lR0zUJPui6kwshYQn/LM//LIl4+RtJZwWUkdTv6hA/zM6OZY2UzY6rwdLc3T3WQtLjPgmKnfN92221XtTYcz1y3Xigbzf29+eabqz9Hqi7ZK9RZ/75l3f+R5tZjWYyrx5vfm0XJZanns1mkTdv7X/ziF1X7vzpQm4999tmnGt873/nOqsrweBZvAQCY2bIBL8HLVLFMwY/8O10M0oI685zRbGZL1cYE97J+lNbTue6sq3xuu+22w1YKzM8lmDce+dmEPlM5Mdfiud6vA4MJa443MNhpPNfaCU6mO10KlKQbQMZWtxjPhsiEAhMSTFXK5VHPV/K4dVcg7ZZjknFkvHmss66WyqUJfyZ0mU4c+UiRlWxyTDe9ZYV9u40036q/1tkpMOt0qXaZ8GPGU4c+6/OmrgS6vPJ70g0iHwl65r4lkJlzPed51jc758qjmYt1fn/mfLkfCZDm/K9Dn/XaZXdocnnn8BO9oS/jy/syud/ZpJn3a7LJNWvXqWA7XBcKgKkg9AnAtFdfoE9UALFzYpUJQSp/jBQ2HW1btbRiS9v4TGDe9KY3Vbv9HvnIR1ZVTxL8zGLdVIU+c6yy2y67K+v2Apksj7bFQH2sVTsBAIDmpN1aFpaOPfbY8o1vfKOqDNKristI1SATNJwu0govAccEPlM55CMf+Uj56U9/WgVdx2Is9ykLWJn3pUXdcNVzxirt6TO/ysJgFm6f//znL/NnslCXqjep4JKFrszNEvj85Cc/WX091VxyO5lDPuIRjyj3u9/9qs2EYwl9dm6UzO941KMeNaaf6wyNdusV2KznyssKy9bzy+VtWV6PMwvrdTeL0crxftvb3lZ9JKybxy3z97SMT5WY73znO9VcPl8HAIBOCSvmGjRzl4QAE/ocbWv37mqHqbqfTXDZEJdg3USG97olXJcNa6m4n+BnWoHXQbuJ/J3judZOkZTMjzLnScXPfH8qkCZYl+OTCqCHHXbYUm3Zh+uA0GuOWM8fPvvZz1ZrdmORdcOEH/Pxz3/+s1pry/1KNcw8hh/84Aerzhwbb7zxhMxj6zlVqlR2yuOUuWSORTaGJkybqptpo56qqKP1uc99rhp/qlamyupw8jjlPM3vy2OTcyehxvpxSFXaPFZjlfuR0GeqY37605+uwpNnnXVWdbt1q/bJnMMvj4SAE7jNY595dtaChwusAky1sb2jCgANqHcb1tVHltdDHvKQavdhnH322cN+X/21hDaXJTve6olOdv9l4S6tM7ITMYHPyGR3KmShLjsn68BndlBmYXW0gc/OYz0ROz0BAIDxLy4mXJhKimn7/olPfGKpYN7cuXOXqPbfLe3hp5O07csCXmQOlYXTbvV96nV/xnqf6qqcne3ouqV6SBacUo1zNFLZI5v8IlVtltV6PfejDm+m1WE9N8vcMV75yleW//3f/y2vf/3ry6abbloFPsczh8wCYT2Hu/DCC4f9vixannfeeYs3OqY6SaStX8K4vfRqh5j7EqlwNFxgNOftueeeO+q59fI+lrkPmQtnETGh3Mj9zJy9ru6zzjrrVMc8z61UFqoXEuuFOwAA6Jb1nkgYLtf/Ca9lU9Nog3cJ0730pS+t/n744YeXk08+udxyyy2L22xPljqUlt+Za+TMBdZcc82y1VZbTcjtj/VaO9fomT/k/kfWz57ylKdURUxSLTQfmQfXbeiXZ444mvlDXb011TxrdTv1uupm5ktvfvObqyqfaTeeSp+5HwcffPCYjlWvVuR1GDThyujeuJeAcTYF5nuyGTSPY7z85S9fvPY4GukckuOe8O+ypNppvWEv50rnscw5292lotMpp5xStajvrFgamT9nvTQ/n/lawpN1C/vuYO9kzOGXVx2SzvGvH4sc/zwOAE0S+gRg2qsv8FMdJAs4yysTiKc97WnV3/fee++e35PJb8rz160map0VaDoX9q688srFf3/CE56w1O1l3PWuzXrhabJ89KMfrXZGZmKcHYy77LLLmH4+k7FMvDoX8QAAgOaqYybsWS8+7bbbbkt8PRU+RlpEqheFppO0M6wDgKnYmPlXr/vU6/6k4uTxxx8/6t9VLzKmfWD3wlMMDg5WlTrSSv3rX//6qG83FV8y50ol1h/84Acjfm+qtGbOmPlkflf3PHK4dnAZc+c4O9WtEbsDp/Wic1opJnDZLRVTUmk1C7E/+9nPFodYH/OYxyz1OzulKkuvykEJqGZsWZztJfPgLApmvKlmujyyMJ3F3pwXWWTrJSHiLMimilH9/kEeqwRq0z6yWxbqNt988ymZqwMA0L9SmfPBD35wueqqq6pr31R7TIv0hDlHK3OOeo6W8OBUVApMZccUQUmVwjqkONbA4EjGeq2dIF+qnr71rW/tGR5MyLEOHHbOZ0aaI5555pk9Q5/1XDBVWW+88cYRx58uFJG5TeZKGV9Cq92yya4OZvaab40kQeFeHRSyQTBVNddaa62elUPrwGECm+M9b+pwYord7L///iN+b86VrBGmqme92THB03oOn7lmL6nQusMOO1TVbxOkHSmAnIq5nfdtKubwIxlufl3bZpttquORDY15vBKizdy7DsUCNEXoE4BpL7scE9TMBKrXRGG8bRLriW6CkZ1VSVLB5F3veld10Z6Fr0zwap07zjK5r3WGI7PbLxO0Wiqs5Pay8yxGG1zNDrXsiMvHaB1wwAHlr3/9a/X3d7/73WNuWREJjGYCnhYKk7nDFAAAGJ0sZqRCZmSBIdUzOjfJpfVcJBBat9LOYkWqZ2R+Mt2stNJKVWu6en6UVnPdYcI45phjqko6tSzkpY3ecAt2vWTRKYtnqWqSNnad87jMuRJAzZwrC5Jvf/vbx7TomzlXfPe7360WCbsrkSTUmU15dbgy1Wue+MQnLjWPTKCys7JM5qe77757+dGPfrT4c92LXfXcNIvNnXbaaafqa1lw+9jHPrZE5ZN8b76eBbxUj82xqX3gAx9YXLk051i92JW5bcZSb2LslDljbq8O72bxu3Ph889//vPix/Z1r3vd4g2d45WKOq997Wurv3/4wx9evFEz8nvT9nCPPfao/p37lgo1kQBofZwzZ+5cyMtj9vOf/7z6+0RVOwIAYGZKVcJIW/KoK3eOVuYCqRqZ6/Lf/e531Rxk2223LZMpc6Fsvsq8q55fTGTQdKzX2llzS2gya1C5pu/sbpAqnt/+9rer+VDmNKkA2j1H/MlPfrLEmlmqPeZ2ekn4ML8rc+R3vOMdS8zX8js+//nPV9VEE/ir5zVZN6wf16985StVoLRT5qdZV+wuGDMamfNlPts5R0sQN536IkHGXh37cowzrgQlU6k1mwbrTXujteWWWy5uo/6Zz3ymum+dxWwia6I5LzNHjvxZB3Bj5513rv7MeZSQb2fV1bxHUX89c+W68E6v+3HQQQdV4d10Zex8jCd7Dj+S4ebXtTwu9XM18//Q2h2YDu7tbQsA01gu3DNByIJOFq6e/vSnL/dtZrdgJjWZ3GRBK5OMukVCZxuFLBh1TrKykysLTbnwz4JdFukykcnkLu09slNvr732qnbKrb/++tViWj1xyqQq1Uiyky8TynoBajhZMKsXrDKRG420BKylVeIb3/jGYb/3cY97XBV47ZZjHDnOY2kJDwAATI4sQn3xi1+sFkmysJJ5TOYwuV5P9cgseuTaPm3SspiWcF0CkqmckioZWRjJ5q7pJPONVJ35/e9/Xy20ZXGprvKRz6d6SOZmCSNmMSiLMFnYSaXH97znPeWHP/zhqH5PKlGmEmcWi/J7nve851Vt5XJMc/s5nll4ysJt3eZ8tNJVIXPE//qv/6oW6/KRxam0NMzCYhap6jlt5o3ZDNj981nYy0bBjKsORebnsuCWCpwZZ1qud7d6z3zuX//6VzUHPProo6tqObmtVF/5zne+U912xpPgZe5vwpvZiJiqKDmWWairw8J15ZJ3vvOd1e3lXEqIc911163GkpaNqfCSc6huq1jL4mnmvL/61a+qczQB0Yw7462r7WRx8dOf/nSZCKnEk8XSbHbMY/qgBz2oqoabOXq9eJrfVy9URo5NQqeZ+6dqbqrB5L5lXp5jm4XpVNTJeQUAAMPJGlDWf7LGk3nGM5/5zDHfRoJiaX2etahct3Z2bpjMTYS5fs7vTGBwrPOekYznWjvBzje84Q3V/DXzkKylZUNZ5hWZR2XOkblFZxXFXPtnU2DmuAnfZY6TOVPmOJl/ZC6ZOWWnzMO+//3vV/Oc8847r7zsZS+r5lz5Xfm5HI/41Kc+tUSAM3OprJOlqmM2nWVNMI9T5jf1HCdrb2MNfebxTmg0FSIz/sxf0l4+UsBl++237/lzqS6aef7yVodNB4rMBRPOTRfEfKR6beaF9bHM/DjHLZsau9cXE4bN92TOl9vac889y4YbbljdjzosmeObYz7c/UgAuS5ck3n/VM/hhzPc/LpTzrGEmHPe5L6M9fEHmAwqfQLQF+rdgpnUTZRU8DzwwAOrCWku0LPL7+abby6bbrppVY0krQMyWeyWXVwJjaaSSCY4mbhGduN96UtfqnZrZiKboGYmH1lkzeQnbwZkAhWdFUkmSsbeuVMxbQZPO+20YT8ygenlb3/72xLHHAAAaF42nNULZVno6KzgmTlNKm1ko1kWyBKOzBwn4dAsuHQH9aaLLArWC3mpUnrDDTdUf081kVSKyeJcQoxZCMvXskiWkOgWW2wxpt+TOVqqnmbjXhaFspiYyiI5RpkXZnEwizrj8ba3va1qF5jwY35PFsuyOJjxpnNCKo/k692Bz8hcMfPOLHQmLJox5b5mA2IW2TJfrauJ1AtjnccuxyMLljkfOqvdZEEwlTl33HHHKjCbrye8mcXKLCQmMJx5b7dUBs15lUBu7ke6YORnMs/N74vu9pVZeEuFnMx3cz9yrmVBtb5/ub0ESFPddSLkdrIAmIXiLBgmzJrfl0pBOS+yyJzQa/c5n8qyWVzP92Qun/l6NmmmYlDm/7/85S+XuTETAIDZLeHFBBTj+c9//rhapKfNdn2tOlWVAhMyrMOlvdppL6+xXmsnwJd5XUKFmW+kkmM2wq2++urV+DrnQbXMrTJ3yuczh8zcKXOAzLdyW5lP9ZI1vnz94x//eLWRLaHRrI1lzpn5VDYbppV7p3wt4b5U5UxINvclc6Os+yWAmPW+zIHGKr8vlUpzHmWOloBrjlnmTL0KtHSqz5Vs/Ex4dTzys1/72teqDgk5brlvWcPMfcumvQQ2M6/NfLGufNotc+rM1fM45DHNz2ZtMqHJbHTM3Lpzc2G3+vzL5tXOLotTOYfvZaT5dec5WFdYzfM4wVOApg20O2tsA8A0lclbdlFmoSrVSh75yEc2PaQZKRPr7NbLwmqqlk7XxWEAAACmzlFHHVW1s08ll1QPBQAAxi6ByATGElJMRcGpWINJKC8bprJhK63JU0mR/pIQ6pe//OXyohe9aHF7caZWumZkg2U2eGaTZcLLAE1T6ROAvlC38Iu0iWByZIdepG2CwCcAAMDskGoxr3/968s555zT8+tZkI5UcAEAAMYnVRbriodTtQaTdt6pkJ/KiAKf/X3epMsHzUgHxwQ+0wlS4BOYLoQ+Aegb2f2Ylob7779/uemmm5oezoyTY5o2FznG3a0zAAAAmLlSwfOMM86o2v1dd911S1QzyebAfKQyUFowAgAAo3fuueeW+fPnl1/84hflV7/6VdVme/vtt5/U35kW5mmb/qc//al873vfqz634447TurvZOLcddddVVXYdD/83Oc+V/39UY96VNlyyy2bHtqskpbyee6mQu4XvvCF6nNve9vbmh4WwGLz/u+vADC9zZs3r1qAyiLTf//3f5fPfvazTQ9pRskxzUQyxzjHGgAAgNnhIx/5SDn11FPLSSedVLbeeuvykIc8pKy88srVAtctt9xS5syZUz7+8Y+XzTffvOmhAgBAX9lll13KpZdeusS/11577Un9nV//+teroFotFSKf+MQnTurvZOLccccdVSGcWuZju+66a6Njmo1++tOfLu6QGM985jPLC1/4wkbHBNBJpU8A+somm2xS3vWud1UX2Z2TZJZPjmWO6U477VQdYwAAAGaPhz3sYVUVoJ133rmqIHPjjTeWCy+8sKy66qrlla98Zdl3333L29/+9qaHCQAAfWfTTTetqnuus8461War97znPZP+OzfeeONqE9eaa65ZXcenWiT9Y6211qq6MaywwgrV/Oz73/9+ecpTntL0sGadxz/+8WWVVVYpq6++enn1q19dvvvd7zY9JIAlDLTb7faSnwIAAIBmfOhDHyqnnXZa+dvf/jbqn7n55puritV//etfy/XXX18e/OAHl9e85jVVux3VqwEAAKYX8z4AAIDlo9InAAAA08Iee+xRDjnkkDH9zG233Vbe/OY3l3322afaff2Wt7yl3Oc+9ynf+MY3yoc//OFJGysAAABjZ94HAACw/Gx9AwAAoFELFiwoX/rSl8p+++035p9NpZcLLrig7LrrrmX77bevPrfLLrtUlWP+/Oc/l8MOO6y84AUvmIRRAwAAMFrmfQAAABNHpU8AAAAa85e//KW8+MUvrhb+ttpqqzH97D333FN+85vflHXXXbe84Q1vWPz5uXPnlo9//OPV3/fdd98JHzMAAACjZ94HAAAwsYQ+AQAAaMxvf/vbcuedd1YVW/bcc88x/eyZZ55Z7rrrrrL55puXOXOWnN5usMEGZf311y8nn3xyGRoamuBRAwAAMFrmfQAAABNL6BMAAIDGvPWtby1HHnlk1aJvYGBgTD976aWXVn8+5CEP6fn1LAAuXLiwXHnllRMyVgAAAMbOvA8AAGBizZvg2wMAAIBR22KLLcb9s7fcckv15xprrNHz66uttlr152233Tbu3wEAAMDyMe8DAACYWCp9AgAA0JdSzSVWXHHFnl+vP79gwYIpHRcAAAATw7wPAABgaUKfAAAA9KWVV165+nPRokUjLg7e9773ndJxAQAAMDHM+wAAAJYm9AkAAEBfut/97jdiG7/bb7+9+nPVVVed0nEBAAAwMcz7AAAAlib0CQAAQF96+MMfXv15+eWX9/x6Pr/KKquUBz/4wVM8MgAAACaCeR8AAMDShD4BAADoS094whOqFn4nnXRSabVaS3ztiiuuKPPnzy9PetKTyty5cxsbIwAAAONn3gcAALA0oU8AAAD60korrVRe9rKXlSuvvLLsvffeiz8/NDRUdtttt+rvO+ywQ4MjBAAAYHmY9wEAACxtXo/PAQAAwLRy3nnnlSOOOKKst9565dWvfvXiz3/oQx8qf//738tXv/rVcsIJJ5SNNtqoHHfcceWcc84pL37xi8vznve8RscNAADA6Jj3AQAAjI5KnwAAAPTF4t8ee+xRfv/73y/x+TXXXLPsu+++ZbvttitnnXVWVfnlnnvuKR/72Meqqi8DAwONjRkAAIDRM+8DAAAYnYF2u90e5fcCAAAAAAAAAAAA0BCVPgEAAAAAAAAAAAD6gNAnAAAAAAAAAAAAQB8Q+gQAAAAAAAAAAADoA0KfAAAAAAAAAAAAAH1A6BMAAAAAAAAAAACgDwh9AgAAAAAAAAAAAPQBoU8AAAAAAAAAAACAPiD0CQAAAAAAAAAAANAHhD4BAAAAAAAAAAAA+oDQJwAAAAAAAAAAAEAfEPoEAAAAAAAAAAAA6ANCnwAAAAAAAAAAAAB9QOgTAAAAAAAAAAAAoA8IfQIAAAAAAAAAAAD0AaFPAAAAAAAAAAAAgD4g9AkAAAAAAAAAAADQB4Q+AQAAAAAAAAAAAPqA0CcAAAAAAAAAAABAHxD6BAAAAAAAAAAAAOgDQp8AAAAAAAAAAAAAfUDoEwAAAAAAAAAAAKAPCH0CAAAAAAAAAAAA9AGhTwAAAAAAAAAAAIA+IPQJAAAAAAAAAAAA0AeEPgEAAAAAAAAAAAD6gNAnAAAAAAAAAAAAQB8Q+gQAAAAAAAAAAADoA0KfAAAAAAAAAAAAAH1A6BMAAAAAAAAAAACgDwh9AgAAAAAAAAAAAPQBoU8AAAAAAAAAAACAPiD0CQAAAAAAAAAAANAHhD4BAAAAAAAAAAAA+oDQJwAAAAAAAAAAAEAfEPoEAAAAAAAAAAAA6ANCnwAAAAAAAAAAAAB9QOgTAAAAAAAAAAAAoA8IfQIAAAAAAAAAAAD0AaFPAAAAAAAAAAAAgD4g9AkAAAAAAAAAAADQB4Q+AQAAAAAAAAAAAPqA0CcAAAAAAAAAAABAHxD6BAAAAAAAAAAAAOgDQp8AAAAAAAAAAAAAfUDoEwAAAAAAAAAAAKAPCH0CAAAAAAAAAAAA9AGhTwAAAAAAAAAAAIA+IPQJAAAAAAAAAAAA0AeEPgEAAAAAAAAAAAD6gNAnAAAAAAAAAAAAQB8Q+gQAAAAAAAAAAADoA0KfAAAAAAAAAAAAAH1A6BMAAAAAAAAAAACgDwh9AgAAAAAAAAAAAPQBoU8AAAAAAAAAAACAPiD0CQAAAAAAAAAAANAHhD4BAAAAAAAAAAAA+oDQJwAAAAAAAAAAAEAfEPoEAAAAAAAAAAAA6ANCnwAAAAAAAAAAAAB9QOgTAAAAAAAAAAAAoA8IfQIAAAAAAAAAAAD0AaFPAAAAAAAAAAAAgD4g9AkAAAAAAAAAAADQB+Y1PQAAmA7ad95d2nfcVco9C0p7waJSFiysPtpdf97790VLfm7holKGWqXdbpeSj9a//6w/YmDg/z7m3PvnQP4+b24pK61YBlZcoZSVV/z331es/j6wUv69wr2fq/7+76/nz5VXKgOrrVIGVl6p6UMHAAAAAAAAAMAUEfoEYMZqJ3x5512lfdsdpX3rHaV9252l3H7vn/f++47Svv3OUvL5oaGpH98wfx+TFVcoA6vft5TVVy0D1cd9//3nqv/+3L//vcrKEzNoAAAAAAAAAAAaM9CuypIBQH9Kdc729TeV1vU3l/Z1N5X2DTeX9s23VaHOksqdrVbTQ5we5s27Nxx6v1XLwJr3K3PWWrMMrHX/MlD/meqhAAAAAAAAAABMa0KfAEx7aaPeTqjz+puqP1v//jMf5e57mh7ezLD6qmVOHQJ9UEcY9AFrlIG5c5seHQAAAAAAAAAAQp8ATCftoVZpX3NDaV15TWlfee29f0+w87Y7mh7a7DVnThlYc/Uy8KA1y8A6a5U5669dBjZYp8x5wBpNjwwAAAAAAAAAYNYR+gSgEe2hodK+OgHPa0v7ymvu/fOq60sZHGx6aIzGfVa+NwC6/tr//nOdMvDANcrAwEDTIwMAAAAAAAAAmLGEPgGYdO3BodK+5vrSuqIj4Hl1Ap5DTQ+NiXSflcqc9f4dBN1gnerPgQfeXxAUAAAAAAAAAGCCCH0CMOHa9yworYuvLK2Lrqg+2vOvK2VIwHNWWnmlMueh65Y5j9igzHnEQ8rAQ9YpA3PnNj0qAAAAAAAAAIC+JPQJwMSGPC+8vLTnX1tKy38v9LDiCmXOhuuVORsJgQIAAAAAAAAAjJXQJwBjJuTJhIZAH7ZeFQBNEHRgg3XLwNw5TY8KAAAAAAAAAGBaEvoEYJnag0P3Bjz/dem97dqvTMiz1fSwmOkh0MdsWOasv07TIwIAAAAAAAAAmDaEPgHoqX3n3aV13sVl6JwLS+v8S0pZsLDpITEbrbFamfu4R5Q5j9+ozHnkQ8rAvHlNjwgAAAAAAAAAoDFCnwAs1rruptI658Iq6Nm+dL6W7UwvK61Q5jxqwyoAmiDowKqrND0iAAAAAAAAAIApJfQJMIu1W63SvmT+vdU8E/S8/uamhwSjMzBQBh764DL38f+uArrOA5seEQAAAAAAAADApBP6BJhl2gsW3tu2/dyLqj/LnXc3PSRYbgMPWKPMSQD0CY8scx6+QRmYM9D0kAAAAAAAAAAAJpzQJ8As0B5qlda/Li1Dp55TWmdfWMrCRU0PCSbP6quWuU9+TJm72ePKnPXXaXo0AAAAAAAAAAATRugTYAZrXXZ1FfQcOuP8Uu64q+nhwJQbWPsBZe6mjytzEgBd835NDwcAAAAAAAAAYLkIfQLMMK3rby6t084tQ6edW9rX39z0cGB6GChlYMP1y9zNHlvmbvKYMnDf+zQ9IgAAAAAAAACAMRP6BJgB2nfcVYZOP7+q6tm+/OqmhwPT29y5Zc5jHnZv+/fHb1QGVpjX9IgAAAAAAAAAAEZF6BOgT7UHB0vrrAvK0CnnlNY/Ly2l1Wp6SNB/Vl6xzN340WXuUx5f5mz0kKZHAwAAAAAAAAAwIqFPgD7Tuv6mMnT8P8rQyWeXcufdTQ8HZoyBB61Z5j59kzL3KU/Q/h0AAAAAAAAAmJaEPgH6QHto6N6qnsf/o7QuvKwUr9wweebNK3Oe9Ogy7+lPKnMetl7TowEAAAAAAAAAWEzoE2Aaa99yexk8/owydMKZpdx+Z9PDgVlnYN21ytwtn1Tmbvb4MrDSik0PBwAAAAAAAACY5YQ+Aaah1oWXl8FjT6+qe5ZWq+nhACuvVOY+9Qll7jOfXOastWbTowEAAAAAAAAAZimhT4Bpor1wURk69Zwy9PfTS/vq65seDtDLQClzHv2wMveZm5Y5j314GRgYaHpEAAAAAAAAAMAsIvQJ0LD2HXeVwb+dUoaOPaOUu+9pejjAKA08cI0y9zmbl7mbP6EMzJvX9HAAAAAAAAAAgFlA6BOgIe2bbi2DR51chk48s5RFg00PBxiv1e9b5m311DL3GU8qAyut2PRoAAAAAAAAAIAZTOgTYIq1rr2xDB55Qmmddl4prVbTwwEmyn1WLnOf+eQy79lPKQP3vU/TowEAAAAAAAAAZiChT4Ap0rr86nvDnmdfUIpXXpi5VlyhzH3axmXeczYvA2us1vRoAAAAAAAAAIAZROgTYJIN/euyMpSw5wWXNT0UYCrNnVvmbva4MnfrLcqcB63Z9GgAAAAAAAAAgBlA6BNgEuSltXXWBWXwLyeW9uVXNz0coEkDA2XOxo8q8563RZmz/jpNjwYAAAAAAAAA6GNCnwATHfb8xz/L4J+PLe1rb2x6OMA0M+fRDyvzXvKsMmcD4U8AAAAAAAAAYOyEPgEmsI374B+PLu0rrml6KMB0NlDKnI0ffW/4cy1t3wEAAAAAAACA0RP6BFhOrSuuqcKerX9d1vRQgH4yZ06Zu8UTy7wXblkGVl+16dEAAAAAAAAAAH1A6BNgnFrX31QGDzmmaudevJIC47XiCmXuszYr87beogzcZ6WmRwMAAAAAAAAATGNCnwBj1L7tjjJ42HFl6IQzS2m1mh4OMFOssnIV/EwAdGCFeU2PBgAAAAAAAACYhoQ+AUapffeCMviXE8vQMaeWsnBR08MBZqo1VivzXrBlmbv5E8rAnDlNjwYAAAAAAAAAmEaEPgGWob1osAz9/bQyeOQJpdx1T9PDAWaJgbUfUOa9+Fll7saPanooAAAAAAAAAMA0IfQJMIKhf/yzLDror6XcfFvTQwFmqYGHrVdWePU2Zc56azc9FAAAAAAAAACgYUKfAD20rruxDO5/ZGn969KmhwJQypyBMvcZTy7zXvzMMnCflZseDQAAAAAAAADQEKFPgA7tBQvL4OHHl6GjTyllaKjp4QAsadVVyryXbVXmPvUJZWBgoOnRAAAAAAAAAABTTOgToLOV+4F/KeWW25seCsCIBjZcr6zwGi3fAQAAAAAAAGC2EfoEZj2t3IG+bfn+9CeVeS95lpbvAAAAAAAAADBLCH0Cs5ZW7sCMoOU7AAAAAAAAAMwaQp/ArDR0xvll0UF/1codmDEGNnxwWeHVzy9z1tfyHQAAAAAAAABmKqFPYFZp3XhLGdzvMK3cgZnb8v0ZTy7zXvrsMrDSik2PBgAAAAAAAACYYEKfwKyQl7qhv59eBv94dCkLFzU9HIBJNbDm/cq817+ozH3kQ5seCgAAAAAAAAAwgYQ+gdlR3XPfQ0rroiuaHgrA1BkoZe7Tn1TmbfscVT8BAAAAAAAAYIYQ+gRmdnXPY08vgwer7gnMXqp+AgAAAAAAAMDMIfQJzNzqnr8+tLQuvLzpoQBMj6qfz3hymfeyrVT9BAAAAAAAAIA+JvQJzLzqnsedUQYPPqqUBap7AnQaeMAaZYXXv6jM2eghTQ8FAAAAAAAAABgHoU9gxmjddGsZ/PUhpXWB6p4AI1b93HLTMu+lz1b1EwAAAAAAAAD6jNAnMDOqex5/Rhn8g+qeAGOq+vmGF5c5j9ig6aEAAAAAAAAAAKMk9An0tfYtt5dFv/pTaV1wWdNDAejPqp/P3KzM23arMjBvXtOjAQAAAAAAAACWQegT6FtD515UBT7LnXc3PRSAvjaw3oPKCm95eZmz1ppNDwUAAAAAAAAAGIHQJ9B32kNDZfCPfytDR59cilcwgImx0gplhe1eWOZu9rimRwIAAAAAAAAADEPoE+grrZtuLYv2Pqi0L7+66aEAzEhzN39imffqbcrAiis0PRQAAAAAAAAAoIvQJ9A3hs78V1n060NKuXtB00MBmNEG1n5AWeGtryhz1nlg00MBAAAAAAAAADoIfQLTXntwsAwe+NcydOzpTQ8FYPZYYV6Z96rnlXlP26TpkQAAAAAAAAAA/yb0CUxrretvured+/zrmh4KwKw058mPLSu89gVlYOWVmh4KAAAAAAAAAMx6Qp/AtDV06rll0W//XMqCRU0PBWBWG3jgGmWFt7yizFl/7aaHAgAAAAAAAACzmtAnMO20Fy4qg/sfUYZOOqvpoQBQmze3zNv2OWXeszZreiQAAAAAAAAAMGsJfQLTSvumW8vCH+9f2ldf3/RQAOhhzpMfU1Z4/YvLwIorND0UAAAAAAAAAJh1hD6BaaN10RVl4c8OLOWOu5oeCgAjGFh/7bLi219dBtZYremhAAAAAAAAAMCsIvQJTAuDx59RtXQvQ62mhwLAaKx237Li215V5mz44KZHAgAAAAAAAACzhtAn0Kj2UKsMHnBkGTr29KaHAsBYzZtbVnjtC8vcpz6h6ZEAAAAAAAAAwKwg9Ak0pn3n3WXRzw4srQsvb3ooACyHuVs9pczb9jllYM6cpocC9LEDDjig7L333uWSSy4pK6+8ctlyyy3LLrvsUtZbb71R/fx5551Xdt9993LqqaeWO++8s/q5bbfdtuy0005lxRVXnPTxAwAAMDxzPgAAgIkj9Ak0onXNDWXRj/cv7RtvaXooAEyAOY9+WFnhLduWgfus3PRQgD707W9/u/zwhz8sG220UXnOc55Trr766nLooYeW1Vdfvey3335lgw02GPHnzzjjjPKWt7ylLFq0qLzgBS8o6667bjn22GPLv/71r/K0pz2t7LXXXmXu3LlTdn8AAAD4P+Z8AAAAE0voE5hyQ2dfUBb94o+lLFjY9FAAmEADa92/rPCOV5c5D3pA00MB+sj5559fXvGKV5TNNtus/PSnP11coeXwww8v73//+8tzn/vcanFwJG94wxvK6aefXr73ve+VF77whdXnBgcHq4ovWQjcbbfdqt8BAADA1DLnAwAAmHh6cAJTavDw48uin/xe4BNgBmpff3NZ+N19ytB5Fzc9FKCPpL1fvO9971uiJd/zn//88tSnPrUcddRR5dprrx3xNs4666xyv/vdb/HiX8ybN6+89rWvrf6exUEAAACmnjkfAADAxBP6BKZEe+GisvDnB5XBQ44pRX1hgJnr7gVl0Y9/VwaPOqnpkQB94oQTTqgW67LY1y1t+tKcIt8zkjXWWKPccccd5dZbb13i89ddd13155prrjnBowYAAGA0zPkAAAAmntAnMOnad9xVFv73r0rr9PObHgoAU6HVLoMHHVUW/frQ0m61mh4NMI0tXLiwXHXVVWWdddZZouJLbYMNNqj+vPjikSsIb7/99mVoaKjssssu5aKLLip33XVXOeKII8p///d/V4uD22233aTdBwAAAHoz5wMAAJgc8ybpdgEqrZtuLYv2/E3V8heA2WXoxDNL+867ygpv2rYMrLhC08MBpqFUaUlVl7Tp62W11Var/rz99ttHvJ20CcxtfO1rXysveclLFn9+o402Kt///vfLgx/84AkeOQAAAMtizgcAADA5VPoEJk3rquvKwu/tI/AJMIu1zr6wLNxzv9K++56mhwJMQ4sWLar+7FXxpfPzCxYsGPF20grwRz/6UdUycNttty077rhj2WSTTcqFF15YPv3pT5dbbrllEkYPAADASMz5AAAAJodKn8CkaF14eVm41+9LuWfkN2sAmPnal1xZFu7+y7LiTq8tA2vcW8EBIFZeeeUlFgJ7tQKMVVZZZdjbuOaaa8q73/3u6rYOOOCAsuGGGy7+2u6771722GOP8olPfKLsueeeEz5+AAAAhmfOBwAAMDlU+gQm3NCZ/yoLf7SfwCcAi7WvuaEs2P0XpXXtjU0PBZhGVl111TJnzpxhW/nVn69b/vVy4IEHlnvuuae84x3vWGLxL97//veXhz70oeWoo44q11133QSPHgAAgJGY8wEAAEwOoU9gQg0ed0ZZ9LMDSxkcanooAEw3N99WFu7xy9K67KqmRwJME2nlt8EGG5SrrrqqZ+WXK664ovpzo402GvY25s+fP+z3DAwMLP58fgcAAABTx5wPAABgcgh9AhNm0aF/L4O/PayUdrvpoQAwXd15d1n4g1+XofMubnokwDSx+eabV4t/p5122lJfO/7446tFvE033XTYn19rrbWqPy+55JKeX7/sssuW+D4AAACmjjkfAADAxBP6BJZbu9Uui357WBk67LimhwJAP1i4qCz68f5l6JRzmh4JMA285jWvqf789re/XbXsqx1++OHllFNOKVtvvXVZZ511hv35F7/4xVW7wL322mtxlZja3nvvXS688MKy2WablfXWW28S7wUAAAC9mPMBAABMvIF2W0k+YPzag4Nl0T4Hl9aZ/2p6KAD0m4FS5r10qzJv6y2aHgnQsC9+8YvlF7/4Rdlwww3L8573vHLttdeWQw45pNz//vcv++67b9UOME488cRy0kknlcc+9rFlm222WfzzP/nJT8rXvva1ssoqq5QXvOAFZc011yxnn3129b2p9rLPPvtUtw0AAMDUM+cDAACYWEKfwLi171lQFv54/9K+aMndtQAwFnO3ekqZ9/LnVu28gNkp09IsAP76178ul156aVljjTXKFltsUXbeeefFi3+x++67lz322KO86lWvqhb8Oh177LFV5Zczzzyz3H333eVBD3pQee5zn1ve8573aPMHAADQIHM+AACAiSX0CYxL++57ysIf/qa0r7im6aEAMAPMffomZd52LxD8BAAAAAAAAIARCH0CY9a+8+6ycM/flPaV1zY9FABmkLlbPLHMe+2LysAcwU8AAAAAAAAA6EXoExiT9h133Rv4nH9d00MBYAaa89QnlBVe/2LBTwAAAAAAAADoQegTGFvg8we/Lu2rr296KADMYHM2fVxZYfuXlIE5c5oeCgAAAAAAAABMK0KfwKi0b7/z3sDnNTc0PRQAZoE5T35MWWGHlwl+AgAAAAAAAEAHq+jA6Cp8fn9fgU8Apkzr9PPLol/8sbRbraaHAgAAAAAAAADThtAnMLqW7tfe2PRQAJhlWqefVxb96k+l3VKYHgAAAAAAAABC6BMYVvvOu8vCH/6mtK++vumhADBLtU49tyz69SGCnwAAAAAAAAAg9AkMp33XPWXhD39d2ldd1/RQAJjlWiefXQb3O7S024KfAAAAAAAAAMxuQp/AUtp3LygL9/xNac8X+ARgehg68awyuN9hgp8AAAAAAAAAzGpCn8AS2gsXlYX/+9vSvuKapocCAEsYOuEfZfCgvzY9DAAAAAAAAABojNAnsFi71SqLfn5QaV8yv+mhAEBPQ0efUgb/elLTwwAAAAAAAACARgh9AosN7vfn0jrnoqaHAQAjGjz4qDJ0yjlNDwMAAAAAAAAAppzQJ1BZ9Ke/laETz2p6GACwbO1SFu17SBk67+KmRwIAAAAAAAAAU0roEyiDx5xaho44oelhAMDotVpl0c8OLK3Lrmp6JAAAAAAAAAAwZYQ+YZYbOv28MnjAX5oeBgCM3cJFZeH//q60rr2x6ZEAAAAAAAAAwJQQ+oRZbOhfl5VFv/xTKe1200MBgPG58+6y8Ef7lfYttzc9EgAAAAAAAACYdEKfMEu1rrymLPrJ70sZGmp6KACwfG6+7d7g5933ND0SAAAAAAAAAJhUQp8wC7Wuv7ks/NFvS1mwsOmhAMCEaF9zQ1n4v/uX9qLBpocCAAAAAAAAAJNG6BNmmfbtd5ZFP9qvlDvuanooADCh2pdcWRb9/KDSbrWaHgoAAAAAAAAATAqhT5hF2vcsuLf97Y23ND0UAJgUrbMvLIP7Hdb0MAAAAAAAAABgUgh9wizRbrXLol8cXNrzr2t6KAAwqYZOPLMMHnVS08MAAAAAAAAAgAkn9AmzxOAhx5TWORc1PQwAmBKDBx9dhs67uOlhAAAAAAAAAMCEEvqEWWDo9PPK0JEnND0MAJg6qXD98z+U1nU3Nj0SAAAAAAAAAJgwQp8ww7WuuKYs2veQpocBAFPvngVl0Y/3L+2772l6JAAAAAAAAAAwIYQ+YQZr33ZHWfiT35eyaLDpoQBAI9rX31xV/Gy3Wk0PBQAAAAAAAACWm9AnzFDtwcGy8CcHlHLL7U0PBQAa1Tr/kjL4h6OaHgYAAAAAAAAALDehT5ihBvc7rLQvu6rpYQDAtDB09Cll6OSzmx4GAAAAAAAAACwXoU+YgQaPOlmwBQC6LNrvz6V1qQ0RAAAAAAAAAPQvoU+YYYbSwvZgLWwBYCmDQ2XhT35f2rfc3vRIAAAAAAAAAGBchD5hBmldd1NZ9PODSmm1mx4KAExPt995b/Bz4aKmRwIAAAAAAAAAYyb0CTNE++4FZdFe+5dy94KmhwIA01r7imvKol8f2vQwAAAAAAAAAGDMhD5hhlj060NK+7qbmh4GAPSF1unnlcG/n9b0MAAAAAAAAABgTIQ+YQYYPPb00jrzX00PAwD6yuBBfy2t+dc2PQwAAAAAAAAAGDWhT+hzrfnXlcED/9L0MACg/wwOlUV7H1TaCxY2PRIAAAAAAAAAGBWhT+hjCaks2vvAKrQCAIxd+/qby6L9/tz0MAAAAAAAAABgVIQ+oY8t2u+wKqwCAIxf67TzyuAJZzY9DAAAAAAAAABYJqFP6FODJ51VWqed2/QwAGBGGDzgyNK65oamhwEAAAAAAAAAIxL6hD7UuvbGMrj/EU0PAwBmjoWLyqK9DyrthYuaHgkAAAAAAAAADEvoE/pMwiiLfnZgFU4BACZO+5obyuDvbaoAAAAAAAAAYPoS+oQ+M/j7I6tQCgAw8YZOPKsMnXpu08MAAAAAAAAAgJ6EPqGPDJ12bhk68cymhwEAM9qi3x5WWtff1PQwAAAAAAAAAGApQp/QJ1rX31wW7XdY08MAgJlvwcKyaO+DSntwsOmRAAAAAAAAAMAShD6hD7SHWmXRPn+oQigAwORrz7+uDB58dNPDAAAAAAAAAIAlCH1CHxg68oTSvuKapocBALPK0DGnltZFVzQ9DAAAAAAAAABYTOgTprnWVdeVwcOPa3oYADD7tEtZtO8hpb1wUdMjAQAAAAAAAICK0CdM97buv/pTKUOtpocCALNS+8ZbtHkHAAAAAAAAYNoQ+oRpbOiI40t7/nVNDwMAZrWhY08rrQsvb3oYAAAAAAAAACD0CdNVa/51ZfCI45seBgCQNu+/PrS0FyxseiQAAAAAAAAAzHJCnzANtYeGyqJ9tXUHgGnV5v2Pf2t6GAAAAAAAAADMckKfMA0NHXGCtu4AMA3bvA9p8w4AAAAAAABAg4Q+YZppzb9WW3cAmI7apQzue4g27wAAAAAAAAA0RugTpltb918doq07AExT7ZtuLYMHH930MAAAAAAAAACYpYQ+YRoZPPz40r5KW3cAmM6Gjju9DF1wWdPDAAAAAAAAAGAWEvqEadTWfejIE5oeBgAwmjbvvz5Um3cAAAAAAAAAppzQJ0wD7VarLNpXW3cA6Ks27386pulhAAAAAAAAADDLCH3CNDB07OmlPV9bdwDoJ0PHnlZa/v8GAAAAAAAAYAoJfULD2rffWQYP+XvTwwAAxqrVLov2P7y02+2mRwIAAAAAAADALCH0CQ1bdPDRpdyzoOlhAADj0L5kfmmdck7TwwAAAAAAAABglhD6hAa1qqDI2U0PAwBYDov+cFRp320DBwAAAAAAAACTT+gTGtJutaqWsEVHWADob3fcVQYPOabpUQAAAAAAAAAwCwh9QkOGjj2jtOdf1/QwAIAJMHTc6aXl/3UAAAAAAAAAJpnQJzSgffudZfBQFcEAYMZotcui/Y8o7bYS3gAAAAAAAABMHqFPaMDgwUeXcveCpocBAEyg9iVXltYp5zQ9DAAAAAAAAABmMKFPmGKtS+aXoVPObnoYAMAkWHTw0aVtYwcAAAAAAAAAk0ToE6ZQu9Uqi/Y/vBSdXwFgZrr9zjJ46N+bHgUAAAAAAAAAM5TQJ0yhoWPPKO351zU9DABgEg0de1ppXeX/ewAAAAAAAAAmntAnTJH2HXeVwUOPaXoYAMBka7XLot8d0fQoAAAAAAAAAJiBhD5higwefnwpdy9oehgAwBRoX3JlGTr7gqaHAQAAAAAAAMAMI/QJU6B1061l6Lgzmh4GADCFBv/4t9JutZoeBgAAAAAAAAAziNAnTIHBQ/9eytBQ08MAAKZQ+9oby9Ap5zQ9DAAAAAAAAABmEKFPmGStq64vrVPPbXoYAEBDGz/aiwabHgYAAAAAAAAAM4TQJ0yywT8dXUq73fQwAIAm3HJ7GTr2tKZHAQAAAAAAAMAMIfQJk6h18ZWlde7FTQ8DAGjQ4JEnlvbdC5oeBgAAAAAAAAAzgNAnTKJFBx/d9BAAgKbdeXcZ/OtJTY8CAAAAAAAAgBlA6BMmydDZF5T2pfObHgYAMA0M/e2U0r7tjqaHAQAAAAAAAECfE/qESdButcvgn45pehgAwHSxcFEZPOy4pkcBAAAAAAAAQJ8T+oRJMHTK2aV9zQ1NDwMAmEaGTjiztK6/uelhAAAAAAAAANDHhD5hgrUHB8vgn49tehgAwHTTapXBQ1QCBwAAAAAAAGD8hD5hgg0de3opN9/W9DAAgGmo9Y/zS+vKa5oeBgAAAAAAAAB9SugTJlB7wcIyeMQJTQ8DAJiu2qUM/unvTY8CAAAAAAAAgD4l9AkTaOiEM0u58+6mhwEATGOt8y8urfnXNj0MAAAAAAAAAPqQ0CdMkPbgUBk8+uSmhwEA9IHBI1UGBwAAAAAAAGDshD5hggydck4pt9ze9DAAgD7Q+se/Suv6m5oeBgAAAAAAAAB9RugTJkC71S5Dfz2x6WEAAP2i3S5Dfzmp6VEAAAAAAAAA0GeEPmECtM78Z2lff3PTwwAA+qxKeFuVcAAAAAAAAADGQOgTJsDgkSc0PQQAoN8MDZXBo09uehQAAAAAAAAA9BGhT1hOQ+dfUtrzr2t6GABAHxo64R+lfefdTQ8DAAAAAAAAgD4h9AnLafCI45seAgDQrxYsKoPHnNr0KAAAAAAAAADoE0KfsBxal8wv7YuvbHoYAEAfG/r7aaW9YGHTwwAAAAAAAACgDwh9wnIYPPKEpocAAPS7u+4pQ8f/o+lRAAAAAAAAANAHhD5hnFpXXV9a513U9DAAgBlg8OiTS3twqOlhAAAAAAAAADDNCX3COA3+5YRS2k2PAgCYEW69owydcnbTowAAAAAAAABgmhP6hHFo33RraZ1xftPDAABmkKG/nlTabTtKAAAAAAAAABie0CeMw+Cxp5fSEsoAACZO+/qbS+v8S5oeBgAAAAAAAADTmNAnjFF70WAZOumspocBAMxAQ8ee1vQQAAAAAAAAAJjGhD5hjIZOO7eUO+9uehgAwAzUOu+S0rrh5qaHAQAAAAAAAMA0JfQJYzT0dxW4AIBJ0m6XoWNPb3oUAAAAAAAAAExTQp8wBq1Lrizt+dc1PQwAYAYbOums0l64qOlhAAAAAAAAADANCX3CGAz+XeUtAGCS3b2gDJ16TtOjAAAAAAAAAGAaEvqEUWrffmdpnfnPpocBAMwCQ8ed0fQQAAAAAAAAAJiGhD5hlIZOPKuUoVbTwwAAZoH2/OtK69Krmh4GAAAAAAAAANOM0CeMQrvdLkMn/KPpYQAAs8jQ8ap9AgAAAAAAALAkoU8Yhdb5l5T2Tbc2PQwAYBYZOuP80r77nqaHAQAAAAAAAMA0IvQJozB0vCqfAMAUWzRYhk4+p+lRAAAAAAAAADCNCH3CMrRvub20zr2o6WEAALOQFu8AAAAAAAAAdBL6hGUYOumsUlqtpocBAMxC7WtvLK2Lr2h6GAAAAAAAAABME0KfsAxDJ5/d9BAAgFlMi3cAAAAAAAAAakKfMILWpVeV9o23ND0MAGAWGzrzn6U9ONj0MAAAAAAAAACYBoQ+YQRDp53b9BAAgNnu7gWlde7FTY8CAAAAAAAAgGlA6BOG0R5qlaEzzm96GAAAZehULd4BAAAAAAAAEPqEYbX+eUkpd9zV9DAAAErrvItL++57mh4GAAAAAAAAAA0T+oRhDJ2qtTsAME0MDpWhM/7Z9CgAAAAAAAAAaJjQJ/TQXrCwtM65sOlhAAAsNnSaDSkAAAAAAAAAs53QJ/TQOuuCUhYuanoYAACLtS++orRvvq3pYQAAAAAAAADQIKFP6EFrdwBg2mmn2ud5TY8CAAAAAAAAgAYJfUKX9u13ltYFlzY9DACApQydek7TQwAAAAAAAACgQUKf0GXo9PNKabWbHgYAwFLa19xQWldd1/QwAAAAAAAAAGiI0Cd00dodAJjOXKsAAAAAAAAAzF5Cn9Chdd1NpX3FNU0PAwBgxKrkbVXJAQAAAAAAAGYloU/o0Drj/KaHAAAwsltuL+1Lr2x6FAAAAAAAAAA0QOgTOgydfUHTQwAAWKahsy9seggAAAAAAAAANEDoE/6tnapZ869tehgAAMvUOkfoEwAAAAAAAGA2EvqEfxs696JS2k2PAgBg2drX31xa193U9DAAAAAAAAAAmGJCn/BvKmYBAP3EtQsAAAAAAADA7CP0CamWtWBhaV1wedPDAAAYtSGhTwAAAAAAAIBZR+gTUinrX5eVMjjY9DAAAEatfen80r7z7qaHAQAAAAAAAMAUEvoE7VEBgH7UapfWeRc3PQoAAAAAAAAAppDQJ7Neu9UuQ+de1PQwAADGTIt3AAAAAAAAgNlF6JNZr33ZVaXccVfTwwAAGLPW+ZeU9uBQ08MAAAAAAAAAYIoIfTLrqZAFAPStBQtL66LLmx4FAAAAAAAAAFNE6JNZryX0CQD0sdbZrmUAAAAAAAAAZot5TQ8AmtS64ebSvvbGpocBADBuQ+deVFZ4zfObHgYstwMOOKDsvffe5ZJLLikrr7xy2XLLLcsuu+xS1ltvvVH9/K233lp++MMflsMOO6xcd9115UEPelB1G+9///urvwMAANAccz4AAICJM9But9sTeHvQVwaPPqUMHviXpocBALBcVvzIjmXOehY46F/f/va3q8W7jTbaqDznOc8pV199dTn00EPL6quvXvbbb7+ywQYbjPjzN9xwQ9lhhx3KpZdeWp75zGeWRz/60eXcc88txx9/fLWA+Lvf/a7c//73n7L7AwAAwP8x5wMAAJhYQp/Magt/tF9pnX9J08MAAFgu8162VZm39RZNDwPG5fzzzy+veMUrymabbVZ++tOflhVXXLH6/OGHH15VbHnuc59bLQ6O5EMf+lA55JBDymc/+9nypje9afHn99hjj7L77ruXd77zneVjH/vYpN8XAAAAlmTOBwAAMPG0d2fWag+1SuuS+U0PAwBgubUuvKIUoU/6VNr7xfve977Fi3/x/Oc/vzz1qU8tRx11VLn22mvL2muv3fPnr7nmmqpCzBZbbLHE4l+89a1vLZdffnlZa621JvleAAAA0Is5HwAAwMSbMwm3CX2hfeU1pSxY2PQwAACWW+uSK0u71Wp6GDAuJ5xwQpk3b1612NftaU97WklzinzPcI4++ujqe17ykpcs9bXVVlut7LbbbmXHHXec8HEDAACwbOZ8AAAAE0/ok9ldEQsAYCZYsLC0r7i26VHAmC1cuLBcddVVZZ111lmi4kttgw02qP68+OKLR2wVGI985CPLQQcdVLbbbruyySablC233LLsuuuu5aabbprEewAAAMBwzPkAAAAmh9Ans1brosubHgIAwIRxbUM/uvXWW6uKLfe73/16fj1VW+L2228f9jauu+666s+99tqrfOITn6haAr7hDW8o6667btl3333LG9/4xnLLLbdM0j0AAABgOOZ8AAAAk2PeJN0uTGvtoVZpXTK/6WEAAExsFfOtt2h6GDAmixYtqv7sVfGl8/MLFiwY9jbuuuuu6s8jjzyy7LnnnmWrrbaq/p2FxVR9+fWvf12++c1vli996UuTcA8AAAAYjjkfAADA5FDpk1mpfeU1VRtUAICZonXJldXGFugnK6+88hILgb1aAcYqq6wy7G3MmXPvtPaFL3zh4sW/GBgYKB//+MfLSiutVA455JDSanl+AAAATCVzPgAAgMkh9Mms1LpQ+1MAYIZZsPDejS3QR1ZdddVqAW+4Vn715+uWf73UX3viE5/Y8/Yf+tCHVrdz0003Tdi4AQAAWDZzPgAAgMkh9MnsbX8KADDDuMah36SV3wYbbFCuuuqqnpVfrrji3nN6o402GvY2Hvawh42qckxdYQYAAICpYc4HAAAwOYQ+mXXS9rR16ZVNDwMAYMK1LlLNnP6z+eabV4t3p5122lJfO/7446uWfZtuuumIPx/HHXfcUl9LpZf58+eX9ddfv6oAAwAAwNQy5wMAAJh4Qp/MOu0rrillQe8doQAA/ax1yfxqgwv0k9e85jXVn9/+9rfLPffcs/jzhx9+eDnllFPK1ltvXdZZZ51hf36LLbaoqsKcdNJJ5YADDlj8+VarVb7+9a9Xi4uve93rJvleAAAA0Is5HwAAwMQbaLfb7Um4XZi2Bo88oQz+8W9NDwMAYFKsuPObypyHPrjpYcCYfPGLXyy/+MUvyoYbblie97znlWuvvbYccsgh5f73v3/Zd999q3aAceKJJ1YLfY997GPLNttss/jnzz333LLjjjuW2267rWy11Vbl4Q9/ePW955xzTnnyk59cfv7zn5cVVlihwXsIAAAwe5nzAQAATCyhT2adhXvuV1r/vKTpYQAATIp5L92qzHveFk0PA8Yk09IsAP76178ul156aVljjTWqai4777zz4sW/2H333csee+xRXvWqV5Wvfe1rS9xGWvrla8ccc0y59dZby7rrrlu23XbbstNOO5WVVlqpgXsFAABAmPMBAABMLKFPZpW0O13w/9m7EzC5yjJv3M+pqu7sCSEJSUgCIQmEQFiSQBZB9h3ZF0EUdHDQERx1xkHR+TvzjaOfyzjBkWFQ50NEcUTEQWcEFFDQYVhEEJBF1kBCQthDWLJ11/96T+imk3QgS3efrqr7vq6+KjlVdeqpTqX7vOf9nef9269b3h0AqFulHbeL5rNOKroMAAAAAAAAALpBqTt2Cr1V9elnBT4BgLrW+sSioksAAAAAAAAAoJsIfdJQWucvLroEAIDu9fqyaH3+paKrAAAAAAAAAKAbCH3SUKoLni66BACAbled75gHAAAAAAAAoB4JfdJQWhfo9AkA1D/HPAAAAAAAAAD1SeiThlFtaY3qwmeLLgMAoNtVhT4BAAAAAAAA6pLQJw2juvi5iFWrii4DAKDbtS6wvDsAAAAAAABAPRL6pGFY5hQAaBivLYvWF5YUXQUAAAAAAAAAXUzok4ZRna/jFQDQOBz7AAAAAAAAANQfoU8ahk6fAEAjcewDAAAAAAAAUH+EPmkI1dbWqC58pugyAAB6THWBTp8AAAAAAAAA9Ubok4ZQffr5iJWrii4DAKDH6PQJAAAAAAAAUH+EPmkIrTpdAQCN5tXXo/rCkqKrAAAAAAAAAKALCX3SEKo6XQEADUi3TwAAAAAAAID6IvRJQ9DpEwBoRI6BAAAAAAAAAOqL0CcNofr0c0WXAADQ46qLHAMBAAAAAAAA1BOhT+pe9eVXIpatKLoMAIAeV332haJLAAAAAAAAAKALCX1S96rPvlh0CQAAhag+vySqra1FlwEAAAAAAABAFxH6pO616nAFADSqlpaovrCk6CoAAAAAAAAA6CJCn9Q9nT4BgEbmWAgAAAAAAACgfgh9UveqOn0CAA3MsRAAAAAAAABA/RD6pO7pbgUANDLHQgAAAAAAAAD1Q+iTulZtrUb1uZeKLgMAoDA6fQIAAAAAAADUD6FP6lr1xSURLS1FlwEAUJhWnT4BAAAAAAAA6obQJ3Wt+ozOVgBAg3vp5aiuXFV0FQAAAAAAAAB0AaFP6lpVZysAoNFVHRMBAAAAAAAA1AuhT+pa9VmdPgEAHBMBAAAAAAAA1AehT+qarlYAAI6JAAAAAAAAAOqF0Cd1rVVXKwAAnT4BAAAAAAAA6oTQJ3Wr2tIa8dLSossAAChc6/MvFV0CAAAAAAAAAF1A6JP6tfTViGq16CoAAIr38itFVwAAAAAAAABAFxD6pG5VhRsAAHLVl18tugQAAAAAAAAAuoDQJ3VL6BMA4A0rVkZ12fKiqwAAAAAAAABgMwl9Urd0tAIAeJNjIwAAAAAAAIDaJ/RJ3dLpEwDgTY6NAAAAAAAAAGqf0Cf1S7ABAOBNjo0AAAAAAAAAap7QJ3XLEqYAAG9ybAQAAAAAAABQ+4Q+qVuWMAUAeJNjIwAAAAAAAIDaJ/RJ3dLNCgDgTY6NAAAAAAAAAGqf0Cd1qdpajXhFsAEAoJ1OnwAAAAAAAAA1T+iT+pQCnyn4CQBAzvLuAAAAAAAAALVP6JO6ZPlSAIA1OT4CAAAAAAAAqH1Cn9QlnawAANaybHlUV6wsugoAAAAAAAAANoPQJ3WpulQnKwCAtTlGAgAAAAAAAKhtQp/Up2XLi64AAKD3cYwEAAAAAAAAUNOEPqlPyy1dCgCwDsdIAAAAAAAAADVN6JO6VF2+ougSAAB6HcdIAAAAAAAAALVN6JP6JNAAALAux0gAAAAAAAAANU3ok7qkixUAwLocIwEAAAAAAADUNqFP6pNAAwDAuhwjAQAAAAAAANQ0oU/qk0ADAMC6HCMBAAAAAAAA1DShT+pSdfnKoksAAOh1HCMBAAAAAAAA1DahT+qTLlYAAOtyjAQAAAAAAABQ04Q+qUtVgQYAgHU4RgIAAAAAAACobUKf1CeBBgCAdTlGAgAAAAAAAKhpQp/Up+Uri64AAKD3EfoEAAAAAAAAqGlCnzXkG9/4RkyePDm/3VDVajWuvvrq+Iu/+IvYe++9Y+rUqbHPPvvE+973vvjxj38cy5YtW+c5Bx54YP468+bN63SfH/nIR/L7p02bFitWdB4c2HfffWPHHXeM559/PnpadeWqiNbWHn/dRvI3d/4qDr7hPzq977VVK+PCh+6Mo268ImZec0kc/qvL4+sP/i5eb1nV6eMfWfpifOKO6+OA638Qs6/9brzv5p/F9Ys6/+ytz6rW1rjs8T/G8TddGbOuuSQOuv4/4gv33hwvrVj38/3iimXxV7+/IWZd+9049IYfxjcevCNWtras87iHl74Q035+cVz91KMbVQsA9GZVF8YAAF3oJz/5SX6OKJ1zWrJkydue07riiiu6vIYDDjgg33dnX+nc1UEHHRTnnXdePPnkk5v9Wulc2RlnnJHvd/r06e3n6L71rW/Ffvvtl593S9+LpUuXvuX3a+7cuZtdCwAAQL2M6zqO45566qm3fOwXvvCF9sfedtttm/16Hb/axnQpD7Gp+16fBQsW5K9x6qmndul+AWhclaILoPukwOVHP/rR+P3vfx9Dhw6Nd77znTFq1Kh47rnn8oOUz372s/lJ6bYDtDZz5szJD9buvPPOGD9+/Br7XLlyZdx6661RKpXitddeizvuuCPe8Y53rPGY+fPnx9NPPx1TpkyJYcOGRY/TwapbXfTwXfHLRY/HVn37r3NfCk/+5R3Xxe+eXxRzho+Jg0aNj3tefCYufvSe+P3zT8e/zz4imsvl9sc/sOS5OPPWq6NajTh8zIToV67ELxY+Hn995w3xqZ1mx3u223mDgs2fu+c38fOnHo1dtxiRPycFSX/05INx63ML4/t7HR1Dmvu0P/4f7705blz8RLxrzKQ8oPrvj94d1Yj4yx33WGO/X3/gd7HjkGFx+NYTNvt7BgC9huMkAKAbPPvss/GP//iP8dWvfrWwGk4//fQYPHjwGtvSObDf/e53+STmDTfcEFdeeWWMGzduk1/j3HPPjbvvvju/2DmdS5s5c2b85je/ia997Wv5ubd0kXVzc3MMGjSo0+enc2XnnHNO7LHHmucgAAAAitYbxnXJtddeG2eeeWan97W2tsY111zTZa+VxmdrZyFSOPOXv/xl/OpXv4ovf/nLccwxx3TJa6Xxanq90aNHd8n+AEDos069/vrr8f73vz8eeuih/PbjH/949OvXr/3+lpaWuOyyy+JLX/pSfjXJT3/60/aT3inE2Rb6PP7449fYb9r26quvxpFHHhk///nP47e//e06oc90Mj3Za6+9ohCr1u3ayOZb3rIqvnTfLfGT+Q+t9zE/euLBPPD5/gm7xCemzGzf/pX7bo3L5t0XP3zi/jh9wi7t2//PPf8Ty1ta4gd7Hx2TB68OCH9w0u55t8/zH/xdHDh6fIzsO+At67rpmSfzwOeho7eLL0/bP7Isy7d///E/xlfvvy3+7eE749M7z8m3vbD89bjh6Xlx4jY7xt/usvrz+Re3Xxs/euKBNUKf6T389tkF8a1Zh7fvDwDqwqrOO28DAGyun/3sZ3HYYYflK8gUIXXgHDt27Drb0zmw1Okznfv6l3/5l82awPzjH/+YBzr/7d/+LcpvXNT6r//6r/ntn//5n693YrJj6DN9AQAA9EZFjutSKHL58uV5qHN9Y6vbb789D6cOGDAgzyxsrtRAqzO33HJLnrFIIdhDDz00+vbt2yXvb32vBwCbwvLudSp170yBz9NOOy0/sd0x8JmkE9OpA0Lq9pkOiNJj2syePTsPuqUOoWtLIc/krLPOyk9yt/29s9Bnan1eiNQ2ki514+In49ibrswDn+8cse4ESpsfzLsvmkvlOGv73dfYfs7kGdG3XIkrnnywfdudLzwdD7z8fBwyerv2wGcytLlvHvxc3toS/7Xg4bet7bLH78tvz548Y42A5nvG7xxb9xsYP1vwcB5YTZ56/ZW8q+cOg7dsf1x67aWrVuTLvrd1Dp37wO2x94ixMWv41hv4HQKAGuEwCQDoBjvvvHqljr/7u7+Ll156KXqTdA6sbWLt5ptv3uT9rFq1Kg+Qpom6tsBnsmLF6k7qqdMnAABArSp6XJfyDPvss0/ce++9ebfNzlx99dXRv3//dZpSdbW0Muruu+8eL7/8cqeZCQDoDYQ+69CyZcvihz/8YX7FyV/+5V++5WNTl88JEybkQc0HH1wdyNtyyy3zJaoef/zxePHFF9d4/P/8z//EyJEjY8cdd8zDoQ8//HC+lHtHacn3dFA2Y8aMKEIK7dG1rpr/p3wp9M9OfUd8Y89DOn3MwteWxoLXlsbULYbHgErzGvf1rzTFLluMiCdffTkWv776qqvbn1uY387sJFjZFra8/blFb1nXytbWuOvFxTGq74DYdsCQNe4rZVnsOWx0vLpqZdy35Ll82xZNq5d5f71Dl7NXV66IcpbFwEpT/vdrFz0WDyx5Pj6+454b8J0BgBrjOAkA6AbvfOc749hjj21fDnBDpRDl9773vTjuuONit912i2nTpsUpp5wSV111VZfWN2zY6otNly5d2r4tTSKm81/p3Nja/vd//ze/79Of/nT+93TbNgH61FNP5fcdcMAB+e1FF12Ub08XVKe/p6Xk1yfdlx4zd+7cNcKk3/rWt/LvQXr/06dPj5NOOil+8IMfrHOO64EHHsiXA9x///1j6tSp+YTopz71qZg3b94aj0vLzKfXeeKJJ9apIT0n3be2e+65J84+++z8fF/ad+pmc/7553faPecXv/hF/hppInTXXXfNOwGlJe47fn8BAIDa0hvGdUcccUR+29kS7mnslMYiaSy2dufNFFRN45zOXjMtCZ/GUGn8kpZv31Bty7CnvMTdd9+d7z811epMGuOl+6+//vr17m99Y9ANHV+98MIL8X/+z//J70+PmzVrVnzwgx/Mx69rNwdLr5NWdl3bJz/5yfy+2267bY3tixcvjr//+79vH2um5l5pjNtZ+HZDx6UAdD+hzzp011135Sdk0wHVFlts8ZaPLZVK+Unc5Je//GX79nR1TDqxnPbVJh3gpWBoWwfPttuO3T7TAcGTTz4Ze+yxRzQ3rxn86zHCDF3utO2mxtUHnBwnbztlvcudP/Hqy/ntuP6DO71/bP9B+e3jr760xuO3eWN7R2lJ90pWan/s+ix8fWke/Bw34K1fc94rS/Lb0f0Gxog+/eOqBQ/F06+/Eo8ufTGuf3peTB0yIppK5VjZ2hIX/On38a6xk2L7Dt1AAaBeuDgGAOgun/nMZ2LEiBHxX//1X3HDDTe87eNTh8y0kkyaTFyyZEk+uXj44YfH/Pnz8wmjtL+u0nbualOXVj/ooIPiIx/5SP7ntPJNmuBKk33pNp0DS9Lyh+nvG/san/vc5/IJvTRpmSZGjz/++HjuuefyybyO4dDHHnssnxy89dZb88nAD3zgA/kEW1p+8d3vfnc888wzsalSt5y07zRZmCZ60zKGKSiblrF/z3veE6+88kr7Y9MkarrIfNGiRXHkkUfGe9/73rz7aQqupiXuHW8CAEDtKnpct99+++XNpToLfaaVG1IH0jQOWdsJJ5yQ33YW+kwBx4ULF8bRRx8dTU2rmwBtiLYQ46hRo/Iw6/bbb58vL5/GQh2lMVAal6UxVKp/Y2zo+Cp9n1Mw9PLLL8/rOOOMM/Lwa+pCeuaZZ8ZNN90Um+rRRx/Nx6GpqdgOO+yQ7zs19/rpT3+af19TyLMnxqUAbLzKJjyHXi79sk0mTpy4QY9PBwZJOvhqk35JX3zxxfmBQjpgaOvymQ4s2sKee+21V/uJ89SBoFcs7Z60Ornc1VLHzLfz0srVy6MPeaOb5toGvtH9c+nKFWs8fnDzuo9PXToHVJraH7s+S1Ys36jXrJRK8emdZ8d5f7gpDv3V5e3LyZ83dU7+5x898UA8t+y1OGeHN7vUtlareT0AUBdMwgMA3WTIkCHx+c9/Pj784Q/nXVbSJNFbXYx8ySWX5Oea0qRYCjemJfraupekiaMrr7wyPz911FFHbVI9qdtMmhBMr/HFL34x39YW3NyU0Geq88ILL8wn4NqWi2/rNpNWvUmPSRNlGyOFKdMkXwqOXnbZZe3bU3g0TZSmbjnptdLEZOrS8vrrr+fft/R9aZNq+vrXv553EU3f+42VAqZpIjb9W6VJvnHjxrXfd8EFF+RdYlIoNf2bJqmm9G+V6h44cGC+LZ0v/LM/+7M8NJouIE/dSgEAgNpT9LguPX/fffeNa6+9Ns8udByfpIvVUn0ph5D+3FHqfJkCiyngmZpUpZVL27StxrAx47W0/xR2bAt8tj3/y1/+ch5w/NCHPtT+2BSATKHS9H4rlY2L32zo+Cr9+ZFHHom/+Iu/iI9//OPtz0+hzNNOOy2++93v5t+3TfE3f/M3+b9XWsWiY2g1va/0ns4999z8PafGUN01LgVg0+j0WYfaWn23HRi8nbYDtfTLvM2ee+6Zn1C+884727elcGfqDJq6gCbpIGv8+PH5QUY6kd4x9NkWCC2EMEMhVrW25rfNpXKn97dtX/7GZ2XlBjx+Revqx65P6sz5lvsov/GarW8u537Q6O3iinceF+ftPCf+bpe948p9jo8pQ4bHKytXxLcfuTves93OMbLfgLjj+UVx3E1XxvSrL47DfvXD+NmCh9/2ewAAvZ6LYwCAbpSWd9vQ5QDT5F86z/QP//AP7RODyZZbbhmf/exn8z+nLiYbKnXaTMvUtX3ttNNO+TmsNEHVp0+ffAJyY7uudLc0mZeWGkxdXToum5fO1aXvTzoX19aJpq3DS7pAu2M3zdSV88Ybb8y762yKNLmYJu3SpGXHCdUkTdalf4/0mLZlENNrL1u2LO699972x6XJvxQMveWWWwQ+AQCgxhU5rlvfEu/Lly/Pl04/+OCD17vaaApApvFV6lDZ8UK76667Lnbeeed8nLi2dJFbx6+vfvWreeDyr//6r/OxWArAto3JjjnmmPzPHfef/Od//md+u7EXAW7M+Cq9ryQFUV977bX2x6YLCNNqrimwuSnuueeeuO+++/Lx9Nrj5dmzZ+fbH3roofjDH/7QXm93jEsB2DQ6fdahdIVLkg4QNkRaCj4ZOnRo+7bUNn333XePu+++O28Xnq5KSS3Td9lllzWu5klX0nz/+9/PDwbSFTSps8FWW23V3j20EEKfhehTXv3jZGV19UHn2toCnP3fuMKp7xtBzbbwZ2eP719u2rDXXE84dMUbAdP+lTX3M37gkPyro4sfvWf1lVMTd8s7g378jutjh8FbxidnHhq/evqJ+P/u/k1sO2Bw7Db0zSvDAKDmOE4CALpZmthLFwin5QAPO+ywvANmZ+ei0lJ522233RodWNqkia1yuRz333//Br9uWm49deFMY/sUokydYdK5sbPPPjvvhpL219ukpeLTEoNp0vCQQw7Jz62lC6nT+bbUTSZNnrZpW24vTUT+x3/8Rx5oTY/dZ599YvTot1+hZX3aJhfTbdr32tI5wnShePr3Suf70nLv6d84TepNmDChvd40IZiWqAcAAGpfUeO6JHWsTAHSNKZrCxGm5ctTgPNd73rXep+Xxlb/9E//lHelbHte2ke6yK1t+fe1pdUNOkpjmrS8fdpXGvNMmTKl/b60fHuqLYVP0/gp5SbS9yCFStMS56nT6Mba0PFVGv+lZlwpWJkeM3PmzHxbGg+m7//mjgfTmK+z8eCSJUvy2/RvOG3atG4blwKwaYQ+69A222yzxjLvb+fhh1d3MBw7duwa21NL7tS5M/2yT1etpCWxUnvwjtIv8RT6TK3S0/MfffTR/MofGk/bEutLV65ecn1tr6xascaS623Lune2hHtaUv3VVStjRN9+G/aab+z77V5zfRYvezUue/yP8dEd94hBTc1x+bz7831+aufZMXnwsJg1bOu44el58f3H7xP6BAAAgLeQgpepy0vqEvn3f//3eeeRtaXJurbQY2fSxcepM8zzzz+/wa97xhlnrHFuKy3lnibQ0mRUqimFQnujtPR8CnumZfBS95S0fF+aeEyTpn/1V3/Vfp4tTSCmpfS+/e1v5xN9aSIzfaVJ1AMOOCD/Xg8fPnyjX//ll1/Ob9O+3krbZN+JJ56Yv05ahjCdD0y3bUsSnnLKKXlHnI1d0hAAAOhdihrXJSnsmMY4//3f/x1PPvlknn34+c9/no9DUthxfdJrpS6lqfNlaliVunumVQtSZ9D1hUX/9Kc/bVRtKTyaQp/pwr0U+kyh0tR5c1O6fG7M+Cp9T1LH1G9961v5a6YxYfpK48n0PtO/URpXbup4MHXuTF/rk3Ii3TkuBWDTOANXh9LBTurGefvtt8eLL764RgfPzqQDn+TQQw9dY3u6MuNf/uVf8rbebV1D05UlHc2aNSsPhKaDgG233TbvplDo0u5JVuzLN6q2zpnzX1va6f3zX129feKg1Z/H7Qas7hi74LWXY9qWawYpn379lVhVbY0JA9/6s7t1/4HRp1Ru3/c6r/lGLRMGvtmdtjMX/unOGN63f7x729VXaz3+6uqJjG0HrH5PlVIpxvYfFE+8sR0AapbjJACgB5cDTBNsaTnAdM6oowEDBuS3ixcv7vT5aem6NIHYcbWZjZWWKk/ntd773vfmE2Gpa0rH81ppybyk45J0bToul9fd0gReqjF9pe4qt956az55dvXVV8enPvWpPMjaNsGaOm1+5StfiZaWlnwSM3XeSZONqbNM6jDzne98Z419ty0B2FHqctPZv8WPfvSjvLvohkjL/qWvtK8777wzX4Y+/VtffPHF+eRw6qwKAADUtiLHdYcffnge+kwBxzRWSp0+U0Dy7VZwSKHMlH1Iz02dOdMqpalTadtKqZsrdbRMnUDTeO0zn/lM/jpvFSrtyvFV+j6ee+65+dcTTzyRjwd/8Ytf5MvAf/CDH4xf/epXMXDgwPax7saMB1O4dEOXZt/YcSkA3efNNYKoGymEmToZpKBmamH+Vn784x/Hgw8+mLfj7tiePElXg6QDgz/+8Y/5AVE6qFj75G86EEjPTftIwc90EFF86NPHuggj+w6IbfoPjntfejZeW7VyjfvS3/+45Nn8/mF9Vnfv3GPY6hbvtz+/aJ193fbGtmlv01WznJXywOhTry+NBWuFTVO30DueXxT9ypWYMmTYevfxyNIX47+eejjOmTwjmt5Ycr7ljYPglg5L1afl5kuSMgDUug5LhAIAdKe0RN1WW22VLweYQowdpfNNacLwmWeeyZcDXFu6ADlNRm3K8ngdpXNWaeIqBTs//elPt3cxaTt/lqRJqbWlCbSekFbM+drXvha//vWv2zvTHHHEEfkEWuqok6RzcklaQu/zn/98/l7SRGc6b5cec+WVV+ZdYNJqPW3SpGNn7y2FSpcuXfP8Sdv5wLvvvrvTGv/5n/85vvnNb+ZB2DRh+6//+q/tk3hp6fd0HjB9b9uWAuxYBwAAUNuKGtelcGXafwo1ptdN+znyyCPf9nnvfOc783pTAPGGG27Ix0/HHXdcdOVFe8ccc0zevTTVlcY/Bx544CaFSjdmfJWCoCl42zZWTd/3U089NS655JK8SVdameGhhx7a6LHuTjvt1P5v1ZnU1TNdTNm2wuzGjEsB6H5mfetUuuIj/ZJOoc7Uen3tqzbSL+LUAjy12E6/gL/85S+vs4/0i3rPPffMT/qmq0rScu+dXT2TuiQsWrQoP9hIJ4rTCepClQTzinLsuB1iWcuq+NeH1mz/fsGffp9vf/f4N4PFuw/dKrYbMCSuWfhoHhRt8+KKZfH/HvlD3sHzuHE7bNBrJv/8wO1rhDR/MO++WPj6K3H8uMntYc7OnP/g72LHwcPisNET2rdt90Zn0LteWH1l2ksrlsW8V5a0bweAmvXGVb4AAD21HGCSLijurANLOj+VHtOxs2ZateYLX/hC/ueumJxL58hSJ5Jnn312jfNfqetL6pSSgpcdJ75SMPIHP/hB9IRSqZQvzzd37tz2VXbaLFiwoL1jaZImz77//e/nk60dPffcc7F8+fI1lrZPXU2TtjBpmzShuHZn0zRhmSYF031tE3lt0uulwGeaaE3nD9NXOp+YJv0ef/zxNR47f/78/LZjHQAAQG0ralyXLmQ76KCD8te89NJLY8yYMflFfW8nZRlSd9I0Pvl//+//5QHQtVcy3VzpPScphLly5cpNXtp9Y8ZXCxcuzJd9T8uqd5TGgmmsm8aW6XuUTJw4Mb9NodSO47/UNfXhhx9e4/nTp0/Px48pJJvu7+jee+/NA57//u//3t6tdWPGpQB0P8u716D//M//zJdu78w222yTH0ClA6F0ZUdqxX3ZZZflLcb33XffGDVqVLz00kv5UlHpipt0FUi6Yn/tduwdl3hvO0G8vgOitD3tI50k//M///MonDBDYd633dS4/ul58f3H74sHl7wQuw4dEfe8+Ezc8cLTMX3LkXHyNm+GPlNX2M/tund8+LZr44O3/DwOHzMxBlSa4hcLH49nl78Wn9l5Tr7kepuXVy6Pyx6/L//zX+wwvX374VtPjKufejRueHpenPY/P4vZI8bEY0tfipueeTIPlX5o+/UPAFIn0N8+Mz++Pevw9lb3yaFbT4gLH7oz/vbu38SRYybGbc8tjJWtrXH6hKnd8F0DgJ7T8fcdAEBPLAeYJvjSuay1/dmf/Vm+DN3NN9+cL4WXOrmsWrUqn5hKk1Zp4ixN1m2udI4snSs75ZRT8oujjzrqqJg9e3Y+GZi2XXTRRXmHlNRhM71+CjhOmjSpPXTZnbbbbrv8tf/jP/4jX74wfb/69u2bX4CdOnymSc1DDjkkf+zZZ58dv/nNb/Il36+55pp8Ii+d40v1pom8T37yk+37ffe7353v88ILL4xHHnkkn3hLk3Mp3Jq67LR1gEnSfX/3d38Xn/vc5/Lvd5pYHT16dDzwwAP5v03qWPPFL34xf2yaSEyv/1d/9Vf5v8+hhx6aL22Y9pu66KQLwXvFuUEAAKDmx3VpjJaWOb/rrrs2apyRQpnp4rqnnnoqX/nh7ZaE31gpJJnGaqmukSNHbvIqqBszvjr66KPzgGjqvPmnP/0p9thjjzxwmsaI6fHp3yHVkqRMSAqA3nbbbfnqsDNmzMgv8Lvpppvyhl8du3GmGr761a/GBz7wgfjYxz6Wv5fJkyfn3Vt/+ctf5q/xf//v/21v+rUx41IAup/QZw1KByjpqzMdl6lKJ2XT1R7pF286AEjLry9evDjfng5GzjzzzPzgK11Fsj4p9NlmfQcsqaNo+kWfOiEUvrS7MEOhmsvlPEB50cN3xXWLHo97XnomRvUdEB+cuFv82aRd8/s7mr7lqPjOnCPzgGV6fDJx4NA4b+qcOHDU+DUeu3Tliny/a4c+k69NPzC+89g98d8LHonvP/7HGNGnf7x72yl54HNIc5/11jv3wd/FO0eMjZnDt15je1qC/qJZh8X/ve+WuPyJB2LrfoPiq9P3jylDhm/29wgACuU4CQDoYZ/5zGfyCcA0adRR6i6Zzluli5XTRF6aQEzbdtxxx3w5u3TOqqvstttu8b73vS+++93v5uHGn/3sZ3m48i//8i/z82JpKbq0TF3qApMmxdJXx3Ni3elv//Zv8/ecAqk///nP89V6UhDzox/9aD5x17Y0XzqXl2pMk5cpEPo///M/ee1pAi9NBKbbNim0evHFF+dLAqaJvbSPtORfWjY+fXUMfSYnnXRSHkBNnXDSv1Xq0JMuHD/55JPzSdK2bqNJWlIxdXlJ+0+PTR18UtfUNAn8kY98JLbees1zLAAAQO0rYlyXxmQp15CWLt+Qpd3bjB8/PqZOnZp3Ce3Kpd07ShcTptBnCrRuTqh0Q8dXaen39Ji0FPz111+fjw2TFNBMq1t0DNam73/qjpqadqVx4/3335+v1poueExNvNZegj19r9K/W1rlIa3smpqPDR06NM99fPCDH8wDpm02ZlwKQPfLqmuv6QM1rvrS0lj+D/9WdBkAAL1ONnyL6POZs4ouAwAAAAAAuly6kC6tVJoCkT/4wQ+65TU++9nP5hcPpg6X61tRFQC6W6nbXwF6WtnHGgCgU128lA0AAAAAAPQWaQWDV155JV/BoTs88sgj+SoNqROmwCcARbK8O/WnefWyVwAArMVxEgAAAAAAdSQtbpuWOF+5cmW+hHlazvzwww/v0teYO3duvpx5Cn2m1/nYxz7WpfsHgI2lJSL1GWbIsqKrAADodbI+zUWXAAAAAAAAXSbLshg8eHA89dRTMWfOnPi3f/u3KHfxqlejRo2Kxx9/PIYPHx5f+9rXYtddd+3S/QPAxsqq6bIHqDPLzjs/YvmKossAAOhVSjtPiuYzjy+6DAAAAAAAAAA2kU6f1CddrAAA1uUYCQAAAAAAAKCmCX1Sl7I+TUWXAADQ6zhGAgAAAAAAAKhtQp/UJ12sAADW5RgJAAAAAAAAoKYJfVKXMoEGAIB1OEYCAAAAAAAAqG1Cn9QngQYAgHU5RgIAAAAAAACoaUKf1CeBBgCAdTlGAgAAAAAAAKhpQp/UJUuXAgCsK+vrGAkAAAAAAACglgl9Up/6NBVdAQBA79PsGAkAAAAAAACglgl9Up90+gQAWIdu6AAAAAAAAAC1TeiTumTpUgCATjhGAgAAAAAAAKhpQp/UJ12sAADW5RgJAAAAAAAAoKYJfVKXsoEDii4BAKDXcYwEAAAAAAAAUNuEPqlL2WCBBgCANTRVIuvXp+gqAAAAAAAAANgMQp/UpWzwwKJLAADoVRwfAQAAAAAAANQ+oU/qU+r0mRVdBABALyL0CQAAAAAAAFDzhD6pS1m5HNG/X9FlAAD0Glm6KAYAAAAAAACAmib0Sd2yhCkAwJscGwEAAAAAAADUPqFP6pZuVgAAb3JsBAAAAAAAAFD7hD6pX7pZAQC00+kTAAAAAAAAoPYJfVK3BBsAADpwbAQAAAAAAABQ84Q+qVuWMAUAeJNjIwAAAAAAAIDaJ/RJ3dLpEwDgTY6NAAAAAAAAAGqf0Cd1SzcrAIA3lMuRDehXdBUAAAAAAAAAbCahT+qXblYAAKu5GAYAAAAAAACgLgh9UrcsYQoAsJrjIgAAAAAAAID6IPRJ3cqaKhGDdLUCAMiGDi66BAAAAAAAAAC6gNAndS0bPrToEgAACpeNcEwEAAAAAAAAUA+EPqlrJQEHAIAojdiy6BIAAAAAAAAA6AJCn9S1TMABAMAxEQAAAAAAAECdEPqkrlnKFAAgItvKMREAAAAAAABAPRD6pK5lW+lqBQA0uIH9I+vXt+gqAAAAAAAAAOgCQp/UtWz4FhFZVnQZAACF0fkcAAAAAAAAoH4IfVLXskolsqGDiy4DAKAwpRE6nwMAAAAAAADUC6FP6p7uVgBAI3MsBAAAAAAAAFA/hD6pe5nuVgBAA3MsBAAAAAAAAFA/hD6pe7pbAQCNzLEQAAAAAAAAQP0Q+qTu6W4FADSsLItsuNAnAAAAAAAAQL0Q+qTu6W4FADSsLQZF1lQpugoAAAAAAAAAuojQJ3UvGzokolIuugwAgB5X0vEcAAAAAAAAoK4IfVL3slIW2VbDii4DAKDHZSMdAwEAAAAAAADUE6FPGkJp7MiiSwAA6HGlcaOKLgEAAAAAAACALiT0SUPIhD4BgAbkGAgAAAAAAACgvgh90hBKY3W5AgAaTHNTZFtZ3h0AAAAAAACgngh90hCyrUdElLKiywAA6DHZ1ltF5vgHAAAAAAAAoK4IfdIQMp2uAIAGU7K0OwAAAAAAAEDdEfqkYWTjLPEOADSOkmMfAAAAAAAAgLoj9EnD0O0KAGgkmWMfAAAAAAAAgLoj9EnDKI3V7QoAaBDNTZGNHFZ0FQAAAAAAAAB0MaFPGkY2ZquIUlZ0GQAA3S7bekRkJYf6AAAAAAAAAPXGTDANI0sdr7bS8QoAqH86nAMAAAAAAADUJ6FPGko2dmTRJQAAdDvHPAAAAAAAAAD1SeiThqLrFQDQCBzzAAAAAAAAANQnoU8aSmmcrlcAQJ1rqkQ2aljRVQAAAAAAAADQDYQ+aSjZmJERZR97AKC+l3bPSo53AAAAAAAAAOqR2WAaStbcFNk4y50CAPWrNHFc0SUAAAAAAAAA0E2EPmk4pYnbFF0CAEC3caxDrbrqqqvi+OOPj2nTpsWcOXPik5/8ZDz11FObtK9qtRqnn356TJ48ORYsWNDltQIAALBxjPkAAAC6jtAnDac0SfcrAKBOlUtR2m5M0VXARps7d2586lOfiuXLl8d73vOefALw6quvjhNOOCHmz5+/0fu79NJL47bbbuuWWgEAANg4xnwAAABdq9LF+4NerzR+TB6IiJbWoksBAOhS2bjRkTU3FV0GbJQHH3wwLrroopgxY0Zccskl0dzcnG8//PDD45xzzokvfOEL+f0b6rHHHot//ud/7saKAQAA2FDGfAAAAF1Pp08aTtanObJxo4ouAwCgy+loTi1KHVqSs88+u33yLzn44INjzz33jBtvvDEWL168QftqaWnJu8cMGzYsX+YPAACAYhnzAQAAdD2hTxpSaeI2RZcAANDlHONQi2699daoVCr5ZN/aZs+eHdVqNX/MhvjmN78Z9957b94pZsCAAd1QLQAAABvDmA8AAKDrCX3SkHTBAgDqTrkUpe3GFF0FbJQVK1bEwoULY9SoUWt0fGkzbty49uX73s79998fF154YZxyyikxZ86cbqkXAACADWfMBwAA0D2EPmlIpfFj8mAEAEC9yMaNjqy5qegyYKMsWbIk7+oyZMiQTu8fNGhQfrt06dK3nUhMS/yNHDky/uZv/qZbagUAAGDjGPMBAAB0j0o37Rd6taxPc2TjRkV13sKiSwEA6BI6mVOLVq5cmd921vGl4/bly5e/5X7OP//8ePjhh+PSSy+1xB8AAEAvYcwHAADQPbQ6pGGVJm5TdAkAAF3GsQ21qG/fvmtMBHbWzSXp37//evdxxx13xHe+851473vfGzNnzuymSgEAANhYxnwAAADdQ+iThlWaJBgBANSJcjlK240pugrYaAMHDoxSqbTepfzatrct+be21157Lc4777wYN25c/PVf/3W31goAAMDGMeYDAADoHpZ3p2HlwYhyKaKltehSAAA2S7bNqMiam4ouAzZaWsovTd4tXLgw7/zS1LTm53j+/Pn57aRJkzp9/r333htPPvlk/ufdd9+908cceOCB+e0NN9wQY8eO7eJ3AAAAwPoY8wEAAHQPoU8aVgpGZONGR3XeU0WXAgCwWSztTi1Ly/NdccUVceedd8asWbPWuO+WW26JLMti+vTpnT53zJgxcc4553R635VXXhmLFi2K008/PQYPHpx/AQAA0LOM+QAAALpeVq1Wq92wX6gJK6/9n2j55f8WXQYAwGZp+sgpUZ4k+Eltuuuuu+KUU06JadOmxSWXXBJ9+/bNt1933XX55F7q2nLhhRdu9H5PPfXUfFJRtxcAAIDiGPMBAAB0PZ0+aWjlnScKfQIAta1f3yhtZ3KD2pUm/k477bS47LLL4phjjskn/BYvXhzXXHNNDB8+PM4777z2x952221x++23x5QpU+Kggw4qtG4AAADenjEfAABA1yt1wz6hZmRjR0UMHlh0GQAAm6w0ZbvIyg7rqW3/3//3/+Vfzc3N8b3vfS+f5DviiCPihz/8YYwbN679cWn7BRdcENdff32h9QIAALDhjPkAAAC6luXdaXgrf/SLaLn17qLLAADYJE3vOyrK06YUXQYAAAAAAAAAPUBLIBpeaeqkoksAANg05VKUdpxQdBUAAAAAAAAA9BChTxpeafttI5qbii4DAGCjlSaMi6xfn6LLAAAAAAAAAKCHCH3S8LKmSpR22LboMgAANlpp54lFlwAAAAAAAABADxL6hDwwYYl3AKD2OIYBAAAAAAAAaCxCnxAR5Z0mRmRZ0WUAAGywbNTwKA3bougyAAAAAAAAAOhBQp+QQhODBkS2zeiiywAA2GC6fAIAAAAAAAA0HqFPeENZcAIAqCGOXQAAAAAAAAAaj9AnvKE0VXACAKgRqUv5trqUAwAAAAAAADQaoU94Q2nU8MiGbVF0GQAAb6u804TIsqzoMgAAAAAAAADoYUKf0EFpp4lFlwAA8LZKlnYHAAAAAAAAaEhCn9BBeffJRZcAAPDW+jZHafJ2RVcBAAAAAAAAQAGEPqGDbPyYyLYcUnQZAADrVd5lh8iaKkWXAQAAAAAAAEABhD6hgyzLojR9p6LLAABYr9KMnYsuAQAAAAAAAICCCH3CWsozhD4BgF5q8MAoTdqm6CoAAAAAAAAAKIjQJ6ylNHJYZGNHFl0GAMA6ytOnRFbKii4DAAAAAAAAgIIIfUInypZ4BwB6IccoAAAAAAAAAI1N6BPW00UrMl20AIDeIxs5LEq6kQMAAAAAAAA0NKFP6EQ2eGCUtt+m6DIAANqVZ+jyCQAAAAAAANDohD5hPcozdi66BACA1TJLuwMAAAAAAAAg9AnrVdpl+4imStFlAABEtt3YyLYcUnQZAAAAAAAAABRM6BPWI+vbJ0o7Tyq6DAAAXT4BAAAAAAAAyAl9wlsozxCwAAAKVi5Hefcdi64CAAAAAAAAgF5A6BPeQmnH7SIG9Cu6DACggZWmbBdZ/75FlwEAAAAAAABALyD0CW8h01kLAChYecbORZcAAAAAAAAAQC8h9Alvozxnt6JLAAAa1aABUZo6qegqAAAAAAAAAOglhD7hbZS23iqybbcuugwAoAGVZ+6Sdx4HAAAAAAAAgEToEzZA5R27F10CANBoskzHcQAAAAAAAADWIPQJG6C02+SIfn2LLgMAaCClyeOjtOWQossAAAAAAAAAoBcR+oQNkDU3RXmPnYsuAwBoIGWdxgEAAAAAAABYi9AnbCDBCwCgx2wxKEo7TSy6CgAAAAAAAAB6GaFP2EClkcOiNHFc0WUAAA2gMmvXyEoO1QEAAAAAAABYk5lk2AjlvacXXQIAUO/KpSjP2a3oKgAAAAAAAADohYQ+YSOUdtk+X24VAKC7lHadHNnggUWXAQAAAAAAAEAvJPQJGyEts1p5x+5FlwEA1LHKO3UWBwAAAAAAAKBzQp+wkcqzd4uolIsuAwCoQ9nYkVEaP6boMgAAAAAAAADopYQ+YSNlA/tHafcdiy4DAKhD5b11+QQAAAAAAABg/YQ+YRNYdhUA6HID+kV52pSiqwAAAAAAAACgFxP6hE1QGjc6sgljiy4DAKgj5b2mRdZUKboMAAAAAAAAAHoxoU/YRJUDZxddAgBQL/o0ReWdM4quAgAAAAAAAIBeTugTNlF5yoTIxo4sugwAoA6UZ+8W2YB+RZcBAAAAAAAAQC8n9AmboXLArKJLAABqXbkclX33LLoKAAAAAAAAAGqA0CdshtKukyMbMbToMgCAGlbeY+fIthhUdBkAAAAAAAAA1AChT9gMWSmL8v66fQIAmyjLonzAzKKrAAAAAAAAAKBGCH1CF3TniiEDiy4DAKhBpd12iNKILYsuAwAAAAAAAIAaIfQJmymrlKOy355FlwEA1KDKgbOLLgEAAAAAAACAGiL0CV2gPHu3iAH9ii4DAKghpR0nRGnMyKLLAAAAAAAAAKCGCH1CF8j6NEdl7+lFlwEA1JDKQbOKLgEAAAAAAACAGiP0CV2k/M4ZEX2aii4DAKgB2XZjojRhXNFlAAAAAAAAAFBjhD6hi2T9+0Z5zu5FlwEA1IDKgbOLLgEAAAAAAACAGiT0CV2osu8eEZVy0WUAAL1YNnpElHeaWHQZAAAAAAAAANQgoU/oQtmQQbp9AgBvqXL43kWXAAAAAAAAAECNEvqELlY5eE5En+aiywAAeqFs/NZRnrp90WUAAAAAAAAAUKOEPqGLZQP7R2W/PYsuAwDohZqO3LfoEgAAAAAAAACoYUKf0A3KKfQ5sH/RZQAAvUhpyoQoTRxXdBkAAAAAAAAA1DChT+gGWZ/m1cu8AwAkWRaVI/cpugoAAAAAAAAAapzQJ3ST8pzdI9tySNFlAAC9QGn6lChtvVXRZQAAAAAAAABQ44Q+oZtklXJUDt+76DIAgKKV0zHBO4uuAgAAAAAAAIA6IPQJ3ag0fafIdPUCgIZWnrNblHT/BgAAAAAAAKALCH1CN8qyLCpH6OwFAA2rT1NUDp5TdBUAAAAAAAAA1AmhT+hm5Z0mRjZhbNFlAAAFKO+7Z2SDBhRdBgAAAAAAAAB1QugTekDTu/YrugQAoKcN7B+V/fYsugoAAAAAAAAA6ojQJ/SA0vitozR1+6LLAAB6UOWgOZH17VN0GQAAAAAAAADUEaFP6CGVI/eJKPkvBwCNINtySJTfsXvRZQAAAAAAAABQZyTQoIeURg6L8t7Tii4DAOgBlWMPiKxSLroMAAAAAAAAAOqM0Cf0oMphe0cMGlB0GQBANyrtNCHKU7cvugwAAAAAAAAA6pDQJ/SgrG+faDpqv6LLAAC6S6USleMOKroKAAAAAAAAAOqU0Cf0sPIeO0c2YWzRZQAA3aB8wMwoDdui6DIAAAAAAAAAqFNCn1CApuMPjij57wcA9STbckhUDphVdBkAAAAAAAAA1DGpMyhAaesRUd57WtFlAABdqHLsAZE1NxVdBgAAAAAAAAB1TOgTClI5bO+IQQOKLgMA6AKlnSZEeer2RZcBAAAAAAAAQJ0T+oSCZH37RNNR+xVdBgCwuSrlqBx7YNFVAAAAAAAAANAAhD6hQOU9do5swtiiywAANkN5/5lRGj606DIAAAAAAAAAaABCn1CwpuMPjij5rwgAtSjbckhUDpxddBkAAAAAAAAANAhJMyhYaesRUd5rWtFlAACboHLsAZE1NxVdBgAAAAAAAAANQugTeoHK4XtHDBpQdBkAwEYoTZkQ5anbF10GAAAAAAAAAA1E6BN6gaxvn2g64eCiywAANlSf5mg68ZCiqwAAAAAAAACgwQh9Qi9R3nWHKE3bsegyAIANUDl6v8iGDi66DAAAAAAAAAAajNAn9CJNxx9smXcA6OVKO4yPypzdiy4DAAAAAAAAgAYk9Am9SDagn2XeAaA369scTe8+rOgqAAAAAAAAAGhQQp/QK5d5n1J0GQBAJypH7W9ZdwAAAAAAAAAKI/QJvVDT8QdZ5h0AepnS5LSs+25FlwEAAAAAAABAAxP6hN66zPuJhxRdBgDQcVn3ky3rDgAAAAAAAECxhD6hlyrvsn2UplvmHQB6g8rRlnUHAAAAAAAAoHhCn9CLNR1nmXcAKFppx+2iMtuy7gAAAAAAAAAUT+gTevsy7ydZ5h0ACtO3j2XdAQAAAAAAAOg1hD6hlytP3T5KM3YqugwAaEiVY/aPbItBRZcBAAAAAAAAADmhT6iVZd4HW+YdAHpSaccJUZm1a9FlAAAAAAAAAEA7oU+oAVn/vtH0nndFZFnRpQBAYxg0IJpOPbzoKgAAAAAAAABgDUKfUCPKO2wb5QNnF10GANS/LIum046MbJAu2wAAAAAAAAD0LkKfUEMqh+0V2YSxRZcBAHWtfOCsKO8wvugyAAAAAAAAAGAdQp9QQ7JSKZrfe1TEgH5FlwIAdSnbbmxUDtu76DIAAAAAAAAAoFNCn1Bjsi0GRdOpR0RkRVcCAHVmQL9oft9R+UUWAAAAAAAAANAbmdGGGlTeaWKU992z6DIAoK40nXJ4fnEFAAAAAAAAAPRWQp9QoypH7hPZNqOLLgMA6kJ53z2ivPOkossAAAAAAAAAgLck9Ak1KiuXo+n0oyP69Sm6FACoadm4UVF5175FlwEAAAAAAAAAb0voE2pYacsh0XTyYUWXAQC1q2+f/CKKdDEFAAAAAAAAAPR2Qp9Q48q7TY7yXtOKLgMAalLTuw+L0rAtii4DAAAAAAAAADaI0CfUgcox+0c2ZquiywCAmlJ+x+75xRMAAAAAAAAAUCuEPqEOZJVKvjRtWqIWAHh72diRUTnmgKLLAAAAAAAAAICNIvQJdaI0Ystoet9REaWs6FIAoHcbNCCa/+z4yJoqRVcCAAAAAAAAABtF6BPqSHnKhKi8a9+iywCA3qtSjuYPHBfZFoOKrgQAAAAAAAAANprQJ9SZyn4zo7Tn1KLLAIBeqXLiIVEav3XRZQAAAAAAAADAJhH6hDrUdNIhkW0r0AIAHZX33SMqM3cpugwAAAAAAAAA2GRCn1CHskolmj9wbMSQgUWXAgC9QmnydlE5ar+iywAAAAAAAACAzSL0CXUqGzwwmv/suIimStGlAEChshFDo+n0oyIrOfQFAAAAAAAAoLaZ+YY6Vho3OprefVjRZQBAcfr2iaYzj4+sX9+iKwEAAAAAAACAzSb0CXWuPH2nKB8wq+gyAKDnZVk0ve+oKG01rOhKAAAAAAAAAKBLCH1CA6gcsU+Udp5YdBkA0KMq79o3ylMmFF0GAAAAAAAAAHQZoU9oAFkpi6bT3hXZSJ3OAGgMpT12jsr+M4suAwAAAAAAAAC6lNAnNIisb59oOvP4iIH9iy4FALpVNn5MNJ18aNFlAAAAAAAAAECXE/qEBlIaPjSaP3hCRJ+moksBgG6Rulo3n3l8ZJVK0aUAAAAAAAAAQJcT+oQGU9pmdDS9/9iIsv/+ANSZLQZF81knRTagX9GVAAAAAAAAAEC3kPqCBlSevF00nXJERFZ0JQDQRfr3XR34HDq46EoAAAAAAAAAoNsIfUKDKs/YKSpHH1B0GQCw+ZqbovmDJ0Rp1PCiKwEAAAAAAACAbiX0CQ2ssu8eUd5/ZtFlAMCmK5Wi6X1HRWn8mKIrAQAAAAAAAIBuJ/QJDa7pqP2ivOfUossAgE1SOfnQKO88qegyAAAAAAAAAKBHCH0CUTn5sCjtNKHoMgBgo1SO3CcqM3cpugwAAAAAAAAA6DFCn0Bk5VI0nX5MZOO3LroUANgg5X1mROXA2UWXAQAAAAAAAAA9SugTyGXNTdF85gmRjRxWdCkA8JZK06dE5ZgDii4DAAAAAAAAAHqc0CfQLhvQL5rPOilii0FFlwIAnSrtMD6aTj0isiwruhQAAAAAAAAA6HFCn8AasqGDo/lDJ0cM7F90KQCwhmz8mGj6wLGRlctFlwIAAAAAAAAAhRD6BNZRGjksmj9yiuAnAL1Gtu3W0XzWiZH1aS66FAAAAAAAAAAojNAn0KnSqOHR/OGTIwb0K7oUABpcNm5UNJ91UmR9+xRdCgAAAAAAAAAUSugTWK/S1lutXuq9X9+iSwGgQWVjR+a/i7J+Ap8AAAAAAAAAIPQJvKVSCtukjp/CNgD0sOyNiw+y/i4+AAAAAAAAAIBE6BN4W6V8Wd2TIyyrC0APyUaPyC86yAb0K7oUAAAAAAAAAOg1smq1Wi26CKA2tM5fFCsuuiLi9WVFlwJAHcvGbBXNH363wCcAAAAAAAAArEXoE9gorQsWx4pv/iji1deLLgWAOpSl7tKWdAcAAAAAAACATgl9AhutdeEzseLfLhf8BKBLZduMXh347Nen6FIAAAAAAAAAoFcS+gQ2SeuiZ1cHP195rehSAKgD2fito/mskyLrK/AJAAAAAAAAAOsj9AlsstbFz69e6v2lpUWXAkANK00cF01nHi/wCQAAAAAAAABvQ+gT2CzVF1+OFd+6IqqLny+6FABqUGm3ydF02pGRVSpFlwIU7KqrropLL700Hn/88ejbt2/stdde8YlPfCLGjBmzQc+/9dZb49///d/jnnvuiddeey222mqr2H///ePss8+OLbfcstvrBwAAYP2M+QAAALqO0Cew2aqvvh4r/v3KqD6xsOhSAKgh5XfsHpXjD46slBVdClCwuXPnxkUXXRSTJk2K/fbbLxYtWhTXXnttDB48OK644ooYN27cWz7/Jz/5SXzmM5/JJw4PPvjgGD58ePzhD3+IO++8M59AvPzyy2PEiBE99n4AAAB4kzEfAABA1xL6BLpEdcXKWHnpT6P1/seKLgWAGlA5dK/8C+DBBx+MY445JmbMmBGXXHJJNDc359uvu+66OOecc/LOLWlycH2WLFmSPyb58Y9/HBMmTGi/7+tf/3pceOGFceyxx8aXv/zlHng3AAAAdGTMBwAA0PVK3bBPoAFlzU3R9IHjo7Tn1KJLAaA3K2VROekQgU+gXVreL0lL8rVN/iWpe8uee+4ZN954YyxevHi9z7/pppvi1VdfjZNOOmmNyb/kIx/5SL7PX//61934DgAAAFgfYz4AAICuJ/QJdJmsXIrmU4+I8v4ziy4FgN6oUomm04+Jypzdi64E6EVuvfXWqFQq+WTf2mbPnh1pcYr0mPWZOHFifOITn4hDDz10nfvK5XK+79dee63L6wYAAODtGfMBAAB0vUo37BNocE1H7RfZ4IGx6me/iqgWXQ0AvULfPtF85vFRmjiu6EqAXmTFihWxcOHCGDNmzBodX9qMG7f6Z8Zjjz223n3svPPO+Vdnfvvb3+aTf+u7HwAAgO5jzAcAANA9hD6BblHZd4/IBvaPlT+8OqKltehyACjS4AHRfNbJUdp6RNGVAL3MkiVL8q4uQ4YM6fT+QYMG5bdLly7d6H2n53zxi1/M/3zqqaduZqUAAABsLGM+AACA7iH0CXSb8oydIgb2i5WXXBWxfGXR5QBQgGzE0Gj60MlR2rLzk/tAY1u5cvUxYmcdXzpuX758+Ubt95VXXomzzjor5s2bF/vss0+ceOKJXVAtAAAAG8OYDwAAoHuUumm/ALny5O2i+S9OiRjYv+hSAOhh2bhR0fzR0wQ+gfXq27fvGhOBnS0FmPTvv+HHks8++2ycfvrpceedd8Zuu+0Wc+fOjSzLuqhiAAAANpQxHwAAQPcQ+gS6XWmb0dH8sfdGNmp40aUA0ENKu02O5o+cEpnQP/AWBg4cGKVSab1L+bVtb1vy7+386U9/ipNOOinuu+++mD17dlx88cX5awAAANDzjPkAAAC6h9An0CNKw7aI5r88LUo7Tyy6FAC6UxZROXSvaDr96Mj6dL50F0DHpfzGjRsXCxcu7LTzy/z58/PbSZMmve2+brnllnjPe94TixYtiqOPPjq+/e1vm/wDAAAokDEfAABA9xD6BHpM1rdPNH3g+CgfOLvoUgDoDs1N0XTGsXno07JawIaaOXNmPvmXlubrbFIv/TyZPn36W+7jjjvuiA9/+MPxyiuv5Ldf/epX88lFAAAAimXMBwAA0PWEPoEelZWyaDpyn2h631ERTZWiywGgqwwdnHd0Lu+6Q9GVADXmhBNOyG/nzp0by5Yta99+3XXX5RN7BxxwQIwaNWq9z3/xxRfj4x//eP7cj33sY/GJT3yiR+oGAADg7RnzAQAAdD2JK6AQ5WlTIhs+NFZ85z8jXlpadDkAbIZswthofv+xkQ3sX3QpQA2aNm1anHbaaXHZZZfFMcccEwceeGAsXrw4rrnmmhg+fHicd9557Y+97bbb4vbbb48pU6bEQQcdlG/7zne+E88++2wMHjw4Wlpa4hvf+Eanr3P22WdHqeS6RwAAgJ5kzAcAAND1smq1Wu2G/QJskOrLr8SK71wV1ScWFl0KAJugPHu3qJxwUGTlctGlADUsDUvTBODll18e8+bNiy222CJmzZqVd3EZN25c++PS5N4FF1wQxx13XHzpS1/Ktx177LHxwAMPvO1r3HfffVGpuO4RAACgpxnzAQAAdC2hT6Bw1VWrYuUVv4zW3/2x6FIA2FClUlSOPSAqe08vuhIAAAAAAAAAaBhCn0CvserG38Wq/74xotWPJYBebUC/aDr96Chvv23RlQAAAAAAAABAQxH6BHqVlgcfj5Xf+1nE68uLLgWATmSjhkfTmcdHadgWRZcCAAAAAAAAAA1H6BPodVqffSFWXvqzqD71TNGlANBBadqUaDrpkMj69im6FAAAAAAAAABoSEKfQK9UXbUqVv3019Fy811FlwJAUyUqxx0Yldm7FV0JAAAAAAAAADQ0oU+gV2u556FYefk1lnsHKEg2clg0nXFMlEYNL7oUAAAAAAAAAGh4Qp9Ar9f6wpLVy70/uajoUgAaSnnmLlE5/qDImpuKLgUAAAAAAAAAEPoEakW1pSVW/fw30XLT7yL81ALoXn2aounEQ6I8Y+eiKwEAAAAAAAAAOhD6BGpKy/2Pxsr/uDri1deLLgWgLmVjtoqm04+O0ogtiy4FAAAAAAAAAFiL0CdQc6ovLY0V3/+vqD62oOhSAOpKea9pUTlm/8gqlaJLAQAAAAAAAAA6IfQJ1KRqa2us+sXN0XL9rRF+jAFsnn59oundh0d51x2KrgQAAAAAAAAAeAtCn0BNa3n4iVh52c8jXn6l6FIAalK27dbR9L6jorTlkKJLAQAAAAAAAADehtAnUPOqry2LlVfdEK133Fd0KQC1o1KOymF7R3m/PSMrlYquBgAAAAAAAADYAEKfQN1oue+RWHnFLyJefrXoUgB6tWyb0dF06hFRGjms6FIAAAAAAAAAgI0g9AnUX9fP/7w+Wn9/f9GlAPTO7p6H7h3l/XX3BAAAAAAAAIBaJPQJ1KWWPz4cK6/4ZcRSXT8BkmzcqNXdPUcNL7oUAAAAAAAAAGATCX0Cdav66uux8j9viNY7df0EGlg5dffcK8oHzNTdEwAAAAAAAABqnNAnUPd0/QQale6eAAAAAAAAAFBfhD6BBur6eX203vlA0aUA9FB3z3dEef9ZkZV19wQAAAAAAACAeiH0CTSUlnseipU/uS7iZV0/gTru7nnK4VEaPaLoUgAAAAAAAACALib0CTSc6rLlseoXN0fLb++MaG0tuhyArtG/b1SO2CfKs3eLrJQVXQ0AAAAAAAAA0A2EPoGG1bro2Vj5k+uj+uj8oksB2HRZFuVZu0TlyH0jG9Cv6GoAAAAAAAAAgG4k9Ak0vJbf3x8r/+vXlnwHanMp9xMOjtI2o4suBQAAAAAAAADoAUKfAJZ8B2rNgH5ROeKdUZ5lKXcAAAAAAAAAaCRCnwAdtD79XKy88jpLvgO9eCn3XaNy5D6WcgcAAAAAAACABiT0CdAJS74DvY2l3AEAAAAAAAAAoU+A9bDkO9ArWModAAAAAAAAAHiD0CfA22hd/Hysuvq30XrvQ0WXAjSSSiXKe0+LyoGzLeUOAAAAAAAAAOSEPgE2UOsTC2PVf98UrY/OL7oUoJ6VsijvOTUqh+4d2RaDiq4GAAAAAAAAAOhFhD4BNlLLA4/Fqqt/E9Wnnim6FKDOlHbZPipH7BOlkcOKLgUAAAAAAAAA6IWEPgE2QfrR2XrXA7Hqmv+J6vMvFV0OUONKE8dF5V37RmnbrYsuBQAAAAAAAADoxYQ+ATZDtaUlWm65O1Zdd0vE0leLLgeoMdmYrfLOnuUpE4ouBQAAAAAAAACoAUKfAF2gunxFtNx0R6y68faIZSuKLgfo5bJhW0TlsL2jNH1KZFlWdDkAAAAAAAAAQI0Q+gToQtVXXotVN9waLTffFbGqpehygN5m0ICoHDQnyu/YLbJyuehqAAAAAAAAAIAaI/QJ0A2qL78Sq266I1r+9w8Ry3X+hIY3dHBU9p8Z5Zm7RNbcVHQ1AAAAAAAAAECNEvoE6EbV15ZFy813xqrf/D7i1deLLgfoYdnIYVE5cHaUpk2JrFwquhwAAAAAAAAAoMYJfQL0gOqKldFy6z2x6sbbI15aWnQ5QDfLthm9Ouw5dVJkWVZ0OQAAAAAAAABAnRD6BOhB1ZaWaPn9/dHyq9ui+swLRZcDdLHSDttG+cDZUd5+26JLAQAAAAAAAADqkNAnQAGqrdVovfehWHXDrVFdsLjocoDNkUWUpu4QlYNmRWnc6KKrAQAAAAAAAADqmNAnQMFa/jQvWm64NVofebLoUoCNUS5FefpOUT5gVpRGDiu6GgAAAAAAAACgAQh9AvQSrQuejpbf3hktdz0YsWpV0eUA6zOwf5Rn7xaVd+we2RaDiq4GAAAAAAAAAGggQp8AvUz1ldei5bZ7YtX//iHixZeLLgd4Q7bN6KjsPT1Ku+8YWaVcdDkAAAAAAAAAQAMS+gTopaqtrdH6x0ei5eY7o/VhS79DISrlPOSZhz23GV10NQAAAAAAAABAgxP6BKgBrc88Hy233B0tv/tjxGvLii4H6l42YmiU5+wW5T13iWxAv6LLAQAAAAAAAADICX0C1JDqylXRevefYtUtf4jq408VXQ7Ul3IpSlO3j/I7do/SpG0iy7KiKwIAAAAAAAAAWIPQJ0CNal30bLTcek+03PVAxCuvFV0O1Kxsqy2jvMfUKM/aJbJBA4ouBwAAAAAAAABgvYQ+AWpctaU1Wv/0eLTceX+0/vGRiBUriy4Jer/BA6I8bUqUZ+wUpbGjiq4GAAAAAAAAAGCDCH0C1JHq8hXReu/D0fL7+6P14XkRrX7EQ7s+zVHaZfsoz9g5SttvE1mpVHRFAAAAAAAAAAAbRegToE5Vl76aL/2eAqDV+U8XXQ4Uo1yK0uTtVnf03HlSZM1NRVcEAAAAAAAAALDJhD4BGkDrMy+sXv49BUCff6nocqDbZeO3zjt6lnebHNnA/kWXAwAAAAAAAADQJYQ+ARpM67yF0XL3g9F63yNRfU4AlDqRZZFtMzrKO0+K0rQdozRsi6IrAgAAAAAAAADockKfAA2sdfHzefizJQVA5y2M8CuBWtLcFKUdts2XbS/vNDGyQQOKrggAAAAAAAAAoFsJfQKQq77yWrQ+8Fi0/PGRaH3o8YjlK4suCdY1eGAe8CxNnRSl7beNrKlSdEUAAAAAAAAAAD1G6BOAdVRXrYrWh59c3QX0/kcjXlpadEk0sGzrraK088R86fZs3KjIsqzokgAAAAAAAAAACiH0CcDbal2weHUA9OEnovrEooiWlqJLop716xOlCWOjNHm71UHPoYOLrggAAAAAAAAAoFcQ+gRgo1RXrIzWeQuj9dEno/WR+VF9UgiULgp5TtwmSpPGRbb1yMhKunkCAAAAAAAAAKxN6BOAzSIEykbr+0bIc9K4POiZjRHyBAAAAAAAAADYEEKfAHQpIVDWIeQJAAAAAAAAANAlhD4B6PYQaHXhs9G64OmoLlgcrfOfjuri5yNaW4suje7Q3BTZmK2iNHZUlMaOjGzcqMi2GibkCQAAAAAAAADQBYQ+Aehx1ZWrorrwmWhdsDiqC55effv0cxEtgqA1pU8KeI7Mw50p5JmlkKeAJwAAAAAAAABAtxH6BKBXqK5a9WZH0PmLV98+80LEylVFl0bSr29ko4dHadwbHTxTyHPElgKeAAAAAAAAAAA9SOgTgF4r/xX10tJoffaFqD77Yh4CzW/T319cEtHqV1iXaqpENnxoZCPS15b5bemN22xg/6KrAwAAAAAAAABoeEKfANSkaktLVJ97aXUA9I0gaOsbt7H01Qi/3TpXKkU2dHB7qDPb6s1wZ2wxKLJM504AAAAAAAAAgN5K6BOAulNd1ZIHP6svvxLVl9tuX4lY4++vRrzyWmonGnWhXI4YPCCyQQMiGzwwsiEDIxs8IGLQ6tu2bTGgvyXZAQAAAAAAAABqlNAnAA2r2tr6Rjj0jSDo0tcilq+IWLEiqsvS7cqopr+/8dXZtmhp7ZpiKpWIvs2RNTdF9Gl+48/Na27r0xxZ223f5jdCnm+EOwf006UTAAAAAAAAAKDOCX0CwGaorloVsXxlRAqQpl+prdX8Nv/1mv89hUKziNRdM8tWBzOzN/8elXJEc3Nk5VLRbwUAAAAAAAAAgF5O6BMAAAAAAAAAAACgBmgrBgAAAAAAAAAAAFADhD4BAAAAAAAAAAAAaoDQJwAAAAAAAAAAAEANEPoEAAAAAAAAAAAAqAFCnwAAAAAAAAAAAAA1QOgTAAAAAAAAAAAAoAYIfQIAAAAAAAAAAADUAKFPAAAAAAAAAAAAgBog9AkAAAAAAAAAAABQA4Q+AQAAAAAAAAAAAGqA0CcAAAAAAAAAAABADRD6BAAAAAAAAAAAAKgBQp8AAAAAAAAAAAAANUDoEwAAAAAAAAAAAKAGCH0CAAAAAAAAAAAA1AChTwAAAAAAAAAAAIAaIPQJAAAAAAAAAAAAUAOEPgEAAAAAAAAAAABqgNAnAAAAAAAAAAAAQA0Q+gQAAAAAAAAAAACoAUKfAAAAAAAAAAAAADVA6BMAAAAAAAAAAACgBgh9AgAAAAAAAAAAANQAoU8AAAAAAAAAAACAGiD0CQAAAAAAAAAAAFADhD4BAAAAAAAAAAAAaoDQJwAAAAAAAAAAAEANEPoEAAAAAAAAAAAAqAFCnwAAAAAAAAAAAAA1QOgTAAAAAAAAAAAAoAYIfQIAAAAAAAAAAADUAKFPAAAAAAAAAAAAgBog9AkAAAAAAAAAAABQA4Q+AQAAAAAAAAAAAGqA0CcAAAAAAAAAAABADRD6BAAAAAAAAAAAAKgBQp8AAAAAAAAAAAAANUDoEwAAAAAAAAAAAKAGCH0CAAAAAAAAAAAA1AChTwAAAAAAAAAAAIAaIPQJAAAAAAAAAAAAUAOEPgEAAAAAAAAAAABqgNAnAAAAAAAAAAAAQA0Q+gQAAAAAAAAAAACoAUKfAAAAAAAAAAAAADVA6BMAAAAAAAAAAACgBgh9AgAAAAAAAAAAANQAoU8AAAAAAAAAAACAGiD0CQAAAAAAAAAAAFADhD4BAAAAAAAAAAAAaoDQJwAAAAAAAAAAAEANEPoEAAAAAAAAAAAAqAFCnwAAAAAAAAAAAAA1QOgTAAAAAAAAAAAAoAYIfQIAAAAAAAAAAADUAKFPAAAAAAAAAAAAgBog9AkAAAAAAAAAAABQA4Q+AQAAAAAAAAAAAGqA0CcAAAAAAAAAAABADRD6BAAAAAAAAAAAAKgBQp8AAAAAAAAAAAAANUDoEwAAAAAAAAAAAKAGCH0CAAAAAAAAAAAA1AChTwAAAAAAAAAAAIAaIPQJAABA4a666qo4/vjjY9q0aTFnzpz45Cc/GU899dQGP3/hwoXx6U9/Ovbdd9/Ybbfd4phjjokf/ehH3VozAAAAG8aYDwAAoOtk1Wq12oX7AwAAgI0yd+7cuOiii2LSpEmx3377xaJFi+Laa6+NwYMHxxVXXBHjxo17y+enicJTTjklXnzxxTjiiCNi+PDhcf3118cTTzwRH/jAB/KJQQAAAIphzAcAANC1hD4BAAAozIMPPph3aJkxY0Zccskl0dzcnG+/7rrr4pxzzon9998/nxx8K+lx6fHf+ta38q4vybJly+KMM86Iu+++O3784x/H1KlTe+T9AAAA8CZjPgAAgK5neXcAAAAKc+mll+a3Z599dvvkX3LwwQfHnnvuGTfeeGMsXrz4LTu+pA4vaYnAtsm/pG/fvvGJT3wi0nWOl19+eTe/CwAAADpjzAcAAND1hD4BAAAozK233hqVSiWf7Fvb7Nmz8wm89Jj1uf322/PHzJkzZ537UieZpqamt3w+AAAA3ceYDwAAoOsJfQIAAFCIFStWxMKFC2PUqFFrdHxpM27cuPz2scceW+8+5s2bl99uu+2269yXJv9Gjx4dCxYsyF8LAACAnmPMBwAA0D2EPgEAACjEkiVL8o4tQ4YM6fT+QYMG5bdLly5d7z5efPHF/Pat9tHa2hqvvPJKl9QMAADAhjHmAwAA6B5CnwAAABRi5cqV+W1nHV86bl++fPlm70PXFwAAgJ5lzAcAANA9hD4BAAAoRN++fdeYxFtb26Rd//79u3UfAAAAdD1jPgAAgO4h9AkAAEAhBg4cGKVSab1L+bVtb1vyrzNtS/y9/PLL691HlmX5awEAANBzjPkAAAC6h9AnAAAAhUjL8I0bNy4WLlzYadeW+fPn57eTJk1a7z4mTJiQ3z755JPr3Jf2uWjRothuu+3yiUYAAAB6jjEfAABA9zACAgAAoDAzZ87MJ+ruvPPOde675ZZb8o4t06dPf8vnp8fcdttt69x3xx135PueMWNGl9cNAADA2zPmAwAA6HpCnwAAABTmhBNOyG/nzp0by5Yta99+3XXX5RN4BxxwQIwaNWq9z0/37bXXXnH77bfH9ddf37497ev888/P/3zaaad163sAAACgc8Z8AAAAXS+rVqvVbtgvAAAAbJB/+Id/iMsuuyzGjx8fBx54YCxevDiuueaaGDp0aPzwhz/MlwNMUmeXNNE3ZcqUOOigg9qf//jjj8cpp5wSS5cujcMPPzxGjhwZN9xwQ8ybNy/OPPPMOPfccwt8dwAAAI3NmA8AAKBrCX0CAABQqDQsTROAl19+eT5pt8UWW8SsWbPiYx/7WPvkX/KNb3wjLrjggjjuuOPiS1/60hr7SM9LXV7S8oDLly/PJxNTt5cTTzwxXwoQAACAYhjzAQAAdC2hTwAAAAAAAAAAAIAaUCq6AAAAAAAAAAAAAADentAnAAAAAAAAAAAAQA0Q+gQAAAAAAAAAAACoAUKfAAAAAAAAAAAAADVA6BMAAAAAAAAAAACgBgh9AgAAAAAAAAAAANQAoU8AAAAa0lVXXRXHH398TJs2LebMmROf/OQn46mnntrg5y9cuDA+/elPx7777hu77bZbHHPMMfGjH/2oW2umsT9zt956a3zwgx+MmTNnxtSpU+OAAw6Iz3/+8/HCCy90a9009ueuo2q1GqeffnpMnjw5FixY0OW1Uh829zO3ZMmS+PKXvxwHHnhg7LLLLvnt5z73uXjmmWe6tW4a+3P3wAMPxEc+8pGYNWtW/jv20EMPjQsuuCBWrFjRrXVTHz7+8Y/HPvvss1HPefHFF+Mf//Ef859xu+66axx22GHx7W9/O1atWtVtdTYq4z56mnEfPc2YjyIY99HTjPko0sd76Zgvq6bf3AAAANBA5s6dGxdddFFMmjQp9ttvv1i0aFFce+21MXjw4Ljiiiti3Lhxb/n8dELplFNOyQfuRxxxRAwfPjyuv/76eOKJJ+IDH/hAPikIXfmZ+8lPfhKf+cxnom/fvnHwwQfnn7k//OEPceedd8aYMWPi8ssvjxEjRvTY+6ExPndr++53vxtf/OIX8z/fcMMNMXbs2G6qnEb9zD333HNx2mmnxbx582LvvffOJ5vvv//+uOWWW/KfdVdeeWUMHTq0x94PjfG5S79PU7hh5cqVccghh8To0aPj5ptvjoceeihmz54dF198cZTL5R57P9SWNFH8jW98I0aOHBm/+c1vNug5L7/8crznPe+JRx55JP/MbbPNNvlnLv28S5PP//Iv/9LtdTcK4z56mnEfPc2YjyIY99HTjPko0gW9ecyXQp8AAADQKB544IHqDjvsUD311FOry5cvb9/+y1/+Mt/+oQ996G33cfbZZ+ePvfHGG9u3vf7669WTTz65Onny5Oq9997bbfXTeJ+5l156qTpt2rT869FHH13jvvPPPz/fx7nnnttt9dO4P+s6Sp+9XXfdNX9u+po/f343VE2jf+Y+9rGP5Y/93ve+t8b2b3zjG/n2r3zlK91SO439uXv3u9+dP/baa69t37Zy5crqBz7wgXz7VVdd1W31U7uWLVtW/exnP9v+e/Gd73znBj/3i1/8Yv6cyy67rH3bqlWrquecc06+/Re/+EU3Vd1YjPvoacZ99DRjPopg3EdPM+ajKMtqYMxneXcAAAAayqWXXprfnn322dHc3Ny+PXXR2HPPPePGG2+MxYsXv2W3l9TdJS0lk5b4a5M6cXziE5/Il8JK3Tegqz5zN910U7z66qtx0kknxYQJE9a4Ly1LlPb561//uhvfAY34ueuopaUlPvWpT8WwYcPyDhzQHZ+5p59+Ou/UkZZae+9737vGfWeccUa+nK7OVnTHz7p77703hgwZknfbaFOpVPLfu8ldd93VbfVTm371q1/F4YcfnncV6jge2BDLli3LlwZP3YVSB8k2qbPQueeem//5hz/8YZfX3IiM++hpxn30NGM+imDcR08z5qMIv6qRMZ/QJwAAAA3l1ltvzU/qpJNCa0vLuaTJu/SY9bn99tvzx8yZM2ed+2bMmBFNTU1v+Xwaz+Z+5iZOnJhPLHc8MdnxZFHa92uvvdblddPYn7uOvvnNb+YnyL/whS/EgAEDuqFa6sHmfuZS0CE9Ji2fu7ZBgwbFV77ylXj/+9/f5XVT27riZ90WW2wRr7zySixZsmSN7c8880x+u+WWW3Zx1dS6H//4x3kw6+/+7u/y35Eb45577smP22bOnBml0ppTdGlZyrSM7u9+97s8fMPmMe6jpxn30dOM+SiCcR89zZiPIvy4RsZ8Qp8AAAA0jBUrVsTChQtj1KhRa1wZ3HHQnTz22GPr3ce8efPy22233Xad+9LEX7qCc8GCBflrQVd85nbeeef48Ic/HNOnT1/nvt/+9rf5SaQddtihiyun0T93be6///648MIL8yvTOws9QFd95h588MH8dvvtt4+f/exnceKJJ8Zuu+0We+21V36S/YUXXujGd0Aj/6x7z3vek0+2pKDNo48+mv9eTd39/vVf/zWfHEyfRVi7C9UNN9yQf3ayLNuo57aNJbbZZptO70+f2/TZTuMJNp1xHz3NuI+eZsxHEYz76GnGfBTljBoZ81U2ew8AAABQI9LVvOnq37ScS2fSFeXJ0qVL17uPF198Mb99q320trbmVw+7Spiu+MytT3rOF7/4xfzPp5566mZWSj3pqs9dOgGZlvgbOXJk/M3f/E231Ep96IrPXFuHjYsvvjhfRuuAAw7IO6n9/ve/z5e9Sp070jK6aUIGuvJnXVomMO3jS1/60hodhyZNmpQHILbeeusurpxal5Yj3VQvvfRSfru+n2Vtn9uXX355k18D4z56nnEfPc2YjyIY99HTjPkoyqwaGfMJfQIAANAwVq5cmd92dmVwx+3Lly/f7H3o+EJXfeY6kyaXzzrrrPzK4X322ccV6XTL5+7888+Phx9+OC699FJL/NHtn7m25UpTJ4W0dNa+++6b/z1N8KSOL2ni72tf+1p8/vOf74Z3QCP/rEsTy9/61rfyJQMPO+ywGDZsWNx1111x9913x2c/+9m44IILTDrTZdrGCF19bMiajPvoacZ99DRjPopg3EdPM+ajFq3owTGf5d0BAABoGH379l3jhNH6BuT9+/fv1n3QOLrj8/Lss8/G6aefHnfeeWe+BNbcuXM3epkZ6ltXfO7uuOOO+M53vhPvfe97Y+bMmd1UKfWiKz5zpdLqU9WHHnpo+8Rfkn6+nXvuudGnT5+45ppr8q5q0FWfu6effjo+9KEP5ZMtV111VfzTP/1TnHfeefGjH/0ozjnnnPjd736Xd7+Cnv7cCt5sHuM+eppxHz3NmI8iGPfR04z5qEV9e3DMJ/QJAABAwxg4cGB+cnF9S760bW9bYqMzbcvJrG/5jbSPdKIyvRZ0xWeuoz/96U9x0kknxX333RezZ8/Ol8PyWaOrP3ep80Y6AT5u3Lj467/+626tlfrQFT/r2u7bZZddOt3/tttum+/nhRde6LK6qW1d8bn76U9/GsuWLYszzzwzxo8fv8Z9aQIwfe5uvPHG9mUoYXNtyFgicXy3eYz76GnGffQ0Yz6KYNxHTzPmoxYN6cExn+XdAQAAaBhp6Yx0QnvhwoX5lZZNTU1r3D9//vz8dtKkSevdx4QJE/LbJ598cp370j4XLVoU2223XfuV6zS2rvjMtbnlllvyk5Fpib+jjz46vvCFL6x3mRga2+Z+7u699972n3G77757p4858MAD25dkGzt2bBe/AxrxZ1363bkhnRDaOiZAV3zunnrqqfU+JoW50vYnnngif42tttqqy98DjeetxhJt21Onoq233rqHK6svxn30NOM+epoxH0Uw7qOnGfNRiyb04JjPSAQAAICGkpasSieJ0hJpnU2upJM906dPf8vnp8fcdtttnS6NlfY9Y8aMLq+bxv3MtX22PvzhD+cTf+n2q1/9qok/uu1zN2bMmHyiubOv0aNH549JS02mvw8ePLjb3wuN8/s1+d///d917ktdXtJETZps1uWKrvzcjRgxIr99/PHHO70/Tf51fBxsrqlTp+bL+N1+++3rLFuaJq3Tz7oUvimXy4XVWC+M++hpxn30NGM+imDcR08z5qPWTO3BMZ/QJwAAAA3lhBNOyG/nzp2bL+3S5rrrrssnWA444IAYNWrUep+f7ttrr73yQfv111/fvj3t6/zzz8//fNppp3Xre6CxPnMvvvhifPzjH8+f+7GPfSw+8YlP9EjdNO7nLk2wfPSjH+30q20C8Iwzzsj/bgKQrvpZN2vWrLzDRvr9etVVV7VvTyfIv/zlL+eTPCeffHI3vwsa7XN3+OGH51360rK5bV1i2lx66aXxyCOP5KGuFIyArtCnT59417veFQsWLMg/Y21aWlriK1/5Sv5nY4muYdxHTzPuo6cZ81EE4z56mjEftaZPD475smq1Wu2SPQEAAECN+Id/+Ie47LLLYvz48flyVYsXL45rrrkmhg4dGj/84Q/zZWOS1NUlnYScMmVKHHTQQe3PT1cGn3LKKbF06dL8xNHIkSPz5a7mzZsXZ555Zpx77rkFvjvq7TP3z//8z/HNb34zn2hJnTbW5+yzz7a8JF36s64zp556at5dwRJ/dMdn7v7774/3v//98fLLL8e+++6bL4mVHnvffffFtGnT4nvf+946y7nB5n7uvvOd78SXvvSlfHm1Qw45JLbccsv44x//mD82dXv5/ve/n+8b1mfy5Mn5eOA3v/nNGtsfeOCBPCyYJpCPP/74NbpYnXjiiXmHl/333z8PPqRuV+lnXRpbpAnt1LGIzWfcR08z7qOnGfNRBOM+epoxH0Wb3EvHfEKfAAAANJw0FE4nii6//PJ8wm6LLbbIrzRP3TTaThIl3/jGN+KCCy6I4447Lj8x1FF6XurwkpaRWb58eX5iKF2hmQbzJmnpys/csccem59AejvppFGlUunW90Hj/axbmwlAuvszl06Ip/t++9vfxpIlS/JOQ0cddVScddZZebcE6I7P3c0335x3frnnnnvi9ddfj6222iqfmElL61rmj02dAPzJT34S5513Xr4kZQovdPTMM8/E17/+9bjxxhvzQGH6nZomCVPQy1LOXce4j55m3EdPM+ajCMZ99DRjPoo2uZeO+YQ+AQAAAAAAAAAAAGqA3u8AAAAAAAAAAAAANUDoEwAAAAAAAAAAAKAGCH0CAAAAAAAAAAAA1AChTwAAAAAAAAAAAIAaIPQJAAAAAAAAAAAAUAOEPgEAAAAAAAAAAABqgNAnAAAAAAAAAAAAQA0Q+gQAAAAAAAAAAACoAUKfAAAAAAAAAAAAADVA6BMAAAAAAAAAAACgBgh9AgAAAAAAAAAAANQAoU8AAAAAAAAAAACAGiD0CQAAAAAAAAAAAFADhD4BAAAAAAAAAAAAaoDQJwAAAAAAAAAAAEANEPoEAAAAAAAAAAAAqAFCnwAAAAAAAAAAAPz/7P0HlGRV1T/uH2DI8SVLFlCiiEQRFUVAkvgimSEIGFCyGDCCIpIkJxEEFCSDCUFGoi8ZE0lADIggSBaGLPBfn/P93f7X9FSnme7prunnWatX9VS8detWz9l377MP0AEUfQIAAAAAAAAAAAB0AEWfAAAAAAAAAAAAAB1A0ScAAAAAAAAAAABAB1D0CQAAAAAAAAAAANABFH0CAAAAAAAAAAAAdABFnwAAAAAAAAAAAAAdQNEnAAAAAAAAAAAAQAdQ9AkAAAAAAAAAAADQARR9AgAAAAAAAAAAAHQARZ/AsBg/fnw555xzyq677lrWXnvtssIKK5R3vetdZbPNNiuHHnpo+fvf/z5s23brrbeWZZZZpv7897//LVOjBx54YKLrmvd80003TbHt+MMf/lAOPPDAsummm9bPf8UVVyzvfe97y6c//eny05/+tLz++utlavTwww937e9//OMfI+71n3322fLEE08M6TbsuOOOXdvQ+rPsssuWd77znfU4GDt2bDnzzDPLc8891+PzrLvuuvVxF1100aBs11//+tfy5ptvDugxl156ad2G97///W3f4zHHHFNG4/cbAGCgY9P8fPvb3+7X437wgx90Pab7OGxSDcX4LTHlYMW3PY07p7RJGVv2FIOccMIJ9brtttuu3+P8wdynvWm2N/t9SjjggAPq633+858vI03reZLuP4njV1111bLxxhuXL3/5y+X222+fYsfwpB4L7Y6v4ToX1C7+7ul7AQDA4OlpfNvTT5OnGOz8zpSOA1566aVy8sknl4985CM1F7PyyiuXzTffvJx22mnl1Vdf7ffzJJeb7f7whz/c6/122223rv2VvHBP7rvvvq773X///ROMi9v9LLfccnX7M7bfa6+9ylVXXdXrdjz11FPlxBNPLFtvvXV597vfXeOY5Ke32Wabcvzxx5d///vfZVL0ddwk/73GGmuUj33sY/VcQ2/5rk46R/Doo4+Wk046qeywww7lPe95T1dcuOGGG5avfOUr5f/+7/+m+DYBjEZjhnsDgNHn2muvrYmAZ555pv57rrnmKm9/+9vLf/7zn/KXv/ylDuZ//OMflz333LPsvvvuw725U5UkQ5JEffHFF8t55503bNvx/PPPl2984xvl8ssvr/+efvrpy1ve8pYy66yzln/+85/luuuuqz9nnHFGDeoWX3zxYdvW0eass86qAf+xxx5b5ptvviF/vXnmmWeCzzcFly+//HJ57LHHym9/+9v6k4T+d7/73RqID2Uh+tFHH10uuOCCcscdd5QxYzpviDRSvt8AAJPjyiuvLF/96lfLNNNM0+v9mlhiJLvhhhvq+CxJsP3222+4N2eqYJ8OvyTzZphhhq5/Z7Jmzuck4Z1JdEk8fvSjH62fU+v9BtvUcCxM6fgbAICJLbHEEmXuuefu837TTTdd6XQpOMxkxxRYJuZObiY5mXvvvbf86U9/qvF4xqizzTZbn8+11lpr1fs++OCD5emnn267D5PraZ0UlkLAFAm2c9ttt9XLjItTyNgqcUXikFZNLilFuOPGjas/KWQ98sgjJzqfcM0115QvfvGLNTeZfGQ+87z37I+77rqr/PGPf6z5yOQtU5w5mMdRCmmT97znnnvqT+KlCy+8sOZEO9Frr71Wi1d/+MMfdk2Wm3/++WueP7flvV5yySX1J8WuiXWSBwRgaHReRQPQ0TJoPvzww+vvG220Udljjz3K2972tq7bH3/88XLKKaeUc889tw4aM2Dfd999h3GLpy6XXXZZTYysssoqPSZNF1pooSHdhsymy8y5DPwTvOUY2GKLLbqSQQnUMiPviCOOqAXA6fZ48cUXlwUXXHBIt2s0WWCBBXr8vDM7c0rKDMTDDjus7W0Jtr/1rW+VO++8s3zmM58pP/rRj8o73vGOCe6TkwoJJBNUTo4E2yk2nxTrr79+nVGakwWj/fsNADA5MvEmMeHvfve7stpqq/V4v8QSd99996C/fmLVdD35n//5n0F5vlNPPXVQO1KOlHHnYMcg7fQ0zh/sfcrAHXfccWWRRRaZ6PoXXnihxlTpkvOzn/2sJgCPOuqoCRKug3kMT86xMFhx5OTqKf7OeZB0Tp155pmn+DYBAIw2WXluUgv9Ok1yMSn4zDg4k4+afMvvf//7mqtLTib36c8KHKuvvnod12dcnVX9PvShD7Ut5HzllVfK0ksvXZv+5N8pgmw3OSwNQCLdN7tLLrGnRhd5vhQWpnnIL37xi1pomG6ejUxMS54525GOoLvsskttQNNIwWriluQhMwE1uch0rhzM4+iNN96o25bnzzmPNEZKTNJpEuMlV5fi3WmnnbZsv/325eMf//gEjV2yn1M8nEYu+bxTZPyTn/ykzDjjjMO67QBTK8u7A1NMBuwZ5EWChwzCWws+I4FGlvv+7Gc/23USfyiSeUxsqaWWqj9DmVRIQeeXvvSlmqRdeOGFa5CW5cpaA7wkhJIISrIos7+yzNk3v/nNIdum0SiBePN5j+SEcU44ZLZglulI98oEwgmOWy222GL1fcw+++zDtp157WxDtmU0f78BACZX09n9V7/6Va/3a4oHl19++UF9/RQjZszUny4vw6ETxp2DFYOMhHE+A5PE6ac+9anyne98p/77l7/8ZbniiitG5DE80o+v/A3K9pm0BwDAYElxZMboka6XrQ020kiiWV4+xYn9WeY94//WotF20qQishJAxuDJ8zTFnQMp+uxN8ot5PyuttFL999lnnz1RM6IUImZSVVaYbC34bMbeBx98cO1cmvxTloAfbCmQzD745Cc/Wf9988031w6pnSYT/FLwma63+T35/O4rNaa4c7PNNqv530yoTdHtaaedNmzbDDC1U/QJTBEp9ktb/Cz7tfLKK5e999671/tnplBa22eAfeaZZ06x7WRoJeGTgCAOOuigsuiii/Z43xQAZ9Zds/RCJwZATL5ZZpmldvuMBx54oM8CAAAAOteGG25YL7MsW2LI3oo+kzTJ6hHAyJIE3zrrrFN/H4qEKQAAMHDPPvtsXV0xll122Ylubwo4c590v+yPpiNmT0WfTT4wBZXve9/7JriuVQoDs0pgmsIMtOizsd5669XLP//5z7W4tJHupZEVB3qS8wtbbrll1/27Nx8ZLB/84Ae7fk++q5M8+uijtYA2PvGJT9TmPb1J45+mwdNFF100ZPsUYLRT9AlMEVmeL4P2aGYy9TUzK90hUvCZGVZNILDMMsuUFVZYoQ7+20kwsuqqq9b73XHHHRPNEtt///3roHrFFVesXWR23333OqNqIDLg/8IXvlA+8IEP1OfJUgFpT5/W/ylq7S63ZXtuuummrmWq11xzzVr8uvnmm5ef/vSn9X5Jambgm/b/uS3vY9dddy1//OMf227Hc889V77//e/XZb/yfNkvWQIxjz/hhBPKf/7zn677Pvzww3UbmoRLArD8e9111+26T/7dbGd36baZJdw+8pGPlHe9611d23766af3a8Zf44ILLugKKLOsd3+SRYccckgt9FtiiSUmuj2fXQpD3/ve93Z9pgk2kiRuJ+837/Ef//hHnWGYZQeyzzKLcdttty3XXXdd1xIFeW+bbrppnR2Y/ZsZgM0x3KrZb/k88llmvyR4zDbl+MryBQOVTqgpik3QlEA725hlEnJ8dD/G8prNNmQJve5uueWW2ikzt2eGZuvx0OyLOOCAA+q/G1niIv++9NJL69IW+T2ff2/f8dwnS3pk1uRgymvL2HMAAQAASURBVGfQdHG6+uqr236m2Tetcvwfc8wxdZvz+Hwm2Z9ZPuP++++f6Dl22mmnrn/nu5TnzH5q/Q5ff/315aSTTqonMvJ8OT5yTGQf5fbejul893Ns5nud71CWFzn//PPb/s3o6T01ms8ql4Px/f73v/9dlzLNTNe8r2xfZp3m+XJcd5e/L3mudG7OyZ8s9ZLXyncw+2a//fabaB8DAPRHxr1Zti3jk56SRn/729/qcnSJw+add94enytj+oyVMyZPcinj6oxzPvzhD9cJie2WhW7GfRlHNpqxVhJPTcy21VZb1efKzzbbbFMuueSSCYpUm/FhEwt873vfm2D81rj33nvL17/+9Vq8mpikGU8lZm432amncWez3b/5zW/qvtlnn33q8+T5ssReYuueknYDiSvb+fnPf1622GKLOo7M47Ok3Y033jjR/drFIL3pPibubZ9O7rmCgZqc/Z1YKasZJG7M8ZN9lvFzfyY5XnXVVbWTZhKmea0c1znHcc8990xwvxyLO++8c9dxm+Rud1lFIbfnOfqb0B2IfC8i8VLrd6232CmfY76veX/5LLNvsq+zCkjreYe+vl+33npr/Xdirrx+VhfJ9z/Pm7inPzFXXi/x0AYbbFAfm+3NPmv3d6OveLD12G9izN7i79aYK9veTpZLTHyZcyA5FnL+IedGejq/1bx+jr9f//rXdb/me57v7f/+7/92LXcPAMDkyVg8OYw0vkkuMrmJ/GT8mbxiU4DYH8kdZLyfcVzGbt1zhRmzJrbI2DuxTl4n8e6hhx5alxDvLivrNUts/+lPf5ro9uacfu7TW6zdKmPsyIqN3XOFjzzySI3f0+0x4/umQLRd0eftt99eL/Nes52TYrbZZuv6/YUXXuj6vVlpIvm/3iaX5jNKji3j5RSBDoXW523dliaGyU/OZbTT3J779lf2a47FJoeazyCFmAPNi8eFF15YY4bk7/uT54/kmXJ85rxHu3MmiYWTW8z9mrimddn7fAcSsyV+Se4x90luPt+l7nFwf887NLFgE3u17v9sR47jrFSa2D6xYO7/ta99rcfny/mr5Mjy3cv2Jc5Pri3XNfEfwFBS9AlMEU2hUVq+N0v29SWDz/yk018kWZHunxnwXnbZZW0fk8H4+PHj6zJYrbO2jj766LLDDjvUx2WGVwZvGVxfe+21tfCvKUbsS1rQJ3GQxNbzzz9fnyeBRJINKSbLc+X6dpK0ywn7FOFlia4ETgmsstz5ueeeWwepGTg+9thj5a1vfWs9GZ9kWQazSSS1SkIoBZEpxkugl+UHsi3ZvxnoJjmRgXQT2OS1kkTM/otsc5NU7Esz4D755JNrgJbunAsuuGBNUB555JFlt91261fhZ+6T54omuOtLllnI7Lrsj+5SDJz9nQLPBBopJE3wloAxyY599923x6RFAuFsd/ZV0230D3/4Q00w5RhKsW3eWxKgee1c5voUXmYA306WMshnmc9m6aWXrsdpjq8UE/7gBz8o/ZX3k2LCLH2QwHzJJZesn2/2XY6PbHdrwJoETYKJSHLxySef7Lotyb1sU2bQJWnbW9FmimpzTDTe/va3138nwE4St5kh2f1YbDTFy5tssknXiYPBlJMW0Z+ANu87ifgk//J55DPO55h9k+LsvJ8kaBv5HuT9NvK+89P9feT58jnnuMx3IH9r2hUjd5fvfI6dBNJZwiT7NInmLH2RpO1ACqfbmZzvd7Ypn1lmaD700EN1P2UGZj7rJBrzd6anAs5//etf9fg755xz6r/zd/eZZ56pnbfy96dd0A0A0JvEaM3YtqcO783S7hnD9CQFfhnTZyycMXnihIz35pxzzjo+TPyX8XG7RFdPkqDI82VMnufIuGnMmDE1HvvKV75SY7NGxnsZjzVJp4zT8u/WsWNiwGxDEicpVMySaBm3Jp7MWDWFhK3Fp/2RxyV+SnFgEmt53SQZEv9kklvGr5MTV3aXGDFxbArhEgPl80siLft+sDs89rZPJ+dcweQY6P5OXJlizMRtOfZyXiArXORYz7GQMXg7eV9ZanGPPfaoE9HS/SafU+KIvN/EPs2YPHJ7ihtzvCcGSrKp+3coCa58Xol787kPVfwW/ZkI+aMf/agWMeb7mu9V4vvEXXlsVn5IHNxMmOvP9ytSzJr9nXMXOT5zjqU/8VskTks8lPNH+duRzy77LOdG2iWpB6q3+Ls3OceRCalJ3GY7mn2VYyTnEnKOJEn+niR5mccnKb/IIovUfZz9k8dkSUwAACZdYsaM21NUl0k6Gb++7W1vqxMb0yUxecXECRnT9yU5nUw6ynh/rrnmqoVwacbSSO4oucrEFsk1ZOyfMW9eJ/dNLqjJxzUS5zWTsxIDtp6/T3yS2CCSS804sz8SWyWHm9gkY8xWzbg58Vpij+SGE5unw2XyoO2KPie1y2c0RXkzzTRTjc8aKSRsciHJt+azae0E2sj7yNg6uZ+h0pzPyP5olqMfKmnakc8y7zefT2KOvG6KkhM35PaBaJrmZALu7LPP3q/H5LhMPJcurDn+ukvOOXFgCoTzXUncleM4Ek9ncmrOwSQuzGsmDs45k3yXEou3FogOhsRViQVPOeWUGj9mm3K+pmnYlFxfq+TUMqHz7LPPrt/JnCdKnJXGPrku8eNAzjsBTApFn8AUkYFbpJiodbbVQGQwmgKjaNfRsLXwLIOvxi9/+cty6qmn1scnGZcC1HRiScCRwsD45je/2baLY6sMjDMITrDVzITK82Tp8SR1MvMtA8+eTpQnsZiZQUkM/eQnP6mXTbCRAsacoD/iiCPq9uX2vF6SF81svVaZFZXgLUFekiJZNj0JiAw4k9zJe03irdkfCSpTRNgU72Vwn3+ngK036eqSZGMGtelakUF9BtNJSmWQm+RQ3nO6H/Ylg9ymCLPd0hEDkQK1JLUSeKZLTz6LFPPlM00SI8FZ9knTxaO7dApJcJf7Z1/nfSVYSFCe5EmK3NLpM59RjrXcJ8mQFBP21AkkA/gE0nnOHBcp2E3xaZ4zwXJPnYpapaAyMzcTTKQjbAoc8/o5NrINSQzlvaYLaKsETQsssEDdvmYp9OY4SfCcx+X33qTgNcdEIycU8u8sy5fHN0m7dt+9bG/2d/fv3mBKoNR0ne1ppmMjn10C/CTNcgIlfwPyXcjnmU4tOQ5zMqSR70ECx9bPMu8935tW+Qxz0iYJ43w/851rF6h2lwR6uq02n2OSwvmblGMqHWcTQE6OSf1+J5DO37IEyZmtmO9B9lNOJGVbMyMxf2dybLQrZs9+zXct34n8HcyxketyUuSll17q198FAIDumiXbe1riPePOJIoyruttsl7G0kn0NGOVjNEz3sm/M35KkieTevorMVHGSZnsl7grY8GM5VI0GVmloumYmDF0xmNNt/qc6M+/M65qii0zHk1smZg0sUPGiXlviSeafZDJY3112myVcWySZIkRMy7LuDWFmRmzZnycmGly4srukphLoiX7Ifs3l02MnYK5Seke0pPe9umkniuYXAPd34n3M9kw4+V83nlMVmNI4i8FoD1NmsqqG7lfHpdYpzmnkcvEMSnyTGFna4fV3LeJG/PYJkGXzzuTzyLJrP5Oyh2oJKabcz+ZLNabJPaahGMm7DYxdb63+Q4kaZvzDk0heF/fr9ZzEDPPPHON3bK/87zNcdKXxH4519BsSxNLJvZNTDi53VF7i797c9hhh9XjLHFYjot853Kc5bPP9uYcSRKfPSU/cy4l3XjzHc93Iu8vx0HkOEwBKAAAkyZjzsSMGb9mNYWMITOWTJFdrk8BWXIbfZ23TxycuDOxTWLa5AdbGzw0eayM3ZK3yTguY+fEchkXJk+QXFEmjSWf0ioTGVNIl/g2sVwmXW644Yb1MYk9M07NeLe/EpunC2l0z4FlrBpNHjTxQTMBr/tEqqzU2Hrfgcr4vIkFE6O1Fq2mqLApJGw6X6ZwMU16Uvyazyn5jKGUOCIT3Zpxevb3UBaXZpW5nBeZY445an4y8VSOj+z3TC5NPJHbe8p3dpecWrMc/WAWqyYnmnxWYup8f5LPawp/cxwmfs75m+y75rxOzjMkr5XzKZm81tPKj5PiL3/5S42VEp/luMg+y2Vy+ylC/dznPjdBriz7Mt+lfI9yvCf2zk/eT/JreUzrBGGAoaDoE5gimkTV5HaQyEA4CY0kQ7oXaaYDY5IeSbDkpH+j6TCS5bLS5aEp0splCusygMyMu54SWY2my0pmwqUQMi3sG0mUNK+TgWcToHRPeuQEfTMDKt35sk2RwWkCj9btToFsgq5oTf6kU0czuE6xaDqDNLJvksRIwBKTu8RyClUTFGZbkrRrLYJLW/sU0UYG43kPvWldUm5yjoMER02RXIKzBKitSyIkQdp0Mkn3nHbt8xPgZdsTfEcCnzxP5H2kcDfL3DVSpNp0HOopEZf9kcRok9jK8ZUOGunamSC8PwVw2ccp8s3suyRLm+2LJLRyMiDPm6AhwUf3YyuffxJaSQIl+Emwk+O0KYSdHE1BYV67+5LkKWJMoJOTFkM1OzEFko12yxO2arqR5jNrPdby3UtSNJ1msxREOkANRL4H+Z4O9DjO8ZUizzy+kSUoEjg2yeJ2M0uHWrap6VyThGHrki3pMpXb851Pkjbb2E4C1hz7jXSmzSzR6E+hMwBAd0laJcbJ5KWc4G+V+Cbj4IznMgbuSeLCxAgZj3cfn+bfzZLJPXVW7Em6t6eTfxNTJqZLXJFxeJJ3d955Z7+eJ4m4PEeWuEtM2iw3F3lfScQ1iZV2y0n3JF0CEzO0xohJTjTLTreOzwYjrsxnldiriTWaGLsphM14ckqZlHMFk2sg+ztxdWK0SNKtKViMdANJsWjrcdD6OTWJwdynNU7N+8lkxoy/E3Mm7muVJeWazyKFnonZEuumyDIJqExSHEpNDNdX/JZjPHF+usBkm1sl6ZuixMR27fZPX1LgmAmSzfb0d1WKLFeYcwQ5ppqYLrFPVm7I+0kSdUrL38TmdfOdTXK+9VjI9uZcVeT8VLsOvVliNInKZj/kcTn3kH0fYjgAYDTKefpmSeh2Pxlz9zfOS7Fh4sbuk3my4kCTW+gtDs24PpN5UmyW8/U5L9+9iUqKSBMrJw7JpLCck2/NgRxyyCG1uDKrcrWbDJT757HJhWVCYsbj+T3j5eS3uud/+tKs7Nc6lkx83EwCbO3e2fzeWvSZyVoZ6yYf1hSQ9kf2Vd5jcrJZbSLj9OTDkjdslX3SrLTRxPKJtbO9Kc7N2D853qxi0deEtd4k/s25htafdHZNjjDvK59L9m1intYmJIMtOcbkGiOTTZuYMBLf5PXzXiP366vJSmTfNk19WvNIgyHxSJM3T5FztjGNVFI4GYm511xzza775zNO3NN0rR1ox9K+JL7OT5N3TqyU+oA0pkmBZ+vkvSYXmX3cmsPMPkrhduL3puAYYKgo+gSmiHRXiJ6W2+6vFCKlWCu6F2lmFlcCkyRYmuLEdNdouoxmcN1OBtopWttvv/16fN0m8IkUjraTpEl+mqCruwxKuxfetRaBtevo0CSPWpeFy2AxM42yZEPrktSNBA1N4eFAi9q6awbVSYy1FiA2knjJ55BCw9bCy3Za33t/goiepKA2SaoEz02hZncJWpLYyb5oOpq0yjHSfXsn5bNo1Zr8bdUcd+k01NOyiE0g1iw53hqEtcoJhgT4CWabz6Y1sM42NAmgHNfNbLh0mZxcKabNZ5hkZRKmrVL0O5RdPqN1CfQm8daTZsm+nPBIZ9rWmXc5LtKFKfuo3THdm3y/+3rtnvZduwLR5nuV7eu+1MqU0Hw3cvKhtYi9kWC2KfbN38h234kUKnTXnGRq1x0UAKAvGW81xUzdl3hvlkLrXhjWXU7CpwCzpxiwiU8HGi+lYKq7JCWasV7ilP5IHJN4LomndlrHqQPpOLLWWmu1LWpLgrH7+Gww4sokM9uNj7PMYNNFZUpNbhrouYLBMJD9nY4l2YbEnU0xbasUEzbJ0laJERMLJVHUbuwdTSFrjvkkoVql2DOvmSRqPpd0eGkKGPu7ZOOkas7/9BVDJXmWbclk4QMOOKArcdZIh6Ik+nrr7tufZeYHot25hsRMzb7uz5Kcgy3HQs6l5Bju6W9gJpCmODbHXj7r7rLCQ3c5j7H44osP6G8YAMDUJPmErBrW00+7eKmdjLEzJu8p19jEoRnf99REJasSXnjhhXUyYLobptFGd825+iyZ3a7ZR8bfTY6pNY+UsWTG1smNZAyYSWUpHk1uIkVtGUemgC6TwwZS+Jm4KFonbeb35NKS02qdJNd08kws2uyDZmn3FEa2y1M0q5Z1L8ZNrizFmpl4mK6nKRzM+2i30mByHekKmf2RgsvkAFtXpUzMm1xSxtnd81/9lTxyCklbf7IfMtkyKzukeDiTuLKNA81NDUReM5MHU4SYSYnt5PhIjjQTJPuz/HhfTX8iMWdvxdPtuopmG5q8eqvmuM2k3XwH20mhb1MHMNAJvb1pmjW1StyfZdy75/+bOCrfm3wvW8+dpFlKcpRN8xeAoTK0Z/cA/j9NYqWvDg/9kSKknLxOx8F0KGgSCE3r/tbCswz2IoFPkkDtZAn1vjSFownKmgROO1liIQPqdt1Y2rXqb+1U0a4orLckTIKCBDp33XVXeeihh+psuHQ0SXDTJNb6MxDvTZ63t+XYE4D1t6CwNbmW2XeTqvksMphuDcpa5ZhI55QELFPis4ieOlwmmGkSXuk62vy7XUDYFDYmsO8puG1mGjb7oVUKPDN7sglwkpTuqUh5oPIdSvFiutPku9Z0mGmKQLN/eipWHQytxbbNrL+e7LbbbrVAINuWGYvZtgRYSaIm0ZtZrpNSvDmpCeLWLj6t8hnnhFKSmvnutnbtGWrZn/l+ROvSMN01ieV236OmY053zQmLySnuBgBGt4w7k+DK5LKcIG/Gbll+PCfbk9zqS8b3KSJLh4iMtRMv5TLxUhIgkxIv9TX+GWhHlGxjkoIZv2f7En/l99axfrsl7id1+9qNzyYnruxpnNvEPHm9xOSDMQltsM8VDIaB7O9mPN1bwjj7qXsxYdONNQm0pkNtd63HSI6ddCBtJGbOsvJJMDbHVZK8rZMeh0pT9Np0kexJtjddj773ve/Vgt38JPZKAjdJ4cRwk7payKTEcHlMa2K6VXNupHs32Smh+fxynPQ06TZxezrH5u9IjrnuheqD/TcMAGBqkO7wgxUrpJgyXexTSJnxWxOHJgfw6KOPdt0vMVb3MV1WcGuKxtJApKcmOk3+J4Vx3SdMNZrJPHntxAuJjdK8I40gMmZMY4zWnGmKHZNDyYoPed7EUP3dJ4n/MqbPBLSMQTMebTp5dl+uPbmIFLQmV5xtT0zZFH22dgRtl0vpnsfI/kthY8a4yflk8mhPOcNG7pvYKD8Z+6bgMfmtyy67rO7XTLpMYWwK+wYag6SotNln+XwTZ6foL4Wejz/+eM0FtStwHGxNDJnjp6fGOc2xmu3McdrXCn75zLK/c//mfEq7z6hdgebdd989QVOXVpmQ2K4Atol9epr4GNmf+byT68px19/i7N4kDuwpZmpiwXynGuk4moY/ef0cN9kH+YxzLKewuKfcOsBgUvQJTBEZ5DeJipz476toK55++umaZErXh1YZuCdJkQApg6kkApKgyjJ/6bLSelK7KTJtbas+OQVnfQUMzeu06+jYzOLryUCK0DLgTceO7p0bsn2ZDZcAoqdgbyCa/Te5S4NHAqQmmGuCjv5IoJUCz6aDSvNZ9HUMNZ9Vu8+ir/fTV9fSdnpKZLW+Vm+dD1tvSxDUl3bPlYAiQXQT9PdUYDo5SdQUfWbGWvZrjvfMfkxwnI4hg72sQ6smqZYOOD0VxLYWcuekRJbTSPFnihtTjJ2fk046qSY4swxnf4oFWvV3KcDuevv709w2uV15B6r1e9Hb37Xmtvwtbk4ONSZleUUAgP7ISfKM6RLzpWgz/86y3SkgzGoDfcVliRnS+T7Ff62JsoxfkjRI0VTrcnL91df4ZyAFmkm4pRNMJiq1Svy75ZZb1u4ug719gx1X9jTObb1+IJ1KJ9dAzhUMhoHs7ybp2lssmoRXT3Ffjun+LL3drlNjkqNJXGW/ZJt7m8g6WJLcbr57rctN9iTdkLKd55xzTl3dI9+LfH/zk0l8SUJnmcv+nEtqNSkddEZi/DZY50IG828YAAATyvg3XRx//OMfTzBeTHFdCtJSWJeJjT3JY9KwJF0hM/b/0pe+VC6++OKJxnDNuDDj+9ZC0naSu8m4MGPEZiWNdK9v1yQn16VoMRMwUwTZ36LP5AwSe/3yl7+s25188A033NC26DO5t3QGzYTOxGwp+sz4v6+iz0zMal1WezDkc0mha34+9alP1fed5dCTC0l+qV3Hx/7K+8z+TIOX5M1OPPHEGqumIDhNS4ZSE0Om0HJSY8h2ubHkaVPcmPi6pxxwu88oucMUwPb0vJMT+yQ+y317W2VxIJLD7kkTy7fmZnNuKTnS5CJTtJ38d47r/Bx99NH1e59zLjm/AjBUFH0CU0RayGeWUwKMtO1ff/31+3xMWr1nUJTZOjnR3xR65aT9JptsUi644IJ6fYKJpnPHRz7ykQkCoGYQNrkDvubEfk9Le3cfHE9ukWlvMlsuS3blMsFflmhLYJREShKECbD233//QSn6TKFqBrCDMWBOkPOBD3ygdu248cYb+/WYBCVZkjHBcor00tmk2bd9LR09JT6LVklmJpHYXet29jYzsDX5l0BsUrY7CfEf/vCHXYV5p512Wt3ngzV7MEvjJWBPYJfCz5wcaL57zTLgQ6VZGqSnpRy6y8zSHDP5uf/++2siO397crIhAebee+9dZ1j2NYNxMPS2pGVzfLRL8PaUcBuMJTJbj6/e/q6lO1ZzfE5Kd1QAgEmRcUeKO88666yamMp4tr9Lu8dnP/vZepI9sWNip3T9yLJ4SVIkXkxB5aQUfQ6WFHxmGetIt/fEx9m+FONlMlnin0kp+pzScWVP49LWGKivLo+DaSDnCqa0JnnU29i7XSFhM3k034cscT4pDj/88JoMTkyeYyurIeT46msy3eRIZ6NGf2O4fA/yk32U+C0/6Xya4uQk0nJcpRvoUOvt/MekxG+DVfg8Us+FAADw/2SS0qWXXlqLCbfZZpuy+uqr1zgvOc7EKsmL9Vb0mbgshYeJxRK/JBbL+DfLrbeLEb7+9a/XmK6/mlXkepuUtfTSS9fLrFo3ECnkTNHnHXfcUYv80kEz29mu2C3FnSn6TLFn4resOJGizsFuYhKJe3JeIQWYKczrSfZ5Vs3LdvW0muOk2nPPPetz5vPPMuCJu7O/etIurhhITqg5PjLhNcfjYEnnyuyXnEvJ9gxGs6DJjX2a29vFPpOSX+tPLq97njfH1re//e3yrW99qzb0SRybFRlzTioNerKqRY6r/qw6CjApBt7KDGASZNCTRFv84Ac/6LN7QIr9miRXApDuyYimwCwt9lNImsvW6xsJppqBWk9BSh6bVv5Z8qwnTRCUk/W9LePVdGhMMnGopNNiEnNJGuX3z3zmM3WwnX3cFGU1yzZPrmb/9dSZMwmjFGKmgC6dPPqSAC5ShNefJGsSdEm45Hhojp/ms0iXn54SZlliIEHlUH8WrXraR02SNAFQb0vo5fPLyYDoaaZcZPnH7L/uiaj8O8m7fB/ymSRpm9+/+MUvDtost2hmd2bWWj7zbEuCnByDQyXFmgn8W4+h3uT4z2OapGlOFuQ7ni6f+b7nc8i+yWzVKaF1ec5W+bvUbpnH5jjoacmLdFyaXJnZ2yx12Ftn2ea25m8BAMCUXOI9xo0bV+PHnCTPifxMauprIlROrkeSOimuzHMledUU/WUFiuHUJJuydF6We0tCMIVxTYHklNi+wYgrexrnNrFYEpvp1D8l9fdcwXCtfpL4sKfzIe3iwOZxva2WkfMUSSwlPuu+PHeKJs8999xa8JmEcWKAe++9txx33HFlKKUjUSSOb9dFqFXituyXJnZOrJJEcb67+d6n+DiyzGRfSb/BkOUKe+p2k47DwxG/tZ4LyeeXcx7t5BxJs9zglDoXAgDA/4udMrkv0tExBWAp3Mzyzk33+b7ivDTdyNg5k/D23Xffrtix+0S8/sQIzaoZrTFd0xG++2oTrRIjtt63v5oixqy0kAlgiXlS9NpuolnT/TPj2mayWG9dPidHxurJ6aYI75lnnunz/k3OpF2Dl0mV+DpNkdK1MuP4dHDtnttsYoqe4oqBxBTN8ZG44L///W/b++TzSQ4t9+kpjukuecdsZ+LP73//+2UoNbFPE3+1k8+1KdJsYp+sEtFo974Se/YWU+Z701PeOcdra2F09mHqDm666ab678TcaTKTIs/UQWQiar5H2V85rwUwVBR9AlNMOu5lcJsZTaecckqv981spwyWMkhKl5bumk4tGaSfffbZdYZaZkclgGqVTilNoV0SWe0kEEuCJMvJ9zZIbgbK6aTYTrozpiAv3v/+95eh0hSvZtZfu86RSRQlmIvuCZ8medffJbuaQr4MTtsNkH/zm9/U950CznRW7Ev2SzrZRJY16KmlfyRhleMgsgxfPt8m8E0yNMFKlsloJzMKE7jm/TavN9SapFZ3zXIGeQ+9LQ+ewf8aa6xRf89szp72yfbbb18222yzrqU4Gll2IoWROd4///nP12LPzBzLdbmtv/o6RjbffPMaOKVjZlM0me0Zqq45CcKyNGdkub++Ps8cF0meZ1bmddddN9HtWUqjSdC1Jsryt2aolrRLorJd4W0K21M4nRMJrR1HmxMK7ZLoOTHUU5HmQL/fSaQ2x2i773e6fKYz71D/TQMAaGfllVeuMU9ivYz7Eztk/NLXcs2tk/0yfuwuJ9wTL7SLlwZbT53Sm21M542+YouekjTDGVc2eoqxE6NHxu6DHSf01X2+v+cKprQcu9kXSbo2haitEr+2i18SkyexltigpxUz0rkmk9yyEkNrV8mc4/jqV79af//4xz9en+uggw6q/z7jjDPK7bffXoZCYojmuXffffc+75/OrNn2TGJsF8u85z3v6fq99VgcqpUIsg3tOuIk+dck8ptYqjV+S/zUJMlbZcJkTwYSwyUmSyyeY6XpfNzdOeecU/9mpLtPc34BAIChl7ijGdO1i/OSi2gdY/YVi2Z8n5g4+YMUCeaykVxTZEzYbvzZ5GMzubCZQBVZCaHJ97XraJgcQW5rvW9/pVA1BaspRG3ilu5LuzeSt0ruNjF+0xymdcw/2KtQpiFLllXvrfFPZF+mODT6mmw6UAsssED9HCMxYfdtaS0ybZcX6i2m6C7FtikwTU6qp06f+ZyTQ8sE2f5OOk1jkMSVTTFyTzFJqxRE9pZ770lzjCfn3tMS9YmDY8EFF+zqEptJrU2M1W4/XnPNNb2eY8n3son5WiXOblYR2XDDDetllnLPihy77LJLLXbuLjUFOd8SPU3aAxgMij6BKSYByqc//en6e7pKJNjoPhMtiacUrDWFlXvssUd5xzve0fb5mk4dTYeKpgNhqwzumqLRLHWdJeObwCuDt8xGymA5J86bwWpP9tlnn66ERJZVay2SSieZdLtsEltDFaC0znDK7L7WpSDyvlKEmVlETQDYfRmxpsV9ZoX1J3mYAsMMktNVM59LBrGNDLYPPPDArhle/W3ln8ckwEkBY4LOJDQTcDWyXUnCZln3vN78889fZ0Y2krz41Kc+VX/P55AEcOuAOfsky2hEul02xbpDLTO1ciw2+zWfwTHHHFO3J7MZs4RDX7JMRxJ6KabMzL/WQsEsA5D3nedNYWdmiTay1Hr2Y473FEjmc04RaWaTRm7Lffqj+RybpT66S4FijvHW2XztvnuTK59pEoVjx46t7z3vKcWrfSX28l1uuoFmXzSF2K2fUwpWuxcyth6/Pb33SZUgPn8fWoPbfMZHHXVU/T1/o1pnvKawORJcti6LmFmXuW/rCZ7J+X5/8pOfrI/J/s3ft9YTRPl+5u91utzk+5oTAAAAU1pzMv3oo4/ud9f31qXq0um9deyUQsaMgZpOeIO17HJPmjFm98luzTYmtmztvJKishNOOGGCrhntlvwe7riykeLFfDZNbJzLLCWeREoKHBPPT6l9OtBzBVNa4updd921/p5CzCaZ2MQfGee3S7wm9ttqq63q75/73Ofqvm2NmXKO48QTT6z/TuzU2pEncXEKBBMTN52C1ltvvfo96qnDzORIoW2+c1/72te6Jgy2Fkf2JInGHC+JSxLzte6HxFCJq5uC3uzHgRwLkyrHdetEy8RKidfzfU0ye8stt+y6LduV7c93J9vffGfz/cm5rWYVm0mJv7snx3OOo1nKs3X78nmmo2v+fkSOpyR6AQCYMtJpsOnWmFxkawyVsV7Ov2c580ZfsWiaVGTJ6Iwzm2XeGxtvvHFtbJHu9LvtttsEedaM7zPRK8V2yaU0ubTYaaedakOVdDPMeLF1DJrxbnIYKZTLffrKl7aTvGjGwE1xXE9Fn62dPdMwI9s5VJ0+Ez8kjooUQCbO7Z4zylg68Vn2T7pAZv++613vGvRtSQyRgsxIjNB6PCRmaxrrpCC0WXkgMUYKNBNn9VdijOZzT44skzVbc6jJFTa53cRiA1mdI/ty/fXXr8+333771eYz3fdnclPZnznGUhCZYz2Td1MY3F/Z/01TohyXzWouzXmH5IabOCvb0OQN8zpNA6HERq3nW5IXbHKmvUnerrXINjFptiHfl3xOzfmFFOo2TWpSZN26Smj2T3LXiXHzXZ5SzYmA0en/3+MYYArIIDCD7COPPLIWPeUnRWSZiZNBbIoLI4FMgqAk5HqSThAZfCUhkPtvuummPQ6kk9w788wza/Lh2GOPra+XAtMUFSYQSxDUV+ePDH7TNTEJhwywc/I+A7wM+JokQzop5L0NVceJ5v3kZH72VQaaSQJlcJlALYFZ9kW2I91Luy/Ht9xyy9XLbO8GG2xQCyrT5a+n7U2QkQRSBudJBGY5tXRNyWeV/ZeAI4FbUxDbH0mQJLmZgrIsDZ6EVwbaGfBnQJ4EbFPsmBmRSdQ1Syo0Esjm9bPteWwG73nezEhrljnIDKumq8mUkCD75JNPrp9NtiVFczm+8p5SwNmafO5Jiv1S4JqAK7PUzj///DrjMfsjn3f2dzpVZmmApkgwRXlJ+ESKaJtlNJqixgQgCWZznxRe5/G9SUCUYsvs1+zfFP62JrQi/86xkO9ePqNmFt2kSEI5RcONvMe83wRQTQIyx2mCuP6+Tv7OpFgyy0omQdp8R3JsNMdHXrO16DOzFBMM5z0lkZbjMQHxYHQEyrGYYtPMDs3SD/mbke9r7LDDDnUft0qB5c9//vP62ea2ZrmInHCZY4456gmXZhbj5Hy/c5xmv+b7m+Rxgui8Vgri8zczgWlmIuZvQLvuTwAAQy0xWDoSZnyYxFNvSaPW8Wwel+RRHpuxcMZ2GZs33S2TUEr3kTxvxpwDXbquv7ItGTcnSZPYZ7XVVqtj/YxXE2NlzJXOI81EtYz5MyGuWWI98edQLfU+OXFl6zg3HT4S32UfJwZKt8M8NjFQMz6dEvt0Us4VTGmZCPj3v/+9xgYZ0zcxSJMIyng8y7F3lwRSPoO878985jN1nJ+JWRn3NxPL8lk0hZ2RYtAkqvK8+SxaV53IeZEk4fL4xH19dbzpLvFD66S1JN3y/crzNZNsE1M1kzH7kveTYsl0+syqF5m0mMRj4pJ8B/KdyLHZrAAxkGNhUuS7kPgn7zPxUF47ifS8z5ybyPmg1kmD+duUcxRJxOccV7oV5fuQ/ZH9ktgz8Va771F/4u9WX/7yl7u6xWb7su9yfivfvWa5ysSYvZ1LAwBg8GX8mAK3008/vY4J08U/haCtuZ0111yz5i1SFJc4r3VCUzvJxSWPlvPzibsygSsxVmKc5KJSwJglpxPvJKZMw5Tk15pJVBk7tuZAMpbN4zI5L/FAYtHkn9JII7FpCjazTRnvZpw5UOkOmtgw7znj6Dx3TxLbZ+yfbU0Opq+81eRI19TEFskNZ6yen4zxM6kqMm5PHNtMPD3ssMOGZDsS42fcn3g1sUXisuSBElslbks8lzxeYvDEhvlMk8/KRL50vkzsd8cdd/TrtRIPJEZIYWTiyeStE6MklmhyZMlHdo+x+pJjJTmlFDZnRc8U+OYnx03ikuSUsj+bHG/un1g1TaCaVTn7K3FqVo7I6qEpyG3itMTUOY+T3H72WffJwbkucXOO6XxnkvPK55vtSpOpVVZZpe3qG42cj0nsntfL+2piwRzTee+tsXA+z+RlE9Pne5h9nMl3yW828VnO/zQ5PoChoNMnMMUl8Enb95wUzwArJ/BTnJUCpwQs6X6R2/s6SZ3BXROwpHtEa/v77g444IBa9JkgJsFVZsZlQJgBfIKQpnNGXxJgZZCcwVsSg3medHFIoV06mqQQtLftGAx53SRBMlMrQV8G+hl05vp0NMmsrWY572xf62y9BF2Z9ZTBagb2SXpmv/cmM88SpKYQLYPaDJSTBMxy1BnQZnDf27Ll7SSYSvI1g/bMCktAl21pOjomgEmSLomqDLDbBUcp1E0SN4P2fJYJbiOPTVCawfdAt2typEtKkloJnJNwSoDdFFxmZmB/5TNMkJRAIc+VzzaJ1wTICeITBLZ2L03AlmMgn2k+2+4S2CdAz31y377k2EkSPMFYgqemC1KrFC82x3nTRWdS5VjK8gzNTwK4nARJYJTvd5J2SYoOZGZljqEs5ZjkdYpSk2jLdyHf/fwNyAmSZlnD1sekwDgnGHKiIcdj69KgkyNBbf7+5DuTfZqi6ZzgyXHaFOy2SnCc73G63ea7kv2RGaZJ/uXz7ylAnJTvd06upLNuks4JSLN9Od7ytziBeI7FnpYdBQAYahk/Nd0gEjf0d6nwxBKZTJV4M2PAjM9zkj6xQsaCiSOaZbZaOycOtsS0iTWTKMi4OtsR2Y7EdIllMubP5J6MwTKRrBmDNZ39U9Q20uLKRpJUTQyUWC5xWWKfPG/rygRTYp9O6rmCKSnJocQcKcJMfJOxehJxOZ+Qgr9M0msncW0SapmAmg4hScYm/k3iMnFFzkUkgdl0FkqhZPPZJY7vHktl/zQFmTnWUiA9EHffffcEMVy2JTFOYql0G83nn+9ff7+vsdlmm9UYLrFTJrqlS0qSckmU5zxMzhHlOB3osTCpn1PO7eTcVP5+5NjOMd5Mzms3GTGJvO9+97s1cZrPJ3FV4vYkV7vHngONv7tvW+LIHAuJ5fJ3Lfs/5x+S7EziPDHmUE5EBgCgvUxiyng/Y8KM2zI+zXn9jPczLswYsxmb9zfOy1g44+CMMZPnbFZjSN4sK4UlH5DO8ykMbPJrGVOfc845bVfvykSpTJrKWDfj1cQjGYdm0lWuy225z6TI+2zGoX117swEw6Z4bqi6fLZK/iOd8lMQmNdOjJU4POPvxBPJ5aXRRj6/ocwrpjlMChkj+721g2cmziXfmv2R2C4xUXKnibtTrNvEe/2RzyExWRrI5FxK4o3EDSnGTNyZ58z7TRwxUClQzXGZwubkHBOjZp9lexOLZlJccog5NnO+JasoDLTgM/K5JEbM+0ieOt+lfKcS3ydX1pzP6C7nAjLBNedbMlkvOe1sX/KFub6vVSvzmqljaJqjZNtTRJpcb87ZtEruNduReofk7ZrvYV4v8Vni/HbbCDCYpnmzmYIN0IEyEL/nnnvq8ndNq3eYkpqET4r6snzFaJAZagnkEjhmSYQEcQAAACOFcwUAAABAX7J8fLqJRs4jpEgWoFPo9Al0rAy88pNOeP1Z5g8YHD/96U/rjNIsIa7gEwAAGEmcKwAAAAAApnbK1IGOkqUGIsugZSmDyOybgbS1BwYuSxJkqcc//vGP5fjjj+9aEgMAAGC4OVcAAAAAAIwmij6BjnL55ZeXo48+uuvfb3/728sOO+wwrNsEo8Hhhx9el3JvbL311uUd73jHsG4TAABAOFcAAAAAAIwmlncHOsoyyyxTl5OeZZZZynrrrVfOOOOMMsMMMwz3ZsFUb6WVViozzTRTmXvuucuuu+5avvGNbwz3JgEAAFTOFQAAAAAAo8k0b7755pvDvREAAAAAAAAAAAAA9E6nTwAAAAAAAAAAAIAOoOgTAAAAAAAAAAAAoAMo+gQAAAAAAAAAAADoAIo+Aehy1FFHlXe84x3lH//4R9d1BxxwQFlmmWX6/XPWWWeVTvPss8+WJ554YoLrTjjhhPp+tttuuzJavfHGG/X9Zz/897//7fW+r776ajnjjDPKlltuWVZdddWy0korlU033bScfPLJ5eWXX+7xcTfccEP57Gc/W9773veWFVdcsayxxhplxx13LD/96U/Lm2++OdH9v/KVr5Q111yzPP7444PyHgEAgKknBk0skeuOOeaYrusefvjhrvu2vk4n23PPPev7Sdzamz/96U/l85//fFlnnXVqvPXud7+77LHHHuWPf/zjRPfNvsl9jj766CHccgAAgPbx4EDiwNafxHyT6rHHHivjx48flPfTLh6dXMmFffvb3y7rr79+V0y36667liuuuKLt/W+//fa6DRdccMGgbQMAI9eY4d4AAEaG3/72t+X0008vu+yyS1l88cUnun222WYrb3/72/t8ngUWWKB0kiQIU5h47LHHlvnmm2+4N2dESbLv97//fZ/3e/LJJ2uQef/995fpppuuLLnkkuXFF18sDzzwQDnuuOPKVVddVX74wx+W2WeffYLHHXbYYeXMM8+sv88666xl6aWXLv/+97/LbbfdVn+uvPLKcvzxx5fpp5++6zGf+9znyq9+9avy5S9/ufzgBz8YgncNAABMCaM1Bp1cmSD361//us/7nXPOOeWQQw6pk/n+53/+p8ZbSaYmPrvmmmvKd77znbL55pt33T+fwc4771xOO+20WiSayXwAAABTKh5cZZVV2jYcufvuu+vviQ8TJ3Y344wzDvj187ynnHJKbWby85//vO3zDrdM4sv+SeOa5Mne+ta3lhdeeKHceOON9WfcuHG1cHbaaf//fd5WX331stFGG5VDDz20Foi2i7UBmHoo+gSgdnE86KCDyhxzzFF23333tvdZfvnly9lnn12mNgl82hk7dmzZeOONy8wzz1xGm9dff71897vfrcFuX9KNc999960Fn0kinnjiiTXwbGYU7rPPPuWee+6pBaQHHnhg1+MSRKfgM0WiX/ziF8tOO+3UFZimqDMdPZOITNHn/vvv3/W4eeedt3zyk5+sRbqXXXZZ7SYKAAB0lqGKQQ8//PDy0ksv1SLHqVEmyaWQsy8333xzOfjgg+vviacySW/MmDF13+T6Sy65pMZnSQK+5S1v6XrcZz7zmXLxxRfX237yk59MMAEPAABgKOPB8847b6L7povnhz70ofr71772tboS3GB10ExDmJEqRal77713LfjMe07Obv755++K97KCw+WXX147pSbea5UYMJP9vvWtb2meAjCVs7w7AOWiiy6qXRlTeJcgi1LmnnvustRSS5WFFlqojCYPPvhg+fjHP96vgs+mQDPFnZkFma6pTcFnM6OwKdhMN5rXXnut67Ym0Nx+++3r67XORNxwww1rJ8+mO02C2+5LZKRraILc7rcBAACjNwZN/JY4LvHc1CiT45577rk+Jydm+b/4xCc+UT71qU/Vgs/I45L4W3TRRcsrr7xSJ+O1SlyXzySfTT4jAACAwSYn2bes7vDPf/6zzDLLLHVFvabgM9Zaa62uYtnzzz9/oscm3ttss83KDTfcUK6//voput0ATFmKPgFGuRTiZQmDdFzccssth3tzGEY//vGPa+fMLK2ebi9f+MIX+nxMur9EZhLON998E93+4Q9/uOy1117l85//fFeBZmYm3nffffX3TTbZpO3zNjM3s0z8X/7yl4kSkR/5yEfKo48+WrvQAAAAnUMMOmmSzEvSbr311qvdXHpy55131hgqE+XSubO7FIAecMABdcWFdssnbrXVVvU+3/ve9yaYuAcAADC5xIP9M+ecc5b//d//Ldtuu23blSyWWWaZevmvf/2r7ePzuMjqfABMvRR9Aoxy48aNq0vEZWbYAgssMKjPnY6MCTyOOeaYtrefcMIJ9fbcr9W6665br//rX/9aCxDTmSTLFySxtdFGG9Ulv1944YUelxv/2c9+VnbZZZey9tprlxVXXLF88IMfrJ0j08WykSRXExRF7p9/X3rppRNs23bbbdf2da688sraNSXL4eU13vve99bixiyr0E6eKz/pppIZennPq622WnnnO99ZA7d0yWyXUHv55ZfL97///fKxj32svOtd76r7IO8nHTR/97vf9fpaeQ8Dcdddd9XLbFuWTu8tkdgsA3/LLbfU3zfYYIO290mB5p577lnGjh1bZp111nrdjDPOWBOIWb7jbW97W5/bldfpLvus6QQKAAB0juGMQdtJ95TEJuuvv36NgRKnZUWCdJ9pF4vEHXfcUfbdd9/yvve9r6ywwgp1lYOtt966xm7jx4+f6P5NfNkagw5EtjFL188111zlm9/8Zq/3vemmm+rle97znhqPtZPC0d12261ud3fpIJPPJp9RYlcAAICRHg/+/e9/LwceeGCN65KzW3XVVWuMltxb8mzd48am8UiT30qsduutt06wBH1WsEtHzcR9iRWTo0ujk2984xv19fprUuLB5BwTA37pS19qe/vdd99dLxdffPG2t6+00kplySWXrJMCE78CMHX6f2v7ADBqXX755fVynXXWKSNNkmwJyGaYYYayxBJLlP/85z/lb3/7WznppJNqIuvcc8+dYFnwFILuvffetftJs7Tf29/+9hp8pZgzS5GnSDBJuTxfupr8/ve/r/fN/ZIQm2eeeXrdphRm7rfffl3Jr3S3XHbZZcvDDz9cg9X8ZLnyZnny7o499ti6dHqWZEgw9vjjj5d77723/iTwak1OpjNmnusPf/hDnfWY+2c5viT8UpT5y1/+shx88MG1E8tgSGC7xx571KUf+iNFtClizbYleHz66adr58/s03TozPamOHPllVee4HF5Dylc7c0VV1xRL6effvr6WXWXADsJzxQGp2toPgMAAGDkG0kxaOK3rHCQJOBMM81U45qXXnqpTrDLT2KuxJ/NBLbmMYkJkwRMx5Uk7hKLNsm0LJmerpw9FVwOVCY2Zln3xFiHHHJImXfeeXu9//33318vmwl2iZ0TCzdLA66xxho1hszvPUlS8//+7//q+994440H5X0AAAAMRTyYGOyrX/1qzaklrku+LzFa4rP8XHLJJeW0004rCy64YL1/bk981RROJmeYZiVZLSESH6YZTVMEuvDCC9fHPPXUUzUvlp9f/OIXdfW85ZdfvkxJiVfzfk499dT672aZ957iuuRUE9elAQ0AUx9FnwCjWLqWNEFLZr2NNGeeeWbtcJkEV4KtJLtS6Pmtb32rFkJec801tUNJI7PeUvCZxNvRRx9dO5vE888/Xzt7XnXVVbWo8eqrr66BUH6amXUp0mzu35vDDjusFnwmQXbooYeWDTfcsGtfJrH3ne98pxaqZnn0FGx2l4LPT3/603U7EkTmcSkETUeYBLsJJJdbbrl63wRueZ8pesy+SBFrpNAy7zUBZS4322yz+lzdg+Z2Sz70Jh1WB6JZNmKOOeaoHT8/97nP1aXbG0kunnfeeXU/ZP9PM800/XreFMI2XUqzTU2g3SrFvplVee2115Ybb7xR0ScAAHSAkRSDZvJYVlDIxL4sg574MAnC+NOf/lQLO7OSQ7qAHnnkkfX6N954o8ajKfhMsWhWjMgkuLjnnnvqahAPPPBAjVsT2zWy8sGkFk/+8Ic/rCtgpKNMf56jidMSR2VSZFapaJW4ODFrVl/oqdNM89nks8pn1rxHAACAkRQPpqgz+b3EaOnsmc6YzQS8NFvJCg1//vOfy2c/+9ly4YUXljFjxpSvf/3rtZFL0+0zzVhaO2amQDTbmRxbcnfpmtnIZL881xNPPFFjqqxM2JfJiQcbmZSYWPShhx6qBatpipLOph/5yEd6fEz2ceLJZjUIAKY+lncHGMWSyEpBZAroll566V7vmyRTs/xATz8JkgZTCvlSRNkU/aVoMMFRZtRF6/LmKRRMwBYphGwt4Mzjk6RLceKjjz46yQHOY489Vgs7Ix02m4LPSBIs27bPPvvUf5944oltl6BPh8sURzZFmnlcgs4555yz/rvpPNokIeP9739/V8Fn5LEposzyDlmqorXQMpZaaqn6M/fcc5eh1Ly/zCzMEu5ZiiPJwwS96QqT5e5zbOW6BMn9keMxydZnnnmmFtYmCduT5jholpgHAABGtpEUg2aiWTrB7LDDDjUmawo+I91akrxLvJYOLn/5y1/q9VndIMm9SEKxtRgy3WFSKJqJiUnAtUps1sRpA5GuLElA5vEpPh1InJbOL5mwmAmHv/nNb8pdd91Vzj777BpnpzD0k5/8ZI272slnk/eWzyrFrAAAAFMyHuyvxG0p+Ey+LHm71hUX0mDl9NNPr7Fe4pp0vOyP5BCzjcl7tRZ8Rv693Xbb1d9TTNofkxoPdl/RITnDFHxGLrOdyY32lUPLxMQnn3xykl8bgJFLp0+AUaxJkKVYr7VTZDsJlJoAoSd9PcdAfeADH2jbHTKBUYKpBIeN66+/vnYCTXFku2UhUkCYgs0UfmZJ9kmRRFmCxzy+p1l5SRgmyMy2JUnZfRnzdt00m6XbUyz53HPPdV3fLGt+8cUXl7e+9a21yLQp5MyS9z/4wQ/KcMoSF81llrc455xz6v6N+eefvwbE6YST5RBPOeWUss0223QVt7aTBGoSjwm+87mnk2rr7Mrusk8iyxQCAAAj30iJQVPsmfgusnJCOykqTYFk4pOsMJCkZDq9JKb5z3/+Uz7/+c/XDqFZJi8JwaYQND+D1QUnXWoSb2ViY38n9TVxWuKrdLxpXYEiS7tnUl5iy3//+9/19xSqdpekaJY+fOSRR2q81T3RCQAAMJTxYH+k8LHpHLrTTju1vc+iiy5aJ+ZddtlldRXAj370o30+b1awy4oQPa1eN/PMM08Qe00JaQCTrp7JUf72t7+tqxLmPf3xj38sl156advcW/JriVWTp8u+n3feeafY9gIwZSj6BBjFkgSKdstnd5dOJ+kKMiWlcLCdpgNLkmCNf/zjH/Wyp+XpYnJm0TVdVprZgU1Sr11xaYoRU5T697//faKizwSz/X1PW221VS34TFeZb37zm3Xphrz2WmutVd73vveV1VdfvS5FMVyawLYJqJuCz1ZZ0jBdPhN8Z2nE1u6orfL55b4PPvhg3bd5rz3dt9Ect81xDAAAjGwjJQZN3JHCz0islUl1vS2V3sSCmbCXYs8sB5iJh/lJcm3NNdcsa6+9dp24mGLJwZBlBDMxcKONNuozNmoXp6XbaCYldpfC1axSkcl5SXq2K/qMxHcp+nzqqacm410AAAAMPB7sj0xQS3FmrLjiij3eL7elQDI5u/6afvrp62S/FFUmfsxr5TJLxjddM1NMOaW0NrNJAWiWbk8RaIo5f/SjH9WV97pLri2TKdNsRlwHMHVS9AkwiiVg6V68N5L0lHhrpLNno1niPEWXQ2X8+PH9Ckib5SPaLe+eQLG/7ynPc8EFF5QzzjijBqQpjMzyF/lJl8955pmnLkM4WJ1kBqq1yDPFqD0Vsy622GK1cLWnjpyZlZglB/MZZv8cccQRPXZSbdV81q3dUQEAgJFrpMSgratG3H333QO6f+KvdEw588wz63J6eU/jxo2rP+kEk5UnUkg6OcWfWbYvRZmJ+b7xjW8M6LFNvJouqT1NEnzb297W56oJzWck3gIAAEZiPNjk7PrK2/WWs+vpeQ855JDyi1/8oquoNJK/WmGFFWo+7P/+7//KcMpKEFtuuWX53ve+V1cd7En2dWI6cR3A1EnRJ8Ao1iyfMFyD/XR/HCxNkNjfoG1SzDrrrBMl/Npp9mdz/8mRYHTvvfeuPyn6zFIV+clShJmZlw4z6eCywQYblCltySWX7Pq96ZLTTrrh9FTEe/nll9clC/P4vI8TTzyxdjAdyAmCwVgGBAAAmPpj0EbrZMHf//73A47d0tkzP1nOL5PYbr/99pr0y1Lw1113Xfn0pz9dfvrTn/a4HGBffv3rX9fkYmK+rPTQk8RP+Vl44YXLNddc07XCxe9+97teY7SmGLS3iZbNZyTeAgAARmI82BrHJW+XSXO95ZL6G/d99rOfrXm4NDXJ6gnvfOc768S5TP5L4eeFF1445EWfKTxNF8/kzXqaULjQQgvVyyeeeKLH5xHXAUzd2q9NC8CoMO+889bLZ555Zkievyn26ynZ9Pjjjw/aay2xxBL18oEHHujxPscff3zZbbfdyk9+8pPJKnLM8g09LduQQCxLPEQCwMmRBF8SiM2SF3m+dJU56qijaiKxWa7iZz/7WRkOWar+LW95S/39jjvuaHufLFf/0EMP1d/T8bPVL3/5y7L//vvX42ORRRYp5513Xr8LPluP254CeQAAYHTFoP216KKLdsWrWZWgJ1le/f777++aXJjY5a9//WtX/JMk4Hvf+966RPqll15ajj766K5OnXncpEqctcoqq/T403Sqae7XupRhEpLx5z//uRalttMsV5/90JPmM2o+MwAAgJEUDybn1Exo620Fh+a2/uTsspx7Cj7j1FNPLQcccEDZaKONytJLL921kt9jjz1WhlpWx/voRz9aO3n25F//+ldXrq6dxIMvvfRS/V1cBzB1UvQJMIq99a1v7Zrp1Qz8B9P//M//TJBQapWk2c033zxor/X+97+/TDvttOWRRx5p+7wJbi6++OJyww03TLCEetN5pfW63l4jAWRmzaVDZTvnnHNO+e9//1s7j66xxhqT9Z5SoDp27Ni2RaqZkbjyyit3FVYOl4985CP1MjMbW5fSaGR5+hxbWVrjPe95T9f1SZKmw2eKZ7Ps4Pnnnz9B59D++Pe//10vB/o4AABg6oxB+ytFk0289qMf/ajtfbL0+fbbb18222yz8qtf/apelxUXNt544/KpT32q7eTG1phncuK0LNOXSXE9/Sy//PL1fltssUX9dyY4NrIKRLq4ZGWNxFndvfLKKzVOiw033LDt6yd+fvbZZ+vv4i0AAGAkxoNZweHd7353n3FdsypCcnyN5BMbrfnBdNdstE6ua2S709BkqHNza6+9dr1MLrJdZ9Rcd8kll9TfP/jBD7Z9jtbiVHEdwNRJ0SfAKLbccsvVoCiFd5m9NthWXXXVepllDsaNGzdBh88sV55OloMlHUqaAsQvfvGL5Q9/+MMESzfkuhQJZtm7JOm6L+vXzIjrTbqopNNmZFn1JvEX2YfnnntuOeGEE7qWf0ih4+TILL7Icn1JLrZKB9Cmw+c666wzwW3pPJOfpkPoUEphamYIZt/uvvvu5dFHH+26LQW2TaebJEWb5SMSCOfzyHKF6dJ5+umnl/nmm2/Ar51lGFuPMwAAYHTHoAOx11571W6fl112WTn00EO7unk2XTITwyRmSQzZxJpJEmZyYwoiM4mtKYyMTII7/PDDu2LHLP/XSGzWxGlDbY455iif+cxn6u/f/e536+THZqWKbGM61WSy5Pzzz1+22Wabts+RSXqJ2zKZMZ8ZAADASIwH99xzz9qsJfmo5O1am5NkBYZPfvKTdeLbsssuW/73f/93otxg9/xga3HkSSedVGPCRlaJyPM1q/31t3B1UuLBbbfdtubekt9M18/EcI2srpftSIOarIKY+/aWQ0uHU50+AaZO/6/fNQCjUpYiyCy4zHL73e9+V9Zaa61Bff7NN9+8dr78+9//XhNqWWohgVQCmyTXUiTY29IEA/WNb3yjFh3edtttNchJIJPXy+unU8lcc81VO6BkCb5GOqTcfvvt5Vvf+lbtkJJOLumq0pMvf/nLtcDx6quvLvvss09NlC244IJ1tmCzJMUOO+xQA67JtdNOO5WbbrqpFnzm+fJa+cnrNAHeuuuuW7baaqsJHtcUtSbYzX4fStmnWeIi25f9uN5665Wlllqq7u9//OMf9T6bbrpp+cQnPtH1mF//+tddQXGC8X333bfX10ig3nSyaSTQzlKL7YpeAQCA0RmDDkQmjx188MHlwAMPLGeddVbtiplYJsWfiWXS7SWJsR/84AdlhhlmqI/J5XHHHVcnv6XjSuLCxLnpEpOYMN01Uyh52GGHdT0mfvzjH9fJfDE5y77316c//emauMyKDF/96lfLMcccU+PWrMKRbUwcd+yxx5Y555yz7ePz2UQ+n9b3AQAAMJLiwXe9613lkEMOKV/72tdq/PPzn/+8xnWJe5IbjKw2l3isNbZJTJQJfsm1pagyxZ7J+WWiX5Zzv+KKK8oZZ5xRLr300rLIIovUCX9NF9B04bzxxhtr7Jgi06wk0ZtJiQczme+UU06pkxGT88yKDinwzOqFybGmcDadU0877bQJcp7t4rrWDqcATF10+gQY5ZpukunGOdiyBHmWjUvBXwowU5D55JNPlg9/+MN1yfI111xzUF8vgdWZZ55ZE3dJ4GX2XGbeJVG344471mCv+3IM3/nOd2qAluLDBIBNMWJPEhRmdl+SZu9973vrkn733ntvTextsskmdQmJFCk2y8ZPjhTG5rW+8pWv1MA1hZSZmZjZg3ntI488spx88sl124dT9mkSngk+k/DMPszswyyXeNRRR9Wf1qUyUhzaSAFtZhv29vP8889P9JoJcrM/0j2ne0EoAAAwOmPQgcry6FlBIR0vs/rAAw88UOPWJAkTxyaGbJYgbCSOveiii+r7yGMS/6TTygILLFDjzsRGzRKDwyXxV+LiTNDLJLl07Uz30iY2Tjze24oJzUoTzWcFAAAwUuPBdPBMXJeV+hLzJK5L85RVVlmlNovJ6gdZLbC7TOhL7i0FlE1cF8lpJZ56xzveUScDplAzucAso54YK8WgCy20UL1vs3T8UFhppZXKL37xi7LrrrvWwtNsX4pUV1hhhfKFL3yhFqS2e1+R95TC1BDXAUy9pnkz/1MBMGol+ZNZa+lkkmXtWpegg5EqMy5/9atf1eUTW5fkAAAARjYx6MiWiZOZ0JiJm+luk8mIAAAAg0E8OGVcf/31tVFLJi2mWQ0AUyedPgFGuWaZ9cjSBzDSpYNrllFMEvIjH/nIcG8OAAAwAGLQkS2rdcRnPvMZBZ8AAMCgEg9O2bhuzz33HO5NAWAIKfoEoGy22WZlySWXrEsBpKAORrIf/vCH5bXXXqvBqiQkAAB0HjHoyJTPIku/57MxwQ4AABgK4sGh9de//rVcd9115T3veU9ZY401hntzABhCij4BKGPGjCmHHXZYeemll8pJJ5003JsDPXrsscfKWWedVT74wQ/WEwMAAEDnEYOOTPksXnzxxfrZ5DMCAAAYbOLBoXXkkUeWmWaaqRx88MHDvSkADDFFnwBU73znO8snP/nJ2vL/wQcfHO7NgbaOOeaYMvPMM5dvf/vbw70pAADAZBCDjiz5DPJZfOpTn6qfDQAAwFARDw6NW265pVx77bXly1/+cllkkUWGe3MAGGLTvPnmm28O9YsAAAAAAAAAAAAAMHl0+gQAAAAAAAAAAADoAIo+AQAAAAAAAAAAADqAok8AAAAAAAAAAACADqDoEwAAAAAAAAAAAKADKPoEAAAAAAAAAAAA6ACKPgEAAAAAAAAAAAA6gKJPAAAAAAAAAAAAgA4wZrg3AJgCXn21lJtumvC697ynlBlmGK4tAgAAAABGKucTAQAAAEasad588803h3sjgCH2xBOlzD//hNc9/ngp8803XFsEAAAAAIxUzicCAAAAjFg6fcJoMOecpVx77cTXAQAAAAB053wiAAAAwIil0ycAAAAAAAAAAABAB5h2uDcAAAAAAAAAAAAAgL4p+gQAAAAAAAAAAADoAIo+AQAAAAAAAAAAADqAok8AAAAAAAAAAACADjBmuDcAmALeeKOUp56a8Lp55illWnXfAAAAAEA3zicCAAAAjFiKPmE0yAna+eef8LrHHy9lvvmGa4sAAAAAgJHK+UQAAACAEcu0XAAAAAAAAAAAAIAOoOgTAAAAAAAAAAAAoAMo+gQAAAAAAAAAAADoAIo+AQAAAAAAAAAAADqAok8AAAAAAAAAAACADqDoEwAAAAAAAAAAAKADKPoEAAAAAAAAAAAA6ACKPgEAAAAAAAAAAAA6gKJPAACYCpxwwgllmWWWqT9f/vKXe73v008/XVZYYYV63x133LFMLV544YVy9NFHlw033LC84x3vKKusskrZYYcdyq9//esBPc8NN9xQdtppp7Lmmmt2Pce4ceOGbLthauZvUyn//e9/y/e///2y0UYblRVXXLGsvvrq5VOf+lS54447+nzsv//973r/Y445ZrK24amnniprrbVWWXfddSfreQAAAAAAgOGn6BMAAKYyV199dXnttdd6vP1Xv/pVLUKamowfP75st9125dRTTy2zzDJL2X777Wvx53333Vf23HPPen1/XHDBBWW33XYrf/7zn2uB1sc+9rHyz3/+s+y1117luOOOG/L3AVOz0fi3KfbZZ59y1FFHlddff73+bfrABz5QbrrppjJ27NhaZN6T5557rnzmM5+pl5PrG9/4Ri2qBQAAAAAAOp+iTwAAmIrMN9985T//+U8tKOrJ5ZdfXmadddYyNTnttNPK/fffX7bddttyySWX1I6C3/nOd8ovf/nLuk9SsPmPf/yj1+dIQdTBBx9c7/+LX/yiHHTQQeVrX/taueyyy8qiiy5avve979UCUGDgRuvfphtvvLFcddVVtcNn/q585StfKUceeWQ5/fTTaxHoN7/5zbaPS+H5NttsU+65557J3oaf/vSndRsAAAAAAICpg6JPAACYiqS7ZVxxxRU9LhX8u9/9rqy33nplapL3O80005T999+/XjYWWGCB2gE0xVXXX399r89x7733lgUXXLAWjqZArTH77LPXJZHfeOONcueddw7p+4Cp1Wj929Qs4f7Rj360zDjjjF3Xv/vd7y5LLrlkeeihh+rS6410Oj300EO7ugyvvfbak/X6jz32WPn2t79tWXcAAAAAAJiKjBnuDQAAgCHxxBOT/tjZZitl5pnb3/bkk6W8+eakPe8ss5QyxF3slllmmVpIlGWUX3311TLDDDNMcHsKrlK8uMkmm5Sf/exnPXam+8EPflDuuuuu8sorr5TFF1+8/O///m/ZaaedyvTTTz/BfdM9M/e9+eaba9FWCi4XXnjhssEGG5Tdd9+9zDTTTBNsW5Y1/sIXvlCOPvrocvvtt9dtzPVZUv3DH/7wBM+94447lttuu62rAKo3O++8c3n++efLHHPMMdFtzT544YUXen2OFFf11A3vr3/9a71sLQaFSTYK/z6N1r9N//M//1MvH3nkkQmuz/M/88wzdbtTWN548cUXy1lnnVXe9a53lQMPPLAWo+d9T4o333yzdj0eM2ZM7Vx8zTXXTNLzAAAAAAAAI4uiTwAApk7zzz/pjz3xxFL22KP9bcst9/8KqybFgQeWctBBZahttNFG5aSTTqqFQh/84AcnuC3Lna+wwgpliSWWaPvYM844oxx++OG1UGn99dcvc801V32eI444oi7LfOqpp9YCorjvvvvK2LFja2e6dOdbaKGF6hLpKZw85ZRTyt///ve6rHr3QqwsWZxirS222KI8+eSTtdhr7733rtvc2uVv8803L2ussUZZLvu8D9mOnoqexo0bV39PAddAvPbaa7UL3w9/+MNyww031M58q6+++oCeA9oapX+fRuPfpnQ4PeGEE8q5555bll122brtzz33XPnud79bO3zuuuuuExTAphtoilXf+9731n+n6HNS/fjHP6775phjjinzzDPPJD8PAAAAAAAwsij6hNEgHa8uvHDi6wCAqdLGG29ci5R+9atfTVBYlaWCszx5utm1k0KpI488siy99NLl7LPPLnPPPXdX4eRXv/rVcskll9QOdJ/4xCfq9ccee2wZP358LYpMQWTjc5/7XC1sSrFlbp8tnQn/Pym2Spe8PF+zDPtaa61VvvKVr9QCpdbCqr466PVHCq3ynhdddNHyvve9b0CPTee/FH7FyiuvXPdp69LxwMCMxr9NKVI9//zzywEHHND109hvv/3Kpz/96Qnun6LPpuBzcjz44IO1sDRFp9nvKYAFgAFxPhEAAABgxJp2uDcAmAJmnLGUrbaa8CfXAQBTpRRGvf3tb+9aRrm1k16KmbJ8cjsXXHBBXV45hVFNUVXkMV/60pfKtNNOWy666KKu61MgleWNW4uqIh3l3va2t9XnevbZZyd6nc9+9rMTFE82xVQPP/xwGUyXX355OeSQQ2r3v8MOO2yi5Z97k21PcVi68K200krlj3/8Y+0C+Oijjw7qNsJoMhr/NuV9nnzyyeUPf/hD7WS688471yXpZ5111tqd9Kc//WkZbK+//notLp1lllnqEvEAMEmcTwQAAAAYsTqu02d/lmTMUmtJ6jaeeeaZ2k3k2muvLU888URd2i3Lte2yyy5dy78BAMDUJMsoZ/niLEu+7rrrdhVWrbLKKuUtb3lLXcq4u7vuuqteZjngP/3pTxPdniKldI974YUX6u9rr712vT7FU+nEl259WQ79nnvuqT+R4qpWWZK5tWgr5vj/Oga1FoENRofPgw8+uBZwZUno1VZbbUCPTxHZQf/fUtfpJnjUUUeV0047rXzzm98s3/ve9wZtO2G0GW1/m/L35yc/+UnZaaedatfQpqh0n332Kdtvv3358pe/XJZaaqlaXD5YTj/99FpkmmXlu78nAAAYDhmbZ9LTNddcUydTZkLWhz70oTrxqr9j1n/961/l+OOPLzfffHN9viWWWKKMHTu2bL311kO+/QAAACNNx1U87rnnnm2vTyI2y7klydPazeO5556rXT7+8pe/lA022KAstthi5cYbb6zLnCVxlAARAICp0OOPT/pjW5b8nci992bwOWnPO8ssZUrJcr4prLriiitqYdVf//rX8uc//7l84xvf6PExGTvHOeec0+tz534prHr88cfrZKsrr7yya+ng+eabrxZvLbDAArU7Xsbp3Zcu7q4pgup+30mRQq4jjjiinHnmmWWGGWaoxZqJAyZHtm/fffctF154Ybn++utrAVieGybZKP77NJr+NuXvUTqQzj777HXp+tYuopmMmr8r6VR68cUXD1rRZ4pcU+y56aabTvbfPgAAGAzPP/98nfCUsf9aa61Viz3/9re/lbPPPruO2RNrZwJYbx555JGy7bbb1iYviSnmnXfectVVV5Wvf/3r9bnS6R4AAGA06biiz7322qvt9WeccUYt+MySi1kqrZEOnw888EBd0ixBZey33341uZJgcty4cRIhAABTo/nmG5rnnXfe0gnS8WK55ZarXTRSpJhOetNNN13ZcMMNe3xMiqUik6SSQOlNiqA+9alPlXvvvbdst9125SMf+UhdunnOOeest6fTxmAv196XvM/999+/jvHTtS+xwEA6fP7973+vBVOrrrpqmX/++Se4LSsEJAn1n//8p/6kgAwm2Sj++zSa/jY99dRT5ZVXXqmv365QvFnJJAnswfLrX/+6vPbaa+Wyyy6rP93ltfK6Cy+8cP0MAABgqJ144om14DP5vdbGLpnUlRU60pzl0EMP7fU5cnsmd33/+98v66yzTr1u7733LjvvvHNtCJNJTyuuuOKQvxcAAICRYtoyFUhR59FHH10WXXTRujRa4+WXX+6aIZgZgI0klL74xS/W388///xh2WYAABhq6X4xfvz4uiRyuuqlo0aWUOtJCrHijjvumOi2FC595zvfqR00U1R1//3316Kq9773vXUZ9BRKNkVVKTjKUsuD1b2zP15//fW6XHIKPhdZZJFy3nnnDXhJ93Tky+Swn/3sZxPdlglmWXY6yz1bLhkmz2j525TXTbFnikzbLRGfQvPoXmQ+OdZYY42aSO/+k2UzI11H8+8sNw8AAFNCxsOZvLXbbrtNcP1HP/rRevmHP/yh18dn4lK6er7rXe/qKviMmWaaqTZ5ydj+ggsuGKKtBwAAGJmmiqLPzPBL8ibLOMw888xd1995553lxRdfrEmPaaed8K2mQDTJ4Ntvv70miAEAYGqz0UYb1cvvfe97dbmzFFr1Zsstt6yXWR49HTRaHXvsseWHP/xhTcZkieJmKeTcr1k+OTK2zvg83TCj9bahlG4f6VqXJZPPPffcsuSSSw74OTbbbLMaN2QVgccee6zr+sQaKR576aWX6j7KJDJg0o2Wv00p+MzKInnNLGnf6umnn+66Ln97Bsuaa65ZOyh1/9ljjz3q7Slcz78//vGPD9prAgBAb7IKR7r2t+bvIt0/o6+VNG677bZa2JnJYt1lktf0009fbrnllkHeagAAgJGt45Z37+7666+vweLaa689wQy/aDp4LLbYYm0fm8LPzDDMz+KLLz5FtheGxRNPpH3MhNclWWpZUgCYqmW8+453vKMWQzXFR71ZZZVVaje4k08+uWyyySZl3XXXrd33fve735U//vGPdTngprN+lmjO/X//+9/XgqwkX1Ic+X//9391HJ7HZWnjZ599dpK3/9JLL60dPdZbb72uTn/t5DVS9Bm5X7r9t5POn02S6NZbb62Jo9w/zx/LLrtsLYw64YQT6tJwKUxLAVnijRSmZTJZOoECk2e0/G2KbNfdd99dTj/99JqIzt+RFIFeffXVdRt23XXXtsnrodgWABgQ5xOBIZLxcMbGhx12WBkzZkxXV/qeNLm+dnm8FHxmtb+mu37iCwAAgNGg44s+kziJdkFhk8SZa6652j42y5rFc889V6Ymb7zxRv0ZKdItqXunVQAApox00LvrrrvK+973vq7xb2+yRHqKsc4+++xalJSkSbpnpjApS7FlSbZIR7106zj++OPLb37zm3LOOefU25Zaaqnyla98pY7Fv/jFL5Zrr712wMusN37yk5/UwswUdPVWzPTb3/62dviPbHN+2tl99927iqvyvCeeeGLZfPPNu4o+I8sep/jzrLPOKpdddlntDpgisi996Utlxx13rAklYPKNhr9Nkde++OKLy6mnnlp+/etf1+1PInr55ZcvO+ywQ9lwww0naRsmZVsAADo1xzBQchIj13nnnVdX0oisonHkkUf2OQnqmWeeqZdzzjln29sTT+R4HT9+fJl77rmHYKsBAABGnmnezJoIHepPf/pTTdImUfPjH/94otuTxE2XnoMPPrhsvfXWE92+//7710RuHjupyZ6RJoHt2J13KY8+8WQZKd4y37zlxz8800mW4WRmPgAAAADQX84njlo1x7Dr2PLYE4+VTrXgfAuWH5/xYzmJEejKK6+sk7+eeOKJMm7cuPLyyy/XXN0nPvGJXrvnp8P9GWecUVf9627bbbetqwhkZcAFF1ywTC1e/twRw70JAAAwYs109BfLaNfRnT4T5MXYsWPb3j7TTDPVyyzl1k46g8Sss85apqYTMin4/NTRZ5Zpp5tuuDenvPH66+X7n9ulbpcTLAAAAAAAMHLlXH4KPvf80Z5l2uk675z+G6+/UU7c6UQ5iRHqwx/+cP2Jvfbaq2yzzTa12+eaa65ZO/tPTq5vlllmGbLtBgAAGGk6uugzS7oliPvgBz/Y9vZmqYeelm9//vnn6+Vss81WpjYp+JxuTEd/vAAAAAAAwDBIwed0Y4a/sQRTr0UWWaR2+DzssMNqvq+nos/+5PqmmWaaqTLXBwAA0JOOneZ43333lX/961+14HPmmWdue58ll1yyXj700ENtb8/1KRpdaKGFhnRbAQAAAAAAYDRJF84bb7yx/OY3v2l7+6KLLlovn3766R6fo7dcX7p/Pvroo+Wtb32rzq4AAMCo0rER0O9///t6udpqq/V4nxVXXLEu3X7bbbfVpTxa/fOf/yyPPPJIWXnllct0I2AZdAAAAAAAAJiaij4/+clPls997nNdy7C3uueee+plijZ7ssYaa9ROnrfeeutEt/32t7+thZ+rrrrqIG85AADAyNaxRZ933313V2FnT2acccay6aablocffrj86Ec/6rr+9ddfL0cccUT9fezYsVNgawEAAAAAAGD0yJLrH/rQh+oS7CeeeOJEeb6zzjqrrsiXXF5PFlxwwbL22mvXBi9XXXVV1/Uvv/xyOfbYY+vvcn0AAMBoM6Z0qGYZhwUWWKDX++27777lhhtuKIceemi55ZZbytJLL11uuummOntwo402qsEmAAAAAAAAMLi++tWv1gLPU089tXbmfOc731n+9a9/lauvvrp28DzmmGPKfPPNV++bbp4p7lxuueXKeuut1/UcX/va18q2225b9t5775rbS24wj3/wwQfLbrvtVu8PAAAwmnRs0efTTz9dL2efffZe7zf33HOX888/vxx33HHluuuuqwWfiyyySPnCF75QdtpppxpQAgAAAAAAAIMrnTovueSScvLJJ9dCzTvuuKPMMccctahz9913L8suu2zXfVPwmY6gm2+++QRFn1n+/YILLqidPdPo5ZVXXilLLLFE+fa3v1223HLLYXpnAAAAw6djiz4vv/zyft93/vnnL4cccsiQbg8AAAAAAAAwcYOWdOvMT2/22muv+tNOijyb5dwBAABGu2mHewMAAAAAAAAAAAAA6JuiTwAAAAAAAAAAAIAOoOgTAAAAAAAAAAAAoAMo+gQAAAAAAAAAAADoAGOGewOAKWC22Uo58cSJrwMAAAAA6M75RAAAAIARS9EnjAYzz1zKHnsM91YAAAAAAJ3A+UQAAACAEcvy7gAAAAAAAAAAAAAdQNEnAAAAAAAAAAAAQAdQ9AkAAAAAAAAAAADQARR9AgAAAAAAAAAAAHQARZ8AAAAAAAAAAAAAHWDMcG8AMAU8+WQpyy034XX33lvKvPMO1xYBAAAAACOV84kAAAAAI5aiTxgN3nzz/52o7X4dAAAAAEB3zicCAAAAjFiWdwcAAAAAAAAAAADoAIo+AQAAAAAAAAAAADqAok8AAAAAAAAAAACADqDoEwAAAAAAAAAAAKADKPoEAAAAAAAAAAAA6ABjhnsDAAAAmLq88MIL5dRTTy3jxo0rjzzySJl++unL8ssvX3beeeey/vrrT3DfZ555ppx00knl2muvLU888URZaKGFyhZbbFF22WWXMmZM/0PW6667rr7mn//85zLddNOVVVddteyzzz5l2WWXHYJ3CAAAAAAAAMNDp08AAAAGzfjx48t2221XCzBnmWWWsv3225cNN9yw3HfffWXPPfes1zeee+65suOOO5ZzzjmnrLDCCmWnnXYqM888c/nud79bPve5z/X7NS+88MLy6U9/uvz73/8uW2+9dVlvvfXKTTfdVLbZZpty5513DtE7BQAAAAAAgClPp08AAAAGzWmnnVbuv//+su2225aDDjqoTDPNNPX6dN1MB8/jjjuuFoEuvvjitcPnAw88UA488MBaHBr77bdf2XfffcuVV15ZO4VusMEGvb7ek08+Wb797W+XJZZYolx88cVl9tlnr9en4HPs2LHla1/7WvnZz37WtR0AAAAAAADQyXT6BAAAYNBcccUVtcBy//33n6DQcoEFFqgdQF9//fVy/fXXl5dffrl26HzLW95SC0QbWZr9i1/8Yv39/PPP7/P1LrjggvLKK6+U3XbbravgM975zneWTTbZpBag/uEPfxj09wkAAAAAAADDQdEnAAAAg2bnnXeunTrnmGOOiW6bYYYZ6uULL7xQl11/8cUXyxprrFGmnXbC0HTRRRctiyyySLn99ttrkWhvbrnllnq51lprTXRbc11zHwAAAAAAAOh0lncHAABg0GRJ9XbefPPNulx7LLPMMuXBBx+svy+22GJt75/Cz4cffrj+ZCn4nuR5xowZUxZaaKGJbkvhaPztb3+bpPcCAAAAAAAAI41OnwAAAAy5c889t3b3TDHn+973vvLss8/W6+eaa66292+Wan/uued6fd48z2yzzVaXhe/pOZ5//vlBeAcAAAAAAAAw/BR9AgAAMKQuv/zycsghh9SOnIcddliZfvrpy6uvvjrBku/dNde/8sorvT73a6+9NtnPAQAAAAAAAJ3C8u4wGswySykHHjjxdQAAMAU6fB588MFlmmmmKYcffnhZbbXV6vUzzTRTV9FmO01R6Kyzztrr8+d5+nqOWYx9AQAGxvlEAAAAgBFL0SeMBkmUH3TQcG8FAACjyBtvvFGOOOKIcuaZZ9aOm0cddVTZYIMNum6fc845e12+vVmSPUu39ybP89RTT5U333yzFpa2e45mmXcAAPrJ+UQAAACAEcvy7gAAAAyqdNjcZ599asHnXHPNVS9bCz5jySWXrJcPPfRQ2+fI9enQudBCC/X6WnmedPp89NFHJ7rtn//8Z71caqmlJuPdAAAAAAAAwMih6BMAAIBB8/rrr9eCz3HjxpVFFlmknHfeeV1LurdaccUV69Ltt912W+0K2r1Y85FHHikrr7xymW666Xp9vTXWWKNe3nLLLRPddvPNN9fLVVdddTLfFQAAAAAAAIwMij4BAAAYNN///vfLNddcUzt0nnvuuV0dPbubccYZy6abbloefvjh8qMf/WiCotEsCx9jx47t8/U222yzunz8KaecUp555pmu6++4445y+eWXl+WWW07RJwAAAAAAAFONMcO9AQAAAEwdnn322Vr0GSm2vPDCC9veL50/11prrbLvvvuWG264oRx66KG1U+fSSy9dbrrppnLPPfeUjTbaqHzoQx+a4HFnnXVWef7558vmm29eu4jGwgsvXJ8nhaIpAN14443L+PHjy2WXXVamn3768q1vfWsKvHMAAAAAAACYMhR9AgAAMCh++9vflhdffLH+fvXVV9efdnbfffda9Dn33HOX888/vxx33HHluuuuqwWfKeb8whe+UHbaaacyzTTTTPC4dATNsu9Z0r0p+ozddtutLLDAAuXMM8+sy8nPNtts5T3veU9dZn7ZZZcd4ncNAAAAAAAAU46iTxgNnn66lPe9b8Lr/u//Spl77uHaIgAApkLrrbdeuf/++wf0mPnnn78ccsgh/bpvlo3vSZaKzw8AAIPA+UQAAACAEUvRJ4wGr79eyp/+NPF1AAAAAADdOZ8IAAAAMGJNO9wbAAAAAAAAAAAAAEDfFH0CAAAAAAAAAAAAdABFnwAAAAAAAAAAAAAdQNEnAAAAAAAAAAAAQAdQ9AkAAAAAAAAAAADQARR9AgAAAAAAAAAAAHQARZ8AAAAAAAAAAAAAHUDRJwAAAAAAAAAAAEAHUPQJAAAAAAAAAAAA0AEUfQIAAAAAAAAAAAB0AEWfAAAAAAAAAAAAAB1A0ScAAAAAAAAAAABAB1D0CQAAAAAAAAAAANABxgz3BgBTwEwzlfLZz058HQAAAABAd84nAgAAAIxYij5hNJh99lJOOmm4twIAAAAA6ATOJwIAAACMWJZ3BwAAAAAAAAAAAOgAij4BAAAAAAAAAAAAOoCiTwAAAAAAAAAAAIAOoOgTAAAAAAAAAAAAoAMo+gQAAAAAAAAAAADoAGOGewOAKeDZZ0v53/+d8Lqf/rSUueYari0CAAAAAEYq5xMBAAAARixFnzAavPZaKddfP/F1AAAAAADdOZ8IAAAAMGJZ3h0AAAAAAAAAAACgAyj6BAAAAAAAAAAAAOgAij4BAAAAAAAAAAAAOoCiTwAAAAAAAAAAAIAOoOgTAAAAAAAAAAAAoAMo+gQAAAAAAAAAAADoAIo+AQAAAAAAAAAAADqAok8AAAAAAAAAAACADqDoEwAAAAAAAAAAAKADKPoEAAAAAAAAAAAA6ACKPgEAAAAAAAAAAAA6gKJPAAAAAAAAAAAAgA6g6BMAAAAAAAAAAACgA4wZ7g0ApoAZZihlyy0nvg4AAAAAoDvnEwEAAABGLEWfMBrMOWcpF1003FsBAAAAAHQC5xMBAAAARizLuwMAAAAAAAAAAAB0AEWfAAAAAAAAAAAAAB1A0ScAAAAAAAAAAABAB1D0CQAAAAAAAAAAANABFH0CAAAAAAAAAAAAdIAxw70BwBTwn/+U8olPTHjd6aeXMuecw7VFAAAAAMBI5XwiAAAAwIil6BNGg1dfLeXiiye87uSTh2trAAAAAICRzPlEAAAAgBHL8u4AAAAAAAAAAAAAHUDRJwAAAAAAAAAAAEAHUPQJAAAAAAAAAAAA0AEUfQIAAAAAAAAAAAB0AEWfAAAAAAAAAAAAAB1gTOlg119/fTnzzDPLXXfdVaaZZpqy1FJLlZ133rlsvPHGE9zvmWeeKSeddFK59tpryxNPPFEWWmihssUWW5RddtmljBnT0bsAAAAAAAAAAAAAGCU6tuLxrLPOKoceemiZZ555ykc/+tHyxhtvlCuvvLLst99+5bHHHiu77rprvd9zzz1Xdtxxx/KXv/ylbLDBBmWxxRYrN954Y/nud79bi0WPP/744X4rAAAAAAAAAAAAAFNn0ef9999fjjzyyNrZ8+yzz66Fn7HnnnvWAtCjjz66bLXVVmX22WevHT4feOCBcuCBB5btt9++3i+Fofvuu28tEh03blwtBgUAAAAAAAAAAAAYyaYtHSiFnv/973/LN7/5za6Cz5h33nlrQefHPvax8uSTT5aXX365XHjhheUtb3lL2XbbbbvuN91005UvfvGL9ffzzz9/WN4DAAAAAAAAAAAAwFTf6fO6664r8803X1l99dUnum3LLbesP3HbbbeVF198say//vpl2mknrG9ddNFFyyKLLFJuv/328vrrr9dCUAAAAAAAAAAAAICRquM6fT799NPliSeeKG9/+9vL448/Xr761a+Wtddeu6y00kq12POqq67quu+DDz5YLxdbbLG2z5XCz1dffbU8/PDDU2z7AQAAAAAAAAAAAEZF0WcKPWP8+PF1Gfdbb721bLjhhmWjjTYqf/3rX8see+xRl3+PZ599tl7ONddcbZ9r9tlnr5fPPffcFNt+AAAAAAAAAAAAgFGxvPsLL7xQL++4447y7ne/u5xyyilllllmqdd96lOfKltttVU5/PDDy7rrrlu7eMYMM8zQ9rma61955ZUptv0AAAAAAAAAAAAAo6Loc7rppuv6/etf/3pXwWcstdRSZccddyzf+973ypVXXllmmmmmev1rr73W9rmaotBZZ511yLcbhtX005eyzjoTXwcAAAAA0J3ziQAAAAAjVscVfTZLsqfYM0We3S2//PL18h//+EdZccUVe12+/fnnn6+Xs8022xBuMYwAc81VynXXDfdWAAAAAACdwPlEAAAAgBFr2tJhFl100TJmzJjy3//+t7z55psT3d509Zx55pnLkksuWX9/6KGH2j5Xrk/x6EILLTTEWw0AAAAAAAAAAAAwyoo+Z5hhhrLyyivXpdlvv/32iW6/66676uWyyy5bO31m6fbbbrutvPHGGxPc75///Gd55JFH6nO1LhkPAAAAAAAAAAAAMBJ1XNFnbL/99vXysMMO61qiPe67775y/vnnl7nmmqust956ZcYZZyybbrppefjhh8uPfvSjrvu9/vrr5Ygjjqi/jx07dhjeAQAAAAAAAAAAAMDAjCkdaJNNNik33HBDufTSS+vvG2ywQRk/fnz51a9+VQs6DznkkDLbbLPV++677771voceemi55ZZbytJLL11uuummcs8995SNNtqofOhDHxrutwMAAAAAAAAAAAAwdRZ9xne+852y2mqrlfPOO69cfPHFddn31VdfvXzmM58pq6yyStf95p577tr987jjjivXXXddLfhcZJFFyhe+8IWy0047lWmmmWZY3wcAAAAAAAAAAADAVF30mWLNLbbYov70Zf7556/dP2HUev75Ug44YMLrDjuslNlnH64tAgAAAABGKucTAQAAAEasji36BAbg5ZdLOfnkCa876CAnaQEAAACAiTmfCAAAADBiKfoEAABgSO27777l97//ffnNb37Tdd2tt95adtpppz4fe+ihh5aPfexjvd7nr3/9a9l44417vP24444rG2644QC3GgAAgMHwwgsvlFNPPbWMGzeuPPLII2X66acvyy+/fNl5553L+uuv36/nWHvttcuTTz7Z9raxY8eWb3zjG4O81QAAACOXok8AAACGzIknnliuuOKKssACC0xw/cILL1z23HPPto959tlnyznnnFNmmWWWstJKK/X5Gvfdd1+9TLJwmWWWmej2pZdeepK3HwAAgEk3fvz4sv3225f777+/rLDCCvX3559/vhaAJib83Oc+Vz796U/3+hxPPPFELfhMoei666470e39iRsBAACmJoo+AQAAGHSvvPJKOfjgg8tFF13U9vZFFlmk7LXXXm1v23333evlt7/97X4VbN577731crfddivvete7Jmu7AQAAGDynnXZaLfjcdttty0EHHVSmmWaaev0+++xTtthii66VGRZffPE+Y77cr68CUQAAgNFg2uHeAAAAAKYu11xzTdloo41qwec666wzoMfmMddee23ZZJNN6k9/pNNnEodvf/vbJ3GLAQAAGApZ+SHx2v77799V8BlZDWK77bYrr7/+ern++uv7tbrDsssuO+TbCwAA0Al0+gQAAGBQXXzxxeWFF14oBx54YE3i9TcxlyX+jj766DLbbLOVr3zlK/1+vSQAF1tssTLrrLNOxlYDAAAw2Hbeeeca680xxxwT3TbDDDPUy8SPvVH0CQAAMCFFnwAAAAx6Uu+II46oxZsD8b3vfa88/fTTZb/99ivzzjtvvx7z1FNPlSeeeKKsuuqq5bDDDitXX311eeyxx8pCCy1UNttss/LJT36yK5EIAADAlDV27Ni217/55ptl3Lhx9fdlllmm1+fI8u6zzDJLufLKK8sll1xS/vGPf9R48wMf+EDZe++9y/zzzz8k2w4AADBSWd4dAACAQbXmmmsOuOBz/Pjx5bzzzqvdX3bYYYd+Py7Jv/jd735XlwT80Ic+VDbffPPy6quvluOPP77stttu9XcAAABGjnPPPbfceeedZdFFFy3ve9/7erzfyy+/XIs8X3zxxXLyySeXd77znWXrrbeuy8NfdNFFZYsttigPP/zwFN12AACA4abTJwAAACNmSfjPfvazAyoYTbHoEkssUdZaa63y9a9/vUw33XT1+iQE99hjj3LTTTeV008/vT4vAAAAw+/yyy8vhxxySBkzZkxdsWH66afv8b5Z2WHppZeuEwRPPPHEMtdcc3V1Cj3mmGPKqaeeWr72ta+Vs846awq+AwAAgOGl0ycAAADDLkv0TTvttGXbbbcd0OM23HDDusTfQQcd1FXwGVn678ADD6y//+xnPxv07QUAAGDSOnzuv//+9ffDDz+8rLbaar3eP51Af/7zn5dzzjmnq+Azpplmmrq0+0ILLVRuvvnm8vjjjw/5tgMAAIwUij4BAAAYVv/85z/Ln//857L66qvXJfoGSzqAphtMnh8AAIDh88Ybb9Sunt/85jdrh89jjz22bLrpppP1nHme5Zdfvv7+0EMPDdKWAgAAjHyWdwcAAGBYXXPNNfVy4403HvBj//a3v5V///vf5Z3vfGft7tk9qfjKK6+UGWeccdC2FQAAgIF59dVXa3fPcePG1W6dJ510Up8dPhuJ91LQucgii5S3vOUtE93+0ksv1cuZZppp0LcbAABgpNLpEwAAgGH1hz/8oV6m0+dAHXrooeXjH/94+c1vfjPRbXfeeWct+lxppZUGZTsBAAAYmNdff73ss88+teAzhZvnnXdevws+I0u777DDDuW0006b6LYXXnih3HPPPWXmmWcub3vb2wZ5ywEAAEYuRZ8AAAAMq7vvvrt26XzrW9864Mdusskm9fKEE04o48eP77r+mWeeKd/61rfq7zvvvPMgbi0AAAD99f3vf7+u7rDQQguVc889tyy55JIDevyHP/zhuoz7pZdeWu6///6u6//73/+W73znO+XZZ58t2267rRUeAACAUcXy7jAaTDddKcsvP/F1AAAwArq+PPzww2WxxRYr007b+7zEJPkeeeSRst5665XllluuXrfZZpvVjjFXX3112Wijjcr6669flw687rrryhNPPFF22WWXsu66606hdwMAMJVwPhEYBCnITNFnJIa78MIL294vnT/XWmutcuutt5bbbrut3jdxXyRWzNLwhx9+eNl6663LhhtuWOaYY45yyy23lD//+c9l1VVXrZ1EAQAARhNFnzAazD13KffcM9xbAQAAbZOAb775Zpl99tn7vO9PfvKTmgBceOGFu4o+UyiaLp8//vGPa1HoRRddVLvA5PavfOUrZeONN54C7wIAYCrjfCIwCH7729+WF198sf6eiXr5aWf33XevRZ+J90488cSy+eabdxV9xq677lqWWmqpcsYZZ5Rf//rX5bXXXiuLL754LQb9+Mc/XmaYYYYp9p4AAABGAkWfAAAADKnWJfi6m2eeeXq9vdXZZ5/d9vrpppuu7LTTTvUHAACAkSGFm/2N92KvvfaqP+2ss8469QcAAIBSel87DwAAAAAAAAAAAIARQdEnAAAAAAAAAAAAQAdQ9AkAAAAAAAAAAADQARR9AgAAAAAAAAAAAHSAMcO9AcAU8MILpRx55ITXfeELpcw663BtEQAAAAAwUjmfCAAAADBiKfqE0eDFF0v55jcnvG6PPZykBQAAAAAm5nwiAAAAwIhleXcAAAAAAAAAAACADqDoEwAAAAAAAAAAAKADKPoEAAAAAAAAAAAA6ACKPgEAAAAAAAAAAAA6gKJPAAAAAAAAAAAAgA6g6BMAAAAAAAAAAACgAyj6BAAAAAAAAAAAAOgAij4BAAAAAAAAAAAAOoCiTwAAAAAAAAAAAIAOoOgTAAAAAAAAAAAAoAMo+gQAAAAAAAAAAADoAIo+AQAAAAAAAAAAADqAok8AAAAAAAAAAACADjBmuDcAmAKmmaaUeeed+DoAAAAAgO6cTwQAAAAYsRR9wmiQE7RPPDHcWwEAAAAAdALnEwEAAABGLMu7AwAAAAAAAAAAAHQARZ8AAAAAAAAAAAAAHUDRJwAAAAAAAAAAAEAHUPQJAAAAAAAAAAAA0AEUfQIAAAAAAAAAAAB0gDHDvQHAFPDSS6WcccaE1+26aykzzzxcWwQAAAAAjFTOJwIAAACMWIo+YTQYP76UPfec8Lqtt3aSFgAAAACYmPOJAAAAACOW5d0BAAAAAAAAAAAAOoCiTwAAAAAAAAAAAIAOoOgTAAAAAAAAAAAAoAMo+gQAAAAAAAAAAADoAIo+AQAAAAAAAAAAADqAok8AAAAAAAAAAACADqDoEwAAAAAAAAAAAKADKPoEAAAAAAAAAAAA6ACKPgEAAAAAAAAAAAA6gKJPAAAAAAAAAAAAgA6g6BMAAAAAAAAAAACgAyj6BAAAAAAAAAAAAOgAij4BAAAAAAAAAAAAOoCiTwAAAAAAAAAAAIAOMGa4NwCYAuabr5Q33xzurQAAAAAAOoHziQAAAAAjlk6fAAAAAAAAAAAAAB1A0ScAAAAAAAAAAABAB1D0CQAAAAAAAAAAANABFH0CAAAAAAAAAAAAdABFnwAAAAAAAAAAAAAdYMxwbwAwBbzySik///mE1222WSkzzjhcWwQAAAAAjFTOJwIAAACMWIo+YTR47rlStt56wusef7yU+eYbri0CAAAAAEYq5xMBAAAARizLuwMAAAAAAAAAAAB0AEWfAAAAAAAAAAAAAB1A0ScAAAAAAAAAAABAB1D0CQAAAAAAAAAAANABFH0CAAAAAAAAAAAAdABFnwAAAAAAAAAAAAAdQNEnAAAAAAAAAAAAQAdQ9AkAAAAAAAAAAADQARR9AgAAAAAAAAAAAHQARZ8AAAAAAAAAAAAAHUDRJwAAAAAAAAAAAEAHUPQJAAAAAAAAAAAA0AEUfQIAAAAAAAAAAAB0AEWfAAAAAAAAAAAAAB1gzHBvADAFzDNPKY8/PvF1AAAAAADdOZ8IAAAAMGIp+oTRYNppS5lvvuHeCgAAAACgEzifCAAAADBiWd4dAAAAAAAAAAAAoAN0bKfP8847rxx00EE93n7zzTeXueeeu/7+zDPPlJNOOqlce+215YknnigLLbRQ2WKLLcouu+xSxozp2F0AAADQEfbdd9/y+9//vvzmN7+Z6Lb99tuvXH755W0f97a3va1cdtll/XqNPP+JJ55Y7rnnnvLaa6+Vd7zjHWWPPfYoa6yxxmRvPwAAAAAAAIwUHVvxeO+999bLj3/842W22Wab6PaZZ565Xj733HNlxx13LH/5y1/KBhtsUBZbbLFy4403lu9+97vlrrvuKscff/wU33YAAIDRIoWYV1xxRVlggQV6jO3mnHPOGrd110zk68v1119fPvvZz5Y55pijfOQjHymvv/56LRbdeeedywknnFDWW2+9yX4fAAAAAAAAMBJ0bNHnfffdV2aaaabypS99qUw7bc+r1KfD5wMPPFAOPPDAsv3223d1kkmnmSuvvLKMGzeuFoMCAAAweF555ZVy8MEHl4suuqjH+7z00kvlH//4R3nPe95T9tprr0l6nVdffbV89atfrZMBL7300vKWt7ylXp+VHbbaaqu6QsTaa6/dNTEQAAAAAAAAOlnP1ZIj2BtvvFH+/Oc/16X+eiv4fPnll8uFF15Yk37bbrtt1/XTTTdd+eIXv1h/P//886fINsOwevXVUq67bsKfXAcAAEPgmmuuKRtttFEt+FxnnXV6vF/iusR3yyyzzCS/VpaGf+KJJ2rM1xR8RlZ5GDt2bL3tqquumuTnBwAYlZxPBAAAABixOrLo88EHH6wdYZZddtle73fnnXeWF198sayxxhoTFYcuuuiiZZFFFim33357XfoPpmr/+U8pH/zghD+5DgAAhsDFF19cXnjhhbriwqmnntrj/bK0e/QV2/Xm1ltvrZfvfve7J7ptrbXWqpe33HLLJD8/AMCo5HwiAAAAwIg1bacu7R7TTDNNXar9fe97X1lppZXKlltuWS677LIJikObDi/tpPAzSwE+/PDDU2jLAQAApn4777xzufrqq8v2229f47a+ij7/9a9/lR133LGsvvrqZbXVViuf/vSn6yS+/vj73/9eLxdffPG2MV/87W9/m8R3AgAAAAAAACNLRxd9Zun2p556qmy22WZl/fXXL3/961/L/vvvX44++uh6+7PPPlsv55prrrbPM/vss9fL5557boptOwAAwNRuzTXXLLPNNluf97v//vvr5UknnVTmmWeestVWW5VVVlmlXH/99bVg9Nprr+3zOZq4b84555zotmYbnn/++Ul4FwAAAAAAADDyjCkd6M033ywLL7xw2Wuvvcrmm2/edf0///nPst1229XlA9///vfXLp4xwwwztH2e5vpXXnllCm05AAAAjZlmmql26Dz++OMnWOI9RZ+77757OeCAA2rH0N4KSF977bUe4z4xHwAAAAAAAFObjuz0mW6e11xzzQQFn83SfXvvvXf9/ec//3lNILYmAbtrikJnnXXWId9mAAAAJnTWWWeVcePGTVDwGeuss07ZeOONaxfP6667rtfn6C3ua2K+WWaZZVC3GwAAAAAAAIZLRxZ99mallVaqlw899FDX8n49Ld/eLPHXn2UHAQAAGJ7YrjdN3NduCffx48fXy9lnn31IthEAAAAAAACmtI4r+nzjjTfK3XffXW677ba2t7/44otd3V6WXHLJXpOEuT4dXxZaaKEh3GIAAADaFWT+8Y9/LPfdd1/b21966aUJOnn2pLe4r7luqaWWGoQtBgAAAAAAgOHXcUWfseOOO5addtqpPPXUUxPd9tvf/rZevuMd7ygrrrhiXbo9BaIpFm31z3/+szzyyCNl5ZVXLtNNN90U23YAAABK+dvf/la22Wab8vnPf77t7bfffvsEHT97ssYaa9TLW265ZaLbbr755nq56qqrDsIWAwAAAAAAwPDruKLPaaedtmy44YblzTffLEceeeQExZzpEHPqqafW7p1bbrllmXHGGcumm25aHn744fKjH/2o636vv/56OeKII+rvY8eOHZb3AQAAMJplkt5iiy1WHnjggXLxxRdPcNull15abrjhhrLCCiv0WbD5oQ99qMw111zlnHPOqZP7Wrt8nnvuuWW++eYrH/7wh4fsfQAAAAAAAMCUNKZ0oHSC+d3vfld+8pOflPvvv7+sueaa5d///ne56qqrahHoMcccUxZYYIF633333bcmCw899NDa+WXppZcuN910U7nnnnvKRhttVBOEAAAATPkJfYnTPvGJT5SvfvWrZdy4cXUZ9kzmS8yWYs2jjjqqTDPNNBMUg2bFhvXWW68st9xy9bqs7nDggQeW/fffv2yxxRZlk002qdf/8pe/rEvIn3DCCXVCIAAAAAAAAEwNOrLoc5555ikXXXRROeWUU8qvf/3r2tElib511lmn7L777rVjTGPuuecu559/fjnuuOPKddddV5OHiyyySPnCF75Ql4hvTSACAAAw5ay22mrlkksuKSeddFKdpJd4bd555y3bbbdd2WOPPWrhZ6tM/LvtttvKwgsv3FX0GRtvvHGZc845a4z405/+tEw//fT19jxHs/w7AAAAAAAATA06sugzktA74IAD6k9f5p9//nLIIYdMke0CAABgQlmhoSfp7nn00Uf363nOPvvsHm9be+216w8AAAAAAABMzaYd7g0AAAAAAAAAAAAAoG+KPgEAAAAAAAAAAAA6gKJPAAAAAAAAAAAAgA4wZrg3AJgC/ud/Srn77omvAwAAAADozvlEAAAAgBFL0SeMBmPGlLLCCsO9FQAAAABAJ3A+EQAAAGDEsrw7AAAAAAAAAAAAQAdQ9AkAAAAAAAAAAADQARR9AgAAAAAAAAAAAHQARZ8AAAAAAAAAAAAAHWDMcG8AMAX897+l3H//hNcts0wpY/wJAAAAAAC6cT4RAAAAYMRyhgZGg2eeKWXFFSe87vHHS5lvvuHaIgAAAABgpHI+EQAAAGDEsrw7AAAAAAAAAAAAQAdQ9AkAAAAAAAAAAADQARR9AgAAAAAAAAAAAHQARZ8AAAAAAAAAAAAAHUDRJwAAAAAAAAAAAEAHUPQJAAAAAAAAAAAA0AHGDPcGAAAAAAAAAFOnF154oZx66qll3Lhx5ZFHHinTTz99WX755cvOO+9c1l9//X49x7/+9a9y/PHHl5tvvrk8++yzZYkllihjx44tW2+99ZBvPwAAwEij0ycAAAAAAAAw6MaPH1+22267WvQ5yyyzlO23375suOGG5b777it77rlnvb4vKRTdZpttymWXXVbWXHPNWuz50ksvla9//evlsMMOmyLvAwAAYCTR6RMAAAAAAAAYdKeddlq5//77y7bbblsOOuigMs0009Tr99lnn7LFFluU4447rhaBLr744j0+x6GHHloef/zx8v3vf7+ss8469bq99967dgo966yzyqabblpWXHHFKfaeAAAAhptOnwAAAAAAAMCgu+KKK2qh5/77799V8BkLLLBA7QD6+uuvl+uvv77XLp9XXXVVede73tVV8BkzzTRT2W+//cqbb75ZLrjggiF/HwAAACOJTp8AAAAAAADAoEs3zueff77MMcccE902wwwz1MsXXnihx8ffdttttbBzrbXWmui2VVddtUw//fTllltuGeStBgAAGNkUfQIAAAAAAACDbuzYsW2vTyHnuHHj6u/LLLNMj49/8MEH62W75d9T8PmWt7ylPPzww+XVV1/tKiIFAACY2lneHQAAAAAAAJhizj333HLnnXeWRRddtLzvfe/r8X7PPPNMvZxzzjnb3j777LOXN954o4wfP37IthUAAGCkUfQJAAAAAAAATBGXX355OeSQQ8qYMWPKYYcdVjt29uS1116rlz118WyuT6dPAACA0cLy7jAaZAbstddOfB0AAAAAQHfOJwJD2OHz4IMPLtNMM005/PDDy2qrrdbr/WeaaaYJij+7a4o9Z5llliHYWgAAgJFJ0SeMBpnp+oEPDPdWAAAAAACdwPlEYJBlCfYjjjiinHnmmbU751FHHVU22GCDPh/XLOv+3HPPtb39+eefrwWks80226BvMwAAwEil6BMAAAAAAAAYEunGuf/++5dx48aVueaaq5x00kl9dvhsLLnkkvXyoYcemui2dP989NFHy1vf+tYy7bTTDvp2AwAAjFQiIAAAAAAAAGDQvf7662WfffapBZ+LLLJIOe+88/pd8BlrrLFG7eR56623TnTbb3/721r4ueqqqw7yVgMAAIxsij4BAAAAAACAQff973+/XHPNNWWhhRYq5557blfnzv5acMEFy9prr11uu+22ctVVV3Vd//LLL5djjz22/j527NhB324AAICRzPLuAAAAAAAAwKB69tlna9FnLLfccuXCCy9se790/lxrrbVqN88Ud+a+6623XtftX/va18q2225b9t5777LRRhuVBRZYoFx99dXlwQcfLLvttlu9PwAAwGii6BNGgzfeKOWppya8bp55SplWs18AAAAAoBvnE4FBkOXXX3zxxfp7ijTz087uu+9eiz5T8HniiSeWzTfffIKiz7e+9a3lggsuqJ09b7jhhvLKK6+UJZZYonz7298uW2655RR7PwAAACOFok8YDXKCdv75J7zu8cdLmW++4doiAAAAAGCkcj4RGAQp3Lz//vv7ff+99tqr/rSTIs9mOXcAAIDRzrRcAAAAAAAAAAAAgA6g6BMAAAAAAAAAAACgA1jeHeD/x959QGlVnfvjf6Yw9BIEkWoUjGAMFhQLUYxYsMReUFTExHJVFOwpClGxJdaAEStiQzFYkquRCIoV0ZjEBthiqAIWpNeZ/zrn/uHnwAxFZ+Z935nPZ62zzsze57zneWcR793nfM/eAQAAAAAANcuqVavSraioKP194cKFMXLkyJg1a1Z07tw5Dj300CgoKMh0mQAAAKzFTJ8AAAAAAABQg9x7772x2267xbhx49Lfly9fHieccELceOON8dBDD8Vll10Wp59+ehoKBQAAILsIfQIAAAAAAEAN8fzzz8cNN9yQzuy5YMGCtO3JJ5+Mjz76KJo3bx7nnntubLvttvH666+nM38CAACQXYQ+AQAAAAAAoIZ49NFHIz8/P+6555449thj07Znn3028vLy4oorrkhDnw8++GA0bNgwnn766UyXCwAAwFqEPgEAAAAAAKCGeO+992LnnXeObt26pb8vWbIk3nzzzSgqKoq99947bWvQoEHsuOOO8cknn2S4WgAAANYm9AkAAAAAAAA1RLKse7Nmzdb8PnHixFi5cmV07tw5DX6ulvy8bNmyDFUJAABAeYQ+AQAAAAAAoIbYYostYsaMGWt+f+mll9Kl3ffcc881bcXFxTFp0qRo3rx5hqoEAACgPEKfAAAAAAAAUEN06tQpXeJ91KhRMWHChHjqqafS9h49eqT7FStWxO9///uYOXNmdO3aNcPVAgAAsLbCdVoAAAAAAACAaumMM86IF154Ia644or095KSkthnn33iRz/60Zrw59y5c6Nhw4bpsQAAAGQXM30CAAAAAABADbH99tvHvffeG7vvvntsvfXWceKJJ8aNN964pr9ly5ax6667xiOPPJL2AwAAkF3M9AkAAAAAAAA1SBLqvO+++8rsGzFiRNSuXbvKawIAAGDjCH0CAAAAAABADbVs2bKYM2dO1KpVK7bYYot0DwAAQPYS+oSaoFGjiMceW7cNAAAAAGBt7idCjfDiiy/GXXfdFf/+979j1apVcdhhh8X1118f55xzTrRo0SIuueSSqFevXqbLBAAAYC1Cn1ATJMuwHHtspqsAAAAAAHKB+4lQ7d12223xpz/9KUpKSiI/Pz/dJ1vi448/TgOhkydPTpd6LyoqynS5AAAAfEv+t38BAAAAAAAAqq/x48fH7bffHptvvnnccsst8eabb5bqv+mmm6JDhw7pDKCjRo3KWJ0AAACUTegTAAAAAAAAaohk9s5atWrFvffeGz179oz69euX6v/JT34S99xzTzrD51NPPZWxOgEAACib0CcAAAAAAADUEO+++2506dIl2rdvX+4xySygu+yyS0ydOrVKawMAAGDDhD4BAAAAAACghli6dOk6s3uWJZkNdMmSJVVSEwAAABtP6BMAAAAAAABqiFatWsUHH3wQxcXF5R6zcuXK9JiWLVtWaW0AAABsmNAn1ARz50bk5ZXekjYAAAAAgLW5nwjV2r777huff/553HbbbeUeM3To0Jg7d27ss88+VVobAAAAG1a4EccAAAAAAAAA1cAvf/nL+Otf/xrDhg2Lt956K3bfffe0fdasWTFq1KgYO3ZsjB8/Ppo0aRK/+MUvMl0uAAAAaxH6BAAAAAAAgBqiadOmce+990a/fv3S0Oc//vGPtD35OdlKSkrSZd2TmUCbN2+e6XIBAABYi9AnAAAAAAAA1CAdOnRIZ/v8+9//Hq+//no6y2dxcXEa8txtt93i4IMPjqKiokyXCQAAQBmEPgEAAAAAAKCGKSgoiJ49e6YbAAAAuSM/0wUAAAAAAAAAAAAAsGFm+gQAAAAAAIAa4pRTTtnoY/Py8uL++++v1HoAAADYNEKfAAAAAAAAUENMnDhxo8KeJSUl6R4AAIDsIvQJAAAAAAAANcSQIUPKbC8uLo5vvvkm3n777fjLX/4Shx9+eAwYMKDK6wMAAGD9hD4BAAAAAACghthvv/3W23/sscdGjx49ol+/frHnnnvGIYccUmW1AQAAsGH5G3EMAAAAAAAAUIOCoZ06dYrhw4dnuhQAAADWIvQJAAAAAAAAlNKmTZv4+OOPM10GAAAAaxH6BAAAAAAAANZYtWpVvP/++1FUVJTpUgAAAFhL4doNAAAAUJH69+8fb7/9drz00kvr9E2dOjVuv/32ePXVV+Orr76KRo0axa677hpnn312dOzYcaM+/5NPPomDDz643P5bb701evbs+b2+AwAAQHUxefLk9YY9586dGw888EDMnDkzfvazn1VpbQAAAGyY0CcAAACVZsiQIfHss89GixYtynzQeNJJJ8WCBQuie/fu0b59+5g2bVr8/e9/jxdeeCHuuuuu2H333Tf6geX+++8f22677Tr9HTp0qKBvAwAAkPuOOOKIyMvLW+8xJSUlUbt27TjnnHOqrC4AAAA2jtAn1AQNGiRP29dtAwCASrJs2bK46qqrYtSoUeUe87vf/S4NfN54441x6KGHrml/7bXX4he/+EX85je/SQOg+fn5673WpEmT0n1yzk477VSB3wIAoIZyPxGqtVatWpXbl4y/6tWrl668cOqpp8Z2221XpbUBAACwYUKfUBPUrRvhbVwAAKrIuHHj4uqrr44ZM2akM3iOHz9+nWNmz56dLvmePED8duAzseeee0bXrl1jwoQJ8eGHH25wmfdkps9klpof/ehHFf5dAABqJPcTodqP2QAAAMhdQp8AAABUqMcffzwWLVoUAwcOjBNOOKHM0GZBQUFccskl0bx58zI/o6ioKN0nn7MhSeizXbt2Ub9+/QqoHgAAAAAAAGpQ6LOkpCSdYQUAAIDsUlXjtT59+sQNN9wQDdazBGizZs3S5djL8sUXX8Rbb70VhYWF0b59+/Ve68svv4y5c+dGly5d4rrrrouxY8fG559/ni5XeNhhh8Xpp5++JkAKAABA6bFXMl5q1KhR+vusWbPizjvvTPedO3eOU045Zb3jOgAAADIjv6I/MFm675Zbbolp06ZV9EcDAACQA+O13Xbb7Xs9GEyWhl+8eHEcfPDB0aRJk/UeO2nSpHT/j3/8I11GvkePHnHkkUfG8uXL47bbbkuDpcnPAAAA/D9XXXVVOkZ8+eWX098XLlwYvXr1ipEjR8aLL74Yf/zjH6N3796xdOnSTJcKAABAZYc+k7cChw0bFgceeGD07ds3nnnmGQ/YAAAAskAujNeSwOezzz4bW2yxRfzqV7/a4PHJg8kf/vCH6TLyf/3rX+Oyyy6LK6+8Mv73f/839txzz5g4cWLcfffdVVI7AABALhg9enQ89NBDUatWrTWrQYwaNSpmz54dHTp0iGuvvTZ++tOfxocffhjDhw/PdLkAAABUdugzmVllwIAB0bZt23j99dfjwgsvjL322iuuueaamDJlSkVfDgAAgGowXluxYkUa2HzggQeiadOmcdddd6X7DenZs2c899xzMWjQoCgoKFjTXq9evRg4cGD681NPPVWptQMAAOSSJ554IgoLC9NZPZMVFhLJuCoJgP76179OV08YOnRobLbZZvG3v/0t0+UCAABQ2aHP5s2bxxlnnJEODh988ME4/PDD05ljRowYEUcccUQce+yx6duCixYtquhLA+X54ovkf5ylt6QNAIAaJVvHa/Pnz4/TTjstffDYsmXLtLYf/ehH3/tzkxlAGzVqVOnL2QMAVDvuJ0K1lszg2bVr1+jYseOaMdk777wTdevWTdsTRUVF8ZOf/CT++9//ZrhaAAAAKj30+W277LJLXHfddfHKK6/EVVddFXvssUdMmjQprrjiinQ2md/85jfx73//uzJLABIlJf93U/bbW9IGAECNlS3jtVmzZkWvXr3SZdg7deoUjz76aLRv336jz//000/TWUsXL168Tl9xcXEsW7YsateuXcFVAwBUc+4nQrW2dOnSaNiw4ZrfkzFVMn7aeeedS62gkFi1alUGKgQAACBjoc/V6tevn84Yc+mll6YP85LlIZIHcn/+85/T348//vh4++23q6IUAAAAsmS89sUXX0SfPn3ik08+iZ/+9Kfx0EMPRYsWLTbpM6699to49dRT46WXXlqnL5mpJgl9du7cuQKrBgAAyG3JCgv/+c9/1vz+4osvpmPBbt26rWlLVoV4991302MBAADILoWVfYE5c+bEk08+mW6rB5DJQ8VDDz00unTpEv/7v/8b48ePj5NPPjluvfXW2G+//Sq7JAAAALJgvHbxxRenSwXuvffecfvtt0etWrU2+TMOOeSQNPD5xz/+MQ2ONmjQIG3/+uuv48orr0x/ToKlAAAA/J8dd9wxnnrqqbjllluibdu26dgvsXrMN3v27Lj++uvjyy+/jAMPPDDD1QIAAFAloc/k7b/nn38+nnjiiXjttdfSJSFKSkpihx12iOOOOy4OPvjgqFu3bnrsz3/+83j66afjkksuiZtuuknoEwAAoBJly3gtWVY+uX5iyy23jDvuuKPM44444oj0IWRi9OjRMWPGjLSOZCn4xGGHHRZjxoyJsWPHxkEHHRT7779/+h2TmWrmzp0bffv2jX333bfC6gYAAMh1Z599djouHDZsWPp7MiY86qij1oy9Dj/88Jg3b160atUqzjzzzAxXCwAAQKWHPgcNGhTPPvtszJ8/Px0kNm7cOH1QmDw8/NGPflTmOclDussvvzymT59e0eUAAACQheO1by/H/sADD5R7XDLj6OoHj0lQdeLEidG6des1oc/8/Px0ls9kafgkFDpq1KgoLCxM+3/961+nIVYAAAD+n3bt2sXjjz8ed999d7oCxG677Rannnrqmv7OnTvHZpttFhdeeGE0a9Yso7UCAABQBaHPkSNHrnkwlzw47NmzZ9SuXXu95yxbtiy22GKL2HnnnSu6HAAAADI8XpsyZco6bUkgM9k2RXnh0IKCgjjllFPSDQAAgA374Q9/GFdffXWZfXfeeWeV1wMAAEAGQ5/J0nnHHHNMtG/ffqPPSR4yPvfcc9/ruhMmTEjfQkyW/rvuuutK9X399dcxdOjQeOGFF9Ll/ZLlKI4++ui01mQGGAAAgJogU+M1AAAAcsM777wTs2bNih//+MfRpk2bTJcDAABAGfKjgl166aXpA8QkXPnqq6+W6ps8eXLccsstMXXq1Aq95sKFC9MZYpLlCdeWLFt48sknx4MPPpgOUJOZX+rWrRt/+MMf4oILLqjQOgAAALJZJsZrAAAAZJ9//vOfccYZZ5QaG15yySVx/PHHR//+/ePAAw+MIUOGZLRGAAAAqij0mXj44YfjZz/7Wdx4442l2t9///2444474pBDDolHHnmkwq43ePDgmDFjRpl9yQyfH330UVxxxRVx2223xUUXXRSPP/54HHDAAelsNWPGjKmwOgAAALJdVY/XAAAAyC7JS399+vSJl19+OT799NO0bfz48fH0009HQUFB7LLLLlGnTp30GVvSDgAAQDUPfb7++utx5ZVXRn5+fjoo/LaddtopnWkzLy8vrrrqqpg4ceL3vt64ceNi9OjRse+++67Tt3Tp0njssceiZcuW0atXrzXtyYA1eVsxMXLkyO9dAwAAQC6o6vEaAAAA2efee++N5cuXpzN9HnXUUWnbU089lY4Hk+dnDzzwQPr8LHmelrw4CAAAQDUPfd59993pIPCee+5Jl1z/tq233jptSwaTyVLsybHfx1dffRWXX355dO3aNU466aR1+t95551YvHhx2p881Py2tm3bRps2beLNN9+MVatWfa86AAAAckFVjtcAAADITsmzsW222SYGDBgQ9evXj+Li4nTWzyT0+fOf/zw9Junv0qVL+qwNAACAah76/PDDD9NB4K677lruMcmMMjvvvHP861//+l7XGjRoUBrqvOaaa9KB6No+++yzdN+uXbsyz0+Cn8mbjNOnT/9edQAAAOSCqhyvAQAAkJ2++OKLaN++/Zrfk2DnggUL4kc/+lH84Ac/WNPepEmTtB0AAIBqHvpcuHBhOgjckGbNmqXLr39XTz/9dDz33HNx0UUXpeHNssybNy/dl1dPw4YN0/38+fO/cx0AAAC5oqrGawAAAGSvZFz4zTffrPn9pZdeSve77757qeOmTZsWjRo1qvL6AAAAqOLQZ+vWrdMZYVauXFnuMcly6u+++260bNnyO11j9uzZcdVVV8Uee+wRJ554YrnHJbN4JoqKisrsX92+bNmy71QHAABALqmK8RoAAADZLZnl86233opPP/00fTkwmWglWVFvn332WXPMmDFj4oMPPoif/OQnGa0VAACAdRVGBdtvv/3ijjvuiCuvvDIGDhwYBQUFpfpLSkriuuuui1mzZkWfPn2+0zV+/etfpw8iBw8eXOay7qvVqVMn3a9YsWK9odD69et/pzogZ9SrFzFw4LptAADUKFUxXgMAoBpwPxGqteOPPz4mTJgQhx12WNSuXTsWLVqUBkFXz/R51llnxcsvv5w+gzv55JMzXS4AAACVHfo89dRT46mnnopRo0bFq6++mr4VmMwQkwwMkweHySBx6tSp6XKBp59++iZ//iOPPBKvvPJK+pAymaVmfRo3brze5dsXLFiQ7hs0aLDJdUBOSYLNgwZlugoAADKsssdrAABUE+4nQrV20EEHpUu3/+lPf0oDn9tss03ccssta/qnT5+erpaXPIv76U9/mtFaAQAAqILQZ5MmTeKee+6JSy65JN5777146KGH1szGmcwak/jRj34UN998c2y22Wab/PnPPPNMur/iiivSbW1PPPFEuh155JFx7LHHpm3JQ8uyJO316tWLVq1abXIdAAAAuaayx2sAAADkhjPOOCN9MTBZ3r1p06al+q655po0CFq3bt2M1QcAAEAVhj4TW2+9dTz++OPx73//O954442YM2dOusR68+bNo0uXLrHHHnt8589Owpxdu3Zdpz15IzGZsaZjx47pkoWdOnWK7bffPl26feLEiVFcXBz5+fmljp8xY0bsueee6yxpCAAAUF1V5ngNAACA3JHM5rl24DPRuXPnjNQDAABABkOfq+2www7pVpGOOuqoMttfe+21NPSZhD379eu3pv3QQw+NRx99NEaMGJG+sZhYtWpV3HDDDenPvXv3rtD6AAAAckFljNcAAAAAAACAHA59ZoP+/fvHK6+8Etdee21MmDAhOnTokAZE33///TjooIOiR48emS4RAAAAAAAAKsX3eRaWl5cXzz//fIXWAwAAQBaGPt966624884746OPPorFixdHSUlJuQPFZDnBypQsSzFy5Mi49dZb48UXX0wDn23atImLL744TjnllLQGAACAmiKbxmsAAABUvhkzZnzncz1HAwAAqAGhz+QBYrKMerKEenkPDyvDnnvuGVOmTCmzb/PNN4/BgwdXWS2Qdb76KmKvvUq3vfxykorOVEUAAGRApsZrAADkGPcToVoZMWJEpksAAAAgm0Ofw4YNi5UrV8YBBxyQzqSZBC4LCgoq+jLApli1KuKDD9ZtAwCgRjFeAwBgo7ifCNVK165dM10CAAAA2Rz6/Ne//hXt2rVLl1O35AMAAED2MF4DAAAAAACA3JZf0R+YzBrTsWNHDxABAACyjPEaAAAAAAAA5LYKD322b98+pk2bVtEfCwAAwPdkvAYAAAAAAAC5rcJDnyeccEJMmjQpXnjhhYr+aAAAAL4H4zUAAAAAAADIbYUV/YE//elP48ADD4zzzz8/jjjiiNhxxx2jUaNG5S4f2KNHj4ouAQAAgDIYrwEAAAAAAEBuq/DQZ/fu3dMHhiUlJTFq1Kh0W59klhkAAAAqn/EaAAAAAAAA5LYKD33uuuuuFf2RAAAAVADjNQAAgJqnV69esdtuu8WAAQPS32fOnBn16tWLJk2aZLo0AAAAsiH0+cADD1T0RwIAAFABjNcAAABqnilTpkSrVq3W/N6jR4847LDD4vrrr89oXQAAAHw3+d/xPAAAAAAAACDL5eXlxccffxzFxcXp7yUlJekGAABAbqrwmT5XW758eTz99NMxYcKEmDVrVrqMYP/+/ePBBx+M7bffPnbcccfKujQAAADrYbwGAABQc3Ts2DH++c9/xt577x3NmzdP28aPHx9HHnnkRgVGR48eXQVVAgAAkNHQ57vvvhvnnXdefP755+mbgsmAsHXr1mnf448/HoMHD46LL744TjvttMq4PAAAAOUwXgMAAKhZLrroojjjjDPiiy++SLfEN998k24bkowZAQAAqOahz2SWmF/+8pfpQDF5Y3CfffaJK6+8ck3/HnvskS4h8fvf/z46d+4cu+yyS0WXAAAAQBmM1wAAAGqenXfeOV588cX45JNPYunSpdGnT5/o1q1bnHnmmZkuDQAAgGwIfd5xxx3pA8Tf/OY3cfLJJ6dt336IeOmll8ZOO+2Uzixz3333eYgIAABQRYzXAAAAaqYGDRrEDjvssOb3zTbbLLp27ZrRmgAAAMiS0OfLL78c7du3X/MAsSwHHHBAdOrUKSZNmlTRlwfKUqdOxNlnr9sGAECNYrwGAMBGcT8RqrXJkydnugQAAACyKfQ5d+7c2HfffTd4XNu2bdNlJIAq0LBhxNChma4CAIAMM14DAGCjuJ8INcLXX38djz76aEyYMCHmzJkTRUVF6Qyge+yxRxx++OHRvHnzTJcIAABAVYQ+GzVqFDNnztzgcdOnT4+GyY0jAAAAqoTxGgAAAImJEydGv379Yv78+VFSUlKq77XXXou77747br755jQACgAAQHbJr+gP3GmnneL999+Pf/7zn+sdSH7wwQex4447VvTlAQAAKIfxGgAAADNmzIizzz47vvnmm9hnn33ipptuisceeyxGjhwZN9xwQ+y1114xb9686N+/f8yaNSvT5QIAAFDZoc++ffumbwSeddZZ8fjjj6cDx9WWL18eY8aMiQsuuCDy8vLi5JNPrujLAwAAUA7jNQAAAO66665YuHBhOv7705/+FAcffHB07tw5ffnvsMMOizvvvDMGDBiQhkLvv//+TJcLAABAZYc+u3TpEpdeemm6HMTll18e++23X/rA8JlnnklnlTn//PPjiy++SN8g3H333Sv68gAAAJTDeA0AAICXX345ttxyyzjjjDPKPebMM8+Mdu3axQsvvFCltQEAAJCB0Gfi1FNPjREjRqTLP9SpUyedSWblypWRn58fu+66awwbNiz69etXGZcGAABgPYzXAAAAarY5c+ZEp06dNnjcdtttF59//nmV1AQAAMDGK4xKkjwsTLbi4uKYN29eum/SpEkUFlbaJYHyzJsXccQRpduefDKiSZNMVQQAQAYZrwEAsF7uJ0K1Vq9evfjyyy83eFxyTPKyIAAAANml0p/oJbPFNG3atLIvA6zPihUR48ev2wYAQI1mvAYAQJncT4Rqbfvtt4833ngjJk+eHB07dizzmKTv7bffjt13373K6wMAAKCKQ59PJm/7boIj1n5bGAAAgEphvAYAAMAJJ5wQr776apx++ukxcODA2HfffdOXAhPJShDjxo2L3/3ud+nPvXr1ynS5AAAAVHbo87LLLou8vLwNHldSUpIe5yEiAABA1TBeAwAAYL/99ovjjjsuHnvssejXr1+6hHurVq3SvpkzZ8bSpUvTceExxxwT+++/f6bLBQAAoLJDn8nbgGU9RFy1alXMnz8/Jk2aFEuWLImePXvGdtttV9GXBwAAoBzGawAAACSuvPLKdNx3zz33xLRp0+KTTz5Z09e2bds47bTT0hlBAQAAqAGhz9tvv329/cnbgZdffnm6NMSAAQMq+vIAAACUw3gNAACA1ZKl25Nt9uzZ6ZbYfPPNY4sttsh0aQAAAKxHflSxZImIwYMHR926dePWW2+t6ssDAABQDuM1AACAmqdFixbRuXPndBP4BAAAyH5VHvpMFBUVxU477RSvv/56Ji4PAABAOYzXAAAAAAAAIHtlJPSZ+Oqrr2Lx4sWZujwAAADlMF4DAAAAAACA7JSR0OeTTz4Z//jHP2LrrbfOxOUBAAAoh/EaAAAAAAAAZK/Civ7AI488sty+lStXxpdffhlff/115OXlxXHHHVfRlwcAAKAcxmsAAAAAAACQ2yo89Dlp0qQNHlNUVBQnn3xynHDCCRV9eQAAAMphvAYAAAAAAAC5rcJDnyNGjCi3Lz8/P+rVqxdbbbVV1K1bt6IvDQAAwHoYrwEAAHDVVVdF+/bt48QTT8x0KQAAAGRD6LNr164V/ZEAAABUAOM1AAAAnn766Wjbtm3GQp/9+/ePt99+O1566aWNPue4446Lf//732X27bPPPjFs2LAKrBAAAKCGhT4BAAAAAACA7LRy5cpo1apVRq49ZMiQePbZZ6NFixYbfU5xcXF8+OGH0aZNmzjiiCPW6f/hD39YwVUCAADUsNDntdde+53PzcvLi8suu6xC6wEioqgo4phj1m0DAKBGMV4DAGCjuJ8I1dqBBx4Yzz33XHz88cfRoUOHKrnmsmXL0mXlR40atcnn/uc//4klS5ZEt27dol+/fpVSHwAAQI0Ofd5///3pw8DVSkpKSvVvqM9DRKgEjRtHfIcbKQAAVC/GawAAbBT3E6Fa+/nPf54ulX7kkUfGnnvuGZ06dYomTZpEfn5+mcefcsop3+t648aNi6uvvjpmzJgR3bt3j/Hjx2/S+VOmTEn322677feqAwAAoLqo8NDnHXfcEU888UT6hmDyduAhhxySLqtQq1atmD17dowdOzZee+21aN26dTqYBAAAoGoYrwEAAPCLX/wifbEvedkvCWC+9NJLZR6X9CfHfd/Q5+OPPx6LFi2KgQMHxgknnBAdO3bcpPMnTZqU7jf1PAAAgOqqwkOfq1atijFjxsRJJ50Uv/71r9d5K7B3797p7DLXXXddtG3bNg4//PCKLgEAAIAyGK8BAABwxBFHlFrpobL16dMnbrjhhmjQoMF3On916PODDz6I66+/Pj766KMoKipKZyk977zzYquttqrgigEAAGpY6HPYsGHRpk2bMh8gfntwN3r06Bg+fLiHiAAAAFXEeA0AAIDkRb+qtNtuu32v8ydPnpzub7755jjggAOiS5cu8d5778UzzzyTzlJ63333RefOnSuoWgAAgBoY+vzwww9jn332KfcB4mrJW3cvvPBCRV8eAACAchivAQAAkEsWL14cm2++eWy22Wbxpz/9KVq1arWmb+TIkemS8RdffHEaAC0oKMhorQAAAFVl/U/6voOGDRvGp59+ut5jSkpK0qUYfvCDH1T05QEAACiH8RoAAACrzZ07N2699dY44YQT0hcEBw0atGZGzSREmQ3q1auXrkbx1FNPlQp8Jnr16hU77bRTfPbZZ/HOO+9krEYAAICcD3127do1Pvroo3QphfLcdNNNMXXq1Nh3330r+vJAWb75JuLYY0tvSRsAADWK8RoAABvF/USo9saPHx8HHXRQ3HHHHfHPf/4zZs+enc6qmRg3blxceOGFcfXVV0e2W72sezKOBQAAqCkqfHn3//mf/0kHgzfccEO6Tx4UtmzZMp0tZvr06fHcc8/F+++/H82aNYtzzjmnoi8PlGX58ojHHy/ddvvtmaoGAIAMMV4DAGCjuJ8I1donn3wS5513XqxatSqdLTOZ5fPMM89c03/MMcfEH//4x3jooYdizz33zOhLgV9//XW6YkXTpk1jq622Wqd/yZIl6b5OnToZqA4AAKCahD47dOgQQ4cOjUsvvTTefPPNeOutt0r1Jw8T27dvH7fddltsttlmFX15AAAAymG8BgAAwJ/+9KdYvnx5urT7AQccsE5/nz59Yvvtt4+TTjopDX5mMvT5+uuvx4ABA9Jg6rBhw0r1FRcXx9tvvx15eXnxk5/8JGM1AgAA5HzoM5G89fe3v/0tnn/++Zg4cWLMnTs3bW/VqlXa16NHjygoKKiMSwMAALAexmsAAAA124QJE6JTp05lBj5X69KlS+ywww7x8ccfRybtvffe0bBhw3jppZfi1VdfjW7duq3pS15qTOpLvkcypgUAAKgpKiX0mahfv34cfvjh6QYAAED2MF4DAACoub755pvYeeedN3hc8+bN4/3334+qMmnSpPQFxdatW8dRRx2VtjVo0CCuvPLKuOiii+L000+P/fffP1q2bBn//Oc/41//+ldsvfXWMWjQoCqrEQAAoFqHPhNTp06NN954I2bOnJkOun7+85+nywcmS0LUqVOnMi8NAADAehivAQAA1Ew/+MEP4rPPPtvgcZ9++mk0bdo0qjL0OWTIkOjateua0Gfi4IMPTmfyvOOOO9Ll3hcvXpz+fsYZZ8SZZ56ZBkMBAABqksLKekPw8ssvT9/GKykpSduSB4jJ9vvf/z59uPjHP/4xdtlll8q4PAAAAOUwXgMAAKjZdtttt/jrX/8aY8eOjR49epR5zHPPPReffPJJHHrooRV+/SlTppTZngQ9vx32/LYdd9wxDX0CAAAQkV/RH7hkyZLo06dPjBkzJpo0aRIHHnjgmgeJiaKiovj666/TJRiSh4kAAABUDeM1AAAAkhkyCwsLY8CAAXHrrbfGxIkT0/YVK1akY8H77rsvLrvssvSYvn37ZrpcAAAAKjv0mQwEJ0+eHIccckj6huAtt9xSqv+BBx6I0047LX3YeM8991T05QEAAMiy8Vr//v1j7733LrMvWZbvtttuSwOonTt3jn333TduvPHGtIZN8fbbb6e1JzPW7Lzzzmm4dfWDSwAAAP6fbbbZJm644YbIy8tLZ89Mxk/Jz3/729/SsVnSlwRABw4cGD/+8Y8zXS4AAACVHfp89tlno1mzZnHttddG3bp1yzzmoosuilatWnkABwAAUIUyMV4bMmRIet2yLF++PM4666wYOnRotGnTJn3Q2Lp167jzzjvT2WSS/o0xfvz4OPnkk2PSpEnpMvWHH354fPDBB+nnJcvYAwAAUNpBBx0UTz/9dPTq1St++MMfRu3ataNWrVrpePCII46Ixx9/PI499thMlwkAAEAZCqOCJcs+dO/ePV0WsDz5+fnpm4Evv/xyRV8eAACALBivLVu2LK666qoYNWpUuceMHDky3njjjfjlL38ZF1988Zr2wYMHx4gRI+Khhx7a4FKCSTD0N7/5TTRo0CBGjx4dLVu2TNuT85IHlIMGDYpu3bqVG3IFAACoqbbccst0Nk8AAABq+EyfyVuA8+bN2+BxX331VXosAAAAVaOqxmvjxo1LZ41JAp9JyLQ8SbAzCaD+z//8zzrLwSchzSQUuiHPPPNMzJ07N52dZnXgM9GuXbvo3bt32me2TwAAgPItXLgwPv3005g2bVr6Ah8AAAA1LPTZsWPHePfdd2P27NnlHjN9+vR47733Ytttt63oywMAAJDh8VqyDOCiRYvSGWOGDRtW5jEzZsxIHyh27tw5naXz2+rXr5+2f/bZZ/H555+v91rJTKGJ3XfffZ2+PfbYI91PmDDhO38XAACA6ipZLeGoo46Krl27xiGHHBIHHHBAdOnSJU466aR44YUXMl0eAAAAVRX6POaYY2LJkiVx7rnnpksHri2ZZeXCCy9Ml+A7/PDDK/ryAAAAZHi81qdPnxg7dmyceOKJkZeXV+YxSaBz9YycZWnbtm26T2abWZ///Oc/a5Yl/K6fAQAAUJMUFxenKyz85je/iQ8++CAdt2222WbplvS99dZbcfbZZ8dNN92U6VIBAAAoQ2FUsCOOOCJdym/MmDFx4IEHpsvrJYPFiRMnpg/8khljkgeI3bp1Sx84AgAAUDWqary22267bfCY1cvMN2nSpMz+hg0bpvv58+dv1Oc0btx4nb7VM4guWLBgI6oGAACoGZLVGf72t79FixYt4le/+lX87Gc/i9q1a6d9yYuCSd8NN9wQd911V7oKw3777ZfpkgEAAKjM0GfilltuiTvuuCPuv//+mDlzZtqWLMmXbHXr1o3TTjstfYOwvBlfgApWq1ZE9+7rtgEAUONky3htxYoV6b6oqKjM/tXty5Yt+86fs7GfAQDAWtxPhGrtscceizp16sSIESPWWTUhGRceeeSR0alTp/RlwPvuu0/oEwAAoCaEPvPz89NlH04//fR0WYjkQWJJSUk0b948fvKTn6QDSaAKJbMnvfhipqsAACALZMt4bfUsMsnMomVZ3V6/fv31fs7qepPwZ621ggirP6NevXoVUjMAQI3hfiJUax9//HG6QsPagc9v69ixY3rM22+/XaW1AQAAkIHQ5znnnBNbbbVVXHTRRekDtx122CHdAAAAyKxsGq+tXta9vKXXV7evXqK9PKuXdU+OXzvcuXDhwlJLxQMAAPB/L8ZtzOoOyct6a79cBwAAQOblV/QHvv766976AwAAyELZNF7beuut0/3UqVPL7F/d3qFDh+/8Oavb2rdv/73rBQAAqC66d+8eEyZMiOnTp5d7zFdffRUTJ06Mbt26VWltAAAAZCD0WVBQEI0aNarojwUAAKAajddatGiRLiX4zjvvxOLFi0v1LVq0KN599920v1mzZuv9nK5du6b75IFlWSHXRJcuXSq0dgAAgFyWrP6QjLVOPfXUGDt27Dr9H330Ufzyl7+M+vXrxyWXXJKRGgEAAKjC0OcxxxwTr776arz22msV/dEAAABUo/FaUs+SJUvilltuKdWe/J60n3jiiRv8jB49eqRLxT/44IMxbdq0UrN8Pvzww9G8efM48MADK6V+AACAXJC8LPft7aCDDoovvvgiZsyYEeeee27ssssuccQRR8Txxx8f++yzTxx22GExadKkKCwsjPPOOy/T5QMAALCWwor+wG233TbatGkTv/jFL9Il9Dp16pQ+gMvPXzdfmpeXF5dddllFlwAAAEAOjNeSWWX+9re/xf33358+UNxxxx3jX//6V7qEYPLQce3Q5+jRo9OHkvvtt19aeyKZeWbgwIFx4YUXxtFHHx2HHHJI2v6///u/sXDhwvjjH/8YtWvXrtTvAQAAkM3mz5+/3v5k7DR58uR12pPx18yZMyuxMgAAALIi9Jk8FEweDpaUlMTHH3+cbuUR+oQqsmBB8j/O0m3XXRfRsGGmKgIAIAOybbxWVFQUI0aMiCFDhqThzyTw2bJlyzjrrLPi9NNPT/u/7YknnkgDoa1bt14T+kwcfPDB0bhx4/jTn/4UTz75ZNSqVSvtP+ecc9Ys/w4AwCZwPxGqlbKWcAcAACB3VXjoM3moljwcBLLI0qURt99eum3QIDdpAQBqmEyN16ZMmVJuX4MGDdJw6cYETB944IFy+7p165ZuAABUAPcToVpJXpwDAACg+qjw0Ge/fv0q+iMBAACoAMZrAAAAAAAAUMNDn8lSeclSeoOSt3wBAADIGsZrAAAAlOXll1+ORx55JD777LNYtmxZucclq0U8//zzVVobAAAAlRz6nD9/fixevLjMvlNOOSVdXu/MM8/8vpcBAABgExmvAQAAsLbx48fHWWedFSUlJRs8Ngl9AgAAUM2Xd/+2iRMnxhZbbFGZlwCqseLi4nTLFvn5+ekGAFAdGK8BAADUTLfffnsa+Dz22GPjkEMOicaNGwt3AgAA5JBKDX0CfFdJ2LN3n74xa+4XkS1aNm8WD91/n+AnAAAAAAA56+OPP47tttsurrrqqkyXAgAAwHcg9AlkbegzCXyecdN9kV9QkOlyonjVqrjzgr5pXUKfAAAAAADkqqKiomjZsmWmywAAAOA7EvoEsloS+Cwo9J8qAAAAAACoCHvuuWe8+eabsWzZsqhdu3amywEAAGATma4OAAAAAAAAaogLLrggli9fHhdffHF8+eWXmS4HAACATWT6PAAAAAAAAKghWrduHRdeeGFcfvnl8fzzz8fmm28eP/jBD8o8Ni8vL0aPHl3lNQIAAFA+oU8AAAAAAACoIcaPHx+DBg1Kfy4uLo7PP/883coLfQIAAFANQ59/+ctf0q2sgWB5fav7P/jgg4ooAQAAgDIYrwEAAPBtQ4cOjVWrVkWPHj3i0EMPjaZNmwp3AgAA1LTQZ0lJSZWeBwAAwMYxXgMAAODbPvroo9h2223T8CcAAAA1MPQ5duzYiqkEAACACmW8BgAAwNrq1KkT7dq1y3QZAAAAZCr02bp16+/7EUBlKyiI2G67ddsAAKjWjNcAAPhO3E+Eam3PPfeMN954I5YvXx5FRUWZLgcAAIBNlL+pJwA5qGnTiPffL70lbQAAAAAAa3M/Eaq1/v37p4HP888/P2bNmpXpcgAAAKjqmT4BAAAAAACA3HDPPffEtttuGy+++GK6NWvWLJo0aRKFhes+NszLy4vRo0dnpE4AAADKJvQJAAAAAAAANcTIkSNL/T537tx0K0sS+gQAACC75Gzoc968eTFs2LAYN25cuvTEZpttFj169Iizzz47mq61zMzXX38dQ4cOjRdeeCEdtLZq1SqOPvro6Nu3b5lvLQIAAAAAAEB1NGLEiEyXAAAAwPeQk4nHBQsWxIknnhiffPJJ7LHHHmnY89NPP40HHnggnnvuuXjssceiZcuW6bHz58+Pk08+OT7++OM44IADol27dvHqq6/GH/7wh3j33Xfjtttuy/TXAQAAAAAAgCrRtWvXTJcAAABATQt9DhkyJA189uvXL84999w17Q8++GBcddVVaZDz2muvTduSGT4/+uijGDhwYBoUTQwYMCD69++fBkTHjBmThkEBAAAAAAAAAAAAsllOhj6nT58ezZo1i1/84hel2g8//PA09PnPf/4z/X3p0qVrZv3s1avXmuMKCgrikksuSQOfI0eOFPqk+lu0KOL3vy/ddvHFEfXrZ6oiAAAAACBbuZ8I1dqvfvWrjT42Ly8vrrnmmkqtBwAAgBoQ+kxm7yxLMvtnonnz5un+nXfeicWLF8f+++8f+fn5pY5t27ZttGnTJt58881YtWpVGgSFamvx4ojf/a502znnuEkLAAAAAKzL/USo1p544okNBj0TJSUlQp8AAABZKCdDn2v75ptvYsKECXHddddFYWFhnH322Wn7Z599lu7btWtX5nlJ8DOZNTTZttxyyyqtGQAAAAAAALJlps/i4uL0mds//vGPdNKUo446Ko4//vgqrw8AAIBqHvp85JFHYtCgQenPyWydv//972OPPfZIf583b166b9KkSZnnNmzYMN3Pnz+/yuoFAAAAAACATOnTp88Gj3nooYfi6quvjkMOOaRKagIAAGDjlV7zPAc1bdo0Tj/99DjiiCOidu3acdFFF8Xdd9+d9i1fvjzdFxUVlXnu6vZly5ZVYcUAAAAAAACQvXr37h1bbbVVDBs2LNOlAAAAUN1m+jzwwAPTLdGvX790mYlkts/ddtst6tSpk7avWLGizHNXh0Lr169fhRUDAAAAAABAduvQoUO8+uqrmS4DAACA6jbT57e1adMmfvnLX6Y/jx07Nho3brze5dsXLFiQ7hs0aFCFVQIAAAAAAEB2++STTzJdAgAAANVhps9kds4333wzVq1aFXvvvfc6/W3btk33X331Vey1117pz1OnTi3zs5L2evXqRatWrSq5agAAAAAAAMi8hQsXltu3cuXKmDt3bgwfPjw+/fTT2H333au0NgAAAKpp6PP0009Pw5qvvfZaFBUVlep///330/1WW20V22+/fbp0+8SJE6O4uDjy8//fxKbTpk2LGTNmxJ577hkFBQVV/j0AAAAAAACgqu26664bPKakpCR9fnbGGWdUSU0AAABU4+Xdk6XYe/TokS7NPmTIkFJ97733XvrmYRIIPfTQQ6N27drpfvr06TFixIg1xyWzhN5www3pz717967y7wAAAAAAAACZkAQ6y9sSyXO2Ll26xNChQ2OPPfbIdLkAAADk+kyfid/85jdpwHPYsGHx1ltvxQ477BAzZ86MsWPHRl5eXtx8883RvHnz9Nj+/fvHK6+8Etdee21MmDAhOnTokM4QmswIetBBB6UBUgAAAAAAAKgJJk+enOkSAAAAqGmhzy222CL+/Oc/x+23354GPf/9739Ho0aNYr/99ouzzjorOnbsuObYpk2bxsiRI+PWW2+NF198MQ18tmnTJi6++OI45ZRT0pAoAAAAAAAAAAAAQLbLydDn6jDnb3/723TbkM033zwGDx5cJXUBAAAAAAAAAAAAVIacDX0CAAAAAAAA6/erX/3qO5+brJh3zTXXVGg9AAAAfD9CnwAAAAAAAFBNPfHEE5sc9Pw2oU8AAIDsIvQJNUFyg6ZZs3XbAAAAAADW5n4i1NiZPleuXBkjRoyIOXPmRElJSbRt27ZSawMAAGDTCX1CTZDcoJ07N9NVAAAAAAC5wP1EqFb69OmzUcd9+OGHcdlll60JfB577LHp7wAAAGQXoU8AAAAAAACowe6+++647bbbYvny5dG8efO4+uqro3v37pkuCwAAgDIIfQIAAAAAAEANNG3atHQ2z7fffjud3fOggw6KQYMGRePGjTNdGgAAAOUQ+gQAAAAAAIAaZuTIkXHDDTfE4sWL05DnwIED4+CDD850WQAAAGyA0CcAAAAAAADUEHPmzIlf//rX8eqrr6aze+69994xePDgdFl3AAAAsp/QJwAAAAAAANQAf/nLX+Lqq6+Ob775JurVq5cu7X7cccdluiwAAAA2gdAn1ARLlkTce2/pttNOi6hbN1MVAQAAAADZyv1EqHbmzZsXV1xxRfz9739PZ/fcZZdd4tprr422bdtmujQAAAA2kdAn1AQLF0ace27ptuTNXTdpAQAAAIC1uZ8I1cq4cePSwOeXX34ZRUVFMWDAgDj11FMzXRYAAADfkdAnAAAAAAAAVFNnn3125OXlpT83aNAgnnrqqXTbGMl5o0ePruQKAQAA2BRCnwAAAAAAAFCNJUu6J5LZPpNtY60OiwIAAJA9hD4BAAAAAACgmhoxYkSmSwAAAKACCX0CAAAAAABANdW1a9dMlwAAAEAFyq/IDwMAAAAAAAAAAACgcgh9AgAAAAAAAAAAAOQAoU8AAAAAAAAAAACAHCD0CQAAAAAAAAAAAJADhD4BAAAAAAAAAAAAcoDQJwAAAAAAAAAAAEAOEPoEAAAAAAAAAAAAyAFCnwAAAAAAAAAAAAA5QOgTAAAAAAAAAAAAIAcIfQIAAAAAAAAAAADkgMJMFwBUgebNI0pKMl0FAAAAAJAL3E8EAAAAyFpm+gQAAAAAAAAAAADIAUKfAAAAAAAAAAAAADlA6BMAAAAAAAAAAAAgBwh9AgAAAAAAAAAAAOSAwkwXAFWtuLg43bJBfn5+ugEAAAAAAAAAAMCGCH1SoyRhz959+sasuV9ENmjZvFk8dP99lR/8XLYs4umnS7cddlhE7dqVe10AAAAAIPe4nwgAAACQtYQ+qXGhzyTwecZN90V+QUFma1m1Ku68oG9aU6WHPufPjzjuuNJtc+ZENG9eudcFAAAAAHKP+4kAAAAAWUvokxopCXwWFPrnDwAAAAAAAAAAQO6QegMAACAjtt122w0ec+SRR8Z11123weO6desWX3zxRZl9vXv3jiuuuOI71QgAAAAAAADZROgTAACAjDj33HPLbC8pKYnhw4fHokWLYvfdd9/g58ydOzcNfG633Xax7777rtPfuXPnCqkXAAAAAAAAMk3oEwAAgIzo169fme333ntvGvg8/vjj44gjjtjg50yaNCnd9+zZM84888wKrxMAAAAAAACyRX6mCwAAAIDVPvroo7jpppuibdu28atf/Wqjzpk8eXK679ixYyVXBwAAAAAAAJkl9AkAAEDWuPbaa2PFihVx+eWXR926dTfqHKFPAAAAAAAAagrLuwMAAJAVxo8fH6+++mp069YtunfvvtHnJcu716tXL5577rn485//HP/973+jQYMGsc8++8R5550Xm2++eaXWDQAAAAAAAFXFTJ8AAABkhbvvvjvdn3322Rt9ztKlS9OQ5+LFi+P222+PHXbYIY477rho0aJFjBo1Ko4++uiYPn16JVYNAAAAAAAAVcdMnwAAAGTcBx98EBMnToxddtkl3TbW3Llzo0OHDtGoUaMYMmRINGnSJG0vKSmJm2++OYYNGxa//e1vY/jw4ZVYPQAAAAAAAFQNoU8AAAAybvTo0em+d+/em3Re27Zt4+mnn16nPS8vL13a/S9/+Uu8/vrrMWfOHMu8AwAAAAAAkPMs7w4AAEDGjR07NurVqxc/+9nPKuwzCwsLY7vttkt/njp1aoV9LgAAAAAAAGSK0CcAAAAZNXny5Jg5c2Ya+Kxbt+4mnTt79ux48803Y9asWWX2L1myJN3XqVOnQmoFAAAAAACATBL6BAAAIKPefvvtdL/LLrts8rnJ0u4nnXRS3HXXXev0LVq0KN5///00SLrNNttUSK0AAAAAAACQSUKfAAAAZNR7772X7rfffvtNPvfAAw9Ml3EfPXp0TJkyZU37ypUr45prrol58+ZFr169onbt2hVaMwAAAAAAAGRCYUauClStzTaLmDNn3TYAAMgCU6dOTfctWrRY73FvvPFGTJw4MTp16hT77bdf2tauXbu48MIL4/rrr4/jjjsuevbsGY0aNYoJEybEhx9+GF26dInzzz+/Sr4HAEC14X4iAAAAQNYS+oSaID8/onnzTFcBAABl+uqrr9J9w4YN13tcEvgcMmRIHHnkkWtCn4nTTjst2rdvH/fee2/8/e9/jxUrVsSWW26ZhkFPPfXUKCoqqvTvAABQrbifCAAAAJC1hD4BAADIqGeeeWajjuvXr1+6laV79+7pBgAAAAAAANVZfqYLAAAAAAAAAAAAAGDDhD4BAAAAAACAKtG/f//Ye++9N+mcr7/+Oq6++uro0aNHdO7cOXr27Bl33XVXrFy5stLqBAAAyFZCnwAAAAAAAEClGzJkSDz77LObdM78+fPj5JNPjgcffDB+/OMfxymnnBJ169aNP/zhD3HBBRdUWq0AAADZqjDTBQBVYPnyiNdeK922554RRUWZqggAAAAAyFbuJwIVbNmyZXHVVVfFqFGjNvncoUOHxkcffRQDBw6ME088MW0bMGBAOmPoc889F2PGjIkDDjigEqoGAADITkKfUBN8803Ez35Wum3OnIjmzTNVEQAAAACQrdxPBCrQuHHj0qXZZ8yYEd27d4/x48dv9LlLly6Nxx57LFq2bBm9evVa015QUBCXXHJJGvgcOXKk0CcAAFCjWN4dAAAAAAAAqBSPP/54LFq0KJ2pc9iwYZt07jvvvBOLFy+Orl27Rn5+6ceabdu2jTZt2sSbb74Zq1atquCqAQAAspfQJwAAAAAAAFAp+vTpE2PHjk2XZs/Ly9ukcz/77LN0365duzL7k+Dn8uXLY/r06RVSKwAAQC6wvDsAAAAAAABQKXbbbbfvfO68efPSfZMmTcrsb9iwYbqfP3/+d74GAABArjHTJwAAAAAAAJB1klk8E0VFRWX2r25ftmxZldYFAACQSUKfAAAAAAAAQNapU6dOul+xYsV6Q6H169ev0roAAAAySegTAAAAAAAAyDqNGzde7/LtCxYsSPcNGjSo0roAAAAySegTAAAAAAAAyDpbb711up86dWqZ/Ul7vXr1olWrVlVcGQAAQOYIfQIAAAAAAABZZ/vtt0+Xbp84cWIUFxeX6ps2bVrMmDEjdtxxxygoKMhYjQAAAFVN6BMAAAAAAADIOrVr145DDz00pk+fHiNGjFjTvmrVqrjhhhvSn3v37p3BCgEAAKpeYQauCQAAAAAAALDGpEmT4vnnn4/WrVvHUUcdtaa9f//+8corr8S1114bEyZMiA4dOsRrr70W77//fhx00EHRo0ePjNYNAABQ1cz0CQAAAAAAAGQ89DlkyJB44oknSrU3bdo0Ro4cGcccc0y8++676YyfS5cujYsvvjid7TMvLy9jNQMAAGSCmT4BAAAAAACAKjFlypQy25PZPb89w+e3bb755jF48OBKrgwAACA3mOkTAAAAAAAAAAAAIAcIfQIAAAAAAAAAAADkAMu7Q03wgx9EvPfeum0AAAAAAGtzPxEAAAAgawl9Qk1QWBjx4x9nugoAAAAAIBe4nwgAAACQtSzvDgAAAAAAAAAAAJADhD4BAAAAAAAAAAAAcoDQJwAAAAAAAAAAAEAOEPoEAAAAAAAAAAAAyAGFmS4AqAIrV0ZMmVK6bdttIwr9JwAAAAAAWIv7iQAAAABZyx0aqAm+/jpi++1Lt82ZE9G8eaYqAgAAAACylfuJAAAAAFnL8u4AAAAAAAAAAAAAOUDoEwAAAAAAAAAAACAHCH0CAAAAAAAAAAAA5AChTwAAAAAAAAAAAIAcIPQJAAAAAAAAAAAAkAOEPgEAAAAAAAAAAABygNAnAAAAAAAAAAAAQA4ojBy1aNGiGDZsWIwZMyZmzJgRtWrViu222y769OkT+++/f6ljv/766xg6dGi88MILMXfu3GjVqlUcffTR0bdv3ygszNk/AQAAAAAAAAAAAFCD5ORMnwsXLowTTjghDX3Wq1cvTjzxxOjZs2dMnjw5zj333LR9tfnz58fJJ58cDz74YPz4xz+OU045JerWrRt/+MMf4oILLsjo9wAAAAAAAAAAAADYWDk5zeVdd90VU6ZMiV69esWgQYMiLy8vbT///PPTGTxvvfXWNAS65ZZbpjN8fvTRRzFw4MA0HJoYMGBA9O/fP5577rl0ptADDjggw98IAAAAAAAAAAAAoBrO9Pnss8+mQc8LL7xwTeAz0aJFi3QG0FWrVsX48eNj6dKl8dhjj0XLli3TgOhqBQUFcckll6Q/jxw5MiPfAQAAAAAAAAAAAKDaz/TZp0+fWLBgQTRq1GidvqKionS/aNGieOedd2Lx4sWx//77R35+6Xxr27Zto02bNvHmm2+mIdEkCAoAAAAAAAAAAACQrXIy9Nm7d+8y20tKStLl2hPbbrttfPbZZ+nP7dq1K/P4JPg5ffr0dEuWggcAAAAAAAAAAADIVjm5vHt5Hn744XR2zyTMuddee8W8efPS9iZNmpR5fMOGDdP9/Pnzq7ROAAAAAAAAAAAAgBox02dZnnnmmRg8eHAUFhbGddddF7Vq1Yrly5eXWvJ9bavbly1bVqW1QpVr3DjihRfWbQMAAAAAWJv7iQAAAABZq7C6zPB51VVXRV5eXlx//fWxyy67pO116tRJ9ytWrCjzvNWh0Pr161dhtZABScB5n30yXQUAAAAAkAvcTwQAAADIWjkd+iwuLo4bbrgh7rvvvnTWzhtvvDEOOOCANf2N//83j8tbvn3BggXpvkGDBlVUMQAAAAAAAAAAAEANC30ms3ReeOGFMWbMmGjSpEkMHTp0zQyfq2299dbpfurUqWV+RtJer169aNWqVZXUDAAAAAAAAAAAAPBd5UcOWrVqVZx//vlp4LNNmzbxyCOPrBP4TGy//fbp0u0TJ05MZwX9tmnTpsWMGTNixx13jIKCgiqsHgAAAAAAAAAAAKCGhD7vvPPOGDduXDpD58MPP7xmRs+11a5dOw499NCYPn16jBgxolRoNFkWPtG7d+8qqxsAAAAAAAAAAACgxizvPm/evDT0mejUqVM89thjZR6XzPy5xx57RP/+/eOVV16Ja6+9NiZMmBAdOnSI1157Ld5///046KCDokePHlX8DSADkpluv/yydNtmm0Xk52TuGwAAAACoTO4nAgAAAGStnAt9vvXWW7F48eL057Fjx6ZbWc4666w09Nm0adMYOXJk3HrrrfHiiy+mgc9kSfiLL744TjnllMjLy6vibwAZkNyg3Xzz0m1z5kQ0b56pigAAAACAbOV+IgAAAEDWyrnQ53777RdTpkzZpHM233zzGDx4cKXVBAAAAAAAAAAAAFDZci70CUD2KS4uTrdskZ+fn24AAAAAAAAAAFCdCH0C8L0kYc/effrGrLlfRLZo2bxZPHT/fYKfAAAAAAAAAABUK0KfAHzv0GcS+Dzjpvsiv6Ag0+VE8apVcecFfdO6hD4BAAAAAAAAAKhOhD4BqBBJ4LOg0P9ZAQAAAAAAAACAymIKNAAAAAAAAAAAAIAcIPQJAAAAAAAAAAAAkAOEPgEAAAAAAAAAAABygNAnAAAAAAAAAAAAQA4Q+gQAAAAAAAAAAADIAUKfAAAAAAAAAAAAADlA6BMAAAAAAAAAAAAgBwh9AgAAAAAAAAAAAOQAoU8AAAAAAAAAAACAHFCY6QKAKtCoUcRjj63bBgAAAACwNvcTAQAAALKW0CfUBLVrRxx7bKarAAAAAABygfuJAAAAAFnL8u4AAAAAAAAAAAAAOUDoEwAAAAAAAAAAACAHWN4dAACAjHrkkUdi0KBB5fa//vrr0bRp0/V+xsyZM+O2225Lj503b1788Ic/jN69e8dxxx1XCRUDAAAAAABAZgh9AgAAkFGTJk1K96eeemo0aNBgnf66deuu9/wZM2ZEr1694uuvv46DDz44mjVrFs8//3xcfvnl8emnn8Zll11WabUDAAAAAABAVRL6BAAAIKMmT54cderUiUsvvTTy8/M3+fxrr7025syZE3feeWd07949bTvvvPOiT58+MXz48Dj00ENj++23r4TKAQAAAAAAoGpt+tM0IPfMnRuRl1d6S9oAACDDiouL48MPP4xtttnmOwU+k1k+k1k9d9pppzWBz0QSIh0wYECUlJTEo48+WsFVAwBUc+4nAgAAAGQtoU8AAAAy5rPPPoslS5ZEx44dv9P5EydOTIOde+yxxzp9Xbp0iVq1asWECRMqoFIAAAAAAADIPKFPAAAAMrq0eyIvLy+dmXOvvfaKzp07xzHHHBN//etfNyo0mthyyy3X6UsCny1btozp06fH8uXLK6F6AAAAAAAAqFpCnwAAAGQ89PnYY4/Fl19+GYcddljsv//+8cknn8SFF14YN91003rP//rrr9N948aNy+xv2LBhuoT8woULK6F6AAAAAAAAqFqFVXw9AAAAWCNZmr1169bRr1+/OPLII9e0T5s2LU444YQYNmxY7L333rHLLruUef6KFSvSfVFRUZn9q9vN9AkAAAAAAEB1YKZPAAAAMiaZzXPcuHGlAp+Jtm3bxnnnnZf+/PTTT5d7fp06dUqFP9e2OuxZr169CqwaAAAAAAAAMkPoEwAAgKzUuXPndD916tRyj1m9rPv8+fPL7F+wYEHk5eVFgwYNKqlKAAAAAAAAqDpCnwAAAGREcXFxvPfeezFx4sQy+xcvXlxqNs+ybL311uUGQ5PZP2fNmhVbbbVV5Ocb/gIAAAAAAJD7PPUCAAAgY04++eQ45ZRT4ssvv1yn76233kr3P/nJT8o9v2vXrulMnm+88UaZ5yfBzy5dulRw1QAAAAAAAJAZQp8AAABkRDL7Zs+ePaOkpCR+//vfpzN/rjZ58uQYNmxY1KtXL4455phyP2OLLbaIbt26pbOFPv/882valy5dGrfcckv6c+/evSv5mwAAAAAAAEDVKKyi6wAAAMA6LrroovjHP/4RTzzxREyZMiV22223mD17dhrgTEKgN998c7Ro0SI9NpnNMwl3durUKfbbb781n/Hb3/42evXqFeedd14cdNBB6fFjx46Nzz77LH7xi1+kxwMAAAAAAEB1YKZPAAAAMmazzTaLUaNGRd++fWP+/Pnx4IMPxmuvvRbdu3ePRx99NA444IA1xyaBzyFDhpSa0TOx1VZbrTn2lVdeiYcffjjq1q0bV199dVx88cUZ+FYAAAAAAABQOcz0CQAAQEY1btw4LrvssnRbn379+qVbWX74wx+uWc4dAAAAAAAAqiszfQIAAAAAAAAAAADkAKFPAAAAAAAAAAAAgBxgeXeoCRo0iBgyZN02AAAAAIC1uZ8IAAAAkLWEPqEmqFs34pxzMl0FAAAAAJAL3E8EAAAAyFqWdwcAAAAAAAAAAADIAUKfAAAAAAAAAAAAADlA6BMAAAAAAAAAAAAgBwh9AgAAAAAAAAAAAOQAoU8AAAAAAAAAAACAHFCY6QKAKvDFFxGdOpVumzQpolmzTFUEAAAAAGQr9xMBAAAAspbQJ9QEJSX/d6N27TYAAAAAgLW5nwgAAACQtSzvDgAAAAAAAAAAAJADhD4BAAAAAAAAAAAAcoDQJwAAAAAAAAAAAEAOEPoEAAAAAAAAAAAAyAFCnwAAAAAAAAAAAAA5QOgTAAAAAAAAAAAAIAcIfQIAAAAAAAAAAADkAKFPAAAAAAAAAAAAgBwg9AkAAAAAAAAAAACQA4Q+AQAAAAAAAAAAAHKA0CcAAAAAAAAAAABADhD6BAAAAAAAAAAAAMgBQp8AAAAAAAAAAAAAOaAw0wUAVaBevYiBA9dtAwAAAABYm/uJAAAAAFlL6BNqgvr1IwYNynQVAAAAAEAucD8RAAAAIGtZ3h0AAAAAAAAAAAAgBwh9AgAAAAAAAAAAAOQAoU8AAAAAAAAAAACAHCD0CQAAAAAAAAAAAJADhD4BAAAAAAAAAAAAckBhpgsAqsBXX0XstVfptpdfjmjaNFMVAQAAAADZyv1EAAAAgKwl9Ak1wapVER98sG4bAAAAAMDa3E8EAAAAyFqWdwcAAAAAAAAAAADIAWb6BAAAAAAAACrNk08+GSNGjIj//Oc/UadOnejWrVsMGDAgWrduvVHnJ8d/8cUXZfb17t07rrjiigquGAAAIHsJfQIAAAAAAACV4uabb4477rgjOnToECeeeGLMmjUrnnnmmXjllVdi1KhR0bZt2/WeP3fu3DTwud1228W+++67Tn/nzp0rsXoAAIDsI/QJAAAAAAAAVLjJkyengc8uXbrE8OHDo6ioKG0/6KCD4txzz43Bgwen/eszadKkdN+zZ88488wzq6RuAACAbJaf6QIAAAAAAACA6idZ0j1xzjnnrAl8Jvbff//Ydddd48UXX4zZs2dvMDia6NixYyVXCwAAkBuEPgEAAAAAAIAKN2HChCgsLEwDnmvbfffdo6SkJD1mfYQ+AQAASrO8OwAAAAAAAFChli9fHjNnzozWrVuXmuVztbZt26b7Tz/9dIPLu9erVy+ee+65+POf/xz//e9/o0GDBrHPPvvEeeedF5tvvnmlfQcAAIBsZKZPAAAAAAAAoEJ988036UyejRs3LrO/YcOG6X7BggXlfsbSpUvTkOfixYvj9ttvjx122CGOO+64aNGiRYwaNSqOPvromD59eqV9BwAAgGxkpk8AAAAAAACgQq1YsSLdlzXL57fbly1bVu5nzJ07Nzp06BCNGjWKIUOGRJMmTdL2JEx68803x7Bhw+K3v/1tDB8+vFK+AwAAQDYS+gQAAAAAAAAqVJ06dUqFP8ta/j2RLN1enmQJ+Keffnqd9ry8vHRp97/85S/x+uuvx5w5cyzzDgAA1BiWdwcAAAAAAAAqVIMGDSI/P7/c5dtXt69e5n1TFRYWxnbbbZf+PHXq1O9RKQAAQG4R+gQAAAAAAAAqVLJ8ezJT58yZM8uc7XPatGnpPlm+vTyzZ8+ON998M2bNmlVm/5IlS0rNKgoAAFATCH0CAAAAAAAAFa5r165p4PPtt99epy9Zlj1Zpn3nnXcu9/xkafeTTjop7rrrrnX6Fi1aFO+//37UrVs3ttlmmwqvHQAAIFsVZroAoAokb7ieffa6bQAAAAAAa3M/EaggRx99dIwaNSpuvvnmGD58+JoZOf/+97/HW2+9FT169Igtttii3PMPPPDAuOWWW2L06NFx/PHHx7bbbpu2r1y5Mq655pqYN29e9O3bN2rXrl1l3wkAACDThD6hJmjYMGLo0ExXAQAAAADkAvcTgQqy0047Re/eveOhhx6Kww8/PA15Jku2P/vss9GsWbP41a9+tebYN954IyZOnBidOnWK/fbbL21r165dXHjhhXH99dfHcccdFz179oxGjRrFhAkT4sMPP4wuXbrE+eefn8FvCAAAUPWEPgEAAAAAAIBKcfnll8fWW28djz76aDzwwAPRpEmTOPjgg9OwZtu2bdcclwQ+hwwZEkceeeSa0GfitNNOi/bt28e9996bzhCaLBe/5ZZbpmHQU089NYqKijL0zQAAADJD6BMAAAAAAACoFHl5eXHSSSel2/r069cv3crSvXv3dAMAACAiP9MFAAAAAAAAAAAAAFCDQp/9+/ePvffeu8y+xYsXx2233RYHHnhgdO7cOfbdd9+48cYbY8mSJVVeJwAAAAAAAAAAAECNDX0OGTIknn322TL7li9fHmeddVYMHTo02rRpE3369InWrVvHnXfeGX379k37AQAAAAAAAAAAALJdYeSwZcuWxVVXXRWjRo0q95iRI0fGG2+8Eb/85S/j4osvXtM+ePDgGDFiRDz00ENp+BOqtXnzIo44onTbk09GNGmSqYoAAAAAgGzlfiIAAABA1srZ0Oe4cePi6quvjhkzZkT37t1j/PjxZR6XBDuLiorif/7nf9ZZDj4JiyahUKFPqr0VKyLW/t9I0gYAAAAAsDb3EwEAAACyVs4u7/7444/HokWLYuDAgTFs2LAyj0kCodOmTYvOnTtHgwYNSvXVr18/bf/ss8/i888/r6KqAQAAAAAAAAAAAGpY6LNPnz4xduzYOPHEEyMvL6/MY5JAZ6Jdu3Zl9rdt2zbdf/rpp5VYKQAAAAAAAAAAAEANXt59t9122+Ax8+bNS/dNmjQps79hw4bpfv78+RVcHQAAAED2KS4uTrdclJ+fn25khn87QFXL5f/u5LKVK1dmugQAAACguoY+N8aKFSvSfVFRUZn9q9uXLVtWpXUBAAAAVLUkONP7tN7x+dzPIxdt0XyLeOjeh4T3MsC/HaCq5fp/d0pKSmLG9BnRpm2byMW//dRpU9PvAAAAAGSnah36rF27drpfvnx5mf2r2+vXr1+ldQEAAABkIsSRhGfOHXFu5BfkVviteFVxDDllSPodBPeqnn87QFXL5f/uJFYsWxEXdL8gzhl+ThTUKohcrD1kPgEAACBrVevQ5+pl3RcsWFBm/+r2Bg0aVGldAAAAAJmShGcKCnMrgEJ28G8HqGq5+t+dVStX5Wz9q2sHAAAAslfuvSK7Cbbeeut0P3Xq1DL7V7d36NChSusCAAAAAAAAAAAA2FTVOvTZokWL2HLLLeOdd96JxYsXl+pbtGhRvPvuu2l/s2bNMlYjAAAAAAAAAAAAQNT00GfimGOOiSVLlsQtt9xSqj35PWk/8cQTM1YbAAAAAAAAAAAAwMYqjGru1FNPjb/97W9x//33x6RJk2LHHXeMf/3rXzFx4sTYZZddhD4BAAAAAAAAAACAnFDtZ/osKiqKESNGRN++fWPatGkxfPjwmD17dpx11lkxbNiwtB8AAAAAAAAAAAAg21WbmT6nTJlSbl+DBg3isssuSzcAqOmKi4vTLRvk5+enGwAAAAAAAAAANSj0CQBsWBL27N2nb8ya+0Vkg5bNm8VD998n+AlQwy1atChdiWHMmDExY8aMqFWrVmy33XbRp0+f2H///TfqM7p16xZffFH2/33r3bt3XHHFFRVcNQAAAAAAAFQ9oU+oCYqKIo45Zt02oEaGPpPA5xk33Rf5BQWZrWXVqrjzgr5pTUKfADXXwoUL48QTT0xXb/jxj3+c/rxgwYI0AHruuefGBRdcEGeeeeZ6P2Pu3Llp4DMJiu67777r9Hfu3LkSvwEAQDXkfiIAAABA1hL6hJqgceOIUaMyXQWQRZLAZ0Gh/zcAgMy766670sBnr169YtCgQZGXl5e2n3/++XH00UfHrbfeGj179owtt9yy3M+YNGlSuk+O21BAFACAjeB+IgAAAEDWMq0WAAAAGfPss8+mQc8LL7xwTeAz0aJFizjhhBNi1apVMX78+PV+xuTJk9N9x44dK71eAAAAAAAAyCRTfAEAAJAxffr0SZdzb9So0Tp9Rf//EqKLFi1a72cIfQIAAAAAAFBTCH0CAACQMb179y6zvaSkJMaMGZP+vO222673M5Ll3evVqxfPPfdc/PnPf47//ve/0aBBg9hnn33ivPPOi80337xSagcAAAAAAICqZnl3AAAAss7DDz8c77zzTrRt2zb22muvco9bunRpGvJcvHhx3H777bHDDjvEcccdly4PP2rUqDj66KNj+vTpVVo7AAAAAAAAVBYzfQIAAJBVnnnmmRg8eHAUFhbGddddF7Vq1Sr32Llz50aHDh3S5eGHDBkSTZo0WTNT6M033xzDhg2L3/72tzF8+PAq/AYAAAAAAABQOYQ+oSb45puIX/6ydNvdd0c0bpypigAAoNwZPq+66qrIy8uL66+/PnbZZZf1Hp/MBPr000+v056cnyzt/pe//CVef/31mDNnjmXeAQA2lvuJAAAAAFlL6BNqguXLIx5/vHTb7bdnqhoAAFhHcXFx3HDDDXHfffdFUVFR3HjjjXHAAQd8r89MZgrdbrvtYubMmTF16lShTwCAjeV+IgAAAEDWEvoEAAAgo5YvXx4XXnhhjBkzJl2efejQoRuc4XO12bNnp4HONm3aRMuWLdfpX7JkSbqvU6dOhdcNAAAAAAAAVS2/yq8IAAAA/79Vq1bF+eefnwY+k+DmI488stGBz0SytPtJJ50Ud9111zp9ixYtivfffz/q1q0b22yzTQVXDgAAAAAAAFVP6BMAAICMufPOO2PcuHHRqlWrePjhh2PrrbfepPMPPPDAdBn30aNHx5QpU9a0r1y5Mq655pqYN29e9OrVK2rXrl0J1QMAAAAAAEDVsrw7AAAAGZEEMpPQZ6JTp07x2GOPlXlcMvPnHnvsEW+88UZMnDgxPXa//fZL+9q1a5cuDX/99dfHcccdFz179oxGjRrFhAkT4sMPP4wuXbqkM4kCAAAAAABAdSD0CQAAQEa89dZbsXjx4vTnsWPHpltZzjrrrDT0mQQ+hwwZEkceeeSa0GfitNNOi/bt28e9994bf//732PFihWx5ZZbpmHQU089NYqKiqrsOwEAAAAAAEBlEvoEAAAgI5Lg5reXZN+Qfv36pVtZunfvnm4AAAAAAABQneVnugAAAAAAAAAAAAAANkzoEwAAAAAAAAAAACAHCH0CAAAAAAAAAAAA5AChTwAAAAAAAAAAAIAcIPQJAAAAAAAAAAAAkAOEPgEAAAAAAAAAAABygNAnAAAAAAAAAAAAQA4ozHQBQBWoVSuie/d12wAAAADIasXFxekGVSovLwr23rtU06q8vIiVK6vk8iur6DoAAAAAuUjoE2qCJk0iXnwx01UAAAAAsAmSsGfv03rH53M/j1xUUlISM6bPiDZt20QuyuX6K6T2BmstFNbn2KjKf/tTp01NvwcAAAAApQl9AgAAAABkoST4lgQ+zx1xbuQXrBXAywErlq2IC7pfEOcMPycKahVErsnl+nO59m/XHzKfAAAAAOsQ+gQAAAAAyGJJ4LOgMPeCe6tWrkr36q96uVz7t+sHAAAAYF2593o4AAAAAAAAAAAAQA0k9AkAAAAAAAAAAACQA4Q+AQAAAAAAAAAAAHJAYaYLAKrAggURl11Wuu266yIaNsxURQAAAABAlipYsDi2GziiVNsHvzslVjWsl7GaAAAAAPg/Qp9QEyxdGnH77aXbBg0S+gQAAAAA1lGwdEVsddezpdqm/OqEWOV2IgAAAEDGWd4dAAAAAAAAAAAAIAcIfQIAAAAAAAAAAADkAKFPAAAAAAAAAAAAgBwg9AkAAAAAAAAAAACQA4Q+AQAAAAAAAAAAAHKA0CcAAAAAAAAAAABADhD6BAAAAAAAAAAAAMgBQp8AAAAAAAAAAAAAOUDoEwAAAAAAAAAAACAHCH0CAAAAAAAAAAAA5AChTwAAAAAAAAAAAIAcIPQJAAAAAAAAAAAAkAOEPgEAAAAAAAAAAAByQGGmCwCqQEFBxHbbrdsGAAAAALCWkoL8mN+x7TptAAAAAGSe0CfUBE2bRrz/fqarAAAAAABywIqmDePFN4dkugwAAAAAyuDVXAAAAAAAAAAAAIAcIPQJAAAAAAAAAAAAkAMs7w4AkKWKi4vTLVvk5+enGwAAAAAAAACQGUKfAABZKAl79u7TN2bN/SKyRcvmzeKh++8T/AQAAAAAAACADBH6BADI0tBnEvg846b7Ir+gINPlRPGqVXHnBX3TuoQ+AQAAAAAAACAzhD6hJli0KOL3vy/ddvHFEfXrZ6oiADZSEvgsKPT/sgEAAFB1ChYtjQ63PlGq7ePzj4xV9etkrCYAAAAA/o8EAdQEixdH/O53pdvOOUfoEwAAAABYR8HiZbHttSNLtf3n9IOFPgEAAACygLU5AQAAAAAAAAAAAHKA0CcAAAAAAAAAAABADrC8OwAAAOSY4uLidMtF+fn56Zarcvlvv3LlyshlJSUlOf8dclWu/91z+d9OrtYNAAAAAFQeoU8AAADIIUngsPdpvePzuZ9HLtqi+Rbx0L0P5WTwM9f/9kn9U6dNTQNwuVj7p598Gj2P6hl5eXmRa5K/+YzpM6JN2zaRi/zbyZxc/tsDAAAAAJVD6BMAAAByLACUhA7PHXFu5BfkVnCyeFVxDDllSPodcjX0mat/+8SKZSvigu4XRORgdqykuCSK84rj3PvPjYJaBZGrf/tzhp+T0/X7t1P1cvlvDwAAAABUDqFPAAAAyEFJ6LCgMPcCTNVBrv7tV61cFbku1//2uV5/LvO3BwAAAACqi9yblgIAAAAAAAAAAACgBhL6BAAAAAAAAAAAAMgBQp8AAAAAAAAAAAAAOUDoEwAAAAAAAAAAACAHCH0CAAAAAAAAAAAA5AChTwAAAAAAAAAAAIAcIPQJAAAAAAAAAAAAkAMKM10AUAXy8iKaNVu3DQAAAABgbXl5sWyzRuu0AQAAAJB5Qp9QEySBz7lzM10FAAAAAJADljdrFM999kCmywAAAACgDJZ3BwAAAAAAAAAAAMgBQp8AAAAAAAAAAAAAOUDoEwAAAAAAAAAAACAHCH0CAAAAAAAAAAAA5AChTwAAAAAAAAAAAIAcUJjpAoAqsGRJxL33lm477bSIunUzVREAAAAAkKXylyyLdg88X6pt6sn7RXHd2hmrCQAAAID/I/QJNcHChRHnnlu67bjjhD4BAAAAgHUULlwanS+8s1TbzCN/GsuFPgEAAAAyzvLuAAAAAAAAAAAAADlA6BMAAAAAAAAAAAAgBwh9AgAAAAAAAAAAAOSAwkwXAAAAua64uDjdskV+fn66ZQt/HwAAAAAAAICKIfQJAADfQxJm7N2nb8ya+0Vki5bNm8VD99+XFcFGfx8AAAAAAACAiiP0CQAA3zPUmAQaz7jpvsgvKMh0OVG8alXceUHftK5sCDX6+wAAAAAAAABUHKFPAACoAEmgsaDQ/3tdHn8fAAAAAAAAgO+vRk1t8+STT8ZRRx0VO+20U+yxxx5x0UUXxYwZMzJdFgAAQI33fcdrM2fOjMsuuyy6d+8eO+ywQxx++OHx2GOPVWrNAAAAbBxjPgAAgIpTY0KfN998c1x66aWxbNmyOPHEE9MB5TPPPBNHH310TJs2LdPlAQAA1Fjfd7yWPCg8/vjj469//Wvstttu0bt371iyZElcfvnlcd1111XJdwAAAKBsxnwAAAAVq0asrzh58uS44447okuXLjF8+PAoKipK2w866KA499xzY/DgwWk/AAAAuTdeu/baa2POnDlx5513prO+JM4777zo06dP+pmHHnpobL/99lXyfQAAAPh/jPkAAAAqXo2Y6XPEiBHp/pxzzlkzmEzsv//+seuuu8aLL74Ys2fPzmCFAAAANdP3Ha8lM748//zz6RKBqx/+JerUqRMDBgyIkpKSePTRRyv5WwAAAFAWYz4AAICKVyNCnxMmTIjCwsJ08Li23XffPR0QJscAAACQW+O1iRMnpsckywOuLZlJplatWsZ7AAAAGWLMBwAAUPGqfehz+fLlMXPmzNhiiy1KvUG4Wtu2bdP9p59+moHqAAAAaq6KGK999tln6X7LLbdcpy95+NeyZcuYPn16ei0AAACqjjEfAPD/tXcn4DKX7x/Hb1QoS6gsSfatCJVEq6WiVVFCKVKE4vcrtEkrabGklGQrtGqVSkqilLVIWpRSlpBCoXD+1+f+/7/zn3POHEvmzPfMmffrulxzzMw5853nO2fOc89zP/cNAMgeB1gu98cff/gOwKJFi8a8vXDhwn65efNmyw3y5ctnQwYNsNJlC1uePHnCPhwf+2oPDLC8efP612HTcQx5IGeMT0LHpkgRy/PBB+kfv0gRHYTlVDnpXOXE13JOwrlKLjnpfHGukudcCecra5yr5Buf6oMG+LwZuSNe27hxo1/u7mfs2rXLtmzZYsWLF7fcQK/fwQMG25GHHGkW/q/VvkkzqzCgQo55j9pXOu6kHXsN/0Fp9uL4F61yocpJtw04mY9dOP7wJPOxC8cfrmQ+/v099ryldppl+DzxxFLVbdeBiZlHJ/PYJ/vxJ/OxR883iflyBmK+f++g69uEfQgAAAAAcrBcn/T5zz//+GWsHYTR12/fvt1yAy2k16ld23KSksfVzlnjk4OOJ2Fjkz+/2RlnpLsqp69P5rRzldNeyzkJ5yq55LTzxblKnnMlnK/YOFdJOD45bL6cyuIRr+3tz8hNVV/+N+6rY8nq8NqHW7JK9rGXI+ofYckqmY9dOP7wJPOxC8cfrmQ+/v06dq0cnFEq3VUlLLGSeeyT/fiT+diTfb6Z2xDz/Xt5K5cL+xAAAAAA5GDJuE9znxQoUCBdUJhREAQefPDBCT0uAAAAAEh18YjXiPkAAAAAIGci5gMAAACA7JHrkz4LFSrk7deyag0RXB+0kAAAAAAAJE+8FrT427RpU5Y/Q9UZ9VgAAAAAgMQh5gMAAACA7JHrkz7V1uGoo46yVatWxdwFuHLlSr+sXLlyCEcHAAAAAKkrHvFaxYoV/fKnn37KdJt+5urVq61ChQq+0AgAAAAASBxiPgAAAADIHikRAdWvX98DvwULFmS67ZNPPvEdgPXq1Qvl2AAAAAAgle1vvKbv130+/fTTTLfNmzfPf/bxxx8f9+MGAAAAAOwZMR8AAAAAxF9KJH1ecsklfjl48GDbtm1b5Ppp06Z5QNi4cWMrVapUiEcIAAAAAKlpf+M13daoUSP77LPP7L333otcr581ZMgQ/7pdu3bZ+hwAAAAAALER8wEAAABA/OVJS0tLsxRw991324QJE6x8+fLWpEkTW7t2rU2dOtWKFStmzz33nLeXAAAAAADk3HhNlV200FejRg1r2rRp5Pt/+OEHa9OmjW3evNmaN29uJUuWtOnTp9uKFSusU6dO1rt37xCfHQAAAACkNmI+AAAAAIivlEn61NNUQPn88897EHjooYfaSSedZDfeeCMJnwAAAACQBPHao48+asOHD7eWLVvawIED0/0MfZ+qvKg94Pbt230xUdVeWrVq5a0AAQAAAADhIOYDAAAAgPhKmaRPAAAAAAAAAAAAAAAAAACAZJY37AMAAAAAAAAAAAAAAAAAAADAnpH0CQAAAAAAAAAAAAAAAAAAkARI+gQAAAAAAAAAAAAAAAAAAEgCJH0CAAAAAAAAAAAAAAAAAAAkAZI+AQAAAAAAAAAAAAAAAAAAkgBJnwAAAAAAAAAAAAAAAAAAAEnggLAPANmjZ8+etmDBAps5c2bYh5LS/vzzT3vyySft3XfftV9++cUOPPBAq1mzpnXo0MGaNWsW9uGltN9//93Pzfvvv2+rV6+2EiVKWJMmTez666+34sWLh314MLM5c+bYVVddZRdddJENHDgw7MNJaZMmTbL+/ftnefsnn3zC701IPvzwQxszZowtXrzY8uTJY5UqVfK/MS1atAj70FJStWrV9nifli1b8p4Wkh07dtjo0aPtlVdesZUrV1rBggWtbt261q1bNzvuuOPCPjzksrn9xo0b7bHHHrMPPvjA1q1bZ2XKlLFLLrnErr76ajvgAMLw7JizM+aJnY8z3uHMtRn3xM6hGe/Ez40Z88TPexnz+Ni0aZONGDHC3nnnHR/HUqVK2VlnnWXXXHONFStWLN19V61aZcOGDfP3d811ypcvb+3atbNLL700tOPPDWsef/31l40aNcqmTJni88bDDjvMzj33XJ836ncgo2+//daGDh1qCxcu9O+tWrWqderUyc8bAAAAAADJgE9ucqHhw4fb1KlTrWTJkmEfSkrbsmWLtW3b1r7++ms75phj/OvNmzf7InH37t3tP//5j1133XVhH2ZK0nnQ+Vi+fLmdfPLJvnD8/fff2zPPPOMfzr7wwgtWunTpsA/TUv3359Zbb7W0tLSwDwVm9tVXX/mlFv0LFSqU6fZYH54j+40dO9YGDBjgCTAXXnih7dq1y9/DevXqZWvWrLGOHTuGfYgpR3/fY9F7mc6XEsYaNGiQ8OPC/7rxxhvtvffes6OPPtrnAVrg1pz5448/tieeeMJOOeWUsA8RuWRur0X/K664wr777jtfNC5XrpzNnj3bHnroIU8w0iI/4jtnZ8wTOx9nvMOZazPuiZ1DM96Jnxsz5omf9zLm8aHEzcsvv9znKRUqVLDLLrvMfvvtNxs3bpxNmzbNX+9KphVtHGrTpo2fEyWaKzFR5+qOO+7w7+/bt2/YTycp1zz+/vtv69Kli3366af++tbredGiRTZy5EibO3eujR8/3g466KDI/b/88kt/7ev96Pzzz7cCBQr4z+7Ro4fdfvvtfhsAAAAAADleGnKNbdu2pd12221pVatW9X+nnnpq2IeU0h555BE/D/369UvbtWtX5Po1a9akNWrUKK1GjRppK1asCPUYU9X999/v5+bRRx9Nd/0zzzzj1/ft2ze0Y8P/0jkI3sv69OkT9uGkvNatW6fVrl07befOnWEfCv7PsmXL0mrWrJnWvHnztPXr10euX7duXVrDhg3TjjnmmLRNmzaFeoz4f08//bS/n91xxx1hH0rKmjVrlp+Diy++2OfMgU8++SStevXqaU2bNg31+JC75vbBXHPChAmR++3YsSOte/fufv0777wTynPIzXN2xjyx83HGO5y5NuOe2Dk04534uTFjnvh5L2MeH8Hn8Rq37du3R66fP3++v+d07tw5cl23bt38vjNmzIhct3Xr1rRLL700rVq1ammLFy9O+PHnhjWPcePG+W2DBg1Kd/29997r148ePTrd9S1btvT3/K+++ipy3YYNG/z3o1atWj7HBwAA+LeiPzuM/hoAgHjLG3bSKeJD7e6aN29uL774op1++ulhHw7MfHew2oT997//9cuAdiNr9/fOnTu9pRgS7+eff/ad9GrZE01VPkRtfRDu+9nkyZOtcePGYR8KzLzyzTfffGNVqlSxvHmZNuQUqnKmln133XWXVykK6L1NVYouvvhiW79+fajHiP9vGffII4/YUUcdZbfcckvYh5OyPv/888jf+vz580euV3WpihUr2k8//WQbNmwI8QiRW+b227Zti1SgVBWnQL58+ax3797+9XPPPRfKc8itc3bGPLHzccY7nLk2457YOTTjnfi5MWOe+HkvYx4fmgO+9dZbduCBB/p7S3Q1yXr16tkFF1zgc0S916vKp6p61q1bN93n96oyqfcgVZ18/vnnQ3omyb3mEVTy7Nq1a6Z28KqYHf1anjdvnlf6PPvss6169eqR64sXL+7VQrdv326vvPJKNj0jAACQCqI/Oww6qCj+BwAg3mjvnku89NJL3hbpzjvv9EXH6A8sEI4OHTp4S8IiRYpkui34AFDnDIn32GOPxbxerSPl8MMPT/ARIaD2V2ppVb9+fWvfvr1/uItwrVixwrZu3crflRxmxowZ/l514oknZrqtVatW/g85g9qH/vPPP/7eFrRnReIVK1bML7XQmrENoForapG2cOHCIR0dctPc/osvvrC//vrLmjVrlimBSwkuZcuW9RaTShBQUgX2f87OmCd2Ps54hzPXZtwTO4f+7LPPGO8Ez415jSd+3qvW14z5/lMCreaAlStX9qTBjGrWrOkbKTSWBx98sC/6n3zyyZnud/zxx/u5mTNnToKOPPeseei1vnLlSjvhhBOsUKFC6W475JBDrHbt2t72fc2aNVaqVKnIGMc6D8F1uo8SQAEAAPaVPrfS5irNtzXPrlSpkm9orlChAnNrAEDcUbIrFy1CTp8+3dq2bZtu9wjC065du5gfDunDvXfffde/rlatWghHhoz++OMPe+edd3xX/QEHHGDXX3992IeUsvr37++LDvfffz/vZTnEsmXL/FLnQ78jp556qn9grgXRN998M+zDS9lkjHXr1lnVqlXt119/tdtuu80aNWoUOS+qHIKcQRVdZs+e7eeHSuzhOuecc7yi18SJE71qy5YtW2zVqlXWt29fX6i94oor0lXlAf7t3F4JXFKuXLmYP0dJFEq6UBVLxGfOzpgndj7OeIcz12bcEzuHZrwTPzdmzBM/72XM4yOIITRWsWjTkGgcgzE/+uijM91PCZ+quqr7ZfWzUtHerHnszWtZvv/+e7/84YcfsjwPSgrVuQjuCwAAsK9V9zXfnjRpksefa9eu9U0s2ryirgdK+AwqfwIAEA8kfeYSJ510UqadrMiZ9KGrKhjoAyct6CBcmniris0NN9zgk+9BgwbF3OmN7Pf666/7Qv5NN90U+UAWOWchWjsTtUCk1mSqBKLdimpxq9Z8SCwtUosW79SCUhUrtLCnlmc6L926dfPWlQjfqFGj/JLNBDmj4pFa+tWqVcsXvFVJ58wzz7QpU6Z4kk3QwhLY37n977//7tcfeuihMe8fVJTdtGlTQo8zN8/ZGfPEzscZ73Dm2ox7YufQjHfi58aMeeLnvYx5fGj8lDyoSpNLlixJd5taeCphMUj+VKVVKVq0aJZjru/R+xT2fs1jX1/Lwf1jnQdV41J10CBZFwAAYG8pruzatatvIlGHg7feess/Z2ndurXPP9TtQJsRKXgDAIgn2rsDCaQJ3n333eeVaQYOHOg7hxEutV7q3Lmz77hSlSYtcK5evdquueaasA8tpWjx/p577vHFe+3eR86hXYdHHnmk9ejRw1q2bBm5Xgsa2p345JNP2mmnneZttJAYam0W7Bpt0KCBjRgxwtvEybXXXusfIjzwwAPWuHFjP3cIx9KlS701qH43+P0In6rlPP7447Zw4UI75phj/JyoauC0adP8faxkyZLp3uOAfzu3DyozZVU5Nrh++/btCT3W3DxnZ8wTOx9nvMOZazPuiZ1DM96Jnxsz5omf9zLm8aP3EFUP1nu5FvO1UUWJ/MOHD49UjNT7/T///LNXY06lz32zt+MavJb3dH/N6Un6BAAA+0Ibd1TRU3OI22+/3Vq0aBG57e677/aEUP3TZ1n6jAsAgHih0ieQwCpAqtQhWkggASRnOPvss33RWOfkjTfe8Mn2gw8+aIsXLw770FLKrbfeajt37vTECXa55Sx633r//fczJUOp+pOqbYl2KyJx1AIkoAWlYLFaKlWq5O1DtIihSl0Iz+TJkyMtoRE+/Z1Xe8v27dvbyy+/7H93dJ1a56rCyy233OLVGoH9ndsXKFAg3WJyRsEivioIIT5zdsY8sfNxxjucuTbjntg5NOOd+LkxY574eS9jHj+tWrXyhE9toFB1J1VXPeuss3ye0r9/f79PwYIF93rMo9+fsGf58+ffbbJsxtfyns6DruccAACAfaHPUxYtWmRlypSJJHwqEVTXa/OPYk5txNJ9hBbvAIB4IekTyGaa1Knyz1133eVVgIYMGWLnnXde2IeFGMqWLRup8Bm0X0Ji2nXOmjXL+vTpQ1XCJFO7dm2//Omnn8I+lJQStCbTIoQ+LMioZs2afvnjjz8m/Njw//R3ROdIrRQR/lzsxRdf9N+dm2++OV0ykz6I69mzp3/Qpt3YwP7O7YM2kVm1Qg2qBu2pTSX2fs7OmCd2Ps54hzPXZtwTO4dmvBM/N2bMEz/vZczjq3v37p403q9fP0/of+KJJ3yjSvDec/jhh+/VmOucMeb7JmjrnlV1zoyv5d2dB/0OqTJ0cN4AAAD2hiqK658SO3/55Re/Lm/evL75UJdBvKkkUKH4DQAgXkj6BLKRdhLfeOONNmbMGP8ASpfa6Y1wz8ns2bNt5syZMW9XRRX57bffEnxkqd0aVfTBeLVq1SL/rr76ar9eFSr0/759+4Z8pKlHH3YvWbLE2/DF8tdff6WrkoDE0PuUEo127NgRc0doUK1ClUQQjmXLltmqVat8UZvzED61VtSHbuXKlYvZwk9/YyT4QA7Yn7l9xYoVd7shQtcr6UWJF4jPnJ0xT+x8nPEOZ67NuCd2Ds14J35uzJgnft7LmGfP+4yq2ardu17vahP++eef+21VqlTZ7ZjrPUjtPitUqOCJAdh7e/NalsqVK6e7/8qVKzPdV+dA5yLW5gAAAICsaHNJjRo17Pfff7dPP/00UwVyxf/Rcb5Q7RMAEA8HxOWnAMhEu3W0KKxWbapG89RTT0U+VEJ4NNHu3Lmzf3D98ccfZ/oQ/Msvv/RLfciKxFArw/r162e6Xh++vvbaa1a9enVr2rSpB0xIPLU53Lp1qydelChRIt1t8+bN88tatWqFdHSpSe9bderU8fGfO3eunXTSSeluVws50e8OwrFgwQK/DNo9I1yq5KLfm59//tnnARn/9v/www9+ecQRR4R0hMhNc/tjjz3WW0cqiUsf6EYv2mtuoySLhg0bpmszjP2bszPmiZ2PM97hzLUZ98TOoRnvxM+NGfPEz3sZ8/jp3bu3zZgxw9577z0rUqRI5HqN69tvv+3zGf2d3bJli1d1UiKAKoNG03uTkg3VGh77pmTJknb00UfbF1984YkU0a3ZVbVT7++6/bDDDvPrgjnPnDlz7KKLLkr3sz755BO/5DwAAIC9Fcyl9dmK5h7a6KYNh0Fip+Z/QeXxYM6tzYjBfTRlJUhDAAAi5UlEQVRHVNJoxjk5AAB7g78cQDYZOXKkLwprR/zEiRNJ+MwhNHFu0qSJT7CHDx+e7jZVWRk7dqx/OBjdphPZ6+KLL7YePXpk+hd88KrFZf1fC81ILAWY55xzjgemDz74YGQ3YlCt5cknn/Tfl1atWoV6nKmobdu2fqkWw9EtzHRennvuOa9Ax+9MePT3RLSQivBpsVvVGNVeZ+jQoeluU5XA4LoLLrggpCNEbprb58+f3+eRSrYYP358uqTRQYMG+deqAIX4zdkZ88TOxxnvcObajHti59CMd+Lnxox54ue9jHn8qIKkxvzZZ59Nd/3jjz9uK1as8AR/zW1KlSpljRo18kRbJYgGtm3bZkOGDPGvGfN/R38rtYkiGMeA/q/rg/d/qVevns/l33zzTU8Ujf4d0d9e/W7wORcAAMiK5haa+2mzyJo1a2zTpk1+fe3ata1Pnz7WrFmzSPJm0MY9iPeDogNBwqc2Dl1zzTX21VdfkfAJAPhXqPQJZAOVb9fCcLBA9sILL8S8n6ocnHzyyQk+Otx2222+6KAP8rST/rjjjvNWY9OnT/cJ+ODBg+3www8P+zCBHOGmm26y+fPne1vPr7/+2ivirF271hcoFKjq90VVFZBY5557rs2aNcsmT57sX2thTztCVUVEi3T33XefLyohHEH7OH43co5bbrnF//aPGjXKK7qouos+nNPffs3bOnbsyJwMcZvb9+zZ09+jBwwY4K83JQKoWqWqUzZv3tyTGRHfOTtjnliMdzhzbcY9sXNoxjvxc2PGPPHzXsY8PpTUqfdxJdWqqqQSCtXWXVWFNf5du3aN3Pf222+3Nm3a2A033OBjrN8LnRslh3bq1IkuN//SVVdd5e/l48aN86QJVXZetGiRJ9hqjh6d9Kl55D333OO/Czp3Sn7We/9bb71lv/76q/Xr14/PhQEAQEzLly/3+YbmGJq/ac6giuIPP/ywz+tKly6drsJnQPNxKVCgQOQ6zcO10Vlz9yAJFACAfZUnTX91kOtUq1bNJxczZ84M+1BSkhZounXrtsf7denSxXr16pWQY0J62r2tHff6YFUf6Kn9khbYdE5oiZwzaKHh6quv9pYIqsSC8CggHTFihE2bNs0XodUC7sQTT/TfFyoZhkdTOC1YT5o0yb777juv6qKEGC0oqXIFwtOiRQv/AGjhwoXpWsshXKropeQxvZepXaV+Z2rWrGnt27f3SmtAPOf2ml9q4V879vXaU0t4VVO88sorM7VaRXzm7Ix5YufjjHc4c23GPbFzaMY78XNjxjzx817GPD6CSqofffSRf61xvPDCCz2pMHpxX5QgoAqUqg61fft2K1++vFf4VHXJ6OQA7Nuah5L4lTih5M8NGzZ40oUSazt37hxzU6wSdIcNG2YLFizw/1epUsUTb1WdCwAAICNt6unevbvP32rVquWdIr755huP4VUpv1y5clnGoNrwOWXKFO9c06BBA/vwww99k6c2yCk21RwHAIB/g6RPAAAAAAAAAAAAAAAAIMqyZcusQ4cOdtRRR/kmEW0sEXXo+PHHHz3hM1++fJH7Z6z0qSrv7777rj377LP+PeoysXLlSps4cSKFiAAA+4Va0QAAAAAAAAAAAAAAAEBUdw5VaVf3GXUCOvPMM/36v//+2yvjV6hQwf//+++/e2eDrVu3WtGiRdP9jKDquKqVz5s3z37++WcSPgEAcUHSJwAAAAAAAAAAAAAAAPB/1q1bZ4sWLbKWLVtmSviU5cuX2/z5871N+86dO23btm3WsWNHv2/JkiX9PmoFLyNHjvR28BMmTCDhEwAQFyR9AgAAAAAAAAAAAAAAAP9HlTlVxbN+/fqR64KEz/Hjx9vbb79tCxYs8P+r0udff/1l99xzj61du9Z69OhhefPmtYYNG9ro0aO9AqgSPitXrhza8wEA5C4kfQIAAAAAAAAAAAAAAAD/p3z58p64qWqfqt65efNmr+6p5M033njDbytXrpydf/75dvrpp9s333xjL730ko0aNcqaN29uVatWtRo1aljTpk2tZ8+eJHwCAOKKpE8AAAAAAAAAAAAAAACkpLS0NMuTJ0/kUooXL25HHXWUPfnkk/b99997u/dff/3VVq1a5ffp0qWLnXLKKVavXj2/f+3atW3Hjh2eJKrkUCV9lihRwoYOHWr58uUL+RkCAHKbvGEfAAAAAAAAAAAAAAAAABCG7du32z///GOrV6+OXKekTbVpL126tM2YMcOTOXfu3Okt21Xt84YbbogkfG7dutUv69atm+7/QsInACA7UOkTAAAAAAAAAAAAAAAAKUdVOceMGWNLly61lStX2hlnnOGJnS1btrTzzjvPypYtaxs3brSffvrJr1f1TlUBDaqCKhG0YMGC/rNefvllK1y4sJ1wwglhPy0AQC5H0icAAAAAAAAAAAAAAABSyueff27dunWzzZs3W7ly5Sxv3rw2ZcoUr+ypdu7XXnut1alTJ+b3KuHz77//toMOOsj/P336dHv//fft+OOPt2LFiiX4mQAAUg3t3QEAAAAAAAAAAAAAAJAyFi5caFdeeaUdeeSRNmjQIHvjjTds4sSJ1rt3b9uxY4c9//zztmDBgsj9VdFT/vzzT6/6KUHCp7532LBhtm3bNuvTp49X+wQAIDtR6RMAAAAAAAAAAAAAAAAplfBZs2ZN69mzp5188sl+faVKleywww7zKp9PP/20ffHFF1avXj2/LV++fLZp0ybr0qWLJ36q/fsBBxxgc+bMsblz59rBBx9so0ePtgoVKoT87AAAqYBKnwAAAAAAAAAAAAAAAEiJlu4dOnSwY445xnr16hVJ+Ny1a5dfFi1a1Bo0aBBJDk1LS4tU+Vy/fr0nhX799dc2cOBAu/fee23RokV2yimn2Lhx46xq1aohPjMAQCqh0icAADmAAsY8efKEfRgAAAAAAAAAAABArrRs2TJr06aNlS1b1nr06BFJ7tQ6Xd68eT3xU5cFCxb065UYqvU7VfmUihUr2kMPPWQzZ860P/74w7Zs2eIJnyVLlrRChQqF+twAAKmFpE8AQIR2qc2aNctee+01W7p0qa1Zs8avP/LII61hw4Z2xRVXWLly5SzZTZ482W655RZr0qSJPf744wl73GrVqvmlWjwUKVLEv966dauNHDnSg8drr7022x57w4YN9swzz3gQunLlSn/cQw891KpXr25Nmza1iy++2A466KBse3wAAAAA2Fuffvqpt9kLvPnmm1alSpXdfk/Xrl3t/fff968HDBjgMU5Asexnn32W6fo9Uez07LPP2scff2yrVq2yf/75x4oVK2bHHnusNW/e3Fq0aOGLgQAAAACAnO/333+3CRMmeIKn1sR0mZFivLVr19rEiRN9LU/t3zPS92ptDQCAMPGpJAAgspjVtm1bTzycOnWqFShQwBo1amR169a1jRs32vjx431Ba8qUKWEfaq4ydOhQTzzdvn17ti6YNmvWzEaMGOG7Dk888URr3Lix72KcM2eO3XnnnXbBBRd4EAsAAAAAOc2e4lAt3H300UdxfUwlmiqxc+zYsb5BUu3+Tj/9dG/jp+TS//73vx5Dq6oLAAAAACBnW7x4sT322GPWrl073wy4fPlyGzJkiM2YMcP+/vvvSDc+tW+fNGmSvfPOO3bppZd6FU8AAHIiKn0CALyiZ+vWrT25U9Uve/fubeXLl4/crmBHSZ9qV3DzzTdb/vz52cH2L7z11lt+Gd3eQYuH2Wnz5s3enkKVPR944AG76KKL0t2uRE+dbyV/3njjjfbcc89l6/EAAAAAwN5SVZVNmzb5xsSePXtmeT8txqkKp6qtKH6Nx6bIvn37evu+J5980jdERvvhhx/shhtusIULF/omuocffni/HxMAAAAAkD3++usvGzx4sHdxOPXUU70boNq4v/rqqzZs2DC/zxlnnOEbCtU1T3Fgq1at7KabbvLbgpbvAADkJPxlAgB40KKEz7PPPtuGDx+eLuFTtHB2zTXXeLs8JSkqeXDHjh2hHW+yqlSpkv9LZGA4ffp0r+555plnZkr4lJIlS3q1USXyasHyq6++StixAQAAAMDulClTxo455hhbsWKFLVmyJMv7vfHGG3bwwQd7V4N4eO211zyJVFVdMiZ8SoUKFXzBMNjcp4VBAAAAAEDOpHhRSZxy3333eceGXr16+bqZ1sVUAfT111+3MWPGeMKnKoHee++9fn+ti5LwCQDIifjrBAAp7vPPP7e5c+d60t9tt92228ClU6dOVrNmTatXr56tW7cu3W1qd6BkUCWO1qpVy0444QRr376975JLS0vL1G68WrVq1q9fP6+gorZ4DRo0sDp16njFUbVSkF9++SVymx5TC27BbYGff/7Zf9bll19uGzZssD59+vj91ZZeQdkLL7yQ6fF3R4+pSi1qf37sscf6z7r++us9ITLasmXL/HY9tqrKRFMA2KZNG79NPyug/+ufKtUE/1cFVVGyrf7/6KOP+i5Cfa3xjkWVa0466SQf5z0tLuq8SNCWIpZDDz3UOnbs6AFvrPOv567g97TTTrPatWv7Ob7rrrtitoP/N68Dve50u3ZR6ntatGjh5zIwf/586969uzVs2NDHXAmseu2sWrVqt88dAAAAQPI7//zzd9viffXq1TZv3jxr1qyZFShQIC6PGcQju4ujKleu7HGfYtjt27dnun3mzJnWpUsXbwWoWPfcc8+1Rx55xDflZaS4WDFOEIcq3lM8qDbyGU2ePNnjqMcff9yeeuopbzt/3HHH+XEoUTXwwQcf+M8IYsezzjrLYzVt+AQAAACAVBGsTWnt6corr7Qff/zR3nzzTS+Kct1119mFF15oX375pQ0cONATPlu2bGn3339/ZL1PHSAAAMiJSPoEgBSniiiiiigKcHZHbclfeeUVXygqXbp0ugTI8847z0aPHu0tEoLkPSWUKglTbe9iVQb9/vvvPTFTrcWPP/54O+qoo+yLL77wiqIvvvii36bEQCVwlitXzn+eArAPP/wwZhvztm3bepUVLZIp2fDbb7+1O+64w1vS7w0lvyq4U4vzAw44wJ+Hqp5qoU0/+/nnn4/ct3r16t4OXe655550C3cjRozwRMkqVap4i4jdLV5WrFjRv65atar/X4t3F1xwgSfhqs1ErMTKadOmebKnFu2UsLk7StINKn6OHDnSxykWtUrU7kY9fjQloLZr187H9fDDD/cxUYA8ceJEPz9anNzf14EWaNU6sVSpUr5gWbRoUStRooTfNnbsWH/89957z19zWgTVQq7OhQJvvV4AAAAA5F5amNPmtLfffjvmhj4t1un6IDk0HoI4atKkSR6bbtu2Leb9tBnu7rvvzhRLP/jgg9a5c2ePXRXLqn2gYjEtICpRNHrz3uzZsz0GVIyjxUTFPEoo/eSTTzw2DqrLZKQqNGorrxhOMXPZsmXtwAMP9Nu0QKmEU8XTqkqqjXNKCFWsdskll9hPP/0Ut7ECAAAAgJxMm/mCWFLFT7QeN27cOFuzZo3HS4qdFJMpZipcuLDHTAESPgEAORlJnwCQ4pR4KVok+jdUdVKVMFUtRImRSi5UtUq1QFCioJIm3333Xa9kGSvJUhU8lVQZtE5o0qSJ7dq1y26//XZP3FSCo5IoVQlSlUuChbeMlOC5detWv9+oUaO84om+PuKIIzyxNUhuzYqSNpWUqIU4VVhR9U4dsxJAlfio1g9azFu6dGnke1Q1RceoqqfaAShKQtTxKmlTC3C7qzTz0EMPedUXUQKn/q9LJT2qUqbGQW0FM3rppZf8MmhFsTuqjqkFPgW0Oh4lVV5xxRXe0n3WrFmenJkVtbTQ81JQq4TRl19+2YYNG2ZTp071yqqq6qkx2d/XgVo1akFUY63HmTBhQuT1occvUqSIPfvss+ke/9Zbb/WF0h49emS5AAsAAAAg+SmhUnGXKv0vWLAgZtLnYYcd5rFPvGjBT23lFecoNlUHiGuuucaeeOIJj1N0fVZUYVMxqTboKZFTG+YUG2kjmxI6FYMPGTLE7/vbb795HKq47D//+Y/HoYp5FBMp2VTPS/Govs7ohx9+sP79+/tGOf1TvCeKIbWAqSRQVQVVnKWfqcdXhwd1t1Anh33piAEAAAAAyURrfdFxWxD/aIOdujBofUvrT4rFtH6lxE+tT+r7dL3WLaM7KQAAkBOR9AkAKS6oJKnFpH9DCXhaNFLlS1XVPOiggyK3qXJnsPCkRadYyXn6HiVIBrvtVCky+FoLWAULFozcV4FYkCSYVZWVSpUqRf6vr4NKm0EiYVa0iKYFNz2+KktGt/FTFVQFfKpSqcooAVWbUdXTQw45xBfTtLinqqK6nypbZqyauS8uu+wyv1Rl1Wgaa1VGVbUYLTzuDS3w6fg1lgpSP/vsM28FqKTV+vXr+6USQDNScq2ey9VXX22nn3565Holger5aQekfp4C5/19HXTo0CHyddBiXom7CsRvuukmX+TNeH+1m9dOzD0l9AIAAABIbkEVT20oi/bdd995xwFVA41nBRbFqIpdFJepC4Q2GH700Uc2ePBga9++vcdR3bt3j9l5QBvWREmctWvXjlyvGEmxkpIxg0qfSsjcsmWLb9RTV4sgFhIlnd55553+tTbHZaQ4NHojYPC9wX21QU8VbAIaH8Wrum7JkiVeSRQAAAAAcht14lOMqM126n4QHS/pUmtederU8c4MWi8TJX5269bNLrroIm/1rgIm6sZH4icAICcj6RMAUpwWsCRW2+29EQREQcu9jNRqXcmB2i23ePHidLepXbgWvKIVL17cL1WhU7dHUwVMiVVVRS0XohMTA6qkosUttRj/888/s3wewYJXVtVhtAgnSriMpuO/7bbb/Gst+ikhVY+pxNH9oSRHtX5XFRgFqAEll6oCqNpLRCem7o4WF1XJRYmdWqS89NJL/ZyIAlZdr8RPJdlGV3sJguGmTZtm+plKIFV7RVWU0c/fn9eBznXGpOOdO3dGfqaqk8ai9vGxzgkAAACA3EUdEdS6XJUwFQ8Fgg1g8WztHh1jKnFSyZ4DBgywCy+80I488ki/TUmg6kqh2Eot2wOKp4I4plmzZpl+ZpkyZbwrQlDpM7hvsPkxI1WaUdcJtWNXpdNoSt4M4vmAulAoEVbXa/NiRorV1GpeiKMAAAAA5DbaYKfNc4qN1HVBm/GUwKkudcH6l9a01NFBly+88EK6AiZK/FTsp054Kp6ixFASPwEAOVX6TwYBAClHiZWqjLJhw4Z/9f2//vprJBjKim5T67ngvhmTOKMFiYzFihXL8rZYVPkyVrKh2qsrkVQBnv6pGkosq1ev9ku1Dde/rOhnKMDTgmNACZiqOKPkSQWJ9913n8WDFhDVRkLVPuvWreuLm/paSawtW7bc559XqFAhT8rUP9E5105FBb5qk6jKnqom07p1a789OF9amMzO14HaHsYKzLWQmlXSabSMi58AAAAAchfFDKeccop3V9DmtGBjmFq7qyJLdEXNeFM8efHFF/u/IHZU7Dd+/Hj75ptv7JFHHvHH1zEpjtEmRVUKDTY07k8cpdivdOnStnz5cr9vdGwWK44K4lpt6qxVq9ZuH5s4CgAAAEBuo3VErXOps5+68SmOUtLnzJkzvZugCrZok5yKrii5U3GdOgUGhVyCxE+tN6oIi25XsZjoNUEAAHIKkj4BIMVpIUiVS6KrSe6O2s8paNKCm6qcRFeGzEpQiSW65bdkrEqyP3bXyi84xt3dJzhGtQyPlYwaTQto0QHe+vXrvd2DaIHv9ddft6uuusr2lwJOtUVXQql2Hc6bN89bqKvqaMmSJff4/TpOLUL+8ccfMatllihRwiviqKpM37597dVXX7XXXnstkvQZVH/dm4qi+/M6iJWsG9xXr5HmzZvv9ucG1XYAAAAA5F6KW5T0OWXKFI9vtHHt559/th49esT1cbZt2+bVMrdv327HH398ptuVhKmYSW3/Onfu7F0jFEvpmPYlhtrbOEpdEPY1jipSpEjMThgZuzEAAAAAQG6i9b327dt73KiNeNddd513nxs9erR3cNB6m6p/qtDKFVdc4R3ttO550kknWeXKlT1GU+Knvk+b+fSz1H0BAICciKRPAEhxapOnFgXz58/3HW9qtZ0VVV588MEHbcuWLXbXXXdZmzZtIvdfuXJllt+nVnRBkmF2WbNmTczr1U5cO/qUPLi7RElVPFUVSiVrNmrUaJ8eW+3d1RpCYzljxgyv9KKfUaVKFdsfCkjVElBBqBJz9bOlVatWe/X9WnBUNRoFqdrFmNXz14KkFi21UKnKNNFjoiRTVYuJde7UzlBVT7W4Ge/XgarWKLFWC5yqnKrgGgAAAEDqClqdKw7p37+/V/mUCy64IK6PoxhI3RwKFixoc+fOzbKii65XBwYlfQZxVBDHKHFUMWKsDhaKu/Q8tJFScdT333/vcdRxxx2X6b6Kt4LqnXsTRymGCzpePPTQQ/v83AEAAAAgmWk9TJU+tTlQRVVURKVTp05eXET/11rZ9ddf7+t53bt390RQ3a41OCV9aiOdNtgdffTRvvYXz+I1AADEW+Yt4QCAlFKjRg1fbFKFyvvvv3+3lUaGDBniCZ9KRlSVFalfv75fKjExqCoS7YsvvvBkv8KFC2drJRElrC5dujTT9e+++64fV4MGDTJVRommXXwyffr0mLfr55xzzjl2yy23pLv++eef92RM7fwbNGiQB4mqCHPzzTf7At2e7KkCjFq8y9SpU/3YtIh3xhln2N7QQp+CWxk7duxu76uEV1G7i0BQ1UbVdGIllPbr18969erllUTj/TrQQmnQ0j7W48sDDzwQab8BAAAAIHdTEmbjxo09wXL27NlekaVOnTpWrly5uD6OFvcUd2nT4wsvvLDb+yphMzqOUhwTtJqPFccoEfTWW2/1yjISxFFBAmtG7733nseXaj24N90e1AVB/xQfq5pNLHpsbQ5U7AYAAAAAyUxrmwGtJwVrboodVZhF60jffvutlSlTxguMBEVbXnnlFV/nXLFihd932LBh3vEhumMgCZ8AgJyOpE8AgFdJUTKeEgu1+00t8qKpSsngwYMjiYN33HGHFSpUyL9u0aKFB0vLli3zpNHoREdVK+ndu7d/fdlll+026TIetOtOVT0DX3/9tSdiSseOHfeYXHnIIYd4G4cJEyakS35dvny53XvvvZ4YWb58+cj1SmIcOHCgB5G6XYuQ2hGoRNqvvvrKg8S9ScwUJU7GomRVLTqqFcWGDRu8ksy+BJo33nij70pU6woFt5s3b850Hy1GqoKrfu7VV18duV6tLfS9Tz/9tH366aeR61V9U89bY61FSo1JdrwONJZy9913p3v8IAn3mWee8cejLSEAAACQGoLNh4ptFB+df/75cX8MxUVBy3jFNqNGjfKYOJoWEydPnuxxlqp2tm3bNnLblVde6ZeqIvPNN99Erlfy5p133unxlJ6Hvk/xkWJrxWRPPfVUujj0yy+/9DgziM32VhBH3XTTTR4vRXv22Wc9ttRxKWEWAAAAAJKVNrppXVDrRaL1LMVbUqlSJd/stnbtWt8wqJhO63Gnnnqqr92pm6Huo5hLP0exmLoibtq0aY/FWgAAyCnYngAA8CqVkyZNsuuuu85b5amiZM2aNb1CiNqjf/755x7oKCBSdUcl+AWUwPfoo49a586dPQlPwZUWj1QRVK3wtMtOu+R69uyZrc9Bx6HgTe3QVbVTAdxnn33myYdq1bCnlu1qq6cdfkqSVJKhFu9UrUVJkvPnz/dAUc8jSB7V/5XIqPHRQp2SM4MFQu0WVBKpFgdVlTOomBmLKraIKsiobd/pp58eqe4pCi7Vzl0LhsHX++K0007zoPWee+7x56RzVKtWLX++WnTUIqAeVwmrSpCNTqBUhRpVLNX1HTp08Mqbhx12mCe0KpFT1W/0XLPrdaCx07lToK2FU70my5Yt64+tYwgWMuvVq7dPYwIAAAAgOalLhVqoa2OeYq/o2DSeFONpk9vw4cN9g5wuFUepxfqff/7pCZlKOtWxDB061EqVKhX5XnWIUJKm4iJt2jvhhBM8sVPdD1SBUwuLwaY4xVdBHKp27C+++KJvItRjB3FomzZt0iWV7onuq0VLVa5Rm3rFUTo+VbfRRkYthGoTnzbtAQAAAEAy0pqT1s3mzJljH374oa8HKs6KLjqiIidq2/7SSy/5upvWOLVmqA4NivlOPPFELziiLodaU4zetAcAQDIg6RMA4NTm4PXXX/fg5/333/cFISUEKvhRUqiSDdu3b++JoBkpUfC1117zJEe1Otf3q2qmkvH0fdlRfSWj/Pnze6t1BXmzZs3yBEktrimoUyLl3iYZvvrqq17Z8uOPP7aZM2dakSJFPHmxdevW/jyCKpsjR460hQsXWunSpSMLdgG1VFdyqO7Tp08fHxuNRyyq8KLFP1Vb0ePpftFJnxIkjSoAVdXPfaWFPiW9qoqpAmBVKNUioAJcLfSde+65fm71XDLS89DzGTNmjD9fHasSRtu1a+cJmVqkzM7XgRY/VU1ULdwXLVrkr0slm5555pl+bpXgCwAAACA1KD49++yzPfZTjFO8ePFse6yuXbvaWWed5TGyFgLV6k8xkWIcxchKrlRcVKxYsUzfe/vtt3scoy4SShDVAqJiL220vPbaayOdM0TxquJQVfpUHKpNmEWLFvUNfJdffvlex7MBxcJK6lR8q82FS5Ys8dhe7eEVfwYxHgAAAAAkKyV3aoOeEj5VuERdDbR+ddVVV3mRFsWKqt6pmKpXr17exUEb9hRTanOd2rirKIv+nXzyyf79uq/WBAEASBZ50qL7BgEAkGTUir5Jkybenn7evHmWG6lKpwJOJbQG7QwBAAAAAAAAAACAVPbjjz/aY4895lU91eFOG+e0ia9q1arejU4d41QsRl0WtLEv2q5duyJt4ZUICgBAMskb9gEAAIDMVAlGVOlFlWVUlUUVbQAAAAAAAAAAAACYd8i74447vHBK3bp1berUqd6+XR0iVNlTt6ljwyuvvBL5nqAumhI+hYRPAEAyotInACCp5dZKn506dfLnEyR/PvTQQ/+qPToAAAAAAAAAAACQCsaOHWuTJ0+2b7/91ho1amRt2rSxtWvXeov3/v37W+vWrcM+RAAA4uKA+PwYAAAQT7Vq1bK5c+damTJlrHPnziR8AgAAAAAAAAAAADEErdqvuuoqT/acNm2at33/8ssvrUaNGlaxYkWbNGmS1a5d26pVqxb24QIAsN+o9AkAAAAAAAAAAAAAAICkpdSXPHnyRP6vjnoTJkywOXPm2MaNG/26fv362eWXX57ufgAAJCOSPgEAAAAAAAAAAAAAAJCrrF+/3pYuXWoPP/ywff311/b2229b+fLlwz4sAAD2G0mfAAAAAAAAAAAAAAAAyJV27tzpCaAlS5YM+1AAAIgLkj4BAAAAAAAAAAAAAACQKxM+8+XLF/ZhAAAQVyR9AgAAAAAAAAAAAAAAAAAAJIG8YR8AAAAAAAAAAAAAAAAAAAAA9oykTwAAAAAAAAAAAAAAAAAAgCRA0icAAAAAAAAAAAAAAAAAAEASIOkTAAAAAAAAAAAAAAAAAAAgCZD0CQAAAAAAAAAAAAAAAAAAkARI+gQAAAAAAAAAAAAAAAAAAEgCJH0CAAAAAAAAAAAAAAAAAAAkAZI+AQAAAAAAAAAAAAAAAAAAkgBJnwAAAAAAAAAAAAAAAAAAAEmApE8AAAAAAAAAAAAAAAAAAIAkQNInAAAAAAAAAAAAAAAAAABAEiDpEwAAAAAAAAAAAAAAAAAAIAmQ9AkAAAAAAAAAAAAAAAAAAJAESPoEAAAAAAAAAAAAAAAAAABIAiR9AgAAAAAAAAAAAAAAAAAAJAGSPgEAAAAAAAAAAAAAAAAAAJIASZ8AAAAAAAAAAAAAAAAAAACW8/0P7Hhyh3ObpagAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "fig, axes = plt.subplots(2, 3, figsize=(18, 12), dpi=150)\n", + "fig.suptitle('Error Type Distribution by Tool', fontsize=18, fontweight='bold', y=0.96)\n", + "\n", + "# Bandit severity distribution\n", + "if not bandit_results.empty:\n", + " bandit_severity = bandit_results['severity'].value_counts()\n", + " axes[0, 0].pie(bandit_severity.values, labels=bandit_severity.index, autopct='%1.1f%%')\n", + " axes[0, 0].set_title(f'Bandit Issues by Severity\\n(Total: {len(bandit_results)})')\n", + "else:\n", + " axes[0, 0].text(0.5, 0.5, 'No Bandit issues', ha='center', va='center', transform=axes[0, 0].transAxes)\n", + " axes[0, 0].set_title('Bandit Issues by Severity')\n", + "\n", + "# Ruff rule types\n", + "if not ruff_results.empty:\n", + " # Extract rule categories (first letter of rule code)\n", + " ruff_results['rule_category'] = ruff_results['rule_code'].str[0]\n", + " ruff_categories = ruff_results['rule_category'].value_counts().head(8)\n", + " axes[0, 1].bar(ruff_categories.index, ruff_categories.values)\n", + " axes[0, 1].set_title(f'Ruff Rule Categories\\n(Total: {len(ruff_results)})')\n", + " axes[0, 1].set_ylabel('Number of Issues')\n", + "else:\n", + " axes[0, 1].text(0.5, 0.5, 'No Ruff issues', ha='center', va='center', transform=axes[0, 1].transAxes)\n", + " axes[0, 1].set_title('Ruff Rule Categories')\n", + "\n", + "# MyPy issue types\n", + "if not mypy_results.empty:\n", + " mypy_severity = mypy_results['severity'].value_counts()\n", + " axes[0, 2].pie(mypy_severity.values, labels=mypy_severity.index, autopct='%1.1f%%')\n", + " axes[0, 2].set_title(f'MyPy Issues by Severity\\n(Total: {len(mypy_results)})')\n", + "else:\n", + " axes[0, 2].text(0.5, 0.5, 'No MyPy issues', ha='center', va='center', transform=axes[0, 2].transAxes)\n", + " axes[0, 2].set_title('MyPy Issues by Severity')\n", + "\n", + "# Radon CC complexity distribution\n", + "if not radon_cc_results.empty:\n", + " axes[1, 0].hist(radon_cc_results['complexity'], bins=20, alpha=0.7, color='skyblue', edgecolor='black')\n", + " axes[1, 0].set_title(f'Cyclomatic Complexity Distribution\\n(Functions: {len(radon_cc_results)})')\n", + " axes[1, 0].set_xlabel('Complexity Score')\n", + " axes[1, 0].set_ylabel('Frequency')\n", + " axes[1, 0].axvline(radon_cc_results['complexity'].mean(), color='red', linestyle='--', label=f\"Mean: {radon_cc_results['complexity'].mean():.1f}\")\n", + " axes[1, 0].legend()\n", + "else:\n", + " axes[1, 0].text(0.5, 0.5, 'No complexity data', ha='center', va='center', transform=axes[1, 0].transAxes)\n", + " axes[1, 0].set_title('Cyclomatic Complexity Distribution')\n", + "\n", + "# Radon MI maintainability distribution\n", + "if not radon_mi_results.empty:\n", + " axes[1, 1].hist(radon_mi_results['mi_score'], bins=15, alpha=0.7, color='lightgreen', edgecolor='black')\n", + " axes[1, 1].set_title(f'Maintainability Index Distribution\\n(Files: {len(radon_mi_results)})')\n", + " axes[1, 1].set_xlabel('MI Score')\n", + " axes[1, 1].set_ylabel('Frequency')\n", + " axes[1, 1].axvline(radon_mi_results['mi_score'].mean(), color='red', linestyle='--', label=f\"Mean: {radon_mi_results['mi_score'].mean():.1f}\")\n", + " axes[1, 1].legend()\n", + "else:\n", + " axes[1, 1].text(0.5, 0.5, 'No MI data', ha='center', va='center', transform=axes[1, 1].transAxes)\n", + " axes[1, 1].set_title('Maintainability Index Distribution')\n", + "\n", + "# Flake8 WPS rule types\n", + "if not flake8_wps_results.empty:\n", + " # Group WPS rules by hundreds (WPS100, WPS200, etc.)\n", + " flake8_wps_results['rule_group'] = flake8_wps_results['rule_code'].str.extract(r'(WPS\\d{1})')\n", + " wps_groups = flake8_wps_results['rule_group'].value_counts().head(8)\n", + " axes[1, 2].bar(wps_groups.index, wps_groups.values)\n", + " axes[1, 2].set_title(f'Flake8 WPS Rule Groups\\n(Total: {len(flake8_wps_results)})')\n", + " axes[1, 2].set_ylabel('Number of Issues')\n", + " axes[1, 2].tick_params(axis='x', rotation=45)\n", + "else:\n", + " axes[1, 2].text(0.5, 0.5, 'No WPS issues', ha='center', va='center', transform=axes[1, 2].transAxes)\n", + " axes[1, 2].set_title('Flake8 WPS Rule Groups')\n", + "\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "7f1ace1e", + "metadata": {}, + "source": [ + "## Generate Complexity Metrics Plots" + ] + }, + { + "cell_type": "code", + "execution_count": 53, + "id": "982f835e", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACVEAAAbHCAYAAAB5LbTXAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAXEgAAFxIBZ5/SUgABAABJREFUeJzs3QmYXGWVMOBT3Z2EhARCRFB2QhRkkSD7MiKKCKigiCOCuIDjgig4IyjuOiqIuICMIjrI4IbCj6jjCsgiBARkEYggGHZUFAhJCCTp7vqfczM3qVSq973rfZ+nnu6uuvf2V1W3bt17vvOdr1KtVqsBAAAAAAAAAADQpFpGugEAAAAAAAAAAAAjSRIVAAAAAAAAAADQ1CRRAQAAAAAAAAAATU0SFQAAAAAAAAAA0NQkUQEAAAAAAAAAAE1NEhUAAAAAAAAAANDUJFEBAAAAAAAAAABNTRIVAAAAAAAAAADQ1CRRAQAAAAAAAAAATU0SFQAAAAAAAAAA0NQkUQEAAAAAAAAAAE1NEhUAAAAAAAAAANDUJFEBAAAAAAAAAABNTRIVAAAAAAAAAADQ1CRRAQAAAAAAAAAATa1tpBsAAAAAI+mee+6JK6+8MubMmRMPP/xwPPHEE/HUU0/FWmutFTNmzIjtttsudt5553jFK14Ra665Zow1H/rQh+LHP/7xKvcde+yx8d73vjfGgn/84x/F+3P11VfHX/7yl3j88cfjySefLN6L6dOnx6xZs4r3Z7/99osNNthgpJs77r30pS8tPie1zjvvvNh1111jLPrqV78aZ5555ir3vfa1r41TTjml2/U6Ozvj//2//xfrrrtu7LPPPjFW5Hu37777Fu2vNWXKlPjd734XU6dOjfHsyCOPjOuvv36V+04++eQ45JBDopn2XwAAAKAxSVQAAAA0pblz58aXv/zluOqqqxo+/thjjxW3u+++Oy666KKio/2II46IY445JiZOnDjs7W02mTz19a9/PX70ox/FsmXLVnt8/vz5xe2+++6LSy+9NL7whS/EAQccECeccEKsv/76I9JmmsMtt9wS//mf/xm33357cVwYSzLxqz6BKi1evDh+9rOfxRvf+MYRaRcAAADAaGA6PwAAAJrON77xjaLySFcJVI0sWLCgSOo59NBD49577x3S9jW7rIiTCVHf+973GiZQNdLe3l4kgRx00EFF5SoYisS+rOx22GGHFQlUY00mT9VXpat1wQUXDGt7AAAAAEYbSVQAAAA0jWq1Gh/+8IfjS1/6UvF7f9x1113FlFAPPfTQoLePiAsvvDDe+c53xsKFC/u1flanymphl19++aC3jeb2gQ98oEhC6u+xY6Rdc8018cgjj3T5+B133BG33XbbsLYJAAAAYDQxnR8AAABN45vf/GYxnVUju+22W+y3336x6aabxoQJE+KBBx6ISy65pGFVo6xIk9PGff/7349KpTIMLW8Of/jDH+ITn/hEdHR0rPbYFltsEa9+9atjyy23jLXWWiseffTRIikkq08tWbJktapUWTHof//3f+PZz372MD4DxprXv/718S//8i+r3DdjxoyGyzaaBm+sJSj2JKfP3G677YalPQzv/gsAAAD0TBIVAAAATeHWW2+Nr3zlK6vdnwk5p512Wuy9996r3L/rrrsWHdQ55d/xxx8fTz311CqP33TTTfGb3/wmXvGKVwx525tBVp56//vfXyRA1coktf/4j/+Io446KlpbW1d57MADD4x3vOMdReWpe+65Z7WKVGeddVZ87GMfG5b2MzY95znPKW7j3RNPPBGXXXZZj8tl4mEmIK655prD0i4Gpln2XwAAABgupvMDAACgKZxxxhmrVTjKilPnnHPOaglUtV784hfHV7/61YYVp7773e8OSVub0Q9+8IP4+9//vtr9Of3iv/3bv62WQFXKymHf/va3G1ZfyapjixcvHpL2wljyk5/8JJYtW7bKfc961rNWO67l5yUTqQAAAACakUpUAIwaixYtiosvvjh++9vfxl133VVUD5g4cWJsvPHGsfvuu8dhhx0Wm2++eYxHOdr7xz/+cTFFTVbCGG3//+67747nPe95Q/b/f//738eb3/zmho9l5/akSZNi/fXXj+233z4OOeSQ2HnnnRsue9FFF8VJJ51ULJtVQwYqK2E8+OCDfd7vXvrSl8bDDz8cn/nMZ4oKJvXP8Y477oi2tuE5DcvPUXaY1U5llIkAZ555ZrzoRS8qOqxHm4ceeihe9rKXFb9nhZfsHB8J5f7UnTxGrbPOOvH85z+/2DezIspIa7T/ARF33nlnXH311avdf/TRR/dq6qo999wz9tlnn+I8JWXiwcyZM4sp5jIxq6sEn9Itt9wSv/jFL4rqVffff3+RqDB16tTi+LzDDjsUSVz5+W1p6f1Yp5xaLLf5q1/9Km6//fZ47LHHiqpaOd3dwQcfXHyv92V79XIaw9x2tjmnzqtWq0Wi0qxZs2KvvfYq/sfaa68dg2Hp0qVx3nnnrXb/jjvuGEceeWSP66+33nrxzne+M04++eRV7ttpp52K12XKlCndrp/f95k4MmfOnJg3b148+eSTxTE+k0xe8IIXFNNl5TG+p+o85XdsrR/+8Icxe/bs4jn+9Kc/LaYf/Mtf/hILFiwozll22WWX4jlutdVWq6yXy+T39O9+97v429/+VjyHDTfcsJhy8tBDD+12yq7cB2rlOVRO05Zy/8tpKPO55ndunpNstNFGxf6d59v5ug2FgexP2dasRJbr1Mr355e//GXD9T7+8Y8Xr329j3zkI6ucdzZ6z1772tfGKaecstp5SSN5rlCeL+T7k8eI17zmNfGnP/1pleVe+cpXxpe+9KXoTrYj21P/XuZ+M1CNpjF93eteVxybrr/++lXuz9ftDW94Q5+uI2qV5295jMrqV/l4HoNzGtQ8RuVxMyv45f9fY401evV/rr322uK9zmNdnueUlQFz/TyO5rVKJrzmcS+vHfrrc5/7XPzP//zPKvflZyKvLbqbuvWGG26IN73pTavcl5+t/PzWf1az6l4eu/M76c9//nM8/vjjxXdCXvdMmzYtNttss+I8/VWvelWP12A97b/18jN03XXXFZ/FvCbJ1zKvw/P+PL4997nPLY5F++67b3FM6Om7DaAkpte8Mb2RVh9TzNfjbW97W4/rffrTn47vfe97xe+DFR8binjM008/XVzP5Pn6QI2GeGB/Y35dxVW72v/L66EcbLPHHnsM2WsKwPgkiQqAUeHyyy8vOh9ymok0ffr0IikhO7ByapYMwOSF7bHHHhvvete7Rrq5TePee+8tLvwzqD9cF9fbbrttEWgrZcd07gfZ4ZediZnYkp1s2a7a5QZbdmrk/8gOnpxaaCw699xz42tf+1oxdVVtEhV9lwGmRrITLD8n2UGWtyuuuCJOPfXUYW8f0LPsfK+XCUaHH354r7eRHeQZ5M3EnDwudJfEUsrzmE996lOrJSmk7FzKW3ZsZIJLnvtkgsduu+3W43bvu+++YorB+kSNf/7zn8XtmmuuKb67v/zlL0dfZUJRBqNvvPHG1R7LToG8ZUJMBuHf97739SrJqSf5vzLBot4RRxzRbeJCfZJKJiRksnW+R9lp15N8/b/whS8Ugff6KmWZhJyJGg888ED8+te/LhJg8lw029RX2a6ckjB/1spt5y2rBH30ox8tOhjT2WefXVROq60c9MwzzxTJFrfddluRcJbf8S984Qt73YZMkvjWt75VnBfUT5k4d+7c4pbnDnlOPphJuIOxP2XHR37+vvOd76xyf3Z+5PfuZz/72dUSbsqksfrtDMb+2pNMrK5vU17v5HvYXdJQ7mf1MiFroP74xz+utu+lTNLZZJNNVjs+ZcdU7g9bb711v//nI488EieeeGKRXNToGJUdYbk/5n6ciYpdyWXzXLzRMTTlZyTPxzL5MV+/b37zm0UyZVfnbr157+qTqDLp7w9/+ENxXOnLe5fJl/XfE/ld9MlPfrI49tTLz2V26uX/y+ebx4H8LOaxYTCue/Kzlu9Jo89i7XdSfq/kMTG/k/I7JBMdAbojpjc6jURMbzTIROGekqjyvL/Rd/dok4Mv8lrlve99r0Fyg8RrCkBvSKICYMTlFDqf//zni98POOCAeM973rPKCKkMIn/9618vRsxnEDc7H7LTkMHz7//+78U0OTnyuVZWZMhkov52QvTH6aef3nAkUHZiZtAtOxSzozE7Gb74xS+u0rH68pe/vKi0kKO4B+ob3/hGEXDqj+yAzA6doark0Fu11ThqZedvVtOYPHnysLdprOou4JiB4gxM5ucl982sVpOJfsDo0qjTOBN3sxJQb+XnO2+9demllxaJM3nu0huZ5JDVdj74wQ/GW97ylm6Xy1G4ZUdVV26++eZiub6MsM3kiTwnyOSUnmQlpTz+ZRJYjuQeiPpEizLJLSuh9FYmDGcVmd7K7/m3v/3txWjo3sgEpnye+brm/+ltUkN2HOY5S3YkdiXPGzKxIisZZQJcjpjuTiac5fuUCRm9SeZLOTI7k1a6k+dbmbCRiRS5/YEazP3pAx/4QHFeWn9+lhWWsvJOmeCSHYX5HOqrVmW1qqzO09ukvIHIkfCZ3FWbBJftymSxTNDvKjGyPtEpqwBlotNAXXDBBavdl53bOUJ/gw02KF7vrJRW6/zzz+/35/qvf/1rcRzLCmo9JVplJ2dWZWq0H2dVk0x6ywSp3srXMfe5TKLLild9lVWYttlmm2LfrZWfta6SqHJfy0oK9Q466KBV/s7nmddd9ftmV7KSV1YFy89PVo0YyL6bx698LTORqrdyf8zrhtx/MtkOoBExvZE3mmJ6Iy2rE916663FuUhWV+xKJitnovZgG+x4YH5mGk133l9jOR6Yg0fyXCr1prp/uWye6w7lawrA+NT/uv4AMEgdmmWp3Qy05Mj4+hLTeeH5iU98Io455pgVyS05jQODJ1/j7GQY6aSf7uT0Eu94xztWdI7+/Oc/X62qSAaM8nmMdJA//3+2oz6ANVpkJ1W2rz6QQP/kdH6ZsJZTr6RmGuEJY0Um3mYllnrdVT8ZjHOc7CDqbQJV7ajo/K5rNPVWyu1lVZaeEqhKWeUop0LrjUycyQoBvUl4qZWd/PUVgvoqE5MafZ/2NA3fQBIKcirH3iZQ1Y9ezqnieisTUbpLoCplYkWeD/eUQFX7fv3Xf/1Xr5MhekqgqpVVt7Ka00AM9v6UFZxy1Hh9p0m+bnmtUCYBZcJao/c1k9T6kjQ50HODnM6lNxXxaqsm1MvpjwZ6fp7JW3ne3CjRK+X5aqNkxex4zXX7I5NHe0qgKuWx7L//+78bPpbvZV8SqGqTr+qnuOtrNap6Wa0ik5q6On7Vd8bl61o7DWS2KffB3iZQ1SfkXnjhhTEQ+ZnuSwJV7ee4p+mtgeYlpjc6jIWY3nDJir75XdtTlanynGwgVTcbEQ8cOpn4lW3vbZJ8uexYTBgDYORJogJgxORFbXZAZWfh7Nmzi+k7uvPud7+7GEWUwevedi4x/uSI7r333rv4fSCdIzCYshpJThGUsoIGMLpkJ319lZXUlwpNfbFkyZJi+rLaKjSlHAmeSVLf/e53i++xnKorKy7Vy86mnMa2XlZXyWlR6k2aNKmo6JKJMjkCOkek97ZCUW3CQlaGqZWVTzKhIJN1crsf+9jHGiYrZ3JLX5NlajVKuOjNdHz9lVOtNUooyEpQWUEnn2u+lu985ztj6tSpqy2XU131NqmhnDovK//853/+ZzEVX+4DjTovct8pZdWzHCmdy2fHY6NKm7/97W971YacIqz04he/uHivcx/MdmRFtnp5vt3fhI+h3J+222674pqgXn4m8v3KztysXFovqznlqPv+yA7JTOzKW6OOtmxP+XjtuWmjRJysRFX7XtRq1Nk3GJUtMzkrK4zVvw+1Fa7KhKpauU6j5KveKCs75Ocpj4V57ZbTNe61115dJgnVy/e/UQWtTCzLfSvf59xu7kONjhWNqtv1Vr429ZXmsvpbV9PgNXrv9t9//+K4XLrqqqtWS6bM6a4y0TATCrJCS/7Ma+J11113te3l1H79ldfbjd7LnAK1PBbkFIZ5PNhxxx1XWy6fd1fPHWheYnqMRvn921Vyeu25eVaQXGuttYqpdwEA6kmiAmDE/OEPf1jROdib6UIykJ2B3Qy2ZAdUvQxKl52RO+ywQzGtW5YSz7LiWT683kUXXVRMYZFTg+TI4OysydHC2TmTSTr5P/L+dOeddxYBoRzRlB1Nud3s+KnvWMrOgdxmdszlaOTshMvEimxLdtxk+xYuXNin1ykDUtlRl9Px7LLLLsX/z5Ht2WGQ01XUd7xlMDzbkD/rO4yzvTk9UD6enSVlR112bpSvRcrR+/l32RF00003FX/n/82pVrKEcv7daNqKUnbk5jIDCfh35Q1veEPxM/ef2ildyvc0Owfr/e53v4t3vetdRcdLTtGx6667FlNaZAdM7etUbiNLe6ezzjqr+Dtfo/T73/+++Ptf//Vfi///xje+sdhncrtlCft8nXKZRh0/Kf9fvrb77bdfsW62N0d4N5o+sLvnVPte5a2sulC+n/XvRW6rdj/NtnfVEZTTG5X7e3Z4vfe97+2yIkX5/3N/uuSSS4rXNac7yf0+P49lOfP+yABrVqPIzqx8rfLzdNxxx8Vtt9222vubbcj3tqtO/Kzekh1DuVyWdx9sZRJEow7nDNJdfPHFxT6YQbp8Lnmcyil9MvDc6L3P1zHbmp1ueQzK553PP9+TPFbl8TArqfRWLpuvY/n5H0iyA4w1XVUByiqHQyGP/w8++OBq9+cxIKvVve51r4udd965mIY2vzu++c1vrtLZnvK4maP56zWqdpfPIzvg8/ifx5j8Tsrkn5xitLfVGTPpIY9TjaqXZLW9fffdt9jum970pqIzvr7DIb8DMsFrMN+joXp/sipTVtmpl0lLeX9OqZjPNZ9jJqPl69goSSOnGK5NeupObjuri+X5Q56D5D6Q38ddye+AnB4nzx9z+fwOaNQ5mUlKjRIEu5JVzHJ/y++D3AezHfm+NZoyLs8z8zuoP4Zyf8rPUZ6L1stzthNPPHG17+HssM2kxP7Ka5DsHM5bo4S6/IyVj9cmWeVzyikma2Vlp8svv3y1beTxYu7cuavcl1XY8hgxUI2S/TKZszaJL699crrDepkY1l95HpmfpzwPzfOXPO/NRLdGVa/uv//+1c4VMyl90003XaXyWO4zWbUq99c818zt5j7U6Hojk556+/msl8lNjSqJldPC1Gt0TVSfANeoOlpez+U59kte8pLiHDV/ZiWX/A4pK1hk9YQ8v839K6tC9UeeA9ZXFcvz+/w8lseCfL/yeJAJVflelee2eezL96w+EQ9ATK93xntML2NZuVyjJPfST3/602KZ/D4pqzrm65LXLxmXyu/AMvaU34ONzpV6K88xc+DBLbfc0mVVzIxt5SCbPM9qNEihNoaUMcPyXCbbmOdQ+d2ZU0Q3mhKuUTywNo6Y5zt5jp8DRHO/yvOZ3DfqE8rLfbEc9JFTVeff9dcPGbs84YQTiued5wrZxjwH7SqG11U8sGx3fqZzmzkTQF6D5OcpPy953dPVuUB+PnPgx6GHHlrs43nekj8PO+yw4rl2V5m5tzG/2tcxb+Ugle6Uy5ZVmbt7TXMa6/w9n3NX8cucIjIrWef5vukAAcY/SVQAjJjyIqa1tbUIZPRGXkzlrX5qlwyI5AVXXvjcddddxajnzTffvJjCJi/Y8rG82GokL5wzYJxB/QzqZIdCXmhnADkTSS677LLiQvCKK64opgDJkUo5rUR2AGXguZG8mMp1svMoA+DZAZBJEtm+TADq7fQWeYGabciASLY/pzHJKgYZQM+OpQzO1wY9sgM2A0cZBMgR+fVTvORzvO6664pgfHbM1nfY1m4nAwPZ6ZSywyj/zovxfP5lh052KjaSzy//T763gzGCvl7tCOky2ak7WcEhX8cMxGRHzFZbbVV0zOa6OcVOTueTAZz0rGc9q3iuZSdZvgb5dzlVW21nRAav/vSnP8WsWbOK4FX9Ml3JYETuC9mZke9nBrEyAJivVSYDDVS2I9tcyv+Rf+dz604GCnI0fAYXsx3la1WO0nvrW99a7PddyX0q18/S/FndJV/jfH1ynezU7I8MLH7mM58pOsLyeWQQMUcUZvCpdqqr7JzO9yrb2qhjPGWCVwZRs5x3BqsGU77/eaxIGfCtlQGj7JDPAGzug/n5zOeSnZUZNM0OyqxWUd95WsoO7DyeZFAtpwfK55lB0awYkEGpMjDcnTzO5fuXHZIZ8MnPRE/7A4wneZxtpL7SyGBplPyRx6lMYGkkOwxy6r9Gx63ahMc8v2g0tVWu26iaUFbQyeBwb+Txqb6jJtvcqHpPvm4f+chHep1g0BuNOqSG8/3JY2J+jzWaPjC/07JjoF6+H72pBJVVfzJhtv755HtWn2STsgpN2QlWq1HySerNVIEpOzMyAalenq9lR2Oj74X+JlEN5f6U5yennnrqalNz5HdxfXWxfO3zPCTPX4dbV+fBjSojNLovE1kGOv1IHi+yk7tefeWpfA/Kyg21sgMrr7P6Ks918nWv/zzl+5HnI/WyU7j+OJ3Xh5lgl1PlZedzdlbm8Sxf13ozZ85sWHmvq2N/bzSqJJbH5PKaoZRTxdZXXMtr0ewUrdVoWp88t2vUxrwezWvRfDyff14n5DVeJnf1R6P/ndfMd9xxx2r3Z+JUVqHL/5n/O9uQCYplJWCAkphez5ohpld+X2YMqatk3/L/lBV483s/r4s+9alPFQleeQ6aCSz5HZvfO3m+evrpp0d/5PuV11b5P7qqRlWeY2aiWlcy5vf617++iBlmMlK+htnG3HczrpLJgK997Wt7vS+UMbdMOCwTAzM2lc85941MHqsdLFPGIsvrh9wHa9/TlNUkc+BFJqnlvpbnQ7n/Z9vLGF5fE+Iz+SuTuvL9z89Lnl/l5yX3xYyd1k9tnMlq+TrmuUIOVMnrz5zSM5fL84h8rrUx1/7G/AZDd69pHmPy85n7cFaO7Wo/zueV1zTDNUU4ACNHEhUAI6bsBMzgSKNR3b2VCQR5EZoXoJm8kBeKmUSRwY688MkOp+xcygvSRlUhrr766uJiMy8Uf/nLXxZVeHJ0XMoLvkwKyWoxGSDKC6bsTMoATcpEhEYjanIb2ZGTI9vy97ygzTZlckuO6mnUUdTVxWT+37wAzfbl/86Adl7AZ1Ah/3d2suWFaikTJMpKBRlgySSWlIktZRAi/393c8hnh15ZKSPlhWz+nSOPUgaTUr6+jYIk5YVlBi6G4sIyOxDKfaa+06Jedkycdtppxe8ZIMvATl6IZ6dnjmTPi+RMpiqDK9lBkM+1rCSQAaP8u77TMfelDFzl+5sdO7ndDAj1RgaJsjO1bEu+r9lRlvtMvp99qS7USFnppHZkYP7dU+dHdk5l51AGhXJfyc9GVi+45pprivZmp2Xu03lrJIObWfkkgy35+cvnlwljZZCq3Bf7IqdiyRGN2ZZ8rbIthx9+eLF/1U51lYG48vXvKhBYVsRo1Ck2ELkP5ii/HJWW7ajfV7LiRwbFMgEqP8e57+VzySBu/p2ft0yoy6BTIzkqL4M02SGdnYn5Hn3ta18rAppZuaGn6aTy+JdJXBmMzpF9mXyVbYFm0lUHQ1fTag1Edrrk561eo8SBWpkUWd+hlMH/2uTaRiNy87iTAfyu5Ejk3nzm87upXm1Cbr3s2KqvXJPH5P6+po0Spobi/ekqMSi/G7pLtMnjZyYh1etN8nO+Vl0lWjdKosrqk3l+Uq+206RWbytRledvjeS+1yjBKc+F+2Oo96dcPkfd9yQT3rN60Ujpakq/+qpAQzWVX6POp+yYbZQwlRURGulPNaq8Jms0XWX53jXSVdWoPDbkeXke53LgQn3HeXa2ZnJVo0TM/lZCTXkdkx2B9RXW6gdwNOqgzSS1TBir1Wg/zGvPTCbIzsW8bsuOyPLznAMZsgpU/Xb6I48n9Z+/7KzM/TM7PjORIJMMymuQ7MzOKhKNjkMAJTG9njVDTC+ThrMqZ37n5utfL79v8vnm91l5zZLnz/m6ZoJOvrb5nuc5S76XWQU25RS3fUlQ6u2Ufvk9m+cO+V3XXfJfJuzn+5KJNrmd2jbm+5LxwBzskvGV3sqBc1kVPWOUGTfLfSH3ifIcIRPjygpL+R7le1ZeK+RnJP8u37uMMWWVsLwWzP09Y2W5vWxnfqeX1y25z9QnPnWnTA7L7eV7k3GrjAeWn6faASSZGJXn4xl3zUpY+b6Wn918z//jP/6jWC6nBO7qmqm3Mb/B0N1rmsewshJnPu9GMvY7FDFFAEYnSVQAjJhy1HyjUcN9keWfM9iSo/bzIrt2upW8L4MEGTDIwHpXSQof/vCHV5kWJC+IyqB5BoTy4rkMCmUiSQZvUgY8GlWEKBNSaoPlGeDIxIe8wM2LwwySdydH4mXCRF6YZ7JPbfuyMzhHbWVJ5Qzs5HZr5Ui3vGDOi+8MrmRQKgMzGdTIdXI01UBkoCFfl9xeoyoBw3FhWU7x09O0FjlaMF+j7Jir7xzMgFAm+WRArbsS3l3JhKEyoJTt6aqTvl5eqB9xxBErOkWy0zZHkGXgKZ9PlpEebhmcKv9vVqOo7VzLZJ1sb5bUTlkSvlEZ7wxuZsCrfB1yvayOUnaKNupQ7UmOBsttlO9PbjsDOFmNrCyDXsoAYb6mOaq+PtCSSQ0ZvOxvdbQsdV5/y0BLljzP553Bx+yAzs99TolSK/9vfu4zeFs//VD+XZZRrw2c1srgXh7HajvycpqCcorH7l7XPO5l6fkM1mVAOoPAI1GNA0ZaV9U7hmJ6okYJVHlsqq9KUi+PIdlpXa/2eNZoKpOsktSoykgpjz+1U7x2JZMy65VTHnR1q6+AlIH0HJk9WO/RULw/ee6WVQ3q1R+7G2m0TG8C+/kedaVRkkJ21jTSVVWiRtPINtKoWlmtRvtfo32uN4Zjf8pzkzyX60p2WJadNyMlz/9zapX6fbB2mppMxq5PkMzzy95W9ehKXgc0SizP16xRYmWeW+X5fb2f/exnfU5o7G4a0UbTBqaeOvjyvC/PefLcL8838/w9r7XK6e8aJUz1pdOwXp4zNhogUd9B3GgqpEbrZcd7JsvWy3bntWFWHsnqJvldkVUlsuJDV+eG/ZHXgo2qeGWlkzw/POaYY4rXM68V81w7O037MlUo0HzE9MT0Um1yVKPkk0yqyXO6MtkqlVUuM0ZRe52S31MZZ8t4VMaCeltttV4m9GQSdr5H9dOu5XuXST95HtHoezHl65LJPfncclBi/WCIHKRSxhf7+l2dCXK1FUHzOq4cGJDxwIxh9kYmJWWcLKuKZSws98vSc57znBXxu0z0qq1s3JNM4s6krPL6Ml+DPOfOz2CqrXCa72O2OV/rrCZVe46Xbct4a/l57up16kvMb6iVSYd5nl5fKTT3pawkn9esGY8DYPyTRAXAiCk7ggYyQjiVo2AyWN0oKJ8XcxmILpet72jKC8IyGaH2vrITISvA1F9Y1yYzNJpKKzu/MrmiXgZdyg64cuqvrmS1mZSBk65GfpXJIDlyqbY0cl48Z8nkvOjNhJIMsOSFeD6nTJAZqHx9ymBKfedMjqrK/5UXlo1eg8FS7jc9jc7OjssMkmXwJUuo109JksGzDMqVI476O61gX2QAotF+Wr6fXZWOHkq5D2WALkdkNapEkd70pjcVgY0MXjaaRrHR+52fnbIzuD9TquT/rJfveZb2rn+tMjhTfr7KqlP1Iynzs96o6kdPstOu/pYdnjltUHZGZtArP7ONErRyZFtO9dKo46z2WNhoBGzKwG2jBL1y5GmjygvlsSkrUOUxIKcvzMDtQEYIw1iWnTuNvi8aJdMMVKPk3vw+bjRNXL1Gx6faoHejc47eJEb2phJVfzsp6vWU3NyVRlPJNUrEGah8no2SjnpTObOn96cr3b1HeY7S26S/rjp6equnfaVRJ2h/94vh2p8++9nPNnwNy6T1oZoSsi8adUDWJuI0SsLJzrXazrD+yCSYrP5QLzsrsyOo/pbn8I2mO87zjL5O1dlVolTq68CFrDqSHchZsSkTz/MaJzulsyOrtwmE/dWoyl/tlH6ZpF5fFSU7ybuqtpUVs7K6QneyMz3Ps/P6JPeDcgqqgcrrluyk7+69SZlMkNXHshM7z5tz8ERX56hAcxPTE9Or/b7MNmelooceeqjHiuBlUlLGczJxLqt618rqSZn41puBII1k3CMTnRpN6debqfzyXCXf33wtXvKSl6z2eG63vLbr63dko+m5a6uK9TZulkl1GZPKJOyeBmr0pY35fBtdNzeKP+UAjEw2y1uj681Mxi4/010l5Pcl5jfUdt111yKumO2uP/ctEwsz6Ws0XF8AMPQaR5oAYBiUHVH97WwrlaN0Go2eL5WP5RQF+f9qL+4yKNEosaAM8DfqUKoN/jcK3ueUL13JIECWXc7Af3fKkfdZsrusVNPVtBdZqSFHV9VOm5G/5+idTO7IYHh2MGW1o+6qVfRFBklyhHR2umQnZ5koUwZIMug/lBeW5YV7Tx0B2Smbo/hyxGK2LW+57+XIu0x+yWBbf0dO9icZJ9epnxqkdsRXGsxy1b1Vjr58wQte0GWnXQaJslMoR5Dl564++NNVYLAM3tQGBXurq891GUzLzsEMMpUdwzlyLDuesmpCVikogz9lYLC/1dFqK8tkQCWDRBmsytL6+dnLAF2Oku1KHjOyQ7kcvZYdbvkz18+pYbqrltDT61qWe6+XpeDLYFl28g/GdDAwljt5sipN/QjYRlWjupOdGDkqPUc356jfRtNVdZXQ0RuNzil6SqTozbG1N8k3XR1L+qqrxM6eZOJBJpzWygo92bHV2wTQfA4ZiM/v+EyOLqfmHaxEpP68P/1JGulPdcze6KmqTKPvof6+XsO1P+VUMF39r0wYyf2gqwpewyWT03NEf20HVnaWlvt2o6lmBmMqv66m+81z4q4qeXTlRz/60YrR+b3R3TVAX/apTDbLChCNOt7yWJvT++WxIxOEcmqcRkljAzFz5syiSkbttJZ5PZlT8GSnfF+nYczPdk5Nk4lRmaiUCXQ5JWF3soM0E5pyasqstDIQ2TGa/zP3jawM0tNU29m2rCCXHYk5XVF/rn2A8UtMT0yvdsrpTHbOKk8Zi8np2cprrRzImLGkrPxUyuSsTC7L2M2XvvSl4pbfubmNjK10NZCsL7JiVyZC5XlWfoeWr3cm4mWlpt4Misw2ZLwmk6ny/c4EsXwv8vuzHDDQ16qXjeI7tQlPfYmbZYwnbzldXlaWzDhTDhLK1712MEpf2thVvLK7uF4+lq9LJpfn/892ZHuyHeU+3lUb+hrzG0plVbVMZM8YYjkQMq+hygEQpvIDaB6SqAAYMeUI3ZxGLDtIehMIyIDJ4sWLV5kWpRw11t36tQGVDE7UBlx66ljpzyjwrioIpHK0Uk+ji8pOo96WXs7t1XfmZnA/n192PORrUFsWfaByBFx2UuZUZXlxmSWpa0frDOWFZV6Ql6MdM9DSkyyTnlPYfPe73y2CC3kRnoGdvGUgKju3MjjV12BUoyl4ejsNYXePjcRo7958jmo/S42mWOqp07ev1QJye10F7Wpfx9y/y4BKln3PkZk5kjEDm7mPZudTBnDyc99o1F9fZZvys5XVGjIYmkkZGZT73ve+t8oIwtrXNitl5P5WO0o3n18GjDJxLUuxD3Zneu5HGZjMoHQG+zLpKzvuoFnlqPH6JKoM9ObxIgP/vZEjyjPYn7dMisjvlkymeutb37riO6HRKNw8DuSxqqdzjkZTp9VWaGqUOFwmYnanp0761KjzKZMX8rkN1/uT39P13xvZ0XHQQQf1ahuZ4JrJDnn7+te/Xpyr5PuT1QvKc8f8vshzu/pAfr72ZTJzX96fgU5h08hQJb1m51yj6dpKjTpBe0pWH8n9KTtrstOtK9nZlYk1H/vYx2Ik5blV7od5HlAqO/FyxHv9dEB5XlBOmdJfua9motZgyTZmR1hvK0IMtGpayk7XE088cZXkvzxvz3OvTI7L5Knac/FMHh8KmTxWm0SVsiOtURJVnrN1VdG1Vp7/ffrTn45PfvKTRcfstddeWxy/8nXOa91GMokpj5O5Lw1EXqfmAJO8ZaLqNddcU5wzZ5XVrLDaSA7wyGulPK4ClMT0xPRq5fL1SVTlYLaM09TGcPL7PCtlZwzloosuKq7R8rwub3k9kM81v6fe9a539fu8OBO1Mgkqv8PzHDiTl7KqUe4/OX1uT9vNuGF+T+f5Wu11Q74fmWSXyUS1U9v11mDFzXK5fA2zklftvpjPKz+bmdTdaFrnnvSUOFffvjyPydcpr6tr5Wd07733Lu6vr042kJjfUMv9OKtw5nlRxp7zM5f7QCbN5Xlwd8meAIwvpvMDYMSUc4jnhWeO5u2NCy64oFgvRzCVAfXywqq7keq1U4p0l8QyWLoKftcGiBpNW1OrDATldFzZadHTrVHHX45WzovNDBplx9hARy/XK0ekl51CGZDI/5NtaVT9YbDUBipe9KIX9Wqd7HDIzofsJMgOgLe97W1FAlZWL/jpT39ajO4bDo2Sj0rlPtwoONBVIKWrkth91ZvPUSqDM8PxOcqEo66qZtS2s/b1ys60six7uV+WgaMcSTmY1T0ysJdl5jOImgkK733vexu+H8ccc0wRGMwOxdzvspMvp6HJYF5WIejPVJK9kQHXb37zm8XUMeW0gr091sJ41KjjOY+t559/fq8TE+sru+TI8vxs1QZ/GyX3ZuA9k3h7OneoDz6n2mSKRpWvMsDfXcdMnmdlBa2e1HZmDeV0h13JkeeNpjzs7fuTzjvvvFX+zoSAc889d5VKRfleNeqAygSGnjTqKBlosstwqk8EqdeoKk2jfa43hnp/yv06p2nuKfE8O+cyQWWkNarilIk4WRWo/hwvpzMaqJxypD8VQHuqRjWcvvWtb612HpgJcXlek0ni9YMZurv+Gmgli/oO+kyozeN1WT2llNUz+pJYmddoWekqzxW//e1vF98Ted6a1yWNKkH8v//3/2Iw5ec7p4jKZMPsIMyk/kxMzONxvZxSMJMfAEpiemJ6tbJSb8ZmMvE2vyPz+ierHnY1PW6ek2d8JP93/t+cvjATWLLCd77GGTfJ8/j+yv0kK8/neVaZ9FwmiPWU8JzJ7jlQ7tJLLy2eUyaFZdWurGqV1wPf+c53VkzrOFKyPTlQLmN0+XyyWnJeq2b78hwzzy2GWr7Xb37zm4v3O6uDfvCDHyzOZzKRP48JWc2yuyqW/Yn5DbWyqlqjmKIqVADNRRIVACMmO7CykkvK0TM9jbbJC6syeJ8dlGWHZdlZ2V0HYXZylqPpG1WIGGxl2e7uOqjyArM3o/q621YmbuQFco4irn/9slM3g93ZIXnOOecUAZwMTHz/+9+PweyQztc0O8VytHh2KAzHhWXZiZ37T08j8bJzLduWtzLxJUekZcdbBhb+4z/+o7j/8ssv7/cURH2RFUO6GrFY7sO1HbLlSP6uAguNqmL0R/k5yv2zqzLbGcgqS9aXpd6Ha5rBemWiwSabbLJax1YZCMzS7RnQzZ+19w+mfN3KfSgDSNkJVSsrCmTiXsoRgrnfZWdcfv7LhK4cuTsU8v9kB2OO+syAZh4jPvKRjwxZJyOMdjktRKORo3kO0tOURimTJhtNFZUJmrUj3HOU82abbbbacj11AmRSZX0iZm43EyJLs2fPbjhqOpOBu5Lfzb2ZZqU8J6tft6vvn+yMyOp+//Zv/1Z0emTnfv10fH2RwfFyyoRaeZ7Tm3OX/B7PJIBGz6v+/cjqP/Uy2bW784A8l8wKZPWyc2asyI7L2oqItfJ9bjQ1We5z/THU+9PZZ59djHyvV58snd99WQFrsM7xGn3+epOslJUe6quAZbWGTHaqled9ZTL4QAx2sk15nBnOaqmNEhsz4air88XaDvbBlNcO9QnveUzNSlK9ncovO2OzMzGPZZ/5zGeKDvW8Hqmv/JTvf3ZcZ/WNMgm+Vu3UPH2RFT6yIzA7pLPSSH5v5WeoXiZu5f6XSfj1HZZ5fZAVGQBKYnpierWy6lN5DpPndRkHyQpQuZ/UJxzld3bGSrIicMrp9TKJ/OSTTy6ec1lBvD+VlOpjIimTnzIOktvOWFZ30zWmTJ7K+E5WzMprtOOPP76IqeR7WsbohiqO0xt5Pp+fufSe97wnvvzlLxeJavm8yiTD4WhfDlTNc8P8DGecNs9vMgGpdsrC3AcGO+Y31MrYYX4ecr/Jqp15jdHb6sgAjA+SqAAYUTmKKjsjymlXupPJCVkCODsUa0fUlBfXF198ccPgeQZqMvhQjg4eDhngKZN2auV9WRI45ci77pTPK0fP58V7I1/84hfj8MMPL6apqQ245Kjo7IBKH/jAB4qO47zoT6eeeupqo6Z76ijqKhiWQZJXvepVK4ISGdDJC8sMzA+VfJ/LTpUs7d2TDHhkh0aO6G70PGpHWtd2gg3VVDrZhuyobZSgVHakZadKqQwQ5r7dqNJIGeTqz/tX3wmcAaJMEChH59XLsupZzSMDGFkBYDg06gTM96n8TNe+VqUM5D7vec8rApI5QjADkjmKsqdpmvrriCOOiJ122qn4PQOatZU+asuW57Rf9TJhIqtSlc9rqJTTVZbT+kGzOu644xoGoXOKsa5G0Ocx9Gtf+1rReVEvOzVyBHW9Rt+DmTCRiViN5Hd9o6moclRx7XQi+Tkujze1zjjjjGLq0kYd7tlh39tOlPrvvkzUzUSB+uTaPHbl6Oc8vuZI43xt8pyuUVJBX+Rr2Wgql5ymNatMdfV9lucf//7v/97wsexY6M37k0nOOf1vo4qC+TwbbT+TYsZSElWe/+Vr2eh1zE6rRp0t/Z0Gdyj3pzyfzuUbfV7yvLdedtDltLqDoVFFy94kJ+drUV+FIa9R6juM87y0uxH7vZHJfo2SbXKqld5Uwshbfhbq5SCAHIAwXBqd9zb6/5kg11Vljr5OJd2VRon49ZXdMumo0Xlp+T3zjne8Iz71qU8V56bZGZcJVFk1oqvzv5yKul6jan29kYn8+dnI6+3s2M6kqvyclYMj6uWxoFH13P7+f2D8EtPrWjPG9GqTT3J7Kc9/6s8Jc7/JKfUyabde/v8y3jTQGEm+BzmwLPfPTPLJc84ysao7ZRwnE5IaDY7J64ZMyBqMNvbnPcxYV3n+2dX0cjl4olRblXcwlcngW2yxRcNEpzzfyfP77l6n/sT8Bqqnz0UmzOU1eCZyZeJnJsO/5CUvGZJp3AEYvSRRATCicnT7O9/5zuL37FjMii71o7Ty4jWDBjnCpewMqx019MY3vrEY5ZIXsbmt2hGyGXzPDtMMFOfFb063NRzyQixH+dY+lwy2HHvsscVjGUTIi8zuZCfpXnvtVVzs5qj8MlBTBpGyQ7e8KM7HyyoYuXwmDGVwIAMPGZBJWWI5R2/n/fl4by6iyxFM2enV1fJlkCTfnxyVnUGKobiwzCBBdpiVo7LzNezNxXQGSDIIk/vA5z73uVU6unJKihyxVSbe1HZUl50E9SPEB0NOk1EGlMr9NPfNcpTeoYceuuKxbFe2P/ebbH9ZASA7Y/I1725qlfI5lEGLnkpW/+u//uuKqVJq25ednZkclKW4UwY8G3VyD4XsaMqpeMoO10w2O/HEE4tOxxwxmSPdutsvy4SFoayOlgGY7OjN9ynbmftoWWmjdlqv3H9rK4Bk51h+dssOrMGamrGRPEbm65ZM60cz23vvvRsmPeX3V07ZkJ/J/G7Nzo685XE2R0V3lfyUx8NGU3lkcmXtd0opv7vzezmTaTMhOEc5Z4W6o48+erUKLxnwz3OJevl9Xi+/2/J/ZmdLdn5k288888ziWNioelYj+f2TweF6+Xpkm8sk5vyZ516ZaFGvq2Nyb2UVlHwO9R0teWzNJJh8L3KKr3yO2ZZMPs6E6kxOaJTIku933url+VGjZOCcyio7knIaijxOZuJbnifkqONGSSmZaFI7leNYkMnl2WmVr12+hjnNSu5TjaoaZPJxf5Omh2p/yu/X/D6rr6iVn7f8/s1OyEZJy/l88/M2UI2SSDLJPPedTE7JztCu5P7bU5J+V5WM+qJ+2tGU+2lPU9fUyvPsstJC/f4zXBpNZ5fJQHmemh2XecsE0qwS1dVUlYNVOSs/B42mqKyVlT+7Oh5kNatGFcZyOsc8789z3dyH8tidn4m8fm2UKNjbaczr5We+0bVVnvtncn12dufnMduTx7y8v76zMwd2NOpIBpqbmF7XmjGml+9rVlbPpLGsgNgoibz2fCfPK/J7rzaZJV/zjAOlRufxfT1vy23ktUQ5YKU3FT/LOE4m9eXrUtu+rKCV15Nlpd+hjON0FZvM96e81sxqx7VVhzPOmYnz5VSKaagqiZbV1jJZqnbq+tzX8v/XJuV31Yb+xvwGoqd4b57PlYmEwxFTBGB0ahvpBgBAXlTlxV8GcPMiK285AjvLOeeI57LTKhMUMniSwYX6Ub9nnXVW0YGWAfQMpGdZ7ayqkxff2cmS289OjeEK/GbbMzCdF11ZEScvuDNhIn/mdB45pVZv5Ei9DCLldCUZWMrgfV5EZlCpnBIuq2fUTn+TnaZZjSIvCjPppuysyYBM/p0dOPl4BuYbVeSo9YIXvGDFhWW+rtmZkQkYtR1AOeopO9nKUXoDvbDMNtV2QGRwKQMC2YYycJGB/ays0xvZ5nzeGWTKKhbZsZTloLNjIEuW54ii7BSor1CQlYtyaqAM/GTHXgbAPvGJT8RAZdWKDHjk89xggw2K/537aT7P3O/zfantoMv3OzvXcx/Pz0Z2sOR+kK9Hvi65X+T0RY1KZOdzyA6RTPDJ9y2Db7UJWvVyupvcTk5/l+3L1y735dzfcn9Ob3rTm1b7DA6V/Mxn0DHbn6NaM7Capb6zozyDgdlxVlsmvD4ol5/5XDa3U46uHCoZQM3Pan7+8rOe71cGXfM9yES+rJyQI/4zcSLfv3zvytGNOVVXBp1yxH8GjLKjbSi8/vWvL/bnrFCRIz/z9zKoCs0kO3EyeTGP8fWyCk7eeuNlL3tZMeVSI3lsz2NXHkvrR7jmlB1560l+LzWaOjUr/GT1o/p25vdZHme6qpjVm2o5eWzIqTfql83zq66SFEp5ftOXJI3uXtes+tQoGaV2et7efN+WI/gbyQpdeT5RP9VhHpuzOkxvkhKGsvLmUMrzykZT4dXKBJrsgBmIodif8nu2UcJVJiOWCY353ub5Tn1nYZ47ZhLKQJL9G00jneeT5bEgrz/y2qZ2is/adbMztJzmt15+J+fneyCyKlOjaRmzQzTPKXsrz6/yOFN/nMz3Lc9b8/pmqGWnZ31yX3aw5QCC7gYR1BqsKf7KTuByQEF/EuCygkies9cfc7LKQW+q+GWFh0wS7I/c7/LzVF9tNl+fTEztjewwblSJDUBMr2vNGNPL9fNcOuMbWUEr4171si15Hp7f5x/84AeLc/Yc2JfxkDyvytf5hS98Ya+qz/ckk5zz3Cjbk+9lJnn1JAdsZsJa7o/5mmfFrDw3ysEpGTPL1y+rh86ZM6dIUMv2DlU1+4wpZRJhOZAkX7scyJPvfVa4zPhODlzIz0bGFfPzlufAuV5WY839OCtMdlWxaiAywSk/7/k/ckBPtiHPZ/N6Ks8xch8uX8dGFW8HEvMbite0PrkwE7yyLeuuu+6Yqj4MwOBQiQqAUSGDshnUzWSRHLmUHYEZUM6RaHnRnxdm+XhXyRt5AZQXbjmiLS+KMyCRHaQ5KiYvun/6058WF2bDJYMEOaIsL9bzAjsrAeXzygvcnLe+t1V8shM2R+TkBWUGv7NjJDuOMpiUHQs5ci0TX0p5YXr22WcXv2cHZH1HT46mKqta5Eju3nRg5Qig7IjMwEBeCOd7Uq8cWZaBsoGWV8+y6TlCr7z96U9/KoJLGdTJi/JMgsqpaPoSxM8KEnnxm+XWM0CXo+IyiJSd0xnQyn2rvjMo97VMOslgXe5LjTrs+iMTxHIkW+7TGWjJC/d83bICSu6nW265ZcOgZAbfdtxxxyKAmKXbc9/OIGV3HZwZ7MkEndxfcp2upuyobVsG4nIEen5eMgCTr3922uRovUxCy9H/QxUcqpf/JzurMjiUbcj3IBOMsmP0Jz/5SbF/diU7SMsgRwbAymkRh1LuS+Vo1PwclqNWM9ib+2weA/I9z+eRr212aObnMBMeysBidq4N5euZHctZ3Sb3f9P60azymJjfn40qOvVWJmbmaObujof5nZOfub52Omf78tjeVfJn/s/smOhp9HspA8957O6NTDLO1yan9uiL/E4qKzsOhuxEy++9/lZ5yu/S7CDq7tif5wDZIdKfqdOyc6i3r+lokp10vfkOz2UyASo7PQZisPen7IBslPCR5zq1VQ7y2qFRxbmsZjHQhPieznOz06q76m/ddUzmMSO/owcir4cajfRvVAWiJ3ke3MhwVaPKa7i+JH7lsbNeV9Mn9Uej6YhK2Sme5+k9HYuzY7w/yfKZ1JiJtfmZ6q9cv7+VrDK5Na/TAboiptdYM8b0Mv5WXv90d/6Rr2VOJ73rrrsWSdL5umSicX6fZuJ7JlIPxgCzjLuUAxV7O+Ajv3czbpeDb3L/zWpTGbvL9y23ke9peY6bba6tMjbYMskszxEzJpZxvfLcJgdJZhWqPA/O/THjT3mum9Xs8/XLBLWyklejwUOD9TnJz2YmCGYCVSZtZRsz6SgTv/OxchrKRgMrBhLzG4rXtFa+7xmHLvfpRueZAIxvlWpXE78CAH2WF38ZHM8AdTl/ezPIztyc+iYDZuWUYTDSsqMyS4BnEHKgZeCB8SmnbMspVnuqylPKEdIZTO9LdbtMDs6k1t5Un8pAbSbnZPXDnuSI36yymBUKu5JJMKeeemrRYVKfVJLTkXQ1Jcof//jHIpErj6E9yco5mSzWaPrCgcqR1JmsltX8ehO6yA6SPBfJDrreJu5kwksmbGV1vvrpq+plh0AG+cvpb7s7F6yVHUhdVbfKDoYcQV4rO5S6SrZplGydFSTrpxprtFxO1ZWdbdlp1VVlskxayX2wuypbmZxcP/1FJlpnJ9hQ7U+ZGJSVfuoTwrPzI9+7+k7GXD6fQ1YzqJefidqqQX19z7LzslG1p1J2WmUHViPZCZedXVkNoV52hGXFhoHIUfN5zKmVFbqycl1fO3/y85DnT/VJYbmP5HGn/IxlFbCcLrG3x5e+7Mc5ZU5uq6dpSbNDMzvD6ity5P5U/9729TNXn4iYU+7VKytC9EZ2cmbnZm87XLPjOz8TWfGikb7sv5nEn995OQVl/ZSYjWQneB5T8z1QhQpoBmJ6YnpQDozI8+BMOvz5z39eVMcDoLlInwUABiRHGOboohxB1NWIdRhu2VGbt0x4GM4Rq8DYkqNbM+EhE0uylH+OkM3R5o8//niRQJCjerMDe9ttty2mScjjSY5M7otcN0dS57QbOQI/k6kyOSinq8hpCnLEd3bUZGJK/o/eVvvLke3lFAQ5VWgmguXo40w+yZGzmSSSo+ezveX0ob2V02dk5cdMlMgKefn6ZAA5p2XISjk56jjbnB31s2fPjqGS1aKyIlGOYM4R1FdffXVRmSCfZyaj5EjlfP3y+WbySSZR9HWa0lw/pxDJBIisgJAJEpnkkKPKM2kgE1CyOkJWN8xEjdopd8einAImk/Qy6Sn3nZxaIyt+ZRJS7oM5qn0g090N1f6UiW6NKmrm+9Zoir3cblZ9yKSXepmQkglfOVVPf2Ri38UXX1wkDuXUN7kv5muWCUC5nzRqT23SVx53MmGoVralqyS03sq21CdQpUz67M/o+Tx2ZGJRVrqole9bJjbmvjTUcn/Ijqvzzz+/OAbkFC957MzPYe43mayWbcyE0UwQymNCPl664oorigSs/lScaySP0Y2SqLJCQW9lhZXsmL/xxhuLZLz8bsjvhKxOkvIYlueveVwrvxcGK4EpP+uZ9Jafi3xdM5ksj3eZlJvXdLl/5ndITnW08847F4mIg/XaATA6ienB6vKaJa9X8hxTAhVAc1KJCgAGUbOMWstAe3Ywl1OVZUdQlsg+66yzRrppNLHsWE8Z6MgOouxszTLdOXUAADSTripRZWIaIycTfTIZMxORamX1tKxyx+iW71NW9aqViVyZjAvA2CemJ6ZH88pk/ay0mlP8ZSwxY4tnnHFGMVAHgOajEhUA0GeZnHLYYYet+DtHLWfSCoykrPCSU5SUchT9m970phFtEwBA6X/+539WS6BKtdMLMjrl1IJZDa+e9w6AsUZMD6Lh1No//OEPV/ydAx8kUAE0r5aRbgAAMPbkNCU57UhOCZGjr7/97W/HZpttNtLNosll1Y211167mOJl3333jXPOOafYRwEARlpOR5cVLhpNd5hTvDG6KxOccMIJ0dnZudq0ka985StHrF0A0B9ierC6bbbZpognrrXWWsV00aeffvpINwmAEWQ6PwAAAIBxxHR+I++kk04qkm+yusMjjzwS999/f8PlsoqmRJzRJadwyin6Mjk/K4fddddd0dHRsdpyb3jDG+LTn/70iLQRAAAAGBqm8wMAAACAQTRhwoRiCrjubLvttnHggQcOW5vonaxAMHfu3G6XyUoF73nPe4atTQAAAMDwMJ0fAAAAAAyinCanOzNmzIgvfvGLUalUhq1N9M7666/f7eOtra1x8skn97gcAAAAMPZIogIAAACAYUiiamlpiX322aeYLm6zzTYb9nYxsAS4rbbaKs4555zYf//9h7VNAAAAwPCoVKvV6jD9LwAAAAAY9xYsWBC///3v4+GHH47FixfHpEmTYsMNN4wddthBBaNRrrOzM6655pp44IEHivcxK089+9nPLqZffN7znjfSzQMAAACGkCQqAAAAAAAAAACgqZnODwAAAAAAAAAAaGqSqAAAAAAAAAAAgKYmiQoAAAAAAAAAAGhqkqgAAAAAAAAAAICmJokKAAAAAAAAAABoapKoAAAAAAAAAACApiaJCgAAAAAAAAAAaGqSqAAAAAAAAAAAgKYmiQoAAAAAAAAAAGhqkqgAAAAAAAAAAICmJokKAAAAAAAAAABoapKoAAAAAAAAAACApiaJCgAAAAAAAAAAaGqSqAAAAAAAAAAAgKYmiQoAAAAAAAAAAGhqkqgAAAAAAAAAAICmJokKAAAAAAAAAABoapKoAAAAAAAAAACApiaJCgAAAAAAAAAAaGqSqAAAAAAAAAAAgKYmiQoAAAAAAAAAAGhqkqgAAAAAAAAAAICmJokKAAAAAAAAAABoapKoAAAAAAAAAACApiaJCgAAAAAAAAAAaGqSqAAAAAAAAAAAgKbWNtINAAAAGMseeuihmDNnTvFzyZIlMWnSpNhoo41izz33jA033HCkmwcADLFlD/0tqjfeEdWnFkdlzSlR2WmbmLDRc0a6WWNCdemyqM5fGNHeHtHWFpXp06IyccJINwsAgEHQuWhxVB/6e1SXLInKpElR2Wj9aJk6ZaSbBdCtSrVarcYY1N7eHuecc078+Mc/jgcffDAmT54cO+ywQ7znPe+J7bfffqSbBwAAjHP33XdfcT0yb968LpeZOXNmHHLIIbHpppsOa9sAoHT88cfHTTfdFFddddVqjy1evDi+9a1vxc9//vP461//Guuuu2688pWvjGOOOaaItdW7++674/TTT4+bb765WPf5z39+HH300bHffvtFM1r2mznRcdUNEYuXrP7glEnR+uKdY8J+e4xE00a96uNPRsdd90bn3HkRnZ0rH2hpiZatZ0brlptHZcbaI9lEAAD6qXPeQ7Hs2puj+uf7IzprUhFaKlF5/qYxYfcdomXmRiPZRIDxl0SVyVKXXnpp0Rnxkpe8JJ544on45S9/WTx21llnxV577TXSTQQAAMap22+/vRjUsWzZsmhpaSkGcsyePTumTJlSdCrfcsstceutt0ZnZ2dMmDAhjjrqqNh2221HutkANJkzzzwzvvrVr8b666+/WhLV0qVL4+1vf3v8/ve/L+JoW2+9dfH9df311xcDFc8777yYOHHiiuXvuOOOOPLIIyNDia9+9atjjTXWKGJxjz76aHz0ox8tHmsW+f3fcdq5Ef94YuWdlZoFaqOtz14nWj/w1uJ8gCj2n4477onOObcsf9GmTo5K28rJEqpZkWrR4uL3lj1mR+s2s6JSqX1xAQAYrTIO1v7L30XndX9cfsekiVFpa13xeLW9I2JJDkCoRMtuL4y2A/6liKsBjCZjMonqmmuuWdEJ8f3vf7+YLiNdd9118ba3va2YOuOSSy4Z6WYCAADjtALVGWecUXSgbrPNNvHGN74x1l579UoJTz75ZPzgBz8oOp2z4/S4445TkQqAYZHTy/7nf/5nXHDBBcXfjZKoMknqs5/9bJFIdcIJJ6y4P+/Lxz70oQ8VcbZSVlb885//HBdeeGFstdVWxX2PP/54vOENb4i///3vRSwu/08zeObkb65MoOouv6eMuj57nVjjpH8bjqaNeu233x0dV98UlWlTozJhZfJUveqy9qguXBSte+0YbdvOGtY2AgDQP0t/fmV0zrk1YvKkVZKn6hXJVE8viZY9Z8fEA188rG0E6MmYTO3MEd3p4IMPXpFAlXbbbbdiuowHHnggHnvssRFsIQAAMF7lFH5lAtW//du/NUygSnl/Pp7L5fIXXXTRsLcVgObz29/+Ng444IAigWrvvffucrmy0tS73/3u1ab/y6n8zj///BX33XjjjUVS8Cte8YoVCVRpxowZ8a53vatI2srvx2aZwq9XCVS1j//jiVh22bXR7HIKv6xA1VMCVcrHc7nOOTdH9YkFw9ZGAAD6P4VfUYGqhwSqVDw+eVJ0XntrdN738LC1EWDcJlGts846xc+HH354tTLkOa1fjvKeNm3aCLUOAAAYrx566KGYN29eUWo8K1C1tnYfFMrHc7lcPterv4YBgMGWlaKeeuqp+MQnPhHf+MY3Gi6T30cPPvhgvPCFL4ypU6eu8tiaa65Z3J+VF//2t7+tqP6edt9999W2Vd5XLjPedVx1w/JfejvD3P8t13H59dHsOu66t3hBekqgKpXLddw5b4hbBgDAQC279ubiZ08JVKXly1Vj2TU3DXHLAJogiWr//fePZz3rWcVUfjnKbdGiRfHII48UZcazAtWRRx5ZjKQDAAAYTHPmzCl+br/99l1WoKqXy+Xy5dTkADCU3vKWt8Rll10Whx9+eFQqjTN9MkEqbbLJJg0f33jjjYufmQCc7r03k1+i4bS0z3nOc4oBjeWy49myh/4WsXhJ/1ZevGT5+k2qunRZdM6dFzF1ct9WnDqlWC/XBwBgdOpctDiqf74/YlIf++cnTSrWy/UBRosxW4kqS4pvt912ReLUjjvuGPvss0/8/Oc/j/e///1x4oknjnQTAQCAcVqJKs2ePbtP65XLl+sDwFDZddddV6suVW/+/PnFz+nTpzd8vKzwvmDBglWWb5RAnNUWs3rVwoULY7yr3nhH36pQlSp16zeh6vyFEZ2dUWnrXRWqUrF8Z8fy9QEAGJWqD/09orPa6ypUpWL5zury9QFGib5dtY4SOW3f1772tbj55ptjm222iZ122imefPLJuOSSS4oy5euvv3689rWvHelmAgAA48ySJcurT0yZMqVP602ePHmV9QFgJC1btryqT1eV3Mv7y++tnpbPSlRNkUT11OIRXX9Ma28fwMqVAa4PAMBQqg4w3jXQ9QGi2ZOoPv/5zxfT+L35zW+OD3/4wytKkx933HFFqfKTTjoptthii3jhC1840k0FAADGkUmTJhU/Fy/uWyfo008/vcr6ADCSyu+jHKjYSHl/VphKa6yxxirJVPXy/r4mGI9FlTWnRHWA6zetPlagWlV1gOsDADCUKgOMdw10fYCmns6vs7MzLrjggqKs+AknnLAigSptsMEGcfzxx0e1Wo0LL7xwRNsJAACMPxtttFHx85ZbbunTeuXy5foAMJLKafy6qh5V3l9OC1hO41dO71cfq3vqqadWTAE4nlV22mb5L33NpKrWrd+EKtOn5dyPUe1jRali+ZbW5esDADAqVTZaP6KlEtX2jj6tVyzfUlm+PsAoMeaSqB577LGilPgmm2zSsIT4lltuWfx8+OGHR6B1AADAeLbHHnsUP2+99dZiSvHeyOVy+bTnnnsOafsAoDdmzpxZ/HzggQcaPl7eP2vWrFWWf/DBB1db9q9//WtRiSqrwo93EzZ6TsSUfo6SnzJp+fpNqjJxQrRsPTNi0fLqnL22aHGxXq4PAMDo1DJ1SlSev2nEksaVbru0ZEmxXq4PMFqMuSSqHPmWyVMPPfRQw5Lj9957b/FzvfXWG4HWAQAA41lWksqO5Ky68YMf/CA6OrofYZeP53K5fK634YYbDltbAaAr66+/fmy66abxxz/+cbUparOq1G233VY8vu666xb37bLLLsXP6667brVtXXvttcXPHXfcMZpB64t37ls1qv9brnWf5a9hM2vdcvPiBaku6101qnK51q2WJ/EBADB6Tdh9h+Jnb6tRLV+uEhP2fNEQtwxgnCdRZQLVfvvtV4zmPv3001d57PHHH19x30EHHTRCLQQAAMaz1772tTFhwoS444474pvf/GaXFany/nw8l8vlDznkkGFvKwB05dBDD42nn346vvKVr6xyf/6d9x9++OEr7nvRi15UJAP/7//+b5F4VRuL+8Y3vhGTJk0qttcMJuy3R8Sz1+ldIlX5+LPXiQkv2z2aXWXG2tGyx+yoLlzUYyJVPp7LteyxQ1TWWWvY2ggAQP+0zNwoWnZ7YcTTS3pMpCoef2ZJtOy+fbRsZsAhMLpUqtVqb8dNjRr//Oc/44gjjoj77rsvtt1222I0XHZQXHbZZTF//vw46qij4oMf/OBINxMAABinbr/99jjnnHOK6YtaWlpi++23j9mzZ8fkyZOLjudbbrmlmMIvK1BlAlVeo+S1CwAMty233LKoPHXVVVetcn9WeD/ssMOKZN+MreX3WH5/XX/99bHTTjvFt7/97WIwY+nGG28svs8qlUq86lWviqlTp8YvfvGLePTRR+PjH/94EatrFvn933HauRH/eGLlnZWaBWqjrc9eJ1o/8NbifICIDEV33PGX6Jxz8/I7cuqXtraVj7e3F1P4pUygat1mi2KfAwBg9Ms4WPuvro7Oa29dflI8aVJU2lpXTZ5asqQ4ec4Eqrb99yriagCjyZhMokoLFy4sRrpdcskl8fDDDxdBna233jre9KY3xf777z/SzQMAAMa5+++/Py666KKYN29el8tk1Y6sQJVTIgHAaEqiSosWLYozzzwzfvWrX8Vjjz0Wz33uc+OAAw6If/u3fyuSpOrlNH9nnHFG3HTTTcXfz3ve8+Loo4+Ol7/85dGMll12bXRcfn3E4uwIqjNlUjGFnwpUjVWfWBAdd86LzrnzIjqXT+VSdLS1tEbL1jOLKfxUoAIAGJs673s4ll1zU1T/fH9EZ00qQkslKs/ftJjCTwUqYLQas0lUAAAAo0EO6rjmmmvioYceiiVLlhRTGm200Uax5557xoYbCggBwHi37KG/RfXGO6L61OKorDklKjttExM2es5IN2tMqC5dFtX5CyOyAlVbW1SmT4vKRFW7AADGg85Fi6P60N+jumRJVLIq1UbrR8vUKSPdLIBuSaICAAAAAAAAAACamklGAQAAAAAAAACApiaJCgAAAAAAAAAAaGqSqAAAAAAAAAAAgKYmiQoAAAAAAAAAAGhqkqgAAAAAAAAAAICmJokKAAAAAAAAAABoapKoAAAAAAAAAACApiaJCgAAAAAAAAAAaGqSqAAAAAAAAAAAgKYmiQoAAAAAAAAAAGhqkqgAAAAAAAAAAICmJokKAAAAAAAAAABoapKoAAAAAAAAAACApiaJCgAAAAAAAAAAaGqSqAAAAAAAAAAAgKYmiQoAAAAAAAAAAGhqkqgAAAAAAAAAAICmJokKAAAAAAAAAABoapKoAAAAAAAAAACApiaJCgAAAAAAAAAAaGqSqAAAAAAAAAAAgKYmiQoAAAAAAAAAAGhqkqgAAAAAAAAAAICmJokKAAAAAAAAAABoapKoAAAAAAAAAACApiaJCgAAAAAAAAAAaGqSqAAAAAAAAAAAgKYmiQoAAAAAAAAAAGhqkqgAAAAAAAAAAICmJokKAAAAAAAAAABoapKoAAAAAAAAAACApiaJCgAAAAAAAAAAaGqSqAAAAAAAAAAAgKbWNtINAAAAAAAYq6pLl0V1/sKI9vaItraoTJ8WlYkTRrpZAAAAQB9JogIAAAAA6KPq409Gx133RufceRGdnSsfaGmJlq1nRuuWm0dlxtoj2UQAAACgDyrVarXalxUAAAAAAJpVhlM77rgnOufckuHViKmTo9K2cqxqNStSLVpc/N6yx+xo3WZWVCqVEWwxAAAA0BuSqAAAAAAAeqn99ruj4+qbojJtalQmdF3ov7qsPaoLF0XrXjtG27azhrWNAAAAQN+19GMdAAAAAICmnMIvK1D1lECV8vFcrnPOzVF9YsGwtREAAADoH0lUAAAAAAC90HHXvcUUfj0lUJXK5TrunDfELQMAAAAGShIVAAAAAEAPqkuXRefceRFTJ/dtxalTivVyfQAAAGD0kkQFAAAAANCD6vyFEZ2dUWnrXRWqUrF8Z8fy9QEAAIBRSxIVAAAAAEBP2tsHsHJlgOsDAAAAQ00SFQAAAABAT/pYgWpV1QGuDwAAAAw1SVQAAAAAAD2oTJ8W0dIS1T5WlCqWb2ldvj4AAAAwakmiAgAAAADoQWXihGjZembEoqf7tuKixcV6uT4AAAAwekmiAgAAAADohdYtNy+m5qsu6101qnK51q1mDnHLAAAAgIGSRAUAAAAA0AuVGWtHyx6zo7pwUY+JVPl4Lteyxw5RWWetYWsjAAAA0D9t/VwPAAAAAKDptG4zK9OponPOzVHNO6ZOiUrbyjBrtb29mMKvWHavHaN1my1GrrEAAABAr1Wq1WpxrQ8AAAAAQO9Un1gQHXfOi8658yI6O4rEqpzqL1pao2XrmcUUfipQAQAAwNghiQoAAAAAoJ+qS5dFdf7CiKxA1dYWlenTojJxwkg3CwAAAOgjSVQAAAAAAAAAAEBTaxnpBgAAAAAAAAAAAIwkSVQAAAAAAAAAAEBTk0QFAAAAAAAAAAA0NUlUAAAAAAAAAABAU5NEBQAAAAAAAAAANLW2kW4AAAAAAADAcKkuXRbV+Qsj2tsj2tqiMn1aVCZOGOlmAQAAI0wSFQAAAAAAMO5VH38yOu66Nzrnzovo7Fz5QEtLtGw9M1q33DwqM9YeySYCAAAjqFKtVqsj2QAAAAAAAIChkt0gHXfcE51zbslukYipk6PStnKMeTUrUi1aXPzessfsaN1mVlQqlRFsMQAAMBIkUQEAAAAAAONW++13R8fVN0Vl2tSoTOh6go7qsvaoLlwUrXvtGG3bzhrWNgIAACOvZaQbAAAAAAAAMFRT+GUFqp4SqFI+nst1zrk5qk8sGLY2AgAAo4MkKgAAAAAAYFzquOveYgq/nhKoSuVyHXfOG+KWAQAAo40kKgAAAAAAYNypLl0WnXPnRUyd3LcVp04p1sv1AQCA5iGJCgAAAAAAGHeq8xdGdHZGpa13VahKxfKdHcvXBwAAmoYkKgAAAAAAYPxpbx/AypUBrg8AAIw1kqgAAAAAAIDxp48VqFZVHeD6AADAWCOJCgAAAAAAGHcq06dFtLREtY8VpYrlW1qXrw8AADQNSVQAAAAAAMC4U5k4IVq2nhmx6Om+rbhocbFerg8AADQPSVQAAAAAAMC41Lrl5sXUfNVlvatGVS7XutXMIW4ZAAAw2kiiAgAAAAAAxqXKjLWjZY/ZUV24qMdEqnw8l2vZY4eorLPWsLURAAAYHdpGugEAAAAAADSf6tJlUZ2/MKK9PaKtLSrTp5k+jSHRus2sTKeKzjk3RzXvmDolKm0ru0equQ8uWrx82b12jNZtthi5xgIAACOmUq1Wi2sGAAAAAKC5LFiwIL7+9a/Hr3/96/jHP/4Rz3nOc2K//faLt7/97bHOOuussuwjjzwSZ5xxRlx77bUxf/782GyzzeKII46If/3Xfx2x9jM2VR9/Mjruujc6586L6Oxc+UBLS7RsPbOYfi2rB8Fgqz6xIDrunPd/+15HkViVU/1FS+vyfW+rmSpQAQBAE5NEBQAAAABNKBOh3vjGN8a8efNi8803j7322isef/zx+M1vfhMbbLBBnHvuucXP9PDDD8dhhx0WTzzxRBx44IGx7rrrxqWXXhr3339/vO1tb4sPfehDI/10GAMyFN1xxz3ROeeW5ckrUyd3WQ0op1/L6kGVSia5wOBSBQ0AAGhEEhUAAAAANKGPfvSjccEFFxSVp774xS/GxIkTi/tvuummOPLII2PPPfeMs88+u7jv2GOPjUsuuaT4e++99y7ue+aZZ+Itb3lL3HrrrXHhhRfGtttuO6LPh9Gv/fa7o+Pqm6IybWpUJqxMnqpXXdYe1YWLimnV2rbNadgAAABg6LUMw/8AAAAAAEaRjo6O+MUvfhETJkyIT33qUysSqNKLXvSiOOigg+LKK6+MP//5z0UVqqw6tcMOO6xIoEprrLFGvP/97y+qC/3whz8coWfCWJrCLytQ9ZRAlfLxXK5zzs3F9GsAAAAwHCRRAQAAAECTeeyxx+Kpp56KTTfdNGbMmLHa41tvvXXx84Ybbojrr7++SJTafffdV1tuxx13LBKxrrvuumFpN2NXx133FlP49ZRAVSqX67hz3hC3DAAAAJaTRAUAAAAATaasPLV06dKGjy9cuLD4+dBDD8V9991X/J4JV/Uygeq5z31usVxX24Lq0mXROXdexNTJfVtx6pRivVwfAAAAhpokKgAAAABoMtOnTy+Soh588MG4/fbbV3mss7MzLrvsshXJVE888UTx+9prr91wW9OmTSvWWbRo0TC0nLGoOn9h7lhRaetdFapSsXxnx/L1AQAAYIhJogIAAACAJvSOd7yjmKbvve99b/z2t78tkqDuv//++OAHPxjz5i2fQi0fX7Zs2SrVq/pa1QqivX0AK1cGuD4AAAD0Tt+G/gAAAAAA48Khhx4af/vb3+JrX/tavPvd715x/+abbx6f/OQn48QTT4zJkydHR0dHcX+ZTFWvTJ6aMmXKMLWcMaePFahWVR3g+gAAANA7Y/Lqc8stt+xxmde+9rVxyimnDEt7AAAAAGAsOvbYY+Pggw+Oq666Kp566ql43vOeF3vttVf87ne/Kx5/9rOfHU8//XTx+4IFCxpuI6f8q1QqMXXq1GFtO2NHZfq0iJaWqLa392lKv1w+WlqXrw8AAABDrG2sBncayfLi5557bhHw2W233Ya9XQAAAAAw1my88cZxxBFHrHLfrbfeWvzMpKqc5i898MADq62b1an++te/FtWrWlpahqnFjDWViROiZeuZ0XnbPRF9SYhatDhatntesT4AAAAMtTGZRPXe97634f3nnHNOkUD1hje8IV7zmtcMe7sAAAAAYKzI6fquuOKKuPTSS2OttdZacX9nZ2f86le/Kqbn22WXXYokqqw09fvf/361wY033nhjkUi14447jsAzYCxp3XLz6Lzt7qgua4/KhJ7D0rlcsd5WM4ehdQAAABAxboaH3X333fGlL32pGDl30kknjXRzAAAAAGBUmzVrVjz55JPx3e9+d5X7v/a1r8V9990XRx55ZDFF33Oe85zYc8894/rrry8SrkrPPPNMfOUrXyl+r69kBfUqM9aOlj1mR3XhohUJUl3Jx3O5lj12iMo6KxP8AAAAYChVqjkH3jhw1FFHxTXXXBNnn3127L333iPdHAAAAAAY1Z5++uk45JBDYt68efHSl740Zs6cWUzjd8MNNxQVqDLONnny5GLZe++9Nw477LBYuHBhHHDAAbH++uvHZZddViRbHX300UVVK+hJhqI77vhLdM65efkdU6dEpW1lVapqe3sxhV/KBKrWbbYoqqABAADAcBgXSVRXXnllvOMd7yhGxOWUfgAAMN7kafvSpUtHuhkwpk2cOFFHLECdxx9/PE4//fT43e9+V/y+0UYbxcEHH1xUoVpjjTVWWTYTprLy1LXXXhtLliyJzTbbrKhAdeihhzq+0ifVJxZEx53zonPuvIjOjgxT570RLa3RsvXMYgo/FagAAAAYbuMiiSqDOllO/Hvf+17stNNOI90cAAAYVHnK/uUvf7moAAH0X1ZYOf7443X0A8AoUV26LKrzF0ZkBaq2tqhMnxaViRNGulkAAAA0qZW1kseouXPnFglUmTwlgQoAgPFK0gcAAONNJkxV1psx0s0AAACA8ZFEddFFFxU/s3Q4AACM1wSqrJ5jOr/RK6c0+shHPlL8/tnPfjYmTZo00k2iAdP5AQAAAAAwbpOoLrvsspgyZUrss88+I90UAAAYMpn4ITFnbMj3yXsFAAAAAABjS0uMYXfeeWc88sgjRQLV5MmTR7o5AAAAAAAAAADAGDSmk6huuumm4udOO+000k0BAAAAAAAAAADGqDE9nd/tt99e/Nx2221HuikAAAAAQBOqLl0W1fkLI9rbI9raojJ9WlQmThjpZgEAAADNlET1wAMPFD/XX3/9kW4KAAAAANBEqo8/GR133Rudc+dFdHaufKClJVq2nhmtW24elRlrj2QTAQAAgGZJonr88ceLn9OmTRvppgAAAAAATaBarUbHHfdE55xbIqISMXVyVNpWhlmr7e3Redvdxa1lj9nRus2sqFQqI9pmAAAAYJwnUf3iF78Y6SYAAAAAAE0kE6g6rr4pKtOmRmVCW1Q7O6P6zJLl1ahaWiImTojK9LWiuqy9WC4Trdq2nTXSzQYAAADGcxIVAAAAAMBwTuGXFagygSqTpjoffSyqTyzI8lQrF6pUorLOWlFZe1qxXOecm6O64XrFfQAAAMDo1TLSDQAAAAAAGAs67ro3Ml2quuip6Lz3oSKpKlpbo5LVp/7vln8XyVb5+KKniuU77pw30k0HAAAAeiCJCgAAAACgB9Wly6Jz7ryotrdH9W//jGhrW5441VJZZbn8u0imamsrlsvli/WWLhuxtgMAAECvrnsffTw6H3m0+NmM17Gm8wMAAAAA6EF1/sKoLlka8c/5ERNWT56ql49XJ0wolq+uO71Yv7LejGFrLwAAAPRGVlPOysudc+cVU9ev0NISLVvPjNYtN4/KjLWjGUiiAgAAAADoSXt7xKLFxa89JVCtkkiVvyx6evn6AAAAMEpUq9XouOOe6JxzS17BRkydHJW2lWlERWXl2+4ubi17zI7WbWZFpdK76+GxShIVAAAAAEAPqtWIaiZRrTGpbyvmtH6LFhfrAwAAwGiRCVQdV98UlWlTozJh9fShIqFq+lpRXdZeLJeJVm3bzorxrGWkGwAAAAAAMHZU+7G8DCoAAABG1xR+WYGqqwSqWvl4Ltc55+aoPrEgxjNJVAAAAAAAPShmLJg6JWJZR99WzOWnrrl8fQAAABgFOu66t6gs1VMCValcruPOeTGeSaICAAAAAOhJW1tUpk7OGHNUOzt7tUqxXCWWr5fTIAAAAMAIqy5dFp1z50XktWpfTJ1SrJfrj1eSqAAAAAAAelCZPi0qkyZFrDs9Yml7j4lUxePL2ovlc71cHwAAAEZadf7CiM7OqPRxsE8ll+/sWL7+OCWJCgAAAACgB5WJE6Jl65lRaW2LynPXjWjviOqSZaslU+XfeX8+XnnOulFpbV2+3sQJI9Z2AAAAWKG9fQArVwa4/uimhjQAAAAAQC+0brl5dN52d8Saa0ZlyuSozl9QjMCtLutYuVBLJSoz1orK9LUiWloinlocrVvNHMlmAwAAwEoDmm6+Oq6nqx+/zwwAAAAAYBBVZqwdLXvMjo6rb4rKtKnRsv66UV13RsTSZcVUCEXS1MQJUWltieqy9qguXBSte+0YlXXWGummAwAAQKGYbr6lJart7X2a0q+aFahaWsf1dPWSqAAAmly1Wo2lS5eOdDNgTFuyZEnD34G+mzhxYlQqlZFuBkCXWreZVUxf0Dnn5hx/GzF1SlQmT1olqFydv2j5snvtGK3bbDFyjQUAAIAupqvvvO2eiL4kRC1aHC3bPW9cT1dfqWavGQAATSsTPj7wgQ+MdDMAoHDaaafFpEkrkxEARqvqEwui48550Tl3XkRnTueXCaDVYlRuBqNzCj8VqAAAABiNqo8/Gcsu/E3EmlOiMqHn+kvVZe3FdPUTXv+KcX2tqxIVAAAAAEAfZdC4bffZUd1xm6jOXxiR0xq0tRXTGoznUbkAAACMr+nqY9rUbhOpqk00Xb0kKgAAVjjuWVvEhErLSDcDgCazrNoZpz/2l5FuBkC/ZMJUZb0ZI90MAAAAGPh09W1tq0xXn1P4NdN09ZKoAABYIROoJkqiAgAAAAAAGNcqlUq0bTsrqhuut2K6+mrn4lWnq9/ueU01Xb0kKgAAAAAAAAAAaEKmq19JEhUAAAAAAAAAADSxiunqw1wtAAAAAAAAAABAU5NEBQAAAAAAAAAANDVJVAAAAAAAAAAAQFOTRAUAAAAAAAAAADQ1SVQAAAAAAAAAAEBTk0QFAAAAAAAAAAA0NUlUAAAAAAAAAABAU5NEBQAAAAAAAAAANDVJVAAAAAAAAAAAQFOTRAUAAAAAAAAAADQ1SVQAAAAAAAAAAEBTk0QFAAAAAAAAAAA0NUlUAAAAAAAAAABAU5NEBQAAAAAAAAAANDVJVAAAAAAAAAAAQFOTRAUAAAAAAAAAADQ1SVQAAAAAAAAAAEBTk0QFAAAAAAAAAAA0NUlUAAAAAAAAAABAU2sb6QYAAAAAAIxV1aXLojp/YUR7e0RbW1SmT4vKxAkj3SwAAACgjyRRAQAAAAD0UfXxJ6Pjrnujc+68iM7OlQ+0tETL1jOjdcvNozJj7ZFsIgAAANAHkqgAAAAAAHqpWq1Gxx33ROecWyKiEjF1clTaVoZZq+3t0Xnb3cWtZY/Z0brNrKhUKiPaZgAAAKBnkqgAAAAAAHopE6g6rr4pKtOmRmXC6uHVIqFq+lpRXdZeLJeJVm3bzhqRtgIAAAC919KHZQEAAAAAmnoKv6xA1VUCVa18PJfrnHNzVJ9YMGxtBAAAAPpHEhUAAAAAQC903HVvUVmqpwSqUrlcx53zhrhlAAAAwEBJogIAAAAA6EF16bLonDsvYurkvq04dUqxXq4PAAAAjF6SqAAAAAAAelCdvzCiszMqbb2rQlUqlu/sWL4+AAAAMGpJogIAAAAA6El7+wBWrgxwfQAAAGCoSaICAAAAAOhJHytQrao6wPUBAACAoebKHQAAAACgB5Xp0yJaWqLa3r7KlH6VP94ULT/49oq/Oz77lYiW1hV/5/L5d7E+AAAAMGpJogIAAAAA6EFl4oRo2XpmdN52T0SZELXgyVUSqFLrR45f8XvHO46LWGe9aNnuecX6AAAAwOgliQoAAAAAoBdat9w8Om+7O6rL2qMyoS1afvHj7pf/xlciOjqjMmOtiNbWiBtvHLa2AgAAAH3T0sflAQAAAACaUmXG2tGyx+yoLlxUJFJ1vvrQrheuVpcnUE2dEpVMoEo77bTyNn/+sLUbAAAA6JkkKgAAAACAXmrdZla07rVjxFOLo7qsMzre+q7Vk6faO1YkUMXkSY03tO++KxOqzjlnWNoOAAAAdM10fgAAAAAAvVSpVKJt21lR3XC96LhzXnS2tkb7hz4bUY1o+9yHcomoTJkUscaklRWoevK1ry2/lUz7BwAAAMNOEhUAAAAAQB9V1lkr2nafHdUdt4nq/IUR7e0Rr7khKtOnRWXihIgvfSni+9/v38azOlXpF7+IWG+9QWs3AAAA0JgkKgAAAACAfsqEqcp6M1Z/4N//ffktPfBAxCGH9O8fHHjgyt8PP3zlNgEAAIBBJYkKAAAAAGAobbLJqlP01Vaa6ousbFVb3er66yNaWgbePgAAAEASFQAAAADAsKpNqLr44ojPfKZ/29lll5W/f/GLEXvvPfC2AQAAQJOSRAUAAAAAMFJe85rlt7R4ccSLX9y/7fzHf6z8PatTZZUqAAAAoNckUQEAAAAAjAZTpqxapepNb4q4886+b6ezc9UpA3/3u4jJkwenjQAAADBOSaICAAAAABiNvvvdlb/fdlvE297Wv+38y7+s/P300yP23HPgbQMAAIBxRhIVAAAAAMBot912K6tUZaWpXXbp33aOO27Vv2srXwEAAEATk0QFAAAAAE2qvb09zjnnnPjxj38cDz74YEyePDl22GGHeM973hPbb7/9Kss+8cQT8V//9V9x+eWXxz/+8Y/YYIMN4nWve1287W1vi7Y2YcZh1dKyavLT+94XMWdO/7ZVO+3fT34SseGGA28fAAAAjEGiGwAAAADQpI477ri49NJLY9NNN43DDz+8SJT65S9/GXPmzImzzjor9tprr2K5BQsWxJFHHhn33HNP7LfffrHJJpvENddcE6eddlrcdtttccYZZ4z0U2luta//vfdGvP71/dvOwQev/P2lL4049dSBtw0AAADGCElUAAAAANCEMgkqE6i23Xbb+P73vx+TJk0q7i+rS33qU5+KSy65pLgvK1Ddfffd8YlPfKJItkrvf//74/jjj49f//rX8Zvf/KZIrmIU2HzzVatU1Vaa6ovf/nbVdW+4IaJSGXj7AAAAYJRqGekGAAAAAADD79Zbby1+HnzwwSsSqNJuu+0WM2fOjAceeCAee+yxeOaZZ+JHP/pRPPe5z43DDjtsxXKtra1x4oknFr+ff/75I/AM6JVMqCpvA6kstfPOy5Oq8vbnPw9mCwEAAGBUUIkKAAAAAJrQOuusU/x8+OGHV7l/6dKlxbR+EyZMiGnTpsUtt9wSixcvjpe//OXR0rLqmMyNN944Ntpoo7jhhhuio6OjSKxqNtWly6I6f2FEe3tEW1tUpk+LysQJMSrlFH1llaoFC5b/3R//V42ssOOOEd/4xuC0DwAAAEaQJCoAAAAAaEL7779/fPWrXy2m8ttqq62KJKkFCxbEaaedVlSgOuqoo2LixIlx3333FctvsskmDbeTiVQPPfRQcdt0002jWVQffzI67ro3OufOi+jsXPlAS0u0bD0zWrfcPCoz1o5Ra621Bmfavz/8YdV1r7kmoqayGQAAAIwVkqgAAAAAoEkrUeU0fB/60IdW3Ervf//7453vfGfx+/z584uf06dPb7idrFaVMgGrGVSr1ei4457onHNLRFQipk6OStvKMGu1vT06b7u7uLXsMTtat5kVlUolRr3ahKpf/Sriox/t33b23HPl72ecEbHHHgNvGwAAAAwDSVQAAAAA0IRy2r6vfe1rcfPNN8c222wTO+20Uzz55JNxySWXxDe+8Y1Yf/3147WvfW2xXMqqVI2U9y9ZsiSaQSZQdVx9U1SmTY3KhNXDq0VC1fS1orqsvVguE63atp0VY8r++y+/pZymcLfd+red972v60QtAAAAGGUkUQEAAABAE/r85z8fP/7xj+PNb35zfPjDH15RLem4446Lww8/PE466aTYYostYo011ijuX7ZsWcPtlElWa665ZjTDFH5ZgaqrBKpaxePTpkbnnJujuuF6UVlnrRiTMimsNvnp1FMjfvSj/m2rdtq/n/0s4rnPHXj7AAAAYJC0DNaGAAAAAICxobOzMy644IJiKr4TTjhhlenmNthggzj++OOLaesuvPDCWHvttbudrm/hwoXFz6lTp8Z413HXvUVlqZ4SqErlch13zotx48QTlydV5e2ii/q/nVe/enlSVd6++MXBbCEAAAD0iyQqAAAAAGgyjz32WDH93iabbNJwmr4tt9yy+Pnwww/HzJkzi98feOCBhtvK+6dMmVIkX41n1aXLonPuvIipk/u24tQpxXq5/rizySYrE6oGMlXfD36wMqEqb9XqYLYSAAAAekUSFQAAAAA0mawulclTDz300Irp+Grde29WXIpYb731Ytttty2m6rv++uuLCla1HnzwwSLRavbs2dHa2hrjWXX+wizhFZWc3q4PiuU7O5avP97VJlS95S39387OO69MqJo3jqp4AQAAMKpJogIAAACAJpMJVPvtt188+eSTcfrpp6/y2OOPP77ivoMOOigmTZoUr3rVq4qEq/POO2/Fch0dHXHqqacWvx9xxBEx7rW3D2DlygDXH4Pe+96VCVW//GX/t/Ov/7oyoerMMwezhQAAALCKvg2bAgAAAADGhZNOOiluv/32+Na3vhXXXXdd7LLLLkVS1WWXXRbz58+Po446Knbfffdi2eOPPz6uvvrqOPnkk4tlZ82aFXPmzIk77rgjDjjggHjZy14W414fK1CtqjrA9ce4Zz971en+MiGqP849d/mtNGdOZgQOvH0AAAAgiQoAAAAAmtO6664bF154YXzjG9+ISy65JL7zne8UFaq23nrreNOb3hT777//imVnzJgR559/flGh6oorrigSqDbaaKM44YQT4s1vfnNUKpUY7yrTp0W0tES1vb1PU/rl8tHSunx9lqtNqLr++ohjjunfdvbYY+XvJ58c8fKXD7xtAAAANK1KtVqtjnQjAAAYOUuWLIkPfOADxe8fWPd5MbFixmcAhtfSamec9s+7i99PO+20YuowgNGo/dpbovO2e/qUEFWdvyBatntetO0+e0jbNi4sXbpqYlR/TZ8ecemlg9EiAAAAmogeMgAAAACAXmjdcvNiar7qsvZeLV8u17rVzCFu2TiRU/Nllary9qpX9W878+cvnzKwvD355GC3FAAAgHFIEhUAAAAAQC9UZqwdLXvMjurCRT0mUuXjuVzLHjtEZZ21hq2N48onP7kyoeqii/q/nZe9bGVC1a9/PZgtBAAAYBxpizHsyiuvjG9/+9tx2223RaVSiS222CLe8pa3xIEHHjjSTQMAAAAAxqHWbWZlOlV0zrk5qnnH1ClRaVsZZq22t0csWrx82b12jNZtthi5xo4nm2yyPJkqVasRO+/cv+185CPLb6VymwAAADS9MZtEde6558bJJ58cz3rWs+Lggw+Ozs7O+PWvfx3vf//7429/+1scddRRI91EAAAAAGCcycGcbdvOiuqG60XHnfOic+68qHZm0lSlmOovWlqjZbvnFVP4qUA1RCqVVZOfPv/5iAsu6N+2sjpVKbexeU7ZCAAAQDOqVKs5bGdsueuuu+KQQw6JTTfdNL7zne8UiVTpn//8Z5FQ9eSTT8a1114b06ZNG+mmAgCMekuWLIkPfOADxe8fWPd5MbFixmcAhtfSamec9s+7i99PO+20mDRp0kg3CaDXqkuXRXX+woisQNXWFpXp06IyccJIN6t5/eMfEQccMPDt7LNPxBe+MBgtAgAAYIwYk5WoMnGqvb09PvWpT61IoErrrrtuUYnqj3/8Y5FQJYkKAAAAABhKmTBVWW/GSDeD0rOfvWqVqtpKU31x+eWrrvv730e0tg68fQAAAIxaYzKJ6oorrohnP/vZsXODee8PPfTQ4gYAAAAAQJOrTai6+uqI44/v33Z23XXl72eeGbHbbgNvGwAAAKPKmEuievzxx+Mf//hH7LnnnvHoo4/G6aefXiRVLVy4MJ7//OfHu971rth3331HupkAAGPS4s72WGo6v9GpWo1lMeZm4oZRZUJUIiqVkW4GDbRXO0e6CQA0g732WplUtXRpxB579G87xx678vfp0yMuvXRw2gcAAMCIGnNJVJk4lRYtWhSHHHJIrLHGGrH//vsXf//mN7+J97znPfHRj340jjzyyJFuKgDAmPO1x+8d6SYAAAAMvYkTV61SdcghEQ880PftzJ+/6rR/OQ3gtGmD00YAAACG1ZhLonrqqaeKn7feemvstttu8fWvfz2mTJlS3PeOd7wjXv/618fnP//5eOlLXxobbrjhCLcWAAAAAIBR76KLVv5+000ZbO7fdvbZZ+XvRx0VccwxA28bAAAAw6JSrVbH1Jwgt9xyS7zhDW8ofv/5z38es2bNWuXxL3/5y3HWWWfFBz/4wTgqL1IBAOhWng4uXbo0lixZMtJNoQf5PgH9NzErTjCqTZo0qXifKqZdBGC0yPD5zjsPzrZqK18BAAAw6oy5SlTT/q8Uclaf2mKLLVZ7fOutty5+3n///cPeNgCAsSg7qrPTOm8AAADUyMTe2uSnT30q4mc/69+2aqf9u/jiiI02Gnj7AAAAGDQtMcZsvPHG0dbWFu3t7UXVhHrLli0rfk6ePHkEWgcAAAAAwLj1iU8sT6rK2y9+0f/tvOY1y5Oq8nbhhYPZQgAAAJoliSrL+s+ePbuYyuSGG25Y7fHbbrut+LnVVluNQOsAAAAAAGgK6623MqFqIFP1nXLKyoSqvHV2DmYrAQAAGK9JVOnwww8vfp5yyimxcOHCFfffeeedcf7558f06dNj3333HcEWAgAAAADQVGoTqt797v5vZ5ddViZU3XTTYLYQAACAblSqjebEGwNOOumkuOiii2L99deP/fbbLxYtWhS/+tWvimn+vvKVr0iiAgAAAABg5OVA4H32Gfh29twz4vTTB6NFAAAAjKckqmx2JlH94Ac/iHvuuaeY5m/77bePd7/73fGiF71opJsHAAAAAACre+MbI+6+e+DbufzyiGnTBqNFAAAAjOUkKgAAAAAAGNNuvTXi6KMHvp2PfzzioIMGo0UAAABNSxIVAAAAAACMtM7OiF12Gfh2ZsyI+M1vBqNFAAAATUUSFQAAAAAAjDaf/nTET3868O3kNjbYYDBaBAAAMK5JogIAAAAAgDqdixZH9aG/R3XJkqhMmhSVjdaPlqlTRqYx990XceihA9/Ou94V8fa3D0aLAAAAxh1JVAAAAAAA8H865z0Uy669Oap/vj+isyZ83lKJyvM3jQm77xAtMzcaySZG7LTT4GznhhsiKpXB2RYAAMAYJ4kKAAAAAICm19nZGe2//F10XvfH5XdMmhiVttYVj1fbOyKWLMmwerTs9sJoO+BfoqWlJUbc+edHnHbawLdzxhkRe+wxGC0CAAAYkyRRAQAAAADQ9Jb+/MronHNrxORJqyRP1SuSqZ5eEi17zo6JB744RpXFiyNePAhtevnLI04+eTBaBAAAMGZIogIAAAAAIJp9Cr+l3/7xatWnurK8KtXSmHj0IdGy2YYxau2yS5bYGvh25syJmDhxMFoEAAAwao2CWsMAAAAAADByll17c/GzNwlUK5erxrJrbopR7frrI268cfktp+vrr5zmb6edlt+uumowWwgAADBqqEQFAAAAAEDT6ly0OJZ+4ZyICRN6nUS1ohrVsmUx8YSjomXqlBhTOjoidt114NvZb7+Iz31uMFoEAAAw4iRRAQAAAADQtDruvDeWfe9/o7Lm5D6vW33q6ZhwxKuidavNY0x7xSsiHnts4Nu55JKIddYZjBYBAAAMu7bh/5cAAAAAADA6VJcsGdH1R4Vf/3rl7w88EHHIIf3bzstfvvL3ww6L+MAHBt42AACAYaISFQAAAAAATUslqh4ceGDEo48OfDs33BBRqQxGiwAAAIaESlQAAAAAADStykbrR7RUotreEZW21l6vl8vnesX649kvfrHy9x/9KOLUU/u3nZ13Xvn7BRdEbD6OE88AAIAxSSUqAAAAAACa2pLv/Syqd97Xp2pU1acWR2WrzWPSEa+OprR4ccSLXzzw7Rx1VMQxxwxGiwAAAAZEEhUAAAAAAE2tc95DsfTbP46YNLFX1aiKKlRLlsbEow+Jls02HJY2jnrve1/EnDkD385110W0mUQDAAAYfpKoAAAAAABoekt/fmV0zrk1YvKkbhOpigSqZ5ZEyx6zY+KBg1CJabxOAfjxjw98O//1XxG77joYLQIAAOiRJCoAAAAAAJpeZ2dntP/q6ui89tZMlYqYtGoy1fLqU0syrB4tu28fbfvvFS0tLSPa5jFh6dKIPfYY+HZ23DHiG98YjBYBAAA0JIkKAAAAAAD+T+d9D8eya26K6p/vj+isCZ+3VKLy/E1jwp4vMoXfQHzpSxHf//7At/Ob30TMmDEYLQIAAChIogIAAAAAgDqdixZH9aG/R3XJkqhkVaqN1o+WqVNGulnjy1/+EvGGNwx8Ox/+cMQhhwxGiwAAgCYmiQoAAAAAABhZ2VXxlrdEzJ07sO1ssknERRcNVqsAAIAmIokKAAAAAAAYXc47L+KMMwa+nR//OGLjjQejRQAAwDgniQoAAAAAABi9/v73iFe+cuDbedvbIt7znsFoEQAAMA5JogIAAAAAAMaO3XaLaG8f+Hauvz6ipWUwWgQAAIwDkqgAAAAAAICx6YorIj7wgYFv50tfinjxiwejRQAAwBgliQoAAAAAABj7li2L2H33gW/nRS+KOPvswWgRAAAwhkiiAgAAAAAAxp8TT4z47W8Hvp2rroqYMmUwWgQAAIxikqgAAAAAAIDx7a67Io44YuDb+dSnIl75ysFoEQAAMMpIogIAAAAAAJpHdovsvPPAt7P33hFf/OJgtAgAABgFJFEBAAAAAADN6+Mfj/jFLwa+ndzGeusNRosAAIARIIkKAAAAAAAgPfpoxIEHDnw7L3tZxOc/PxgtAgAAhokkKgAAAAAAgEZOPDHit78d+Hauvz6ipWUwWgQAAAwRSVQAAAAAAAA9+c1vIj784YFv57zzIrbeejBaBAAADCJJVAAAAAAAAH2xZEnEnnsOfDsvfWnEqacORosAAIABkkQFAAAAAAAwEJ/+dMRPfzrw7cyZEzFx4mC0CAAA6CNJVAAAAAAwRJ588slYe+21e7XslVdeGXvvvfeQtwmAIZaJUO9738C3c8opEfvuOxgtAgAAekESFQAAAAAMkZe85CVx2mmnxU477dTlMs8880x87nOfiwsuuCD+9Kc/DWv7ABhinZ0Ru+wyONu68cbB2Q4AANCQJCoAAAAAGCJbbbVVtLa2xjvf+c449thjo6WlZZXH//jHP8YJJ5wQ999/f0yYMCFuu+22EWsrAMPgvPMizjhj4NvJqQM32GAwWgQAAPwfSVQAAAAAMES+973vxRe+8IVYsmRJ7LDDDvHFL34xnvvc50ZnZ2eceeaZcfbZZ0d7e3tst9128dnPfjae//znj3STARgujzwScdBBA9/OMcdEHHXUYLQIAACamiQqAAAAABhCf/nLX4pqU3Pnzo211lor3ve+98XFF18ct99+e6yxxhrF329961tXq1IFQJN53/si5swZ2DZe8ILl1a4qlcFqFQAANA1JVAAAAAAwxLLaVFae+uY3v1lUoUo77bRTfO5zn4uNN954pJsHwGjzk59E/Od/Dnw73/9+hCqHAADQK229WwwAAAAA6K9FixbF3/72t+jo6Fhx38MPPxwPPPCAJCoAVnfwwctv6cknI172sv5t5/DDV/6+//4Rn/nM4LQPAADGIZWoAAAAAGAI/eIXv4jPfvaz8fjjj8c666wTH/3oR+Pyyy+Pn/3sZ1GpVOK1r31tnHTSSTFt2rSRbioAY0EmRv35zwPfzrXXRkyYMBgtAgCAcUESFQAAAAAMkWOOOaZImMoQ3D777FMkU82YMaN47Fe/+lV84hOfiAULFsR6661X/P7Sl750pJsMwFjyhz9EvPOdA9/Oxz8ecdBBg9EiAAAYsyRRAQAAAMAQ2WqrrWLKlClFpanXv/71qz3+j3/8o3js6quvjpaWlpg7d+6ItBOAcSCnjN1114FvZ5NNIi66aDBaBAAAY4okKgAAAAAYIocffnh8/vOfj4033rjb5b73ve/FaaedFjfffPOwtQ2Ace5b34o466yBb+e3v41Ya63BaBEAAIxqkqgAAAAAYIhk6K1SqfRq2fvvvz823XTTIW8TAE3ogQciDjlk4Nv593/PDOHBaBEAAIw6kqgAAAAAYBg89dRTceutt8YjjzwSz33uc2PPPfeMe++9NzbffPORbhoAzWannQa+ja22ivjOdyJ6mSwMAACjnSQqAAAAABhCy5Ytiy996Utx/vnnxzPPPFPc9+pXvzpOPfXUYrq/BQsWxOmnnx5bbLHFSDcVoClUly6L6vyFEe3tEW1tUZk+LSoTJ0TTOuOMiPPOG/h2Lr44YqONBqNFAAAwPpKoli5dGj/96U/juuuui7/+9a+x8847x/HHHx/f/e53Y9ttt43Zs2cP5r8DAAAAgFGrvb093vGOd8S1114bbW1tsdVWW8Vtt90WBx10UJFElT///Oc/x7Oe9ay4+OKL49nPfvZINxlg3Ko+/mR03HVvdM6dF9HZufKBlpZo2XpmtG65eVRmrB1N7cknI172soFv54UvjDjnnMFoEQAADJuWwdxYBoBe8YpXxMc+9rH43//937jpppuK8uTpwgsvjDe+8Y1xjpNmAAAAAJpEVp+aM2dO7LLLLnHppZfGBRdcsMrjP/zhD+OVr3xlPPbYY3HuueeOWDsBxrMcS95++92x7MLfROdt90RMnhSVtaetuOXfnbctfzyXa+oJPNZeO+LGG1feDj64f9v54x+XTxlY3jo6BrulAAAwepOosurU29/+9uLnv/zLv8THP/7xVS40dt9992htbY0vfOELcWOeeAMAAADAOPfjH/841lprrTjzzDNj/fXXX+3xyZMnx8knn1xUorrqqqtGpI0A413HHfdEx9U3Raw5ZfnUfW1tqzyef1emr1U8nst13PGXEWvrqPOxj61MqMpp//pr111XJlT9+c+D2UIAABh9SVRnnXVWPPnkk/GRj3wkzj777Dj88MNXefyDH/xgfOlLXyoSq7797W8P1r8FAAAAgFFr3rx5sdNOO8W0adO6XGbixImx/fbbx8MPPzysbQNolin8OufcEpVpU6MyYdXkqXr5eC7XOefmqD6xYNjaOGbsscfKhKprr+3/drL/qEyo+sIXBrOFAAAwOpKofve738UWW2wRRx55ZJfL7LfffvGCF7wg/vSnPw3WvwUAAACAUatSqcSSJUt6XO6pp54qlgVgcHXcdW8ejXtMoCqVy3XcOW+IWzbGTZiw6rR/3fQNdeuHP1yZUPW2t0UsXTrYLQUAgOFPovrHP/4Rs2bN6nG5jTfeOP75z38O1r8FAAAAgFErBx3edtttRQX3rjz++ONx++23x8yZM4e1bQDjXXXpsuicOy9i6uS+rTh1SrFerk8vHXfcyoSq/s5Gcttty6tdlUlVc+YMdisBAKBbvRt60QtrrbVWPPLIIz0u99BDD3VbvhwAAAAAxouDDjooPvvZz8aJJ54YX/jCF4oYWq2sUvXhD384Fi9eHAceeOCwtWvLLbfscZnXvva1ccopp6z4+4knnoj/+q//issvv7wYULnBBhvE6173unjb294WbW2DFmYEGDTV+QsjOjuj0sdjVC5f7VxcrF9Zb8aQtW/c2m675clUqVqNeMlLsuRi37fzvvet+ne5TQAAGCKDFt3YYYcd4re//W3cfPPNxe+NXH/99TF37tx42cteNlj/FgAAAABGrcMOOyx++ctfxpVXXhkvfelL4wUveEFxf1aeOuGEE2LOnDnx2GOPxdZbbx1HHHHEsLXr2GOPbXh/tVqNc889t5hecLfddltx/4IFC+LII4+Me+65J/bbb7/YZJNN4pprronTTjutqLR1xhlnDFvbAXqtvX0AK1cGuD6FnKr2yitX/n3ZZREf/GD/tpXVqUoXXxyx0UYDbx8AAAxFElWOOLvsssviXe96VxEA2n333Vc8tnTp0rjiiivi05/+dFQqlSLgAgAAAADj3YQJE+K///u/4zOf+Uz85Cc/iRtuuKG4f968ecUtY2WveMUrirjZxIkTh61d733vexvef8455xQJVG94wxviNa95zYr7swLV3XffHZ/4xCfi8MMPL+57//vfH8cff3z8+te/jt/85jdFchXAqDKgKnnVAa5PQznIvqwotWBBxEtf2r/t1HxHxTHHRBx11OC0DwCAplap5vCyQZKj1D7/+c+vcl9ra2sxgq2zs7P4+Z73vKfLIA0AAAAAjFc5BV4mUT3yyCNFrGy99daLnXfeOTbccMMYDTJJKqfwe85znhM/+9nPYvLkycX9zzzzTDFgcu211y4q0be0tKxY58EHH4x999039txzzyIBC2A0qS5dFsu+87OIyZP6NKVfNStQPb0kJhz56qhMnDCkbaTGt7+dWbsD28aLXxxx2mkRNd9VAAAwIklUKQNB3/zmN4ufTz/99IoRdznF39FHHx177733YP47AAAAAGAQHHXUUcUUfWefffYqMbzrr7++qCx/8MEHx6mnnrraei972cvi0UcfjVtuuaUYUAkwmrRfe0t03nZPVKZP6/U61fkLomW750Xb7rOHtG1049ZbI44+euDbufDCiM02G4wWAQDQBAatFu3jjz8eM2bMKEbP5S1H082fP7/4OX369GhT9hYAAAAARqUrr7yySKDKilL1gyDvu+++4ucmm2zScN2NN944HnrooeK26aabDkt7AXqrdcvNo/O2u6O6rD0qE3rup8jlivW2mjkMraNL22+/ctq/Z56J2Guv/m3n0ENX/v7Wt0Yce+zgtA8AgHFp0DKbcjTaOuusE9/97neLv7OsdyZVAQAAAECz2GWXXfq9bqVSid///vcxEr71rW8VP4855pjVHsuBkikHSjYybdry6i4LFiwY0jYC9EdlxtrRssfs6Lj6pohpU7tNpMoEqurCRdG6145RWWetYW0n3VhjjZUJVenzn4+44IK+b+fcc5ffSldcETF16uC0EQCAcWHQkqgefPDBYtQZAAAAADSr3iQS5ZR3OQBx2bJlK+7LvzOJaiTMnTu3mLJvp512Km71li5dWvycOHFiw/XL+5csWTLELQXon9ZtZmU6VXTOuTmqecfUKVGpmT2j2t4esWjx8mX32jFat9li5BpLzz74weW3dP/9Ea97Xf+285KXrPz9Qx9atWoVAABNadCSqJ71rGfFk08+OVibAwAAAIAx57LLLlvl72eeeSaOP/74+Otf/xrHHnts7LfffrHBBhsUjz3xxBPF8l/60peKqfLKalDD7aKLLip+HnHEEQ0fXyMrgESskvTVKMlqzTXXHLI2AgxEJqm2bTsrqhuuFx13zovOufOi2plJU5m8Wo1oaY2W7Z5XTOGnAtUYk9PIllWqqtWIN7whYt68vm/nlFOW39KsWRHnnz+47QQAoLmSqI477rg46aST4stf/nK85S1vMZUfAAAAAE1nww03XOXvr3zlK3HvvffG97///XjhC1+4ymPrrLNOHHroobHddtvF6173umLZj370oyOS+DVlypTYZ599Gj6+9tprd1tla+HChcXPqaZEAka5TJBq2312VHfcJqrzF0ZkBaq2tqhMnxaViRNGunkMVFZ0/NGPVv59++0Rb31r37dzzz0RtZUZr7oqYsqUwWkjAADNkUT1hz/8ITbddNM4++yzi9t6660X06dPL0qRNxr1UY5wAwAAAIDx6qc//WnsuOOOqyVQ1dpyyy1j1113jV//+tfDnkR15513xiOPPBKvfOUrY/LkyQ2XmTlzZvHzgQceaPh43p9JWGWFLYDRLhOmKusZCD7ubbvtyipV8+dH7Ltv/7bz4hev/P2Tn4x41asGp30AAIzfJKoLLrhglb///ve/F7dGMokKAAAAAMa7xx57LLbNTtweTJo0KRYtWhTD7aabbip+7lRbcaNOtj+n6rv++uujs7NzlUGTDz74YDz88MOxxx57RGtr67C0GQD6bPr0lQlVqZvvvW5lElXe0h57ZMnJiAbFBAAAaPIkqvPOO2+wNgUAAAAA48JGG20UN9xwQzz11FNFIlIj//znP+P3v/99bLbZZsPevttzqqP/S5TqLsHrVa96Vfzwhz8sYoBv/b+pkTo6OuLUU08tfj/iiCOGqcUAMAhqE6r+939XJkb1xZw5EbvssvLvnIFlk00Gp30AAIztJKpdak8UAQAAAIAi+ej000+PY445Jk455ZR47nOfu8rjf/nLX+KEE06IxYsXx6GHHjrs7Sun6Ft//fW7Xe7444+Pq6++Ok4++eS47rrrYtasWTFnzpy444474oADDoiXvexlw9RiABhkOT1fOUXfM89E7LVX/7ZzyCErf99666w+MDjtAwBg2FSq1Wp1sDe6dOnS+OMf/xiPPvpoTJw4MdZdd93YZpttYsKECYP9rwAAAABg1HrmmWfiLW95S9x6663FdHdbbLFFkUiVIbmcBm/evHnF7y95yUvi61//elQqlWFt34EHHlgkct18880xZcqUbpfNWF8mhF1xxRWxcOHCosrWIYccEm9+85uLGCAAjDuZCHXGGQPfTlat8l0JANBcSVSdnZ1x5plnxv/8z/8Uo+dqTZs2LQ477LA47rjjioARAAAAADSDjJNlzOxHP/pRLFq0aJXH1l577SIJ6Z3vfGe0tQ1a0XiGUXXpsqjOXxjR3h7R1haV6dOiMtFgUoBx5957I17/+oFv57//O2L77QejRQAAjOYkqve9731xySWXFKPnNt9889h4442jo6MjHnzwwaI0eI6ky9LeGTQCAAAAgGbS3t4et99+e/z9738v/n7Oc54T2267rQGHY1T18Sej4657o3PuvBxduvKBlpZo2XpmtG65eVRmrD2STQRgqORx/+CDI/7614FtZ//9Iz7zmcFqFQAAoyWJ6uKLL44PfehDsdlmm8UXv/jFYvq+Wjm934knnhj3339/8XiWCgcAAAAAGEsynNpxxz3ROeeWDK9GTJ0clZoqYtWsSLVoeZX+lj1mR+s2s4Z9mkYAhtnZZy+/DcQee0R8/vMRkycPVqsAABipJKojjzyySJT6+c9/HhtttFHDZbIi1Stf+crYaaed4pxzzhmMfwsAAAAAo95jjz0Wd999dzz99NPRWVu1qE5WcWd0a7/97ui4+qaoTJsalQldT8FYXdYe1YWLonWvHaNt21nD2kYARtADD0QccsjAt3PyyREvf/lgtAgAgOFOotp5553jhS98Yfx3zuXcjaOPPjrmzp0b11577WD8WwAAAAAYtTo6OuJTn/pUXHjhhUUFo5786U9/GpZ20f8p/JZd+JuINad0m0C1Yvll7RFPLY4Jr39FVNZZa1jaCMAokwlVmVg1UDfcEKGyIQDAkOr5Sr+XlixZEmuuuWaPy+UyTz311GD9WwAAAAAYtf7nf/4nfvSjHxW/Z/X29dZbL1pbW0e6WfRTx133FlP49SaBKuVymTrXcee8aNt99pC3D4BR6KKLVv5+000R73hH/7az884rf7/wwojNNht42wAAGJokqg022CBuvfXWaG9vj7a2xpvNx3KZ5z73uYP1bwEAAABg1Prxj38cLS0tccYZZ8S+++470s1hAKpLl0Xn3HkRUyf3bcWpU4r1qjtuE5WJE4aqeQCMBS96UcSNNy7//emnI/7lX/q3nUMPXfn7m98c8b73DU77AACaXMtgbWifffaJRx99NE455ZQul8nHcplcFgAAAADGu/vvvz923HFHCVTjQHX+wojOzqh0MYC0K8XynR3L1weA0uTJyxOqytub3tS/7Zx3XsROOy2/HXhgVjQY7JYCADSNSrVazYrSA/bYY4/FK1/5ynjyySfjBS94Qey///6x8cYbF489+OCD8ctf/jLuvPPOmDFjRvzkJz+JdddddzD+LQAAAACMWrvvvnvMnj07vv71r490UxigzkcejfafXxWVtaf1ed3qkwuj7ZUvjpYN1huStgEwzvz5zxGHHz7w7Vx8cc4nPBgtAgBoCoM2nd+znvWsOPfcc+OYY46JuXPnxp/+9KdVHs9crZzy76tf/aoEKgAAAACaws477xw33XRTLFmyJCZNmjTSzWEg+liBalXVAa4PQFN5/vNXTvuXlaV2261/23nNa1b9/aMfHZz2AQCMU4NWiaq0dOnSourUDTfcUEzdl5tfb731YpdddokDDjggJk6cOJj/DgAAAABGrXvuuScOPfTQeNWrXhUf//jHxcbGsOrSZbHsOz+LmDypT1P6VbPz++klMeHIV0dl4oQhbSMATeAb34j45jcHvp3f/CZixozBaBEAwLgx6ElUadmyZTFhwsqAwPz582PBggWxySabDPa/AgAAAIBR66yzzopbbrklrrzyylhzzTXjBS94Qaz1/9m7Ezir6vJ/4M+9MwyLwyIqJi4FoqK4UCgGqVm472ZqWq5lfzN30dLSTHONMrfKFjX1576bu1IJoSKKuSC4oLlgbsgmCMzc+399zw2QBGFgZu7M3Pe713ndc892n3lVOnPu5zxPly6Ry+U+dWzalrq403LVPfp0FJ59OXLdln6kX3HKtMhvtE5UD+rfpLUBUIHefTdip52W/zqHHx7xve81RkUAAK1ao4ao3nrrrTjjjDOirq4u/vznP8/fnjpTHX/88Vk3ql/84hex5pprLvdnXXfddXH66acvdv+jjz4a3SXoAQAAACijvn37ZuGopbkFl4574YUXmqUulk1x8tSYe/MDESt0ily7JXejKs6ti/hoZrTbe/vIrdilWWoEoEKl3zVSGOrJJ5fvOt26RTz4YPrFpLEqAwBoNZa+7/QSvPPOO7HvvvvG+++/H717915oX+pK1a1bt3j88cfjO9/5Ttx2223LHXCad0Pp4IMPjtra2k/t79ix43JdHwAAAACW1znnnFPuEmhEue5dIz+4f9SPfCqic+1nBqlSgKo4fUZUbTFAgAqAppdCT2nU3zwvvhix//4Nv86UKRGbbbbgvbF/AEAFabROVKkD1bXXXhv7779/nHTSSdGhQ4eF9tfX12c3ja655posSPXTn/50uT5vn332iQkTJsTYsWMjn88vZ/UAAAAAAEuWbqfWP/9KFEaNLW2o7RS56gVhqmJdXcSMmdl6fvAXo6rf2osc3wgAzeajjyK++tXlv87QoRHf+lZjVAQA0LZDVDvssEN2A+G+++5b7E2BQqEQ22+/fRaoGj58+DJ/VrrOl770pejTp0/cfPPNy1E1AAAAAEDDFT+cFvXjJ0Zh3MSIQn261Zq2RuSrIr9B76jq21sHKgBapq22iphZCvwul8cei/hEkBgAoLVrtN9s3n777dh6660/86mq1DFq/fXXX64AVfLaa6/FrFmzom/fvst1HQAAAABoTJMmTVqu83v27NlotdC0UkCqelD/KA7oF8Up0yNSB6rq6sh16xy5mnblLg8AFu+RRxasP/poxFFHLdt1vvzlBet//nPEJpssf20AAG0hRNWtW7elukn0/vvvR+fOnZfrs8aPH5+9psDWcccdF2PGjImpU6fGuuuuGwcffHDssssuy3V9aG6pi9ucOXPKXQa0ejU1NUYkAAAAZTVkyJBlPjf9PTNu3LhGrYemlwJTuR7dy10GACybQYMixowprc+dW3q/LL773QXrvXtH3Hhj49QHANAaQ1RpvF4a5TdixIjYcsstF3nM6NGjY+zYsVnHqsYIUd14442x+eabx2677Rb/+c9/sg5XJ5xwQrz44otx/PHHL9dnQHMGqC644IJ49dVXy10KtHq9e/eOY489VpAKAAAo69/55TgXAGC5tWu3IFCVXH11xIUXNvw6EydGbLrpgvdpQk0XI24BgAoKUR100EHxwAMPxJFHHhmHHHJIbLPNNvPbj88LOP35z3/Ovtg+9NBDl+uz0g2l1VdfPY466qjYc889529/4403Yr/99ovLLrssttpqq9j0k7+gQQsm8AEAAABtw7yH/wAAWr0DDigtyXvvRRx9dMRLLzX8Ol//+oL1YcMilrPZAgBAU8kVG/ERt6uvvjrOO++8qK+vX/SH5XJx0kknZSP3mkrqTnXqqafGvvvuG2eccUaTfQ40JuP8WrbZs2fHT37yk2z9rLPOivbt25e7JBbDOD8AAAAAgCaWvlrcbLPlv843vxnx4x83RkUAAC2rE1VywAEHxGabbRbXXnttNrrv3Xffjbq6ulhllVViwIAB8Z3vfCc23njjaErzrv/666836edAY0qhD8Gc1iH99+S/KwAAAAAAKlZ6kPWTY//OPjvi1lsbfp2bby4tSZpu86c/RfTo0Xh1AgCUM0SV9O3bt0k7QBUKhRg3blzMnDkzBg4c+Kn9aXvSoUOHJqsBAAAAAAAAiIhTTiktyeTJEdtt1/BrTJoUsdNOC96n6RB77tl4NQIAlCNE1RxSx6tZs2bFP//5z1hppZUW2jfmv8n3jTbaqEzVAQAAAACVojhnbhSnTI+oq4uoro5ct86Rq2lX7rIAoDy6d1+4S1UKRr37bsOvc9ZZpWWe0aMj8vnGqREAoClDVOPHj4+qqqpYZ511Ftp+yy23xO233x5TpkzJOlQdcsghscEGGyzXZ+Xz+dhhhx3i1ltvjV/+8pdx9tlnZ9vm1XHZZZdFp06d4ptpjjIAAAAAQBMoTp4a9RNejcK4ial9/oId+XzkN+gdVev1ilz3ruUsEQDK7557Fqy/+mrE3nsv23U+OZ3mxhsjevde/toAAP5HrlgsFmMZvfvuu3HsscfG2LFjs9DSmWeeOX9fGul33XXXxScvX11dnQWfdtxxx1geH3zwQey3337x73//Owtlbb755vHOO+/EQw89lI37u+CCC2K7ZWkVCrAIs2fPjqFDh2brw4YNi/bt25e7JAAAAKBM0v3O+udfjsKop9Pt1YjajpGrXvCsajF1pJoxM1vPD+4fVf36RC6XK2PFANACpX9fHnZYxLPPLt91TjwxYt99G6sqAKDCLXPfy7lz58ZBBx0UTz31VNTU1MQqq6wyf18as3fttddm63vssUf83//9XxawWmGFFeKUU07JAk/LI43wu+mmm7LOVtOmTYtrrrkmRo0aFV/96lfjhhtuEKACAAAAAJpEClDVj3wqYoVOpdF9nwhQJel9rluXbH86rv75V8pWKwC0WOnfn1dcURr9l5Zl7VD1y19GbLppafnpT9MXmI1dKQBQQZa5E1UKK/3sZz+LQYMGxW9+85vo2nVBa+rvfve7WZBqwIABWYBqnr/97W/xgx/8IL7//e/H8ccf3zg/AUAT04kKAACAZZUeAOzSpUu5y6ARR/jNvfmBUoCqXfWSj59bF/HRzGi39/aRW9H/DgBgqbz+esQ3vrH817n55ogvfKExKgIAKsQyd6JKo/NSB6rzzjtvoQDVrFmz4vHHH89aVO+///4LnfO1r30tVltttXjkkUeWr2oAAAAAaAW23HLLOPHEE2P06NHlLoVGUD/h1WyE39IEqJJ5x9WPn9jElQFAG7LWWgs6VC3P71Df/OaCLlUnndSYFQIAbdQyh6jGjx8f/fr1ix49eiy0PY33q0tzjCOyLlX/q2/fvjFp0qRl/VgAAAAAaDU6dOgQd911Vxx00EGx/fbbxx/+8Id47733yl0Wy6A4Z24Uxk2MqO3YsBNrO2XnpfMBgAbK5xcEqtJyxhnLdp3hwxcEqtLy4YeNXSkAUMkhqilTpsSqq676qe1PPvlk9tqrV6/o3r37p/anMVgff/zxsn4sAAAAALQaI0aMiF/96lfx5S9/Od5444244IILsm7tP/zhD+Nvf/tbFAqFcpfIUipOmR5RKESueum6UM2THV+oL50PACyfnXZaEKj6298i9txz2a6z7bYLAlX339/YVQIAlRai6tix4/yOU580ZsyYbJTfpumXjkV49913o0uXLsv6sQAAAADQatTU1MTOO+8cV1xxRTz00ENxxBFHZJ3dH3744Wx96623zoJVKWBFC7eIe6FLL7ec5wMAn9K5c8RPfrIgVHXyyct2nXSNeYGqFMoScgeAirXMIao111wzJkyYsNC2GTNmxNixYxc7yi/tf+aZZ7JzAQAAAKCS9OzZM4466qgsQHX55ZfH3nvvHfX19dmIvzTq7+CDD4577rkn20YL1MAOVAsrLuf5AMAS7bXXgkDVlVcu2zVSsH3gwFKg6sgjIyZPbuwqAYC2GKLacsst480334w777xz/rZrr7025s6dGx06dIitttrqU+f89re/zW4CLSpgBQAAAACVIHVx32yzzbKxfoMHD87ep7F+jz32WJxwwgmxzTbbZGEqWpZct84R+XwUG9hRKjs+X1U6HwBoHhtuuCBQNWpUxBe+0PBrPPZYxHbbLehS9cgjTVEpANCCLPPjTwceeGBcddVVcfLJJ8cDDzyQ3exJT9Gl14MOOihWWGGF+ce+9957ceWVV2ZP2KUxgPvuu29j1Q8AAAAArca//vWvuPXWW+Pee++N6dOnR7FYjM9//vPxzW9+MwYMGBB333133HLLLVmYKu13H63lyNW0i/wGvaPw7MsRDQlEzZgZ+Y3Wyc4HAMqgpibi5psXvL/00ogrrmj4dY4/fuH3KZyVrg0AtBm5YrpTs4wef/zxrAX5tGnT5m/beuut4+KLL4527Uo3BR599NE49NBDSx+Wy8VZZ50Ve6Z5wgCtxOzZs2Po0KHZ+rBhw6J9+/blLgkAAIBW5N1334077rgjbr/99pg4cWIWnEr3zrbddtvYZ5994stf/vJCx48aNSq7n7b66qtnDy3SchQnT425Nz8QsUKnyLVb8vOpxbl1ER/NjHZ7bx+5Fbs0S40AQAO8+mrE3nsv/3X+8peIfv0aoyIAoDV2oko233zzGD58eDz00EPxwQcfxAYbbPCpUX3dunXLbgxtuOGGccwxx2RjAAEAAACgEhx22GFZKCqN60v3yHr37p0Fp3bfffdYccUVF3lOGvHXoUOH7H4bLUuue9fID+4f9SOfiuhc+5lBqhSgKk6fEVVbDBCgAoCWqlev0si/pFAodZsaObLh1znooAXrO+wQ8YtfNF6NAEDrCFEltbW1scceeyx2/7rrrpu1Kde5BQAAAIBKM2LEiOy+2Pbbb5+FpzbddNOl6oicRvttvPHGzVIjDVPVr0+KU0Vh1NjIWvzXdopc9YLbrMW6umyEX3bsFgOiqt/a5SsWAFh6+XzEb36z4P3TT0d873sNv85995WWeYYPj+giUA0AbX6cH0AlMM4PAACAZXXNNdfEbrvtFl18cdbmFD+cFvXjJ0Zh3MSIQn0WrIoUq8pXRX6D3lHVt7cOVADQVnz0UcShh0a88sryXee22yLWXLOxqgIAWlonKgAAAABg0aZMmRKjR4+ObbbZ5jOPu+mmm+LJJ5+Mc889t9lqY/mkgFT1oP5RHNAvilOmR6QOVNXVkevWOXI17cpdHgDQmFZYIeKGGxa8P+WUiAceaPh19txzwfrhh0d897sRuRTEBgBagny5CwAAAACAtuqSSy6JB5biC7Z//OMfce+99zZLTTSuFJjK9+ge+Z49slcBKgCoAGefHTFmTGm5+OJlu8bvfx+x2WYRadxzWiZNauwqAYAG0okKAAAAABrJn/70p/j4448X2jZhwoQsTLU406ZNixEjRkSnTp2aoUIAKklxzlzd8qCpDRpUClMls2ZFbLnlsl1nt90WrP/85xE779w49QEAS02ICgAAAAAaycyZM+O3v/1t5P47liW9vvjii9myOMViMXvde++9m61OANq24uSpUT/h1SiMmxhRKCzYkc9HfoPeUbVer8h171rOEqFt6thxQaAq+fWvI669tuHX+dnPSktSXR0xcmTpFQBoUv5tCwAAAACN5Pvf/34WpCr89wvrq666KtZee+34yle+ssjjU8iqQ4cO0atXr9h1112buVoA2poUzK1//uUojHo6/VsmorZj5D4RvCjW1UXh2ZeyJT+4f1T16zM/+As0geOPLy3Ju+9GHHpoxH/+07BrpE5yX/7ygvdXXRWxwQaNWycAkMkV5z3qtpxS2/EuXbo0xqUAWpTZs2fH0KFDs/Vhw4ZF+/bty10SAAAArUTfvn1jt912i/PPP7/cpQBQAeqeeynqRz4Vuc61kWu3+Ofoi3Projh9RlRtMSCqN+zTrDUCUeoQd/bZEbffvnzXOeKIUjALAGhZIapNNtkktttuu6zt+MCBAxvjkgAtghAVAAAAANAaRvjNvfmBiBU6fWaAav7xc+siPpoZ7fbePnIrekgeyurGGyOWN3S/1VYR55wT4TsMACj/OL/Udvyuu+6Kv/71r7HWWmvFXnvtFXvuuWesssoqjfURAAAAANCizZgxI3utra1d6P3SmnceADRU/YRXsxF+SxOgStJx6Sn7+vETo3pQ/yavD/gM++xTWpLJkyO2267h13jkkYhPjpA29g8AyteJas6cOfHggw/GzTffHI8//ng2d7uqqiq++tWvxje/+c3sNZ/PN8ZHATQrnagAAABoyPi+dA/s7rvvjl69esX666+/1OfmcrkYN25ck9YHQNtUnDM35l59V0TH9pGrXvrn54t1dRGzZke7A3aNXE27Jq0RWAbpa9z/9/8innpq+a4zZEjEueemXzgbqzIAaJMarRNVTU1N7LzzztkyadKkuOWWW+K2226Lhx9+OIYPH551pEqdqVKgas0112ysjwUAAACAFqVQKMxfb8jzi430rCMAFag4ZXr6F1CDAlRJOr5YmJmdn+vRvcnqA5ZRCj394Q8Ld5s6/viGX+fhhyM222zB+7vvjlh11capEQDakEbrRLUo6dKPPvpo3HfffVmYavLkydkTdQMHDox99tkntt9++6xbFUBLphMVAAAAANCSFSa9G3V3PxK5rp0bfG5x6vSo3nmryPfs0SS1AU1k9uyIX/864pZblu86J54Yse++jVUVALRqTTpfLwWmNttss/ja174WgwcPzt6nJ/Eee+yxOOGEE2KbbbaJe+65pylLAAAAAAAAaNsa2IFqYcXlPB8oi/TA98knR4wZU1rOOGPZrvPLX0Zsumlp2W67rKsdAFSqJvut+F//+lfceuutce+998b06dOzrlSf//zns3F+AwYMiLvvvjsb+ZfCVGn/vhLOAAAAAAAADZbr1jkin49iXV2DRvql4yNfVTofaN122qm0JM8/H3HQQQ2/xuTJEQMHltZ79Ii44gpj/wCoKI0aonr33XfjjjvuiNtvvz0mTpyYBafatWsXO+64Yza+78tf/vL8Y7/0pS/FkCFD4tBDD40//OEPQlQAAAAAtHoD533ptAxSF/fHH3+8UesBoDLkatpFfoPeUXj25YiGBKJmzIz8Rutk5wNtSL9+pe5USX19xPe+F/Hssw27xrvvRuy884L3p50WsdtujVsnALTVENVhhx0Wo0aNysb1pfBU7969s+DU7rvvHiuuuOIiz0kj/jp06BAffPBBY5UBAAAAAGUzbdq0cpcAQIWqWq9XFJ59KYpz6yLXbslf/6TjsvP69m6G6oCyqaoqdZSa5+qrIy68sOHXSeMCPzkycMSIiI4dG6dGAGhrIaoRI0ZE+/btY/vtt8/CU5umublLMHv27Gy038Ybb9xYZQAAAABA2Tz88MPlLgGACpXr3jXyg/tH/cinIjrXfmaQKgWoitNnRNUWAyK3YpdmrRMoswMOKC3JpEnL3l1qyy0XrF98ccSgQY1THwCUUa6Y2kY1gmuuuSZ222236NLFL9tA25ICn0OHDs3Whw0blgVGAQAAAABamvSVT/3zr0Rh1NjShtpOkateEKYq1tVlI/yS/OAvRlW/tbNxsgCRvjI+88yIO+9cvusMHhxx0UWNVRUANKt8Y11oypQpMXr06CUed9NNN8WPf/zjxvpYAAAAAAAA0pPzuVxUb9gn2u29feQ3Widi1uwoTp0WxanTs9f0Pm1P+9NxAlTAfOmfB6edFjFmTGlJY/+WxahREWli0bzlgw8au1IAaPnj/C655JKsE9U222zzmcf94x//yEb/nXvuuY310QAAAADQIuy5557ZF9LpXlnPnj2z90srnXfrrbc2aX0AVIY0oq96UP8oDugXxSnTI1IHqurqyHXrHLmaduUuD2gN1l+/FKZKPv44Yostlu0622+/YP3Pf47YZJPGqQ8AWlKI6k9/+lN8nP6F+QkTJkzIbhAtzrRp07IAVadOnZb1YwEAAACgxXrhhReyMFQaDT/v/dLSDQSAxpYCU7ke3ctdBtDadeiwIFCV/Pa3EZdf3vDrfPe7C9YPPDDiyCMj8o02OAkAyheimjlzZvz2t7+df3Mnvb744ovZ8lmzuJO99957WT8WAAAAAFqsq666KntNXag++R4AANqMI44oLcm//rVwOGpppd+TP/m78o03RvTu3Xg1AkBzhqi+//3vZ0GqQqEw/4bQ2muvHV/5ylcWeXwKWXXo0CF69eoVu+6667J+LAAAAAC0WAMHDvzM9wAA0Kak8XzzulTNmRMxePCyXWeffRasn3TSwu8BoJnkivPaQy2nvn37xm677Rbnn39+Y1wOoMVIIxiGDh2arQ8bNizat29f7pIAAABopVIX93feeSeqq6uzblWf//zny10SAAA0jeuui/jVr5b/Ov/8Z4TvZgBoyZ2o/tf48eMb61IAAAAA0GbMmTMnLrvssrjuuuviww8/XGjfaqutFoceemh85zvfKVt9AADQJPbbr7QkkydHHH54xMSJDb/OJych/f73EZtu2ng1AkBjhKhmzJiRvdbW1i70fmnNOw8AAAAA2nKA6pBDDomnnnoqUkP4Hj16ZB2o0vpbb70VkyZNirPOOiuefvrprPsxAAC0Sd27R9x4Y2k9DUr67W8jrrii4ddJQax5fvCDiO9+t/FqBKDiLXOIatNNN418Ph9333139OrVKzbbbLOlPjeXy8W4ceOW9aMBAAAAoFX4y1/+Ek8++WSsu+66WVhqo402Wmj/6NGj49RTT83usW2++eax9957l61WAABoFrlcxA9/WFqSe+6JOO20hl/nd78rLUn6rjqNDuzUqXFrBaCi5Jfn5EKhMH89PT23tMsnzwMAAACAturOO+/MOrJfeeWVnwpQJQMHDozLL788OnToENdff31ZagQAgLLaaaeIMWNKy0MPLds1nngiYqutSqP+0nL//Y1dJQAVYJk7UY0fP/4z3wMAAABApfv3v/8dW265ZXRP40sWY/XVV8+6UD322GPNWhsAALQ43bqVwlTz/PSnEffd1/Dr/OQnpSVJI//SGMDUAQsAmqoT1bKaNWtWOT4WAAAAAJpVt27dlupeWOrc3snoEQAAWNgvfrGgS9Xvf79s1/jzn0vj/uZ1qfrPfxq7SgDaiEYLUf385z+POXPmLPG4p556KnbffffG+lgAAAAAaLF22GGHGD16dIwbN26xx7zxxhtZF6ohQ4Y0a20AANCqpADUvEDV44+XxgAui112WRCoGjGisasEoBVrtBDVddddF9/85jfj5ZdfXuT++vr6uOCCC+KAAw7IbgwBAAAAQFszY8aMhZZDDz00vvCFL8QhhxwSV111VUydOnX+sXPnzo2///3vcdBBB2XHDB06tKy1AwBAq1FVFXHGGQtCVb/85bJd57jjFgSqzjwzfand2JUC0IrkisVisTEu9K1vfSuefvrp6NChQ/zoRz+K/fbbb/6+V155JU488cR44YUXoqqqKrt5dPzxxzfGxwI0udmzZ8+/kT1s2LBo3759uUsCAACghVp//fWXeExtbW32t+WUKVOyBw+TFVZYIWpqamLUqFHNUCUAALRh770X8d3vRkyatOzX2HnniKOPjlhppcasDIBK6UR17bXXxpFHHhl1dXVxxhlnZOsffvhh/OUvf4m99tora1net2/fuPHGGwWoAAAAAGiT0vOKS1qmT58e77//fnYfbd621LVq8uTJ5S4fAABav1VWibjzzlKHqtGjUzeQhl/j7rsjtt++1KHq0EOXL5AFQOV1oprnmWeeybpOvf7669nTc3PmzIl27dploarvfve7WScqgNZEJyoAAAAAAIA24G9/izjxxOW7xle+EnHeeREdOjRWVQC0tU5U82y88cZx8sknZ2GpFDxItt566zjooIMEqAAAAACghfnHP/4RBx98cAwYMCA23XTT2HfffeOee+751HGp6/wvfvGLGDJkSHYPcIcddog//vGPWUctAABoFb72tVKHqrT8/e8RX/pSw6/xz39GbLFFqUtVWlK3KwDahEYNUaVW5Kecckr84Ac/yG6ebLHFFtGtW7d48MEHY7fddosnnniiMT8OAAAAANqEadOmxU033dTsn3vllVfG97///XjxxRdj9913j1122SXrMH/cccfF5ZdfvlB9BxxwQFxzzTXRr1+/OPDAA6Njx45Zx+bjjz++2esGAIDlVlsb8Yc/LAhV/fGPERts0PDrHHHEgkDVpZemGd9NUS0ArWmcXwpKnXHGGfH+++9Hp06d4ic/+Ul84xvfyN6n9fREWz6fz55kS+P+0jEArYFxfgAAACyP1NXpL3/5S7z11lsxd+7c+OTtuEKhkP3dOa+b0wsvvNBsdU2YMCG7f/f5z38+rr766lhppZWy7el+XgpUTZ06NR599NHo3LlznHPOOVng6mc/+1nsv//+2XH19fVx7LHHxgMPPBAXX3xxbLfdds1WOwAANKl33om48MKIBx6IyOWWLRi1zjoRv/tdRLduTVEhAC05RNW3b9/sNbX8Pu+882L11VdfaP8NN9wQ5557bnz88cex2mqrxfDhwxvjYwGanBAVAAAAy2rEiBFx2GGHLfG49MDhoEGD4tL05Hoz+elPf5p1v0rdpTbbbLOF9t18883xzDPPxCGHHJLdy0u1de3aNbunlx6UnOeNN96IbbbZJr7yla8s1LkKAADajPTAw2mnlQJVy+qggyK23z5i3XUbszIAWuo4v3bt2mUdptJTa/8boEpSB6o777wzNtlkk3j77bcb62MBAAAAoMVK98qS1L3p9ttvjx/84AdZCCmFlG699dY45phjsod1VlxxxTj//PObtba///3vscoqq3wqQJV885vfzLrO9+rVKwtTzZw5MwYOHLhQgCpZc801Y4011ognnngi60wFAABtTnV1xNlnLxj7l9Yb6i9/SX8UlEb+DRwYcfvtxv4BtOUQVbrx893vfjdyqZ3hYqSbKtdee212cwgAAAAA2rrnnnsuevbsmXV9Sp3ct9pqq2yEX3rIcIMNNshCVWlUXhr1l8blNZfJkyfHe++9F+uuu268++678ZOf/CTrJrXxxhtnAaqHHnpo/rGvvfZa9rrWWmst9p7fnDlz4s0332y2+gEAoGzSGOt5gapbbmn4+YVCxC9+EbHDDqVQ1bbbRkya1BSVAlCuENV66633qW3p6bM0BmuhD8zn4/DDD2+sjwUAAACAFmvatGnZfbN5HZzWWWed7PX555+ff8xOO+2UBZQefPDBZqsrBaeSGTNmxDe+8Y14/PHHY4cddogdd9wxXnnllfjhD384v4vWlClTstdu3bot8lqdO3ee/7MCAEBF+fznFwSqRo8udZtaWh98UHr98MOI3XYrBarScuutTVYuAM0Uoppn/PjxcdJJJ2VP1W244YZxWpoPGxGnnHJK/PGPf9TWGwAAAICK0bFjx4VG4NXW1kbXrl3j1VdfXei4FLR6/fXXm62ujz76KHv917/+FWuvvXbceeedceqpp8Z5552XdZxfYYUVsvXUISt1mUpqamoWea152//3YUoAAKgo6ff+449fEKr63e8iVlqp4ddJ4wLnBapSl6pZs5qiWgCaOkR10003Ze2+002X9DRbsVjMlmTs2LHx61//Ohvll1qWAwAAAEBbl0bdTZgwYaFtX/jCFxbqRJXMmjWrWe+ZVVVVzV9P4alOnTrNf59CVQcccEDMnTs37r///ujQoUO2Pb1flHkhqxS8AgAA/muzzSLuv78UqHrkkYhDDmn4NVKXqi23XBCqevHFpqgUgMYOUT399NPxs5/9LLupMnTo0PjrX/+60P7jjjsuVllllXj44YfjrrvuaqyPBQAAAIAWa8stt8y6OZ155pkxffr0bNvGG2+cbXvooYey96+99lo88cQT0bNnz2ara94IvhSeSqGp/7XBBhtkr//+97+zzlmfNa5v3s+VumwBAACLkB5a+OEPS4GqJ56IuPnmZbtOGhc4L1CVHsz4b0MTAFpYiCqN6kt+//vfx/e+973o06fPQvu32267uOKKK7L25aljFQAAAAC0dQcddFCsvPLKce2118YJJ5yQbdtvv/2y12OPPTb23nvv2HPPPbNuTtumUR3N2CGruro66urq5neS/6R5XafSOMLevXtn64sbN5i2pzBWc4bAAACg1crlUnvaBWP/rr122a5z0EGlblcpUHXJJREzZzZ2pQAVp9FCVE899VT0798/Nk3/kF6M9FTbgAEDsqfrAAAAAKCt6969exag2mabbWKttdbKtqVQ0sknn5yFl5599tlslN+GG24Y3//+95utrpqamuxeXgpvpS5Y/yvVlfTt2zerLY3qGz169KdGDr7xxhtZV610rU+OCAQAAJbSuusuCFSlsX/duzf8GldeGbHVVhFHHx1x2GGlawHQYNXRSGbMmJE9Vbc0rcIX1/obAAAAANqa1PXp4osvXmjbgQcemAWrnn766VhxxRVj8803zzq4N6f9998/xowZE+eee25cddVV80f8jR8/Pq6//vro1q1bVmP79u1jl112iRtuuCE77uCDD86Oq6+vj/PPPz9b//a3v92stQMAQJsd+/fAAwve33NPxGmnLf35o0aVXg8/fMG21An3uOMimvnvDYCKDlH16NEjJkyYsMTj0jGrrLJKY30sAAAAALRKafxdOUfg7bzzzjFy5Mi49dZbs/Xtttsue1DyvvvuywJSZ511VtTW1s4fPZiOPeecc+Kxxx6LPn36xKhRo+L555+PHXfcMYYMGVK2nwMAANqsnXYqLcmkSRHpgYbJkxt2jeuuKy3z3HprxH+75ALQRCGqLbbYIm688cbsKbVvfetbizwmtS5/8803Y5999mmsjwUAAACAFi+FkiZNmpSN7vvfkXiflMbnNaezzz47Nt1007juuuvi5ptvzsb8bbbZZvGDH/wgvvSlLy00ljDd97vwwgvj73//exagWmONNeLEE0/MumrlcrlmrRsAACpOegBjXpeq9DfFXXelX+jTHxsNu843vrFg/ZxzIrbdtnHrBGjFcsVisdgYF0o3gXbbbbf46KOPYtddd41BgwbFySefHF/96lezFt8PP/xwdqOlXbt2cfvtt8fnP//5xvhYgCY3e/bsGDp0aLY+bNiwbIwBAAAALK3LLrss/vSnP2Vdnj5LCiKNGzeu2eoCAADaiBdfTHO5I844Y9mvkcJU6fx27RqzMoDKDFElTzzxRBx99NHx4Ycffurps/QxK6ywQvz617/OglUArYUQFQAAAMsqdXf66U9/mq2nLk8rrrhiVFVVLfb44cOHN2N1AABAmzNlSsQRR5SCVctqu+3STO+IHj0aszKAyhnnl6RW3/fff3821u+xxx6Lt99+O2tPvsoqq8TAgQNj3333zdYBAAAAoBKkzuzpYcPUsX2//fbLurQDQFtXnDM3ilOmR9TVRVRXR65b58jV+HcgQLPo1i3i2mtL66mfyplnRtx5Z8OukcYGzhsduM8+EXvsEbHuuo1fK0Bb7kQF0BbpRAUAAMCy6t+/f6y77rrZQ4cA0NYVJ0+N+gmvRmHcxIhCYcGOfD7yG/SOqvV6Ra5713KWCFDZHn884oc/XL5r9O8f8ZvfRNTWNlZVAG2zExUAAAAAsEAa4dfDCAwA2rj0vH798y9HYdTT6fn9iNqOkate8BVUsa4uCs++lC35wf2jql+frFMjAM1s880jxowprX/8ccSPfxwxcmTDrvH00xFbb73g/bBhC78HqMQQ1ZFHHrnMH5p+Mb744ouX+XwAAAAAaA022mijGDduXBQKhcjn8+UuBwCaRApQ1Y98KnKdayPX7tNfPWWBqm5doji3LjsuBa2qN+xTlloB+K8OHUodpeZ58cWIk0+O+Pe/G3ad/05zyRx4YAoSZB0IASoqRPXQQw8t84d6ugAAAACASnDEEUfEAQccEJdcckkcffTR5S4HAJpkhF/qQLW4ANUnZfs710Zh1Ngort4jcit2abY6AViCddeNuOWW0voHH0SkpiiTJ0eMGrX017jqqtKS9OwZ8ec/R6yyStPUC9CSQlTnnHNO41YCAAAAAG3MpEmTYptttonf/e53cffdd8cXv/jF6NKlyyIfMkzbfpzGaQBAK1I/4dWss9SSAlTzpOOK6bzxE6N6UP8mrw+AZbDSShGnn15ar6+POPfciNtua9g1Jk2K2HHH0vopp0RssUWEUedAC5crpkHVACzW7NmzY+h/W5EOGzYs2rdvX+6SAAAAaCX69u2bhaOW5hZcOu6FF15olroAoDEU58yNuVffFdGxfWlk39KeV1cXMWt2tDtg18jVtGvSGgFoZCNGRBx33LKdu956EVtuGbHLLhFrrNHYlQGUrxPVksyaNSvee++9qKqqih49ekS7dn4JBgAAAKCy/PCHP1xk1ykAaAuKU6ZHFAoNClAl6fhiYWZ2fq5H9yarD4AmkEJQY8aU1v/zn1IgamlNmFBaNtmkdI1//at0vc03j1hhhSYrGaBsIarUlvyaa66JZ555JgqFQrYtBakGDRoUhx56aPYKAAAAAJXgqKOOKncJANB0UkepZZZbzvMBKLvPfW5BoCp13/3DHyL++MfPPqdjx4gBA9IfSxFPPhlx110RKYz7pS+VtvfrF/HlLzdL+QBNGqI66aST4q677srak6fg1EppVmpETJ48OUaMGBEjR47Mnr478sgjG/NjAQAAAAAAaG4N7EC1sOJyng9Ai5I68P6//1dakmeeiXj88YhXX4149NGI6dNL21PXqdmzI8aOXXBuCtWOHl1aPild68ADI9q3b8YfBKhkjfbb6U033RR33nlnNrrvxz/+cQwZMiTa//cfZmm03/333x/nn39+XHrppdG/f//YYostGuujAQAAAKBFuOqqq7LXPffcMzp37jz//dI6MH1BAACtRK5b54h8Pop1dQ0a6ZeOj3xV6XwA2qaNNy4tSfrnfgpVjRhR2pZCVf+davWZLrustCSDB0cMHRqx1lpNWzdQ0XLF1DaqEey1117x8ssvx+233x69evVa5DETJkzIjtt8883jz3/+c2N8LECTmz17dgxNv5RFxLBhw+YHRAEAAOB/9e3bN3K5XNxzzz3ZPbJ575ck3aJLx73wwgvNUicANJa6R5+OwrMvNygQVZwyLfIbrRPVg/o3aW0AtFDvvhsxfHgpVJVG+jV0vOvXvx5x+OERKZewFH9vATR7J6qJEyfGl7/85cUGqJL11lsvC1A999xzjfWxAAAAANBi7LHHHlkYKnWh+uR7AGirqtbrFYVnX4ri3LrItVvy107puOy8vr2boToAWqQePSK+9a3SMnNmxGOPRVxzTalb1dJIAay09OwZkSZgbbllxIABETU1TV050MY1WoiqQ4cO2RNzjXUcAAAAALQ255577me+B4C2Jte9a+QH94/6kU9FdK79zCBVClAVp8+Iqi0GRG7FLs1aJwAtVKdOpc5Saamvj7jllojzz1+6cydNirjxxtJyyCERu+4a8dRTpWDVyis3deVAG9RoIaqtttoq7rvvvnjttdfiC1/4wiKPmTx5cjz++OPZsQAAAAAAALR+Vf36pDhVFEaNjewx+tpOkate8BVUMY1pmjGzdOwWA6Kq39rlKxaAlquqKmKffUpL8vzz6cmUiKUZe/6Vr0Tcf3/EZZeV3q+/fqlDVQpU9e0bkc83be1Am5ArNlJbqBSQ2m+//WL27Nnx85//PL761a8utH/8+PFxyimnxLvvvhs33HBDrL766o3xsQBNLv1zbejQodn6sGHDon379uUuCQAAgFZm4sSJ8dZbb8XcuXMX6tKe1tPfne+99148+OCD8X//939lrRMAlkfxw2lRP35iFMZNjCjUZ8GqSLGqfFXkN+idjfDTgQqAZTJtWsTvfx/xyisRb74Z8c47C/Z16RLx4IOlblTjxi3+GjvvHHH00RErrdQsJQMVHKL69re/HdOmTYuXXnopcrlcdO7cOdZaa62oqqqK//znP1l4KqmpqflUACEdnzpUAbREQlQAAAAsz9+URx11VIwYMeIzj0u36NI9sheW5glrAGjhinPmRnHK9IjUgaq6OnLdOkeupl25ywKgrUgRh5dfjhg5MiL9rbXGGhHHHBOx/fZLf4211oo4+eSIzTZrykqBSh3n9+STTy500ycFqp577rlF3jhKCwAAAAC0dVdccUU88sgjUV1dHeuss05MnTo13n777dh0002z9VdeeSXq6+tj7bXXjuOOO67c5QJAo0iBqVyP7uUuA4C2KpeLWGed0pK6TxUKEW+9FbHtthGjRkV89NGSr/H66xE/+MGC9z/6UcQ3vlEaKQhUrEYLUT388MONdSkAAAAAaBMeeOCBrMPUlVdemQWn7rjjjvjxj38cp512WhaqmjRpUhx55JHx4osvxuqrr17ucgEAAFqffD5izTUjzjmn1AXx6adLHaoeemjhsX+f5bzzIn73u4jBgyO23DJi0KDSmECgojRaiKrcN3kee+yxOPjgg2OPPfaIc889t6y1AAAAAEDy73//OzbaaKMsQJWk9dTFfezYsVmIqmfPnnHhhRfGDjvskHWtOv/888tdMgAAQOtVXR2R/v5KS+r2m0b+pXDV0oSppk2LuO++0pKCWakz1YknlrpWfeELpQ5YQJvWaCGqcpoxY0accsop2Q0oAAAAAGgpZs+enQWl5llrrbUin89nnafmWXPNNWOTTTaJMWPGlKlKAACANmqLLSLuvru0noJUv/lNxIMPLvm8NCJw5ZUjnnkm4rDDUleZUoeqtHzxixE1NU1eOtDKQ1QjRoyI6667Ll577bXsBtHipBbmD6XWeY3krLPOirfSjFMAAAAAaEG6desW06dPn/++uro6Pve5z8Urr7yy0HGrrLJKPPfcc2WoEAAAoEKsumqpK9W8sX833hjx618v/vgUmLr//tJ6yiNcf31p6dQpYubMiP79I046KWLddZvtRwBaSYjqH//4Rxx++OFL1Q0qhagay/Dhw+PWW2+Nr3/969k6AAAAALQU66+/ftZhavLkydG9e/dsW+/evePpp5+OOXPmRM1/n15+4403olO6EQ8AAEDzjP3bf//SMq9LVRr9N2JExOjREV27lsJRp5766XNTgCp5+ukF56fxf6ecErHbbqV1oLJDVL/97W+zANXee+8dO++8c3Tt2rVRw1KLkm4+nXrqqTFw4MD4zne+I0QFAAAAQIuy2267Zd3b99133zjuuONip512iq233jpGjhyZ3df6/ve/Hw8++GCMGzcuvvSlL5W7XAAAgMrtUrXXXqXl448j3nwzYsaM0rI00vi/X/yitCS77x5x5JERK67YpGUDLTRE9fLLL8cGG2wQZ555ZjSX008/PWbOnBlnn3129rQeAAAAALQku+yyS/bg37333hv33XdfFqLaa6+94rLLLos777wzW5L0MOIhhxxS7nIBAADo0CGiT5/S+t13R7z00oIuVWkM+1JM54o77igtgweXxgJusUXEaqs1eenA8mm0PnKp9fhqzfh/+nSD6f7774+hQ4fGmmuu2WyfCwAAAABLK4WjLrjggvjd736XBaiSjh07xlVXXRWbb755dk9t1VVXjZ/85Cex7bbblrtcAAAAPilN30pj/Q49NOKKKyLuvz9i4MClP3/UqIjzzovYddeIffeN+P3vSyGspQliAa23E9XgwYPjiSeeiNmzZ0f79u2jKb3zzjtZx6tBgwbF/vNmjAIAAABAC/W1r31tofe9evWKK6+8smz1AOVXnDM3ilOmR9TVRVRXR65b58jVtCt3WQAAfJbu3SN++9vS+syZpWBVWpbGK6+UxvvNnRvxjW9EpJHuqUPVoEERnTs3adlAM3eiOv7442POnDlx4oknxgcffBBN6ZRTTon6+vo466yzsqf5AAAAAKAlOvnkk+Omm25a4nFpvN+BBx7YLDUB5VWcPDXqHn065l59V9TdMTzq7n4ke83eP/p0th8AgFagU6eIH/4wYsyYiCeeiPj1ryNWXvmzz0mj/Z58MuI//4m4554UfogYMiTi//2/iKOOinjkEV2qoC10olp99dXjhBNOiFNPPTUeeuih6NGjR6yYUpSLkIJPt9566zJ9znXXXRcjR46MM844I/tMAAAAAGipbrvttuxhwL333vszjxs7dmw8/fTTzVYX0PyKxWLUP/9yFEal/6/nImo7Rq56wS36Yl1dFJ59KVvyg/tHVb8+HiIGAGgt0u9tW21VWpKpUyMefzxi5MjSMm1aaXvqPHXDDQufWyiUglXJo48u2H7IIaUxgh07NtdPARUvV0x/uTWCf/zjH3HEEUdkN4WW+KG5XLzwwgvL9DkHHHBAjB49eonH7bnnnnHuuecu02cAfFIaUzp06NBsfdiwYU0+shQAAIDW6+yzz47p06cvFKJaa621YsCAAYs9Z9q0aTF8+PBYZZVV4pH01DHQJtU991LUj3wqcp1rI9du8c83F+fWRXH6jKjaYkBUb9inWWsEAKAJpJDUs8+mp2ciDjooYvfdIyZNatg1Nt004qSTInr3bqoqgcbsRHXppZdmAaohQ4bELrvsEt27d2+Sp2RSOGrgwIGf2v7GG2/EHXfcEX379o1tttkm1l9//Ub/bAAAAAD4LD179lzowb50f+z111/PliXZd999m7g6oFzSiL7UgWpJAaok29+5NgqjxkZx9R6RW7FLs9UJAEATyOcjNtmktCSXXVbqTjViRGkU4Jw5S75GOm6ffUrrRxxR6mi1zjqlDlhAy+tE9cUvfjF7qi4Fmcph1KhRccghh+hABTQ6nagAAABYWukhw+uuuy57Tbfd0n2qDTfcMHbddddFHp9CVh06dIjevXvHpunJYqBNqnv06Sg8+3LkunVe6nOKU6ZFfqN1onpQ/yatDQCAMpo1K+KJJyKOP77h5/boUQpTbbllxJe/HNGuXVNUCBWl0TpRpZs9KUQFAAAAAJWqqqoqvvOd78x/f9VVV2XhqIPSyAagIhXnzI3CuIkRtR0bdmJtp+y84oB+kavxhRgAQJvUsWPEVluVOk2lsX933pnmxJfWl+TddyNuvTXir3+NGD484s9/jlhllVKwatVVm6N6aHMaLUQ1ePDgePzxx2POnDlRU1PTWJcFAAAAgFZreLqRDVS04pTp2ZdgueqG3Y5PxxcLM7Pzcz26N1l9AAC0oLF/e+xRWpIXX4z45S8jxo797PMGDiyFrq68MqKurrRt3XVLYar+/Uv7G/i7KFSqRvt/yrHHHht77bVXHHPMMXHaaafFaqutFs0phbgmTJjQrJ8JAAAAAEsjjfebNGlSzJo1Kwqf8URx3759m7UuoBnM+yJrmeSW83wAAFqtFIT64x9L6zNnRtxwQ8QHH0Q88kjEpEkLjkvj/B57bOHfG1MAKy2ftN12KdhRGgMING2I6s9//nOst9568fe//z1bVl555ejWrVtULyLRmMvl4tbUVg4AAAAA2rjLLrss/vSnP8WMGTM+87h0z2zcuHHNVhfQTJbrqf9is3QNSCMHs45Z6Yu36urIdetshCAAQEvSqVPEIYeU1k84IeK11yJGjCgtqePUZZct+RoPPFBakjTu75RTIr7ylaatG1qZRvvr6/rrr1/o/XvvvZcti7shBAAAAABt3c033xwXXHBBtl5TUxMrrrhiVFVVlbssoBmlQFIazVKsq2vQSL90fOSrSuc3keLkqVE/4dUojJtYGgEzTz4f+Q16R9V6vSLXvWuTfT4AAMsg5S169SotBx5Y2rb11hFz5kSMGhUxbdqSr/HOOxHHHLPg/UUXGfsHjRmiuuqqqxrrUgAAAADQJqQHD9MDhSeffHLst99+0a6dzi5QaVJHpxRIKjz7ckRDAlEzZkZ+o3WapCNUsViM+udfjsKop0sjA2s7LhTwSgGuwrMvZUt+cP+o6tfHw9EAAC3ZVluVlvr6iGeeKXWoakiG4+ijI2prIwYNKo0HHDw4olu3pqwY2naIamBKJQIAAAAA87388sux0UYbxYHzng4GKlLq6JQCScW5dZFrt+Tb8um47Ly+vZuknhSgqh/5VOQ61y6ynixQ1a1LVkc6LgWtqjfs0yS1AADQiFLn4y9+sbSkYNQTT0Scc07E668v+dw0gv7BB0tLCtD/5S+lcc9plODaa5e2QRvXJL3Y5syZE88880y8++67WZvylVdeOfr16+dJOwAAAAAqSro31qNHj3KXAZRZGomXOjplgaTFBJfmScGl4vQZUbXFgMit2KVJRvilDlSLC1AtVHfa37k2CqPGRnH1Hk1SDwAATWizzSJuvbW0/sEHpbF9d9+95PNScGrddSO+//1SZ6vPfa7UoSotm26a/tht8tKh1YeoCoVCXHLJJfGXv/wlZs6cudC+zp07x7e+9a045phjoiqlHwEAAACgjUtdqMaNG5fdN8vn8+UuByijNBIvdXTKAklpQ22nT43QSyP8smO3GBBV/dZukjrqJ7ya1bE0HbGSdFyqt378xKge1L9JagIAoBmstFLEz39eWgqFiNtuK3Wp6t07YuLEhY9N4/xSZ6pnny29/89/Im66qbTMs/76ET/+cUS/fs37c0ATyhXT8PNGcvTRR8eDDz6YzVPv1atXrLnmmlFfXx9vvPFGvP7669nM9CFDhmRBK4DWYvbs2TF06NBsfdiwYdG+fftylwQAAEAr8eSTT8YBBxwQhx9+eHbvDKD44bQskFQYNzGiUJ8FmiLFlPJVkd+gdzbCr6k6PhXnzI25V98V0bH9QgGuJZ6XAl6zZke7A3aNXI2JEwAAbc7770f8858RI0ZEPPZYxCmnlLafdtrSX+OkkyL22qs0UhAqvRPV7bffHg888EB84QtfiF/96lfZ+L5PSuP9TjrppHj44YfjnnvuiZ122qmxPhoAAAAAWqRJkybFNttsE7/73e/i7rvvji9+8YvRpUuX7GHD/5W2/Tg9xQu0aSkglTo6FQf0i+KU6REpoFRdHblunZs8oJR9XqHQoABVko4vFmZm5+d6dG+y+gAAKJOVV47YfffSMmdOadt990WstlrE228v3TXOP7+0JDvuGHHccRHd/e5IhXaiSk/UpaBUuhm0xhprLPKY1JFq5513jk033TQuv/zyxvhYgCanExUAAADLqm/fvlk4amluwaXjXnjhhWapC6hMhUnvRt3dj0Sua+cGn1ucOj2qd94q8j17NEltAAC0QOlv2VdfLXWoSsvTTzfs/IEDI7bcsrQsJkcCbbIT1fjx47Nw1OICVEka77fZZpvFuHHjGutjAQAAAKDF+uEPf7jIrlMAZdHADlQLKy7n+QAAtDrp79nevUvLQQdFvPlmqdvUqFFLd/7o0aXlV7+K+MIXIk44IWKTTSJqavxuSYtU3ZidWlZYYYUlHpeO+eijjxrrYwEAAACgxTrqqKPKXQLAfGlkYOTzUayra9BIv3R85KtK5wMAULlSU52LLiqtz54dcdVVEZddtnTnvvZaRJcuEVdeGXHTTRGDBpU6VA0eHNG1a5OWDUsrH42kZ8+e8a9//Svq0h9Ti5H2pWNWS3MzAQAAAACAZpOraRf5DXpHzJjVsBNnzMzOS+cDAECmffuIww6LGDOmtFx8cQqOLP747t0j1l8/YuTIiOnTIx54IOLUUyO23TZil10ivv71iAcfLI0QhNbeieprX/taXHnllXHuuefGT3/600Uek/a9++67cVBq8wYAAAAAbcxV6SnciNhzzz2jc+fO898vrQMPPLCJKgMoqVqvVxSefSmKc+si127JXxGk47Lz+vZuhuoAAGi1UmepO+8srafpZI8/XgpMpWXy5Igttoh4772IF19c+LxCIeI//ymtn3xyaUn23z/i+9+PqK1t5h+ESpYrFhsnxvfBBx/EzjvvHFOnTo31118/dthhh1hzzTWzfW+88Ubce++9MX78+OjevXvccccdsfLKKzfGxwI0uTSudOjQodn6sGHDon1KVQMAAMAi9O3bN3K5XNxzzz3Rq1ev+e+XJN2iS8e98MILzVInUNnqnnsp6kc+FbnOtZ8ZpEoBquL0GVG1xYCo3rBPs9YIAEAbkUJS6W/dDh0iXnkl4pRTGn6NjTeO+NGPItZbrykqhMbvRLXSSitlnaiOOOKIGDdu3Kdu+KQbQWnk38UXXyxABQAAAECbtMcee2RhqNSF6pPvAVqSqn4pEJWLwqixkT1lXdspctULvi4o1tVlI/yyY7cYEFX91i5fsQAAtG75fES/fqX1tdeO6N9/QYeq1K1q9uwlX+OZZyK+/e3SeupOlbpa9e1buja0xE5U88yZMyfuu+++GD16dDa6L12+R48eMXDgwNhxxx2jpqamMT8OoMnpRAUAAABAW1T8cFrUj58YhXETIwr1WbAqUqwqXxX5DXpnI/xyK3Ypd5kAALRVKUB1//0RZ5zR8HNXWqkUptpll4gvfrEpqqMCNXqICqCtEaICAAAAoC0rzpkbxSnTI1IHqurqyHXrHLmaduUuCwCASpKiK/fdF3HOOREzS11Rl8pRR0VstFHEFVdEbLllKVjVs2dTVkob1ijj/AqFQrz33nux6qqrfmrf22+/HSNGjIhddtklOnXq1BgfBwAAAACtysSJE+Ott96KuXPnZp3b50nr6eGddG/twQcfjP/7v/8ra51AZUqBqVyP7uUuAwCASpbLRey4Y2lJXn01dbgojfz7LCk0dccdEY8+WlrOPz+id+/S9m7dIr71rQgT02iuENXw4cPjvPPOiy996UtxTkoE/o8UoPrZz34WF110UZx66qmx/fbbL+9HAgAAAECrkAJSRx11VHaP7LOkMFUu3TAGAAAAInr1irj00tL6xx9HjB4d8eSTKYQS8frrpe2rrVYKTD3yyMLnTpxYWpKLLiq9brVVxAknRKy+enP+FFRSiOqee+6Jk046Kerq6mKFFVZY7A2gtO/999+PY489Ngta7bHHHsvzsQAAAADQKlxxxRXxyCOPRHV1dayzzjoxderUrHP7pptumq2/8sorUV9fH2uvvXYcd9xx5S4XAAAAWp4OHUohqLSkv51TiGrkyGwUdbb+5ptLvkYKWs0LW624YsTJJ0d87WulDljwX/lYRm+88Ub86Ec/ym7yHHHEEXHVVVct8rh99903Ro4cGQcddFAWqPr5z3+e3SgCAAAAgLbugQceyDpMXXnllXHbbbfFMccck20/7bTT4s4778xG+G2wwQbx73//O1b3NCwAAAAs2VprRey/f8Q++0T06BFx3nkRu+xSGt+3ND78MOKkkyI22yzi618vjQycM6epq6Yth6iuvvrqmDt3bpx44olx9NFHR21t7WKP7dChQ5x88snx//7f/4tZs2bF//3f/y3rxwIAAABAq5HCURtttFHWeSpJ6+lBw7Fjx2bve/bsGRdeeGG2LXWtAgAAABqgY8eIIUMiTj89PcmUWkJHHHjg0p8/bVrED38Ysc02pWDVnXdGTJ7clBXTFkNUo0aNipVXXjkObMD/+FLHqi5dusSINKMSAAAAANq42bNnZ0GpedZaa63I5/Px4osvzt+25pprxiabbBJjxowpU5UAAADQBuTz6emliKOPjkh/Y19+ecS66y7duTNnRgwfHnHGGal9dMTHH0f86U8REyZEFItNXTmtPUT11ltvxXrrrRfVacbkUmrfvn12Q+j1NJMSAAAAANq4bt26xfTp0+e/T/fSPve5z8Urr7yy0HGrrLJKvP/++2WoEAAAANqojTeOuPbaUqDqoYcivvGNpTtvyy0jRo+O+P3vI7797Yiddoo4++yIRx4pha1os5Y+AbUInTp1WqZz0hhAAAAAAGjr1l9//azD1OTJk6N79+7Ztt69e8fTTz8dc+bMiZqammzbG2+8sUz32gAAAICl0K1bxCmnlJZCIeLuuyMefjhi6tSI555buNvUFltE/OUvC96/917ErbeWlnl69444+eSIL36xeX8OWmYnqvTEXOpG1VDpnK5duy7rxwIAAABAq7HbbrvFrFmzYt9994177rkn27b11lvHjBkz4tRTT806Uv3+97+PcePGZeEqAAAAoBnG/u26a8RvfhNxxRUR998fcfrpEUOGlMYB9uwZMWLEZ19j4sSIww6L2HTT0nL11REaClVuiCo9RTdhwoTsKbmGBKjSDaF11llnWT8WAAAAAFqNXXbZJXbcccfsHtp9992Xbdtrr72y8X133nlntv/CCy+MXC4XhxxySLnLBQAAgMqTOkfvskvEeedFXH55xMcfR2y7bcQaayz9NS68MGLQoFKgKgWypk9vyoppaSGq3XffPerr6+P8889f6nPOPffcKBaL8bWvfW1ZPxYAAAAAWo0Ujrrgggvid7/7Xey0007Zto4dO8ZVV10Vm2++eTbOb9VVV42f/OQnsW26QQsAAACUTy6X/nCPOP74iNtui7jllohjj40YMGDpr/HXv5a6Wv2//xdxzTUR//73wuMCabFyxZRqWgaFQiH222+/eOaZZ2KHHXaIk08+OXr06LHIY99///04++yzs5blq6++etx1113RqVOn5a0doFnMnj07hg4dmq0PGzYs2rdvX+6SAAAAAAAAAGhOkyZFXHBBxN/+1vBz11uvFKh64YWINL2tXbumqJDlVL2sJ+bz+SxMsPfee2etyP/2t7/FZpttFv3798/akc+dOzcmT54cY8eOjSeffDILIXTu3Dn+8Ic/CFABAAAAAAAAANB69OwZ8ctfltbnzo247rqIiy5a+nPTiL+DD47o0KE0+m/LLSMGDy6NE6R1d6Ka55133okTTjghxowZU7pgam32CfMuv8UWW8Tpp58eazRkZiRAC6ATFQAAAEvr9ttvX67z99hjj0arBQAAAGgmTz0Vce65ERMnRtTURMyZs/D+004rhadOOWXh7Sljk3I16Zy0b6edUlejZi2dRgxRzZPG+qUxfRMnTsyCVdXV1VlHqo022ii222676Nu3b2N8DECzE6ICAABgaaV7YP/7kGFDvJDa+gMAAACt16xZEU88ETFiRGl5//2I+++P+M1vIu69d+musddeEUccEdG1a1NXS2OM8/tfG2+8cbYAAAAAQKWrqamJTTfdNDqkp0wBAACAytGxY8RWW5WW1Nfo1VcjVlopYsqUpb/GLbeUlmTddSN+/OMUzGmykmnkEBUAAAAAVLqvfe1rMXLkyKyr8dNPPx3bbrtt7LrrrjF48ODl6lAFAAAAtELpXkDv3qX1iy+O+OCDiH/+s9Sh6rHHSl2rluTFFyMOPbQUptpii4gtt4zo18/Yv5Y8zg+grTLODwAAgIaYOnVq3HffffHXv/41xowZk21baaWVYpdddskCVf3SjU4AAACgss2ZE3HFFRF//GPDz11xxYivfCXi+OMjamsFqhqJEBXAEghRAQAAsKz+85//xF133ZUFqiZMmJB1o/rCF74Qu+22WxaqWnPNNctdIgAAAFBuKbrzt79FnHNOxIcfLt05XbpEPPRQxPe+F9Ghw4IuVe41LDMhKoAlEKICAACgMbzyyitx5513xt133x1vvvlmFqjaZJNNskDVjjvuGCump0ib2XXXXRenn376Yvc/+uij0b1792z9ww8/jEsvvTT+9re/xXvvvRc9e/aMvfbaKw455JCorq5uxqoBAACgjXvzzYhf/zrikUcWf8xOO0UcfXTEDjssvP3zn4/o2jVi4MCIgw8uBaxYKkJUAEsgRAUAAEBje+qpp7LuVPfff39Mnjw5qqqqYosttojf//73zVrHaaedFjfccEMcfPDBUZva//+P733ve9GxY8eYNm1a7L///vHyyy/HdtttF2uttVb885//jHHjxsX2228fF110UbPWDQAAABWjri7i2WcjRoyIGDkyYuLE0vazz46YNSvizDOXfI3NN4848cSIL3yhycttzYSoAJZAiAoAAICmUCgUYsSIEXH++ednXapSZ6oXXnihWWvYZ599sjGDY8eOjXw+v9jjzjnnnLjyyivjZz/7WRamSurr6+PYY4+NBx54IC6++OIsXAUA0BSKc+ZGccr00pfI1dWR69Y5cjXtyl0WAJTHW2+VwlQ77hjxi19EDB/esPM7dYo45ZSI7bePyOWaqspWSYgKYAmEqAAAAGhMjz32WNxzzz1Z+Gjq1KmRbs917do16+h0xhlnNGuI60tf+lL06dMnbr755sUe9/HHH8egQYOyGocPH75Q2OqNN96IbbbZJr7yla/E5Zdf3kyVAwCVojh5atRPeDUK4yamX14W7MjnI79B76har1fkunctZ4kAUF4zZ0aMHr2gS9UHHzTs/J13LoWpNt00oqYmKl11uQsAAAAAgLYudXq6++67s/F977//fhacSmPydtppp9h1112zUX7V1c17q+61116LWbNmRd++fT/zuGeeeSZmzpwZ22677ae6Va255pqxxhprxBNPPJF1pkpjCQEAllf6Xan++ZejMOrp1BMiorZj5D7xu1Kxri4Kz76ULfnB/aOqX5+sqycAVJzUVWrrrUtLChyPH5/aSUcsbafru+8uLR06RAwcGLHllhFDhkR06RKVSIgKAAAAAJrAuHHjsuDUvffeG2+//Xb2ZWAKSm299daxyy67xJAhQ6JDuklZJuPTjdX0tWQuF8cdd1yMGTMm64y17rrrxsEHH5zVOC9slay11lqLvE4KUr355pvZ8vnPf74ZfwIAoK1KAar6kU9FrnNt5Np9+uvMLFDVrUsU59Zlx6WgVfWGfcpSKwC0GOnBpw02iLj66tL7FKQ677yI555b8rkffxzxyCOlpV8/ISoAAAAAYPm88sorWXAqjev797//nQWnUvemzTbbLOs4td1222Vj8VqCeSGqG2+8MTbffPPYbbfd4j//+U82su+EE06IF198MY4//viYMmVKdly3bt0WeZ3OnTtnr9OmTWvG6gGAtjzCL3WgWlyA6pOy/Z1rozBqbBRX7xG5FSvzC18AWKT114+48srS+vTpEX/4Q8R11332OT16RKyzTlQqISoAAAAAaCQ777xz1tkphac23HDDrJtT2rbKKqtES5NqXH311eOoo46KPffcc/72N954I/bbb7+47LLLYquttoo5c+Zk22tqahZ5nXnbZ8+e3UyVAwBtWf2EV7POUksKUM2Tjium88ZPjOpB/Zu8PgBoldIDUCecUFqKxYgHH4x4662If/4z4plnSqMAky22SC2ro1IJUQEAAABAI0vdpurr6+OOO+7IlqWRwle33nprNJfUbSotixrPd/TRR8epp54ad9555/wxfnPnzl3kdeaFrFZYYYUmrhgAaOuKc+ZGYdzEiNqODTuxtlN2XnFAv8jVtGuq8gCgbUghqe22K60fckjE1KkRo0ZFjBgRMWRIVDIhKgAAAABo5A5PU6dOzZaGSCGqlmLjjTfOXl9//fXYaKONPnNc3/Q0EiB9d1lb24wVAgBtUXHK9KwTRq66YV9hpuOLhZnZ+bke3ZusPgBok7p2jdhxx9JS4YSoAAAAAKCRXHXVVdEaFAqFGDduXMycOTMGDhz4qf1pe9KhQ4fo3bv3/EDVoqTtnTp1ip49ezZx1QBAm1dXtxwn55bzfACg0glRAQAAAEAjWVQgqaU64IADYtasWfHPf/4zVlpppYX2jRkzJntNXag23HDDbFTf6NGjs/BVPp+ff9wbb7wRb731VgwePDiqqqqa/WcAANqYBnagWlhxOc8HACrdgjseAAAAAEBFSEGoHXbYIRs9+Mtf/jILR80zfvz4uOyyy7LuUt/85jejffv2scsuu8Sbb765UKet+vr6OP/887P1b3/722X5OQCAtiXXrXP6RSWKDewolR2fryqdDwCwjMSxAQAAAKACDR06NJ588sm47bbbYsKECbH55pvHO++8Ew899FAWqrrgggti1VVXzY499thjY+TIkXHOOefEY489Fn369IlRo0bF888/HzvuuGMMGTKk3D8OANAG5GraRX6D3lF49uWIhgSiZsyM/EbrZOcDACwrnagAAAAAoAKlEX433XRTHHLIITFt2rS45pprsmDUV7/61bjhhhtiu+22m39s9+7d4/rrr886Uz377LNZR6qPP/44TjzxxKwbVS6XK+vPAgC0HVXr9cpG8xXnLl03qnnHVfXt3cSVAQBtXa6YenYDsFizZ8/Ons5Nhg0blo0xAAAAAACgYYpz5kZxyvSINHqtujobvaZzEItS99xLUT/yqch1ro1cu+rPDFAVp8+Iqi0GRPWGfZq1RgCg7THODwAAAAAAgCZTnDw16ie8GoVxEyMKhQU78vlsdFvqPJTr3rWcJdLCVPVLgahcFEaNjawbRG2nyFUv+FqzmIJ4M2aWjt1iQFT1W7t8xQIAbYYQFQAAAAAAAI0uDUOpf/7lKIx6OgvERG3HTwVhCs++lC35wf2z4IwRsSTpfweps1Rx9R5RP35iFsArFlJoKv3voxiRr4r8RutkI/xyK3Ypd7kAQBshRAUAAAAAAECjSwGqzxrJlgWqunXJRrKl41JAxkg2PikFpKoH9Y/igH5GQQIATU6ICgAAAAAAgEYf4Zc6UC0uQPVJ2f7OtaXRbav30FmIT0mBqVyP7uUuAwBo4/LlLgAAAAAAAIC2pX7Cq1lnqSUFqOaZd1wa3QYAAOUgRAUAAAAAAECjKc6ZG4VxEyNqOzbsxNpO2XnpfAAAaG5CVAAAAAAAADSa4pTpEYVC5KqXrgvVPNnxhfrS+QAA0MyEqAAAAAAAAGg8dXXLcXJuOc8HAIBlI0QFAAAAAABA42lgB6qFFZfzfAAAWDZCVAAAAAAAADSaXLfOEfl8FBvYUSo7Pl9VOh8AAJqZEBUAAAAAAACNJlfTLvIb9I6YMathJ86YmZ2XzgcAgOYmRAUAAAAAAECjqlqvVzaarzh36bpRzTuuqm/vJq4MAAAWTYgKAAAAAACARpXr3jXyg/tHcfqMJQap0v50XH7wFyO3YpdmqxEAAD6peqF3AAAAAAAA0Aiq+vVJcaoojBobxbShtlPkqhd8NVWsq8tG+GXHbjEgqvqtXb5iAQCoeEJUAAAAAAAANLpcLhfVG/aJ4uo9on78xCiMmxjFQgpN5bJRf5GvivxG62Qj/HSgAgCg3ISoAAAAAAAAaDIpIFU9qH8UB/SL4pTpEakDVXV15Lp1jlxNu3KXBwAAGSEqAAAAAAAAmlwKTOV6dC93GQAAsEj5RW8GAAAAAAAAAACoDEJUAAAAAAAAAABARROiAgAAAAAAAAAAKpoQFQAAAAAAAAAAUNGEqAAAAAAAAAAAgIomRAUAAAAAAAAAAFQ0ISoAAAAAAAAAAKCiCVEBAAAAAAAAAAAVTYgKAAAAAAAAAACoaEJUAAAAAAAAAABARROiAgAAAAAAAAAAKlp1tFJTpkyJyy67LIYPHx5vv/12rLTSSjFkyJA44ogjonv37uUuDwAAAAAAAAAAaCVaZSeq6dOnx/777x+XX355rLbaavGd73wn1ltvvbj66qtj9913z0JVAAAAAAAAAAAAbbYT1SWXXBKvvPJKHHXUUXHkkUfO337NNdfEmWeeGRdddFGcc845Za0RAAAAAAAAAABoHVplJ6o333wzVl555fjud7+70PbUhSoZO3ZsmSoDAAAAAAAAAABam1bZierSSy9d5PbUnSpZZZVVmrkiAAAAAAAAAACgtWqVIar/NXXq1Hjsscfi3HPPjerq6jjiiCPKXVKLUSwWY86cOeUuA1q12bNnL3IdaLiamprI5XLlLgMAAAAAAABgIbliStm0Ytddd12cfvrp2XpVVVX88pe/jJ133rncZbUYKfAxdOjQcpcBAJlhw4ZF+/bty10GAAAAAAAAwELy0cp17949DjvssNhjjz2yL2VTYOhPf/pTucsCAAAAAAAAAABaiVbfieqT3nzzzdh3333j/fffj5tvvjk22mijqHSf7ER1zEprR7tcq8/NAdDKzC0W4sIPXsnWdaICAAAAAAAAWqLqaEPWWGON+N73vhfnnntuPPzww0JU/yMFqGqEqAAAAAAAAAAAoHWHqObMmRNPPPFE1NfXx1ZbbfWp/WuuuWb2Onny5DJUBwAAAAAAAAAAtDatMkR12GGHRadOnWLUqFFRU1Oz0P7nn38+e+3Vq1eZKgQAAAAAAAAAAFqTVjfbrba2NoYMGRLTp0+PSy65ZKF9zz33XFx55ZVZwGqXXXYpW40AAAAAAAAAAEDr0eo6USU/+clPssDUZZddFmPGjIlNNtkkJk2aFA8//HDkcrm44IILYpVVVil3mQAAAAAAAAAAQCvQKkNUn/vc5+KWW26J3/72t1lw6l//+ld06dIlttlmmzj88MOjb9++5S4RAAAAAAAAAABoJVpliCrp3r17/PSnP80WAAAAAAAAAACAigtRAQAAAAAAAOVXnDM3ilOmR9TVRVRXR65b58jVtCt3WQAADSJEBQAAAAAAADRYcfLUqJ/wahTGTYwoFBbsyOcjv0HvqFqvV+S6dy1niQAAS02ICgAAAAAAAFhqxWIx6p9/OQqjno6IXERtx8hVL/jasVhXF4VnX8qW/OD+UdWvT+RyubLWDACwJEJUAAAAAAAAwFJLAar6kU9FrnNt5Np9+uvGLFDVrUsU59Zlx6WgVfWGfcpSKwDA0sov9ZEAAAAAAABAVPoIv9SBanEBqk9K+9NxhVFjo/jhtGarEQBgWQhRAQAAAAAAQBtRnDM3Cu9OjsKkd7PX9L4x1U94NesstaQA1TzzjqsfP7FR6wAAaGzG+QEAAAAAAEAb6BCVAk6FcRMjCoUFO/L5yG/QO6rW6xW57l2XP6CVrl/bsWEn1nbKzisO6Be5mnbLVQMAQFMRogIAAAAAAIBWqlgsRv3zL2cj9lKHqBRwylUv+AqwWFcXhWdfypb84P5R1a9P5HK5ZfusKdOzgNYnr7800vHFwszs/FyP7sv02QAATU2ICgAAAAAAAFqpFKCqH/lU5DrXLnLEXhZ46tYlinPrsuNS0Kp6wz7L9mF1dctRaW45zwcAaFr5Jr4+AAAAAAAA0EQj/FIHqsUFqD4p7U/HFUaNjeKH05bt84oRxdlzovjRrCjOmh3F+kJDzo5oYAcrAIDm5DcVAAAAAAAAaIXqJ7yadXhaUoBqnnRcMZ03fmJUD+rfoLBW+qzC8y9H8d3JUcxPicjnInK5yHXrHLluXSLXvmbx56cOVPmq7FgAgJZKJyoAAAAAAABoZYpz5kZh3MSI2o4NO7G2U3ZeOn+Jn1EsRt1zL8Xcmx+IwrMvR3TqGLke3bMAVa6mXURVPoqTp0Xh1TejMHlqdvwizZgZ+Q16l84BAGihhKgAAAAAAACglSlOmR5RKESugSPysuML9aXzl6D++ZejfuRTESt0KnWcqq6OXNdSN6lioRi5fD5y7dtFVFdF8T/vR3HKp8cEFufWZa9VfXs3qE4AgOYmRAUAAAAAAACtTRqRt8xySzw/jfArjHo6cp1rFxoXmMb25VZdKWLu3CxIlW3L5yNqqqP4zgdRnD1nwTXm1kVx+ozID/5i5Fbsshz1AgA0vYZF0wEAAAAAAIDya2AHqoUVl3h+/YRXs7DVJwNU88wLRGWhqf/WkoJUxWLqcDUtYqVu2Qi/pGqLAVHVb+3lqBUAoHkIUQEAAAAAAEArk8brRQou1dU1aKRfOj7yVaXzF3fMnLlRGDcxorbjoj87/WfFrlFcoWM2FrD44bQo1hUjisUovjc5okP7qNponWyEnw5UAEBrIUQFAAAAAAAArUyupl3kN+gdhWdfjviMQNSnzJgZ+Y3Wyc5fnBSMikJhieGsXE1N5HqsFMWVV4yYMzc7pzhjZlTvtFVUrd6jIT8OAEDZ5ctdAAAAAAAAANBwVev1ykbzFefWLdXx845LHaI+U+pW1QBplF+uQ/vIdeoYufY1kcs16HQAgBZBiAoAAAAAAABaoVz3rpEf3D+K02csMUiV9qfj8oO/uOQRew0YD7iIT1rO8wEAysNvMAAAAAAAANBKVfXrk+JUURg1NsWXImo7LTSGr5i6Ss2YWTp2iwFR1W/tJV4zl8YD5vPZuUsa6fdJ2Wflq0rnAwC0MkJUAAAAAAAA0Erlcrmo3rBPFFfvEfXjJ0Zh3MQoFlJoKs3UK2ahpvxG62Qj/JbYgWreNWvaRX6D3lF49uWIhgSiZszMPiudDwDQ2ghRAQAAAAAAQCuXAlLVg/pHcUC/KE6ZHpG6QlVXZ12hliXUVLVeryg8+1I2BjDXbslfKc4bJ5jCWgAArVG+3AUAAAAAAAAAjSPrItWje+R79shel7UrVK5718gP7h/F6TPmB6QWJ+1Px+UHf3Gpu10BALQ0OlEBAAAAAAAAn1LVr082FrAwamwaDBhR2yly1Qu+Xiymblcz0ujAiKotBkRVv7XLVywAwHISogIAAAAAAAA+JZfLRfWGfaK4eo+oHz8xCuMmRrGQQlO5FKGKyFdFfqN1shF+OlABAK2dEBUAAAAAAACwWCkgVT2ofxQH9IvilOkRqQNVdXXkunVe5nGBAAAtjRAVAAAAAAAAsEQpMJXr0b3cZQAANIl801wWAAAAAGhtHnvssejbt2/8+Mc//tS+Dz/8MH7xi1/EkCFDYuONN44ddtgh/vjHP0Zd6kQBAAAA0MrpRAUAAAAAxIwZM+KUU06JYrH4qX3Tpk2LAw44IF5++eXYbrvtYq211op//vOfMWzYsHj22WfjoosuKkvNAAAAAI1FJyoAAAAAIM4666x46623Frnv0ksvjZdeeilOO+20LDA1dOjQuPnmm7NA1f333x8PPPBAs9cLAAAA0JiEqAAAAACgwg0fPjxuvfXW+PrXv/6pfR9//HHceOONsdpqq8W3vvWt+durqqripJNOytavv/76Zq0XAAAAoLEJUQEAAABABZs8eXKceuqpMXDgwPjOd77zqf3PPPNMzJw5M9ufzy98O3HNNdeMNdZYI5544omor69vxqoBAAAAGpcQFQAAAABUsNNPPz0LSZ199tmRy+U+tf+1117LXtdaa61Fnp+CVHPmzIk333yzyWsFAAAAaCpCVAAAAABQoe688864//77Y+jQoVkYalGmTJmSvXbr1m2R+zt37py9Tps2rQkrBQAAAGhaQlQAAAAAUIHeeeedOPPMM2PQoEGx//77L/a41GUqqampWeT+edtnz57dRJUCAAAAND0hKgAAAACoQKecckrU19fHWWedtcgxfvN06NAhe507d+5nhqxWWGGFJqoUAAAAoOkJUQEAAABAhbnuuuti5MiR8aMf/ShWX331zzy2a9eunzmub/r06dlrbW1tE1QKAAAA0Dyqm+lzAAAAAIAW4p577sleTzvttGz5X7fddlu27LnnnrH33ntn215//fVFXitt79SpU/Ts2bOJqwYAAABoOkJUAAAAAFBhUjhq4MCBn9r+xhtvxB133BF9+/aNbbbZJtZff/3YcMMNs1F9o0ePjkKhEPl8fqHj33rrrRg8eHBUVVU1808BAAAA0HiEqAAAAACgwnzjG99Y5PZRo0ZlIaoUnjrqqKPmb99ll13ihhtuiKuuuioOPvjgbFt9fX2cf/752fq3v/3tZqocAAAAoGkIUQEAAAAAn+nYY4+NkSNHxjnnnBOPPfZY9OnTJwtcPf/887HjjjvGkCFDyl0iAAAAwHJZ0HsbAAAAAGARunfvHtdff31885vfjGeffTbrSPXxxx/HiSeemHWjyuVy5S4RAAAAYLnoRAUAAAAAZAYPHhwTJkxY5L4ePXrEWWed1ew1AQAAADQHnagAAAAAAAAAAICKJkQFAAAAAAAAAABUNOP8AAAAAAAAAGj1inPmRnHK9Ii6uojq6sh16xy5mnblLguAVkKICgAAAAAAAIBWqzh5atRPeDUK4yZGFAoLduTzkd+gd1St1yty3buWs0QAWgEhKgAAAAAAAABanWKxGPXPvxyFUU9HRC6itmPkqhd8BV6sq4vCsy9lS35w/6jq1ydyuVxZawag5RKiAgAAAAAAAKDVSQGq+pFPRa5zbeTaffqr7yxQ1a1LFOfWZceloFX1hn3KUisALV++3AUAAAAAAAAAQENH+KUOVIsLUH1S2p+OK4waG8UPpzVbjQC0LkJUAAAAAAAAALQq9RNezTpLLSlANc+84+rHT2ziygBorYSoAAAAAAAAAGg1inPmRmHcxIjajg07sbZTdl46HwD+lxAVAAAAAAAAAK1Gccr0iEIhctVL14Vqnuz4Qn3pfAD4H0JUAAAAAAAAALQedXXLcXJuOc8HoK0SogIAAAAAAACg9WhgB6qFFZfzfADaKiEqAAAAAAAAAFqNXLfOEfl8FBvYUSo7Pl9VOh8A/ocQFQAAAAAAAACtRq6mXeQ36B0xY1bDTpwxMzsvnQ8A/0uICgAAAAAAAIBWpWq9XtlovuLcpetGNe+4qr69m7gyAForISoAAAAAAAAAWpVc966RH9w/itNnLDFIlfan4/KDvxi5Fbs0W40AtC7V5S4AAAAAAAAAABqqql+fFKeKwqixUUwbajtFrnrBV+DFurpshF927BYDoqrf2uUrFoAWT4gKAAAAAAAAgFYnl8tF9YZ9orh6j6gfPzEK4yZGsZBCU7ls1F/kqyK/0TrZCD8dqABYEiEqAAAAAAAAAFqtFJCqHtQ/igP6RXHK9IjUgaq6OnLdOkeupl25ywOglRCiAgAAAAAAAKDVS4GpXI/u5S4DgFYqX+4CAAAAAAAAAAAAykmICgAAAAAAAAAAqGhCVAAAAAAAAAAAQEUTogIAAAAAAAAAACqaEBUAAAAAAAAAAFDRhKgAAAAAAAAAAICKJkQFAAAAAAAAAABUNCEqAAAAAAAAAACgoglRAQAAAAAAAAAAFU2ICgAAAAAAAAAAqGhCVAAAAAAAAAAAQEUTogIAAAAAAAAAACqaEBUAAAAAAAAAAFDRhKgAAAAAAAAAAICKJkQFAAAAAAAAAABUNCEqAAAAAAAAAACgoglRAQAAAAAAAAAAFU2ICgAAAAAAAAAAqGjV0Up99NFHcdlll8UDDzwQb731VrRr1y422GCDOOigg2Lbbbctd3kAAAAAAAAAAEAr0So7Uc2YMSP222+/LETVqVOn2H///WOHHXaI8ePHx5FHHpltBwAAAAAAAAAAaLOdqP74xz/GhAkT4lvf+lacfvrpkcvlsu3HHHNM7LXXXnHhhRdmoarPf/7z5S4VAAAAAAAAAABo4VplJ6p77703C06dcMIJ8wNUyaqrrpp1qKqvr49//OMfZa0RAAAAAAAAAABoHVplJ6qDDjoopk+fHl26dPnUvpqamuz1o48+KkNlAAAAAAAAAABAa9MqQ1Tf/va3F7m9WCzGAw88kK2vt956zVxVyzenWCh3CQBUIP/+AQAAAAAAAFq6VhmiWpxrr702nnnmmVhzzTVjyy23LHc5Lc5FH7xS7hIAAAAAAAAAAKDFyUcbcc8998RZZ50V1dXVce6550a7du3KXRIAAAAAAAAAANAKVLeVDlRnnnlm5HK5OO+882LTTTctd0kt0tErrR01uTaTmwOgFY3z0w0RAAAAAAAAaMladYiqUCjE+eefH1dccUXU1NTEr371q9huu+3KXVaLlQJUQlQAAAAAAAAAANBGQlRz5syJE044IR544IHo1q1bXHrppTpQAQAAAAAAAAAAlRGiqq+vj2OOOSaGDx8ea6yxRvzxj3+M3r17l7ssAAAAAAAAAACgFWqVIao//OEPWYCqZ8+ece2118aqq65a7pIAAAAAAAAAAIBWqtWFqKZMmZKFqJL1118/brzxxkUel0b7DRo0qJmrAwAAAAAAAAAAWptWF6IaM2ZMzJw5M1t/+OGHs2VRDj/8cCEqAAAAAAAAAACg7YWottlmm5gwYUK5ywAAAAAAAAAAANqIfLkLAAAAAAAAAAAAKCchKgAAAAAAAAAAoKIJUQEAAAAAAAAAABVNiAoAAAAAAAAAAKhoQlQAAAAAAAAAAEBFE6ICAAAAAAAAAAAqmhAVAAAAAAAAAABQ0YSoAAAAAAAAAACAiiZEBQAAAAAAAAAAVDQhKgAAAAAAAAAAoKIJUQEAAAAAAAAAABVNiAoAAAAAAAAAAKhoQlQAAAAAAAAAAEBFE6ICAAAAAAAAAAAqmhAVAAAAAAAAAABQ0YSoAAAAAAAAAACAiiZEBQAAAAAAAAAAVDQhKgAAAAAAAAAAoKJVl7sAAAAAAKA8pkyZEpdddlkMHz483n777VhppZViyJAhccQRR0T37t0XOvbDDz+MSy+9NP72t7/Fe++9Fz179oy99torDjnkkKiudpsRAAAAaN10ogIAAACACjR9+vTYf//94/LLL4/VVlstvvOd78R6660XV199dey+++5ZqGqeadOmxQEHHBDXXHNN9OvXLw488MDo2LFjDBs2LI4//viy/hwAAAAAjcEjYgAAAABQgS655JJ45ZVX4qijjoojjzxy/vYUlDrzzDPjoosuinPOOSfbljpQvfTSS/Gzn/0sC14lxx13XBx77LFx//33xwMPPBDbbbdd2X4WAAAAgOWlExUAAAAAVKA333wzVl555fjud7+70PbUhSoZO3Zs9vrxxx/HjTfemHWr+ta3vjX/uKqqqjjppJOy9euvv75ZawcAAABobDpRAQAAAEAFSt2lFiV1p0pWWWWV7PWZZ56JmTNnxrbbbhv5/MLPZK655pqxxhprxBNPPBH19fVZsAoAAACgNdKJCgAAAACIqVOnZqP50pi+6urqOOKII7Ltr732Wva61lprLfK8FKSaM2dO1tkKAAAAoLXSiQoAAAAAKtx1110Xp59+eraeukn98pe/jEGDBmXvp0yZkr1269Ztked27tw5e502bVqz1QsAAADQ2HSiAgAAAIAK17179zjssMNijz32iPbt28fQoUPjT3/6U7YvdZlKampqFnnuvO2zZ89uxooBAAAAGpdOVAAAAABQ4bbffvtsSY466qjYd999s25Um2++eXTo0CHbPnfu3EWeOy9ktcIKKzRjxQAAAACNSycqAAAAAGC+NdZYI773ve9l6w8//HB07dr1M8f1TZ8+PXutra1txioBAAAAGpcQFQAAAABUmNQ96p///Gc88sgji9y/5pprZq+TJ0+O3r17Z+uvv/76Io9N2zt16hQ9e/ZswooBAAAAmpZxfgAAAABQgSGqww47LAs/jRo1Kmpqahba//zzz2evvXr1ig033DAb1Td69OgoFAqRzy94LvONN96It956KwYPHhxVVVXN/nMAAAAANBadqAAAAACgwqTRe0OGDMlG8V1yySUL7XvuuefiyiuvzAJWu+yyS7Rv3z57ffPNN+Oqq66af1x9fX2cf/752fq3v/3tZv8ZAAAAABqTTlQAAAAAUIF+8pOfZIGpyy67LMaMGRObbLJJTJo0KR5++OHI5XJxwQUXxCqrrJIde+yxx8bIkSPjnHPOicceeyz69OmTdbBKHat23HHHLJAFAAAA0JoJUQEAAABABfrc5z4Xt9xyS/z2t7/NglP/+te/okuXLrHNNtvE4YcfHn379p1/bPfu3eP666+PCy+8MP7+979nAao11lgjTjzxxDjwwAOz0BUAAABAa5YrFovFchdB05k9e3YMHTo0Wx+68jpRkzPBEYDmNadYiGHvv5StDxs2LBsFAgAAAAAAANCSSNQAAAAAAAAAAAAVTYgKAAAAAAAAAACoaEJUALib8EwAAQAASURBVAAAAAAAAABARROiAgAAAAAAAAAAKpoQFQAAAAAAAAAAUNGEqAAAAAAAAAAAgIomRAUAAAAAAAAAAFQ0ISoAAAAAAAAAAKCiCVEBAAAAAAAAAAAVTYgKAAAAAAAAAACoaEJUAAAAAAAAAABARROiAgAAAAAAAAAAKpoQFQAAAAAAAAAAUNGEqAAAAAAAAAAAgIomRAUAAAAAAAAAAFQ0ISoAAAAAAAAAAKCiCVEBAAAAAAAAAAAVTYgKAAAAAAAAAACoaEJUAAAAAAAAAABARROiAgAAAAAAAAAAKpoQFQAAAAAAAAAAUNGEqAAAAAAAAAAAgIomRAUAAAAAAAAAAFQ0ISoAAAAAAAAAAKCiCVEBAAAAAAAAAAAVTYgKAAAAAAAAAACoaEJUAAAAAAAAAABARROiAgAAAAAAAAAAKpoQFQAAAAAAAAAAUNGEqAAAAAAAAAAAgIomRAUAAAAAAAAAAFQ0ISoAAAAAAAAAAKCiCVEBAAAAAAAAAAAVTYgKAAAAAAAAAACoaEJUAAAAAAAAAABARROiAgAAAAAAAAAAKpoQFQAAAAAAAAAAUNGEqAAAAAAAAAAAgIomRAUAAAAAAAAAAFQ0ISoAAAAAAAAAAKCiCVEBAAAAAAAAAAAVTYgKAAAAAAAAAACoaEJUAAAAAAAAAABARROiAgAAAAAAAAAAKpoQFQAAAAAAAAAAUNGEqAAAAAAAAAAAgIpWXe4CAAAAAAAAAKAlKM6ZG8Up0yPq6iKqqyPXrXPkatqVuywAmkGbCVEde+yx8dRTT8UjjzxS7lIAAAAAAAAAaEWKk6dG/YRXozBuYkShsGBHPh/5DXpH1Xq9Ite9azlLBKCJtYkQ1SWXXBL33ntvrLrqquUuBQAAAAAAAIBWolgsRv3zL0dh1NMRkYuo7Ri56gVfoxfr6qLw7EvZkh/cP6r69YlcLlfWmgFoGq06RDV79uw488wz46abbip3KQAAAAAAAAC0MilAVT/yqch1ro1cu09/fZ4Fqrp1ieLcuuy4FLSq3rBPWWoFoGnlo5UaPnx47LjjjlmA6qtf/Wq5ywEAAAAAAACglY3wSx2oFheg+qS0Px1XGDU2ih9Oa7YaAWg+rTZEdfPNN8dHH30UP/vZz+Kyyy4rdzkAAAAAAAAAtCL1E17NOkstKUA1z7zj6sdPbOLKACiHVjvO76CDDorzzz8/amtry11KqzG3WCh3CXzGrOW5USx3GdDqtUt/6JhD3uL49w8AAAAAAC1Ncc7cKIybGFHbsWEn1nbKzisO6Be5mnZNVR4AZdBqQ1Sbb755uUtodS784JVylwAAAAAAAABQdsUp0yMKhchVN+wr83R8sTAzOz/Xo3uT1QdA82u14/wAAAAAAAAAYJnU1S3HybnlPB+AlqjVdqJi6dTU1MSwYcPKXQZLMc5vzpw55S4D2sQ/84zza/n/HQEAAAAAQNk1sAPVworLeT4ALZF/srdxKUzQvn37cpfBUujQoUO5SwAAAAAAAICKkOvWOSKfj2JdXYNG+qXjI19VOh+ANsU4PwAAAAAAAAAqSq6mXeQ36B0xY1bDTpwxMzsvnQ9A2yJEBQAAAAAAAEDFqVqvVzaarzi3bqmOn3dcVd/eTVwZAOUgRAUAAAAAAABAxcl17xr5wf2jOH3GEoNUaX86Lj/4i5FbsUuz1QhA81n64a4AAAAAAAAA0IZU9euT4lRRGDU2imlDbafI/X/27gO8ybJt4/jVwXAzXjci4kARVFAZTgRxb3hVRBQcoCgOQHCLW3GgIjhQQUVBRBBBcQACArJREJC9NwKCjK7kO87b98mXhqQtpe2TNv/fceRom6TJ/Ywoz9Xzvu7U//8zejAz0y3h5557zumWcvKx/g0WAFCoCFEBAAAAAAAAAAAAABJSUlKSpdY4zoJHHmJZfy62wJzFFgwoNJXklvqz5BRLrnm8W8KPDlQAULIlBYNBF6gFAAAAAAAAAAAAACCRBdMzLLhlm5k6UKWmWlK5AyypdCm/hwUAKAKEqAAAAAAAAAAAAAAAAAAktGS/BwAAAAAAAAAAAAAAAAAAfiJEBQAAAAAAAAAAAAAAACChEaICAAAAAAAAAAAAAAAAkNAIUQEAAAAAAAAAAAAAAABIaISoAAAAAAAAAAAAAAAAACQ0QlQAAAAAAAAAAAAAAAAAEhohKgAAAAAAAAAAAAAAAAAJjRAVAAAAAAAAAAAAAAAAgISW6vcAAAAAAAAAAPhj+/bt9t5779mPP/5oq1atslKlSln16tXt1ltvtcaNG2d77ubNm61Hjx72888/24YNG+yII46wJk2aWKtWrSw1lTIjAAAAAAAo3pKCwWDQ70EAAAAAAAAAKFr//POP3XTTTTZv3jw7+eST7cwzz7Rt27a5QJW+tm/f3tq0aeOeu3XrVvfchQsX2kUXXWSVK1e28ePH25w5c+ziiy+2t956y+/NAQAAAAAA2CuEqAAAAAAAAIAE1K1bN3v33XftxhtvtC5dulhSUpK7f926da7D1KZNm2z48OF29NFH24svvmh9+vSxp556yoWpJCsryx544AEXuurevbsLVwEAAAAAABRXyX4PAAAAAAAAAEDRU0BKwakOHTqEAlRy6KGHWrNmzVxIasyYMbZr1y4bMGCAHX744S5w5UlJSbFOnTq57/v37+/LNgAAAAAAABSU1AJ7JQAAAAAAAADFxq233uqW7TvwwAN3e6x06dLu6/bt223mzJm2Y8cOa9y4sSUnZ5+TedRRR1mlSpVsypQpLnSlYBUAAAAAAEBxRIgKAAAAAAAASEDNmzePen8wGHRL9Em1atVs6dKl7vvKlStHfb6CVCtXrnQ3Lf0HAAAAAABQHLGcHwAAAAAAAICQzz//3HWfUjjq3HPPtS1btrj7y5UrF/X5BxxwgPu6devWIh0nAAAAAABAQSJEBQAAAAAAAMD57rvv7Pnnn7fU1FR76aWXrFSpUpaenp5tib9I3v1paWlFOlYAAAAAAICCRIgKAAAAAAAAgOtA1aFDB/f9yy+/bGeccYb7vmzZsu5rRkZG1N/zQlb77bdfkY0VAAAAAACgoKUW+CsCAAAAAAAAKDYCgYB17drVevfu7bpKvfbaa3bRRReFHj/ooINyXK5v27Zt7uv+++9fRCMGAAAAAAAoeISoAAAAAAAAgASlLlLqPvXjjz9auXLlrEePHqEOVJ6qVau6r8uXL4/6Grp/3333tSOOOKJIxgwAAAAAAFAYWM4PAAAAAAAASEBZWVl2//33uwBVpUqVrF+/frsFqKRGjRpuqb7Jkye7rlXhVqxYYatWrbLTTjvNUlJSinD0AAAAAAAABYsQFQAAAAAAAJCA3n//fRs1apTrIPX555+HOk5FKlOmjF1xxRW2cuVK++STT7KFsLQMoDRv3rzIxg0AAAAAAFAYkoLBYLBQXhkAAAAAAABAXNqyZYtdcMEFtmPHDmvUqJGddNJJUZ+nzlT169e3TZs2WdOmTV3XKf3ecccdZxMmTLDZs2fbpZdeat26dbOkpKQi3w4AAAAAAICCQogKAAAAAAAASDAjRoywe+65J9fn3XXXXfbggw+679evX29vvvmmjR492rZt2+aWALzuuuvslltusdKlSxfBqAEAAAAAAAoPISoAAAAAAAAAAAAAAAAACS3Z7wEAAAAAAAAAAAAAAAAAgJ8IUQEAAAAAAAAAAAAAAABIaISoAAAAAAAAAAAAAAAAACQ0QlQAAAAAAAAAAAAAAAAAEhohKgAAAAAAAAAAAAAAAAAJjRAVAAAAAAAAAAAAAAAAgIRGiAoAAAAAAAAAAAAAAABAQiNEBQAAAAAAAAAAAAAAACChEaICAAAAAAAAAAAAAAAAkNAIUQEAAAAAAAAAAAAAAABIaISoAAAAAAAAAAAAAAAAACQ0QlQAAAAAAAAAAAAAAAAAEhohKgAAAAAAAAAAAAAAAAAJjRAVAAAAAAAAAAAAAAAAgIRGiAoAAAAAAAAAAAAAAABAQkv1ewAAUBz06NHD3nrrLStdurSNHTvWypcv7/eQAACAj7p3725vv/32bveXKVPG/vOf/1i9evXs7rvvtqOOOsqX8QEAgIL1wAMP2PTp011NIK82b97s6gk///yzbdiwwY444ghr0qSJtWrVylJTKcsW9+N7/fXX2++//x71sQYNGth7771XgCNEXm3fvt3t+x9//NFWrVplpUqVsurVq9utt95qjRs3ztNrrF692tUBf/31V9uyZYtVqVLFmjdv7o45ivexPfvss23jxo1RH9MxfvLJJwt41MgLfc50bEeNGmVr1qyxihUrWqNGjaxt27ZWoUKFPL0Gn9uSe2z53BYPEydOtJYtW9o111xjL730Up5+h89tyT22fG7jV79+/axLly4xH9fnsUIu/31OhM8uV+sAkItgMGiDBw+2fffd13bs2GGDBg2y22+/3e9hAQCAOFCnTh138/7NsHPnTluyZIl9/fXXrrj/xRdf2LHHHuv3MAEAwF5QcHr48OF26KGH5vl3tm7dai1atLCFCxfaRRddZJUrV7bx48fbq6++arNmzXJFZxTf4xsIBGz+/PlWqVIl9welSPpDAoreP//8YzfddJPNmzfPTj75ZPf9tm3b3L/L7733Xmvfvr21adMmx9dQOOfGG290IcjLLrvMTZAYMWKEPfHEE7Z48WJ7+OGHi2x7ULDHVmFW/UFXwauGDRvu9vgpp5xSiFuAWHQcdTwXLVpk9evXdwEbfdY+/fRT++GHH2zAgAF2+OGH5/gafG5L7rHlc1t8/hv96KOPurpYXvG5LbnHls9tfJs7d677qmDc/vvvv9vj++yzT46/nyifXUJUAJCLSZMm2YoVK+yuu+6yjz/+2P3j/rbbbrOkpCS/hwYAAHymAFW7du12u3/YsGHWoUMHe+WVV+zdd9/1ZWwAAGDvpKWl2bPPPmtffvnlHv+uOlAtWLDAnnrqKfcHRHnwwQddxyP94VB/+Fe4CsXz+Co0r/C8ZtlH+7cg/NGrVy8XstEfdjTD3qvd3X///a4L3JtvvmmXXHKJHX300TFf48UXX7T169fb+++/b+eff76777777nPdjvr06WNXXHGF1ahRo8i2CQV3bL0/Gup5uQWuULRBVoVs9N9SBeI8ffv2df+NVuhYn8uc8LktuceWz23x8Pzzz7tgxZ7gc1tyjy2f2/j2559/WtmyZa1z586WnJy8x7//YoJ8dvd8zwBAgvnqq6/c1wsvvND9D2Hp0qWuRSEAAEAsl19+uZvNozA2AAAofrTszKWXXuoCNl5xOK927doV6q6gP/h7UlJSrFOnTu77/v37F/iYUTTHVxTmkGrVqhXC6JBf6iimcI0mM4RPflSXsWbNmllWVpaNGTMm5u/rj4SaSV+rVq1s54X+0KQQpLowqNMsit+x9f5oKCeeeGKhjxd5t3LlStfFInLlh6uvvtp9nTFjRo6/z+e25B5b4XNbPP5NpdVbonUcioXPbck9tsLnNn553XSPP/74fAWoViXQZ5dOVACQS6tKzQ7VP/aVnFWC9vvvv3drxp511ll+Dw8AAMQpFfb1h9LUVC65AAAojgYOHGjbt293naT0B/o9+SPAzJkzbceOHda4cePditNHHXWUWwJuypQp7o/++vcCitfxDZ9hzx+H4otmwGv5qAMPPHC3x0qXLu2+6rjHMnnyZPfHHy07Fen000+3UqVK2cSJEwt41CiKYyv8UTc+qXNjNOpgJAcffHCOv8/ntuQeW+FzG982bdrklvBSl/abb77ZhW7ygs9tyT22wuc2fqlJiLrp5vfYTE6gzy4VfQDIgZbi0QzSG264wf0xVMnacuXKuX8wqF3hIYcc4vcQAQBAHFLo+u+//7bmzZv7PRQAAJDPP9h37drVdZbMT3FaKleuHPVxBanUnUG3nJaeQnwe3/AQ1Zw5c+zll192SzcqyKEJd1rO4phjjingESMvYv3bW3/s0STJ3LqHeZ/daJ9L/VFI3eX0uU1PTw8Fd1A8jq33ud13333dkqpaeWDZsmXuvwENGjRwn1vqvPFB19H6A+xLL73kJiW1bds2x+fzuS25x1b43MY3La+qiQMvvPCCrVixIs+/x+e25B5b4XMbv7yAm/7erc5RU6dOdf9tPuGEE6xly5aukUhOlibQZ5fl/AAgD0v5XXPNNe6r/qN/2WWXWWZmpmv5DgAAEptm4HTv3j10e/XVV10hsH379lavXj3r2LGj30MEAAD5ULdu3XwHbLZs2eK+ahJWNAcccID7unXr1r0YIfw6vuF/gOjWrZtVrVrVLduoPz5899131rRpU9eNDPHj888/d8dEAcZzzz035vM2b97svh500EExP7taBkWd61G8jq0myeqPuPqDcM+ePe3UU0+166+/3i0HqBpvkyZN3B/94C+t/qCuJ/oj+7p161zYNVq3i3B8bkvuseVzG9+++eYbF5JR3Uv/Dd4TfG5L7rHlcxvfvGsYLT3/119/2VVXXeW6J6tDoJZMfv3113P8/c0J9NmlExUAxLBw4UJ3Ea61YatXrx66/9prr3UX6Pof/l133UXrfQAAEjxEpVs05cuXdxekmn0FAAASh2beSqzZt979aWlpRTouFAz9UUgz6CtWrGjvvPOOHXHEEaHH+vfv75YIfOihh1ygipqR/3Qcnn/+edf1RN1PNEs+loyMjDx9dr3POIrPsd2wYYMdd9xxbjnAt99+OxRyVScrhSHfe+89e/zxx61Pnz5FuAWIVKFCBbvzzjvd8VKHMf0Bf82aNXbHHXfE/B0+t8VDfo4tn9v4pSDcs88+64JwN9100x7/Pp/bknts+dzGNx2HI4880tq1a+f+1u1RtzEtca7jc95559kZZ5xhif7ZpRMVAOTSherqq6/Odv8pp5ziZhnqH/mjR4/2aXQAACAe3HvvvTZv3rzQTQHsESNGuJbImrWlC1AVEAAAQOIoW7ZstiJzJK+ovN9++xXpuFAwFJAfNGiQDRkyJFuAStSRqlatWm6pC7pR+U+TIDWrXrTsYqw/CO3pZ5dJEsXv2KqThjpr9O3bN1uXQC1no844+iz/+uuvtn79+kIfO2K7+OKLXbhGx3To0KEuePPKK6/YrFmzYv4On9uSe2z53MavRx991LKyslyQVcdjT/G5LbnHls9tfNO/nUaNGpUtQOUdNx0f0fGLJZE+u4SoACAKLdfn/Y9Cy/JUq1Yt223x4sWhGYYAAACeMmXKuAtPdau85ZZbXIDq008/9XtYAACgCHnLG8Rarm/btm3u694sJ4f4pcl3snz5cr+HkrC0jIg6Ez399NOuS9Ebb7xhV1xxRYF8dvVHQD67xe/Y5kSv461CwOc2flSqVCnUpWjkyJExn8fntuQe25zwufV3acZx48ZZ586dXUeb/OBzW3KPbU743Bb/a5iDEuizy3J+ABCFOkxt3LjRqlSpYnXr1o3ZqUr/oND6vfqHPwAAQLizzjrLtaf21psHAACJQd2rcypA637Nzo3sYoTiYfPmzW5ynbpoHHPMMbs9vnPnzmwztVG0NANes+y1XJQ6IPTo0SPXLkV5+exqxr260uuYJyczN724HVstT6Tjqhru4YcfvtvjfG79O6ZTpkxxXU+0fFAkTVCSTZs2xXwNPrcl99jyuY3fpVTlySefdLdIgwcPdjd1ulHoNRo+tyX32PK5je8g+pw5c9zS5HXq1Nntcd2f27GpmkCfXUJUABDFwIED3dc2bdrYddddF/U5CllppsSAAQOsffv2RTxCAABQHP7AJgcccIDfQwEAAEWoRo0abqm+yZMnu2J1eBF5xYoVtmrVKhe2TklJ8XWcyB8tQaKlmxs0aGDvvfdetsd0vKdPn+5mYNesWdO3MSYq/bH+/vvvd8uU6I93vXr1Cv2xJy/0ByUdu0mTJrllu8NNnTrV/XHo9NNPL4SRo7CPrVYc0GoDzZs33+0Pw9u3b7fZs2fbPvvsY8cff3whjB45BW3uvPNOFyyeMGGClS5dOtvjOi4SLbDq4XNbco8tn9v4pABNtACG/o2rpY5PPPFEu/DCC+2kk06K+Rp8bkvuseVzG99atGjhgmzjx4+3ihUr7vbZk5yuYeok0Ge3+MfAAKCAadmdX375xf0DX2t1x3L99deHAlex1n8FAACJSbN3PvnkE/d948aN/R4OAAAo4uV9tbyUOld7/x7wQgBdu3Z13+sPCyie1FFDIfmxY8e6P0CEU2echQsXun//0Wms6L3//vsuZKN9//nnn+9RyEYOO+wwO/vss10AcsSIEaH7d+3a5ZaNEz67xfPYqsarZYQGDRpk8+bNC92fmZlpL7zwgm3ZssVuvPFG999vFB0t99OoUSO3/M/bb7+d7bE//vjDdXZWjT6nJRv53JbcY8vnNj6p6UC7du12u11zzTXucQVs9LPCNrHwuS25x5bPbfzSxJ5LLrnEgsGgvfLKK27yh0erKGhyiP673LRp05ivkUif3aSg9hQAIEQzmZSUzqklpeh/MA0bNnTtCbt162aXXXZZkY4TAAD4p3v37q4QqBk44bO0dHmlbpU//fSTa0uvoqH+mKZZOgAAoPiqVq2aHXrooS44E27u3LmugHzkkUdm62StfweoAK2uUxdccIEdd9xxrhODZl9feumlro7Avw+K7/HVcicdO3Z03yswpeVKZsyYYb/99psLd/Tt23e32d0oXPqjnD5rmsygf4PH6pKg5d/q16/vZtDrD0B6XvgfA5csWeL+uKc//OuzqvNCneiXLl1qt99+u3Xq1KkItwoFeWw/+ugje/nll90yNfoj4oEHHmgTJ060+fPnu64JH374oeuOgaK1du1aa9asma1evdodh1NPPdV9r8+d/j+p/196x5HPbeIdWz63xYf+nduqVavd/q7G5zbxji2f2/j1119/uf8uL1u2zKpXr25169Z1SzDqekd/89Z/ly+66CL33ET/7LKcHwBEUEJa9A+C3FK7Kojqj6j9+vUjRAUAQALSxaRuHi3Lo84EJ5xwgptRqX8r8AdSAABKLoVsvGB1eMimQoUK1r9/f3vzzTdt9OjR7o8PWoLqoYcesltuuYV/HxTz46sakDrivPvuu255P4U79HPr1q2tTZs2rgMHipaWENFxEP0hR7do7rrrLhe00b/hdWxV/wv/w5CWlvriiy/cbPpx48ZZWlqaValSxZ577rkcZ+Yj/o/tbbfdZscee6z7464mvWhlgaOPPto6dOhgLVu23G25MRQNdbX46quvrGfPnu7Y/v777+4P7jp2OqZaPsrD5zbxji2f2+KPz23Jxee2+NEkjy+//NLeeecdd2w08UPL0J9//vnuv8talt4zOcE/u3SiAgAAAAAAAAAAAAAAAJDQkv0eAAAAAAAAAAAAAAAAAAD4iRAVAAAAAAAAAAAAAAAAgIRGiAoAAAAAAAAAAAAAAABAQiNEBQAAAAAAAAAAAAAAACChEaICAAAAAAAAAAAAAAAAkNAIUQEAAAAAAAAAAAAAAABIaISoAAAAAAAAAAAAAAAAACQ0QlQAAAAAAAAAAAAAAAAAEhohKgAAAAAAAAAAAAAAAAAJjRAVAAAAAAAAAAAAAAAAgIRGiAoAAKCIBINBv4cAAAAAAAAAAFFRvwQAJDpCVAAAJJisrCwbM2aMtW/f3i655BI77bTT3O3yyy+3559/3pYvX24lwaBBg6xatWrWtm3bIn1fvaduW7duDd23c+dOe/PNN61Xr16Fuq2xbieffLLVq1fPmjVrZp999pllZmaaHx5++GE3nj59+vjy/gAAAAAAAHsrPT3d1VlU47juuuv8Hk6JtWbNGnv33XfthhtusHPOOcdq1KhhZ511lt1+++329ddfWyAQsJKgYcOG7lyaO3dukb1n9+7d3XuqFhzut99+s6ZNmxbZOAAAiEepfg8AAAAUnRUrVljHjh3dBXFycrK7WD777LNtx44dNm/ePPvkk0+sX79+9vLLL7tQFQqGAlS9e/e2e++9t1Dfp2LFiq6YFGnbtm22ePFimz59uruNGzfOevTo4c4BAAAAAAAA5N2IESNs8+bNVqZMGZs9e7ars2mCIgquE5JqlK+++qoLrKnedeyxx1q5cuVs1apVNn78eFfbGjBggL3//vu2//77+z3kEuGff/6xG2+8kU5UAICER4gKAIAEsXbtWvvvf//rijyNGjWyTp06WZUqVUKPqyjhFSgeeughVwi68MILfR1zcfTdd9+5r+EFHHX/KgoqKOn4xaJZeuoGNWrUKPv+++/tsssuK5JxAQAAAAAAlBRffvml+6qOSD179nRdvwlRFZzXX389FI565pln7IorrrBSpUqFHl+4cKF16NDBpk2b5o6B9n9qKn/u3BPNmzd3dUEF0zzq7EWACgAAlvMDACBhqAOVAlQXX3yxvf3229kCVFK6dGm744477O6773ahH3Wj8mvZt+JMQSbd4rHL0zXXXGMXXXSR+37kyJF+DwcAAAAAAKDYdXn/9ddf7cgjj3R1tH333ddNVNu0aZPfQysRtG979erlQlN9+vSxa6+9NluASo477jj76KOPXABIXcC++eYb38ZbXFWoUMHVL9XlCwAAZBd/f90DAAAF7vfff7cpU6a47lKPPfZYjgEfzeCqXr261a5d2zZs2JDtsY0bN7pwlYJYNWvWtDPOOMNuvvlm1+EocqbSpEmT3HKBTz75pCswaYZYvXr13Mw8dcQaPXq0e57acHuP6T2vv/760GOelStXutdq1qyZ/fXXX9a5c2f3/Fq1atl1113n2nfvyUwpvedTTz1lDRs2tBo1arjXatu2rc2YMSPb8/7880/3uN77hx9+yPaYgmZqca3H9Foe/azb1q1bQz+rw5covKafu3fvbp9++qn7Xvs7GnUGq1u3rtvPW7ZssYKiIp9Ee00t9adjof1yyimn2KmnnmqNGze2p59+2nUyCzdo0CA3fs24XLBggd13331uP2q8V155pX344Yd5DuEp0KX9rJta4gMAAAAAAMSjgQMHuhqUuvjst99+rkamGo5qU5GTGVU3+eCDD6K+jpYB1OPeZDePwlhdu3YN1d7OPPNMu+2222zMmDG7vUZ4bUbBo/r167tajupuGRkZoSXa1NVJNaw6derYySef7L62aNHChg4dGnVsGoPqf6oJqT6kOtFrr71mO3bscDVD/Rztd/I67pyonqT9e8MNN7jXiUXhH4XYVDvztjWc6kuquWlbVW/SmFW/U40xkvaF9uP69eutf//+dtVVV7ntPuecc9zvaB+KjvHVV1/t9rH3en///Xe211IHeL3WhAkT3P7V8/Va559/vnts2bJled4X2g+quar2evrpp7vXUVeuHj16uGMRrn379u59FTqLrMepzqrHVHf13l+1Sd33/PPPh37WMYusb2rfnn322e57Bdai0Tmux3X8AQAoCQhRAQCQALyiiC6GDz300Byfq1bZgwcPdsWSww8/PFugSBfqmumlC/UGDRq4YoYCWgo1KUQTLTSzePFiF3SaOHGiu+A/6qijbObMma7jldqf6zEFrhSIqly5snu9Nm3aRC2ybNu2zW666Sa3ZJ4KIApxKcDzxBNPuCUI80JhMhUwVBRRq29th7pyaYk7vfYXX3wReu6JJ55o999/v/v+2WefzVYYeeedd1zo6vjjj7dHHnkk5vspUFS1alX3/QknnOB+VmFBBRmF2lRUWbdu3W6/99NPP7mgk4pp4a2194aOz7hx40LbFu7zzz932//tt9/aIYcc4vaLikIamx5TAS5a8ErHq2nTpq6FugJy+h0dExVOunTpkuuYdJy1j5OSklzBhiUkAQAAAABAPNKEOgWXRPUsadKkifuqOpMe93iPDxs2LOprDRkyJNQ1PHyZOv2sINGuXbtciOekk06yyZMnW+vWre2NN96I+lrqxKSQk+pNqq9VqlTJdW9SHUeTFfWYwkN6TPWe8uXLu9dU0EsBq3B6nmpAqv8pHKbnq06k57Vs2TLqJMb8jjtaEEt1MlH9LDd33nmnm7iowFU4Tei85557XFcr1e0UeEpJSXHHSDVB1SGjUShKtSzVRhVI2759u/sd1a00wVCP77PPPi5UpG7/ekxjiEZLDGr/an9oH5YtW9bVW1VDU100NzqX9L6quf7xxx8uvHbeeee5ffTWW2+5iaYaQ/jYVfOdM2eOOw7h+1QTar39cvTRR0d9P507l156aehn7X/ddB4pmCXeuR/pq6++cl913gAAUCIEAQBAideqVavgCSecEOzevXu+fj8tLS14wQUXuNfo0qWL+9mzfPny4EUXXeQe69atW+j+iRMnuvt0a926dXDXrl3u/kAgELz77rtDj7Vt2za4Y8eO0O899thj7v42bdqE7luxYkXo+eeee25w4cKFocf0/TnnnOMe++abb0L3f/XVV+4+vZdny5YtwXr16rn7+/bt68bimTx5crB27drB6tWrB2fPnh26PysrK3jTTTe533n44Yfdfb///rt7Xs2aNYN//vlntn3ljfPvv/8O3ffcc8+5+956661sz+3YsaO7/7333tttn7ds2dI9NmHChFyPj7etN998826Pafway5QpU4K33Xabe16dOnWCa9euDT1n48aNbltOPvlk97xw69atCx37zz77bLf39PZL+DH88ccf3f3VqlULrl+/PnR/586d3f29e/d2P48bNy5Yo0YN996jR4/OdTsBAAAAAAD8MnLkSFfXaNasWbb7L7nkEnf/Tz/9lK0ec/7557v7FyxYkO35mZmZwbPPPtvVTVatWuXuy8jICL3Oa6+95n72zJ8/39XD9JjGEK02069fv2zvLS+++GKoxpaenh56XPWwd9991z1Wv379qDXERx55JFv9T3Ub1W/0mOpEnvyMO5Zp06a556rmFv46e0L7Qa9x1llnBf/4449s+8Tb5jPPPDP4119/hR5TPU33qy4WXofT7+sYeY9NmjQp9NjSpUtD+yP8fbzal24vv/xy6Fjo60svveTuv+yyy7Jtn1d3mzNnTui+Hj16uPuuvfba0DkiO3fuDLZv3949du+992bbdtXZNF6Na9GiRe4+HXs9t0OHDtmeqxql7lfN0qP6oTf2cNpWve4ZZ5wRqu96pk6d6p6v2ikAACUFnagAAEgAXqej//znP/n6/eHDh7sl8NS9SF2fSpcuHXpMnaU0o00+/vhjN8Mqkn5HXZdEHYfU0cr7XjO8NIvLc/nll7uvS5cujToWzfw69thjQz/re68TlGZ55USdrzQDS+/fvHlz9/4edem66667XLcmzbbzaOlDdeVSi3bNuPr5559d1ys9T7PBNFMrv7yZcpqJFk77Wp271JlLS+TllWb4ee22vZtm/mnbtL3qQqUOXpqlF96RTMs2qkW7ZhSqu1c4zTb0ukNpXJG0X7yZeB69lmY9anaiZiNGo+3TEorav+rqpbbmAAAAAAAA8cpbsk/dhMJ5HXj69u0buk/1DnU9kshl89RtSbUYLUV3xBFHhDqSq5u7llzT0mzqnu5RNyUtBSdati9abSZ8THpvOeCAA1z3ItWx1FHIo3qYupHLX3/9FarlqQv9+PHjXWd61evC63+q20TrurQ3445Vv1SnrPDX2RNeFyZ1XdLSheH7RJ3vL7jgAtdpXl2kIqleqA5UHv2+111eHce0NKBHHZ285Qaj1TBVf9N+946Fvurn4447ztXKVBeLRR3A+vTp475XzdU7R0QdrdQtv0KFCm7fh7+3OmSp/peWluZqdTpfVcdU7TYv3eJj0bbqXN26datbJjEcXagAACURISoAABKAV3iIttxeXsM5ctlll4Uu/iMLA8ccc4xb5m/WrFnZHjv44INdoCacLvS9gI4eD3fQQQeFCgaRVPyJFrbx2nJraTm12o5FbbzlrLPOivq4CikSWcjQ+L3W1/fee68rUOg9VZjYGwosqRijYpOWBvQorBUIBFyBJjzolZuKFSuG2m2r8BMeiNJ+U6t4FTcig18Kx6koozbjHgWg1qxZ45Y5VBFNMjIydntPhbRUwImkYys6JyJNnz7dLeeoIp3aq6vIAwAAAAAAEK8U8Bk7dqxb6i182TPRUnYKKanutGjRolyX9NPye+ItkxZeswoP8YRTXUc1OdW+du7cme2xE044IWroSDUXhZfCJyN6tTtvOcHweo8CVKKaV3iAyqO6YKS9GXckL+gVrf6UF2vXrrXly5e7iX6NGjWK+hxvmcBoIabTTjttt/u8GqZqn5EOPPBA91WhpUiqy0XW9LQfvImK3rKF0WhJPgW9FJ5SvTXSvvvu6wJdqt1FLk2ooJZqjarlaiKqzovXX3/dnbd7Q8tCRi7ppxqsJt6qXnvJJZfs1esDABBP8hflBgAAxYqCSgrCaHZZfqxfv9591cylWPTYkiVLQs+NDEWF84oImlkW67Fo1JkpWohLIR4VNTSLTzfNwItGoSB59NFH3S0WvYYKNuGz9BRo+u6771w3JxWSnn/+eSsIKkK89NJLrhtVrVq1XHhK3ysUFl5MywsVxV599dVs96lI1bp1axszZowrvsSaeab3VWBKhbwFCxbYypUrQ0E275ioOBOrYBTJK95F+50ffvgh9Lhmad54440xXwcAAAAAAMBvCo9kZWW5eo0mhkVSrUi1pH79+tnjjz8e6uCjDk2aTKabvleISd18VLu6+OKLd6tZ9ejRw91yotqbXttTrly5HINFGtOUKVPcpECvNhhef/NqN6tXr3ZfwzsfhYtWF9ybcUfyJloqQKSJoHvajcqrSaqTVqzf9bYhsn5Z0DXMKlWqRL1fYwvvuhWNdxz0NbcO+N5zw2ukL774out+r32orvOnnHKK7S11ndc+UPhLY1eHe9VJdT43a9Ys6gRLAACKK0JUAAAkALWX/uWXX7J1O8qJWlqrEHDOOefYkUceGTUIEy2EI5Ez1fLbfjsaFapi8caY03O8MaqVebTCSDgVGsJDVBs3brTZs2e77xUuUthIhYi9pdbu6gKlwoOKbFOnTnXL5qkrVviSe/l16qmn2ltvveXGqqKZlnRUN61w6gh122232bRp09zxql69upuZp1CWCi0Kjr377rtRX39POmWFz5jT6+mm4ouKO7oBAAAAAADEG9WcvGXLFPDxui9Fo4lxDz74YGiCn7pRKUClJf0UotISbAqe6H51TIqsWZ155pl22GGH5Tie8HqVRJtw6E1i69Chgwt3KaCkGo+6FKkjuToZRXZ79zpAeWOJth8i7c24I2n5vzJlyrjOTr/99lu2Dus5BcT03uqElZf6pYJwEq3TVm7j2xOxjok3xpzqpd5zVBcMX0IwGm+5wXCjR4/Odg6oDqhuUXtD+0sd13r37u26mGnCpteViqX8AAAlDSEqAAASwEUXXWQ9e/Z0IRnNtPKWWotGrbVfeeUV++eff1zbZ3UJ8p6/YsWKmL+ndtneknKFRcWRaFR82rRpkytA5BQ8UsFI3bIUKNrTJeS0nN/mzZvdvlQxQq2w9Roq8OwNddDSbC6FqBR08wodTZs2tYJSt25du/POO+29995z54EKS6effnro8Y8++sidGyqiKdjkzYoLL7gUJM3Y1Jg0s1HtzVV0USt8hdsAAAAAAADiiUJTqolpouHIkSOjTihTmKhBgwauS49CJjfddJO7X/UOdTNXbeWJJ55wYarwpf48Xu3tqquuCi2dtjdUK1MtS8EovW/z5s2zjXvLli27/Y5XD9Lkvrx0PSrocWvSnSZ0ah9///33uYaoVE9SHUvBNdXTvLGoO1asTlZe/VKTDAtTrE5T6vyeU7ev8I5cek5kx/ncKHz2/vvvuxCfAlg///yzPfPMM67Wu7cUllKISkv4aVKoJuuedNJJdvLJJ+/1awMAEE+iR6EBAECJogtaFSHUQemFF17IcWbWG2+84QJUCvco4CLerCcFfaLNRps5c6YrQmhWU40aNQptOxQAmzNnzm73//jjj25c9erVizqTzKPgjqgYE41e55JLLrFHHnkk2/1ffPGFK8ao5XfXrl3dDC7NinvooYdCs/Ryklu3Jq/IpCKExqZiiQpvBUljPu6449yMO3W88pbqE82I9MYRGaBS0UndoiQvM/rywjtG2p/t2rVz3z/55JPuvAMAAAAAAIgnX375pfuqOlmsGo86D1177bXue3VH8uy///524YUXumX0VPNRIEv1kMiAkFd7i1WzmjVrlpuEd9ddd7laTW4WLFhg27Ztc0uw3XzzzbuNe+zYsaHvvVqfN+FwzJgxUetd6qIVqaDHfccdd7ixqkv+3LlzYz5PobZPPvnEfa/t0/5XTUv7VhNER40aFfX3vv32W/dVNcTCpPBSJNXktJSj5DSRUCsKqEvZH3/8ETWMpfpcixYtXB1v8uTJ2YJznTp1cu+jmuXLL7/swmLqpq9Q2t7WL9WxXuetarOakKlx0IUKAFASEaICACBBdOnSxYWcFNRRcMWb+RS+pFu3bt2sT58+7mfNUlOhRy677DI3++nPP/90IazwQoqKFrpAlxtuuCHHEFNB0Cw6dZ3yzJs3zwWbREvS5UTFBc3EUiHms88+yxYKWrRokT333HOuU1WVKlVC9ysc9tJLL7lCgh5XEeP22293wTQVc7RUXm7Kli0bavkejQo3Rx99tCvkqKimoltBLoMoOi6aeabtWLx4cbbl+VRQ8wo84QWt7du326OPPur2jSg4VtBatWrlZqxplqD2MwAAAAAAQLxQV3IvPKRuSzlp0qSJq7vMnz8/W7jF6zqljlSqu2hZtMjAimpvCgFpEp8mOIbX3jSpUPUZ1ajUbSkvNSOv1qPxT506NdtjCnJpLB6v3qPl/hSSUY1GNaTwMeg13nnnnd3ep6DHrSUPFYrS6ygoNGzYsN3CVwpmKWylbVNN6dZbbw095tUGNf7wEJZqgOrQroDYQQcd5DopFSaFuLzwnSjYpJrq0qVLXXf40047LebvqvbYrFkztw9Uww1fGUCvo65SOr+WLVuWbTKr6mq6T5NItbKAtlP1XXnqqafc8ciJllL0xKpheqEpBdhU77zyyivztD8AAChOWM4PAIAEoZlYmgnXpk0bV/zRDLHq1au7VuSaqfT777/b1q1b3QWwugKpCBIewOnevbtbEu7TTz91HZt0sa/OQVOmTHFdjRo2bGgPPPBAoW6DxqEZWJrBpoKAgl8qGqio0LZt21yX6FPBRsvw3X///a6YollT1apVczPztJydChHaDq/gop8VENP+UUDMm6Wmoo+KTQplffDBB65rVPjyeJGqVq3qvg4YMMAVos4///xsLc5VONPyfa+99lro+8KgMep91VlLrb0vv/xyN4vslltuceE6LSeo5QpVgNI2q0OVvp5wwgmuALhhw4YCH1NKSoo9++yzrgij4pLa3O/pUosAAAAAAACFQUvzqe6kGpo6fOekcuXKduaZZ7palSbveV2aVE9S0Eg1IdV9FKKKFmDRRD3V3hRW+uqrr9x7KkCk2puCTqeeempoImNuNBbVeFTDU91H4ahy5cq5yYOq8ShkpU7oqvVs3LjRDj30UPd7L774oluKUDUs1YkUrNJkRtXN9JoKAZUqVarQxu1NoNR7qG7XoUMHFw5S/U6TPTV+TagUbZPqleHhH4WP1MFJ41CoTbUwddtX9ySvi75qg972FhZNRlUn+M8//9ztN41JE1orVaoUmqyZkwcffNBt5/jx4139TmEpbcfs2bPdsoqq32q/awlEUThM9T4FsFSz9F5fHfdVR1UtWIE21TFzqrtqfBqngmyaZKqxakKqR3U7hcEUstL5deCBBxbYPgMAIF7QiQoAgARy/PHHuxbOWq5ORR1ddCtMpdlkhx12mAsPack+FRki6WJdhSPN7tKFumZU6cJdM8ReffVVVygJL6IUBhVFVBA499xzXUFKM89UMFEgSMGovFDg6euvv3ahHc1CU/tydVpSKEyFARVfvO3Q686YMcMVuiKLPQoaaX+p5Xnnzp1d16ZY1O69efPmrpCh94ucASheCEvHRV2pCovaeatIpgKgijnaB2oTruKYAmS6X8dWxaVatWq5/aHgnNqia6ZiYSy5p33ZsmVL973GxLJ+AAAAAAAgHnjdhHLrQuXxampats1bik01Fa/zkeo+CqpEo8CS6naqvSkcM2HCBBe+0eQ2BYvU/cfrGp8XmqzXsWNHN4FONTQFbRRuUlfwoUOHukCMKGjlUeBHASRNJlTNSzUi1Q81eVHhGYkcQ0GPWwEg1drUSV77U7+rEJf2qTq4q7anbvp9+/Z1waLI39U4FTDSBEx11dc26H6FyVTbPOecc6ywaV88/fTTLkTmvb+6Zw0cONDt49wo0NSrVy838VA1WQWqVFPU/Zogqe3Q9ok6cmk/iya4aiJtOHWhUlcqheIU7suJuv2r+77Caqq9hnfB8mqzquMJS/kBAEqqpGD4OjYAAABxSDOgGjVq5GaLRQsglQQqiqj4owKXQlcAAAAAAABAUVGn9lWrVrmu9arBRVIXc4V0VLdS/Qq7e/jhh23w4MFuAqs3YbAkUeeyCy64wAUBv//+e7+HAwBAoaATFQAAgE+0HKFohp5moqmV+MUXX+z3sAAAAAAAAJBg1NFIHbO0TJvXRcujn99++233vR5H4khPT7esrCzbsWOHdenSxXWxb9Gihd/DAgCg0KQW3ksDAAAgJ/fcc4/rrOWFqZ577rlCXxIRAAAAAAAAiKRl5i6//HL79ttv7cILL7TatWtb+fLlbdOmTTZjxgwXptFSckwATCxamlFLIWp5R4WptEwjS/kBAEoyQlQAAAA+qVmzpk2ZMsWOOOIIu/POO+3KK6/0e0gAAAAAAABIUK+88oqdd955bkm6xYsXu+5U5cqVs7p167oAFV2oEjNcpzDd1q1b7eyzz7Znn33WSpcu7fewAAAoNEnBYDBYeC8PAAAAAAAAAAAAAAAAAPEt2e8BAAAAAAAAAAAAAAAAAICfCFEBAAAAAAAAAAAAAAAASGiEqAAAAAAAAAAAAAAAAAAkNEJUAAAAAAAAAAAAAAAAABIaISoAAAAAAAAAAAAAAAAACY0QFQAAAAAAAAAAAAAAAICERogKAAAAAAAAAAAAAAAAQEIjRAUAAAAAAAAAAAAAAAAgoRGiAgAAAAAAAAAAAAAAAJDQCFEBAAAAAAAAAAAAAAAASGiEqAAAAAAAAAAAAAAAAAAkNEJUAAAAAAAAAAAAAAAAABIaISoAAAAAAAAAAAAAAAAACY0QFQAAAAAAAAAAAAAAAICERogKAAAAAAAAAAAAAAAAQEIjRAUAAAAAAAAAAAAAAAAgoRGiAgAAAAAAAAAAAAAAAJDQCFEBAAAAAAAAAAAAAAAASGiEqAAAAAAAAAAAAAAAAAAkNEJUAAAAAAAAAAAAAAAAABIaISoAAAAAAAAAAAAAAAAACY0QFQAAAAAAAAAAAAAAAICElur3AAAAKCrVqlXbo+dPmTLFDjzwQCtOFixYYMcff3y2+xo2bGirVq2y5557zv773/9acT4mnpEjR1qlSpUsUaxcudIaNWoU9bGUlBQrU6aMHXzwwVa9enW76qqr3DGPZtKkSXbLLbe472fPnm2pqXv3T8FgMGiLFy+2Y489do9+r0WLFjZ58mS766677MEHH9xtG3/88Uc7+uijrSjs3LnT/vrrr2zn06BBg+yRRx6xQw891MaOHVsk4wAAAAAAoDB517p7qk6dOvbpp59avJo/f75dd911dskll9irr76a43O//vpr69evn/sdOeaYY6xJkybWrFkzS05OzndN64ILLrB3330319/5/vvv7f777w/9XBC1maKu6XiysrLsp59+cts0c+ZM27BhgyUlJdkhhxxitWrVsqZNm1rdunWtJIr3uhE18PirgQMAihdCVACAhFOlShWrUKFCrs9TOKW4WL9+vb388ss2depUGzNmjBUXtWvX3u2+9PR0++OPP9z3J5xwgu2///67PUehoUQVuU8CgYBt27bNVqxYYcuWLbPhw4fbOeecY2+88YYdcMABhTYOFcieffZZF3bKrUgZr4YOHWqvvPKKtWvXjuIKAAAAAKBEq1ixYtQ6zJo1a9ytdOnSVqNGjah1iHi1efNma9++vWVkZOT6XNUw+vbt676vWrWqq/spxKTbqFGjXAiqVKlS+RrH+PHj7Z9//olawwr33XffWTzY25qOwleaFPfnn3+6n/fdd19Xb83MzHST5L755ht3U7DtxRdfdI+j6FEDBwAgfwhRAQASTps2bdwMtZJk3LhxNmzYMDcDKlKfPn1cMUkzweKNZv9FCu9I9Pjjj5fYWWv5FWufKHw2ZMgQV5zS+dC2bVv78MMPXRHUc8opp4QKdns70/Hzzz93Rbf8dIxSsUMdoMqXL29+6tatm61bt263+xs3bmynnnpqvounAAAAAADEm/PPP9/dInXv3t3efvtt1+E6Wp0mXq1evdruvvtu15EmL52DFKDSZDOFpc444wx3vybxqUu26ig9evSwBx54YI/HofqKajLqmn711VfHfN727dvjJvSxNzUddS1q3bq17dixw4Xu7rvvvmzn1a5du6x///725ptvui5VCrp99NFHvnXcSmTUwAEAyJ89608KAACKncqVK7vW3IXZlQj+U1hK3ZTee+89N4NMy+V9/PHH2Z6zzz77uHMhv63aC8oRRxzhxpCX2XB+0GdF49NnBwAAAAAAxBdNELv22mtDnZByW3bunXfecd937NgxFKAShYDUoVpUQ1Gn7z1Vr14991WBoZz8/PPPLmBUvXp1K64UiOrQoYMLUKkLusJYkcG8smXLWsuWLV0oTcv7TZo0KdQBDChM1MABAAWFEBUAAEAJcuaZZ9oNN9zgvv/ggw9cgQ4AAAAAAKAkuPHGG91Sclu2bLGLL77Y3XKiZb+WL1/uuk1H6xRVv35915FJwSB1k9pTWrLO65CjJf1i8TqDX3bZZVZcvfHGG66jt5bnU/isTJkyMZ971lln2aWXXuq+7927twUCgSIcKQAAQP4RogIAIBdaXq5atWrutmzZsqjPadiwoXtc7cE9mmml+66//nrXSlitq6+66iq3TJhmvd1yyy02YsSImO+7YcMG1/r6yiuvtFq1atlpp53mZtkpGKM24R69xyOPPOK+VyHDG2vk2L788svd3uPvv/92LduvueYa9x4amwocWm5Na8xH0vbptVSsUnFJxRMVq2rWrOmWmFMLdBWnCtPixYtD2zh79uyYz9O49ByvSPXwww+7n9XaedGiRXbPPfe4MWu7tf2acZiWlpZju3K1KNdMO81UVDFIS+b9+uuvMX9H7aVbtWplderUcb+jwtztt99u33zzTaEWj7wQlQqK4cfDOyd1y8zMzPY7v//+u2tbf+6559rJJ5/swlg6d99///1sRUDvNQYPHux+Hjp0qPu5RYsW2T4vZ599tjsf1eJdywhqH2i2oui5eo6W04tG++bTTz+1K664wp1b2tf333+/zZo1a7fn5rRNHu9xPddbqkA/r1q1KrREon7W/eHn+XnnnRf19XTM27VrFzoXNOv0jjvusB9//DHq873PoM47dQjTPtG5p23T5+2tt95ybf0BAAAAAIhXP/zwg7v21TWwroV1Taxr41h1Ee9afOvWrfb111+7mpbqTvo91Y90fZwfM2bMsMMPP9xee+01dz2tQE9OfvvtN/dVHaDUoTua2rVru6/5GdORRx7p6h6q1Y0aNSrqc1RX+eWXX1ynHD03J0uWLLGnnnrKGjdu7Pbz6aef7uozqmfFmihXUDWdnKhmpnqWNG3aNE/dxVV70zH66quvLDk5ebcOYapV6r01Xm1rgwYN7KGHHopa7/PqTarVqG702WefuXqezimdk3ov1V1k06ZN9uyzz7rX0+uqW9YzzzyzW6cxb38oXKfjpzpno0aNXL1GtRzVi2LVgnOyJzVE1XQ1Bm3H0qVLd3tcdVs9rvqlzo3CRA28YGrgOg81To3H+wzrfVUH/euvv2LuBwBA/CBEBQBAIdPF45133hm6KFNbYRUKdIGpC/x+/frt9jvTpk1zF/A9e/Z0oaGjjjrKDjvsMJs7d66b6aUgjncRqUJPlSpV3PeaVaefveJPTtTyXCEVBUfmzZvnij7HHHOMm52ni1095oVOIqkApqCO2qHrQvK4445zX9WaXBfGo0ePtsJStWpVd7ErQ4YMifqc6dOnu8LDQQcdZBdeeGG2x7StWvZOswsPOeSQ0H594YUXXOApWuv2V1991W6++WZXMNR+P+GEE1zxR6+hFuV6PNKLL77oQkMTJkyw/fff3114p6amupmJKggp1FVYTjzxRPeeeS0AKvxz00032fDhw935qrGqGDZz5kxXlNQsT6/oppbYOr8qVqzoftbz9LP2STjtJ52n2n6d82rhrnMsL5544gl77rnnXBFFr6vXUlt8FWNUeNtbKrZqzFoCUTTjVD/r/tyoCKdjrn2mfaV9rc+diqEqHqtoqfujURFHn4+JEyfaoYce6vadPt9qca99xaxMAAAAAEC80TXuvffe60IhuvZVbUPXwprIpGtjXSOrBhKLQjSdO3d2dRrVj/R7Xv3oww8/3OPxPP30064+o7pVXnhhENXWYvHqFdFCLHnhdVyKtaSfAiSqbeTWhUohJYVP+vfv72qIqon85z//cSEp7WPVs9auXVvoNZ1Y4TXV/kQT5/JCx1vBE21DOI2nefPmLqSkupXGpXGrJqd9oJCWQmPRqHaiiXYKRSkspZqOXk/7uFmzZm6cqqlqqUEtLXjEEUe4fabQleqzwWBwt9fUOakJb6pzKix2/PHHu7CL6jjXXXedq+Pk1Z7WEB977DF3biogp+/Dx6f6pmrD8uSTT7q6bTyjBv7v50Tnr0JYOp91LqkGOH/+fHv33XddOGzNmjX53MMAgKJCiAoAgEI2Z84cV+zQRbIuunURNXbsWNeVSDSTJbyDjmbGqBigi3XNrtLFmAoIKsTo4l0FDhUYFLwQXYC2adPGfa/H9HO0i9JwKi7oolYXtAokqeCirkmaGThmzBi74IIL3Dh0gbtixYrdfl9BoM2bN7tilwpomsGmYoAKHro4jtVhqKA0adLEff3222/d+0XSdsjll18eCsp4tP/LlSvnxqwZdyoyqTilgo4u3HWBHk6P9erVyw488ED3mPa9XkPbre3UjEc9Hj7LSTOOVOxRW/NPPvnEzURU+Ee/o0KCiicKgHmzIQuDVwBcvXp1js9T8UmFJ52DCneNHz/ebZ+KPRqzzqkFCxa44pM3c1Pnl9elSYUz/azgU2SRQSEoHQvta227ClJ5nbF39913u/NMY9CYVBDUWDUb05tZmF8qZmjMBx98sPtZnwX9rPtzosJK3759XcFYxSvNIBw4cKDbNn2OdS7ofNIxjkbt61Us0fboM63Ptl7HK7LEmrEKAAAAAIBfXnrpJfvpp5/cNa+6xehaXdfCurbVNa2ukVUDiRV6UadpdZjRtbN3ja9JSAqLqM6ioMieUCgop2XkIiloIzl1TlKdSFTryg8t6afJY7GW9FP9SnIKUal2qO41CoxoEll4fUa1FYVHFMRQRyOvjlhYNZ1oFHDxKES3Nzp27OjqIKrLhNfNVGfR9mm7FBqL1vFbtSY9X+elapiqr2ib1WVMtUzVj1TjU31GtVS9hiZOit5TNadICxcudDVb7X/VbL3arbpS6Xi2b98+6qTLSPmpIWoSZNeuXS0lJcV1NlLYS/S+Oqaqe+rzo3pSvKMG/u+kWoWs1GFNn0c9X6sk6DOpz7A6aCmQBQCIb4SoAAAJx2uTHOuWlxbWe0qz9XTB69EMK10Ie0uuhbdj/uKLL1xBQCEYzZDxgh6ilsGPPvqo+14XYfntXKPiiS4eVVR47733ss3G032aJaiZUioQaJZMNCqUqS21R12dNDPRm+FTmMuTqeikwsPGjRvdxWw4zRhToUQ0WyySAkya3XTSSSeF7tNFtBd80UW6LmhFhStviTcVXDQb0KPimMbhHUc9zysEaFaTaFaTWjyHU/tmzYzTLKfwltQFbb/99gudX7kVE3W+iYp0Ktp41AJebavVzcsrKO4JFa40Q0sUZvO6Y+VG+0YdnTSrTFQc1fmm9tdeW/CipvPKK3Lo86wZk+Gt6DXrVN2zvM+XWqBHUpFR55E+/945pNfxZnwqxAcAAAAAQLxQBx8FQ7zOzAoLeVQ/0DWtQhCipbKi1YJUy1LNxasJ6PdUP9K1v4JUXkCisOzcudN9zSl4pY5FEmu5vNyo25GWB1PtQB1qwqkuo3CQ6iPhS49FUi1OdSXV2rSvw2soqmFpaTONU0vdeaGswqzpRFLQxJOXpfxi0YRCbx9pm8PrZqod6XxS5x+J1vldNAlOoSLVVUR1FQWeROeUwn5exyJvMqY32VBBn2jUJUo3r9aj7vYKyFSqVMmFfHIL6+S3hijqpuRNPFT3MHUq0jmg2pKWgOzSpYvlBzXwoq+B62fvnAuf2Kv3VUc+hbby2qkfAOAfQlQAgISji2iv3W+0W15aWO8pXSBFUkvj8K49Hq+QoFbGXhEnnNpga7aMZrCEhzj2hNfxRoEeFQUi6SLPu5DWcyNbXaso481ai7VN0WbeFWRAyCvcRS7pp9lA2p86jrrgjlSvXr2oM+Z0MazCiC7KvWOgGWoKaun9vGJMJBVFdBwUvPIKMWol7l04q1AY2Q5eF98qitSpU8cKi7eknFdQiqV8+fKhc8CbCRhemFARTgVNfd1TCj3lh9qeR9J2eGPQTLGiptmAOq80w1ZF4mhUEFOLbs1Ei7akZYMGDaIeD+9zk5dZjQAAAAAAFBV1kVHYQ+GGWF2UdA2vSVC6plXXmEha8io83BPeUUq0jFZhTsSL9t6x5FZDyc+SfuripRpNTl2o1LnGW05M+ysahTAUiPJqX4Vd04mkTk+RNaf88Gpup5xySsyl2G677bbQUozqvhWtvhLJC6ZoQqOCR5EUfMmpXtmqVavd7lPwzusA5e3zWPJbQ/QolKM6ps4FLWGn2q8+V6+//nqeJyVGogZe9DVwryasTvoKT4Z/Vho2bOiCWl43LQBA/Er1ewAAABQ1XahE61BUmBSsiBR+cRi+JJ3WY8+pNbYu7sK7KOWHN+tHs9Ji8R7TrDbNFFJhxqOLzmgXt+Gz+sJnVBUGzehRW2gVMXSx6hUUvKX8Yh1jFWli0SwszfLyQk9qeS664I0VnPEuqFWkUmtzvb72nWZdablAdU3STcUcta9WWOvcc8/NdwEkr7xAjlqI50RjV6FNrdsVTtJNx1czAdXWXYWpww47LF9jCJ9BtidinZfejE3NUlPRJbdtK0he23oVQ2IdOxVb1RpfxbDwmXWRBbtI3mcp2tKUAAAAAAD4xbsWVh0qVohBncIVXFHYRdfCkSGKWHUY7xpfNRfVYnLq0rQ3ND5Rl6hYvA5U0WpdexKi0hJzWvJLoTCvQ7iW8pLLL7885u9qGTEvbFGjRo2Yz9NjWorMqzkUZk0np5qGljfzti+/51RONUmFf1R7Ub1P2xoZ9jn88MN3+x2vm3msLlne45EhGW/botVuw+uzkRMkI+W3hujRpD0tAajQ1qJFi9x96iQWbYJoXlEDL/oauLpu3X333W5ZQ3U2039/zjzzTDvrrLPc5zG8QxoAIH4RogIAoAh4F+qxhF/Ae8uveUWewuDNkPGWFYsmPCii4k/4BWRu2xOrKFGQzjjjDHfhqSKGZiQpVKVwjZb3U+EhvG12uGizjjzePvdmRXlBJLXknj59eq5jCp9NpcKHul5peUBdOK9atcoGDhzobrrQ1izATp06ZWvtXFA0Xr1f5MyoWDQWhYN69+5tEyZMcC3af/zxR3dTMOj888+3p59+eo8Lb/kpPurcirVPwgt0asdflCGqvHxmwj830WbR5nasC/szAwAAAABAUV8Lx6rDhNe9CrMzs1fP8upt0SgUJBUrVtyr8EitWrVc/UgddrRcoZaBU4cphTRyCk+Ed7LJS60ufD8XVk0nkoJy4YEhdXPPjcJC8+bNcwE5L4SX13NKNSA9N9o5Fd4VK1J+OhbltNyhd57mdo7uTQ3Ro+OoZR9nzZqVY7goniV6DVxdq1T77dWrl+tSr9fzAo4vvvii69r/zDPPuOMMAIhfhKgAANgDsUIOarVcUFQI0IV3YbYyVyFCRZWcCgB6PPz58UizqdTWWh2fFKL69ttv3Ywmtc2OVfjK6Vh5F9be73pFGRW71PVqT6hQ1bRpU3fTTCYVzdTWXhfNCjh9+umn7nmPP/64FbSZM2eGZjDGao0eSbMUddPsSy1dN2XKFDd7cvbs2e6iX7PX1OVrb1rb54XGrYJTtMBR+PkaLUAV7fNZUJ9N7zOQW9HMK4LF62cGAAAAAICivBbWJKjwUIIn/DVjdQ8qCN7kMm+yWTTeY3vbJUbdqBSg0ZJ+ClFp0p/qVDl1oYrcb9ovsWpaXq0ucj8XRU1HHYHUZV37avz48VGXbYukSYVatlFBOoW8VF/L6znlPV4U9ZWcakfeOHI7R/emhuhRJ3sFqBQEUwDtkUcecTXPnCaEFhZq4LZXnxXVq1Xj1GdANWEFHPXfhmnTprkOVQo5FmZ4DACwd/K3iCwAAAlEXY08CndEUoGiIGfMeQUbrw10JF2ANWvWzO677z7X7js/qlat6r6qmBLLH3/84b7qQj1asSseaD17tcFWcUizl3766Sd3f06tqmPtV/nzzz/dV282kDfLTt2uYi1PqKLCxIkT3XO880NhLO0/r0W5Ci0qpD311FNu+UEdPxkyZIgVBnW/8tqRq2V0TjRmtQnXRb3XPUpLDqpluIo+uuj39o1mDxYFb79FmjNnjvtauXLlUHFKxz+nz+f69esLZEzeZ2bZsmXZZoiGU4HLG6NmDwIAAAAAUJx518Jz585117zR6BrZW+os2rVwrDqMV4NRkEDhnMLiLZmm6/VodQOZMWOG+6pOUnvj4osvdgEYb0m/4cOHu+DSZZddluPvqc7h1R+9elw03mPefi7qmo63HYMHD3ZdtnLz2Wefua/aJ8cff3yea5LaJi+sUxT1lTVr1sSs9ejcl9w6B+W3hujRMXrjjTfc9127dnVLGK5bt87VEosKNfC9q4ErMKm6oerUXhcrraRwzz33uM+CbvrvgVZSUKgKABC/CFEBAJCHls7eTK1o4Y5Ro0bFvDjOD7XZFs00inbBOnbsWDdzRQUZb2aa16o6r8uBebPFNAstfLaNR+/br18/9/25555r8Uqt0jU+7X8Vh1T00j7RGvOxqBOULlYjqdW6iibqgNSwYUN3nwJIaveswlesWWQ6TrfeeqsLSa1du9bd99Zbb7nOWC+//PJuz9e5VL9+/dDFdUFTt6tvvvnGfd+6detsIaNodD6pCKbnRjvfzjrrrND34eP1PhOFsQTdV199tdt9em/vnPSOj4QXN6J9Pr1gXTR7sg1qt61iis41rwgYSZ3QdG7pdeP5cwMAAAAAQF5oaSoFK3St+91330V9Tt++fd21siY71alTZ7fHtbRVNN41vmpUZcqUscKiYJSWslNHrGiT2RRmUPBBS3o1btx4r+tU6giusIlqG+oKpfc//PDDc/w9Bcnq1avnvv/kk0+iPkchEtUgvePiR01HHa0OPvhgFzh67LHHLC0tLeZzR4wY4Wpm3u95Hce9mqS6qMda9q5Pnz7uq46blgIsbNo3CoZFCj9nLrnkkhxfI781RNF+fOihh1xoSEG8K6+80l544QVX01MQr7AmYUaiBr53tTyFwS666CJ3jKPVnvXfAq/TVaxQKgAgPhCiAgAgF5rFVb16dfd99+7d3Swgz7hx49w65gXppptuchetKuB07NgxtD68V2DwZiBpJo7X9tf7qovBWDOnwul3VdjZuHGjK2SEz+bRTLL777/f5s+f7y7s2rVrZ/FMYSXv2KjocdVVV2WbORWtANK2bVsXmPKorbJaZIsKTyp6ePtVP8vzzz/vCmDhF7kqCHnHQwUQzRwUjUFFB7VM/+CDD0JL68nq1avt3XffzVYsKAgq0ijco+OpMSqo5XW8yokKbwoi6Tzr3LlztvNN55IXBFPBz5s1KN5Fv7anoGmpQ22Lt681jk6dOrlZYwoy3Xbbbdlm+nmFFM3U85YQUDFFRZgePXrEfB/vc5NTS3+PisHeuaCQXPj4RC36n3zySff99ddfH5qBCAAAAABAcaVagK5x5YknnnDL1Hl0Tfz555+7eoyo1uLVU8Jp2ao333wzFL5QjaRbt27uOlrBmnvvvbdQt0H1GXWCkRdffNHV8jyqM6gWIi1atIg6/j2l+pCoq5D2UW5L+Xm0H1TP0vi0r8Pre+pSdOedd7qwzYknnug6s/tR09H+efbZZ12HHU1GbN68uRtveKBF79uzZ0974IEHQkGuW265JVuQxKuHqcOQanLhgRbVXAYMGOB+Vi1ob5Yg3BOvvfZatol4mzZtcuPTPlKNJ6eu93tTQ/TeW3VYHcsuXbq4+2rWrGm33367+177vDDqb5Goge9dDVyfTXUQU326ffv22YJyOrf13z2NWdugDlUAgPgV+y+MAAAgRBf+d999ty1cuNAuvPBC18JZF2sKX+iiVrPMtExbQVAg5O2333bFJxWUVJRQoUPhkJUrV7rChFpz6yLPo1lZmomjYopmRmkZtw8//DBmC+IDDzzQBXl0ca/uTZolo21SsUazZlTQ0kWsLuK91srxSjOKtFyeihuSW1FD26NW3DqOurBVe3Cv7fwVV1zhLqjDqUilC2wVcB599FF75ZVXrFKlSq6Q4C0Vpy5FKpB4atSo4c4ZXRzr+e+99577HQW49FoqHKpY8vDDD+/x9j733HNudqRHr6VzQ6/rzSpUpya9b05hMo8KlipmqjCjWaU6jzU2nU96Te0fBYheeuml0KxBOemkk9xXzQjTOafzR+ft3lIhTue3CjPvvPOOK3Ro9pvGoYKGimm6z6Nxal+rwKguXCrEqbilY6NZXzo/dG54re3DqTCkQomCbupQps+BPnexaB/pM6gZahqfCkpHHXWUK4p454JmDGo2JgAAAAAAJYEmnakGonqBalGqOalDkGoGmzdvds+5+eabXf0kGtVeFKpR4ErX0Po9hSUU2FCoyVtuqzD997//dTUDTbbStb1qQ6pxqAamOpvCSAUV5lJdQDUiTXZTJ6HcOhiFh4v0e48//rirQanL+LHHHuvqIUuWLAntS9VevPqMHzUd1VlUc1TAaNasWe69VWdU3Us1Ko3Vm0yoOpu2KbJLuibB3XXXXa4mqYCVlnNUbU+/q5CJnq9aT14DaAVB56bOAY1FNVGdGwq+HHHEEa4WFb7/YslPDVGd0LzuY5qcp/3gUahHx1TLGyok9/HHH4c6MRUWauB7R7XgG2+80f33RvtPx1+fQW2PtkvntmqK4ccZABB/CFEBAJAHKqao2PP++++7Vty6kNRFkAoGukDWhXFBUgvoYcOGuYtAhTv0frrIOuWUU1znJRV/wi+ajz76aFd4UuhEF7UK0+hrTuu4K0Ci99CFumZDLV++3M3uUgBFIRzNBgoPq8QrhW5UlNF2KLykglJOdMH/6quvugLItGnT3EWz2s1rZpJaoEfSPtGMLxXB+vfvb7/99psLYanV/Gmnnebe+4YbbtitmKJikC7KVTjRzEaFdVQgVKFK7eE1w9GbPbUn9DrhdB7oYlxFR22bumB5ywXmVd26de3LL7+03r17u32iUJn2i4qiKlao85OKRuE061HhJrUUVyFARYeCaEWt/a1wUq9evVwr9Xnz5rnzWMdG+1RFrUiaFauxqt27ZqqpuKTzWIE4zYrULRoVoBRsU8FKhTr9Xm5j04xAHT/998A7FzQ+FRGbNm3qCiQAAAAAAJQUqneoy7OWFVN3nT/++MNdC2tZN3UZUk1EdYVYdO2tTjOakKRrfAUnVHe64447XEioKOh6XoEWjVd1Go1DgR8FNq6++mq3/FZeJqLlhfaLuswoRKF603/+8588/65qLartqL6hWoVCHqodKbii+pPqDpFLHxZkTSevAR29pzqMaalG1S1VT9FYVbvUeykopPplrG47Cq2oC7nqPgqL6XhoIpzqkArGqI7jdUQqKhqPwjY6z1WHVZhKY9G5kVN9dW9qiAonaYKlwkIK90TWJfU8LeunmqXOJ9WJY4UVCwo18L2jWrDOa23Pr7/+6jqI6fgq7KV6YqtWrbJ1hQMAxKek4J4uegwAABBnNDNLxRvN2IoVmFFRQhexV155pQtRAQAAAAAAoHCoY4wo3KPwEhBvtJSgt9SgJkAWVJAOAAAUb4Xb9xEAAKCQaaaa2j2rG5O6MAEAAAAAAAAAAADAniJWDQAAip1169bZrl27bMeOHfb000+7tuNqh33AAQf4PTQAAAAAAAAAAAAAxRAhKgAAUOxMmTLFOnToEPr54IMPtnvvvdfXMQEAAAAAAAAAAAAovljODwAAFDtVq1a1ihUrWtmyZa1+/fr2ySefWPny5f0eFgAAAAAAAAAAAIBiKikYDAb9HgQAAAAAAAAAAAAAAAAA+IVOVAAAAAAAAAAAAAAAAAASGiEqAAAAAAAAAAAAAAAAAAmNEBUAAAAAAAAAAAAAAACAhEaICgAAAAAAAAAAAAAAAEBCI0QFAAAAAAAAAAAAAAAAIKERogIAAAAAAAAAAAAAAACQ0AhRAQAAAAAAAAAAAAAAAEhohKgAAAAAAAAAAAAAAAAAJDRCVAAAAAAAAAAAAAAAAAASGiEqAAAAAAAAAAAAAAAAAAmNEBUAAAAAAAAAAAAAAACAhEaICgAAAAAAAAAAAAAAAEBCI0QFAAAAAAAAAAAAAAAAIKERogIAAAAAAAAAAAAAAACQ0AhRAQAAAAAAAAAAAAAAAEhohKgAAAAAAAAAAAAAAAAAJDRCVAAAAAAAAAAAAAAAAAASGiEqAAAAAAAAAAAAAAAAAAmNEBUAAAAAAAAAAAAAAACAhEaICgAAAAAAAAAAAAAAAEBCI0QFAAAAAAAAAAAAAAAAIKERogIAAAAAAAAAAAAAAACQ0AhRAQAAAAAAAAAAAAAAAEhohKgAAAAAAAAAAAAAAAAAJDRCVAAAAAAAAAAAAAAAAAASGiEqAAAAAAAAAAAAAAAAAAmNEBUAAAAAAAAAAAAAAACAhEaICgAAAAAAAAAAAAAAAEBCI0QFAAAAAAAAAAAAAAAAIKERogIAAAAAAAAAAAAAAACQ0AhRAQAAAAAAAAAAAAAAAEhohKgAAAAAAAAAAAAAAAAAJDRCVAAAAAAAAAAAAAAAAAASGiEqAAAAAAAAAAAAAAAAAAmNEBUAAAAAAAAAAAAAAACAhEaICgAAAAAAAAAAAAAAAEBCI0QFAAAAAAAAAAAAAAAAIKERogIAAAAAAAAAAAAAAACQ0AhRAQAAAAAAAAAAAAAAAEhohKgAAAAAAAAAAAAAAAAAJLRUvwcAAAAAAAAAABJYuNzSe/b3exgAAADIg7Kvd/J7CAAAFCg6UQEAAAAAAAAAAAAAAABIaISoAAAAAAAAAAAAAAAAACQ0QlQAAAAAAAAAAAAAAAAAEhohKgAAAAAAAAAAAAAAAAAJjRAVAAAAAAAAAAAAAAAAgIRGiAoAAAAAAAAAAAAAAABAQiNEBQAAAAAAAAAAAAAAACChEaICAAAAAAAAAAAAAAAAkNAIUQEAAAAAAAAAAAAAAABIaISoAAAAAAAAAAAAAAAAACQ0QlQAAAAAAAAAAAAAAAAAEhohKgAAAAAAAAAAAAAAAAAJjRAVAAAAAAAAAAAAAAAAgIRGiAoAAAAAAAAAAAAAAABAQiNEBQAAAAAAAAAAAAAAACChEaICAAAAAAAAAAAAAAAAkNAIUQEAAAAAAAAAAAAAAABIaISoAAAAAAAAAAAAAAAAACQ0QlQAAAAAAAAAAAAAAAAAEhohKgAAAAAAAAAAAAAAAAAJjRAVAAAAAACIC8FgsFi8ZiIqrP3o9/Hx+/0BAAAAAAAQPwhRAQAAAAAA340cOdI6d+5coK85bdo0a926dYG+ZqLZunWrderUyaZOnVqgr5uenm4vvPCCDR061ErSOQcAAAAAAIDiixAVAAAAAADwXZ8+fWzNmjUF+ppffvmlLVq0qEBfM9HMnTvXhgwZYoFAoEBfd/369fbxxx9bZmamlaRzDgAAAAAAAMUXISoAAAAAAAAAAAAAAAAACY0QFQAAAAAA8FWLFi1s8uTJ7latWjWbNGmSbdmyxZ588kk766yzrGbNmnb99dfbr7/+mu33xo8f7+6vVauWnXnmmXb33XeHOk89/PDDNnjwYFu1apV7zUGDBuV5PHp+9+7ds92nn3W/Z9OmTdahQwc7++yz3fiuvvpq+/rrr7P9zurVq619+/ZWp04dO/XUU+3WW2+1OXPmhB5fuXKle83evXvbJZdc4p7z1Vdf2a5du6xLly523nnnWY0aNdxjH374YY5j1vZqPw4cONAuuOACt0/0fn/++ad7XPtT43z99dez/d7OnTvt9NNPt3feeSf0Ot526jjccsst7nt91et7RowYYdddd517Te2D5557znbs2BF6PKdt0HY3atTIff/II49Yw4YNbU/MmDHDmjdvbqeddpo1aNDAdbRq2bKlG7snLS3Nunbtaueff757/yuvvNK+++67HM+5vPCOWeT5pPcO347ly5fbXXfdZXXr1nXH9YYbbrAxY8Zk+5358+dbmzZtrHbt2u52zz332IoVK0KPa0x6r/79+7tjqufonM/LuZfX7Rg+fLjdd9997nzRefr4449nO44AAAAAAACJhBAVAAAAAADw1VNPPWXVq1d3ty+++MJOPvlkFwAaOXKkPfjgg/b222/bYYcdZnfccUcoSKWwSdu2bV1ARgGg559/3pYsWWKtW7d2S8/pMQVoDj74YPeaCtsUpIceesgFtp5++mnr1auXG3vnzp1t4sSJ7nEFXW688UabPXu2PfHEE/baa6+5cSn8E7nEoAJad955pwv9KBjzwgsv2NixY93rKXikwJEeU8Aqt6X3unXrZvfee6+98sortnnzZrv55pvd0nnlypWzCy+80IYOHWrBYDD0Oz/99JMLzVxzzTXuZ+037S/RcVCQTfRVx0n0Ggr8VK1a1Xr06OHe75tvvnG/6712TttwyCGHuGMqCr553+eF9p0CU6JAWLt27ez999+3adOmhZ6jMWh8Ch+1atXKnR8KCelc8sJG0c65gqLjrHCUAmra5p49e7r9r21dtmyZe47OVZ0ff/31l7388svu/NU53axZM3dfOO0f7UcdA21HbufentB+OPLII90Yb7/9dhfC8wJ1AAAAAAAAiSbV7wEAAAAAAIDEdtxxx9n+++/vvld3oQEDBrgOSvqqLj6ijkbqHvTqq6+6IM7MmTNdtyOFVQ499FD3HAWtFLxSKKhy5cpWoUIFK126tHvNgqYORgrqKJgk6uKjoIzeT9QdSd2f+vXr50Iq3jZcdtll9uabb9pbb70Veq1LL73UmjRpku21Faa6/PLL3c/qZrTvvvtaxYoVcxzTtm3b7N1337UzzjjD/XzKKae48X3yySfWsWNH9x7qxqQOR/Xq1XPPUahI3b4OP/xw97P2m26iY6JjI/qqmwJKOgbnnnuu++qpUqWKCzep25ICazltg/bRSSedFHo/hYDy6r333rMDDjjAPvjgA9tnn33cfQpzKZDkmTBhgv3yyy8uUKb9LRqvQk0a8xVXXLHbOVeQFIJavHhxKMjnHQuFodLT093P+l7j79OnT2gc9evXd8dL26ZQlOemm25ynbzyeu7tCY3Pey+9vzpdjR492nW6AgAAAAAASDSEqAAAAAAAQFxRtyl1kFJ3oMzMzND9WtJMnX3+/vtvF64qU6aMNW3a1AVMFFBSUEdhlaKg91IHKS3Pp4BOeBjF2wYFhRTw8rYhOTnZjVNdm8J5gaLw11YXpbVr17rX1U2hmdxUqlQpFKASdXxS56IpU6a4nxWWOuKII2zIkCEuRKXX1zjVtSqvFA7S7ym8Fn5stJyiwkAK4ShEld9tyI26LWkfegEq0TZ6QTXRNiUlJbn3DB+jltvTvl+wYMFu+7wg/ec//3EhLXUgGzdunJ1zzjluzFq6MHw7FH4qW7ZsaIzafzp+CoHldn7kdO7ticgAmYKIWgITAAAAAAAgERGiAgAAAAAAcUUdnDZs2BBziTU9ppBK37593VJuWoJM3ZYOPPBA17XngQcecCGawqQuR+r6NHz4cPvhhx9cQEohpWeeecYFerQNWrot1jaoK5JHHZrCPfbYYy7MosDPs88+624KCnXp0sVOPPHEmGPyOnKFU+cnLSkoGuN1111nvXv3dsu4KUyl4E7jxo3zvN3aLtFScrpF0tKBe7MNudEyidE6cim4FD5GdcyqXbt21NfQGAszRKVz76OPPnLL4mm5RHX7KlWqlOscpX120EEHuTGqK5hukdRBLVzk+ZHbubcnwsNootcKX+4RAAAAAAAgkRCiAgAAAAAAcUXLtWl5uPDl4iI7LkUukTZt2jT74osvXLhEIR0tkbc3srKysv2sJQIjx/jQQw+5m7ozaRnBnj17upCMgl16XJ2GOnXqFPX1c1p6TY/dfffd7rZ69Wr7+eef3WtribVvv/025u9t3rx5t/s2btyYLXSkEFWPHj1s7NixLoSj5e7U0SuvFFQTbZe2L5ICQnuzDblRMEvbFG0JPS3rJ9r3Ch4pWBfN0Ucfne/398J5uZ0fCrQpMKawmpam/P77761Xr15Wvnx5d5/GqOBTq1atdnuP1NScy3W5nXsAAAAAAADIn+R8/h4AAAAAAECBUQccj8I5a9asceGfmjVrhm5aKu6DDz6wlJQU69Onj1veTwEqBXbq16/vuh2JQjuRr7kn1J1p3bp12e6bPn166Hstd6Yl1BSMEYV37rzzTheK8d5b27BkyRI75phjsm2Duj+pc5a2IZpdu3bZxRdf7DoZiZbfa968uV1++eWh145l6dKltmjRotDP2oYZM2a4feNRpyL9rIDR3LlzXagqJ5Hj1LbquKxcuTLbdik09Nprr7kl5vKyDbG2PzdaNvCXX36xtLS00H16T43Ho32vUJM6KoWPcf78+S5AFr68Yn7ODQk/PzIyMmzmzJmhn7XPdS7oPoWu1PXqwQcftBNOOCHb+bFw4UL3mDe+GjVquPNa3atiycu5BwAAAAAAgPyhExUAAAAAAPCdOhwpfPLrr7+65eW0VJ+69Nx11112+OGH24QJE1wnn5tvvtktjVavXj3Xqeqee+5x9ymU079/fxeoUrjKe011LRozZowLqxxyyCF5GkuDBg1ct6RTTz3VdS0aNGiQW5ovPIikjkjPPfec/fPPP1a5cmX7448/3Pu0adPGPadly5YuMKWvt912m+tApKXbBgwYYI888kjM9y5btqxbAlAdtrSd1apVc2GswYMHu2BSeHBI26plDT0KDWl/KbCj/aHXUGeoFi1aZHuPpk2bWvv27e3YY4912xhu+fLlbsm80047LdT1SEaPHu1eS12+9PpPPvmkew/t661bt7pOSAoWaex52QbvdXW8o40jFm2f9uMdd9zh9qve+80333SBKK9LlEJGClu1bdvW3fT6CjS99dZbdu6554aWyws/56pXrx7qopUTPUfLEn766afu3NDPCqQpOOYtu6fX0j5Qt6527dq5pQZ1/iq0dsstt7jnaFw33nijO1+aNWvmuoGpk9qIESPcOGPJy7lXkNauXetu2iave1rkuadxKBCmsUQuRQgAAAAAAFCcJAVVYQMAAAAAAPDRxIkTXbhow4YN9uKLL7rOOupspPDOtm3bXHhE4R8FZ7wOQuPGjXOdhdRhSMurqZPP/fff7wI0ovv184oVK+y+++6z1q1b52ksCl6pq5WWvNPSalryTq/9+OOP27x589xzNM7XX3/djUHL6Cno1aRJE/ce3vgUSNI2KKSjzklaolCBJm2HqHtSo0aN3PaGd4RSKOWNN95wy7TpfdT5SWPQtiicIw0bNnT7RGEeefjhh23y5MmuK5H2yc6dO90+7Ny5c2j5w/DXP+OMM6xjx44ujBROr6Owk7edgUDALRun7kgKyQwbNszdryCTuoItWLDAhYdq165tDzzwgAtM5XUbXnrpJRccUtBKXcb0NS+mTp1qXbt2daEkva7CQ++8845ddNFF7hiJOlEpXKWOTVrqT52y1AlLoTtv+cLIc+7KK6/M0/ur45fOD41Dnal0PLVNX375pY0aNSr0HB17LTOpoJd37G+44YbQ68yePdu6devmupypPKdOVTp/dE7IpEmTXOhKIa26deuGfi8v515uYp173nnkbUf37t1dGE7H0TuPIs89b5yRr5VfgYXLLb1n/71+HQAAABS+sq9HX74cAIDiihAVAAAAAABAMRcZfsmJAlDqkqTuRQohFScKpClspRCYRyElBca0TV6nJxRfhKgAAACKD0JUAICShuX8AAAAAABAiaeOSrrlRp2nSiotFTdr1iy37KE6BsVTgCozMzPX56jLkro3abk7LUeoJQO3bNlivXv3dssDXnHFFZbo54c6suU2X1LLHmopRgAAAAAAAGQX35UfAAAAAACAAqAl7rQsWW7Cly0rabSE28cff2ynn366W6IvnigQlZtrr73WXnjhBUtPT7d+/frZmjVr3FKCderUcUvJVahQId/v/+ijj7plDHPjLXMYr1q2bOk6kuVES/HlpWMZAAAAAABAomE5PwAAAAAAUOKtW7fO1q9fn+vzqlWrZqVLly6SMeH/qUNWbsqXL19oATcFzDZv3pzr82rWrGnxbPHixbZ9+/Ycn6PzW+d5vGI5PwAAgOKD5fwAACUNISoAAAAAAAAAcYEQFQAAQPFBiAoAUNIk+z0AAAAAAAAAAAAAAAAAAPBTqq/vDgAAUESCaelmO9MsuCvNbFeaBXemmaWl/3t/WoZZur7X1wyzzEyzQNAsEDDXtDMQCP3svga9n//3fVKSWWqKWWqqWUqKJZX63/e6L0Xf677//ZyaakmlS5ntW9aS9i1rts//vu67jyXpcQAAAAAAAAAAAABFjhAVAAAotoI7dllw6z8W3LbdbOt299W7uZ/12D87zHbs+jcAFe+8cNU+ZUNfXcBq/30t6aADLKmcbvu77+2A/SxJ4S0AAAAAAAAAAAAAe40QFQAAiFsuBLVxiwX/2mKBjZst+NffFty0xYJ//2OmoFRmlpUo6oKVnmHBLdvcj8GcnqsOVwfu92+wKhSw+t/3FQ6ypIPLW1LZMkU1cgAAAAAAAAAAAKBYI0QFAAB8EwwEXUAqqICUC0v9Lyil+zb9/W+oCNFlZZlt3mpB3WI9RyGrgytY8sEVLOmQ8u77pEMqWFKFcpaUkly04wUAAAAAAAAAAADiGCEqAABQJLSsXmDNBguu3mDBNRv+/X7dXwSlCpNb0nC7ZS1akf3+lGRLqlju325VClYd9h9LPvJQSzqsoiWpwxUAAAAAAAAAAACQYAhRAQCAAhXMzLTgmo3/hqT+dwus2fjv8nuID1kBC67f5G5mi/7//tSU/w9UVTr0369HHGxJpUv5OVoAAAAAAAAAAACg0BGiAgAAeyWgpfeWrrbAsn9vwdXrXUgHxVBmlgVXrrOslevMJv3vvuSkf7tVHXmoJVc65N+vRx1mSWXL+DxYAAAAAAAAAAAAoOAQogIAAHkWTEu3wPI1FvxfYCqwbI3ZPzv8HhYKUyDoll3ULTB9zv8Hqw4/2JKPqWTJxxxpyVUrWdJBB/g9UgAAAAAAAAAAACDfCFEBAICYglv/scCCZRZYtPLfLlPrNrpQDRKcglWr1luWbuOmu7uSKhxkSVX/F6o6ppIlHVrRkpKS/B4pAAAAAAAAAAAAkCeEqAAAQEhwZ5oFFi23wPxlLjyl7kNAXgQ3/e1ugamz/71jv30sucoR/3arOuFotwwgoSoAAAAAAAAAAADEK0JUAAAksGBGpgWWrPq325RCUyvX0mkKBWP7TgvMXuRuoVDV8UdbcrUqlnJCFUsqf6DfIwQAAAAAAAAAAABCCFEBAJBgAqvXW2Du4n+7TS1ZZZaZ6feQkCihqt/+dDedcUmHVLDkE4+x5JOOteRjK1lSKv8sBQAAAAAAAAAAgH/4axUAACVcMCtggUUrLDB7obtpyTXAb8H1myxLt7HTzEqXsuTjKlvySVUt5aSqllThIL+HBwAAAAAAAAAAgARDiAoAgBIouDPNAn8utqw/FrqvtjPN7yEBsaVnWGDOIndzXaqOPMRSTqlmyaecYMmHVvR7dAAAAAAAAAAAAEgAhKgAACgh1GEqS92mFJxavMIsK+D3kIB8Ca5ab5mr1psN/8WSDq3owlQpNU+w5EqH+j00AAAAAAAAAAAAlFBJwWAw6PcgAABA/gS3bLOsGXPdLbhynd/DAQpVUsVyllzzeEs55QRLOvoIS0pK8ntIAAAAAAAAAAAAKCEIUQEAUMwEt++0rN/nWdb0ORZcstKM/5MjER20v+tOlVLrREs+ppLfowEAAAAAAAAAAEAxR4gKAIBiIJiW7pbpy5oxxwLzlrJUHxDRoSrljJMtWbeK5fweDgAAAAAAAAAAAIohQlQAAMSpYFaWBf5cYlnT51pg9kKz9Ay/hwTEtySzpGMquUBVymknWlLZMn6PCAAAAAAAAAAAAMUEISoAAOJMYPUGy5o00y3XZ9t3+j0coHgqlWrJJx9nKWfWsORqVSwpOdnvEQEAAAAAAAAAACCOEaICACAOBHelWdaMuZY1caYFV6z1ezhAyXLAfpZS+yRLqVPTkg8/2O/RAAAAAAAAAAAAIA4RogIAwEeBZWss69ffLOu3P1muDygCSVUrWerZtSz5lBMsKSXF7+EAAAAAAAAAAAAgThCiAgCgiAXT0i1r2hwXngquWu/3cIDE7U5V9xRLrX+qJZU/0O/RAAAAAAAAAAAAwGeEqAAAKCKBtRsta9x0F6CytHS/hwNAkpMsufpxlqLuVCccbUlJSX6PCAAAAAAAAAAAAD4gRAUAQCHLmrfEskZPtcC8JX4PBUAOkg4ubyln1bKUOjUsaZ+yfg8HAAAAAAAAAAAARYgQFQAAhSCYmfnvkn1jplpw7Ua/hwNgT5QuZSm1T7KUBmda8iEV/R4NAAAAAAAAAAAAigAhKgAAClDwnx2WNX6GZU74zWzbdr+HA2BvJCVZco3jLLVhXUs++gi/RwMAAAAAAAAAAIBCRIgKAIACEFj3l2WNnuK6T1lmpt/DAVDAkqpWcmGqlOrH+j0UAAAAAAAAAAAAFAJCVAAA7IXAohWWOXKiBeYtMeP/qECJl3T4wZZ6QR1LrnWSJaUk+z0cAAAAAAAAAAAAFBBCVAAA5EPWgmWW+eMECy5a4fdQAPih/IGWet4ZllLvFEsqU9rv0QAAAJQYgYXLLb1nf7+HAQAAgDwo+3onv4cAAECBSi3YlwMAoGTLmrf03/DUkpV+DwWAnzZvtcwhoyzzpwmWck5tSz3/TEvap4zfowIAAAAAAAAAAEA+EaICACAPsuYudmGJ4NLVfg8FQDzZscuyfpxgWb9Mt9QGZ1rKeafTmQoAAAAAAAAAAKAYIkQFAEAOsuYs+rfz1PI1fg8FQDzbucsyh/9imWOnWmrDupZydi1LKl3K71EBAAAAAAAAAAAgjwhRAQAQRdbshf+Gp1as9XsoAIqT7Tstc+hoyxw9xVIvrGcp9U+1pFT+yQ0AAAAAAAAAABDv+IsOAABhAktWWsbQ0SzbB2DvbNtumYNHWubPky21cX1LqXOKJaUk+z0qAAAAAAAAAAAAxECICgAAhafW/2WZw8Za4I8Ffg8FQEmyZZtlfvmjZY2abKkXnWXJp1e3pGTCVAAAAAAAAAAAAPGGEBUAIKEF1S3mh/GWNXGmWSDg93AAlFDBv7ZYRr/vLEmdqa66wFJOPMbvIQEAAAAAAAAAACAMISoAQEIKpqVb1ugpljl6sllaht/DAZAggms3Wsb7X1rWiVUt9eoLLPnQin4PCQAAAAAAAAAAAISoAACJJhgIuK5T6j5l27b7PRwACSrw52JLn7/UUuqfaqmXnGNJ++3j95AAAAAAAAAAAAASGiEqAEDCyJq90DKHjrbg+k1+DwUA3BKiWeNnWNb0OZbauL6lnHO6JaWm+D0qAAAAAAAAAACAhESICgBQ4gU2brbMwSMtMHex30MBgN3tTLPMb0Zb1oTfLPWKBpZyygl+jwgAAAAAAAAAACDhEKICAJRYwfQMyxw50bJ+nmyWmeX3cAAgR8GNWyyjz9eWeexRVurqCyy50mF+DwkAAAAAAAAAACBhEKICAJRIWbMWWOaQURbc9LffQwGAPRJctMLSu31qKWedZqmXn2dJZcv4PSQAAAAAAAAAAIASjxAVAKBECWz439J9f7J0H4BiLBi0rPEzLGvWfCt1TSNLOe1Ev0cEAAAAAAAAAABQohGiAgCUCCzdB6BE2rrdMj75xrImz7LUJo0tuWI5v0cEAAAAAAAAAABQIhGiAgAUe1l/LLDMr1m6D0DJFfhziaV3/chSG59lKRecaUkpKX4PCQAAAAAAAAAAoEQhRAUAKLaC27ZbxsCfLDBrvt9DAYDCl5Fpmd+Ntazpc6xU04ssuWolv0cEAAAAAAAAAABQYhCiAgAUS1lTZ1vG1yPNduzyeygAUKSCazdaeo/PLaVOTUu9ooEl7beP30MCAAAAAAAAAAAo9ghRAQCKleCWbZYx8AcLzFns91AAwD9Bs6xJsyzrj4VW6tpGllK7ut8jAgAAAAAAAAAAKNYIUQEAio3MX3+3zKGjzXal+T0UAIgP23daRt9hlvX7PLfEX9IB+/k9IgAAAAAAAAAAgGKJEBUAIO4FNv1tmQO+t8D8ZX4PBQDiUmDWAktbvNJKXXehpdQ6ye/hAMBeCQaDlpSUFPevmYgKaz/6fXz8fn8AAAAAAADEh2S/BwAAQE5/zMj8Zbqld/2IABUA5KUr1adDLb3P1xb8Z4ffowGAfBk5cqR17ty5QF9z2rRp1rp16wJ9zUSzdetW69Spk02dOrVAXzc9Pd1eeOEFGzp0qJWkcw4AAAAAAADFEyEqAEBcCvy1xdJ79LPMwSPM0jP8Hg4AFBuBmfMtretHlvXHAr+HAgB7rE+fPrZmzZoCfc0vv/zSFi1aVKCvmWjmzp1rQ4YMsUAgUKCvu379evv4448tMzPTStI5BwAAAAAAgOKJ5fwAAHEna+psy/jqJ7O0dL+HAgDF0z87LOOjwRaoU9NSr2loSWXL+D0iAAAAAAAAAACAuEYnKgBA3AjuSrP0vkMt4/NvCVABQAHImjzL0l/tY4GFy/0eCgDkqkWLFjZ58mR3q1atmk2aNMm2bNliTz75pJ111llWs2ZNu/766+3XX3/N9nvjx49399eqVcvOPPNMu/vuu0Odpx5++GEbPHiwrVq1yr3moEGD8jwePb979+7Z7tPPut+zadMm69Chg5199tlufFdffbV9/fXX2X5n9erV1r59e6tTp46deuqpduutt9qcOXNCj69cudK9Zu/eve2SSy5xz/nqq69s165d1qVLFzvvvPOsRo0a7rEPP/wwxzFre7UfBw4caBdccIHbJ3q/P//80z2u/alxvv7669l+b+fOnXb66afbO++8E3odbzt1HG655Rb3vb7q9T0jRoyw6667zr2m9sFzzz1nO3b8/5KyOW2DtrtRo0bu+0ceecQaNmxoe2LGjBnWvHlzO+2006xBgwauo1XLli3d2D1paWnWtWtXO//88937X3nllfbdd9/leM7lhXfMIs8nvXf4dixfvtzuuusuq1u3rjuuN9xwg40ZMybb78yfP9/atGljtWvXdrd77rnHVqxYEXpcY9J79e/f3x1TPUfnfF7OvbwYNmyYXXXVVXbKKadYvXr1rGPHjrZu3bo9fh0AAAAAAICSgBAVACAuBJas+vcP/dPn+j0UAChRgpv+tvR3+lvGsDEWzCrYZZgAoCA99dRTVr16dXf74osv7OSTT3YBoJEjR9qDDz5ob7/9th122GF2xx13hIJUCpu0bdvWBWQUAHr++edtyZIl1rp1a7f0nB5TgObggw92r6mwTUF66KGHXGDr6aeftl69ermxd+7c2SZOnOgeV9DlxhtvtNmzZ9sTTzxhr732mhuXwj+RSwwqoHXnnXe60I+CMS+88IKNHTvWvZ6CRwoc6TEFrHJbeq9bt25277332iuvvGKbN2+2m2++2S2dV65cObvwwgtt6NChFgwGQ7/z008/ufDTNddc437WftP+Eh0HBdlEX3WcRK+hwE/VqlWtR48e7v2++eYb97vea+e0DYcccog7pqLgm/d9XmjfKTAlCoS1a9fO3n//fZs2bVroORqDxqfwUatWrdz5oVCZziUvbBTtnCsoOs4KRymgpm3u2bOn2//a1mXLlrnn6FzV+fHXX3/Zyy+/7M5fndPNmjVz94XT/tF+1DHQduR27uWF9lenTp3soosucq+hMJt+X+EsAAAAAACARMRyfgAAXwUDAcv66VfL/GmCWeD//5ADAChAQbOsUZMssHillW5xpSWVP9DvEQHAbo477jjbf//93ffqLjRgwADXQUlf1cVH1NFI3YNeffVVF8SZOXOm63aksMqhhx7qnqOglYJXCgVVrlzZKlSoYKVLl3avWdDUwUhBHQWTRN2mFJTR+4m6I6n7U79+/ezII48MbcNll11mb775pr311luh17r00kutSZMm2V5bYarLL7/c/axuRvvuu69VrFgxxzFt27bN3n33XTvjjDPcz+owpPF98sknrsuQ3kPdmNThSJ2HRKEidfs6/PDD3c/ab7qJjomOjeirbgoo6Rice+657qunSpUqLtykbksKrOW0DdpHJ510Uuj9FALKq/fee88OOOAA++CDD2yfffZx9ynMpUCSZ8KECfbLL7+4QJn2t2i8CjVpzFdcccVu51xBUghq8eLFoSCfdywUhkpP/7frrr7X+Pv06RMaR/369d3x0rYpFOW56aabXCevvJ57eQ1RlS1b1oUOvd/Ta8yaNcsd46SkpALaGwAAAAAAAMUDISoAgL/dUT4bZsElq/weCgAkhODSVZb2ah8r1exSS6lxvN/DAYAcqduUOkipO1BmZmbofi1pps4+f//9twtXlSlTxpo2beoCJgooKaijsEpR0Hupg5SW51NAR2GZ8OCLtkFBIQW8vG1ITk5241TXpnBeoCj8tdVFae3ate51dVNoJjeVKlUKBahEHZ/UuWjKlCnuZ4WljjjiCBsyZIgLUen1NU51rcorhYP0ewqvhR8bLaeoMJCWm1OIKr/bkBt1S9I+9AJUom30gmqibVIISO8ZPkYtt6d9v2DBgt32eUH6z3/+40Ja6kA2btw4O+ecc9yY1e0pfDsUflKQyRuj9p+On0JguZ0fOZ17eaHjpZCZAmUXX3yxew2N0wt9AQAAAAAAJBpCVAAAX2RNn2MZA38y25Xm91AAILHs3GUZHw22wDm1LfWqBpaUyiUBgPikDk4bNmyIucSaHlNIpW/fvm4pt4EDB7puSwceeKDr2vPAAw8UeicdBVDU9Wn48OH2ww8/uICUQkrPPPOMC/RoG7R0W6xtUFckjzo0hXvsscdcVy0Ffp599ll3U1CoS5cuduKJJ8Yck9eRK5w6P2lJQdEYr7vuOuvdu7dbzk5hKgV3GjdunOft1naJlpLTLZKWDtybbciNlkmM1pFLwaXwMaqbUu3ataO+hsZYmCEqnXsfffSRW0ZQyyWq21epUqVc5yjts4MOOsiNUV3BdIukDmrhIs+P3M69vNCx0GdHnbB0Puh77cO77rrLdXwDAAAAAABINPzFBABQpIJp6Zbx1U8WmPrvH3EAAP7IGjfdAktXWakWV1nyweX9Hg4A7EbLtWl5uPDl4iI7LkUukablyb744gsXLlFIR0vk7Y2srKxsP2uJwMgxPvTQQ+6m7kxaRrBnz54uJKNAih5Xp6FOnTpFff2cll7TY3fffbe7rV692n7++Wf32h06dLBvv/025u9t3rx5t/s2btyYLXSkEFWPHj1s7NixLoSj5e7U0SuvFFQTbZe2L5ICQnuzDblRMEvbFG0JPS3rJ9r3Ch4pWBfN0Ucfne/398J5uZ0fCrQpMKawmpam/P77761Xr15Wvnx5d5/GqOBTq1atdnuP1FxCzrmde3mlLlbeMofqjKX99dxzz7kub0XV0Q0AAAAAACBeJPs9AABA4gis32Tpb/YlQAUAcSK4cp2lv/6x6w4IAPFA3XQ8CuesWbPGhX9q1qwZummpuA8++MBSUlJcBx0t76cAlQI79evXd92ORKGdyNfcE+rOtG7dumz3TZ8+PfT9qlWr3LJnCsaIwjt33nmnC8V4761tWLJkiR1zzDHZtkHdn9Q5S9sQza5du9zyaupkJFp+r3nz5nb55ZeHXjuWpUuX2qJFi0I/axtmzJjh9o1HnYr0swIzc+fOdaGqnESOU9uq47Jy5cps26XQ0GuvveaWmMvLNsTa/rwsQ/fLL79YWtr/d7XVe2o8Hu17hZrUjSp8jPPnz3cBsvDlFfNzbkj4+ZGRkWEzZ84M/ax9rnNB9yl0pa5XDz74oJ1wwgnZzo+FCxe6x7zx1ahRw53X6l4VS17Ovbx4+eWXrUmTJm4faWlEfZa8JQH35HUAAAAAAABKCjpRAQCKRNasBZbR71uzXel+DwUAEE4dAvsOs8CCZZZ67YWWVLqU3yMCkMDU4Ujhk19//dUtL6el+tSlR8uLHX744TZhwgTXyefmm292S6PVq1fPdaq655573H0K5fTv398FqhQI8V5TXYvGjBnjwiqHHHJInsbSoEED1y1JHXnUtWjQoEFuab7wIJI6Iqlrzz///GOVK1e2P/74w71PmzZt3HNatmzpAlP6etttt7kORFq6bcCAAfbII4/EfO+yZcu6JQDVYUvbWa1aNRfGGjx4sAsmhQeHtK1a1tCjQIz2lwI72h96DXWGilyerWnTpta+fXs79thj3TaGW758uVsy77TTTgt1PZLRo0e711KXL73+k08+6d5D+3rr1q2uE5KCRRp7XrbBe10d72jjiEXbp/14xx13uP2q937zzTddIMrrEqWQkcJWbdu2dTe9vgJNb731luu85C2XF37OVa9ePdRFKyd6jpbC+/TTT925oZ8VSFNwzFt2T6+lfaBuXe3atXPL5On8VWjtlltucc/RuG688UZ3vjRr1sx1A1MntREjRrhxxpKXcy8v9PnRMn4PP/ywXXXVVS4IpoBiuXLl3GOydu1ad9P2eJ3TIs87jUFhMI0jchlCAAAAAACA4iQpqOoaAACFJBgIWOZ3v1jWz5PM+D8OAMS1pMP+Y6VaXmPJh/AHUAD+0HJiChdt2LDBXnzxRddZR52NFN7Ztm2bC48o/KPgjNdBaNy4ca6zkDoMaXk1dfK5//77XYBGdL9+XrFihd13333WunXrPI1FwSt1tdKSd1paTUve6bUff/xxmzdvnnuOxvn666+7MWgZPQW91NlH7+GNT4EkbYNCOuqcpCUKFWjSdoi6JzVq1Mhtb3hHKAVT3njjDbdMm95HnZ80Bm2LwjnSsGFDt08U5hGFYSZPnuy6EmmfaIk27UN1F/KWPwx//TPOOMM6duzowkjh9DoKO3nbGQgE3LJx6o6koMywYcPc/QoyKXSzYMECFx6qXbu2PfDAAy4wlddteOmll1xwSEErdRnT17yYOnWqde3a1YWS9LoKD73zzjt20UUXuWMk6kSlcJU6NmmpP3XKUicshe685Qsjz7krr7wyT++vjl86PzQOdabS8dQ2ffnllzZq1KjQc3Tstcykgl7esb/hhhtCrzN79mzr1q2b63KmEp06Ven80TkhkyZNcqErhbTq1q0b+r28nHt5oWOpbmEKuCmAdvrpp7tzwjuG3bt3d0E4HUPvHIo877wxRp7D+RVYuNzSe/bf69cBAABA4Sv7evSlywEAKK4IUQEACk3wnx2W8ek3Fliw3O+hAADyqmwZK3XzFZZS/Vi/RwIA2ENeiMoL8eREASh1SVL3IoWQihMF0hS2UgjMo5CSAmPaJq/TE4onQlQAAADFByEqAEBJw3J+AIBCEVi22tI/HmK2ZZvfQwEA7IldaZbx4SALXnKOpTau7/doAKBAqaOSbrlR56mSSkvFzZo1yy17qK5B8RSgyszMzPU56rKk7k1a7k7LEWrJwC1btrhl6bQ84BVXXGGJfn6oI1tucybVdUpLMQIAAAAAAOD/xXfVBwBQLGWOn2GZX49S9d7voQAA8iMYtMzhv1hg9XordeOlllSmtN8jAoACoSXutDRZbsKXLitptHzgxx9/7JZt0xJ98USBqNxce+219sILL1h6err169fP1qxZ45YSrFOnjltOrkKF/C9J++ijj7plDHPjLXMYr1q2bOk6kuVEy/HlpWMZAAAAAABAImE5PwBAgQmmZ1jGwB8tMHW230MBABSQpMMPtlK3XWvJFcv5PRQA2Gvr1q2z9evX5/q8atWqWenSBEiLmjpk5aZ8+fKFFnBTwGzz5s25Pq9mzZoWzxYvXmzbt2/P8Tk6v3WexyOW8wMAACg+WM4PAFDSEKICABSI4JZtlv7RIAuuXOf3UAAABW3fslaqxVWWUq2K3yMBAAAlHCEqAACA4oMQFQCgpEn2ewAAgOIvsHyNpb3xCQEqACipduyyjF5fWubPOS8NBAAAAAAAAAAAUFyl+j0AAEDxljVjrmX0H26Wken3UAAAhSkQtMyhoy2wcp2VuuESSypdyu8RAQAAAAAAAAAAFBhCVACAfNFqsJk/jLesHyf4PRQAQBEKzJhr6X9tsdK3X2dJB+zn93AAAAAAAAAAAAAKBMv5AQD2WDAz0zL6DiVABQAJKrh8jaW/9ZkF1m/yeygAAAAAAAAAAAAFghAVAGCPBP/ZYenvfGGBGX/6PRQAgI+Cf22x9Lf6WmDxSr+HAgAAAAAAAAAAsNcIUQEA8kwdR9Lf7GvBJav8HgoAIB7s2GXp735hWb8RrAUAAAAAAAAAAMVbqt8DAAAUD4FFKyy992D3B3MAAEIysyzj028suOlvS21Y1+/RAAAAAAAAAAAA5AshKgBArrJmzreMvkPdH8oBANhN0Cxz2BgLbt5qqdc2sqRkGt4CAAAAAAAAAIDihb9uAABylDnxd8v4ZAgBKgBArrLGz7CM3oMtmJ7h91AAAAAAAAAAAAD2CCEqAEBMmSMnWuaAH8wCQb+HAgAoJgKzF1l6j34W3Lbd76EAAAAAAAAAAADkGSEqAMBugsGgZQwZZZnfjvV7KACAYii4Yq2ld//MLe8HAAAAAAAAAABQHBCiAgBkE8wKWEb/4ZY1ZqrfQwEAFGPBjVssrftnFtiwye+hAAAAAAAAAAAA5IoQFQAgJJiRaRl9Bltgyh9+DwUAUBJs2Wbpb/ezwOoNfo8EAAAAAAAAAAAgR4SoAABOcGeapb83wAKzF/k9FABASbJtu6X36GeBZWv8HgkAAAAAAAAAAEBMhKgAABbUH7h79rPg4pV+DwUAUBLt3GXp735hgYXL/R4JAAAAAAAAAABAVISoACDBBf/WUkufW3DVer+HAgAoydLSLb3XQMuau9jvkQAAAAAAAAAAAOwmKRgMBne/GwCQCIJbtln6O/0tuGGz30MBACSKlBQrdfMVlnJqNb9HAgAAAAAAAAAAEEKICgASFAEqAIBvkpOs1A2XWsqZNfweCQAAAAAAAAAAgEOICgASNUDVs58FN27xeygAgESVZJba9GJLrX+q3yMBAAAAAAAAAACwZL8HAAAoWgSoAABxIWiWOfAHy5ryh98jAQAAAAAAAAAAIEQFAImEABUAIK4EzTL6D7es6XP8HgkAAAAAAAAAAEhwhKgAIJECVD0IUAEA4kwwaBmff2dZv8/zeyQAAAAAAAAAACCBEaICgEQKUP1FgAoAEIcCAcvoO9Sy/ljg90gAAAAAAAAAAECCIkQFACUcASoAQLGQFbCMj7+xrLmL/R4JAAAAAAAAAABIQISoAKAEC27faenvDSBABQAoHrKyLKP315Y1f5nfIwEAAAAAAAAAAAmGEBUAlFDBtHRL7zXQguv+8nsoAADkXWamZXw0yAKLVvg9EgAAAAAAAAAAkEAIUQFACRTMVCePwRZcvsbvoQAAsOfSMyz9g4EWWLrK75EAAAAAAAAAAIAEQYgKAEqYYCBoGZ8NswBLIQEAirO0DEvv9ZUF1m70eyQAAAAAAAAAACABEKICgBImc+APFvh9nt/DAABg7+3cZenvf2nBLdv8HgkAAAAAAAAAACjhCFEBQAmSMWyMZU2c6fcwAAAoOFu2/Ruk2rnL75EAAAAAAAAAAIASLCkYDAb9HgQAYO9l/jzZMoeO9nsYAAAUiqSqlax0m+stqVSq30MBAACFKLBwuaX37O/3MAAAAJAHZV/v5PcQAAAoUHSiAoASIHPyLAJUAIASLbh4pWX0HWbBAHNAAAAAAAAAAABAwSNEBQDFXNYfCyxzwPd+DwMAgEIXmDXfMgeP8HsYAAAAAAAAAACgBCJEBQDFWGDlWteVw+jKAQBIEFnjZ1jmT7/6PQwAAAAAAAAAAFDCEKICgGIquGWbpX8wyCw9w++hAABQpDKH/+KWsgUAAAAAAAAAACgohKgAoBgKpqVb+odfmW39x++hAADgi8wBP1jWnEV+DwMAAAAAAAAAAJQQhKgAoJgJBoKW8elQC65a7/dQAADwTyBgGZ9+Y4HVG/weCQAAAAAAAAAAKAEIUQFAMZM5ZJQF6LwBAIBZWoZlfDTIgv/s8HskAAAAAAAAAACgmCNEBQDFSOb4GZb1yzS/hwEAQNwIbvrb0vt8bcGsLL+HAgAAAAAAAAAAijFCVABQTGT9ucQyB4/wexgAAMSd4OKVljnwJ7+HAQAAAAAAAAAAijFCVABQDATWbLCMT4aYBYJ+DwUAgLiUNWmmZY6lWyMAAAAAAAAAAMgfQlQAEOeC27Zb+gdfme1K93soAADEtcxvRlnWvKV+DwMAAAAAAAAAABRDhKgAII4FswKW/sk3Zpu3+j0UAADiXyDoOjcG1m/yeyQAAAAAAAAAAKCYIUQFAHEsc9hoCy5a4fcwAAAoPnamWcZHgyy4c5ffIwEAAAAAAAAAAMUIISoAiFNZv/1pWWOm+j0MAACKneD6TZbxyVALBgJ+DwUAAAAAAAAAABQThKgAIA4F1m60jC+G+z0MAACKrcC8JZY5bIzfwwAAAAAAAAAAAMUEISoAiDPBXWmW0edrs7QMv4cCAECxljV6imXNnO/3MAAAAAAAAAAAQDFAiAoA4kgwGLSMft+5ZYgAAMDey+j/nQU28P9VAAAAAAAAAACQM0JUABBHskZNssCsBX4PAwCAkmNXumX0GWLBdDo8AgAAAAAAAACA2AhRAUCcyJq/zDKH/+L3MAAAKHGCazZYxlc/+T0MAAAAAAAAAAAQxwhRAUAcCG7eahmffmMWCPo9FAAASqTAlD8sc+JMv4cBAAAAAAAAAADiFCEqAPBZMCtg6R8PMdu+0++hAABQomUOHmGBNRv8HgYAHwSDwWLxmiVNYe2jkrTvS9K2AAAAAAAAFHeEqIAS4Pfff7frr7/eTj31VDvzzDPtyy+/tHgxadIkmzhxYujnlStXWrVq1axZs2a+jiueZH4/zoLL1/g9DAAASr6MTMv4eIgF09L9HgmAIjRy5Ejr3Llzgb7mtGnTrHXr1gX6miXJ2rVr3f5ZtWpVgb7u1q1brVOnTjZ16lSLJ927d3fXuSVhWwAAAAAAABIZISqgmAsEAnbvvfe6INWFF15oN9xwg51yyikWD/r162e33HKLrVixInTfgQce6MbbpEkTX8cWL7IWLLOsUZP8HgYAAAkjuH6TZXz1k9/DAFCE+vTpY2vWFOykBU1cWbRoUYG+ZkkyYcIEGzNmTIG/7ty5c23IkCHuOri4K0nbAgAAAAAAUFKk+j0AAHtn3bp1tn79ejv++OPttddes3iycePG3e5TiKpdu3a+jCfeBLfvtIzPv9X6DX4PBQCAhBKYOtsyjz3KUuvGR/AcAAAAAAAAAAD4j05UQDGXnv7vcjTly5f3eyjYQxlffG/29z9+DwMAgISUOXikBTZs8nsYAApZixYtbPLkye6m5da03PiWLVvsySeftLPOOstq1qzplkb/9ddfs/3e+PHj3f21atVyS6bffffdoc5TDz/8sA0ePNgtVafXHDRoUJ7Ho+dr6becloLbtGmTdejQwc4++2w3vquvvtq+/vrrbL+zevVqa9++vdWpU8ct637rrbfanDlzdltGvXfv3nbJJZe453z11VdR94+2591333X74/TTT7e2bduGluFbsGCBe50vvvgi2++ps9dJJ51k33zzTeh1GjZs6L7X/njkkUfc940aNXKvH97B6/LLL7caNWpYgwYN3LZnZWXladt17NTpWPRV75lXGoM3vsh95B0/vb5+HjdunDVv3tx1eL7ooovs888/z/Z7aWlp9uKLL7ox6vzQtuq+SNrW6667zk477TT3WtqW4cOH57otI0aMcL+n7dd7PPfcc7Zjxw7bE9ombYu2MZz2QfjxyOk8z+t4dAwbN25sb7/9tjsfzznnHPv777/3aLwAAAAAAADxghAVUIyp0Kqirnh/FNB9uun7ZcuW7fY75513XrYCvVc4fuaZZ2zatGnWsmVLq127tiuiqpir4m4033//vXtcRdIzzjjDFV6HDRuWrTirIqo8/vjjoQKu937NmjXL9noqnH/66ad27bXXugK/3v/GG2/c7Y8F3mtfccUVtnbtWnvooYesfv36rqB71VVXWf/+/a04yJwwwwJ/LPB7GAAAJK70DMv47FsLZrGMElCSPfXUU1a9enV3UxDo5JNPdoGjkSNH2oMPPuiuWQ477DC74447QkEqLUeuIJGCPu+88449//zztmTJEmvdurVbek2PnX/++XbwwQe711QYqCDpGkdBlqefftp69erlxt65c2ebOHFiKGika6XZs2fbE0884ToSa1wK/kQGYBRwufPOO61r164uABON9oVCN7pu03tqmTldU+7cudN1PNb1mZadC6frtH333Td0Par97F3/aX8ojCO6T/tL3nvvPTdeXb8ptKXxavt0X162XcdO4TfRV71nYdB5offt0aOHC5ZpLOFBKo1xwIAB1qZNG3vjjTdcYEhLRob77LPP3BgvvPBCt92vvvqqlS5d2jp27OiuY2Nty9ChQ+2ee+6xqlWruve/9957XVBN+zBYwB2MczvP92Q8CvVp+cZu3bq5UNlBBx1UoGMFAAAAAAAoKiznBxRjChwpkKTw0ZFHHul+1lfNit5T06dPd4VgzZK94YYbbPny5W7Gqe5XwVgzZz0qwH/44Yeu+5VmFh9wwAH2ww8/uBnDKsSqYK6AlYrxCnddcMEFrkispfy2bt0atZuWfkczfjX+a665xjIyMlwRVgVzvcYLL7yQ7XdUqNY4y5Yt62Yy79q1y7799ltXfNYsYP1hJF4F1m60zCE/+z0MAAASXnD5Gssa8aulXhw9WACg+DvuuONs//33d9/rWkfXPH/++af7qnCQN9FEoSEFXdStaebMme76QiGZQw891D1HQStd36gDT+XKla1ChQouFKPXLGi6/lFwRQEc0cSVcuXKufeTjz/+2HXT6tevn7t+8rbhsssuszfffNPeeuut0Gtdeuml1qRJkxzfT2EphaiOOuoo97MCM7q2VFBKk1/0+7rO0rWe9xw9puswXY95+9mjfaN9JOpWValSJdu2bZv17NnTXcMprCXqWKTt0s+tWrVyga2ctl3H0XsffQ1/z4KkrkqPPfaY+/7cc8+19evXu7FrXyxcuNBd+3bp0iU0MUjPufLKK91jHu2r22+/PRQgEx0rdXTS5CXtu8htUShJ56BeT189VapUcZOddH1ckIG93M7z/fbbL8/jyczMdNfummAFAAAAAABQnBGiAooxFWC13IIXomrXrp27Pz8hKs02VtHztttuC92n4rtmm+oPDF6ISqEqBahU4P7oo4/skEMOcfer0K1Cu2YaqzCuoqoK5SqCK2j13//+1z0vWohKs3YVoFIBVjNXNaPZm2GtYrr+kKHZyipMe1TI1qzn119/3UqVKuXuU3cqhac06zdeQ1TBzEzL+HSoWUam30MBAAD6w+9Pv1ryiVUt+ejD/R4KgCKgblPqIKVJHgp+eDTxQ5NFNFlD4aoyZcpY06ZN3VJ4CijVrVs328SSwqT3UgcpLc+nAIu6XulaLXwbFE5S8MXbhuTkZDdOb3k9j56XG3Ui9sJRoi5M+nnKlCkuKKTAj5avUzcqdSLSNeHSpUvtpZdeyvM2zZgxwwV21FU4fL97S+xpWTldY+a27UVB17XhdN2pYJG6NE2dOjXbuL19f/HFF2cLUXlL5un6d/Hixa5LtNflWZOIotHz1KVKoabwfaRl9hQg0z4qyBBVbue5OoLtyXjycq4BAAAAAADEO0JUABx1k1L3qHCa/asQlZbg83jLODzwwAOhAJWoXb9m6y5YsMAVx/eEQlIqPGtJQS9A5c1g1mtqVriWyQgPUYmWGfACVFKvXj23HeHjjTeZQ8dYcM0Gv4cBAAA8gYBlfD7MSndoaUml///fFQBKJnVw2rBhgwtRRaPH1BWob9++9v7779vAgQPtk08+cV11b7rpJncdlJSUVKhj1MQSLXc3fPhw1/VI10paVk7XS5o8o21QKCfWNqizlCf8+ioWrwtRuIoVK7pAmSgwo5CNAloKUakL1THHHOOWYM8rjdm7hotGk2Tysu1FIXJ//B979wHeVnm2cfyW5BmP2Imz9yIhJEBIIAPChkKBMlv23rtl06+ltMxCS8ts2QVKy2gZLVBWwggQAiSQkEDIdpazp+Mtne963iBjO463cyT5/7suXbalo3Oe90h2YuvW89i5MHY+oufEujJXZcG8qqyzs43ps8Cb/c5q3b2GDBnibtveWL7oObLxgXbZ3jlqKdYhrK7neWPrsc5VAAAAAAAA8Y4QFQDHxi0kJVX/kWCBpJrvlLWOVaa2P5hbxym7NMaWLVvcu5jtj/C1/fHe3hUdCoXcO5Frsj9E12Q1WwescDjs7hdLwt/MV3jSVL/LAAAANXir16viP+8p+YRD/S4FQCuz3xdsHFnV8WQ1gyXGuvFYl137XcjGr9mbOizcY0EYG5HXHPa7SlU2Oq1mjddee627WHci64Jk4+QsyGKBF7vdxtxdd911te4/OvavodavX7/NdWvWrKkcyWdspJ91PLYRcBZuslF1jWHhHGPn3c5/TXl5eQ1ae1NZ8K2+8171fFRd+9q1ayvDVNHwlJ2f7t27V24TDRyZSCRS+YYfCydZhyb7Xds6VUXflFTXObLH1R7fmuyNS41Zb7SWmr9/V1XX8zw6brAl6gEAAAAAAIgXQb8LABAbrI3/9v7wWvWdstE/DkcDVs1VWFhY5/7sj83Wkarqu6kbW3Ms8LYUq/z5N/0uAwAAbEf4k69c4BlA4rFuRlEWBikoKHCBmOHDh1debDTZY4895t6IYePGbbyfBUsskGSjxW+55RZ3/+XLl2+zz8awrk4rV66sdp2Nx4tatmyZG2H35ptvVr5x5Pzzz3fdmKLHtjXYaDl7I0rVNVhAx0I7jX0ziYVnqgapZs6c6br72rqrjnCz8NPdd9/t3rRy9NFH17nPmufHRsdZqMjWXrVm+33PRrTb8Rqy9qa+Uca6JNkaS0tLq627Nu+++261r60e64JlwSrrfhy9rqr33nuv8nM7jj0+NiYvukbz4YcfVgs21VyLrdeel3Yuqp4je7PRH//4x1rfWFTX88zYOL4oG89XNexV3/O8JesBAAAAAACIF3SiAhJYzXedmtrCSI0RHQdhfziPjjWIsj++Woip6oi9+kRb/td8IaHqGixolZOTo3hW/vK70ubq7/oFAACxxQLPwWvPViCz/vFXAOKHdfj58ssv3Wi1Qw45xI0wO/vss3XRRRepW7du+uSTT/Too4/qtNNOc7/LWFDGOiZdeuml7joLuzz33HMuaGKhk+g+rRvRBx984DoNVR11Xpf9999fr7/+ugsV9enTRy+99JIbzRdlYZ2uXbvq1ltvdb8HWXDHQk12nAsvvNBtc9ZZZ7nAlH0855xzXHekN954Qy+88IJuvPHGOo//1VdfuTepVO20ZL8jnnfeebr44otdpyIbqbfTTjvpyCOPrHZf60Zl4Zl99913my7C1mXJfh8cOnRo5fkx77zzjtt+wIAB7hj33nuvW9fo0aPd74D2tf0OaZ2P7I019a09+uab999/33VCio7Iq489bs8884wbF2/hpjlz5ujJJ5+sNZRl19sbdnbffXe9/fbbLiBl6zb2mJ144onuHFVUVLjH3h6L7777rvL+9nuyPY7PPvusW4+di0mTJrlxedHzvb21/OIXv3BjAK0uq3nTpk2uE5edq+2Nb6yNnd+0tDTdeeeduvLKK93jet9991X7vbq+57l93VL1AAAAAAAAxAs6UQEJKDq+oWar/nXr1rnwU3NE/0g9ffr0bW6zP9rbOAAb81C1K1R975C1P0SvWrXKjfWrycZF2B+Z7Y/48So8c64i07aOQQQAADFs8xaVv/iW31UAaGGnnnqqC0dZV6PPPvvMhVtGjhzpuirZdRaUufrqqysDSPY7j400syDPVVddpcsuu8x18HniiScqR4ofd9xxLihjAZRXXnmlwbXYMSyM8vvf/15XXHGFe5OKHbsqG682fvx4FzCykNQ///lPV4Mdy1iAycIudvybb77ZhcHs96bbbrvNBavqYgEgC8FUNWrUKFeTBYxuv/1215HIAj81xwJal6jo2muycXtWY9UQj3WQsvCRrdX8/Oc/1w033OCCVXbe7fzb42ChtmigqL61Dxo0yIW77DG85pprGnze9957b11//fWu+5Qd20JndqzaQlS//OUvXXDLQmX2e6+Fj6oGyn7zm9+4fVjdVltJSYl7DKqyc2yPk63X1m37+ctf/uKeP1988cV21/LTn/7UnTPrTmb7tMfXRkxaAKxXr14NXq8Ft+6//343wtDOnZ1P+zhs2LDKbRryPG+pegAAAAAAAOJFwIu1mVcAGsXetXzooYe6kQ72h0xjfzy3P3rbH0Evv/zyym2tNb/9oddE3ylrrfkPOugg7bHHHu4P1FXVdtunn36qM888073D2P64au96NhbOsncm2wiGCRMmuHfc2h9k7R269s5Ve+Fie/t8+OGH3QgH+8O2/SE72u3KxiBccMEF7gUB+8P7Mccc464/8MAD3XFmzZpVORohqq7b/OAVlaj0rselTXShAgAgXiSddLiS9hrudxkA0OpOP/109zH6u2RdHnnkETcCzjon1QxYJYIpU6bojDPOcL9LWwgM/onMW6yyh57zuwwAAAA0QNo91/ldAgAALcr/hAGAFmfvLraAkr371cYq2DtFP//8cxe4so5ONrqgqazlv/2h3f7IftRRR7l3LNsf0O3d29ZN6te//rULUBkbjWGeeuopFRQUVP6BviZ7h7GN1vj444/dO3Ft3IONRrA/zq9evdq90zkaoIo35a9OJEAFAECcqXhlokJD+imQnel3KQDigI0gr22Uek2x8CaPprBOw/Y75D/+8Q9dcsklMRWgst8b6xMMBt0lEVhnqfreC2kdoWvrsAUAAAAAAID6xedf8ADUaeDAga5LlLXvtzEENrrC3kl71113uUtzQlTmV7/6lYYPH+6CWv/973/dCwY777yzG3tw+OGHV25nn0+aNMl1prIRBVZDv379ttmf1ffoo4+6bWwUhv2R3q6z8QI2/qDq6IR4Ev5mviKfz/S7DAAA0FglpSr/97tKOTs+Q9wAdqwHH3zQddStj/1eZG9wiTezZ8924wMPOeQQ9waYWBHtclyfmh2a45k9BtZ5uS5Vu1QDAAAAAACgcRjnBwCtwCspVeldT0gbNvtdCgAAaKLks45RaNed/C4DQIxbuXKl68pbn8GDB8dUF6d4V1ZWVjmmvi6dO3dWly5dlAhsvbbuumRkZKh///6KZ4zzAwAAiB+M8wMAJBo6UQFAK6h49T0CVAAAxLnyl95VcFAfBdJT/S4FQAyzgE6ihHTiiQXSrENyW2JBPAAAAAAAALSeYCvuGwDapPB3ixSeMsPvMgAAQHNtKlTFa+/7XQUAAAAAAAAAANgBCFEBQAvySstU/sKbfpcBAABaSPjT6YosWOJ3GQAAAAAAAAAAoJURogKAFlTx+ofS+k1+lwEAAFqKJ5W/8Ja8igq/KwEAAAAAAAAAAK2IEBUAtJDI0hUKf/Kl32UAAIAW5q1ap4p3JvtdBgAAAAAAAAAAaEWEqACgBXgRT+Uvvi1FPL9LAQAArSA8cYoiK9b4XQYAAAAAAAAAAGglhKgAoAWEJ38lb8kKv8sAAACtJRxR+fNvuuA0AAAAAAAAAABIPISoAKCZvM1bVPHGh36XAQAAWpmXv1zhKdP9LgMAAAAAAAAAALQCQlQA0Ezl/31fKi71uwwAALADVLwxSV5xid9lAAAAAAAAAACAFkaICgCaIbJwqSJTZ/ldBgAA2FG2FKvizY/9rgIAAAAAAAAAALQwQlQA0EReJKLyf78reX5XAgAAdqTwx18qsmKN32UAAAAAAAAAAIAWRIgKAJoo/MlX8pav8rsMAACwo0Uiqnhlgt9VAAAAAAAAAACAFkSICgCawCssUsX/PvK7DAAA4JPInHyFv57rdxkAAAAAAAAAAKCFEKICgCaoeGOSVFzidxkAAMBHFf95T15Fhd9lAAAAAAAAAACAFkCICgAaKbJijcKfzfC7DAAA4DNv7QaF3/vc7zIAAAAAAAAAAEALIEQFAI1U8d/3pYjndxkAACAGVEz4VN6GzX6XAQAAAAAAAAAAmokQFQA0QnhuviLfLvC7DAAAECvKylX+2vt+VwEAAAAAAAAAAJop4Hke7VQAoAHsx2XZn56Wt3Sl36UAAIAYk3LFqQr27eF3GQAAAAAAAAAAoInoRAUADRSZ9g0BKgAAUKvy1z7wuwQAAAAAAAAAANAMhKgAoAG8igqVvzHJ7zIAAECM8hYsVfib+X6XAQAAAAAAAAAAmogQFQA0QHjSNGn9Jr/LAAAAMazif5Pc+F8AAAAAAAAAABB/CFEBQD28ohJVvPup32UAAIAY5y1bpciX3/pdBgAAAAAAAAAAaAJCVABQj4p3PpGKS/wuAwAAxIGK/30kLxz2uwwAAAAAAAAAANBIhKgAoA6RtRsU/uhLv8sAAABxwrP/O0yZ4XcZAAAAAAAAAACgkQhRAUAdKt76WKKbBAAAaISKtz+RV1budxkAAAAAAAAAAKARCFEBwHZEVq9TZNo3fpcBAADizaYtCk+a5ncVAAAAAAAAAACgEQhRAcB2VLwzWYp4fpcBAADiUMXEKfKKS/wuAwAAAAAAAAAANBAhKgCoRWT1erpQAQCApisuUcWEKX5XAQAAAAAAAAAAGogQFQDUIvwuXagAAEDzhD+aJq+wyO8yAAAAAAAAAABAAxCiAoAaImvWKzyVLlQAAKCZyspV8eFUv6sAAAAAAAAAAAANQIgKAGoIv/upFIn4XQYAAEiUblTFpX6XAQAAAAAAAAAA6pFU3wYA0JZE1m5Q+ItZfpcBAAASRUmpwh9PU9LBY/2uBACAuBCZt1hlDz3ndxkAAABogLR7rvO7BAAAWhSdqACgivA7k+lCBQAAWpSN9PPKyv0uAwAAAAAAAAAA1IEQFQB8jy5UAACgVRQWKfzpdL+rAAAAAAAAAAAAdSBEBQDfC79LFyoAANA6Kt7/XF5F2O8yAAAAAAAAAADAdhCiAgBJ3sbNdKECAACtZ4P9X2Om31UAAAAAAAAAAIDtIEQFANYdYtI0KUwXKgAA0HrCE6fIo+slAAAAAAAAAAAxiRAVgDbPKy1TePJ0v8sAAAAJzluzQZGvZvtdBgAAAAAAAAAAqAUhKgBtXvizr6XiEr/LAAAAbUDFhCnyPM/vMgAAAAAAAAAAQA2EqAC0aV7EU/jDqX6XAQAA2givYLUisxf6XQYAAAAAAAAAAKiBEBWANi0yc668tRv8LgMAALQh4UkEuAEAAAAAAAAAiDWEqAC0aRUffO53CQAAoI2JfLdQkVVr/S4DAAAAAAAAAABUQYgKQJsVyV8ub+Eyv8sAAABtjWfdqKb5XQUAAAAAAAAAAKiCEBWANqvifbpQAQAAf4S/mCmvpNTvMgAAAAAAAAAAwPcIUQFokyLrNiry9Ry/ywAAAG1VabnCU772uwoAAAAAAAAAAPA9QlQA2qTwh19IEc/vMgAAQBsW/miaPP4/AgAAAAAAAABATCBEBaDN8UrLFP6Mzg8AAMBf3toNinw73+8yAAAAAAAAAAAAISoAbVH4y9lSSZnfZQAAACg8aZrfJQAAAAAAAAAAAEJUANqi8KfT/S4BAADAicxZpMiKNX6XAQAAAAAAAABAm0eICkCbElm2St7iAr/LAAAAqBT+iG5UAAAAAAAAAAD4jRAVgDYlPPkrv0sAAACoJvzFLHmljBoGAAAAAAAAAMBPhKgAtBn24mR42jd+lwEAAFBdWbnCX872uwoAAAAAAAAAANo0QlQA2gz34mQJXR4AAEDsCX/2td8lAAAAAAAAAADQphGiAtBmhD+d7ncJAAAAtfIWLVNk1Vq/ywCAFvfpp5/qRz/6kYYNG6bzzjtP999/vwYPHux3WQAAAAAAAMA2kra9CgAST2TZSnmLC/wuAwAAYLvCU75W8Kj9/S4DAFrUXXfdpUgkokceeUQdO3ZU+/btNX78eL/LAgAAAAAAALZBiApAmxCeTBcqAAAQ28JfzFLSj/dVIETDYACJY8OGDdpzzz01bty4yuu6du3qa00AAAAAAABAbfjrPICE55WWKTztG7/LAAAAqNvmLYrMXuB3FQDaCM/z9Le//U2HH364dt11Vx1yyCF6/PHH3fXm448/1imnnKKRI0dq9OjRuvrqq1VQ8EN335deeklDhw7V9OnTdeKJJ2r48OE64IAD3D7M0qVL3di+ZcuW6ZVXXnGfT5kypdZxfnafgw46yNVx0kknaeLEiZXbb8+BBx6oP/3pT7r99ttdSMtqvO6661xoy7z//vtuHx999FG1+33xxRfu+qlTp1bu5/TTT6+8/YYbbnBf/+tf/3LrGTFihM4880zNnj272n4+//xznXvuue7YNqrQ9mNrs65bVdf/5JNP6rDDDtNuu+2mf//73yopKdHNN9+sfffd193Pbouesyhbw0033eSCZ3Zef/azn2ny5MlqCjv3xx57rDv+/vvvrz/+8Y8qKyurvP3rr79267Dzt8cee+iiiy7S3LlzK2+3x8DW8dxzz7nzYdvYc2PdunXuObH33nu7Go8++mh3LAAAAAAAgHhGJyoACS8yY45U8sMfiQEAAGJ5pF9ol4F+lwGgjYzZe+qpp3T22We7IIyFaf7whz+ooqJCXbp00fXXX68jjzxSF154odavX6/77rvPhaVefvllN5bPWGDo5z//uc466yz30YJHtt+ddtrJhXKef/55XXbZZS5sdckll2jgwIH67LPPqtXxwAMP6MEHH3RBnjFjxmjSpEluXw3xj3/8Q3369NEdd9zhQj0WEMrPz3eBHxsZ2LlzZ7366qvaZ599Ku9jQZ++ffu6cFj0+CkpKdX2++2332rBggW66qqr3PhBW/tpp52mN954w+3TAlW2ZgtAWZDLgmf//e9/3b769++vI444onJfFqz6v//7P2VmZrogk4W+LNhl5zcvL08ffvihO2c5OTk6/vjjVVpa6kJba9as0S9+8Qt3PAtfnXfeeXrsscc0duzYBj/Gzz77rH73u9/ppz/9qVvLkiVL3LE2btzorv/000/dfu2xsrrs2A8//LALsr3wwgsaMGBAtcfpV7/6lQuBWbDs8ssv19q1a/Xb3/7Wrc3Os63JuozZ4wgAAAAAABCPCFEBSHjhqbP8LgEAAKBBIt/Ol7d5iwJZGX6XAiCBbdq0SU8//bQLBl177bXuOut6tHr1atdhyUJCFjyyUFKUdSD68Y9/7LomWccnY+EhC0dZSMdYMOmdd95xXaAsxLT77ru7gFKHDh3c5zUVFRXp0Ucf1amnnqprrrnGXWfHLS4udgGs+gSDQdfpKSsry31tx7n00ktdEMs6PVkHpmeeeUZbtmxRRkaGCwD973//0wUXXFC5Dwt41bR582b99a9/1ahRo9zX1iHr4IMPdufM6rTzY+fr7rvvdjUYC6JZBy3r3FQ1RGWdviwcFWUhMts2uo0FmNq1a1cZTLMwku3fQkwWujK2FuuOZSE3C1Q1hAXcLJxmdd96662V19u5ff3111VeXu4eXwuhPfLIIwqFQpXn37qSWXDs3nvvrbyfdSWz0FjVddi5tv2bvfbaywXBagbSAAAAAAAA4gnj/AAkNG9ToSLzFvtdBgAAQMOEIwTAAbS6r776ynWcOvTQQ6tdb52GbrzxRhemsi5UVfXu3dt1IKrZScqui4oGpiwc1dA6LNhUNZxjah57e2yEXjRAFf06KSnJBcGMhZesFgt2GftoXx9zzDF17rdnz56VASpj3aBsndH92v0t/GVBJAs8vfXWWy50FA6H3XVV7bzzztW+ttCUBaTOP/98/f3vf3fdoSyMZKP2jI3t69Spk3bZZRf3GNnF9muj9GbOnOm6SDXEwoULXacoC0RVZR2/bBSj1WndxyzkFQ1QmezsbHesmo9zbeuwLltXXHGFXnzxRdc5yzpRWdgOAAAAAAAgXtGJCkBCC385W4p4fpcBAADQYOHPZipp/738LgNAAtuwYYP7aIGn7d1mo+Zqsuu++eabatelpaVV+9o6M1mHqoawEXy11RHtylQfGztY89i5ubmVQSPrsmQdkmyEnwWf7KN1kKp5v/r2G61p1qytIVcLft1yyy2ua5SFnCx0ZSErC3DVXLt1marKRvvZyLv//Oc/bh92sfvefPPNGjJkiDv/FmKzEFVt7DYbMVif6OO4vXNp3bas1u09znZ7XeuwMYbWrcs6e1mIzM69nVsbE9ijR4966wMAAAAAAIhFhKgAJLTwtOp/4If/KiIRPbXga/136VwtLd6stGCSds/trAsGjdCuuZ2rbfvtxjV6fN50fbFuhTaXlyk3JU1jO/XQhYNGqGe7H95xvj2HT3xey4sL69xmVIeuenzs1lEaEc/TvbM/1ytL5she+hiT113X7zJWHVPTq92nNFyhoz/4l8bl9dRNu+7TpPMAAMD2eCvWKLK4QMHe3fwuBUCCsm5D0RBT//79K69fvny5vvvuO/e5dRaqLcBjIaWWYmEiYx2TqtYRDVfVZ/369dW+to5Ndl3VUJZ1o/rlL3+p+fPnuy5PNhKvsfuNno9oIOm2225zwaE///nPLjgUDRiNHTu23n1bt66LL77YXex8v/fee3rooYd09dVXuzF71lmrb9++263TAluNfYxrrs2CcBbcCgQC232cbTRfXaxOGwVplwULFmjChAluHb/97W/deEAAAAAAAIB4xDg/AAkrsnqdvCUr/C4DNVwzbaLu++4LhT1PJ/bZWft26aXJa5br7Mmv65PVSyu3m7x6mU7/5L96b2W+Czqd2m8XDcrO1X+WztXJH72i+Zu3fWGjJrvPRYNG1Hrpkpbhttkrr3vl9s/nf6u/LfhaO7fP02Hd++v9lYt11dR3t9nvPxd9ow1lpbp4J0ZVAABaB0FwAK1p1113VXJysgvwVPXEE0+4sXQ2Tu61116rdpuNnbPxey05rs06L1kYJzpuL+rtt99u0P0//PBDlZWVVX5tQR7rDFU1zPSjH/1I6enprtNTRkaGDj744Hr3u2jRIhe6ilq5cqW+/PLLyv1OnTrVjbOzfUUDVDZqzwJLkUhku/u1DlZWj51n0717d5166qk64ogjXKDKWOesgoICF9gaPnx45eXjjz/WY489Vm30Xl0slGaBt5qPsXXPuuCCC9w4v2HDhrlOUhY+i7IOVO+//75Gjhy53X0vW7ZM++23n958883KY9l4QguURdcBAAAAAAAQj+hEBSBhhafy4mOssWCUhaJ2aZ+nJ8ceodTQ1n+Gjum5ky6c8qZun/mJXjvgZwp7Ef3260muM9RjY36sPTpsfYe6eXnJHN08Y5Jum/mJnvi+g9T2nNZvWK3Xv1uwUCtLtmjvTj11wcDdK6//1+LZ6p+Zo7/s9SP3rmwLWlngyzpiWbDKbCov1ePzp+v0fsPUKa36SAsAAFpK+KvvlPSTAxUIBvwuBUACsk5NZ5xxhv72t7+5zkgW3Jk+fbr++c9/6rrrrnPBphtvvNF1R/rJT37iuhc98MADbozc2Wef3WJ1ZGZm6rzzznPBLQs6WR2fffaZq8PYiDhjQSnrnmSdq6Ldq4yFjayjk63FPr/nnns0fvx4F3CKsv1aSOn555/XySef7NZble3Xrhs4cGDldTbm7qKLLtIvfvELF1qKrv3000+vDKFZ+MjqHDBggGbPnq2//OUv7neI4uLi7a7XRh/amD7bn4XYBg8erIULF+rll1924Spz3HHH6e9//7s7z1ZDt27d9Mknn+jRRx/Vaaed5u7XEFb35Zdf7sbrWSDrwAMPdMeyc23BLVuPPb7nnnuuC1WdcsopLlhlXaTsfF966aXb3beN67PH4dZbb1VhYaF69+7tQmQffPCBLrzwwgbVBwAAAAAAEIsIUQFIWJEvv/W7BNTw9YZV7uMRPQZWBqii3aD6ZrbXgsINWltarMVbNqmgeIsO7NKnWoDKHNtrJz027ytN+37EX1Zy9RdB6mP7/+3XHykrKUW/23W8e6EjaumWTdqvS+/K64Zkbx3XsbRoc2WI6tG5XykpENRZA4Y340wAAFCPTYXyFixRYGBvvysBkKBsDJuFa5577jnX4cjGxP3617/WSSed5G63rk0PP/ywC9NY2MnCSVdddZXrUtWSLHRjoSULOT3++OPabbfddM011+iOO+6o7PK0atUqnXjiibrssstcMCjKwlE2tu7nP/+52/bYY491waea9t9/f7d/CyjVZPu0UNAzzzxTeZ11iDrnnHN0++23u1CUdViykFR0xN0NN9zgAkc2zs8CR3buLMw1b948TZw4sVpnp5os1GT3s25UNjbPHoMTTjhBV155pbvd1vHss8/qj3/8o+6++27XGcrqs8CT1dQYFpay/dl5tfVb8Mk6RtnFWGetJ5980gWr7LG1MNmoUaP0+9//XoMGDapz3xYEs9Davffe60J2Fvayc2mBLAAAAAAAgHgV8OwvVQCQYCKLC1T25x/+CI7Y8EL+t66D1Gn9dtG1Q8dUXl8eCevQCc9pU3mZJv/oDK0o2aJ3VyzUwMxc7dtl2xePj/3g3y5w9fZBJ1WO5Wuo3834SP9e8p3+b9g4/azPztVusxp2yu6gB/Y81H391vIFuu7L9/TI6MM1Oq+7lhdt1tEf/FtX77yXTuo7tMnnAQCAhgiN213JJ2z9NwkAEpGN3rOxgdY5ykI4URYisi5HU6ZMcSGp2lhnJetcdeedd9Z7nN/85jeu09Yrr7xS77YWkLJuWBaGgj8i8xar7KHn/C4DAAAADZB2z3V+lwAAQIuiExWAhMQov9h0aLd++sucaXohf7YGZ3d0naY2V5Tpz7M/17qyEp3Zf7hSQiH1zsjWOQN2q3Ufczev06LCjcpNSVOn1MaN07P72jjAfhntdXzvwdvcvltuZ32wcrG+WrdSfTLbu9BXu1CyBmd3cLc/MGequqZn6ITeQ5p4BgAAaLjwjDlKOvZgBUJbx1kBQKJJSkpyY+qeeuop18kpNzdXc+bMcZ2ajjnmmO0GqBrq6aef1oIFC/TCCy+4rk6JwN4LWVenq6rj/Kp23QUAAAAAAED9CFEBSDheJKLwV7P9LgO1yElJ09PjjtKvp3+49VLltssHj9S52wlORZVHIrr1608UkeeCTMFGvijw9IKZ7r7nDtxNocC2L0hfNnikvly3UmdOfs19nRQI6FfD93F1z964Vm8sm68/7HGgkoJb7xvxvEbXAABAgxUWKTIvX6HB/fyuBABazV//+lc3Fu7mm2/Wpk2b3Ci9M8880435a64vvvhCkyZNcvs78sgjlQhefvll3XjjjQ0KkFmHLwAAAAAAADQc4/wAJJzwnEUq/+sLfpeBWpSFw7pl5sd6bek8191pZMeu2lhWqokr82X/Gt04bKx+0nPQdgNU13/5niasWOTu+8y4o5QaangWeE1JkQ5773l1Ts3Qf/Y/oTIIVZPV8/7KfBVWlLsRfgOzct31F075n4orKvT03kdpRXGhfjNjkj5fW+A6VR3Xe7CuGDxqu/sEAKCpQmN2VfLPDvO7DABAjFi/fr2WLl1a73b9+vVTZmam4hHj/AAAAOIH4/wAAImGTlQAEk5kxhy/S8B2/PHbz/SfpXN1at9ddO3Q0ZXjJQqKC3XWJ6/ppukfqn9mjobldKp2vy0VZbpm2kR9snqZerfL1gN7HtqoAJV5Y/l8F8Q6oc/gOsNO7VNSdXSvnapd98nqpfp0zXI9OfYI9/X/ffWB8rds0l0jDtTKki2659spap+c6jpcAQDQksJfz1XSCYcqQFAXACC5kYd2AQAAAAAAQMvjL/EAEoo11wvPmud3GaiFjb57ecl3ykpK0S923rMyQGW6pWe6UXrWGvGlJd9Vu591fTrzk9dcgGqnrA56YuwR6pyW0ejjv7cyX3bEw7r1b/Rz6s+zP9cBXXprjw5dNX/zen2xboXOHjBcB3frq1P77aLxnXvr7wtnNromAADqtaVYkXlL/K4CAAAAAAAAAICER4gKQELxlq6QNhb6XQZqsa60WKWRsHq2y1JyMLTN7YOyOlR2pYqas2mdTvv4v5q7eb3G5HV3naA6pbVr9LFtRN/09as0PKeTurfLatR9X1s2zwWnrhyyp/t6YeFG97FPRvvKbfpmtte6shJtLi9rdG0AANQnMqN6wBgAAAAAAAAAALQ8QlQAEkp4Jl2oYlV2cqpSgiEtK96s8kh4m9vzt2wNJ+Wlbg1JLSzcoAum/E+rS4v0k56D9MCeP1JmckqTjv31hlUKe57rJNUYZeGwHpozTcf0Gqx+mTnuurAXcR8rPK/adib4Q3MtAABaTHjGHHmRrf/+AAAAAAAAAACA1kGICkBCiRCiilkpoZAO6tpHm8rL9MB3U7fpUvXgnGnu8yN7DHQhq6unTtD6shId12sn/W7X8UoONv2frFkb17iPQ9vnNep+/1z0javh4kEjKq/r/32Y6st1Kyqv+2r9SnVOa6eMpKaFvAAAqFNhkbz85X5XAQAAAAAAAABAQkvyuwAAaCmRtRvkFaz2uwzU4dqhY1yg6W8Lvtbnaws0qmM3N2rv/ZX52lBeqjP6DdPovO761+LZml+4QUmBoHJT0vXXuV/Wur9T+u6i9imp7vO/L5zpxulZ16oeNUb2LdmyyX3snJbR4Fo3lZfqsflf6Yz+w5VXZYTgoOwO2j23i575/ngrS7a4NV03dHQTzwoAAPULf7NAwX49/S4DAAAAAAAAAICERYgKQMKIzKILVazrmJquf+x9tB6fP10TVizSPxbNciP+hmR31Ml9h+qQbv3cdh+tWuo+VngRt+32HNFjYGWI6tmFs7S8uNAFs2qGqKyblMlqxDjAx+dNdyGus/oP3+a2e0YepNtmfqLXl81Tu6RkXTRohE7uu0uD9w0AQGNFvpkvHbGv32UAAAAAAAAAAJCwAp7neX4XAQAtoeyh5xSZt9jvMgAAAFpF6k0XK5BTPSgMAECisd/r7fd7AAAAxL60e67zuwQAAFpUsGV3BwD+8IpKFFmwtXsRAABAIgp/O9/vEgAAAAAAAAAASFiEqAAkzoibSMTvMgAAAFpN5JsFfpcAAAAAAAAAAEDCIkQFICGEZ83zuwQAAIBWFZmbL6+iwu8yAAAAAAAAAABISISoAMQ9LxxRZPZCv8sAAABoXWXlisxf4ncVAAAAAAAAAAAkJEJUAOKel79cKi3zuwwAAIBWx0g/AAAAAAAAAABaByEqAAkx2gYAAKAtiHwz3+8SAAAAAAAAAABISISoAMS98BxCVAAAoG3w1m5QZNU6v8sAAAAAAAAAACDhEKICENe80jJ5i5f7XQYAAMAOE/mWkX4AAAAAAAAAALQ0QlQA4lpk/hIpHPG7DAAAgB0mMo8unAAAAAAAAAAAtLSkFt8jAOxAkTmL/C4BAABgh4osWCov4ikQDPhdCgAALS44sLfS7rnO7zIAAAAAAEAbRCcqAHEtMnex3yUAAADsWMWl8pav8rsKAAAAAAAAAAASCiEqAHHL27xF3orVfpcBAACww0XmEyQHAAAAAAAAAKAlEaICELcic/Ilz+8qAAAAdrzIvCV+lwAAAAAAAAAAQEIhRAUgbkXm5vtdAgAAgC8iC5bKi5AmBwAAAAAAAACgpRCiAhC3woSoAABAW1VcIq9gld9VAAAAAAAAAACQMAhRAYhLkXUbpfWb/C4DAADAN4z0AwAAAAAAAACg5RCiAhCXvIVL/S4BAADAV5H5hKgAAAAAAAAAAGgphKgAxKXIouV+lwAAAOCryIIl8jzP7zIAAAAAAAAAAEgIhKgAxKXIwmV+lwAAAOCvohJ5Bav9rgIAAAAAAAAAgIRAiApA3PFKSuWt4AVDAACAyHxGHAMAAAAAAAAA0BIIUQGIO5HFBVKE0TUAAACRJQV+lwAAAAAAAAAAQEIgRAUg7niLlvtdAgAAQEzwlqzwuwQAAAAAAAAAABICISoAcSeymBAVAACA8Vatk1da5ncZAAAAAAAAAADEvSS/CwCAxorkM7YGAADA8TzXjSowsLfflQAA0CIi8xar7KHn/C4DAAAAQC3S7rnO7xIAoFXRiQpAXIms3SBtKfa7DAAAgJgRYaQfAAAAAAAAAADNRogKQFzx8hnlBwAAUBUhKgAAAAAAAAAAmo8QFYC4ElnMKD8AAICqbJwfAAAAAAAAAABoHkJUAOJKZOlKv0sAAACIKd7aDfIYdwwAAAAAAAAAQLMQogIQV7yCNX6XAAAAEHMY6QcAAAAAAAAAQPMQogIQN7wNm6XiEr/LAAAAiDmM9AMAAAAAAAAAoHkIUQGIG5Hlq/wuAQAAICZFlhT4XQIAAAAAAAAAAHGNEBWAuOEVrPa7BAAAgJgUWUbYHAAAAAAAAACA5iBEBSBuRJYTogIAAKjV+k3ySkr9rgIAAAAAAAAAgLhFiApA3KATFQAAwPZ5K9f5XQIAAAAAAAAAAHGLEBWAuOBVhOWt4oVBAACA7YmsXON3CQAAAAAAAAAAxC1CVADigmcvCkYifpcBAAAQs7yVa/0uAQAAAAAAAACAuEWICkBc8JYzyg8AAKAuLnQOAAAAAAAAAACahBAVgLgQKSBEBQAAUBdvBZ2oAAAAAAAAAABoKkJUAOKCV0BnBQAAgLp46zfJKyv3uwwAAAAAAAAAAOISISoAccFbvc7vEgAAAGKb58lbRTcqAAAAAAAAAACaghAVgJjnhcPyNmzyuwwAAICYx0g/AAAAAAAAAACahhAVgJjnrdsoRTy/ywAAAIh5kZWEqAAAAAAAAAAAaApCVABinrdmg98lAAAAxAVv5Rq/SwAAAAAAAAAAIC4RogIQ8whRAQAANIy3er3fJQAAAAAAAAAAEJcIUQGIed5aXgwEAABoCG/9Jr9LAAAAAAAAAAAgLhGiAhDzvLV0ogIAAGiQsnJ5hUV+VwHscJ7nxew+W6O2eNFaa0+kc7oj15JI5w0AAAAAAKA1EKICEPMY5wcAANBwdKNCWzNhwgRdf/31LbrPqVOn6oILLmj0/Q488EDdcMMNlV8/9NBDevzxx9UWtdbaX3zxRf3+979XLFm6dKkGDx6sl156KWbWwnMRAAAAAACg8QhRAYhp9k5Zb+1Gv8sAAACIG946/u+EtuVvf/ubCgoKWnSfFm6ZP39+o+/3wAMP6JJLLqn8+t5771VxcbHaotZa+1/+8hdt2JAYb7RpzbXwXAQAAAAAAGi8pCbcBwB2nI2FUkWF31UAAADEDTpRAf4ZOnSo3yUADs9FAAAAAACAxqMTFYCY5q1Z73cJAAAAcYUQFdqS008/XZ999pm72Di1KVOmuM4+N910k8aNG6fhw4frZz/7mSZPnlztfh9//LG7fsSIEdpzzz118cUXV3aeshFoL7/8spYtW9boEW1VR6jZfaMdgaKfmzlz5ujCCy/UHnvs4S6XXnqplixZUnm7rcG2t5ptfbvuuqv2339/1x1r1apVuuyyy1zd++23n+vCVdVTTz2lww47zK17/Pjxuvnmm1VYWLjdem1tdqzp06fr2GOPdcc66qij9Oabb1Zuc/zxx+ukk07a5r5nnXWWzj777Gr7sdqbs/b61mDn1x4Xe3xsvzZGryGi5zRaX5SdX7tE2f7/9Kc/6fbbb3fPi9GjR+u6667bplvU22+/rZ/85CfufNl5mz179jbHtOvssRozZox22WUXt5Zbb71VJSUlda5l+fLluuqqq7TXXntpt91205lnnqlvvvlGjeX3cxEAAAAAACAeEaICENMiaxNjTAMAAMCOwjg/tCW/+c1vXMcduzz//PMurGKhkwkTJugXv/iFC4107dpV5513XmWQykIiNuZs2LBhbpzabbfdpoULF+qCCy5QJBJxt1kopFOnTm6fFhppCruvOeGEEyo/t+NYIGnt2rX6/e9/745t9Zx88snuuqosSGNBmIcfflj9+vVzaz3jjDM0aNAgPfTQQy7Qcscdd2jGjBlu+9dee0133323Tj31VD3++OMuEPPqq6/qlltuqbdWC9IcdNBB7nzZsX7+85/rgw8+qKz/yy+/VH5+fuX2Nj7RAjbHHXec+9rOUfT8N2ft9a3B6rPHxR4f22/nzp3V0v7xj39o2rRp7txeffXV7jzY+bFR82bixIm64oorXLjowQcf1OGHH65rr7222j4sYGRrsPF5d955px599FEdccQReuaZZ/T0009vdy3r1q1z52jWrFn69a9/rT/+8Y/uOWn7asp4Sb+eiwAAAAAAAPGKcX4AYn+cHwAAABqMTlRoSwYOHKjMzEz3+e67764XXnjBdQCyj9bFx+y7776ui84f/vAH/fvf/3ZBD+sGZMGYLl26uG0saGXBq6KiIvXu3VsdOnRQSkqK22dTRe9r+45+bsGZ9PR017UnWvfYsWN18MEH67HHHtP1119frQNUtNNTu3btXOcsC6tceeWV7rohQ4a4jkgW+LHrrRtXz549XeAmGAy6TkZ2v40b6w9W2vmxwJKxjknWXckCQhbwOfLII10QyMJMFh4y9nlGRoYOOeQQ97WdL7s0d+31rcHCcva42LGa89jUxY775JNPKisrq3Jtdm4mTZrknkt2Xux8W9grer6MBZ6qdnjaeeedde+991au1TqjWQc0C59ZYK+2tVgXLut69c9//lM9evRw19kxf/zjH7t93XfffXHxXAQAAAAAAIhXdKICENO8TYSoAAAAGsNbTycqtF3Wbcq6+1hHpIqKCncJh8M64IADNHPmTBfGsXBVamqq68pj3XcsHGMhEOtcFQ2TtJZPP/3UBYPS0tIq67Njjho1Sp988km1bW1MWlTHjh3dx2gwzOTm5rqPmzdvdh9tbJx1F7LuUBaQ+frrr91ovqrj6rbHQlNRgUDAhaOiYTMLEx166KH6z3/+U7mNjaCzYI+toyXX3pw1tBTruBQNUEW/TkpK0ueff+7Oh3WJsudTVdaNqqp99tlHf//7393zbN68eS6gZ13PrNNUWVlZnc9fC19ZuC96jizUZUGqms+PWH4uAgAAAAAAxCs6UQGIad6mLX6XAAAAEF+KS+UVlyqQnup3JcAOZ118Vq9eXTlWria7zbpXWcDlkUce0b/+9S83Xi07O1unnHKKG2NnIaLWrO+NN95wl5qqdnIytQW6rHPQ9lioyUa/2Tg6G7F2//33u25G11xzjbutLjXH4llQxsbXbdq0yYVsLHBmIaovvvhCoVBIixYtciPgWnrtzVlDS4l2J4uyEJOFhCyAZxc7L9HQ0PbOn63hnnvu0bPPPuu6m3Xr1s11aLJQVX3nyMYmbu/5a+MB63oOxMpzEQAAAAAAIF4RogIQ07zNhKgAAACa0o0qkF79RX2gLbAOQn379nWj+2pjo+KMBVqs05F1BZo6daqef/55/fWvf3UdqWp2FWrp+mysW3Q0WlXW7ai5bPSeXawj0EcffaRHH31U1157rUaOHLlNOKhmoCYvL6/y6zVr1riwVE5OjvvaOhbZmMM333zThYr69+/f6HF6DV17U9dQl2gwzsJNVW3ZssWNJaxq/fr11b62TmZ2nQWL7HzY+u381Dx/VVlAz8bk/fa3v3VdvKKdrSyMVhfbzs71ddddV+vtNv4vXp6LAAAAAAAA8YhxfgBiGuP8AAAAGs/byP+h0HZYqCXKAigFBQWuk9Lw4cMrLx9//LEee+wxFwyycIuNY7MAlYVSxo4dq1tuucXdf/ny5dvss6Vqi9Zn491sZFu0tmHDhrma3nnnnWYdy7poXXrppZUBGQuDXXLJJW5M26pVq+q877vvvlv5uXVaevvtt11oKRrasRCSjdiz7SZOnFht/F9Lrr0ha2jKYxPtpLRixYrK66yr1Pz587fZ9sMPP6w2cs9G8dnx7XlinaRstJ2dHztPUXZOqrJgnnU8O/744ysDVCtXrtScOXOqBblqO0c2zrBfv37Vnr+vvvqq65pmz994eC4CAAAAAADEK0JUAGIbnagAAAAar7DI7wqAHcZG8VnwZPLkyTrkkEPUvXt3113n5Zdf1qeffurGqt17771u5FpycrLGjBnjxvpZWOeDDz5w3Y5uvPFGFxiycFV0n9ZtyG6vL4BUX23Tpk3T559/7kI3FghavHixLrzwQhdImjRpki6//HK9/vrrrgtWc9i6bJ82Zs/OxVtvveXWbZ25ovu2Y3/11Vfb3Peuu+7SU0895QJEV1xxhQsXXXnlldW2sRCVnQsLmh199NHVblu3bp3bb2FhYbPW3pA12H6/+eYbffbZZyopKWnQuRk8eLAbqffggw+6gJAd47zzzqt1JJ2F8C6++GL32D/33HP61a9+pfHjx2v06NHu9quuusqdn8suu8ydLztv9913X7V9WKez7777znWksjpffPFFnXrqqS6cZSP5qp6jqms566yzXMjKPtqYPTsHv/71r/XMM8+4YFVz7MjnIgAAAAAAQLwiRAUgZnlbiqWKsN9lAAAAxB1vCyEqtB0WTrFw1Pnnn+/CKM8++6zronT33Xe766xr0NVXX+2CUsYCIja6zwI/FoixMIyNY3viiSfcmLpoYKhHjx4uaPXKK680ubaLLrpIM2fOdHVYOMeObfVZZycb2WaBJQt0WbjHxr41x0knneQCPxbssePedNNNGjBggFuXnR/z0EMP6cQTT9zmvjfffLNeeOEFdy6sHrvPqFGjqm1jo/Ss/n322WebsXrvv/++2++sWbOatfaGrOGcc85xAbdzzz3X7b8hrIOTBZ1sZKE95rfddpuOOOKIWs+5XW+jC60r1v333++6btnoxyg7LzZi0DpL2fmyUZC33357tX1YMOnkk0/W008/7db/+OOPu+CZbT937lxt2rSp1rXYebXglj337DGxczBjxgxXrwWrmmNHPhcBAAAAAADiVcCr2n8cAGJIZMUald31hN9lAAAAxJ3QgaOVfOR+fpcBIMa99NJLLlxmI+t69uxZ57YWGrJOXRZGOvjgg5WIDjzwQDfm7s477/S7lDYtMm+xyh56zu8yAAAAANQi7Z7r/C4BAFpVUuvuHgCaztvEKD8AAIAmYZwf0GJsvJpd6pOUlJh/Yvn2229dyMpG69lYPQsaxYpwOOxG09XFOi1ZJ6pE0NafiwAAAAAAAK2Nv6oAiF2bCv2uAAAAIC4xzg9oOTberOo4t+1pSDeneFRaWqonn3zSjZq75557FAwGFStsxJ2NcKyLjcabOHGiEkFbfy4CAAAAAAC0Nsb5AYhZFROnqOK1D/wuAwAAIO4E+nZX6hWn+V0GkBBsjN2qVavq3W7w4MFKSUnZITVhqwULFmjLlro7GNtjYo9NImgrz0XG+QEAAACxi3F+ABIdnagAxCxvM+P8AAAAmoRxfkCLsQ5MdkHs6d+/v9oSnosAAAAAAACtK3Z6sANATcWlflcAAAAQl7zCYr9LAAAAAAAAAAAgrhCiAhCzPEJUAAAATVNSKq8i7HcVAAAAAAAAAADEDUJUAGJXKSEqAACAJtvCSD8AAAAAAAAAABqKEBWAmOWVlPldAgAAQNzytjDSDwAAAAAAAACAhiJEBSB2ldCJCgAAoKm8ohK/SwAAAAAAAAAAIG4QogIQszxCVAAAAE1XVu53BQAAAAAAAAAAxA1CVABiF+P8AAAAmo4QFQAAAAAAAAAADUaICkBM8iIeL/wBAAA0g8f/pQAAAAAAAAAAaDBCVABiUymj/AAAAJqlvMLvCgAAAAAAAAAAiBuEqADEpmJCVAAAAM1CJyoAAAAAAAAAABqMEBWAmOSVlPldAgAAQHwjRAUAAAAAAAAAQIMRogIQm0oJUQEAADSHR4gKAAAAAAAAAIAGI0QFICZ5FRV+lwAAABDfCFEBAAAAAAAAANBghKgAxKZIxO8KAAAA4ls5oXQAAAAAAAAAABqKEBWA2BQmRAUAANAcXhnjkQEAAAAAAAAAaKikBm8JADsSnagAAACap4xOVACA+BMc2Ftp91zndxkAAAAAAKANohMVgNgU8fyuAAAAIL5VEKICAAAAAAAAAKChCFEBiE10ogIAAGgeQukAAAAAAAAAADQYISoAsSlMiAoAAKBZPEJUAAAAAAAAAAA0FCEqALGJF/0AAACaxeP/UwAAAAAAAAAANBghKgAxyWOcHwAAQPOQoQIAAAAAAAAAoMEIUQGITYzzAwAAaB46UQEAAAAAAAAA0GBJDd8UAHYgOlEBiHElOdLMPTapIMVTQaBQEfFzC0Bs6dZOOtHvIgAAAAAAAAAAiBOEqADEpgidEwDEtrQNUnrRcuUum67slHba1Km3VmW00xJt1sIt+SqLlPpdIoA2buf03QlRAQAAAAAAAADQQISoAMSmYMDvCgCgXn0Kdtb6tOkKlRUpd9ls5UoabDnQYJK25A3QmuwcLQ2WaEHJEhWWb/K7XABtTCDA9HYAAAAAAAAAABqKEBWA2BTiRT8AsS8z31OnsXtp9brPql0fjFQoa9UCZa2S+knax8b/deiltbl5Wp4U0YLS5Vpbutq3ugG0DUFCVAAAAAAAAAAANBghKgAxKZDEjycA8aH3wv5akzNVnhfe7jbWWy993VL1tIukvSSVZXXW+o7dVJAa1KKKNVpetFSeGGUKoOUERYgKAAAAAAAAAICGIqUAIDbRiQpAnEhf4alLv3FasW5So+6Xsnm1uthF0u6SKtKztDGvl1amp2lxZIPyi/JV4VW0Wt0AEh+dqAAAAAAAAAAAaDhCVABiUyjkdwUA0GA95/TUys7J8iLlTd5HUvFmdVzyjTpKGiopkpSizZ36a3VmlpYGijS/aJFKwsUtWjeAxBYgRAUAAAAAAAAAQIMRogIQm5IIUQGIH2lrI+o+aLyWrZ/YYvsMVpSpfcFctZc0UNJ+gaCKOvbTmva5WpZUrgUlS7SxbEOLHQ9A4qETFQAgHkXmLVbZQ8/5XQYAAACAWqTdc53fJQBAqyJEBSA2EaICEGd6fNNZK3q1U7iiqFX2H/AiylizyF36SBonqSSnu9bldlFBiqeFZSu0smRFqxwbQHwKihAVAAAAAAAAAAANRYgKQEwKEKICEGdSNnnqmTle+Rve2mHHTNtQoO52kTRSUllGB23M66kVaUnKD6/Tki2LFVFkh9UDILakhFL9LgEAAAAAAAAAgLhBiApAbAoRogIQf7rNyNWygdmqKNvky/FTtqxXJ7tIGi6pIrWdNuf11qqMdlrsbdaiokUqi5T5UhuAHa9dcqbfJQAAAAAAAAAAEDcIUQGITXSiAhCHkoo99U7bVwvKXlMsSCotUu6y2cqVNFhSJJikLZ0GaXV2tpYGirWgeIm2VGz2u0wAraRdEiEqAAAAAAAAAAAaihAVgNhEJyoAcarL9AwtG5qn0uI1ijXBSIWyVs5T1kqpv6Txkko69taa9h21PDmsBaXLta409urGVuEiT2smlmvzNxUqX+8pKTOgrF1Cyjs4xX1el1Vvl2nNO+X1HmPgjelK6RB0nxd+V6GV/y1T2VpPqV2C6nx4sjIHb/vrw8rXyrThi3INvKGdQml114EdixAVAAAAAAAAAAANR4gKQGyiExWAOBUqk3oH99FcvaJYZ3GX9LVL1MsukkZLKs3qrPUdu2lFalALy1eroHiZPHl+l9rmhYs9LXywWGWrPGUMDCpraJJKV0W07uMKbfo6rH6Xpyk5Z2v4qTYZA7b/72rJ0ogKvw0rtUtASVlbQ1AVmz0teapUoYyAcsclqXB2WIufKNWAq4IuUBVVvsFqKFfnI1IIUMUgxvkBAAAAAAAAANBwhKgAxKRAaorfJQBAk3Wanqqlu3VX8Zblijepm1erq10k7W5hmvRsbczrpZXtUpQf3qjFRfmq8Cr8LrPNWf1OmQtQdTokWZ0O/eHfSAswrXilTKveKlePE1PrDFHVFqSy7lYL/lSsYKrU88w0BZO3BqE2TquQVy71PD1V7XqHVL5vRHNvK9b6T8vV9egfjrPqzXIltQ+ow1h+rYhFdKICAAAAAAAAAKDheLUDQGxKT/O7AgBosmBY6lMxRrP1kuJdUvEmdVwySx0lDbXQTVKqNncaoNWZmVoS2KKFRfkqCRf7XWbCK1/nKZQZUMf9k6td336PJBeiKs4PN2m/K14pVfkGT92OS1Fqpx86TJWtjbiPad22XpfcPui6Utlov6iS5REXtupxaqoCIbpQxaIMOlEBAAAAAAAAANBghKgAxKSAjfNLSZbKyv0uBQCapOPXScoc1U+FmxYqkYQqSpVTMEc5kgZJ8oJBFXXsrzXtc7U0VKoFxUu1qXyD32UmnF5n1R4utpF+Jim78SGmooVhbfwyrPTeQeWMqf5rQajd1v1FyqRgsuR5niJlnkLpP2yz8vUypfUMKntXRvDGKsb5AQAAAAAAAADQcISoAMSu9FRCVADiVsALqE/hKM1SYoWoagpEIspYvdBd+kja2zoU5fbQ2tzOKkiOaGHZSq0qWeF3mQnHxvBtmRfWyv9ayknKO6jxY3BX2H0ldTkqRYFA9RBWep+tHajWvlfuRgiu/7xCXpnUrt/WwFTh3LC2zAmrz0Vp29wXsYNxfgAAAAAAAAAANBwhKgAxK5CeJm9jod9lAECT5X4bVPvRQ7Rxw2y1JWnrl6uHXSSNslF0GR21vmMPrUxP0qLwWi3dskQRbe2ghMZbN7lcK17aGoCyAFWPk1OVOahx3aC2zA+rZElE7QYG1a7vtvfN2jlJWbtWaO0H5e5iMnYKKWevJNeVatXrZcrcOaSMAT/c14t4CgQJVMUSOlEBAAAAAAAAANBwhKgAxK52tY8uAoB40mfNbpqR1LZCVDUlb1mnznaRNNy6KKVmaGNeb63KSNdib5MWFeWr3ObGoUGSMgLqeECyKjZ52jyzQsv+UaryDRHl7d/wblRrP9wajOpURwerXqenqXB2hUpXekrpFHChKes6tfHLCpUURDTg5HQXqFr9VrnWfVKuSKl1qgqq2/GpSu20tZMV/JVBJyoAAAAAAAAAABqMEBWAmBVIT5XndxEA0EzZ86UOY3bXuvVf+V1KzAiVblGHZd+qg6Qh1sEolKzCToO0OitbS4PFml+0WEUVdCLcnuxdk5S969bPy9Yla+H9JVr1ernrCpXeq/6OVBVbPBXODiulc0AZA+vePnNIkjLtQfqeV+Fp1f/KlDMqSaldgtrwebnWTChX3iHJSu8V1MrXyrT0qRL1vyqdrlQxgE5UAAAAAAAAAAA0HCEqALErnU5UABJDn+VDtC59ukVQ/C4lJgXC5cpaMU9ZK6T+ksYHAiru0EdrczpqWVKFFpQu0/rStX6XGZNSOgSVt3+yCy9tnhVuUIhq86wK2TTF9rs3/leBdZ9UqKLQU6dDk7d+PblCad2D6nzo9x2twtKSp0pVOCesrCH8quGnlFCakoJbHycAAAAAAAAAAFA/XtkAELMChKgAJIiMxZ46jd1Lq9dN8buUuBDwPLVbu9hdekkaI6k0u6vWd+yqghRpUflqLS9eprYiUuGpaEFEiniuM1RNyR23dnwKb2lYSK/wm7D7mL1b434VCBd7WjOhTB33TVZy+63j+spWRZQ55IfgVkrn769f7W1tMwbfMMoPAAAAAAAAAIDGIUQFIGYF2hGiApA4ei/spzU5X8jztgZY0Dipm1aqq10kjZBUnp6jjXk9tbJdqvLD67W4KF/hBD23XoW0+PESBVOkwb8JKZBUfUxeybKI+5iStzXAVJ+i/IhCmQGlfh94aqg175VLAanj/j90N/IiUtXT7pVvDXIFmOTnu/SkDL9LAAAAAAAAAAAgrhCiAhC76EQFIIGkr/DUpd84rVg3ye9SEkJy8UblLdmoPEm7WLempDRt7txHqzIytDhQqIVF+SoNlygRhNICyhoa0uaZYa16p1xdDv9+dJ6k4qVhrf2wXMFUqf2I+kf5lW+IKFxoHa3q37bm/dZNKleXI1JcPVEWxCpeEpEX9hQIBVS06PtAVyMDWmh57ZLpRAUAAAAAAAAAQGMQogIQs+hEBSDR9Pquh1Z1TVEkXOZ3KQknWFGi9su/U3tJg6wjUjCoLXn9tSY7R8tCZZpfvESbyzcqXnU9OkUlS0u0dmK5ihaG1a53SOXrI9o0K+y6PvU4NVVJ2VuDS1vmh90lrXtQ2cOq/3e/bM3WTlFJ2Y1rFbXqrXIl5wSUO7b6/uzrgn+VadFfS5TWI6gNn1W4jxmDCFH5jXF+AAAAAAAAAAA0DiEqALErI93vCgCgRaWu89R9p/Faun6C36UkvEAkosxVC5W5SuoraZyNvcvtofW5nbUsOaKFZQVaXbJK8SI5J6h+V6Zrzbtl2jwrrLX55QqlS9nDQso7MFlp3X/oLGUBqjXvlKv9yKRtQlQVW7aGqELpDQ9RlRREtHFqhXqemuq6TVWVOzpZ4WJP6yZVqGRphTIGhdTt2BQFmOfnu4yUbL9LAAAAAAAAAAAgrhCiAhCzAtl0UACQeHp801kFvdopXFHkdyltikV60tcvd5fukva0rkyZedrQsYcK0kLKr1ijZUVLFdHWcXSxKCkzoK7HpKrrMXVv1/nQFHepTfvdktylMdK6BTX0rozt3p63f4q7ILZ0TOvkdwkAAAAAAAAAAMQVQlQAYlagPSEqAIkneVNEPTP2Vf7GN/0upc1LKVyrznaRtJukcGqmNnTqpdXt0rXY26iFRfmqiJT7XSbQJB3TuvhdAgAAAAAAAAAAcSXodwEAUOc4vxA/pgAknm5ft1dyanu/y0ANodJCdVz6rYbMmaZD587X+SuCOt0bpMMyR2pY1lClJ22/GxMQazqkWzyw7Vi7dq2effbZatedfvrpGjx4sPLz83doLddcc4077pQpU3bocdEyPM+L2X22Rm3xorXW3tbOaVtbLwAAAAAAQGORTgAQswKBgJTFC9YAEk9SsdQrZbzfZaAewXCZslfM04C507TfnG919tJinVXeV0e120N7ZA9XbkoHv0sEtqstjfOzANWhhx6q1157ze9SEOcmTJig66+/vkX3OXXqVF1wwQWNvt+BBx6oG264ofLrhx56SI8//rjaotZa+4svvqjf//73igf333+/C2c2xksvveTus3TpUvf13LlzdfLJJ7dShQAAAAAAAImBEBWAmBbIZqQfgMTUdXqmUtPbTsghEQQ8Txlr8tV7/pca+91MnZK/XucVddNxabtrbPYIdU3v7neJQJsc51dcXKzCwkK/y0AC+Nvf/qaCgoIWD+rMnz+/0fd74IEHdMkll1R+fe+997rnelvUWmv/y1/+og0bNihR7b///nr++efVufPWzoRvvvmmvvzyS7/LAgAAAAAAiGlJfhcAAHUJtM+Sp5Z9IQMAYkGw3FPvwDjN1at+l4JmSN24Qt3sImkPSRXtcrU+r6dWpqcoP7xOi4sWK+KF/S4TbVCHNtSJCkhEQ4cO9bsExLkOHTq4CwAAAAAAABqOTlQAYlogJ8vvEgCg1XSenqb0zB5+l4EWlFS0QZ0Wz9Sw76bpiHmLdMHqVJ0aHKJDskZqSNZgpQRT/S4RbUB2So6SQym+Hd9GkNkIqZUrV+quu+7Svvvuq1133VXHHHOMJk6c6Laxjz/96U+122676YADDtCtt96qLVu2VNvPjBkzdOmll2rMmDEaNmyYfvSjH+nPf/5zte1sxNVBBx3kPp82bZo7rl1X1caNG93+x48fr+HDh+uwww7TE088oUgksk3t1qXFuv+MHj3aHfPggw92477Wr1+/zbZWxx/+8Ad3fFvfT37yE/3vf/9rsfOIHev000/XZ5995i72PJoyZYrrUnTTTTdp3Lhx7rnzs5/9TJMnT652v48//thdP2LECO255566+OKLKztP2ffCyy+/rGXLlrl92ni1pozzi45xs+5UVUe6zZkzRxdeeKH22GMPd7HvlyVLllTebmuw7a1mW589T607kXXHWrVqlS677DJX93777ee6cFX11FNPue8VW7d979x88811dnyLjo6bPn26jj32WHeso446ynU/ijr++ON10kknbXPfs846S2effXa1/VjtzVl7fWuw82uPiz0+VUfe1ce2s+2ffPJJt2/7Gfbvf/+7wTXNnj3bnXf7ubbLLru4uuznU0lJSeU2paWluuOOO7T33nu7x+fGG2901zVW1XF+9nPRzmH0nEZ/TtrPwUceeUSHHHJI5c/ZZ555ptp+7Llj3wc2VtHqtTWff/75WrNmjVu73dfqtMexoecRAAAAAAAgVhGiAhDTArmEqAAkrkBE6lM2xu8y0IpC5cXKWfaddpozTQfNmaNzC8I6IzxAR2SM1G7Zw5SZnO13iUhAsTLKz8Ikb7zxhgsa2OW7775z4YG7775bl19+uXr06KFTTz1VycnJ7kX722+/vfK+dr+TTz5Zn3zyiXvR3l6c79ixoxu/dcopp1QGIfbaay+dccYZ7vNu3bq5/dt1Net45513XDjAQhzr1q1zwah77rmn2nYWBrB9f/jhhy7gYLXl5ua6wJXdr+qYNws0WLDg0UcfVU5Ojqu1U6dO+vnPf65PP/20lc8sWsNvfvMb1/3JLjYCzQIuZ555piZMmKBf/OIXLoDStWtXnXfeeZVBKgvIWOjOwif23Lztttu0cOFCXXDBBS6cYrdZQMmeG7ZPCzA1hd3XnHDCCZWf23EskLR27Vr3fLZjWz32XLTrqrrqqqtcaOjhhx9Wv3793Frt+2bQoEEuGGOBJwvtWHDRvPbaa+771L4HHn/8cRcGevXVV3XLLbfUW6uFiCxYaOfLjmXfEx988EFl/RZUzM/Pr9zevq8sMHXcccdVG0Fn5785a69vDVafPS72+FQdeddQFkKyIJEFRS3s1JCaLLhm9dhowjvvvNP9/DjiiCPcz7+nn366ct/XXnutXnjhBXcuLThqQdCaIbfGstCqncPoObWvjQXL7rvvPhcC/etf/+p+VtvP4gcffLDa/e182vPe1vV///d/7vPTTjvN1X399dfrd7/7nQvQ2UcAAAAAAIB4xjg/ADEtkMOLywASW8eZIWWO6q/CTQv8LgU7QDASVtaqBcpaJfWVtLekkg69tDank5Ynh7WwrEBrSlb5XSbiXF67rooFmzdv1n/+8x9lZ2/9/5yFFCw08Nhjj7nOJxZeMBY4sW5U0YCDhZx++ctfunDSc889p169elXu04IPFl744x//6IIg1jHKwlj2Qr6FqCycVVOXLl3c7ZmZme5rC0pZVyzrxmPhkmAwqOXLl7swQVZWlgsrREepeZ7nQgwWLrDggAWqjH2cNWuWTjzxRHc/24f55z//6b5G/Bk4cGDlc2T33Xd3IRbrGmQfrfOOsa5qFp6zDmQWurPQkXUQsrCLPc+MBa0seFVUVKTevXu7cWopKSlun00Vva/tO/q5fS+kp6e752u07rFjx7ruafY9ZsGWKAsBRjs9tWvXznXOsuDUlVde6a4bMmSI3n77bdfNza63blw9e/Z0gR97blsw0e5nYZ762PmxwJKxAKR1pbJAjn2/H3nkkS48ZN/rV1xxhdvGPs/IyHDdjGobQdfUtde3Bvset8fFjtWUx+bwww935zXq6quvrrcm61S188476957763cxrqcWTczC5LZz8K5c+fqrbfecj9HLIAVPY/W1WvevHlqKjt/dql6Ti34Zc9v+zloxzb77LOPAoGAC9zZz0oLkpqKigp33tu3b+++tufLpEmT9O6771b+jP7qq6/c4wkAAAAAABDP6EQFIKYxzg9Aogt4AfXdPNLvMuCTgKT0dUvVc8GX2uu7GTpx4WqdX9hJJ6Tuqn2yR6hnu14KuK2Ahuuc3l2xwIIa0QCVGTly6886CxFEA1TGwlIDBgxQeXm569TyyiuvuE4tFkypGqAyF110kQs92Da2fUNYOCAaWDA77bSTC7fYqLZooMLCXmVlZTr33HMrA1TGwgQWzOrTp48LOkRHc1lQwDpoXXPNNZUBKmOhh6r3R/yyTjvWqcg6IlmAxC7hcNgF/mbOnOmeOxauSk1NdR1+rEOPhUoskGSdq6o+51qDdTyzYFBaWlplfXbMUaNGuQ5uVdmotSjr6GaiwTATDcpY8NFYJzYL2Fh3KAvOfP311y7EYwGp+lhoqur3j4WjomEzCykeeuih7vstysbp/fjHP3braMm1N2cNDWE/xxpbkwWU/v73v7vnjAWiLGxnHcwsOGo/f8wXX3zhPlrnsCj7GWOd9Fqa1WxBUTtWtGa72NfWbW/q1KmV29rP6GiAyuTl5bnnTdWf0fazPPocAgAAAAAAiFd0ogIQ0+hEBaAtyJkdVPvRQ7Vxwzd+l4IYkLJ5jbrYxV7ktu4PaVnalNdLK9ulKd/boPyixaqINCw8grapS7vYCFHZKK+qrAuMsQBTTdbBxdgL9xZ2MPbRuk7Vtq2FDhYtWuTGkTW2DmMv/lvAwroF2efffLP15691tqopKSnJhVBsBNm3337rgjV2X+tcVDUkVjUsFt0f4peF7FavXl05Vq4mu82eAxaKsc5q//rXv1zHM3tOWAcfG2NnIaLWrM/GXtqlpqqdnExtga7o91xtLNRk4wj/8Y9/uHF/9n1oHd8sNGi31aXmWDwLbVlQZ9OmTS5gZIEzC1FZWCgUCrnvYxt/19Jrb84aGiL686wxNVk9Nkb02WefdT97rHuedf6yUFVUNNgZDbZF2c+dlmY1GxspWJuVK1fW+RyqeQ4AAAAAAAASASEqALEtO1NKCkkVYb8rAYBW1Wf1cM1I5kV3bCupZLM6LP1G9hKs9b2IJKVoc6fBWpOZqSWBLVpQtFjF4SK/y0QM6RwjIartvcBuI7TqYmELU7VbTW0aMlrM1NXhxsIdJto9xTrl1CY6qs2CD9Hjbq/TUNVuLYhf9lzo27evG91XGxsVZywEY52OrJOQde55/vnn3fhH60hlI99asz4bBRcd01cz+NdcNnrPLva98dFHH7lRnNdee60LCUa/H7YXzLEuRVFr1qxxYSnrUmSsW5MFKd98803XYal///6NHqfX0LU3dQ1N0ZCaLGxn4/5++9vfuo5c0Z83FiyLioan7Lx17959m8BTS4qGQJ966ik3UrGmqscHAAAAAABoKwhRAYhpgWBAgY458lau9bsUAGhV2QukDmNGaN36L/0uBTEuWFGm9gVzZDGNAZL2CwRV1LGv1rbvoGVJ5ZpfslQby9b7XSZ8FCshqqaKvpj/wgsvVBs51pqigSjrvGJjq2qq2h0mGgaJhr1qsqAV4pOFeqxbUDTs8/7777tOSlXDJBaQso5kFq6yQIwFUN566y0XDhw7dqyGDRum//3vf1q+fHnlPluqtqqsPhsJZ2PloiEdCwVapyUbP1lz3FxjWBctG5f54IMPuqCPhcFsfOWll17qRm7WFUB69913ddJJJ1XW8/bbb7vQUjQ8ad25bMSehc2sbhv72Rprb8gaWuqxaWhNFrKz7mXHH3985f3sZ86cOXM0fPjwyjGExkJm55xzTuV27733XrNrrLleGzVo1q9fX3lc88EHH+iZZ57RjTfeWDn+EQAAAAAAoK1oub8YAUArCXSqPo4CABJVn2WD7aee32UgzgS8iDLW5Kv3/C819ruZOi1/g84t6qZj03bXmOzd1TU9vgM1aHshqmj4Y/r06bXebuOwHn744cqwUkuMTBs6dKj7+Nlnn9V6e/R6Gx9oo7d22mknN97PusXUNGPGjGbXA39YZx4b1Th58mQdcsghLjxlnYVefvllffrpp+65d++997qRdRbIseCJjfWzYI4FT6zbkQVPLDB0wAEHVO7Tnid2u4V3mlPbtGnT9Pnnn7twziWXXKLFixfrwgsvdMGlSZMm6fLLL9frr7/uumA1h63L9mlj9uxcWEjM1m2duaL7tmN/9dVX29z3rrvucsGyDz/8UFdccYXmz5+vK6+8sto2FqKyc2FBs6OPPrrabTaq0/ZbWFjYrLU3ZA22Xxu9ad/fJSUlzTpnDanJupZ99913riOVHfPFF1/Uqaee6rqYFRcXu20scHXiiSfqT3/6k9vO9mNBLLtfS3Weeu2117RkyRINHjxYP/nJT/TrX/9ajz32mHuO//Of/3TduuxxsHMFAAAAAADQ1hCiAhDzAp22jjQAgESXscRT5w6j/S4DCSBt4wp1XzhdI7+bruMXFOiCTR30s+Th2i97D/XJ6KtgIOR3iWglGclZ7hLPLFRhARXrILNgwYJqt/397393ASoLRETHBUa7vljXmaayIIEd08IfFqqo6qGHHnJ1WCgj2pHIuueEw2Hdeuut1Y5rHYi++OKLJtcBf1mgxZ4H559/vgu5PPvss66L0t133+2us65KV199tQtKGQvHWGcqC/xcddVVuuyyy9zYtSeeeMKNqYsGhnr06OGCVq+88kqTa7vooos0c+ZMV0dBQYE7ttVnIcLrrrvOBZYs0GXfNzYqrjmsk9SvfvUrF4Sy4950002uQ5uty85P9PvCwj413Xzzza6LnJ0Lq8fuE+14FGVdoKz+ffbZZ5uuVtb9y/Y7a9asZq29IWuwTk8WcDv33HPd/pujITVZwOrkk0/W008/7dby+OOPu593dq7mzp1b2d3uN7/5jbvdft7ZbRbwsjU0l9VhHa9uuOEGd2xzxx13uKDgc889p/POO889n3/84x+782RjGAEAAAAAANqagGdv4wOAGFbx6QxVvPCm32UAwA5R0iWgqbkvyvPCfpeCBBZOaadNnXprVUY7LfE2a2HRIpVFyvwuCy2gf/sh+uN+//C1BnuB3jr3PPnkkxo3blzl9VOmTNEZZ5yho446yo1Cq+r00093oRULqVgnFuvQYqEHCzscfPDB6tatmxuh9vHHH6t9+/YuhBDt7mIhJgu6VFRUuICCHfOggw7aZp9V2XbW2WbChAnq2bOnuy56TAsO2P27du3qOuLYxUIwNt7KPhoLUFnIweqxrlQ2xm3p0qWaOHGievfu7bpUWY2jRxOMRdvw0ksvuXBZ1e+p7bERdtap67777nPf30BNkXmLVfbQc36XAQAAAKAWafdc53cJANCqtr5lFwBiWJBOVADakLSVnrr231sF6z70uxQksFBZkXKXzZb9C2tDJCPBJG3pNFBrstprabBE84sXa0vFZr/LRBsc5Rf105/+VP369XPdUiyoZKP7LNRkHaAuuOAC9erVq3JbC1r97ne/05///Gc9//zzblsLQTX1mDbWysZ/2Xgt6zxl3WOsU42Ft6IsaGUdsWxb6y5kI7Bs21tuucWFqaybC1BTJBJxl/pEu6slGgtCWsjKOsnZqLgDDzxQscKCkfW9x9C6TMVCdyYLjNYnGAy6CwAAAAAAABqHTlQAYp63qVClNz/kdxkAsMOU5gY0tdvLioRL/S4FbZT9glDcsafW5uSpICmiBaXLtbZ0td9loQF+utP5OmXIxX6XAaAW999/vx544IF6t2tIN6d47ERlXd0skGgj/O65557KbnKxINq5ri7Wic66zflt8GCLP9ft2GOP1Z133ql4RScqAAAAIHbRiQpAoiNEBSAulPzyz1IJY4YAtB2LxqzR0vUT/C4DqFSWlaf1HburIDWoRRWrtbxomTwXt0IsuXbUXRrXnfFYQCyyMXarVq1qUEgmJSVlh9SErRYsWKAtW7bUuY09Jg0JMLW2r7/+ut5tcnNz4y6IVxUhKgAAACB2EaICkOgSs0c8gIQTyMuVt3Sl32UAwA7TY1YnFfRpp3B5kd+lAE7K5jXqYhdJu9s4ofQsbczrrZXpqVrsbVD+lnxVePWPGELr6pM90O8SAGyHdWCyC2JP//79FS+GDx/udwkAAAAAAAAJixAVgLgQ6NSBEBWANiV5s6ee7fZV/sY3/S4FqFVS8WZ1XDJLHSUNlRROSlVhp/5anZmlJYEtWlCUr5Jwsd9ltikpwVR1zejldxkAAAAAAAAAAMQlQlQA4kKgU67fJQDADtdtRo6W79Re5aUb/S4FqFeoolTtC+aqvSTrhbR/IKiijv20JqeDloVKtaBkqTaWbfC7zITWM6ufQoGQ32UAAAAAAAAAABCXCFEBiAvBTh0U9rsIANjBkko89U7ZV/NL/+t3KUCjBbyIMtYscpc+ksZJKsnpoXW5nVSQIi0sW6GVJSv8LjOh9Mke5HcJAAAAAAAAAADELUJUAOJCoGue3yUAgC+6fNVOS4d3VmnRKr9LAZotbcNydbeLpJGSyjI6aGNeT61IS9Ki8Fot3bJEEUX8LjNu9cmyHmAAAAAAAAAAAKApCFEBiAuBrh2lUEgK048KQNsSrJD6eOM0R6/4XQrQ4lK2rFcnu0gaLqkitZ025/XRqox0LfY2aVFRvsoiZX6XGTf6ZBOiAgAAAAAAAACgqQhRAYgLgVDIBam8ZXRiAdD2dJqRoqUjeqqocKnfpQCtKqm0SLnLvlWupMGSvFCyNucN1Jrs9loaKNaC4sXaUlHod5kxi3F+AAAAAAAAAAA0HSEqAHEj2KOLwoSoALRBgUhAfUpH61sRokLbEgiXK3vlfGWvlPpLGi+ppGNvrWmfp+XJFVpQulzrStf4XWZMyE7JUW4a448BAAAAAAAAAGgqQlQA4kagRxdJX/tdBgD4osOskDJHDVDhpvl+lwL4JiApfe0S9bKLpNGSSrO7aH2HrlqRGtTC8tVaXtw2w4a9GeUHAAAAAAAAAECzEKICEDeCPTr7XQIA+CbgBdR300jNFCEqoKrUTavU1S6SdpdUkd5eG/J6alW7NOWH1yu/KF9hL6xE1yeLUX4AAAAAAAAAADQHISoAcSPQvdPWFhSe35UAgD9yvgsoZ/Qu2rBhlt+lADErqXiT8pZ8IxtsN1RSOClVmzsN0uqsDC1RoRYWLVZJuFiJpg+dqAAAAAAAAAAAaBZCVADiRiAtVYG8XHmr1/tdCgD4ps+q4dqQQogKaKhQRalyCr5TToFkvZq8YFBbOvbXmvY5WhYq04LipdpUvkHxjhAVAAAAAAAAAADNQ4gKQFwJ9OhMiApAm5a10FPHMXto7fppfpcCxKVAJKLM1QuVuVrqK2lvScW53bUut4sKkj0tKCvQ6pKViicBBdQ7ixAVAAAAAAAAAADNQYgKQFwJdu+iyFff+V0GAPiq99KdtDbjS+abAi0kfX2BethF0ihJZZl52tCxu1akJSk/vFZLtyxRRBHFqi7teigtKd3vMgAAAAAAAAAAiGuEqADEXScqAGjrMpZ66jx2jFatm+x3KUBCSilcq852kbSrpHBqhjbm9daqjHQt9jZpUVG+yiNlihV9sm1QIQAAAAAAAAAAaA5CVADiSrBnF79LAICY0Ht+H63u8Jk8L+x3KUDCC5VuUYdl36qDpCHWAy6UrMJOg7Q6K1tLAsVaULxYRRWFvtU3KHeYb8cGAAAAAAAAACBREKICEFcCWRlSbra0fpPfpQCAr9JWeeo6YB8VrPvA71KANicQLlfWinnKWiH1l7RvIKDijn20pn1HLU+q0ILSZVpfunaH1bNzh9122LEAAAAAAAAAAEhUAc/zPL+LAIDGKHvmv4p8+a3fZQCA70pzApra/WVFwqV+lwKghtLsLlrfsasKUgJaWL5SBcXLW+U4SYEkPfvjSUoJpbbK/gEAAAAAAAAAaCvoRAUg7gT79yREBQCSUjd46jFkvJasf9fvUgDUkLpppbraRdIISeXpOdqY10sr2qVocXidFhctVrgFxnH2az+EABUAAAAAAAAAAC2AEBWAuBPs28PvEgAgZnSfmaflfTMULt/idykA6pBcvFF5SzYqT9IwSeHkdG3u1EerMtppSaBQC4vyVRouafR+h3TYtVXqBQAAAAAAAACgrSFEBSDuBLp1ktJSpRLGVwFAcqGnXu321aKN//O7FACNECovVs7y2cqRtJOkSDCkLXn9tTY7V0tDJVpQvFSbyzfWu5/BHXbbIfUCAAAAAAAAAJDoCFEBiDuBYEDBPt0V+W6h36UAQEzoNiNbywbnqrxkvd+lAGiiYCSsrFUL3aWvpL0lleb21NrcTlqeHNHCshVaXbJym/sNySVEBQAAAAAAAABASyBEBSAuBfv3IEQFAN8LlUi9k8Zrvv7jdykAWkhAUtr6ZephF0l7SirL7KT1HbtpRVqS8ivWqNSrUMf0zn6XCgAAAAAAAABAQiBEBSAuBfray4kAgKgu09O1bHgXlRRt26kGQGJIKVyjLnaRZP2nOu90pN8lAQAAAAAAAACQMIJ+FwAATWHj/BTkRxgARAUrpD7eOL/LALADdejCKD8AAAAAAAAAAFoKCQQAcSmQkqxAD8bXAEBVeTOS1S6zl99lANhBcrvv4XcJAAAAAAAAAAAkDEJUAOJWsH9Pv0sAgJgSiATUp3S032UA2AFS2nVURk5fv8sAAAAAAAAAACBhEKICELeC/QhRAUBNHWYFlZU90O8yALSy3G4j/S4BAAAAAAAAAICEQogKQNwKDuglBQJ+lwEAMSXgBdRnEyO+gESX243vcwAAAAAAAAAAWhIhKgBxK5CRrkCvrn6XAQAxJ+e7gHJyhvldBoBWlNOdTlQAAAAAAAAAALSkpBbdGwDsYMHBfRVeXOB3GQAQc/qsHKYNqTP9LgNAK0hOy1Vmbn+/ywAAoFVE5i1W2UPP+V0GAAAAgFqk3XOd3yUAQKuiExWAuBYa0s/vEgAgJmUt8pTXgU41QCLq2HOM3yUAAAAAAAAAAJBwCFEBiGuB3t2ltFS/ywCAmNR78SApwH/3gEST12cfv0t1UMfGAACLoklEQVQAAAAAAAAAACDh8KoagLgWCAUVHNTb7zIAICa1W+apSy4da4BEEgiE1LHXOL/LAAAAAAAAAAAg4RCiAhD3goMZ6QcA29NrXh8Fgkl+lwGghbTvsquSU7P9LgMAAAAAAAAAgIRDiApA3AsOIUQFANuTtjqibjmM/gISBaP8AAAAAAAAAABoHYSoAMS9YIf2CnTK9bsMAIhZPb/tqmBSmt9lAGgBeb3H+10CAAAAAAAAAAAJiRAVgITASD8A2L6UDZ56ZO7rdxkAmikts5syOwzwuwwAAAAAAAAAABISISoACSE4uK/fJQBATOvxdQclpWT5XQaAZsjrzSg/AAAAAAAAAABaCyEqAAkhOLC3lBTyuwwAiFlJRZ56pjMGDIhneX34HgYAAAAAAAAAoLUQogKQEAKpKQru1MfvMgAgpnWbnq2UtA5+lwGgCYJJacrtPsrvMgAAAAAAAAAASFiEqAAkjODwnfwuAQBiWqjUU+8kxoEB8ahD9z0VSkr1uwwAAAAAAAAAABIWISoACSM0bJAUDPhdBgDEtM5fpSutXVe/ywDQSIzyAwAAAAAAAACgdRGiApAwAhnpCvbv5XcZABDTgmGpd2Sc32UAaKS83nv7XQIAAAAAAAAAAAmNEBWAhMJIPwCoX6cZycrI6u13GQAaKLPDIKVl0kEOAAAAAAAAAIDWRIgKQEIJDR8kMdEPAOoU8KQ+xXv5XQaABsrrvY/fJQAAAAAAAAAAkPAIUQFIKIGcLAV6dfO7DACIeR1mhZTVfpDfZQBogE79DvC7BAAAAAAAAAAAEh4hKgAJJ7QrI/0AoCH6bhjhdwkA6tGufW+177yL32UAAAAAAAAAAJDwCFEBSDjB4YSoAKAh2s8JKCd3uN9lAKhDl4GH+V0CAAAAAAAAAABtAiEqAAkn2ClXgW6d/C4DAOJCn4KhfpcAoA7dBh3udwkAAAAAAAAAALQJhKgAJCRG+gFAw2TlS3kd9vS7DAC1yO401I3zAwAAAAAAAAAArY8QFYCEFNx9iN8lAEDc6J0/QArw30Ig1jDKDwAAAAAAAACAHYdXywAkpGCXjgr06up3GQAQF9ot99Qld4zfZQCoKhBU1wGH+l0FENc8z4vZfbZGbfGitdYer+d0R9Ydr+cIAAAAAABgRyFEBSBhhUbt4ncJABA3es/trUAwye8yAHyvQ/dRSs3o5HcZQNyaMGGCrr/++hbd59SpU3XBBRc0+n4HHnigbrjhhsqvH3roIT3++ONqi1pr7S+++KJ+//vfK9409TnVEPacs+dea35PAAAAAAAAJBpCVAASVmjEzlKIH3MA0BCpazx1yxnvdxkAvtd14OF+lwDEtb/97W8qKCho8aDO/PnzG32/Bx54QJdccknl1/fee6+Ki4vVFrXW2v/yl79ow4YNijdNfU41hD3n7LnXmt8TAAAAAAAAiYZ2AwASViCznYJD+ikyq3X+KA0AiabnN120omeaIhUlassef61EC5aHddsFGdvctnJdRK9PLnO3FxZ76tQ+qNG7JOmAEckKhQINPsaKdRH9b3KZvlsSVkmZp47tg9pr5yQduEeykpOq7+fdL8o0cWq5Sss99e8e0k8PSFXn3G1Dwnf9o0jpqQFdfnx6E1eOWBEMpapz/x+6hwCIb0OHDvW7BLRBvXv39rsEAAAAAACAuEOLFgAJLTSSkX4A0FApGz31zNxXbdkbk8s0bU5FrbctWRXWnc8W6au5FRrQPaR9d0tWUpL08odleuClEoXDXoOOMW9ZWL+3/cyr0JA+IY3fLVkWm/rPR2V6/PUSed4P+/l6QYXbf25WQGOHJWtRQVgPvlSs8orqx7KaF6+M6JjxKc08A4gFeb33UVJKpt9lAHHr9NNP12effeYugwcP1pQpU1yXoptuuknjxo3T8OHD9bOf/UyTJ0+udr+PP/7YXT9ixAjtueeeuvjiiyu7BNlotJdfflnLli1z+3zppZeaNM7P7musQ1D0czNnzhxdeOGF2mOPPdzl0ksv1ZIlSypvtzXY9lazrW/XXXfV/vvv7zoZrVq1Spdddpmre7/99nMdh6p66qmndNhhh7l1jx8/XjfffLMKCwu3W6+tzY41ffp0HXvsse5YRx11lN58883KbY4//niddNJJ29z3rLPO0tlnn11tP1Z7c9Ze3xrs/NrjYo+P7Xfp0qUNfGTk9nHLLbe4fe6+++5uXe+//37l7bbv22+/XWeeeaY7D//3f//nrm/I82ndunX67W9/qwMOOEDDhg3TXnvt5dYWrW97z6nS0lLddddd7rG0+9m5f+ONN9SccX61fU80dB22/T//+U+3v5EjR7p13HrrrSopKXEjFMeMGaPRo0e7c2O1AwAAAAAAxDNCVAASWnDYQCk91e8yACBudP+6g5JSstTWWCjp2bdLXJep7Xn27VKVV0iXHpems49I03H7peq6U9I1YlBIc5aE9fns2sNXVZWVe3rqf1s7ff38p+k66/A0Hb9fqm48Ld0Fqr6eH9Y3i8KV2380o1ztUqUrf5quE/ZP1YkHpWrNRk+zFv6wjYW3/vNRqfYckqRenUPNPhfwX9eBh/ldAhDXfvOb37juT3Z5/vnntcsuu7gQzIQJE/SLX/zChXi6du2q8847rzIwYqEdG39moRUbDXfbbbdp4cKFuuCCCxSJRNxtFmrp1KmT26cFmJrC7mtOOOGEys/tOBZIWrt2rQul2LGtnpNPPtldV9VVV13lgjEPP/yw+vXr59Z6xhlnaNCgQXrooYdc0OeOO+7QjBkz3Pavvfaa7r77bp166ql6/PHHXYjn1VdfdcGh+liw6aCDDnLny47185//XB988EFl/V9++aXy8/Mrt7dRcRbOOe6449zXdo6i5785a69vDVafPS72+Nh+O3fu3KDHIhwO65xzztF///tft1Y7f/3793f7/+KLLyq3e/bZZ13AyG632i0oVN/zyQLRtk8L5l1zzTWubgu62e32mJnanlN2Pzv+c88958Jo9ly0cJwd55VXXlFLfk80ZB1Rdv5TUlLcNsccc4yeeeYZ99Ee8z/84Q8upPWvf/3LXQ8AAAAAABDPGOcHIKEFkpIU2m2wwp9ufREBAFC3pCJPvdLGa2FZ4zsexKuv51foxfdKtXaTp136haoFlKI2F3kKR6TBvUMa3PuH/0IHAgHtuXOyvpwb1sKCsMbsklznsaz71LpNno4Ym6J+3X8IPNkoQLsuJ7NcVRpRac2GiBvdl5K8dcRfz+9DUms2Riq3mTSjXOs3e7riBLpQJQLrQJXXZx+/ywDi2sCBA5WZubWbm3UXeuGFFzR79mz3cbfddnPX77vvvi74YQGQf//73y50ZJ11LPjSpUsXt40FSixgUlRU5EajdejQwQVJbJ9NFb2v7Tv6uQVT0tPTXQepaN1jx47VwQcfrMcee0zXX3995f2tU1K001O7du1c5yALTl155ZXuuiFDhujtt9/WtGnT3PXWeahnz54ugBQMBl0XIbvfxo0b663Vzo8Feox1arKuVA8++KAL/hx55JG68847XZjpiiuucNvY5xkZGTrkkEPc13a+7NLctde3BgsG2eNix2rMY/Phhx+6blu2Jjuesa5KFuL69NNPNWrUKHdd9+7dXRAqqiHPJ+sOZuuy+qP7sW5NixcvrgyQ1facstDVpEmT9Kc//Uk//vGPK899cXGx27ed9yRrg9nM74mGrqPq/X/3u9+5z+38Wwe08vJyt53Vs88+++itt95yzzsAAAAAAIB4RogKQMILjRpGiAoAGqHrjGwtG9JBZSXr1BZ8MrNcJWWe6/I0ftckXfanLdtsk9UuoP87o12t91+5bmugKTuj/iavsxZsDWiNHLztf8P7dw+5S1UZ6QEVbW1c5ZSUbk1YtUvdGqqyuv/3abn22z1ZHbJpMpsIOvc7SMEQgTigJVlXHev2Y913Kip+6BpoY9ZsbJqFcSxEkpqa6joN2dg4C5NY6MWCSK3NAjsWTElLS6uszwIvFr755JNPqm1rXYmiOnbs6D5GAzAmNzfXfdy8eXNlKMhCO9YdyoJCFoCy8XAWAq6PhaaibHsLR91///0ubJaVlaVDDz1U//nPfypDVDaazoI/to6WXHtz1lCXqVOnKjk5uXLknbGQlnWBqmrnnXdu9PPJgnhPP/206yxl4/usY9eCBQtcyKisbPtdL23fti5bY9V9W412rufOnbtNPU3VkHW0b99+m+ddKBRyzzO7X9VAV05OTuXzDgAAAAAAIF4RogKQ8AL9eijQMUfe2g1+lwIAcSFU6ql3aLzm6VW1BQfskawzD09TWkrDX4y1F0U3bvE0bU6FGwHYPiOgfXat/7/WS9dEFApKHbIDemNymT77dmsXqdysgMYNS9bBo5IVDP5QR79uIb37Rbm+mlvhumBNnFYuuzkatnrn8zJFIp4OG03oJlEwyg9oeRs2bNDq1asrx8rVZLdZp52///3veuSRR9xYMgvAZGdn65RTTnFj7Job2KmvvjfeeMNdaqrayclEuwlVZR2PtsdCTTaO8B//+IcbR2chqB49erjOStFOR9tTcyyehbbs379Nmza50JMFzizYY6PvLFizaNEiN5KvpdfenDXUd2wL/lhwqi7W9aqxzycLH9m5ueeee9zIOzuOhZ/qC5jZvu0c77HHHrXebh2uWipE1dB1bO95V/O8AAAAAAAAJAJCVAASnr3gERw5VOG3q7+LGwCwfZ2np2npbt1UsqVAiW6nXo3/L/GTb5Rq6ncVlV2qLjs+Te0b0IlqY2FEKcnSgy+VaOnqsHYdkKTU5IBmLqzQqx+VKX9lWOcdmVb5Yv0he6a4cYOP/veHdlQ29q9rx6Db18Sp5TpiXIrapW3d3l54bc0X+tG60rK6K7fH1rFPAFqOdU3q27evGz1WGxsVZ6zrlI2Xs05B1qXIuh/99a9/dSPyDj/88Fatb9y4cZVj+qpqyui2mmwEnF2sS9BHH32kRx99VNdee61GjhxZObpweyGbvLy8yq/XrFnjwlIWCDLWQcpG0r355psuiNS/f/9Gjzps6Nqbuob6jh0NLVX9t/Obb75x120vXNSQ55MFy2yUn43GO/fccytrtA5P9tyqqyYLJ1mIrzZ9+vTRjv6+AAAAAAAAaEuY+QGgTQjtOUziNWUAaLBgWOoTHut3GTGrV+egDtkzWcP7h1RY5Ome54v13eIfRuFsT2m5VFwqrVgX0Y2ntdMZh6W5MYK/PL2dencJ6qu5YX0x+4f9ZKYHdMNp7XTW4ak6fr8UXXtyun48dmvXKeuAldku4Eb5FZd6euy/xfr5fVv0i/sK9cxbJW7UH+JLz52PUyDAr2hAS6jaXcjCPtYNyDopDR8+vPLy8ccf67HHHnPBoL/97W9ujJkFqFJSUjR27Fjdcsst7v7Lly/fZp8tVVu0vnnz5rkOQ9Hahg0b5mp65513mnUs66J16aWXVoZmLAx2ySWXuPFt1tWoLu+++27l5xYqevvtt11oyc6PseCRjdiz7SZOnFht/F9Lrr0ha2jKY2MjA8vLy/Xhhx9WW+eNN96ohx9+eLv3a8jz6csvv3Tdsy6//PLKAFU4HK4cUWi3be98FBUVuTqq7nvOnDl68MEHq43da6zajlXfOgAAAAAAANoa/kIPoE0IdsxRcKd+fpcBAHElb0ayMrL6+l1GTLIOUceMT9VFx6TromPSVFK6tTtVWXndwaXopL4fj0lRx/Y//Fc8PTWgn+yz9UXpL77vcBWVkhzQnjsn68CRKerbbesLmivWRjR5ZoWOGpei5KSAXnyvVN/mh3XKIakulGXj/176oLTlF45WEwylqPuQY/wuA0gYNopv4cKFmjx5sg455BB1797ddTt6+eWX9emnn7oxa/fee68bWZecnKwxY8a48WUW1vnggw9ctyML01hgyMJV0X1aNya7vb4AUn21TZs2TZ9//rkLy1ggaPHixbrwwgtdIGnSpEkufPP666+7LljNYeuyfdqYPTsXb731llu3dSCK7tuO/dVXX21zX+ua9NRTT7mQ0RVXXKH58+fryiuvrLaNhajsXFjQ7Oijj65227p169x+CwsLm7X2hqzB9msdpD777DOVlPzQvbEu+++/v0aMGKEbbrjBdR2zgJN9bus877zztns/W3N9zyframZ+97vfudutZtt+9uzZ7noLStX2nNpvv/205557uvNi4wunTJnium7dfPPNLgRVc7xjU78nNm7c2KB1AAAAAAAAtDWEqAC0GaG9GzdaAgDauoAn9SlitFh9hvVP0rD+IW0u8rSgIFznthaWMn26bvvf8F6dtwakVm/Y2p2iLq98VKoenYLac+ck14Xq89kVGjssWaOHJmvMLsnucwtZ0Y0qfnTud5BS0nP9LgNIGKeeeqoLgZx//vkuWPPss8+6Lkp33323u866Kl199dUuKGUsjGOj+yzwc9VVV+myyy5zo96eeOIJN6bOWOikR48eLmj1yiuvNLm2iy66SDNnznR1WCcgO7bVZ52drrvuOhdYskCXdR469NBDm3UeTjrpJP3qV79yQSg77k033aQBAwa4dUVDMg899JBOPPHEbe5rwZ0XXnjBnQurx+5j3Zuqsi5LVv8+++yzzVi9999/3+131qxZzVp7Q9ZwzjnnuDCSjc6z/TeEdVqygJIdx4JD9rjm5+e7/UZDULWxcXv1PZ9Gjx7t6rSOVHb7nXfe6QJLNi7SREf61XxOWVDqkUce0RFHHOG6Ydl6nnvuORd0+tOf/qSW+p6wc9mQdQAAAAAAALQ1Ac/e+gcAbYAXiaj01oelDZv9LgUA4sqMvb7Spo3fqa249J5C5WQGdNsFGZXXbS6KaFFBRDlZgcqwU1X/eq9U731ZrrN/nKpRQ7bfueGe54s0f1lEV52YrgE9qu9nY2FEv3ykyI0KtBF+2zNvaVh/eqFYlx+fpiF9krR4ZVi/f7bYdaDad7etx540vVzPTSjVjaenq2cnxvHEg1FHP6Gcrrv5XQYA6KWXXnIhmgkTJqhnz551brty5UrXqeu+++7TwQcfvMNqRGKLzFussoee87sMAAAAALVIu+c6v0sAgFZFJyoAbUYgGFTSWF6cBIDG6rOen535KyL666sl+s9HZbXevnjV1g5UnXPr/u/1Tj23Bppm51dse4yVWztQWYepurwyqVQ79wm5AJWJfN+4KhL54b0R5eGtn38/PRAxLrPjYAJUQJyJRCKqqKio95Kovv32W9dVycbe2Vi9Aw88ULEiHA7X+7jYNvHI3gfZkOcd75cEAAAAAABomq2vvABAGxEas5sq3v5ECtc/KgkAsFX7uQHljtlV69fPUFs1uHdI7TMC+nZRWLMWVmiXfj/8N9q6Pll3qd5dgq6LVF1szN67X5Rr4rRyjdgpSd3ztoaqiko8/ffjMhd62nv49jtZTZtToUUrIrrhtPTK6yy4FQzI1bD/iK3XLVgWVigodcrhPRPxoOfQE/wuAUAj2bi56Gi2ujSkm1M8Ki0t1ZNPPulG+N1zzz1uDF2sOOuss9wIx7rYCL2JEycq3ti6zjjjjHq3u+OOO9yoQAAAAAAAADQO4/wAtDllT7+qyFdtZywVALSEwj7SV2nPq62O8zPf5lfor6+UuM5Puw0MqUN2UItXRjR3adht//OfpVcLLU2eVa51GyPadWBStRGAk2eW69l3SpUckgtSpaUENGN+hdZv9nTQyGQdt19qrXWFI55u/VuR+nUP6YzD0qrd9uQbJfpidoVGDU6S/ed+6ncVOmCPZJ2wf+37QuxISsnU+NPeVCj5h2AcgNhnY+xWrVpV73aDBw9WSkrKDqkJWy1YsEBbtmypcxt7TOyxiTeFhYVauHBhvdtZcC83N1fxinF+AAAAQOxinB+AREcnKgBtTtK4ESojRAUAjZKZL3Uau5dWr6u7s0Mi27lPkq49JV3/+7RMc5aEVVK2NTx1wIhk/Wh0srLaVe/CMWVWueYujahD+2C1EJV1o+qUG9RbU8pceMomCnXtGNRRe6do9NDtd6H6eMbWoNUVe2/7Yvwph6S6UNaXcysUCEj77paso/fhRft40G2nIwhQAXHIOjDZBbGnf//+SlSZmZkaPny432UAAAAAAAAkLDpRAWiTSn//uLyVa/0uAwDiSnG3gKa1f1GeF/a7FCBhjP3Zv5SR28/vMgAAiBl0ogIAAABiF52oACS66m+XB4A2IjRuhN8lAEDcSS/w1Dl3jN9lAAkjt/soAlQAAAAAAAAAAMQIQlQA2qTQnrtIKdsfmQQAqF2vOb0UCPLzE2gJPXf5qd8lAAAAAAAAAACA7xGiAtAmBdJSFRq1i99lAEDcSVvrqXvOeL/LAOJeartO6tR3f7/LAAAAAAAAAAAA3yNEBaDNCu07Ugr4XQUAxJ8eszorlJTudxlAXOu+87EKBpP8LgMAAAAAAAAAAHyPEBWANivYuaOCQwf4XQYAxJ2UTZ56ZO7rdxlA3AoEQ+q583F+lwEAAAAAAAAAAKogRAWgTUvafy+/SwCAuNR9Rq6SUrL9LgOIS10HHq7UjE5+lwEAAAAAAAAAAKogRAWgTQsO6KVAr65+lwEAcSep2FOv1PF+lwHEn0BQfUec7XcVAAAAAAAAAACgBkJUANq8pP339LsEAIhLXWdkKiW9o99lAHGlc78DlJHT1+8yAAAAAAAAAABADYSoALR5wd0GK9Axx+8yACDuhMqkPsF9/C4DiCt9R5zjdwkAAAAAAAAAAKAWhKgAtHmBYFAhulEBQJN0mp6mtIxufpcBxIWOvfZWdt4Qv8sAAAAAAAAAAAC1IEQFANZNZa/hUlaG32UAQNwJhqU+FeP8LgOIC/32oAsVAAAAAAAAAACxihAVAFg3quQkJY0f6XcZABCX8r5OUkZWX7/LAGJaTrc9lNN1d7/LAAAAAAAAAAAA20GICgC+F9p7hJSW4ncZABB3Ap7UdwtjUYG69Btxtt8lAAAAAAAAAACAOhCiAoDvBdJTFRo3wu8yACAu5X4bVHbOEL/LAGJSVt7O6tiLsZcAAAAAAAAAAMQyQlQAUEXSAXtJqXSjAoCm6Lt2V79LAGJSvxHn+F0CAAAAAAAAAACoR8DzPK++jQCgLSl/Y5LC7072uwwAiEuzxszW+vXT/S4DiBkZOf005mcvKhAI+F0KAAAAAAAAAACoA52oAKCGpP33lNJS/S4DAOJSn+U7W07f7zKAmNF3xNkEqAAAAAAAAAAAiAOEqACghkC7NCXtN8rvMgAgLmUu9tSpw55+lwHEhPSsHuoy8Ed+lwEAAAAAAAAAABqAEBUA1CJkIap2aX6XAQBxqffC/goEQn6XAfiuz+5nKBhM8rsMAAAAAAAAAADQAISoAKAWgbRUJe2/l99lAEBcSl/hqUvuOL/LAHyVltVd3Qf/xO8yAAAAAAAAAABAAxGiAoDtCI3fQ8ps53cZABCXes7pqWAoxe8yAN8M2PNivgcAAAAAAAAAAIgjhKgAYDsCqSlKOpBuVADQFGlrI+qWvY/fZQC+yMobrK4DD/e7DAAAAAAAAAAA0AiEqACgDqFxI6SsDL/LAIC41PObLgol0dEPbc/A0VcqEAj4XQYAAAAAAAAAAGgEQlQAUIdASrKSDhrjdxkAEJeSN0XUM3Nfv8sAdqgOPceoY8/RfpcBAAAAAAAAAAAaiRAVANQjNG43KTfb7zIAIC51m9Feyant/S4D2DECQQ0ac6XfVQAAAAAAAAAAgCYgRAUA9QgkJSn5CDqpAEBTJBVLvVLG+10GsEN0G3S4sjru5HcZAAAAAAAAAACgCQhRAUADhPYYqkCf7n6XAQBxqev0TKWm5/ldBtCqgqFUDRh1sd9lAAAAAAAAAACAJiJEBQANlHz0AX6XAABxKVjuqXdgb7/LAFpVr2EnKi2rm99lAAAAAAAAAACAJiJEBQANFOzbQ8Hdh/hdBgDEpc7T05Se0cPvMoBWkZzaXn1HnON3GQAAAAAAAAAAoBmSmnNnAGhrko/cT6Uz50kVFX6XAgBxJRCR+pSP0Wz92+9SgBbXd8TZSk7N8rsMAAASQmTeYpU99JzfZQAAAACoRdo91/ldAgC0KjpRAUAjBDq0V2jfkX6XAQBxqePMkDKz+/tdBtCi0jK7uVF+AAAAAAAAAAAgvhGiAoBGSjp4jJTZzu8yACDuBLyA+hQSREViGbDnJQqGUvwuAwAAAAAAAAAANBMhKgBopEBaqpIO29vvMgAgLuV+G1T7nJ39LgNoEVl5g9V10OF+lwEAAAAAAAAAAFoAISoAaILQmN0U6JrndxkAEJf6rNnV7xKAFhDQTuOuVSAQ8LsQAAAAAAAAAADQAghRAUATBIJBJR19gN9lAEBcyp4vdcjd3e8ygGbpNvgo5XYb4XcZAAAAAAAAAACghRCiAoAmCg3up+DwQX6XAQBxqc+yIa6TDxCPktPaa9CYK/0uAwAAAAAAAAAAtCBCVADQDMnHHiylJvtdBgDEnYwlnjp32MvvMoAmGTj6SqWk5fhdBgAAAAAAAAAAaEGEqACgGQI5WUr60T5+lwEAcanXgn4KBEJ+lwE0Sk7XEeo++Cd+lwEAAAAAAAAAAFoYISoAaKbQviMV6NHZ7zIAIO6kr/TUNXdvv8sAGiwQTNKQ8TcqEGAUJQAAAAAAAAAAiYYQFQA0UyAYVPIJh0q8oAoAjdbzux4KhlL9LgNokN7DT1VmhwF+lwEAAAAAAAAAAFoBISoAaAHBPt0VGrub32UAQNxJXRdR92zGoiL2pWV2U/+R5/tdBgAAAAAAAAAAaCWEqACghSQdsa+UleF3GQAQd3rM6qRQcju/ywDqNHif6xRKTve7DAAAAAAAAAAA0EoIUQFACwmkpyn5J/v7XQYAxJ3kzZ56ttvX7zKA7erUd3916sNzFAAAAAAAAACAREaICgBaUGjkLgoO6uN3GQAQd7rNyFFyanu/ywC2YV3SBu99rd9lAAAAAAAAAACAVkaICgBaWNLxh0hJIb/LAIC4klTiqVfKeL/LALbRf+QFSsvs6ncZAAAAAAAAAACglRGiAvD/7d0HmFx19T/gM1vSSEIKEEogQMDQQkvoHaRLR0WKFKWD9CaKIMUKiCIIIkWqgFQBEVCadERAmhTpvffU/T/ny2/3vwmpsJvZ3Xnf5xlmZ+bOveeW3SyZT84J2lbdbAOiYe0Vq10GQKcz+4O9o3vPWatdBrToPfArMffwb1W7DAAAAAAAYAYQogJoB/VrLReVuXWtAJgedWOaYkisVO0y4DOVulh4le9HXV1DtSsBAAAAAABmACEqgHZQqauLxq03NNYPYDrN+lD36Nl7rmqXATHvEt+OmQcNr3YZAAAAAADADCJEBdBO6gYNjIb1Vq52GQCdSmV8xJBRy1e7DGpc74HDYv6Ru1W7DAAAAAAAYAYSogJoR/WrLxuVeXVUAZgeAx+pj959h1a7DGpUXX23WGzNo6OuvrHapQAAAAAAADOQEBVAO6rUVaLxW+tHdPNBLMC0qjRVYt73R1S7DGrU0GX2iN4DhPgAvoimpqZqlwAAAAAAX5gQFUA7q5t1QDRssGq1ywDoVPo9UYmZ+y1S7TKoMf3nHBHzLL5ttcsAaDOXXXZZDBs2LF588cXyeLvttiu3tvbqq6/GLrvsEi+99FLLc2uuuWYceuih5eu777671JH3TCjPTR6bPFedyW9+85tS96TONwAAAEBn1VDtAgBqQf0qS8f4h/8b459+odqlAHQaQ94YHg81PlrtMqgR9d1mikVXPyoqlUq1SwFoM6uvvnr86U9/itlmm61dt3PHHXfELbfcMsFzJ598cvTu3btdt0v1fP3rX49VVlml2mUAAAAAtCmdqABmgPxAtmGr9SO6G+sHMK36PhMxoP9S1S6DGjFsxYOiR585ql0GQJsaMGBALLnkktGtW7cZvu1FFlkk5plnnhm+XWaM2WefvVxbAAAAAF2JEBXADFI3sF80bLR6tcsA6FSGvJRjYnQGon3NOt+aMeewjapdBtCFXXLJJbHhhhvGYostVrpD5Si0cePGlddyBNp3vvOd0jHqq1/9aiy++OKx1VZbxf/+97/4xz/+ERtttFEsscQSpfPPY4899rn1br755iXMku/bZJNN4rrrrpvsOL8vYlJj2lqvN78+7LDDyvNrrbVWy7JTGu/26aefxpFHHhmrrrpqOSbrrbde/OEPf5hiHbmuHEV46aWXxhprrBFLLbVUbL/99vH444+X1999990YPnx4nHDCCRO875NPPokRI0bEqaee2rKe1mPoxo8fHyeeeGKpN2vJ++OPPz7GjBnTssyoUaPi5z//eay22mplmTwn11577eeO069//ev42c9+FiuuuGI5H3len3322QmW+9vf/hYbb7xxeX2zzTZrqX96Zd2nn356rL322qWmddddN84999wJlsnjdcQRR8Qpp5xSukbldbTzzjvHm2++GX/+85/Le/M47rDDDhNcI3lt5rq/9rWvlTrz+spr8q677prsOD8AAACArsA4P4AZqGHFpWL8o0/H+EefqXYpAJ3CTC80xWwrLBevv/3/P7SDttSt18BYeJXvV7sMoAs77bTTSkhn2223LWGjDEJlAOWVV16J4447rizzwAMPxOuvv14CPhnYyYDRLrvsUjrafu9734uePXvGj370ozjwwAPjmmuuKe85//zz45hjjom99967hITee++9+P3vf1+WyWBMdgqaETIUtvvuu5eQUo7wm5ZgTe737bffHoccckjMMsssceutt5aQUr9+/WKLLbaY7Pvy2D3zzDOx//77x8wzz1xCS3lcM9CUIwszhHb11VfHfvvt1zKe9YYbboiPP/44Nt100/J4jz32KIGgZnnMLrzwwlLL3HPPHQ8++GA5X42NjeXYNzU1xZ577hn/+te/yuOhQ4eWdeY2Ro8e3bLe9Mc//rGci5/85CflfBx77LFlvRmQS3//+9/LOjKEddBBB5X9yfsvIq+RDLDtuuuu5Xzfe++95bi+//77pd5mf/nLX2LRRRcttbz66qvx4x//uByz7t27l9oyZJZBq3w+g1Ppl7/8ZTkmBxxwQDmfr732Wvz2t7+NffbZJ26++eZyPQIAAAB0RUJUADNY41YbxKjjz45478NqlwLQKczz9LzxxoB7o6nps44d0JYWWfWH0a1n/2qXAXRRH3zwQekC9M1vfjN+8IMflOdWXnnlEhbKxzvuuGN57qOPPopf/epXJaCT7rnnnrjooovi7LPPjhVWWKE899xzz5UuRxmS6du3b7zwwgul01GGgprNNddcpTPV/fffXzpfzaiRgc1j+xZeeOEYPHjwVN+T+7fSSiu11LjccstFr169YuDAgVM9nr/73e9i5MiR5XF2ScrgVIaXMjyWAawMVN19992x/PLLl2WuuOKK0hlqjjk+G9matbYeM5i1ZCen5vDWsssuW0JCffr0KY/vuOOOuO2220qwaoMNNijPZVenDB9l2Ci7NTU0fPbXa3le8nzX19eXx88//3wJzL3zzjvRv3//EkTKmn/xi1+0rCdl56vpkV3KLr744hImy7Bd83WVwbEM7W299dZle2ns2LEl3Jahs+ZOWLk/N954YwmNpX//+99x5ZVXtqw/A30ZEstOVs0ydJWBvSeeeMIYPwAAAKDLMs4PYAar9O4V3bb5WsT//ctoAKasx+tNMXv/latdBl3QXAtvHrMM+ewDbID2kB2mcnRdjnrLMEvzLR+nf/7zn+U+Ay7NAaqU3ZlSjl9rlsGrlCGqlF2rMjiUj5tDMNmdKmWHpI4sQ1MZAsrRcuedd14JhGX3pOxqNSUZ0GoOUKXsPtXchSllWGrOOedsCQRl56U777yzjM2bUi15HjJ4dMYZZ8RTTz1VOjXlaMSU789wUo7ym/gcvvHGG/Hkk0+2rCvHCTYHqFJzN7AMXOV18Mgjj5RRhK2tv/7603n0oozVyw5Zk7quspNZhuia5XXVHKBqvrYyYNUcoGq+tjKg1ixDXTkq8e2334777ruvjP676qqrOsW1BQAAAPBl6EQFUAV1C8wT9WuvEOP+dke1SwHoFAY/Pke8Nkf3GD9uVLVLoYvo2XdwfGWF/atdBtDFvfvuu+W+uVvQxLLjT+rdu/ckX8/uTJOTXY5yDFuGfHL03Pzzzx8LLbRQeS0DNh3Z4YcfXgJGGcw5+uijyy3DUDmirnkfJmXQoEGfey67V2U4KdXV1ZVOXGeddVYZf5hhqjy2a6+99mTX+d3vfjdmmmmmEhTKzlLZJWrBBRcsncKym1WewzyeSy+99GTPYXbgShOPuct60vjx48t4v1xPc4eo1kGwL3pdTa7bWI7fazapa2tK11V6+OGH46ijjir3uU8LLLBACad1hmsLAAAA4MsQogKokoZ1VozxTz0fTc+8WO1SADq87u80xZzDVokX37mx2qXQBVTq6mPRNY6O+sYJP+wGaGs53i1lOGfeeef93OvZFeikk06a7vVmKCeDWRmeuvTSS0uIJ0fKZRel1mPZ2sq4cROO1P3444+/1Pq6desWu+++e7m9/PLL8Y9//KOMwTvggAPimmuumez7cizexN58880JxgBmiCrH5t16661x3XXXlRF8OYpucjLotM0225TbW2+9FbfccksZGZij67JDVY71y9BRjgyclCFDhkzTPme3p9xW1jupQNQXua7OOeecEgCbWHPg6Yv48MMPS7Bs2LBh5VxkOC/rzuNy/fXXf+H1AgAAAHQGxvkBVEmlri66bbtRxEw+wAWYFnM9MkvUN37+g0KYXkOX2TP6zb54tcsAakCO48ugU3YGylFvzbcMPJ1wwgnx4otf7B9UZJjof//7X2y55ZYt60sZHGoOWbWV7GSUY/Faaz0urnXHpWmRY+3WXXfdOPPMM1sCPxlgyq5KGaiakmeffTaefvrplsd5XHNk4gorrNDy3FxzzVUeZ+jpscceK6GqKdlqq63imGOOKV9nGCuXz3pyTGIGipZddtkSGssOTK3P4X//+98S1soxetMig1zZbetvf/vbBN2c/v73v8f0ah5pmNdB65py/F6G8r5IMKvZM888U97/7W9/u3Sgaj637XFtAQAAAHQ0OlEBVFGlX59o3Gr9GPOHy6pdCkCH1/hBUwzutWo899511S6FTmyWIavGkCW+Xe0ygBqRo9uyq08GWzKQs9xyy5XgTz6uVCpTHF03JRn2ybDQ+eefX8biZWei2267raVb0ieffNJm+7DGGmvEaaedVm4ZCsvQz1133TXJzkg33HBDrLrqqjF06NDJrq9Hjx6x6KKLxsknn1wCZtnxKANhl19+eQlXNXv00UdLx6oM8jTL8NFuu+0W++23X9TX15d1zDzzzLHddttNsI0Ml+2///6ljqx54jGIGTZacskly+NlllmmBLqyK1iGnPL85DjADE8NGDAgVltttbLMHnvsUW65zoceeih+/etfxyqrrFKWmVZZ0/bbbx977bVXfPOb3yz7nV2vplces4033jh++MMfxksvvRSLLbZYWdeJJ54YgwcPnmTXs2k133zzleBc1pXhvLxlB6rseNbW1xYAAABARyNEBVBl9YsuEONXHRHjbp3wX3MD8HlzPtQ3Xv5Kvxgz6ot3WKB29egzZyy6xlEluAAwo+y7774x66yzxgUXXBBnnHFGCf1kp6QM1OSouC8qx98de+yxceihh7aEjU499dQ47rjj4r777vtcsOiL2nXXXUvo6A9/+EOMGTMmVl999bLdHMXXLMNhK664Yhx//PFx5513xumnnz7Fdf74xz+OX/3qVyW89MYbb5RQWAaf9tlnn5ZlMmiUQbFzzz235bnsWrXTTjuVfcwwT24z9zlH5bWWwaf8WT+pLlR53DKw9cQTT5THuc08fn/+859LZ6k8J2uuuWYZLZiyE1PuTwbfMkiWI/8GDRoUO+64Y+y5557T3UHq97//felClvuXgafclwyGTa+f/OQnpZ6LLrqodArLY5ijC/N6y4DZF5X7n8fo5z//eTk2OS4wx0Wed955sfPOO5drK48PAAAAQFdUaWrdQxyAqmgaOy5G//q8aHrxtWqXAtDhvTLi43j6w6urXQadTKWuMUZu8oeYebZFq10KAF9AhsXuueeeaRp/d+2118bBBx8ct9xySwkX0bmMf+r5GH3KRdUuAwAAmIQeJxxc7RIA2pVOVAAdQKWhPhq32zhGn3BOxKjR1S4HoEMb9GCveGn4oPj0Y8FTpt1XVthfgArg/+S/pxs3btxUl8uORp2pe9+NN94YDz/8cOnOlF2oOluAavz48eU2NTliDwAAAIC2529dADqIuln7R+O3Nogx51wRoUcgwGTVjY2Yp2nF+G9cXu1S6CQGDV0n5l7sG9UuA6DDyHF2hx122FSX++Mf/1hG9XUWL774YpxzzjkxYsSIOOigg6Kz+f73v1/OzdQ0jyIEAAAAoG0Z5wfQwYy57rYYd8Od1S4DoENrqmuKB5a6Iz7+8MVql0IHN1P/+WOZzc6JhsZe1S4FoMN45513SuBoauabb77o3bv3DKmJz0JgeW6mZvjw4dGVGecHAAAdl3F+QFenExVAB9Ow7srR9NJrMf7RZ6pdCkCHVRlfiSGjlo/H4tJql0IHVt9tplh8nV8KUAFMpH///uVGxzJ48OByAwAAAKA66qq0XQAmo1JXicZtNorKrD7UAJiSAY/URZ++Q6tdBh1WJRZd48cxU78h1S4EAAAAAADoBISoADqgSs/u0bjT5hHdu1W7FIAOq9JUiSHvj6h2GXRQ8y61U8w27+rVLgMAAAAAAOgkhKgAOqi6QQOjcesNs5EGAJPR74lK9Ou3aLXLoIMZOPeKMXSZ3apdBgAAAAAA0IkIUQF0YPXDF4z6r65Q7TIAOrQhry9W7RLoQHr2nSsWW+vYqFT8rw4AAAAAADDtfLIA0ME1rLdy1C0ytNplAHRYff4XMXCAsX5E1DfOFEusc3w0du9b7VIAAAAAAIBORogKoIOrVCrRuM3XojJr/2qXAtBhDXl+wfyJWe0yqKJKXX0svvZPo/fAvBYAAAAAAACmjxAVQCdQ6dk9GnfaPKJn92qXAtAh9XqpKQYNWL7aZVBFC618aAyce8VqlwEAAAAAAHRSQlQAnUTdoIHRuMOmEfX11S4FoEOa+6khUalrqHYZVMGQJbePuRbePDqDF198MYYNGxbf+ta3ql0KAAAAAADQihAVQCdSv+CQaPzmetUuA6BD6vFGU8zRb6Vql8EMNmj+tWOBZfeudhkAAAAAAEAnJ0QF0MnUj1w0GtYVEgCYlLkemyPq6o0+rRUzD1oiFlnjqKhUKtUuBQAAAAAA6OSEqAA6oQxR1S87vNplAHQ43d9tirn6rlrtMpgBevYdHEuse3zUNwjNAQAAAAAAX15DG6wDgCpo+Po60fTu+zH+v89VuxSADmXO/wyMV+btHWPHfFjtUmgnjd1njiXX/3V069k/OpoxY8bEOeecE1dffXU899xz0bt371h00UVjzz33jMUXX3yy7/vggw/i7LPPjptuuqm8L9czyyyzxIorrhh77bVXzDnnnC3Ljh07Ns4888y47rrr4tlnny2duIYOHRqbbbZZfOtb35qgM9djjz0Wv/3tb+ORRx6JN954IwYMGBArrLBC7L777jHvvPO2+/EAAAAAAIDOQogKoJOq1NdH4w6bxuhfnx9Nr75Z7XIAOozGD5ticK9V49n3rq12KbSDuvpusfi6x8dM/YZERzN69OjYfvvt41//+lfMN998scUWW8Snn34a11xzTfzzn/+MM844IwYPHvy593388cex1VZbxdNPPx0rrbRSueX77rjjjvjzn/8cd911V1x77bXRo0ePsvwRRxxRnl966aXL+zJwleGro446Kl599dXYf//9y3LPPPNMCVU1NDTEOuusEwMHDizbuOqqq+Lmm28uQa/ZZptthh8nAAAAAADoiISoADqxSo/u0W3nLWPUSedFvK/jCkCzOR7qEy8N6x9jPn2n2qXQpiqxyOo/iv5zLBUd0VlnnVUCVF/72tfiJz/5SXTr1q08n0Gnb37zm+W57Ao1sYsuuiieeuqp0q3qe9/7Xsvz48ePj6233joeeOCBuPvuu2O11VaLDz/8MK644ooYOXJknH/++S3LZreq9ddfP84999zYe++9o7GxMS655JL45JNPSoer7D7V7JRTTomTTjopLrvssthtt93a/bgAAAAAAEBnUFftAgD4cir9+0a3724R0b2x2qUAdBj1n0bM07BKtcugjQ1dZveYfYH1oqPKcFN2fTr88MNbAlRp+PDhcfDBB8fmm29eRvFNLEf2HX300bHDDjtM8HxdXV0ss8wy5eu33nqr3Dc1NZVw1SuvvBIvvvhiy7L9+vUr3aluu+22EqBqXjbdf//9LV+n3E52otpll13a/BgAAAAAAEBnpRMVQBdQN3hQNH57kxhz5mUR48ZXuxyADmHQv3vGS4sPik8/fq3apdAG5hi2ccy39Heioxo1alQZnzd06NAYMGDA515vDki1Dj41W2ihhcot1/HQQw/Fs88+Gy+88EI88cQTZZRfGjduXLnv06dPbLzxxnHllVeWEX2LL754Gf+38sorxxJLLFGCV80ytJVdrn7zm9/EhRdeWMJaueyqq64ac8wxRzseDQAAAAAA6HwqTa3/STIAndq4fz0aY86/JltPVLsUgA7hjSVGxxOfXl7tMviSBs6zUiyxzvFRV99xuy6+9tprJZy05JJLxp/+9KfJLpchqrXWWiuWXnrpEmxKo0ePjpNPPjkuuOCC+OCDD8pzvXv3Lh2s8rXsJHXMMcfE17/+9fJadrPKcFSO43v00UdbukwNGjQo9t9//9h0001btvfkk0/G73//+9J56r333ivP1dfXx5prrhlHHnlkzDLLLO16XAAAAAAAoLPQiQqgC6lfepFo+mRUjP3zDdUuBaBDmOXhxnhh6Xni4w+er3YpfEED5lo2Fl/7Fx06QJV69epV7ptDUBP75JNPokePHpN87Re/+EX88Y9/jOWXXz522mmn0pUqA1Hpl7/8ZQlRtZYjA7fddttye/vtt0u3qgxJXXvttXHIIYfE4MGDY+TIkWXZBRdcMH7+85+XTlaPPPJI3HHHHaWL1Q033BAfffRRnHXWWW18JAAAAAAAoHP6/7MeAOgSGlZaKhrWX6XaZQB0CJXxlRjyybLVLoMvqN/sS8YS654Q9Q3do6PLMXtzzTVXPPfcc/Huu+9+7vUMN+XoveaxfK1dccUVJYSVHaNWW221lgBVeuqpp8p9c7epp59+Oo4//vj4xz/+UR7n6MANNtigBKV222238tx9991X7rNb1dFHH13em92ncvu5zJ///OeyvXvvvbedjgYAAAAAAHQ+QlQAXVDD2itE/erLVLsMgA5h4CP10WfmBatdBtOp76yLxpLrnxT1jT2js8gxejlq72c/+1m5b5YdoDL0lB2iMsw0se7du8eoUaNKV6nW/vKXv5QOU2nMmDHlvq6uLk4//fQ48cQT49NPP/3cqMA099xzl/sMSZ133nlx9dVXT7Dcm2++WbaX9QAAAAAAAJ8xzg+gi2rceI2IT0fHuLserHYpAFU377tLxcOVJ6tdBtOo98CvxFIbnhwN3XpHZ7LrrrvG7bffHpdddlkJTi233HJlvF+O2atUKqVb1KRsscUW8bvf/S623HLLWG+99aKxsTEeeuih0lFqlllmKaGn5u5W8803X3zrW9+KCy+8MNZff/1YY401ypjABx98sCy/1FJLxTrrrFOW3XPPPePWW28tXbCuu+66GDp0aFnP9ddfX7pTHXjggTP0+AAAAAAAQEdWaWqeCwFAl9M0vinGXHhNjL//0WqXAlB1/1nukXj33f9UuwymYqZ+88WIjX8f3Xr2j84ou0P94Q9/KF2kXnjhhRJwGjlyZOy9996x6KKLlm5Ra621Viy99NIlCJWya9XZZ59dwlcvvfRS9O7du3ST+trXvharr756WT5H8V1yySUty1966aXlltv45JNPSlepHOu30047lVF9zXL8X3auyoDV66+/Xl7LoNXOO+8cI0aMqNpxAgAAAACAjkaICqCLaxo/Psacc1WMf/i/1S4FoKo+GBLxYI8/VbsMpqBn37lj5Ma/j+4zzVrtUgAAAAAAgBpTV+0CAGhflbq6aNxuo6hbaP5qlwJQVX2ei5hlwMhql8Fk9Og9R4z42qkCVAAAAAAAQFUIUQHUgEpDfTTuuGnUfWXeapcCUFXzPLdApkurXQYT6d5r1lj6a6dGjz5zVLsUAAAAAACgRvkECaBGVBobovG7m+tIBdS0Xi83xaD+y1e7DFrp1nNACVD1mnnuapcCAAAAAADUMCEqgBpSaWiIxp02i7pFF6h2KQBVM/dTQ6JS11DtMoiIxu4zx1IbnhIz9Z+v2qUAAAAAAAA1TogKoBZH++2wSdQN/0q1SwGoih5vjI85+q1S7TJqXkO33rHUhidHn4ELVrsUAAAAAAAAISqAWlSpr4/Gb28cdUsuVO1SAKpi8KODoq6hR7XLqO0RfhudFn1nXaTapQAAAAAAABRCVAA1qlJfF43bfi3qRvgAG6g93d5risG9V612GTWpe+9BMWLjM6LvLIK8AAAAAABAx1FpampqqnYRAFRP0/imGHvxX2PcPQ9XuxSAGWpsr4j7hl4bY0d/UO1SakavfkNi6Q1PiR69Z692KQBABzX+qedj9CkXVbsMAACAmtfjhIOrXQLMcDpRAdS4Sl0lGr65XtQvv0S1SwGYoRo+jhjcY5Vql1Ez+swyLEZu/AcBKgAAAAAAoEMSogIgKpVKNHx9nahfeelqlwIwQ83xUN/o1mNAtcvo8vrNvlSM+Npp0a1n/2qXAgAAAAAAMElCVAC0BKkaN/9qNKy7UrVLAZhh6kc1xTwNulG1p4FzrxRLbXhyNHTvU+1SAAAAAAAAJkuICoAJZIgqu1JFXaXapQDMELP9u0f06GXEXHsYNHSdWGLd46O+oUe1SwEAAAAAAJgiISoAPqdhhSWjcYdNIxoaql0KQLurGxcxZPyK1S6jy5lr4c1jsbWOjbr6xmqXAgAAAAAAMFVCVABMUv1iC0a33b8R0VP3EKDrm+Whxpipz5Bql9FlDFly+1h41cOjUvG/GwAAAAAAQOfgUw0AJqtuvsHRbe+tI/r1qXYpAO2q0hQx5ONlql1Gl7DAsnvFgst9r9plAAAAAAAATBchKgCmqG72WaL797aNyqCB1S4FoF0NeLQ++s78lWqX0WlVKvWx0Crfj3mX2rHapQAAAAAAAEw3ISoApqrSr09023ubqMw3V7VLAWhXQ95ZqtoldEoN3XrHkhv8OgYvskW1SwEAAAAAAPhChKgAmCaVXj2i267fiLrFFqh2KQDtZuYnI/r3X7zaZXQqPfsOjmU2PTsGDl6+2qUAAAAAAAB8YUJUAEyzSrfGaNxhs6hffZlqlwLQboa8ski1S+g0+s0xIpbZ7JyYqf981S4FAAAAAADgSxGiAmC6VOoq0bjxGtGw1foR9fXVLgegzfV+rilmGSAsOjVzDtsklt7wt9GtR79qlwIAAAAAAPClCVEB8IU0LDs8uu3xzYjevapdCkCbm+fZoZkarXYZHVOlLhZcfp9YZPUjoq6+sdrVAAAAAAAAtAmfDAHwhdXNNzi677tdVOaYtdqlALSpXq80xez9V6h2GR1OfWOvWGKd42PIEt+udikAAAAAAABtSogKgC+lMmDm6Pa9baJusQWqXQpAm5r7yXmiUqfTUrMevWePkZucGbPOu2q1SwEAAAAAAGhzQlQAfGmV7t2iccfNon6t5atdCkCb6f7m+Jhz5pWrXUaHMPNsw2OZzf4YfQYuWO1SAAAAAAAA2oUQFQBtolKpROOGq0bjNhtGNDRUuxyANjHXY7NHfUPPqGWzL7BeLL3RadG918BqlwIAAAAAANBuhKgAaFP1IxaNbntuFdG3d7VLAfjSur03PubqvUrUpkrMP3K3WGytY6O+oXu1iwEAAAAAAGhXQlQAtLm6IXNG9wO2j7oFh1S7FIAvbc6HB0RDtz5RSxp79IulNvh1zD9i52qXAgAAAAAAMEMIUQHQLip9ZorGXb8R9eusmLP+ql0OwBfW8HFTzN1j1agV/WZfKpbb8sIYOPeK1S4FAAAAAABghhGiAqDdVOoq0bjeytG485YRM/WsdjkAX9jsD/WJbj0GRNdWiXmX3CFGbHRa9JhptmoXA9SopqamTrHOWtRex7ErnZ+utC8AAAAAtUiICoB2V7/QfNH9gB2iMu+c1S4F4AupH9UU89SvEl1VY4+ZY8n1T4oFlts7KnX11S4HqFE33XRTHHLIIW26zvvvvz922WWXNl1nrXn//ffj4IMPjvvuu69N1zt69Og47rjj4uqrr46O5LLLLothw4bFiy++2On3BQAAAIDpI0QFwAxR6dcnuu35rahfdUS1SwH4QmZ7sEf0mGmO6Gpmnn2JWG6LC2OWeVaqdilAjTv77LPjlVdeadN1XnLJJfH000+36TprzWOPPRZXXnlljB8/vk3X+/rrr8c555wTY8eOjc6uK+0LAAAAQC0TogJghqnU10fjpmtF4/abRPToVu1yAKZL3biIIWNXiK6jEkOW2D5GbHR69Og9qNrFAAAAAAAAVJUQFQAzXP0Sw6Lbft+OypyzVbsUgOkyy8ONMVOfeaOza+w+cyy53omx4PLfi7q6hmqXAxDbbbdd3HPPPeWWo9TuvvvuePfdd+OII46IFVdcMYYPHx7f+MY34s4775zgff/85z/L80sttVQss8wysfvuu7d0njr00EPj8ssvj5deeqmsM8e0Tatc/je/+c0Ez+XjfL7Z22+/HQcccECstNJKpb5NNtkkrrjiigne8/LLL8f+++8fyy67bCyxxBKx/fbbx6OPPtryeo6My3WeddZZsd5665Vl/vznP8enn34aRx55ZKy66qqx2GKLldf+8Ic/TLHm3N88jpdeemmsscYa5Zjk9h5//PHyeh7PrPOEE06Y4H2ffPJJjBgxIk499dSW9TTvZ56Hb3/72+XrvM/1N7vxxhtj8803L+vMY3DMMcfExx9/3PL6lPYh93uttdYqXx922GGx5pprTuOZ+fx5mNQ5az6u11xzTey2227luK6++urx29/+doKOWvn1KaecUl7LZfbYY4947733Prfu3Nett966HNPmfTn//POnui85AnHbbbct685rIMdV5nUzPfIcNH9PtJbnovX5+M9//lPOd57LrHOHHXaIf//73xO8Z2r15PfIIossUjq45TnNZZ566qnpqhcAAACgMxOiAqAq6mYdEN322faz8X6ValcDMG0qTRHzfrRMdGYzD1o8ltvygphlyCrVLgWgxY9+9KMS3sjbn/70p1h00UVLIOSmm26K/fbbL04++eSYffbZ47vf/W5LkOqFF14ooZcMtWQA6Nhjj43//e9/scsuu5RwTL622mqrxayzzlrWmUGZtnTQQQeVwNZRRx0Vv//970vtGUq56667yusZTtlqq63ikUceiR/+8Idx/PHHl7q22Wabz40YzPDPzjvvHD//+c9LeOW4446LW2+9tawvg0cZ0snXMmA1tdF7J554Yuy1117xi1/8It55550Smslxc/369YuvfvWrcfXVV0dTU1PLe2644YYSftp0003L4zxuebxSnocMsqW8z/OUch177rlnzD///CWYlNu76qqrynub1z2lfZhtttnKOU0ZfGv+uq1liKt3797l+GbILbeT56FZHqOsf8sttyyv5TFq/Xq6+eaby77mscjAVa5r7rnnjh//+Mfx4IMPTnZf7r333hJk6tGjR/zqV7+K73//+yUkmGG0DJi1pQ8//LB8b/Tv37/Ul9dAhuO+853vxAcffDBd9YwbNy7OPPPM8v2UobChQ4e2aa0AAAAAHZl/dg5A1VQaG8p4v7pFhsaYC6+NeO/DapcEMFX9H6uLvssOi/ffeyI6l0oMWXzbGLrcXrpPAR3OAgssUMIuackll4yLL764dFDK++yak7KjUXbe+eUvf1mCOA899FAJf+y6664xaNBnY0kzaJXBqwwFzTPPPDFgwIDo1q1bWWdbywBKhmsymJSya0+GcHJ76Zxzzindny688MKYa665WvZhgw02iJNOOil+/etft6xr/fXXjy222GKCdWeYasMNNyyPl1tuuejVq1cMHDhwijVlYOZ3v/tdjBw5sjxefPHFS31//OMf48ADDyzbuPbaa0tXo+WXX74sk92zstvXHHPMUR7ncctbynOS5yblfd4yJJXnYJVVVin3zeadd94S0rnllltKYG1K+5DHaOGFF27ZXgbQ2kMGn5przGOf10Welww7ZaDt3HPPjR133LGEwFLuUwbObrvttpZ1ZCemzTbbLA4//PCW57LTU+5PHse8Pie1LxnGmm+++eK0006L+vr68lwum8cjr98M07WVrDEDcxmIWnrppctzGXDLMNxHH30Uffr0ma56sntXW4cOAQAAADoDn54AUHX1X5k36g7aKcZccn2Mf7CzhRKAWjTv20vGQ/Wd5+dVt16zxCKr/kD3KaDTyG5T2UEqQzBjx45teT7H1GU3oxy5lgGQ7t27ly5COV4tQzIZbMng0IyQ28quPzmeL8M32fUquy613ocM12TAq3kf6urqSp3Ztam15hBO63VfdNFF8eqrr5b15i0DW1MzePDglgBVyi5JGfjJLkQpw1JzzjlnXHnllSVElevPOrMj07R65plnyvsyvNb63OQ4xQxd5YjFDOB80X1oS83dtZqtu+66JVD2wAMPlDDYmDFjyjXVWgbaWoeossNTyjBSdjp7/vnn4+GHHy7PjR49epLbzS5Q2aUqO0HldpqPU3awys5OeYzaMkS14IILlsBghp/yeyGvxwywZbe0L1LPxNcjAAAAQK0QogKgQ6j06hHdtt8kxt33SIy57IaITyf9gQRAR9D3qYj+yy8R77zzYHR0sy+wfgxb6aBo7DFztUsBmGbZwemNN94oIapJydeyK9J5550Xp59+elx66aUlHNO3b9/YeuutY999941KpX1nRufItOz6dN1118X1119fAlIZUsoxb9l5Kvfhueeem+w+ZLClWXZoai27HmVXrQxbHX300eWWYagcT7fQQgtNtqbmjlytZeenHCmYssbNN988zjrrrDKaL8NUGXxae+21p3m/c79SjjHM28Syk9OX2Ye2NPHxyKBRyhBe89jBHIHXWob3WsuxjHmsbrzxxnJNDRkypCWo1nosYmvvv/9+6XSVYx7zNrEM/7WlmWaaKc4///wy1jKvx+xAlWP7coThD37wg+muZ+LrEQAAAKBWCFEB0KHUj1w06uYfHKMvuCaannmx2uUATNaQVxaOd3p03BBVt54DY6FVDovZ5puwwwZAZ5Djx3I8XOtxcRN3XErZderkk08uHYHuv//+Eh7JYFOGdLKj0Jcxbty4CR7nKLiJa8xOP3nL7kw5RvCUU04pwaIMduXrOeLv4IMPnuT6m8f+Te61HDmXt5dffjn+8Y9/lHUfcMABcc0110z2fTnSbWJvvvnmBGMAM0T129/+Nm699dYSuMnxgtMT6smgWsr9yv2b2Mwzz/yl9mFqmsNxeX6ax9Jll6hpOR5vvfVWuc/j0Xx+87kcfTdxSKxZjkHM83v22WeXEFjuVwbgctTklEJNWWeON2weZ9haz549p3t/MwTVWu5zbqdZ7kN2FMv9ylGXGZDLUZI5YnCrrbZqs3oAAAAAurK6ahcAABOrDJg5uu3xrWjYcNWIen9UAR1T7+eaYtYBn//wuCMYNHSdWP4bFwtQAZ1KdklqluGcV155pYRdhg8f3nLLsWNnnHFGCc9kqCVHsWWAKoMtK6ywQul2lDK0M/E6p0d2Z3rttdcmeO5f//pXy9cvvfRSGU/317/+tSXAsvPOO5dOVM3bzn3I8W/zzTffBPuQ4ZbsnNUcAJrYp59+WsbOnXnmmeVxjt/LUWsZfmle9+Q8++yz8fTTT7c8zn3I0XV5bJpll6x8nJ27HnvssRKqmpKJ68x9zfPy4osvTrBf2fXp+OOPL+MNp2UfJrf/03JuUo4JbJYBuknJ7lGtZcewDAzlKMgMRGW3puZz2CzDXq3lutdZZ50ynrA5+JYBtNbBpon3JWtcZJFFSviq9THKsXs5AvLuu+/+UvubnbRan+fchxzPmB3aspbmjl8ZeMvj3Zb1AAAAAHRlOlEB0CFV6irRsNbyUTdsvhhz/l+i6bXP/tU4QEcyz//mjzf73R9NTRN2K6mWxh79Y6FVDo1B83+12qUATLcMfGTg58477yzj5XJU34477hi77bZbzDHHHHHHHXeUUWTbbrttNDY2ltBIdqrac889y3MZHrnoootK0CXDVc3rzE5Mt9xySyy88MIx22yzTVMtq6++eumWlGGbHN922WWXldF8rYNIOarumGOOiQ8//LB0+/nPf/5TtrPrrruWZbLrTwam8n6nnXYqY+Ouvfba0sHosMMOm+y2M9iTIwCzw1bu57Bhw0oY6/LLLy/BpGYZVsp9zbGGzXK8XB6v/fbbrxyPXEd2htpuu+0m2MaWW24Z+++/fwwdOrTsY2vPP/98GWG35JJLlsfZUSvdfPPNZV3Z5SvXf8QRR5Rt5LHOcXHZZSpDW1n7tOxD83rzfE+qjsnJ8NpPfvKTsv3vfOc7JWyXnbVad2Vqlp22MvCV77nnnnvKyLusvXlc3R577BG/+tWvSrAqr6c8fxOHqLLb2dVXX132J895humy01h2dmoeyTipfcnju8suu5TOWxtvvHHpEJWhsgcffLBsd1rlscvrP/cxw1C53dNOO22C7lFLL710CXTl90JuM49F7vsHH3xQAmDpi9aT1/dTTz1VrvHmcYgTXyPp3//+d3k9lwMAAADorCpN+TdsANCBNY0dG2P/dmeM+8fdEeMmHGMBUG1PrfByvPr2bdUuI2abb60yvq9bz/7VLgXgC7nrrrtKuCi76WRIJrs6ZWejDO9kGCSDSxn+yUBSc4ep22+/vYRL/vvf/5ZQyGKLLRb77LNPLLPMMuX1fD4fv/DCC/G9732vhEimRQavsqtVdhxqaGgoI+9y3T/4wQ/iiSeeKMtknSeccEKpIcfGZdBliy22KNtori/DJrkPGa4ZNWpUGVGYgabcj5TdnNZaa62yv607QmVwJcM9OSIwt5NBoKwh9yUDSmnNNdcsx+Tcc88tjw899NASFMqOWHlMMuCTx/CQQw5pGX/Yev0jR44so+q++93vTvBarifDTs37meGcHFl4ww03lIDMX/7yl/J8BsKyK9iTTz5ZQkkZ5Nl3331L6Gda9+GnP/1pGcGYQavsMpb30+KKK66IU089tXQEy9BSjhbM85Wdrvbee++W45qBqTwm9913Xzk/GWj71re+NcG68vidc845JQCWHZxyDGR2ccq687jlNnLduY6U5/Db3/52XHXVVWX0X3YVm9y+5HnPIFkG7PJxBrGyvjz20yPH8x133HHxyCOPxCyzzBLbb7996SqVwbTm85/LnHTSSWVbee6zy1QG6jKQ2Gxq9WRYML8Hm/c9ZZeq3N/W1+jE10jK877ZZpuV4/BljX/q+Rh9ykVfej0AAAB8OT1OOLjaJcAMJ0QFQKcx/uU3YszFf42m51+pdikALT4dWBf3z3ZpNI0fU5XtN/aYOYatdEjMvsD/704CQO1pDlH9/e9/n+qyGYDK4FF2XspwU1czuXAanYMQFQAAQMcgREUtMs4PgE6jbs5Zo9v3to1xt90fY6+7LWJ0dQILAK31eGt8zLngKvHSO1P/0LqtzTrvarHQKodH915d7wNwgLaWHZXyNjXZeaqruvHGG+Phhx8uYw8zXNSRAlRjx46d6jLZ4au5y1dnl53TpvbvGnN0X45MBAAAAGDG6Lp/MwhAl1Spq0TDaiOjbviCMfaS62P8E89WuySAmOvR2eLVuXvFuLEfz5DtNXTvG8NWPCjm+MoGM2R7AF1BjrjLUWZT03qUWVfs0JSj60aMGFFG9HUkOVpuatpqXFxHkKMFs3PYlOS4xmnpLAYAAABA2zDOD4BObdy9/4kxV/0j4qNPql0KUONeWO7deO7d69t9O7MvsF4suPy+0X2mWdt9WwBdyWuvvRavv/76VJcbNmxYdOvWbYbUxP+XHbKmpn///l0m4PbMM8/ERx99NMVl8jrM67HWGOcHAADQMRjnRy0SogKg02v68OMYc/lNMf6Bx6pdClDDxvasxH0LXBtjR7/fLuufacDQWGilQ6L/nCPaZf0AAB2BEBUAAEDHIERFLTLOD4BOr9K7V3TbbqMYN2KRGHv5TdH01rvVLgmoQQ2fNMU8PVaNZ0b/pW3X2613zD9y1xi86Deirs6v7wAAAAAAAO3BpzAAdBn1iwyNuq8MiXE33xtjb7wrYvSYapcE1JhBD84ULy0yS4z65M02WFsl5vjKBrHAcvtE914D22B9AAAAAAAATI4QFQBdSqWhIRq+ukLUj1wsxlx9sxF/wAxVPzpinrqV48m44kutp/fAr8RCKx8S/WZfss1qAwAAAAAAYPKEqADokir9+pQRf+NXWjLGXHZTNL38erVLAmrErA92jxeXmDM++ejl6X5vQ7c+MXSZ3WPwIltGpa6+XeoDAAAAAADg8+om8RwAdBl1888d3fb/djRssXbETD2rXQ5QA+rGRQwZu/x0vqsScwzbOFbc6rKYe7FvClABAAAAAADMYDpRAdDlVerqomGlpaJ+yYVi7F9vj3F3/jtifFO1ywK6sIEPN0TvkfPFh+//b6rL9plloVho5UNj5kHDZ0htAAAAAAAAfJ4QFQA1ozJTz2jcYu2oX2GJGHvl32P8k89XuySgi6o0VWLIhyPjkZh8iKpbr1li/hG7xlwLbxqVigaxAAAAAAAA1SREBUDNqZtztui2+1Yx7rFnYuxfbommV96odklAF9T/sbqYebmF4r13H5/g+YZuvWPIEtvHPMO/FfWNxowCAAAAAAB0BEJUANSs+oXnj7ph88X4fz0aY667LeKd96tdEtDFDHlziXio4bMQVV19txi86Ndj3qV2im49+lW7NAAAAAAAAFoRogKgplXqKlE/ctGoW3JYjLv9gRh7010RH31S7bKALqLv0xEDVlgqus8yZwwduXv06DNHtUsCAAAAAABgEoSoACDDVA0N0bD6MlG//OIx7pb7YuzN90aMGl3tsoBOrm6xBWOJVXaI+tlnq3YpAAAAAAAATIEQFQC0UunRPRrWXSnqV166dKXK7lQxdmy1ywI6mRwV2rDBylE3t85TAAAAAAAAnYEQFQBMQmWmntG48RrRsOrIGPuPe2LcXQ9GjBGmAqasMv/gaNxglaibf+5qlwIAAAAAAMB0EKICgCmo9OsTjZutFQ1fXT7G3nJfjPvnA8b8AZPuPPXV5aNuqPAUAAAAAABAZyREBQDToNJnpmj82mrRsOZyMe62+2PsbfdHfPxptcsCqqlSibrhC34Wnho8e7WrAQAAAAAA4EsQogKA6VDp1SMa1l0p6ldfpnSlyu5U8cFH1S4LmJHq6qJuxCIlVFk3aGC1qwEAAAAAAKANVJqampraYkUAUIuaxoyNcXc/FGP/cU/EO+9XuxygPTU2RP1yi0fD6stEZcDM1a4GAAAAAACANiREBQBtoGncuBh33yMx7pb7ounVN6tdDtCWenSL+hWXiobVRpbRngAAAAAAAHQ9QlQA0MbG/fe5GHfbfTH+0Wci/DELnVZlYL+oX3mpqF928aj07F7tcgAAAAAAAGhHQlQA0E7Gv/lOjLv9XzHunocjPh1d7XKAaVGJqPvKvFG/yoioW2j+qNRVql0RAAAAAAAAM4AQFQC0s6ZPR8W4e/9TAlVNb7xT7XKASeneLeqXWax0nqqbbWC1qwEAAAAAAGAGE6ICgBkk/8gd/9gzMe62+2P8E89WuxwgfxmetX/Ur7R01C+7WFR6GNkHAAAAAABQq4SoAKAKxr/2Voy7898x7v5HIz76pNrlQG2pVKJuofmifuWly32lYmQfAAAAAABArROiAoAqaho7LsY/8lSMu/uhz7pT+WMZ2k1lYL/Scap+5GJR6d+32uUAAAAAAADQgQhRAUAH0fTuBzHu3odj3N0PR9Pb71W7HOgaujVG/RLDon7Z4VGZf7CuUwAAAAAAAEySEBUAdDD5R/P4p54vYarxD/03YuzYapcEnU5lvsGfdZ1acqGodO9W7XIAAAAAAADo4ISoAKADa/rk0xj3r8di3L3/iabnX6l2OdCxzdy7jOrL8FTdrAOqXQ0AAAAAAACdiBAVAHQS499+L8b/+/EY9+/Ho+nF16pdDnQMM/WM+uELRt2SC0XdAvNEpa6u2hUBAAAAAADQCQlRAUAnNP6Nd2L8g4/HuAcej6ZX3qh2OVCd4NQS/xecqhecAgAAAAAA4MsRogKATm78a2/9/w5Vr71V7XKg/YJTi7XqOCU4BQAAAAAAQBsSogKALmT8y2/EuAcfj/GPPB1NL79e7XLgy+nVo9WoviGCUwAANWD8U8/H6FMuqnYZAAAAUHN6nHBw1LqGahcAALSdujlnLbdYf5Voeuf9GPfYMzH+0afLBxExeky1y4Opqswxa9QtPH/ULzJ/VOadKyp1glMAAAAAAAC0PyEqAOiiKv37RsOKS0asuGQ0jRlbglQZqBr36NMR77xf7fLgM90bo27BIVG38NCoX3j+qPTrU+2KAAAAAAAAqEFCVABQAyqNDSWgkrfGLdaO8a+8EeMffSbGPfZ0ND37UsR4032ZcSqzDSjdpspt/rmj0lBf7ZIAAAAAAACocUJUAFCD6nJk2hyzRsNay0XTp6Ni/DMvftap6qnno+nl14WqaFt9Zoq6oXN/dltovqgb2K/aFQEAAAAAAMAEhKgAoMZVenSP+kWGlltq+iRDVS98Fqp6+oVoeun1iCahKqZDvz6lw1RLcGq2AdWuCAAAAAAAAKZIiAoAmEClZ/eoX3SBcktNn3xawlTlVjpVvSFUxQQqA2aOSnNgKm86TQEAAAAAANDJCFEBAFNU6dkj6hdbsNxS06jR0fTiazH+hVdi/POvRNPzr0bT2+9Vu0xmlO7dojJ4UNTNPftnt3nnikr/vtWuCgAAAAAAAL4UISoAYLpUMkTzfx2HmjV9+HGMf+HVaHr+lf8LV70a8eHHVa2TNtCtMSpzzRZ1gz8LTFXyNtuAqFQq1a4MAAAAAAAA2pQQFQDwpVV694r6heePyNv/aXrn/dKpavzLr0fTK29G06tvRNNb7xkF2FH16hGV2WeJujlmLWGpEpoaNDAqdXXVrgwAAAAAAADanRAVANAucsRbfd6WGNbyXNPoMdH02psxPkNVr731/285DlC4asbo3Ssqsw6IukEDSmiqMvusUTf7wKj07V3tygAAAAAAAKBqhKgAgBmmkuPh5p4j6uaeY4Lnm8aOjabX34mm19+KprfeLaGqprffj6Z3PruPsWOrVnOnk5P2es9UQmzlNrBfGcFXl2P4Zh0QlZl6VrtCAAAAAAAA6HCEqACAqqs0NERlzlkj8jaRpuxQ9cFHrUJVzbf/e/z+RxGfjoqaUV8flX59WkJS0RyW6j9zVPr/3/MNfsUDAAAAAACA6eETNgCgQ6tUKhF9e382bm7eOSe5TNPYcREffhxNH30cTR9+/NnX5fZJxIcflfuW50eNjhg95rNbR+ga1b1bVGbqFTFTz8+6ROV9jtxr/nqm1l/3jOjVMyp1+UYAAAAAAACgrQhRAQCdXqWhPiK7M/XrM83vKR2u/i9M1dQcqpr461FjIsaNm/iN/3ff8p+Wu/JFXV1Eji1sbCj30dj8dcNnX5fn8uuGz74GAAAAAAAAqk6ICgCo3Q5X3bt91gmq2sUAAAAAAAAAVVVX3c0DAAAAAAAAAABUlxAVAAAAAAAAAABQ04SoAAAAAAAAAACAmiZEBQAAAAAAAAAA1DQhKgAAAAAAAAAAoKYJUQEAAACdRlNTU6dYZy1qr+PYVc5PV9kPAAAAgK5KiAoAAADoFG666aY45JBD2nSd999/f+yyyy5tus5a8/7778fBBx8c9913X5uud/To0XHcccfF1VdfHR3J3XffHcOGDSv3nXk/AAAAAJiQEBUAAADQKZx99tnxyiuvtOk6L7nkknj66afbdJ215rHHHosrr7wyxo8f36brff311+Occ86JsWPHRkey6KKLxp/+9Kdy35n3AwAAAIAJNUz0GAAAAACYjN69e8eSSy5Z7TIAAAAAaGM6UQEAAAAd3nbbbRf33HNPuTWPUnv33XfjiCOOiBVXXDGGDx8e3/jGN+LOO++c4H3//Oc/y/NLLbVULLPMMrH77ru3dJ469NBD4/LLL4+XXnqprPOyyy6b5npy+d/85jcTPJeP8/lmb7/9dhxwwAGx0korlfo22WSTuOKKKyZ4z8svvxz7779/LLvssrHEEkvE9ttvH48++mjL6y+++GJZ51lnnRXrrbdeWebPf/5zfPrpp3HkkUfGqquuGosttlh57Q9/+MMUa879zeN46aWXxhprrFGOSW7v8ccfL6/n8cw6TzjhhAne98knn8SIESPi1FNPbVlP837mefj2t79dvs77XH+zG2+8MTbffPOyzjwGxxxzTHz88cctr09pH3K/11prrfL1YYcdFmuuueY0npko53GRRRYpXcZyu3lsn3rqqWmqKd18881lmcUXXzzWXXfd+Mtf/hJrr712y/meeJzfF92PHH+47bbblnOaNeaoyrxmpmU/pibP0cTHrPlaan2dZ4esrDePxyqrrFL248MPP5zmYw0AAADQlehEBQAAAHR4P/rRj+Kggw5q+XqBBRaIbbbZJt58883Yb7/9YrbZZivhou9+97txxhlnxAorrBAvvPBC7LHHHrHFFluUoNL7779fAkK77LJL3HDDDeW1DK1kaOnkk0+OeeaZp01rznrfeuutOOqoo0r3ohx5l0GZ2WefPZZffvmy7a222ip69uwZP/zhD8t9hlpyvzLoNHTo0JZ1ZYDn8MMPL+vJ0M1xxx0Xt99+e1nfLLPMErfeemv8/Oc/j379+pX9ndLovWeeeaYcj5lnnjl+/etflyDPtddeW47hV7/61bj66qvLMa1UKuU9eawyaLTpppuWx3ncsu6UI+0yyPbjH/+43C+33HLl+VzHgQceGBtttFHsu+++Jah24oknlhBQBsJy3VPah3xfnpO99tqrBN/WWWed6Tr248aNizPPPDOOPfbYeOedd8qxnJaa7rrrrrJ/GTLbZ5994rnnnivX26hRoya7rS+yH/fee2/suOOO5Tr41a9+Fe+9916cdNJJJYiW575Hjx6T3Y+2kuGwX/ziF6XuDFfldfGzn/2shObyHgAAAKDWCFEBAAAAHV6GpjJAlHKU2sUXX1w6KOV9hopSdgLKTki//OUvS6DqoYceKl2Cdt111xg0aFBZJgNMN910UwkFZWhqwIAB0a1bt3YZz5Zds/bcc88STErZSSiDNbm9lIGp7P504YUXxlxzzdWyDxtssEEJ1GTAqdn6668/QTgq153diTbccMPyOMNLvXr1ioEDB06xpg8++CB+97vfxciRI8vj7LaU9f3xj38sAaPcRgaqsstSBnxSds/Kbl9zzDFHeZzHrTlwluckz03K+7w1NTWVc5CdjfK+2bzzzhs77LBD3HLLLbH66qtPcR/yGC288MIt28uOTNNrt912K9tJ01pThtUWXHDBEnxqDpFlPRk6m5wvsh/HH398zDfffHHaaadFfX19eS6v41xHXrsZpJvUfrSlrHvw4MFlW3V1deX6zLoz0AUAAABQi4SoAAAAgE4nx/bNOuuspRPS2LFjW57PDkLZBSiDIBlK6d69e2y55ZZlZFkGlDLgksGhGSG3laGc7HSV4Z3VVlutdP1pvQ8ZsMmAV/M+ZJgl67zqqqsmWFdzEKf1ui+66KJ49dVXy3rzloGtqcnQTHOAKmX3qRzrl52RUoal5pxzztI1K0NUuf6sMzsWTavsaJTvy/Ba63OT4xQzdJUjFjMU9EX3YVq1PmbTUlPu+wMPPFBqaA5Qpbx2Dj744MluZ3r3Izs9Pfjgg/Gd73ynhLua65l77rlLp6mspXWIauJz31by/P7pT38qowszSJd1Z+es1vsOAAAAUEuEqAAAAIBOJzs4vfHGGyVENSn5WnZFOu+88+L0008vI9Ky21Lfvn1j6623LuPc2jsskqPisuvTddddF9dff30JSGVQJ0ffZeep3IccFze5fciwTbPsENRajvbLrloZtjr66KPLLcNQRx55ZCy00EKTram5I1dr2THpkUceKV9njRmqyfF2OcYuw1QZMlp77bWneb9zv1KOMczbxF5//fUvtQ/TqvUxm5aacpkcnzdxN6/sFJUdxCZnevcjx0qOHz8+fv/735fbxDL4N7n9aEvZ8SzruOCCC+KUU04pgb+8LrMjWb4GAAAAUGuEqAAAAIBOp0+fPmUUW+vRbBN3XErZdSpHs40ePTruv//+0nkng00ZbskReV9GBm5ayxGBE9d40EEHlVt2QsoxghlWyRBPBrvy9RyhNrkuR81j/yb32u67715uL7/8cvzjH/8o6z7ggAPimmuumez73nnnnc899+abb04QHMoQ1W9/+9u49dZbSwAsAzUTB3umJINqKfcr929iM88885fahy9iWmrKY9DY2FiOR2sZNGoOYU3K9O7HTDPNVAJ8OUaweQRgaz179owvK9c/teszfe1rXyu3HPN4++23l1BXXq8jRoyYZOAOAAAAoCurq3YBAAAAANMiuyQ1yyDMK6+8UoIvw4cPb7nlKLQzzjijdA86++yzy3i/DFBl0GWFFVYoXYJShl0mXuf0yO5Mr7322gTP/etf/2r5+qWXXirj0f7617+Wx/PPP3/svPPOpRNV87ZzH/73v//FfPPNN8E+ZPen7JyV+zApn376aay77rpx5plnlsc5fi/Hv2Ugp3ndk/Pss8/G008/3fI49yFH2OWxaZbdiPJxdu567LHHSqhqSiauM/c1z8uLL744wX5lKOf4448v4w2nZR8mt/9fxLTUlNtbeumlS9ittb///e8TjABs7YvsR147iyyySAnWta5lwQUXLN2g7r777i+9vxnUysDcqFGjWp7LEGFr2Y2teexgBvoyVLjHHnuUfW3uFgYAAABQS3SiAgAAADqF7CaUgZ8777yzjJfLUX077rhj7LbbbjHHHHPEHXfcUTrpbLvttqWj0PLLL186VWVQJJ/LMMtFF11UAlUZrmpeZ3YeuuWWW2LhhReO2WabbZpqWX311UuXoSWWWCKGDBkSl112WRnN1zqIlCPejjnmmPjwww9jnnnmif/85z9lO7vuumtZJjsRZWAq73faaafo379/XHvttXHxxRfHYYcdNtlt9+jRo4wAzA5buZ/Dhg0rYazLL7+8BHqaZTAo9zXHGjZramoqx2u//fYrxyPXkV2Ytttuuwm2seWWW8b+++8fQ4cOLfvY2vPPPx9vv/12LLnkki0BnHTzzTeXdWWXr1z/EUccUbaRxzpH2GV3pgxtZe3Tsg/N683zPak6pkfWMbWa0ve+971yLPI+j0EGoU466aTy2qTGP37R/chju8suu5RuVRtvvHHpGpVBrAcffLAEmb6s3L9zzz23jBrM/fjvf/9bRjS2DnTl90eObPzZz34Wq666ajkeuR/Z4a15DOHE5zr9+9//jgEDBpRrOuXruVxeZxkQAwAAAOishKgAAACATiE7/GQQKTs6/eQnP4nzzz+/dBH6xS9+UcaRZXApQykZSEoZBMnRfTmaLkMrGVRZbLHFSlglOxOl7LKUwaYMWmVwJoMt0yJDTtmxJwMoDQ0NZeRdbvsHP/hByzIZSDnhhBNKCCe7AmXQa6+99mrZRnZBylBX7sORRx5ZugZlgOXYY48twZcp+fGPfxy/+tWvyr688cYbpctSvmefffZpWSa3lcckwzTNslNSHp/jjjsuPvnkk9IZ69RTT41+/fpNsP7sopWhoUl1ocrgUYaEnnjiifI4OyjlSLg8H7fddlv85S9/ia9//eulG1J2BcsRir169SpdnjLUNvfcc0/TPmQgJ0Ny+f48R9llLINKX9S01DRy5MjSDSrPWYaZ8vj98Ic/LAGsfO8XOReT2o+VV145/vCHP5RrJK+73K8MY2XQqXVg6YtaaaWV4pBDDinn/vrrr28Jem211VYty+TXY8aMKdfgBRdcUAJh2YEsx/k1H+eJz3X65je/GZtttln89Kc/bQnP5fdDdi5bbrnlvnTtAAAAANVSacp/gggAAABAl3booYfGPffcU8bTTU12xDr44INL6CdDQbUiR/llB7HmzlTpySefLCGxDBSttdZaVa2vFox/6vkYfcpF1S4DAAAAak6PEw6OWqcTFQAAAECGN8aPL7epyc5TXdWNN94YDz/8cOlOlF2oOlKAKjt/TU1dXV25fVG33357CZAdeOCBMd9885VRf9mpKzuXZfeoWjgGAAAAALWq6/6tHwAAAMB0yLF/OfJsWroVDR48OLqiF198Mc4555wYMWJEGevWkbTuDjU5rcfMfRE5Ai/H2mVw6vXXXy9jDldZZZUyqrF79+5R7XMzLZ2wcozj3nvvPUNqAgAAAOhKjPMDAAAAiChdhzI4MzXDhg2Lbt26zZCa+P+yQ9bU9O/fv8sG3EaPHh1PPPHEVJebbbbZYtCgQdFZGecHAAAA1dHDOD+dqAAAAABSBk86c/ikqxs+fHjUsgzu1foxAAAAAGhPde26dgAAAAAAAAAAgA5OiAoAAAAAAAAAAKhpQlQAAAAAAAAAAEBNE6ICAAAAAAAAAABqmhAVAAAAAAAAAABQ04SoAAAAAAAAAACAmiZEBQAAAAAAAAAA1DQhKgAAAAAAAAAAoKYJUQEAAAAAAAAAADVNiAoAAAAAAAAAAKhpQlQAAAAAAAAAAEBNE6ICAAAAAAAAAABqmhAVAAAAAAAAAABQ04SoAAAAAAAAAACAmiZEBQAAAAAAAAAA1DQhKgAAAAAAAAAAoKZVmpqamqpdBAAAAAAAAAAAQLXoRAUAAAAAAAAAANQ0ISoAAAAAAAAAAKCmCVEBAAAAAAAAAAA1TYgKAAAAAAAAAACoaUJUAAAAAAAAAABATROiAgAAAAAAAAAAapoQFQAAAAAAAAAAUNOEqAAAAAAAAAAAgJomRAUAAAAAAAAAANQ0ISoAAAAAAAAAAKCmCVEBAAAAAAAAAAA1TYgKAAAAAAAAAACoaUJUAAAAAAAAAABATROiAgAAAAAAAAAAapoQFQAAAAAAAAAAUNOEqAAAAAAAAAAAgJomRAUAAAAAAAAAANQ0ISoAAAAAAAAAAKCmCVEBAAAAAAAAAAA1TYgKAAAAAAAAAACoaUJUAAAAAAAAAABATROiAgAAAAAAAAAAapoQFQAAAAAAAAAAUNOEqAAAAAAAAAAAgJomRAUAAAAAAAAAANQ0ISoAAAAAAAAAAKCmCVEBAAAAAAAAAAA1TYgKAAAAAAAAAACoaUJUAAAAAAAAAABATROiAgAAAAAAAAAAapoQFQAAAAAAAAAAUNOEqAAAAAAAAAAAgJomRAUAAAAAAAAAANQ0ISoAAAAAAAAAAKCmCVEBAAAAAAAAAAA1TYgKAAAAAAAAAACoaUJUAAAAAAAAAABATROiAgAAAAAAAAAAapoQFQAAAAAAAAAAUNOEqAAAAAAAAAAAgJomRAUAAAAAAAAAANQ0ISoAAAAAAAAAAKCmCVEBAAAAAAAAAAA1TYgKAAAAAAAAAACoaUJUAAAAAAAAAABATROiAgAAAAAAAAAAapoQFQAAAAAAAAAAUNOEqAAAAAAAAAAAgJrWUO0CAAAAAIDadcUVV8Qf//jH+N///hc9evSIlVZaKfbbb7+Ya665ql0a7WzfffeNf/3rX3HrrbdWuxTayUcffRSnnXZa/O1vf4uXXnopGhsbY5FFFontt98+1l577WqXRzt49913yzn/+9//Hq+88koMHDgw1lprrdhjjz1iwIAB1S6PGeCuu+6KHXbYITbddNP46U9/Wu1yaAcXXnhhHHnkkZN9/c477/T93gXdcsstcdZZZ8XDDz8clUolhg4dWv4832CDDapdGm1o2LBhU11ms8028/O9ixk7dmyceeaZcfnll8cLL7wQPXv2jKWWWir23HPPWGKJJaLWCFEBAAAAAFVx4oknxu9+97tYYIEFYuutty4fuF977bVx++23xyWXXBJzzz13tUuknZx88slx3XXXxaBBg6pdCu3kww8/LN/XTzzxRCy66KLl6w8++KAEqvbaa6/Yf//9Y9ddd612mbShPL95np9++ulYYYUVSnjqmWeeiXPPPTeuv/76uPjii2OOOeaodpm08/f997///Whqaqp2KbSjxx57rNxnWK53796fez0/fKdrOfvss+MnP/lJCcZusskmMX78+PJzPf/hw6uvvho77bRTtUukjeTvaJOSP9fzOsiA/PLLLz/D66J97bPPPnHjjTfGkCFDyu9y77zzTvl/tTvuuKP8//rKK68ctaTS5DcZAAAAAGAGe/zxx8uHMCNGjCh/Id+tW7fy/A033FD+8n6NNdYof2FL1zJq1Kg4+uijS0guZYhKJ6quHZLcaqutSseS7FqRXnvttdhiiy3i7bffLh/O5Ic1dA35AXv+PN97770n+BD2vPPOK9/3m2++eVmGruuwww6Lyy67rHytU0nX9Y1vfKMEZB944IGoq6urdjm0szzX+fM7/7zOUGwGqdKbb75Zfpd/7733SvexPn36VLtU2lF2KfrZz34W3/zmN+PHP/5xtcuhDf3zn/8sQcjFFlssLrjggujevXtLZ8kdd9wxBg8eXP4fvZb4kw0AAAAAmOFyhF/KEQHNAaqUI76WWWaZuPnmm0vYgq4jx3utv/76JUC12mqrVbsc2lkGpDI4dcABB7QEqJqDc9/61rdi3LhxZTQQXceLL74Ys8wyS3znO9+Z4Pn8kD1l4IKu/TM+A1RrrrlmtUuhHWUHov/+97+x4IILClDViAxO5aivo446qiVAlfLnfXaiyoBVBqroup588sk44YQTSpfgDMvStTz44IMtv681B6hSdhybf/754/nnn4+33noraolxfgAAAADADJf/srWhoaEEpiaWf2F77733lmWaP3yn87v00kvLCJAf/ehHJUSz0EILVbsk2tH2229fxrv17dv3c681ByfzeqDr+O1vfzvJ53O8X5p11llncEXMKNlZ7oc//GEsu+yyse2225ZAFV3Ts88+G5988ok/w2tI/sOG/Pk9qd/Zt9xyy3Kja8sukmPGjCk/543r7Hr69+9f7l966aUJnh89enQZ69fY2FhzneZEhAEAAACAGSr/Qvbll1+O2WeffYIuVM3yXzmnZ555pgrV0Z6hmptuuim23nrrCToT0TVts802sdtuu33u+aampvjb3/5Wvh42bFgVKmNGyRFP119/felUkqHZPfbYo9ol0U5yZOfHH38cxx13nJ/vNTCOOeV5zu/tVVZZJRZffPESpPnLX/5S7fJoh4DkG2+8EV/5ylfi9ddfj8MPPzxWWmmllnN+4403VrtE2ll2Dc1xb3nedZLtmtZbb73SZS5H+V1++eXx4Ycflv9XP/TQQ0sHqu22226S/8/elQlRAQAAAAAz/IP1DFLMPPPMk3y9+V+6Zhcbuo7lllsuevfuXe0yqLL8gOahhx4qYcn88J2u6cILLyxdib73ve+V0aw///nPY4UVVqh2WbSDq666qoTlDjzwwJYQNF0/RHXxxReXD9c33njjMoo5O87l+NYc+UXXkcGplKGKHNt39913l8BFjmfOc55juXPcH13XGWecUe4Fobt2J6qLLroohg8fXoJTI0aMiDXWWCOuueaaEpY9+OCDo9YY5wcAAAAAzFA5DiJN7l+0Nj8/atSoGVoX0L6uvfbaOPbYY0tXop/+9KdlPAhd04ABA2LnnXcuHUyy81gGbF555ZX47ne/W+3SaEMZkDv66KNLQC67DNL1ZQh+rrnmir333js222yzludfeOGFMqr3tNNOi1VXXTVGjhxZ1TppG81jdx988MEybvvUU0+NXr16led22WWX+PrXvx4/+9nPYs011yzXBV3Lo48+Gvfcc0/5fvY93bW7RJ9yyinxwAMPxKKLLlrOdf6jpxtuuKH8TB80aNAEP+9rgU5UAAAAAMAM1aNHjwnCVJP6i9zU/CEN0DU6UGWXkpQfuPowrmtbd911S3Aqz/XVV19dQlW/+MUv4uGHH652abSh73//+zFu3LgSjjTGrzbkz/G///3vn/tAPbuQZee55u5kdA319fUtX//whz+c4HfzoUOHljFf+ft8dqOj67nssstaRjTTdeXvajnGb9ttt40///nP5c/2fC5HtGbn6MMOO6x0ka0lQlQAAAAAwAyVI93q6uomO66v+fnmsX5A5zV+/PjSdeqoo44qHah+9atfxde+9rVql8UMNHjw4JYOVDfddFO1y6ENRzbefvvtccghh+hAQ7H44ouX++eff77apdBGmn8Xz/BUhqYmtsgii5T75557bobXRvvLP7Pz3OdoN7ru7+mXXHJJ+V4/6KCDJghEzznnnLHvvvuWDoSXXnpp1BIhKgAAAABghspxfdmx4OWXX55kN6ocCZMWWGCBKlQHtJXsKrfPPvvEWWedFf369Sv366yzTrXLop3O9T//+c+49dZbJ/l6/sxPb7/99gyujPYcz5mOOOKIGDZsWMttxx13LM9nV4t8fOihh1a5Utryw/b//Oc/ZbzXpHz88ccTdByl88uf3RmAHjt2bAlSTKz59/iePXtWoTra0+OPP17+Xy0DVM5v1/XWW2/FqFGjYp555in/jz6xYcOGlfuXXnopaklDtQsAAAAAAGrPsssuW/7V67/+9a9YbrnlJnjtzjvvLP8Kdumll65afcCXkyO+MkCVY5+yE9Hvf//7mH/++atdFu0Yotp5551Lx4o77rjjcx/EPfLII+V+vvnmq1KFtLUc55Z/lk8qCH3llVfGQgstFF/96ldj4YUXrkp9tI8c3/bJJ5+U0OTAgQMneO2+++4r98OHD69SdbS1/Fm+5JJLlnN77733fu539uYRrfn9TteS/4+WjF/u2nJcX36fv/jii+V3uYl/f/vf//5X7mebbbaoJTpRAQAAAAAz3BZbbFHuTzzxxPj0009bnr/hhhvKBzVrrrlmzD777FWsEPgyTj/99BKgylEgF1xwgQBVDYxpXWuttco41pNPPnmC17Jzzdlnn10CVkY5dh2bb7557L333p+7bbrppuX1DE/l4wxS0TXkKOb11luvdCT6xS9+UTpTte5ac9ppp5Xv8y233LKqddK2tt5663Kfo3lbj+LOc37RRReVTpO+z7ue/LM7LbbYYtUuhXaUoansEvvee+/FSSedNMFrb7/9dstzG2+8cdQSnagAAAAAgBluqaWWim222SbOP//82GSTTcqH76+99lpcd911Mcsss8Rhhx1W7RKBL+jdd98tIarmIMXFF188yeWyu8EKK6wwg6ujvRx++OHlQ9cMUmQYdoklliijgG666abSXTBDs7POOmu1ywS+hAMPPDDuv//+Mq7xiSeeKJ2J8ve3G2+8sYSq8vt80KBB1S6TNrThhhvG7bffHpdddln5OgMXH374Yfz1r38tXSePPfbYEqSla3n++efLve/nri//vzt/fzvjjDPirrvuKl0mM1SVv7/l7/Q77bRTzf2+Xmma1ABTAAAAAIB2ln81mSGqP/3pT/Hss8+Wf8meH8blCLC555672uXRzoYNG1Y+mLn11lurXQptLD9M33PPPae63G677Rb77bffDKmJGSO7Fpxyyinlg7fXX389+vbtW36u57k27qk25DjHHXfcsYz7y841dD354fqpp55auodmgGqmmWaKZZZZpnyf61rTdX9nzxDVhRdeGE899VTpXpNB2d1339347S5qgw02iKeffjoeeOCB0mGOri27zGUIPn+uv/TSS+V7fJFFFoltt922dCCsNUJUAAAAAAAAAABATaurdgEAAAAAAAAAAADVJEQFAAAAAAAAAADUNCEqAAAAAAAAAACgpglRAQAAAAAAAAAANU2ICgAAAAAAAAAAqGlCVAAAAAAAAAAAQE0TogIAAAAAAAAAAGqaEBUAAAAAAAAAAFDThKgAAAAAAAAAAICaJkQFAAAAAAAAAADUNCEqAAAAAAAAoEtoamqqdgkAQCfVUO0CAAAAAAAAoCsZN25c3H777XHllVfGo48+Gq+++mp5fq655ooVV1wxtttuu5hnnnmis7vsssvisMMOi7XWWitOOeWUGbbdYcOGlft77703+vbtW77+5JNP4vTTT4+ePXvGLrvs0m7bfuutt+Lcc8+NW2+9NV544YWy3X79+sVCCy0UX/3qV2PzzTePbt26tdv2AYD2oxMVAAAAAAAAtJEM1my99dYlyHPddddFjx49YqWVVoqllloq3nnnnfjjH/8YG2ywQVxzzTXVLrVLOemkk0qQa9SoUe22jbvvvjvWXnvtOPXUU+O9996LZZZZJtZcc80YPHhw3HXXXfGjH/0oNt5443jttdfarQYAoP3oRAUAAAAAAABtIDtOff3rXy9hqezOdPDBB8e8887b8vro0aNLiOqXv/xlHHTQQdG9e/fSvYjpc+2115b73r17T9D9qz198MEHsffee5fOUz/72c9i0003neD1DE7l+c4w1T777BMXXXRRu9YDALQ9nagAAAAAAACgDRx44IElQLXuuuvGySefPEGAKuWYt+9+97ux++67l9BPhnHGjh1btXo7q6FDh5ZbXd2M+6jzpptuKt2n1lhjjc8FqNKgQYNKN6wMxj3wwAPx2GOPzbDaAIC2IUQFAAAAAAAAX9KDDz4Y9957bwnRHH744VMM+HznO9+JRRZZJJZeeul44403JnjtzTffLOGqDGINHz48Ro4cGdtuu21cccUV0dTU9LnxcsOGDYsjjjiijBE84IADYvnll48ll1yydMS6+eaby3IvvfRSy2u5zW984xstrzV78cUXy7q+9a1vxVtvvRWHHHJIWT7HEG6++eZx8cUXf277U5LbzPF2Oe5uscUWK+vaY489SsCotccff7y8ntu+/vrrJ3gtg2ZbbbVVeS3X1Swf5+39999veZwdvlKG1/Lxb37zmzj33HPL13m8JyU7gy233HLlOL/77rtT3J88L6lSqUx2mX79+sVOO+0UW2655STPf+77fvvtF6uuumosvvji5RwfddRRkxz/90Wug7zu8vXVV1+9vCfHRua5bHb//ffHXnvtFSuuuGI55hkIy2vn5ZdfnuK+A0CtEKICAAAAAACAL+nqq68u98sss0zpSjQlOYbu8ssvLyGZOeaYY4JA0de+9rU488wz4+OPP24Jw2RAK0NN3/ve9ybZueqZZ54pQaccJTdixIiYe+6546GHHiodry655JLyWgZtMhA1zzzzlPXtuuuuccstt0xybN3WW29dRuZl0CbDO08++WT88Ic/LCMIp0WGyTbZZJMy0q6hoaHsR3bl+vvf/17W/ac//all2YUWWqiMv0tHH3106fbU7NRTTy3BowUXXDAOO+ywyW5vo402ivnnn798/ZWvfKU8zlDRxhtvXEJtd9xxxySDSjfccEMJT62zzjolADUlGXpr7kh1+umnl+M0Kfvuu28ce+yxZfutZaBrm222Kcd11llnLcckw1AXXHBBOT8Zgvuy18F9990Xhx56aMw+++yxwgorxMwzzxwDBw4sr5199tll+zfeeGO55jLc1qNHj3IuNttss3K9AECtE6ICAAAAAACALymDTCmDSl9EdkXKTk05DjCDRhnWyW5KZ511VgneZAjpb3/7W+m0NKnQUnaYypDSb3/727jqqqtirbXWivHjx8cPfvCDEoTKwFCGkrJTUXapShdeeOHn1pWBqU8++aQsd8YZZ8Tvf//78vVss81WgmLNYbHJyRBUhnwyZJRdjrK7VNacgaoMEvXq1St+/OMfx6OPPtrynuwUlTVmV66f/vSn5bkM9WS9GYI6/vjjS+Bncn75y1/GyiuvXL7OQFQ+zvsMEWUnpzwOV1555efed+mll5b77Bw1Ndm9KTs3ZfAp68mQ0nbbbVdG+N1+++0l7DQ5Odov96u+vr4EsP785z/Hr3/967juuutK56/sOpXH5MteB88++2zsvPPO5Vjnds4///yW6yO337dv3zjvvPMm2P73v//9EiTbe++949NPP53qcQCArkyICgAAAAAAAL6k5k5Hs8wyyxd6fwZacgRedmbKrk/dunVreS07S2VwJ51zzjmTDLvkezJw1DxyLjsZNX995JFHRs+ePVuW3XDDDVtCN5OSI+aGDh3a8ji/bu4E1RzMmZzsfPX222+X7Wfno9bj77JL12677Va6KGWXpWY5+i67cs0000xx2WWXxT/+8Y/S9SqXy85LE3d1mh7f/OY3y312/motj3V27srOXDlqcFpk8Cjrz2M5ZsyYuOeee+KUU04pIbBll1223GegamIZVst92XHHHWO11VZreT5DVbl/8803X1lfBqi+7HWw/fbbt3zdPFIwg3AZ/jrwwANLWG3i5XO84KuvvjrVgBwAdHVCVAAAAAAAAPAl5di6NKkxa9MiAzlpgw02aAm/tJaj9TJskx2PHn744Qley/FwgwcPnuC5AQMGlPvsIJWvt5YdmlKGdibWp0+fCYI+zXL8W4Z+cqTcRx99NNn9uPPOO1s6N01KdnNKGWBqLes//PDDy9d77bVXCXjlNjOI9WVkaChH/WWnsBwN2CzDWtmhaosttpgg6DUlGWjab7/9SlDqxBNPjG984xvlnKQMQeXzGaTK0FqGlprlKMX01a9+9XPrzEDWX//61zJuL9f/Za6DPNcTh/jGjRvXss7snjUpOS5wUucEAGrNZ7/NAQAAAAAAAF9YBpUef/zxeOutt77Q+19//fWWbkOTk6/973//a1l24lBUa83BoP79+0/2tUnJzkyTCu/kOL0MZuXIvbxl16hJeeWVV8p9jonL2+TkOjJ41NjY2PJcBppyZF2GkTJQdOyxx0ZbyLBTjrPLblQ5bjHDU/l1hsI222yz6V5f7969S8gpbynP+R133BEXXHBB/Otf/yqdpxZddNGWsYnN52vOOeds1+ugX79+n1s2R/XleMbJhbhae/nll6daHwB0ZUJUAAAAAAAA8CUNHz48brvttgm6HU3JRRddVMJMK6+8csw111wTdC6anAz/pNYj3lp3wWoLGSyanOYap7RMc405Im5S4a7WsmtX6xDVm2++GY888khLl6yrrroqdthhh/iyNtlkkzIGLwNaP/jBD+K+++4rI/OyK9agQYOm+v6s87///W+89957k+zmNHDgwNhoo43KCMNDDz00rrjiirjyyitbQlTN3cmmpePVl7kOJhV+a142r5H1119/iuvN6xAAapkQFQAAAAAAAHxJ66yzTpxyyilx//33lw5BOVptcrIz0C9+8Yv48MMP46ijjoqtttqqZfkXXnhhsu97/vnnW0I77eXVV1+d5PM5Pu7tt98uYZwpBY+yI1d2Scrw00orrTRd285xfu+88045ljfffHOccMIJZR0LLrhgfBnZQWvttdcuIaoMuuW605ZbbjlN788Q1Oabb14CTrfeeutk9z9DUhmcyhBVdoBqfUwytJVduiZ17m644YbSlSsDWm19HWR3qgyq5Vi/7OzVvXv3adpnAKhFn48jAwAAAAAAANNl4YUXLl2lsoPScccdN8WOQr/61a9KgCrDPdm9KC277LLlPoM+zd2DWnvooYdKeKZPnz6x2GKLtdt+ZADs0Ucf/dzzf/vb30pdyy+//Oc6ILW23HLLlfubbrppkq/netZbb7047LDDJnj+T3/6Uwk35ai6n//857HXXnvFqFGj4qCDDioBo6mZWpenHOmXrrvuulJbBptWX331mBY5yjDH86Wzzz57istmgCwNGzas5bkRI0aU+3/84x+TDGgdccQRsd9++5VOV219HWSAqnmE4aS2n372s5+Vbl1//OMfp7o+AOjKhKgAAAAAAACgDRx55JEl3JJBnb333jtefPHFCV7/9NNP48QTT2wJ4vzwhz+M3r17l6832GCDmHPOOePxxx8vIazWwaHsSnTwwQeXr7/5zW9OMcTUFrIjVHadavbEE0+UYFPaaaedphpWmmmmmcq4wvPPP3+CMNnTTz8dxxxzTAkazTvvvC3PZyjopz/9aQlC5es9e/aM73znOyWY9thjj8Wvf/3raQo6pQwiTUqGv4YMGRLXXHNNvPXWW7HZZptN1xjEffbZp4zLO/PMM0vo6IMPPvjcMhlSyg5jud4dd9yx5fntttuuvPcPf/hD3H333S3PZ3eo3O881hmeymPSHtdBHsv04x//eILtN4fazj333LK99gznAUBnYJwfAAAAAAAAtIHsonThhRfGrrvuWka0ZcejRRZZJOaaa64yDu/BBx+M999/vwR+svtQBmaaZSDmN7/5Tey8884l1JLhliWXXLJ0rLr33ntLh6s111wz9t1333bdh6zjtddeK+PvsqtUBr/uueeeEubZY489pjqiL8fR5Ri+DB1laCdDR9mVKUNHOeowg0O5H81hrHycwaA8PhkMyrBTyiBSjp/LUNYZZ5xRukY1d3SalPnnn7/cX3zxxWVs3mqrrdbSfSplQCvH9x1//PEtX0+PVVddtQS8jj766LJPeY6GDx9e9jc7ZmUIKbebAbAMnLUOJC2++OKlo1Y+v/3225fOULPMMksJiGUwKrti5b6213WQxy7PXY6b/Pa3v12uycGDB5dtZw3pwAMPjKWXXnq6jgkAdDVCVAAAAAAAANBGFlxwwbjqqqvi0ksvjb///e/x5JNPloBNjlXLkFWGd7bddtsSrJpYBm+uvPLKEhrK0Xb5/uzqlOGWfN9GG23U7vV37969jNbLsNHtt99eAkcjR44snZUymDStoZ0rrriidF6644474tZbb42+ffuWMNDXv/71sh/NXaBOP/30eOCBB2KOOeZo6bLULEfoZdgqlznkkEPKscnjMSk5FjFH3WWnqdxeLtc6RJWaQ1jLLLNM6Uo1vbbYYosSIssuW3fddVfpoPXwww+XUFx2j9pwww3Luc19mVjuR+7PWWedVfY3a80A1jbbbFMCThmqas/rIENt2e0qR/b9+9//LtdlhrfWWGONcm6bxzACQC2rNE1pIDMAAAAAAADQ5eXowbXWWquMI7zvvvuiK8ouUuedd14JiGXoCgCgtboJHgEAAAAAAAB0ETmOMGVHrOwONmjQoFh33XWrXRYA0AEZ5wcAAAAAAAB0SXvuuWfprNUcpjrmmGPKaEUAgInpRAUAAAAAAAB0ScOHD4+mpqaYc84540c/+lFstNFG1S4JAOigKk35WwMAAAAAAAAAAECN0okKAAAAAAAAAACoaUJUAAAAAAAAAABATROiAgAAAAAAAAAAapoQFQAAAAAAAAAAUNOEqAAAAAAAAAAAgJomRAUAAAAAAAAAANQ0ISoAAAAAAAAAAKCmCVEBAAAAAAAAAAA1TYgKAAAAAAAAAACoaUJUAAAAAAAAAABATROiAgAAAAAAAAAAapoQFQAAAAAAAAAAUNOEqAAAAAAAAAAAgJomRAUAAAAAAAAAAEQt+39lNncHxDdgNQAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "# Create detailed complexity analysis\n", + "fig, axes = plt.subplots(2, 2, figsize=(16, 12), dpi=150)\n", + "fig.suptitle('Code Complexity Analysis', fontsize=18, fontweight='bold', y=0.96)\n", + "\n", + "# Cyclomatic Complexity Box Plot by Rank\n", + "if not radon_cc_results.empty:\n", + " sns.boxplot(data=radon_cc_results, x='rank', y='complexity', ax=axes[0, 0])\n", + " axes[0, 0].set_title('Complexity Distribution by Rank')\n", + " axes[0, 0].set_xlabel('Complexity Rank')\n", + " axes[0, 0].set_ylabel('Complexity Score')\n", + "else:\n", + " axes[0, 0].text(0.5, 0.5, 'No complexity data', ha='center', va='center', transform=axes[0, 0].transAxes)\n", + " axes[0, 0].set_title('Complexity Distribution by Rank')\n", + "\n", + "# Maintainability Index vs Complexity (if both available)\n", + "if not radon_cc_results.empty and not radon_mi_results.empty:\n", + " # Merge CC and MI data by file\n", + " cc_by_file = radon_cc_results.groupby('file')['complexity'].mean().reset_index()\n", + " mi_by_file = radon_mi_results[['file', 'mi_score']].copy()\n", + " \n", + " merged = pd.merge(cc_by_file, mi_by_file, on='file', how='inner')\n", + " \n", + " if not merged.empty:\n", + " axes[0, 1].scatter(merged['complexity'], merged['mi_score'], alpha=0.6)\n", + " axes[0, 1].set_xlabel('Average Complexity')\n", + " axes[0, 1].set_ylabel('Maintainability Index')\n", + " axes[0, 1].set_title('Complexity vs Maintainability')\n", + " \n", + " # Add trend line\n", + " z = np.polyfit(merged['complexity'], merged['mi_score'], 1)\n", + " p = np.poly1d(z)\n", + " axes[0, 1].plot(merged['complexity'], p(merged['complexity']), \"r--\", alpha=0.8)\n", + " else:\n", + " axes[0, 1].text(0.5, 0.5, 'No matching files', ha='center', va='center', transform=axes[0, 1].transAxes)\n", + " axes[0, 1].set_title('Complexity vs Maintainability')\n", + "else:\n", + " axes[0, 1].text(0.5, 0.5, 'Insufficient data', ha='center', va='center', transform=axes[0, 1].transAxes)\n", + " axes[0, 1].set_title('Complexity vs Maintainability')\n", + "\n", + "# Function type distribution in complexity\n", + "if not radon_cc_results.empty:\n", + " func_type_counts = radon_cc_results['type'].value_counts()\n", + " axes[1, 0].pie(func_type_counts.values, labels=func_type_counts.index, autopct='%1.1f%%')\n", + " axes[1, 0].set_title('Function Types Distribution')\n", + "else:\n", + " axes[1, 0].text(0.5, 0.5, 'No function data', ha='center', va='center', transform=axes[1, 0].transAxes)\n", + " axes[1, 0].set_title('Function Types Distribution')\n", + "\n", + "# Top 10 most complex functions\n", + "if not radon_cc_results.empty:\n", + " top_complex = radon_cc_results.nlargest(10, 'complexity')\n", + " \n", + " # Create shorter labels for function names\n", + " labels = [f\"{Path(row['file']).name}:{row['function']}\" for _, row in top_complex.iterrows()]\n", + " short_labels = [label[:30] + '...' if len(label) > 30 else label for label in labels]\n", + " \n", + " y_pos = range(len(top_complex))\n", + " axes[1, 1].barh(y_pos, top_complex['complexity'])\n", + " axes[1, 1].set_yticks(y_pos)\n", + " axes[1, 1].set_yticklabels(short_labels, fontsize=8)\n", + " axes[1, 1].set_xlabel('Complexity Score')\n", + " axes[1, 1].set_title('Top 10 Most Complex Functions')\n", + "else:\n", + " axes[1, 1].text(0.5, 0.5, 'No function data', ha='center', va='center', transform=axes[1, 1].transAxes)\n", + " axes[1, 1].set_title('Top 10 Most Complex Functions')\n", + "\n", + "plt.tight_layout()\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "id": "8c491fb2", + "metadata": {}, + "source": [ + "## Create Summary Dashboard" + ] + }, + { + "cell_type": "code", + "execution_count": 54, + "id": "9f184293", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "\n", + "================================================================================\n", + "CODE QUALITY ANALYSIS SUMMARY\n", + "================================================================================\n", + "\n", + "📊 OVERALL METRICS:\n", + " Total Issues Found: 213\n", + " Files Analyzed: 46\n", + " Average Issues per File: 4.63\n", + "\n", + "🔍 TOOL BREAKDOWN:\n", + " BANDIT: 2 issues across 2 files\n", + " RUFF: 0 issues across 0 files\n", + " MYPY: 0 issues across 0 files\n", + " RADON_CC: 162 issues across 32 files\n", + " RADON_MI: 46 issues across 46 files\n", + " FLAKE8_WPS: 3 issues across 3 files\n", + "\n", + "💡 QUALITY INSIGHTS:\n", + " 🚨 Security: 0 high-severity security issues found\n", + " 🔄 Complexity: Average CC = 2.33, 0 functions with CC > 10\n", + " 🛠️ Maintainability: Average MI = 81.39, 0 files with MI < 20 (needs attention)\n", + "\n", + "📋 RECOMMENDATIONS:\n", + " 1. Address 213 total issues found across all tools\n", + " 2. Security: Review and fix 2 security issues\n", + "\n", + "================================================================================\n", + "\n", + "FINAL SUMMARY TABLE:\n", + " Tool Total Issues Files Analyzed Issues per File\n", + " bandit 2 2 1.0000\n", + " ruff 0 0 0.0000\n", + " mypy 0 0 0.0000\n", + " radon_cc 162 32 5.0625\n", + " radon_mi 46 46 1.0000\n", + "flake8_wps 3 3 1.0000\n", + "\n", + "💾 Results saved to 'code_quality_summary.csv'\n", + "💾 Detailed issues saved to 'detailed_issues.csv'\n" + ] + } + ], + "source": [ + "# Create a comprehensive summary\n", + "print(\"\\n\" + \"=\"*80)\n", + "print(\"CODE QUALITY ANALYSIS SUMMARY\")\n", + "print(\"=\"*80)\n", + "\n", + "# Overall statistics\n", + "total_issues = sum(summary_stats[tool]['total_issues'] for tool in summary_stats)\n", + "total_files = max(summary_stats[tool]['files_analyzed'] for tool in summary_stats if summary_stats[tool]['files_analyzed'] > 0)\n", + "\n", + "print(f\"\\n📊 OVERALL METRICS:\")\n", + "print(f\" Total Issues Found: {total_issues}\")\n", + "print(f\" Files Analyzed: {total_files}\")\n", + "print(f\" Average Issues per File: {total_issues/total_files:.2f}\" if total_files > 0 else \" Average Issues per File: N/A\")\n", + "\n", + "# Tool-specific summaries\n", + "print(f\"\\n🔍 TOOL BREAKDOWN:\")\n", + "for tool, stats in summary_stats.items():\n", + " print(f\" {tool.upper()}: {stats['total_issues']} issues across {stats['files_analyzed']} files\")\n", + "\n", + "# Quality insights\n", + "print(f\"\\n💡 QUALITY INSIGHTS:\")\n", + "\n", + "if not bandit_results.empty:\n", + " high_severity = len(bandit_results[bandit_results['severity'] == 'HIGH'])\n", + " print(f\" 🚨 Security: {high_severity} high-severity security issues found\")\n", + "\n", + "if not radon_cc_results.empty:\n", + " avg_complexity = radon_cc_results['complexity'].mean()\n", + " high_complexity = len(radon_cc_results[radon_cc_results['complexity'] > 10])\n", + " print(f\" 🔄 Complexity: Average CC = {avg_complexity:.2f}, {high_complexity} functions with CC > 10\")\n", + "\n", + "if not radon_mi_results.empty:\n", + " avg_mi = radon_mi_results['mi_score'].mean()\n", + " low_mi = len(radon_mi_results[radon_mi_results['mi_score'] < 20])\n", + " print(f\" 🛠️ Maintainability: Average MI = {avg_mi:.2f}, {low_mi} files with MI < 20 (needs attention)\")\n", + "\n", + "# Recommendations\n", + "print(f\"\\n📋 RECOMMENDATIONS:\")\n", + "\n", + "if total_issues == 0:\n", + " print(\" ✅ Excellent! No issues found by any tool.\")\n", + "else:\n", + " print(f\" 1. Address {total_issues} total issues found across all tools\")\n", + " \n", + " if not bandit_results.empty:\n", + " print(f\" 2. Security: Review and fix {len(bandit_results)} security issues\")\n", + " \n", + " if not radon_cc_results.empty and radon_cc_results['complexity'].max() > 15:\n", + " print(f\" 3. Complexity: Refactor functions with complexity > 15\")\n", + " \n", + " if not radon_mi_results.empty and radon_mi_results['mi_score'].min() < 10:\n", + " print(f\" 4. Maintainability: Improve files with MI < 10\")\n", + " \n", + " if not ruff_results.empty:\n", + " top_ruff_rule = ruff_results['rule_code'].value_counts().index[0]\n", + " print(f\" 5. Style: Focus on fixing {top_ruff_rule} rule violations first\")\n", + "\n", + "print(\"\\n\" + \"=\"*80)\n", + "\n", + "# Create final summary table\n", + "summary_table = pd.DataFrame({\n", + " 'Tool': list(summary_stats.keys()),\n", + " 'Total Issues': [summary_stats[tool]['total_issues'] for tool in summary_stats],\n", + " 'Files Analyzed': [summary_stats[tool]['files_analyzed'] for tool in summary_stats],\n", + " 'Issues per File': [summary_stats[tool]['total_issues']/max(summary_stats[tool]['files_analyzed'], 1) for tool in summary_stats]\n", + "})\n", + "\n", + "print(\"\\nFINAL SUMMARY TABLE:\")\n", + "print(summary_table.to_string(index=False))\n", + "\n", + "# Save results to CSV for further analysis\n", + "summary_table.to_csv('code_quality_summary.csv', index=False)\n", + "print(\"\\n💾 Results saved to 'code_quality_summary.csv'\")\n", + "\n", + "if not combined_issues.empty:\n", + " combined_issues.to_csv('detailed_issues.csv', index=False)\n", + " print(\"💾 Detailed issues saved to 'detailed_issues.csv'\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "40749cdc", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "fastapi-moscow-python-demo (3.12.10)", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.10" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/pyproject.toml b/pyproject.toml index 98c2ca645a..d70073eb7d 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -9,14 +9,19 @@ dependencies = [ "bandit>=1.8.6", "fastapi>=0.116.1", "flake8>=7.3.0", + "ipykernel>=6.30.1", "jinja2>=3.1.6", + "matplotlib>=3.10.6", "mypy>=1.17.1", + "numpy>=2.3.3", + "pandas>=2.3.2", "passlib>=1.7.4", "pydantic-settings>=2.10.1", "pyjwt>=2.10.1", "pytest>=8.4.2", "radon>=6.0.1", "ruff>=0.13.0", + "seaborn>=0.13.2", "sqlalchemy>=2.0.43", "sqlmodel>=0.0.24", "tenacity>=9.1.2", @@ -93,4 +98,7 @@ ignore = [ per-file-ignores = [ "backend/app/tests/*.py: WPS432", "backend/app/alembic/**/*.py: WPS", -] \ No newline at end of file +] + +[tool.bandit] +exclude_dirs = ["app/tests"] diff --git a/uv.lock b/uv.lock index a1350e8523..1870f9bf0a 100644 --- a/uv.lock +++ b/uv.lock @@ -39,6 +39,24 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/6f/12/e5e0282d673bb9746bacfb6e2dba8719989d3660cdb2ea79aee9a9651afb/anyio-4.10.0-py3-none-any.whl", hash = "sha256:60e474ac86736bbfd6f210f7a61218939c318f43f9972497381f1c5e930ed3d1", size = 107213, upload-time = "2025-08-04T08:54:24.882Z" }, ] +[[package]] +name = "appnope" +version = "0.1.4" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/35/5d/752690df9ef5b76e169e68d6a129fa6d08a7100ca7f754c89495db3c6019/appnope-0.1.4.tar.gz", hash = "sha256:1de3860566df9caf38f01f86f65e0e13e379af54f9e4bee1e66b48f2efffd1ee", size = 4170, upload-time = "2024-02-06T09:43:11.258Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/81/29/5ecc3a15d5a33e31b26c11426c45c501e439cb865d0bff96315d86443b78/appnope-0.1.4-py2.py3-none-any.whl", hash = "sha256:502575ee11cd7a28c0205f379b525beefebab9d161b7c964670864014ed7213c", size = 4321, upload-time = "2024-02-06T09:43:09.663Z" }, +] + +[[package]] +name = "asttokens" +version = "3.0.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/4a/e7/82da0a03e7ba5141f05cce0d302e6eed121ae055e0456ca228bf693984bc/asttokens-3.0.0.tar.gz", hash = "sha256:0dcd8baa8d62b0c1d118b399b2ddba3c4aff271d0d7a9e0d4c1681c79035bbc7", size = 61978, upload-time = "2024-11-30T04:30:14.439Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/25/8a/c46dcc25341b5bce5472c718902eb3d38600a903b14fa6aeecef3f21a46f/asttokens-3.0.0-py3-none-any.whl", hash = "sha256:e3078351a059199dd5138cb1c706e6430c05eff2ff136af5eb4790f9d28932e2", size = 26918, upload-time = "2024-11-30T04:30:10.946Z" }, +] + [[package]] name = "attrs" version = "25.3.0" @@ -63,6 +81,63 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/48/ca/ba5f909b40ea12ec542d5d7bdd13ee31c4d65f3beed20211ef81c18fa1f3/bandit-1.8.6-py3-none-any.whl", hash = "sha256:3348e934d736fcdb68b6aa4030487097e23a501adf3e7827b63658df464dddd0", size = 133808, upload-time = "2025-07-06T03:10:49.134Z" }, ] +[[package]] +name = "cffi" +version = "2.0.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "pycparser", marker = "implementation_name != 'PyPy'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/eb/56/b1ba7935a17738ae8453301356628e8147c79dbb825bcbc73dc7401f9846/cffi-2.0.0.tar.gz", hash = "sha256:44d1b5909021139fe36001ae048dbdde8214afa20200eda0f64c068cac5d5529", size = 523588, upload-time = "2025-09-08T23:24:04.541Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ea/47/4f61023ea636104d4f16ab488e268b93008c3d0bb76893b1b31db1f96802/cffi-2.0.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:6d02d6655b0e54f54c4ef0b94eb6be0607b70853c45ce98bd278dc7de718be5d", size = 185271, upload-time = "2025-09-08T23:22:44.795Z" }, + { url = "https://files.pythonhosted.org/packages/df/a2/781b623f57358e360d62cdd7a8c681f074a71d445418a776eef0aadb4ab4/cffi-2.0.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:8eca2a813c1cb7ad4fb74d368c2ffbbb4789d377ee5bb8df98373c2cc0dee76c", size = 181048, upload-time = "2025-09-08T23:22:45.938Z" }, + { url = "https://files.pythonhosted.org/packages/ff/df/a4f0fbd47331ceeba3d37c2e51e9dfc9722498becbeec2bd8bc856c9538a/cffi-2.0.0-cp312-cp312-manylinux1_i686.manylinux2014_i686.manylinux_2_17_i686.manylinux_2_5_i686.whl", hash = "sha256:21d1152871b019407d8ac3985f6775c079416c282e431a4da6afe7aefd2bccbe", size = 212529, upload-time = "2025-09-08T23:22:47.349Z" }, + { url = "https://files.pythonhosted.org/packages/d5/72/12b5f8d3865bf0f87cf1404d8c374e7487dcf097a1c91c436e72e6badd83/cffi-2.0.0-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:b21e08af67b8a103c71a250401c78d5e0893beff75e28c53c98f4de42f774062", size = 220097, upload-time = "2025-09-08T23:22:48.677Z" }, + { url = "https://files.pythonhosted.org/packages/c2/95/7a135d52a50dfa7c882ab0ac17e8dc11cec9d55d2c18dda414c051c5e69e/cffi-2.0.0-cp312-cp312-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl", hash = "sha256:1e3a615586f05fc4065a8b22b8152f0c1b00cdbc60596d187c2a74f9e3036e4e", size = 207983, upload-time = "2025-09-08T23:22:50.06Z" }, + { url = "https://files.pythonhosted.org/packages/3a/c8/15cb9ada8895957ea171c62dc78ff3e99159ee7adb13c0123c001a2546c1/cffi-2.0.0-cp312-cp312-manylinux2014_s390x.manylinux_2_17_s390x.whl", hash = "sha256:81afed14892743bbe14dacb9e36d9e0e504cd204e0b165062c488942b9718037", size = 206519, upload-time = "2025-09-08T23:22:51.364Z" }, + { url = "https://files.pythonhosted.org/packages/78/2d/7fa73dfa841b5ac06c7b8855cfc18622132e365f5b81d02230333ff26e9e/cffi-2.0.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:3e17ed538242334bf70832644a32a7aae3d83b57567f9fd60a26257e992b79ba", size = 219572, upload-time = "2025-09-08T23:22:52.902Z" }, + { url = "https://files.pythonhosted.org/packages/07/e0/267e57e387b4ca276b90f0434ff88b2c2241ad72b16d31836adddfd6031b/cffi-2.0.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:3925dd22fa2b7699ed2617149842d2e6adde22b262fcbfada50e3d195e4b3a94", size = 222963, upload-time = "2025-09-08T23:22:54.518Z" }, + { url = "https://files.pythonhosted.org/packages/b6/75/1f2747525e06f53efbd878f4d03bac5b859cbc11c633d0fb81432d98a795/cffi-2.0.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:2c8f814d84194c9ea681642fd164267891702542f028a15fc97d4674b6206187", size = 221361, upload-time = "2025-09-08T23:22:55.867Z" }, + { url = "https://files.pythonhosted.org/packages/7b/2b/2b6435f76bfeb6bbf055596976da087377ede68df465419d192acf00c437/cffi-2.0.0-cp312-cp312-win32.whl", hash = "sha256:da902562c3e9c550df360bfa53c035b2f241fed6d9aef119048073680ace4a18", size = 172932, upload-time = "2025-09-08T23:22:57.188Z" }, + { url = "https://files.pythonhosted.org/packages/f8/ed/13bd4418627013bec4ed6e54283b1959cf6db888048c7cf4b4c3b5b36002/cffi-2.0.0-cp312-cp312-win_amd64.whl", hash = "sha256:da68248800ad6320861f129cd9c1bf96ca849a2771a59e0344e88681905916f5", size = 183557, upload-time = "2025-09-08T23:22:58.351Z" }, + { url = "https://files.pythonhosted.org/packages/95/31/9f7f93ad2f8eff1dbc1c3656d7ca5bfd8fb52c9d786b4dcf19b2d02217fa/cffi-2.0.0-cp312-cp312-win_arm64.whl", hash = "sha256:4671d9dd5ec934cb9a73e7ee9676f9362aba54f7f34910956b84d727b0d73fb6", size = 177762, upload-time = "2025-09-08T23:22:59.668Z" }, + { url = "https://files.pythonhosted.org/packages/4b/8d/a0a47a0c9e413a658623d014e91e74a50cdd2c423f7ccfd44086ef767f90/cffi-2.0.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:00bdf7acc5f795150faa6957054fbbca2439db2f775ce831222b66f192f03beb", size = 185230, upload-time = "2025-09-08T23:23:00.879Z" }, + { url = "https://files.pythonhosted.org/packages/4a/d2/a6c0296814556c68ee32009d9c2ad4f85f2707cdecfd7727951ec228005d/cffi-2.0.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:45d5e886156860dc35862657e1494b9bae8dfa63bf56796f2fb56e1679fc0bca", size = 181043, upload-time = "2025-09-08T23:23:02.231Z" }, + { url = "https://files.pythonhosted.org/packages/b0/1e/d22cc63332bd59b06481ceaac49d6c507598642e2230f201649058a7e704/cffi-2.0.0-cp313-cp313-manylinux1_i686.manylinux2014_i686.manylinux_2_17_i686.manylinux_2_5_i686.whl", hash = "sha256:07b271772c100085dd28b74fa0cd81c8fb1a3ba18b21e03d7c27f3436a10606b", size = 212446, upload-time = "2025-09-08T23:23:03.472Z" }, + { url = "https://files.pythonhosted.org/packages/a9/f5/a2c23eb03b61a0b8747f211eb716446c826ad66818ddc7810cc2cc19b3f2/cffi-2.0.0-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:d48a880098c96020b02d5a1f7d9251308510ce8858940e6fa99ece33f610838b", size = 220101, upload-time = "2025-09-08T23:23:04.792Z" }, + { url = "https://files.pythonhosted.org/packages/f2/7f/e6647792fc5850d634695bc0e6ab4111ae88e89981d35ac269956605feba/cffi-2.0.0-cp313-cp313-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl", hash = "sha256:f93fd8e5c8c0a4aa1f424d6173f14a892044054871c771f8566e4008eaa359d2", size = 207948, upload-time = "2025-09-08T23:23:06.127Z" }, + { url = "https://files.pythonhosted.org/packages/cb/1e/a5a1bd6f1fb30f22573f76533de12a00bf274abcdc55c8edab639078abb6/cffi-2.0.0-cp313-cp313-manylinux2014_s390x.manylinux_2_17_s390x.whl", hash = "sha256:dd4f05f54a52fb558f1ba9f528228066954fee3ebe629fc1660d874d040ae5a3", size = 206422, upload-time = "2025-09-08T23:23:07.753Z" }, + { url = "https://files.pythonhosted.org/packages/98/df/0a1755e750013a2081e863e7cd37e0cdd02664372c754e5560099eb7aa44/cffi-2.0.0-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:c8d3b5532fc71b7a77c09192b4a5a200ea992702734a2e9279a37f2478236f26", size = 219499, upload-time = "2025-09-08T23:23:09.648Z" }, + { url = "https://files.pythonhosted.org/packages/50/e1/a969e687fcf9ea58e6e2a928ad5e2dd88cc12f6f0ab477e9971f2309b57c/cffi-2.0.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:d9b29c1f0ae438d5ee9acb31cadee00a58c46cc9c0b2f9038c6b0b3470877a8c", size = 222928, upload-time = "2025-09-08T23:23:10.928Z" }, + { url = "https://files.pythonhosted.org/packages/36/54/0362578dd2c9e557a28ac77698ed67323ed5b9775ca9d3fe73fe191bb5d8/cffi-2.0.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:6d50360be4546678fc1b79ffe7a66265e28667840010348dd69a314145807a1b", size = 221302, upload-time = "2025-09-08T23:23:12.42Z" }, + { url = "https://files.pythonhosted.org/packages/eb/6d/bf9bda840d5f1dfdbf0feca87fbdb64a918a69bca42cfa0ba7b137c48cb8/cffi-2.0.0-cp313-cp313-win32.whl", hash = "sha256:74a03b9698e198d47562765773b4a8309919089150a0bb17d829ad7b44b60d27", size = 172909, upload-time = "2025-09-08T23:23:14.32Z" }, + { url = "https://files.pythonhosted.org/packages/37/18/6519e1ee6f5a1e579e04b9ddb6f1676c17368a7aba48299c3759bbc3c8b3/cffi-2.0.0-cp313-cp313-win_amd64.whl", hash = "sha256:19f705ada2530c1167abacb171925dd886168931e0a7b78f5bffcae5c6b5be75", size = 183402, upload-time = "2025-09-08T23:23:15.535Z" }, + { url = "https://files.pythonhosted.org/packages/cb/0e/02ceeec9a7d6ee63bb596121c2c8e9b3a9e150936f4fbef6ca1943e6137c/cffi-2.0.0-cp313-cp313-win_arm64.whl", hash = "sha256:256f80b80ca3853f90c21b23ee78cd008713787b1b1e93eae9f3d6a7134abd91", size = 177780, upload-time = "2025-09-08T23:23:16.761Z" }, + { url = "https://files.pythonhosted.org/packages/92/c4/3ce07396253a83250ee98564f8d7e9789fab8e58858f35d07a9a2c78de9f/cffi-2.0.0-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:fc33c5141b55ed366cfaad382df24fe7dcbc686de5be719b207bb248e3053dc5", size = 185320, upload-time = "2025-09-08T23:23:18.087Z" }, + { url = "https://files.pythonhosted.org/packages/59/dd/27e9fa567a23931c838c6b02d0764611c62290062a6d4e8ff7863daf9730/cffi-2.0.0-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:c654de545946e0db659b3400168c9ad31b5d29593291482c43e3564effbcee13", size = 181487, upload-time = "2025-09-08T23:23:19.622Z" }, + { url = "https://files.pythonhosted.org/packages/d6/43/0e822876f87ea8a4ef95442c3d766a06a51fc5298823f884ef87aaad168c/cffi-2.0.0-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:24b6f81f1983e6df8db3adc38562c83f7d4a0c36162885ec7f7b77c7dcbec97b", size = 220049, upload-time = "2025-09-08T23:23:20.853Z" }, + { url = "https://files.pythonhosted.org/packages/b4/89/76799151d9c2d2d1ead63c2429da9ea9d7aac304603de0c6e8764e6e8e70/cffi-2.0.0-cp314-cp314-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl", hash = "sha256:12873ca6cb9b0f0d3a0da705d6086fe911591737a59f28b7936bdfed27c0d47c", size = 207793, upload-time = "2025-09-08T23:23:22.08Z" }, + { url = "https://files.pythonhosted.org/packages/bb/dd/3465b14bb9e24ee24cb88c9e3730f6de63111fffe513492bf8c808a3547e/cffi-2.0.0-cp314-cp314-manylinux2014_s390x.manylinux_2_17_s390x.whl", hash = "sha256:d9b97165e8aed9272a6bb17c01e3cc5871a594a446ebedc996e2397a1c1ea8ef", size = 206300, upload-time = "2025-09-08T23:23:23.314Z" }, + { url = "https://files.pythonhosted.org/packages/47/d9/d83e293854571c877a92da46fdec39158f8d7e68da75bf73581225d28e90/cffi-2.0.0-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:afb8db5439b81cf9c9d0c80404b60c3cc9c3add93e114dcae767f1477cb53775", size = 219244, upload-time = "2025-09-08T23:23:24.541Z" }, + { url = "https://files.pythonhosted.org/packages/2b/0f/1f177e3683aead2bb00f7679a16451d302c436b5cbf2505f0ea8146ef59e/cffi-2.0.0-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:737fe7d37e1a1bffe70bd5754ea763a62a066dc5913ca57e957824b72a85e205", size = 222828, upload-time = "2025-09-08T23:23:26.143Z" }, + { url = "https://files.pythonhosted.org/packages/c6/0f/cafacebd4b040e3119dcb32fed8bdef8dfe94da653155f9d0b9dc660166e/cffi-2.0.0-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:38100abb9d1b1435bc4cc340bb4489635dc2f0da7456590877030c9b3d40b0c1", size = 220926, upload-time = "2025-09-08T23:23:27.873Z" }, + { url = "https://files.pythonhosted.org/packages/3e/aa/df335faa45b395396fcbc03de2dfcab242cd61a9900e914fe682a59170b1/cffi-2.0.0-cp314-cp314-win32.whl", hash = "sha256:087067fa8953339c723661eda6b54bc98c5625757ea62e95eb4898ad5e776e9f", size = 175328, upload-time = "2025-09-08T23:23:44.61Z" }, + { url = "https://files.pythonhosted.org/packages/bb/92/882c2d30831744296ce713f0feb4c1cd30f346ef747b530b5318715cc367/cffi-2.0.0-cp314-cp314-win_amd64.whl", hash = "sha256:203a48d1fb583fc7d78a4c6655692963b860a417c0528492a6bc21f1aaefab25", size = 185650, upload-time = "2025-09-08T23:23:45.848Z" }, + { url = "https://files.pythonhosted.org/packages/9f/2c/98ece204b9d35a7366b5b2c6539c350313ca13932143e79dc133ba757104/cffi-2.0.0-cp314-cp314-win_arm64.whl", hash = "sha256:dbd5c7a25a7cb98f5ca55d258b103a2054f859a46ae11aaf23134f9cc0d356ad", size = 180687, upload-time = "2025-09-08T23:23:47.105Z" }, + { url = "https://files.pythonhosted.org/packages/3e/61/c768e4d548bfa607abcda77423448df8c471f25dbe64fb2ef6d555eae006/cffi-2.0.0-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:9a67fc9e8eb39039280526379fb3a70023d77caec1852002b4da7e8b270c4dd9", size = 188773, upload-time = "2025-09-08T23:23:29.347Z" }, + { url = "https://files.pythonhosted.org/packages/2c/ea/5f76bce7cf6fcd0ab1a1058b5af899bfbef198bea4d5686da88471ea0336/cffi-2.0.0-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:7a66c7204d8869299919db4d5069a82f1561581af12b11b3c9f48c584eb8743d", size = 185013, upload-time = "2025-09-08T23:23:30.63Z" }, + { url = "https://files.pythonhosted.org/packages/be/b4/c56878d0d1755cf9caa54ba71e5d049479c52f9e4afc230f06822162ab2f/cffi-2.0.0-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:7cc09976e8b56f8cebd752f7113ad07752461f48a58cbba644139015ac24954c", size = 221593, upload-time = "2025-09-08T23:23:31.91Z" }, + { url = "https://files.pythonhosted.org/packages/e0/0d/eb704606dfe8033e7128df5e90fee946bbcb64a04fcdaa97321309004000/cffi-2.0.0-cp314-cp314t-manylinux2014_ppc64le.manylinux_2_17_ppc64le.whl", hash = "sha256:92b68146a71df78564e4ef48af17551a5ddd142e5190cdf2c5624d0c3ff5b2e8", size = 209354, upload-time = "2025-09-08T23:23:33.214Z" }, + { url = "https://files.pythonhosted.org/packages/d8/19/3c435d727b368ca475fb8742ab97c9cb13a0de600ce86f62eab7fa3eea60/cffi-2.0.0-cp314-cp314t-manylinux2014_s390x.manylinux_2_17_s390x.whl", hash = "sha256:b1e74d11748e7e98e2f426ab176d4ed720a64412b6a15054378afdb71e0f37dc", size = 208480, upload-time = "2025-09-08T23:23:34.495Z" }, + { url = "https://files.pythonhosted.org/packages/d0/44/681604464ed9541673e486521497406fadcc15b5217c3e326b061696899a/cffi-2.0.0-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:28a3a209b96630bca57cce802da70c266eb08c6e97e5afd61a75611ee6c64592", size = 221584, upload-time = "2025-09-08T23:23:36.096Z" }, + { url = "https://files.pythonhosted.org/packages/25/8e/342a504ff018a2825d395d44d63a767dd8ebc927ebda557fecdaca3ac33a/cffi-2.0.0-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:7553fb2090d71822f02c629afe6042c299edf91ba1bf94951165613553984512", size = 224443, upload-time = "2025-09-08T23:23:37.328Z" }, + { url = "https://files.pythonhosted.org/packages/e1/5e/b666bacbbc60fbf415ba9988324a132c9a7a0448a9a8f125074671c0f2c3/cffi-2.0.0-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:6c6c373cfc5c83a975506110d17457138c8c63016b563cc9ed6e056a82f13ce4", size = 223437, upload-time = "2025-09-08T23:23:38.945Z" }, + { url = "https://files.pythonhosted.org/packages/a0/1d/ec1a60bd1a10daa292d3cd6bb0b359a81607154fb8165f3ec95fe003b85c/cffi-2.0.0-cp314-cp314t-win32.whl", hash = "sha256:1fc9ea04857caf665289b7a75923f2c6ed559b8298a1b8c49e59f7dd95c8481e", size = 180487, upload-time = "2025-09-08T23:23:40.423Z" }, + { url = "https://files.pythonhosted.org/packages/bf/41/4c1168c74fac325c0c8156f04b6749c8b6a8f405bbf91413ba088359f60d/cffi-2.0.0-cp314-cp314t-win_amd64.whl", hash = "sha256:d68b6cef7827e8641e8ef16f4494edda8b36104d79773a334beaa1e3521430f6", size = 191726, upload-time = "2025-09-08T23:23:41.742Z" }, + { url = "https://files.pythonhosted.org/packages/ae/3a/dbeec9d1ee0844c679f6bb5d6ad4e9f198b1224f4e7a32825f47f6192b0c/cffi-2.0.0-cp314-cp314t-win_arm64.whl", hash = "sha256:0a1527a803f0a659de1af2e1fd700213caba79377e27e4693648c2923da066f9", size = 184195, upload-time = "2025-09-08T23:23:43.004Z" }, +] + [[package]] name = "colorama" version = "0.4.6" @@ -72,6 +147,125 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/d1/d6/3965ed04c63042e047cb6a3e6ed1a63a35087b6a609aa3a15ed8ac56c221/colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6", size = 25335, upload-time = "2022-10-25T02:36:20.889Z" }, ] +[[package]] +name = "comm" +version = "0.2.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/4c/13/7d740c5849255756bc17888787313b61fd38a0a8304fc4f073dfc46122aa/comm-0.2.3.tar.gz", hash = "sha256:2dc8048c10962d55d7ad693be1e7045d891b7ce8d999c97963a5e3e99c055971", size = 6319, upload-time = "2025-07-25T14:02:04.452Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/60/97/891a0971e1e4a8c5d2b20bbe0e524dc04548d2307fee33cdeba148fd4fc7/comm-0.2.3-py3-none-any.whl", hash = "sha256:c615d91d75f7f04f095b30d1c1711babd43bdc6419c1be9886a85f2f4e489417", size = 7294, upload-time = "2025-07-25T14:02:02.896Z" }, +] + +[[package]] +name = "contourpy" +version = "1.3.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "numpy" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/58/01/1253e6698a07380cd31a736d248a3f2a50a7c88779a1813da27503cadc2a/contourpy-1.3.3.tar.gz", hash = "sha256:083e12155b210502d0bca491432bb04d56dc3432f95a979b429f2848c3dbe880", size = 13466174, upload-time = "2025-07-26T12:03:12.549Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/be/45/adfee365d9ea3d853550b2e735f9d66366701c65db7855cd07621732ccfc/contourpy-1.3.3-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:b08a32ea2f8e42cf1d4be3169a98dd4be32bafe4f22b6c4cb4ba810fa9e5d2cb", size = 293419, upload-time = "2025-07-26T12:01:21.16Z" }, + { url = "https://files.pythonhosted.org/packages/53/3e/405b59cfa13021a56bba395a6b3aca8cec012b45bf177b0eaf7a202cde2c/contourpy-1.3.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:556dba8fb6f5d8742f2923fe9457dbdd51e1049c4a43fd3986a0b14a1d815fc6", size = 273979, upload-time = "2025-07-26T12:01:22.448Z" }, + { url = "https://files.pythonhosted.org/packages/d4/1c/a12359b9b2ca3a845e8f7f9ac08bdf776114eb931392fcad91743e2ea17b/contourpy-1.3.3-cp312-cp312-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:92d9abc807cf7d0e047b95ca5d957cf4792fcd04e920ca70d48add15c1a90ea7", size = 332653, upload-time = "2025-07-26T12:01:24.155Z" }, + { url = "https://files.pythonhosted.org/packages/63/12/897aeebfb475b7748ea67b61e045accdfcf0d971f8a588b67108ed7f5512/contourpy-1.3.3-cp312-cp312-manylinux_2_26_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:b2e8faa0ed68cb29af51edd8e24798bb661eac3bd9f65420c1887b6ca89987c8", size = 379536, upload-time = "2025-07-26T12:01:25.91Z" }, + { url = "https://files.pythonhosted.org/packages/43/8a/a8c584b82deb248930ce069e71576fc09bd7174bbd35183b7943fb1064fd/contourpy-1.3.3-cp312-cp312-manylinux_2_26_s390x.manylinux_2_28_s390x.whl", hash = "sha256:626d60935cf668e70a5ce6ff184fd713e9683fb458898e4249b63be9e28286ea", size = 384397, upload-time = "2025-07-26T12:01:27.152Z" }, + { url = "https://files.pythonhosted.org/packages/cc/8f/ec6289987824b29529d0dfda0d74a07cec60e54b9c92f3c9da4c0ac732de/contourpy-1.3.3-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:4d00e655fcef08aba35ec9610536bfe90267d7ab5ba944f7032549c55a146da1", size = 362601, upload-time = "2025-07-26T12:01:28.808Z" }, + { url = "https://files.pythonhosted.org/packages/05/0a/a3fe3be3ee2dceb3e615ebb4df97ae6f3828aa915d3e10549ce016302bd1/contourpy-1.3.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:451e71b5a7d597379ef572de31eeb909a87246974d960049a9848c3bc6c41bf7", size = 1331288, upload-time = "2025-07-26T12:01:31.198Z" }, + { url = "https://files.pythonhosted.org/packages/33/1d/acad9bd4e97f13f3e2b18a3977fe1b4a37ecf3d38d815333980c6c72e963/contourpy-1.3.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:459c1f020cd59fcfe6650180678a9993932d80d44ccde1fa1868977438f0b411", size = 1403386, upload-time = "2025-07-26T12:01:33.947Z" }, + { url = "https://files.pythonhosted.org/packages/cf/8f/5847f44a7fddf859704217a99a23a4f6417b10e5ab1256a179264561540e/contourpy-1.3.3-cp312-cp312-win32.whl", hash = "sha256:023b44101dfe49d7d53932be418477dba359649246075c996866106da069af69", size = 185018, upload-time = "2025-07-26T12:01:35.64Z" }, + { url = "https://files.pythonhosted.org/packages/19/e8/6026ed58a64563186a9ee3f29f41261fd1828f527dd93d33b60feca63352/contourpy-1.3.3-cp312-cp312-win_amd64.whl", hash = "sha256:8153b8bfc11e1e4d75bcb0bff1db232f9e10b274e0929de9d608027e0d34ff8b", size = 226567, upload-time = "2025-07-26T12:01:36.804Z" }, + { url = "https://files.pythonhosted.org/packages/d1/e2/f05240d2c39a1ed228d8328a78b6f44cd695f7ef47beb3e684cf93604f86/contourpy-1.3.3-cp312-cp312-win_arm64.whl", hash = "sha256:07ce5ed73ecdc4a03ffe3e1b3e3c1166db35ae7584be76f65dbbe28a7791b0cc", size = 193655, upload-time = "2025-07-26T12:01:37.999Z" }, + { url = "https://files.pythonhosted.org/packages/68/35/0167aad910bbdb9599272bd96d01a9ec6852f36b9455cf2ca67bd4cc2d23/contourpy-1.3.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:177fb367556747a686509d6fef71d221a4b198a3905fe824430e5ea0fda54eb5", size = 293257, upload-time = "2025-07-26T12:01:39.367Z" }, + { url = "https://files.pythonhosted.org/packages/96/e4/7adcd9c8362745b2210728f209bfbcf7d91ba868a2c5f40d8b58f54c509b/contourpy-1.3.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:d002b6f00d73d69333dac9d0b8d5e84d9724ff9ef044fd63c5986e62b7c9e1b1", size = 274034, upload-time = "2025-07-26T12:01:40.645Z" }, + { url = "https://files.pythonhosted.org/packages/73/23/90e31ceeed1de63058a02cb04b12f2de4b40e3bef5e082a7c18d9c8ae281/contourpy-1.3.3-cp313-cp313-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:348ac1f5d4f1d66d3322420f01d42e43122f43616e0f194fc1c9f5d830c5b286", size = 334672, upload-time = "2025-07-26T12:01:41.942Z" }, + { url = "https://files.pythonhosted.org/packages/ed/93/b43d8acbe67392e659e1d984700e79eb67e2acb2bd7f62012b583a7f1b55/contourpy-1.3.3-cp313-cp313-manylinux_2_26_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:655456777ff65c2c548b7c454af9c6f33f16c8884f11083244b5819cc214f1b5", size = 381234, upload-time = "2025-07-26T12:01:43.499Z" }, + { url = "https://files.pythonhosted.org/packages/46/3b/bec82a3ea06f66711520f75a40c8fc0b113b2a75edb36aa633eb11c4f50f/contourpy-1.3.3-cp313-cp313-manylinux_2_26_s390x.manylinux_2_28_s390x.whl", hash = "sha256:644a6853d15b2512d67881586bd03f462c7ab755db95f16f14d7e238f2852c67", size = 385169, upload-time = "2025-07-26T12:01:45.219Z" }, + { url = "https://files.pythonhosted.org/packages/4b/32/e0f13a1c5b0f8572d0ec6ae2f6c677b7991fafd95da523159c19eff0696a/contourpy-1.3.3-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:4debd64f124ca62069f313a9cb86656ff087786016d76927ae2cf37846b006c9", size = 362859, upload-time = "2025-07-26T12:01:46.519Z" }, + { url = "https://files.pythonhosted.org/packages/33/71/e2a7945b7de4e58af42d708a219f3b2f4cff7386e6b6ab0a0fa0033c49a9/contourpy-1.3.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:a15459b0f4615b00bbd1e91f1b9e19b7e63aea7483d03d804186f278c0af2659", size = 1332062, upload-time = "2025-07-26T12:01:48.964Z" }, + { url = "https://files.pythonhosted.org/packages/12/fc/4e87ac754220ccc0e807284f88e943d6d43b43843614f0a8afa469801db0/contourpy-1.3.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:ca0fdcd73925568ca027e0b17ab07aad764be4706d0a925b89227e447d9737b7", size = 1403932, upload-time = "2025-07-26T12:01:51.979Z" }, + { url = "https://files.pythonhosted.org/packages/a6/2e/adc197a37443f934594112222ac1aa7dc9a98faf9c3842884df9a9d8751d/contourpy-1.3.3-cp313-cp313-win32.whl", hash = "sha256:b20c7c9a3bf701366556e1b1984ed2d0cedf999903c51311417cf5f591d8c78d", size = 185024, upload-time = "2025-07-26T12:01:53.245Z" }, + { url = "https://files.pythonhosted.org/packages/18/0b/0098c214843213759692cc638fce7de5c289200a830e5035d1791d7a2338/contourpy-1.3.3-cp313-cp313-win_amd64.whl", hash = "sha256:1cadd8b8969f060ba45ed7c1b714fe69185812ab43bd6b86a9123fe8f99c3263", size = 226578, upload-time = "2025-07-26T12:01:54.422Z" }, + { url = "https://files.pythonhosted.org/packages/8a/9a/2f6024a0c5995243cd63afdeb3651c984f0d2bc727fd98066d40e141ad73/contourpy-1.3.3-cp313-cp313-win_arm64.whl", hash = "sha256:fd914713266421b7536de2bfa8181aa8c699432b6763a0ea64195ebe28bff6a9", size = 193524, upload-time = "2025-07-26T12:01:55.73Z" }, + { url = "https://files.pythonhosted.org/packages/c0/b3/f8a1a86bd3298513f500e5b1f5fd92b69896449f6cab6a146a5d52715479/contourpy-1.3.3-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:88df9880d507169449d434c293467418b9f6cbe82edd19284aa0409e7fdb933d", size = 306730, upload-time = "2025-07-26T12:01:57.051Z" }, + { url = "https://files.pythonhosted.org/packages/3f/11/4780db94ae62fc0c2053909b65dc3246bd7cecfc4f8a20d957ad43aa4ad8/contourpy-1.3.3-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:d06bb1f751ba5d417047db62bca3c8fde202b8c11fb50742ab3ab962c81e8216", size = 287897, upload-time = "2025-07-26T12:01:58.663Z" }, + { url = "https://files.pythonhosted.org/packages/ae/15/e59f5f3ffdd6f3d4daa3e47114c53daabcb18574a26c21f03dc9e4e42ff0/contourpy-1.3.3-cp313-cp313t-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:e4e6b05a45525357e382909a4c1600444e2a45b4795163d3b22669285591c1ae", size = 326751, upload-time = "2025-07-26T12:02:00.343Z" }, + { url = "https://files.pythonhosted.org/packages/0f/81/03b45cfad088e4770b1dcf72ea78d3802d04200009fb364d18a493857210/contourpy-1.3.3-cp313-cp313t-manylinux_2_26_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:ab3074b48c4e2cf1a960e6bbeb7f04566bf36b1861d5c9d4d8ac04b82e38ba20", size = 375486, upload-time = "2025-07-26T12:02:02.128Z" }, + { url = "https://files.pythonhosted.org/packages/0c/ba/49923366492ffbdd4486e970d421b289a670ae8cf539c1ea9a09822b371a/contourpy-1.3.3-cp313-cp313t-manylinux_2_26_s390x.manylinux_2_28_s390x.whl", hash = "sha256:6c3d53c796f8647d6deb1abe867daeb66dcc8a97e8455efa729516b997b8ed99", size = 388106, upload-time = "2025-07-26T12:02:03.615Z" }, + { url = "https://files.pythonhosted.org/packages/9f/52/5b00ea89525f8f143651f9f03a0df371d3cbd2fccd21ca9b768c7a6500c2/contourpy-1.3.3-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:50ed930df7289ff2a8d7afeb9603f8289e5704755c7e5c3bbd929c90c817164b", size = 352548, upload-time = "2025-07-26T12:02:05.165Z" }, + { url = "https://files.pythonhosted.org/packages/32/1d/a209ec1a3a3452d490f6b14dd92e72280c99ae3d1e73da74f8277d4ee08f/contourpy-1.3.3-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:4feffb6537d64b84877da813a5c30f1422ea5739566abf0bd18065ac040e120a", size = 1322297, upload-time = "2025-07-26T12:02:07.379Z" }, + { url = "https://files.pythonhosted.org/packages/bc/9e/46f0e8ebdd884ca0e8877e46a3f4e633f6c9c8c4f3f6e72be3fe075994aa/contourpy-1.3.3-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:2b7e9480ffe2b0cd2e787e4df64270e3a0440d9db8dc823312e2c940c167df7e", size = 1391023, upload-time = "2025-07-26T12:02:10.171Z" }, + { url = "https://files.pythonhosted.org/packages/b9/70/f308384a3ae9cd2209e0849f33c913f658d3326900d0ff5d378d6a1422d2/contourpy-1.3.3-cp313-cp313t-win32.whl", hash = "sha256:283edd842a01e3dcd435b1c5116798d661378d83d36d337b8dde1d16a5fc9ba3", size = 196157, upload-time = "2025-07-26T12:02:11.488Z" }, + { url = "https://files.pythonhosted.org/packages/b2/dd/880f890a6663b84d9e34a6f88cded89d78f0091e0045a284427cb6b18521/contourpy-1.3.3-cp313-cp313t-win_amd64.whl", hash = "sha256:87acf5963fc2b34825e5b6b048f40e3635dd547f590b04d2ab317c2619ef7ae8", size = 240570, upload-time = "2025-07-26T12:02:12.754Z" }, + { url = "https://files.pythonhosted.org/packages/80/99/2adc7d8ffead633234817ef8e9a87115c8a11927a94478f6bb3d3f4d4f7d/contourpy-1.3.3-cp313-cp313t-win_arm64.whl", hash = "sha256:3c30273eb2a55024ff31ba7d052dde990d7d8e5450f4bbb6e913558b3d6c2301", size = 199713, upload-time = "2025-07-26T12:02:14.4Z" }, + { url = "https://files.pythonhosted.org/packages/72/8b/4546f3ab60f78c514ffb7d01a0bd743f90de36f0019d1be84d0a708a580a/contourpy-1.3.3-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:fde6c716d51c04b1c25d0b90364d0be954624a0ee9d60e23e850e8d48353d07a", size = 292189, upload-time = "2025-07-26T12:02:16.095Z" }, + { url = "https://files.pythonhosted.org/packages/fd/e1/3542a9cb596cadd76fcef413f19c79216e002623158befe6daa03dbfa88c/contourpy-1.3.3-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:cbedb772ed74ff5be440fa8eee9bd49f64f6e3fc09436d9c7d8f1c287b121d77", size = 273251, upload-time = "2025-07-26T12:02:17.524Z" }, + { url = "https://files.pythonhosted.org/packages/b1/71/f93e1e9471d189f79d0ce2497007731c1e6bf9ef6d1d61b911430c3db4e5/contourpy-1.3.3-cp314-cp314-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:22e9b1bd7a9b1d652cd77388465dc358dafcd2e217d35552424aa4f996f524f5", size = 335810, upload-time = "2025-07-26T12:02:18.9Z" }, + { url = "https://files.pythonhosted.org/packages/91/f9/e35f4c1c93f9275d4e38681a80506b5510e9327350c51f8d4a5a724d178c/contourpy-1.3.3-cp314-cp314-manylinux_2_26_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:a22738912262aa3e254e4f3cb079a95a67132fc5a063890e224393596902f5a4", size = 382871, upload-time = "2025-07-26T12:02:20.418Z" }, + { url = "https://files.pythonhosted.org/packages/b5/71/47b512f936f66a0a900d81c396a7e60d73419868fba959c61efed7a8ab46/contourpy-1.3.3-cp314-cp314-manylinux_2_26_s390x.manylinux_2_28_s390x.whl", hash = "sha256:afe5a512f31ee6bd7d0dda52ec9864c984ca3d66664444f2d72e0dc4eb832e36", size = 386264, upload-time = "2025-07-26T12:02:21.916Z" }, + { url = "https://files.pythonhosted.org/packages/04/5f/9ff93450ba96b09c7c2b3f81c94de31c89f92292f1380261bd7195bea4ea/contourpy-1.3.3-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:f64836de09927cba6f79dcd00fdd7d5329f3fccc633468507079c829ca4db4e3", size = 363819, upload-time = "2025-07-26T12:02:23.759Z" }, + { url = "https://files.pythonhosted.org/packages/3e/a6/0b185d4cc480ee494945cde102cb0149ae830b5fa17bf855b95f2e70ad13/contourpy-1.3.3-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:1fd43c3be4c8e5fd6e4f2baeae35ae18176cf2e5cced681cca908addf1cdd53b", size = 1333650, upload-time = "2025-07-26T12:02:26.181Z" }, + { url = "https://files.pythonhosted.org/packages/43/d7/afdc95580ca56f30fbcd3060250f66cedbde69b4547028863abd8aa3b47e/contourpy-1.3.3-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:6afc576f7b33cf00996e5c1102dc2a8f7cc89e39c0b55df93a0b78c1bd992b36", size = 1404833, upload-time = "2025-07-26T12:02:28.782Z" }, + { url = "https://files.pythonhosted.org/packages/e2/e2/366af18a6d386f41132a48f033cbd2102e9b0cf6345d35ff0826cd984566/contourpy-1.3.3-cp314-cp314-win32.whl", hash = "sha256:66c8a43a4f7b8df8b71ee1840e4211a3c8d93b214b213f590e18a1beca458f7d", size = 189692, upload-time = "2025-07-26T12:02:30.128Z" }, + { url = "https://files.pythonhosted.org/packages/7d/c2/57f54b03d0f22d4044b8afb9ca0e184f8b1afd57b4f735c2fa70883dc601/contourpy-1.3.3-cp314-cp314-win_amd64.whl", hash = "sha256:cf9022ef053f2694e31d630feaacb21ea24224be1c3ad0520b13d844274614fd", size = 232424, upload-time = "2025-07-26T12:02:31.395Z" }, + { url = "https://files.pythonhosted.org/packages/18/79/a9416650df9b525737ab521aa181ccc42d56016d2123ddcb7b58e926a42c/contourpy-1.3.3-cp314-cp314-win_arm64.whl", hash = "sha256:95b181891b4c71de4bb404c6621e7e2390745f887f2a026b2d99e92c17892339", size = 198300, upload-time = "2025-07-26T12:02:32.956Z" }, + { url = "https://files.pythonhosted.org/packages/1f/42/38c159a7d0f2b7b9c04c64ab317042bb6952b713ba875c1681529a2932fe/contourpy-1.3.3-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:33c82d0138c0a062380332c861387650c82e4cf1747aaa6938b9b6516762e772", size = 306769, upload-time = "2025-07-26T12:02:34.2Z" }, + { url = "https://files.pythonhosted.org/packages/c3/6c/26a8205f24bca10974e77460de68d3d7c63e282e23782f1239f226fcae6f/contourpy-1.3.3-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:ea37e7b45949df430fe649e5de8351c423430046a2af20b1c1961cae3afcda77", size = 287892, upload-time = "2025-07-26T12:02:35.807Z" }, + { url = "https://files.pythonhosted.org/packages/66/06/8a475c8ab718ebfd7925661747dbb3c3ee9c82ac834ccb3570be49d129f4/contourpy-1.3.3-cp314-cp314t-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:d304906ecc71672e9c89e87c4675dc5c2645e1f4269a5063b99b0bb29f232d13", size = 326748, upload-time = "2025-07-26T12:02:37.193Z" }, + { url = "https://files.pythonhosted.org/packages/b4/a3/c5ca9f010a44c223f098fccd8b158bb1cb287378a31ac141f04730dc49be/contourpy-1.3.3-cp314-cp314t-manylinux_2_26_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:ca658cd1a680a5c9ea96dc61cdbae1e85c8f25849843aa799dfd3cb370ad4fbe", size = 375554, upload-time = "2025-07-26T12:02:38.894Z" }, + { url = "https://files.pythonhosted.org/packages/80/5b/68bd33ae63fac658a4145088c1e894405e07584a316738710b636c6d0333/contourpy-1.3.3-cp314-cp314t-manylinux_2_26_s390x.manylinux_2_28_s390x.whl", hash = "sha256:ab2fd90904c503739a75b7c8c5c01160130ba67944a7b77bbf36ef8054576e7f", size = 388118, upload-time = "2025-07-26T12:02:40.642Z" }, + { url = "https://files.pythonhosted.org/packages/40/52/4c285a6435940ae25d7410a6c36bda5145839bc3f0beb20c707cda18b9d2/contourpy-1.3.3-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:b7301b89040075c30e5768810bc96a8e8d78085b47d8be6e4c3f5a0b4ed478a0", size = 352555, upload-time = "2025-07-26T12:02:42.25Z" }, + { url = "https://files.pythonhosted.org/packages/24/ee/3e81e1dd174f5c7fefe50e85d0892de05ca4e26ef1c9a59c2a57e43b865a/contourpy-1.3.3-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:2a2a8b627d5cc6b7c41a4beff6c5ad5eb848c88255fda4a8745f7e901b32d8e4", size = 1322295, upload-time = "2025-07-26T12:02:44.668Z" }, + { url = "https://files.pythonhosted.org/packages/3c/b2/6d913d4d04e14379de429057cd169e5e00f6c2af3bb13e1710bcbdb5da12/contourpy-1.3.3-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:fd6ec6be509c787f1caf6b247f0b1ca598bef13f4ddeaa126b7658215529ba0f", size = 1391027, upload-time = "2025-07-26T12:02:47.09Z" }, + { url = "https://files.pythonhosted.org/packages/93/8a/68a4ec5c55a2971213d29a9374913f7e9f18581945a7a31d1a39b5d2dfe5/contourpy-1.3.3-cp314-cp314t-win32.whl", hash = "sha256:e74a9a0f5e3fff48fb5a7f2fd2b9b70a3fe014a67522f79b7cca4c0c7e43c9ae", size = 202428, upload-time = "2025-07-26T12:02:48.691Z" }, + { url = "https://files.pythonhosted.org/packages/fa/96/fd9f641ffedc4fa3ace923af73b9d07e869496c9cc7a459103e6e978992f/contourpy-1.3.3-cp314-cp314t-win_amd64.whl", hash = "sha256:13b68d6a62db8eafaebb8039218921399baf6e47bf85006fd8529f2a08ef33fc", size = 250331, upload-time = "2025-07-26T12:02:50.137Z" }, + { url = "https://files.pythonhosted.org/packages/ae/8c/469afb6465b853afff216f9528ffda78a915ff880ed58813ba4faf4ba0b6/contourpy-1.3.3-cp314-cp314t-win_arm64.whl", hash = "sha256:b7448cb5a725bb1e35ce88771b86fba35ef418952474492cf7c764059933ff8b", size = 203831, upload-time = "2025-07-26T12:02:51.449Z" }, +] + +[[package]] +name = "cycler" +version = "0.12.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/a9/95/a3dbbb5028f35eafb79008e7522a75244477d2838f38cbb722248dabc2a8/cycler-0.12.1.tar.gz", hash = "sha256:88bb128f02ba341da8ef447245a9e138fae777f6a23943da4540077d3601eb1c", size = 7615, upload-time = "2023-10-07T05:32:18.335Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e7/05/c19819d5e3d95294a6f5947fb9b9629efb316b96de511b418c53d245aae6/cycler-0.12.1-py3-none-any.whl", hash = "sha256:85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30", size = 8321, upload-time = "2023-10-07T05:32:16.783Z" }, +] + +[[package]] +name = "debugpy" +version = "1.8.16" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/ca/d4/722d0bcc7986172ac2ef3c979ad56a1030e3afd44ced136d45f8142b1f4a/debugpy-1.8.16.tar.gz", hash = "sha256:31e69a1feb1cf6b51efbed3f6c9b0ef03bc46ff050679c4be7ea6d2e23540870", size = 1643809, upload-time = "2025-08-06T18:00:02.647Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/61/fb/0387c0e108d842c902801bc65ccc53e5b91d8c169702a9bbf4f7efcedf0c/debugpy-1.8.16-cp312-cp312-macosx_14_0_universal2.whl", hash = "sha256:b202e2843e32e80b3b584bcebfe0e65e0392920dc70df11b2bfe1afcb7a085e4", size = 2511822, upload-time = "2025-08-06T18:00:18.526Z" }, + { url = "https://files.pythonhosted.org/packages/37/44/19e02745cae22bf96440141f94e15a69a1afaa3a64ddfc38004668fcdebf/debugpy-1.8.16-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:64473c4a306ba11a99fe0bb14622ba4fbd943eb004847d9b69b107bde45aa9ea", size = 4230135, upload-time = "2025-08-06T18:00:19.997Z" }, + { url = "https://files.pythonhosted.org/packages/f3/0b/19b1ba5ee4412f303475a2c7ad5858efb99c90eae5ec627aa6275c439957/debugpy-1.8.16-cp312-cp312-win32.whl", hash = "sha256:833a61ed446426e38b0dd8be3e9d45ae285d424f5bf6cd5b2b559c8f12305508", size = 5281271, upload-time = "2025-08-06T18:00:21.281Z" }, + { url = "https://files.pythonhosted.org/packages/b1/e0/bc62e2dc141de53bd03e2c7cb9d7011de2e65e8bdcdaa26703e4d28656ba/debugpy-1.8.16-cp312-cp312-win_amd64.whl", hash = "sha256:75f204684581e9ef3dc2f67687c3c8c183fde2d6675ab131d94084baf8084121", size = 5323149, upload-time = "2025-08-06T18:00:23.033Z" }, + { url = "https://files.pythonhosted.org/packages/62/66/607ab45cc79e60624df386e233ab64a6d8d39ea02e7f80e19c1d451345bb/debugpy-1.8.16-cp313-cp313-macosx_14_0_universal2.whl", hash = "sha256:85df3adb1de5258dca910ae0bb185e48c98801ec15018a263a92bb06be1c8787", size = 2496157, upload-time = "2025-08-06T18:00:24.361Z" }, + { url = "https://files.pythonhosted.org/packages/4d/a0/c95baae08a75bceabb79868d663a0736655e427ab9c81fb848da29edaeac/debugpy-1.8.16-cp313-cp313-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bee89e948bc236a5c43c4214ac62d28b29388453f5fd328d739035e205365f0b", size = 4222491, upload-time = "2025-08-06T18:00:25.806Z" }, + { url = "https://files.pythonhosted.org/packages/5b/2f/1c8db6ddd8a257c3cd2c46413b267f1d5fa3df910401c899513ce30392d6/debugpy-1.8.16-cp313-cp313-win32.whl", hash = "sha256:cf358066650439847ec5ff3dae1da98b5461ea5da0173d93d5e10f477c94609a", size = 5281126, upload-time = "2025-08-06T18:00:27.207Z" }, + { url = "https://files.pythonhosted.org/packages/d3/ba/c3e154ab307366d6c5a9c1b68de04914e2ce7fa2f50d578311d8cc5074b2/debugpy-1.8.16-cp313-cp313-win_amd64.whl", hash = "sha256:b5aea1083f6f50023e8509399d7dc6535a351cc9f2e8827d1e093175e4d9fa4c", size = 5323094, upload-time = "2025-08-06T18:00:29.03Z" }, + { url = "https://files.pythonhosted.org/packages/52/57/ecc9ae29fa5b2d90107cd1d9bf8ed19aacb74b2264d986ae9d44fe9bdf87/debugpy-1.8.16-py2.py3-none-any.whl", hash = "sha256:19c9521962475b87da6f673514f7fd610328757ec993bf7ec0d8c96f9a325f9e", size = 5287700, upload-time = "2025-08-06T18:00:42.333Z" }, +] + +[[package]] +name = "decorator" +version = "5.2.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/43/fa/6d96a0978d19e17b68d634497769987b16c8f4cd0a7a05048bec693caa6b/decorator-5.2.1.tar.gz", hash = "sha256:65f266143752f734b0a7cc83c46f4618af75b8c5911b00ccb61d0ac9b6da0360", size = 56711, upload-time = "2025-02-24T04:41:34.073Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/4e/8c/f3147f5c4b73e7550fe5f9352eaa956ae838d5c51eb58e7a25b9f3e2643b/decorator-5.2.1-py3-none-any.whl", hash = "sha256:d316bb415a2d9e2d2b3abcc4084c6502fc09240e292cd76a76afc106a1c8e04a", size = 9190, upload-time = "2025-02-24T04:41:32.565Z" }, +] + +[[package]] +name = "executing" +version = "2.2.1" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/cc/28/c14e053b6762b1044f34a13aab6859bbf40456d37d23aa286ac24cfd9a5d/executing-2.2.1.tar.gz", hash = "sha256:3632cc370565f6648cc328b32435bd120a1e4ebb20c77e3fdde9a13cd1e533c4", size = 1129488, upload-time = "2025-09-01T09:48:10.866Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/c1/ea/53f2148663b321f21b5a606bd5f191517cf40b7072c0497d3c92c4a13b1e/executing-2.2.1-py2.py3-none-any.whl", hash = "sha256:760643d3452b4d777d295bb167ccc74c64a81df23fb5e08eff250c425a4b2017", size = 28317, upload-time = "2025-09-01T09:48:08.5Z" }, +] + [[package]] name = "fastapi" version = "0.116.1" @@ -95,14 +289,19 @@ dependencies = [ { name = "bandit" }, { name = "fastapi" }, { name = "flake8" }, + { name = "ipykernel" }, { name = "jinja2" }, + { name = "matplotlib" }, { name = "mypy" }, + { name = "numpy" }, + { name = "pandas" }, { name = "passlib" }, { name = "pydantic-settings" }, { name = "pyjwt" }, { name = "pytest" }, { name = "radon" }, { name = "ruff" }, + { name = "seaborn" }, { name = "sqlalchemy" }, { name = "sqlmodel" }, { name = "tenacity" }, @@ -116,14 +315,19 @@ requires-dist = [ { name = "bandit", specifier = ">=1.8.6" }, { name = "fastapi", specifier = ">=0.116.1" }, { name = "flake8", specifier = ">=7.3.0" }, + { name = "ipykernel", specifier = ">=6.30.1" }, { name = "jinja2", specifier = ">=3.1.6" }, + { name = "matplotlib", specifier = ">=3.10.6" }, { name = "mypy", specifier = ">=1.17.1" }, + { name = "numpy", specifier = ">=2.3.3" }, + { name = "pandas", specifier = ">=2.3.2" }, { name = "passlib", specifier = ">=1.7.4" }, { name = "pydantic-settings", specifier = ">=2.10.1" }, { name = "pyjwt", specifier = ">=2.10.1" }, { name = "pytest", specifier = ">=8.4.2" }, { name = "radon", specifier = ">=6.0.1" }, { name = "ruff", specifier = ">=0.13.0" }, + { name = "seaborn", specifier = ">=0.13.2" }, { name = "sqlalchemy", specifier = ">=2.0.43" }, { name = "sqlmodel", specifier = ">=0.0.24" }, { name = "tenacity", specifier = ">=9.1.2" }, @@ -145,6 +349,47 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/9f/56/13ab06b4f93ca7cac71078fbe37fcea175d3216f31f85c3168a6bbd0bb9a/flake8-7.3.0-py2.py3-none-any.whl", hash = "sha256:b9696257b9ce8beb888cdbe31cf885c90d31928fe202be0889a7cdafad32f01e", size = 57922, upload-time = "2025-06-20T19:31:34.425Z" }, ] +[[package]] +name = "fonttools" +version = "4.59.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/0d/a5/fba25f9fbdab96e26dedcaeeba125e5f05a09043bf888e0305326e55685b/fonttools-4.59.2.tar.gz", hash = "sha256:e72c0749b06113f50bcb80332364c6be83a9582d6e3db3fe0b280f996dc2ef22", size = 3540889, upload-time = "2025-08-27T16:40:30.97Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ba/3d/1f45db2df51e7bfa55492e8f23f383d372200be3a0ded4bf56a92753dd1f/fonttools-4.59.2-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:82906d002c349cad647a7634b004825a7335f8159d0d035ae89253b4abf6f3ea", size = 2769711, upload-time = "2025-08-27T16:39:04.423Z" }, + { url = "https://files.pythonhosted.org/packages/29/df/cd236ab32a8abfd11558f296e064424258db5edefd1279ffdbcfd4fd8b76/fonttools-4.59.2-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:a10c1bd7644dc58f8862d8ba0cf9fb7fef0af01ea184ba6ce3f50ab7dfe74d5a", size = 2340225, upload-time = "2025-08-27T16:39:06.143Z" }, + { url = "https://files.pythonhosted.org/packages/98/12/b6f9f964fe6d4b4dd4406bcbd3328821c3de1f909ffc3ffa558fe72af48c/fonttools-4.59.2-cp312-cp312-manylinux1_x86_64.manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:738f31f23e0339785fd67652a94bc69ea49e413dfdb14dcb8c8ff383d249464e", size = 4912766, upload-time = "2025-08-27T16:39:08.138Z" }, + { url = "https://files.pythonhosted.org/packages/73/78/82bde2f2d2c306ef3909b927363170b83df96171f74e0ccb47ad344563cd/fonttools-4.59.2-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:0ec99f9bdfee9cdb4a9172f9e8fd578cce5feb231f598909e0aecf5418da4f25", size = 4955178, upload-time = "2025-08-27T16:39:10.094Z" }, + { url = "https://files.pythonhosted.org/packages/92/77/7de766afe2d31dda8ee46d7e479f35c7d48747e558961489a2d6e3a02bd4/fonttools-4.59.2-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:0476ea74161322e08c7a982f83558a2b81b491509984523a1a540baf8611cc31", size = 4897898, upload-time = "2025-08-27T16:39:12.087Z" }, + { url = "https://files.pythonhosted.org/packages/c5/77/ce0e0b905d62a06415fda9f2b2e109a24a5db54a59502b769e9e297d2242/fonttools-4.59.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:95922a922daa1f77cc72611747c156cfb38030ead72436a2c551d30ecef519b9", size = 5049144, upload-time = "2025-08-27T16:39:13.84Z" }, + { url = "https://files.pythonhosted.org/packages/d9/ea/870d93aefd23fff2e07cbeebdc332527868422a433c64062c09d4d5e7fe6/fonttools-4.59.2-cp312-cp312-win32.whl", hash = "sha256:39ad9612c6a622726a6a130e8ab15794558591f999673f1ee7d2f3d30f6a3e1c", size = 2206473, upload-time = "2025-08-27T16:39:15.854Z" }, + { url = "https://files.pythonhosted.org/packages/61/c4/e44bad000c4a4bb2e9ca11491d266e857df98ab6d7428441b173f0fe2517/fonttools-4.59.2-cp312-cp312-win_amd64.whl", hash = "sha256:980fd7388e461b19a881d35013fec32c713ffea1fc37aef2f77d11f332dfd7da", size = 2254706, upload-time = "2025-08-27T16:39:17.893Z" }, + { url = "https://files.pythonhosted.org/packages/13/7b/d0d3b9431642947b5805201fbbbe938a47b70c76685ef1f0cb5f5d7140d6/fonttools-4.59.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:381bde13216ba09489864467f6bc0c57997bd729abfbb1ce6f807ba42c06cceb", size = 2761563, upload-time = "2025-08-27T16:39:20.286Z" }, + { url = "https://files.pythonhosted.org/packages/76/be/fc5fe58dd76af7127b769b68071dbc32d4b95adc8b58d1d28d42d93c90f2/fonttools-4.59.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f33839aa091f7eef4e9078f5b7ab1b8ea4b1d8a50aeaef9fdb3611bba80869ec", size = 2335671, upload-time = "2025-08-27T16:39:22.027Z" }, + { url = "https://files.pythonhosted.org/packages/f2/9f/bf231c2a3fac99d1d7f1d89c76594f158693f981a4aa02be406e9f036832/fonttools-4.59.2-cp313-cp313-manylinux1_x86_64.manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:6235fc06bcbdb40186f483ba9d5d68f888ea68aa3c8dac347e05a7c54346fbc8", size = 4893967, upload-time = "2025-08-27T16:39:23.664Z" }, + { url = "https://files.pythonhosted.org/packages/26/a9/d46d2ad4fcb915198504d6727f83aa07f46764c64f425a861aa38756c9fd/fonttools-4.59.2-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:83ad6e5d06ef3a2884c4fa6384a20d6367b5cfe560e3b53b07c9dc65a7020e73", size = 4951986, upload-time = "2025-08-27T16:39:25.379Z" }, + { url = "https://files.pythonhosted.org/packages/07/90/1cc8d7dd8f707dfeeca472b82b898d3add0ebe85b1f645690dcd128ee63f/fonttools-4.59.2-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:d029804c70fddf90be46ed5305c136cae15800a2300cb0f6bba96d48e770dde0", size = 4891630, upload-time = "2025-08-27T16:39:27.494Z" }, + { url = "https://files.pythonhosted.org/packages/d8/04/f0345b0d9fe67d65aa8d3f2d4cbf91d06f111bc7b8d802e65914eb06194d/fonttools-4.59.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:95807a3b5e78f2714acaa26a33bc2143005cc05c0217b322361a772e59f32b89", size = 5035116, upload-time = "2025-08-27T16:39:29.406Z" }, + { url = "https://files.pythonhosted.org/packages/d7/7d/5ba5eefffd243182fbd067cdbfeb12addd4e5aec45011b724c98a344ea33/fonttools-4.59.2-cp313-cp313-win32.whl", hash = "sha256:b3ebda00c3bb8f32a740b72ec38537d54c7c09f383a4cfefb0b315860f825b08", size = 2204907, upload-time = "2025-08-27T16:39:31.42Z" }, + { url = "https://files.pythonhosted.org/packages/ea/a9/be7219fc64a6026cc0aded17fa3720f9277001c185434230bd351bf678e6/fonttools-4.59.2-cp313-cp313-win_amd64.whl", hash = "sha256:a72155928d7053bbde499d32a9c77d3f0f3d29ae72b5a121752481bcbd71e50f", size = 2253742, upload-time = "2025-08-27T16:39:33.079Z" }, + { url = "https://files.pythonhosted.org/packages/fc/c7/486580d00be6fa5d45e41682e5ffa5c809f3d25773c6f39628d60f333521/fonttools-4.59.2-cp314-cp314-macosx_10_13_universal2.whl", hash = "sha256:d09e487d6bfbe21195801323ba95c91cb3523f0fcc34016454d4d9ae9eaa57fe", size = 2762444, upload-time = "2025-08-27T16:39:34.759Z" }, + { url = "https://files.pythonhosted.org/packages/d3/9b/950ea9b7b764ceb8d18645c62191e14ce62124d8e05cb32a4dc5e65fde0b/fonttools-4.59.2-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:dec2f22486d7781087b173799567cffdcc75e9fb2f1c045f05f8317ccce76a3e", size = 2333256, upload-time = "2025-08-27T16:39:40.777Z" }, + { url = "https://files.pythonhosted.org/packages/9b/4d/8ee9d563126de9002eede950cde0051be86cc4e8c07c63eca0c9fc95734a/fonttools-4.59.2-cp314-cp314-manylinux1_x86_64.manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:1647201af10993090120da2e66e9526c4e20e88859f3e34aa05b8c24ded2a564", size = 4834846, upload-time = "2025-08-27T16:39:42.885Z" }, + { url = "https://files.pythonhosted.org/packages/03/26/f26d947b0712dce3d118e92ce30ca88f98938b066498f60d0ee000a892ae/fonttools-4.59.2-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:47742c33fe65f41eabed36eec2d7313a8082704b7b808752406452f766c573fc", size = 4930871, upload-time = "2025-08-27T16:39:44.818Z" }, + { url = "https://files.pythonhosted.org/packages/fc/7f/ebe878061a5a5e6b6502f0548489e01100f7e6c0049846e6546ba19a3ab4/fonttools-4.59.2-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:92ac2d45794f95d1ad4cb43fa07e7e3776d86c83dc4b9918cf82831518165b4b", size = 4876971, upload-time = "2025-08-27T16:39:47.027Z" }, + { url = "https://files.pythonhosted.org/packages/eb/0d/0d22e3a20ac566836098d30718092351935487e3271fd57385db1adb2fde/fonttools-4.59.2-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:fa9ecaf2dcef8941fb5719e16322345d730f4c40599bbf47c9753de40eb03882", size = 4987478, upload-time = "2025-08-27T16:39:48.774Z" }, + { url = "https://files.pythonhosted.org/packages/3b/a3/960cc83182a408ffacc795e61b5f698c6f7b0cfccf23da4451c39973f3c8/fonttools-4.59.2-cp314-cp314-win32.whl", hash = "sha256:a8d40594982ed858780e18a7e4c80415af65af0f22efa7de26bdd30bf24e1e14", size = 2208640, upload-time = "2025-08-27T16:39:50.592Z" }, + { url = "https://files.pythonhosted.org/packages/d8/74/55e5c57c414fa3965fee5fc036ed23f26a5c4e9e10f7f078a54ff9c7dfb7/fonttools-4.59.2-cp314-cp314-win_amd64.whl", hash = "sha256:9cde8b6a6b05f68516573523f2013a3574cb2c75299d7d500f44de82ba947b80", size = 2258457, upload-time = "2025-08-27T16:39:52.611Z" }, + { url = "https://files.pythonhosted.org/packages/e1/dc/8e4261dc591c5cfee68fecff3ffee2a9b29e1edc4c4d9cbafdc5aefe74ee/fonttools-4.59.2-cp314-cp314t-macosx_10_13_universal2.whl", hash = "sha256:036cd87a2dbd7ef72f7b68df8314ced00b8d9973aee296f2464d06a836aeb9a9", size = 2829901, upload-time = "2025-08-27T16:39:55.014Z" }, + { url = "https://files.pythonhosted.org/packages/fb/05/331538dcf21fd6331579cd628268150e85210d0d2bdae20f7598c2b36c05/fonttools-4.59.2-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:14870930181493b1d740b6f25483e20185e5aea58aec7d266d16da7be822b4bb", size = 2362717, upload-time = "2025-08-27T16:39:56.843Z" }, + { url = "https://files.pythonhosted.org/packages/60/ae/d26428ca9ede809c0a93f0af91f44c87433dc0251e2aec333da5ed00d38f/fonttools-4.59.2-cp314-cp314t-manylinux1_x86_64.manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_5_x86_64.whl", hash = "sha256:7ff58ea1eb8fc7e05e9a949419f031890023f8785c925b44d6da17a6a7d6e85d", size = 4835120, upload-time = "2025-08-27T16:39:59.06Z" }, + { url = "https://files.pythonhosted.org/packages/07/c4/0f6ac15895de509e07688cb1d45f1ae583adbaa0fa5a5699d73f3bd58ca0/fonttools-4.59.2-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:6dee142b8b3096514c96ad9e2106bf039e2fe34a704c587585b569a36df08c3c", size = 5071115, upload-time = "2025-08-27T16:40:01.009Z" }, + { url = "https://files.pythonhosted.org/packages/b2/b6/147a711b7ecf7ea39f9da9422a55866f6dd5747c2f36b3b0a7a7e0c6820b/fonttools-4.59.2-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:8991bdbae39cf78bcc9cd3d81f6528df1f83f2e7c23ccf6f990fa1f0b6e19708", size = 4943905, upload-time = "2025-08-27T16:40:03.179Z" }, + { url = "https://files.pythonhosted.org/packages/5b/4e/2ab19006646b753855e2b02200fa1cabb75faa4eeca4ef289f269a936974/fonttools-4.59.2-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:53c1a411b7690042535a4f0edf2120096a39a506adeb6c51484a232e59f2aa0c", size = 4960313, upload-time = "2025-08-27T16:40:05.45Z" }, + { url = "https://files.pythonhosted.org/packages/98/3d/df77907e5be88adcca93cc2cee00646d039da220164be12bee028401e1cf/fonttools-4.59.2-cp314-cp314t-win32.whl", hash = "sha256:59d85088e29fa7a8f87d19e97a1beae2a35821ee48d8ef6d2c4f965f26cb9f8a", size = 2269719, upload-time = "2025-08-27T16:40:07.553Z" }, + { url = "https://files.pythonhosted.org/packages/2d/a0/d4c4bc5b50275449a9a908283b567caa032a94505fe1976e17f994faa6be/fonttools-4.59.2-cp314-cp314t-win_amd64.whl", hash = "sha256:7ad5d8d8cc9e43cb438b3eb4a0094dd6d4088daa767b0a24d52529361fd4c199", size = 2333169, upload-time = "2025-08-27T16:40:09.656Z" }, + { url = "https://files.pythonhosted.org/packages/65/a4/d2f7be3c86708912c02571db0b550121caab8cd88a3c0aacb9cfa15ea66e/fonttools-4.59.2-py3-none-any.whl", hash = "sha256:8bd0f759020e87bb5d323e6283914d9bf4ae35a7307dafb2cbd1e379e720ad37", size = 1132315, upload-time = "2025-08-27T16:40:28.984Z" }, +] + [[package]] name = "greenlet" version = "3.2.4" @@ -196,6 +441,75 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/2c/e1/e6716421ea10d38022b952c159d5161ca1193197fb744506875fbb87ea7b/iniconfig-2.1.0-py3-none-any.whl", hash = "sha256:9deba5723312380e77435581c6bf4935c94cbfab9b1ed33ef8d238ea168eb760", size = 6050, upload-time = "2025-03-19T20:10:01.071Z" }, ] +[[package]] +name = "ipykernel" +version = "6.30.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "appnope", marker = "sys_platform == 'darwin'" }, + { name = "comm" }, + { name = "debugpy" }, + { name = "ipython" }, + { name = "jupyter-client" }, + { name = "jupyter-core" }, + { name = "matplotlib-inline" }, + { name = "nest-asyncio" }, + { name = "packaging" }, + { name = "psutil" }, + { name = "pyzmq" }, + { name = "tornado" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/bb/76/11082e338e0daadc89c8ff866185de11daf67d181901038f9e139d109761/ipykernel-6.30.1.tar.gz", hash = "sha256:6abb270161896402e76b91394fcdce5d1be5d45f456671e5080572f8505be39b", size = 166260, upload-time = "2025-08-04T15:47:35.018Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/fc/c7/b445faca8deb954fe536abebff4ece5b097b923de482b26e78448c89d1dd/ipykernel-6.30.1-py3-none-any.whl", hash = "sha256:aa6b9fb93dca949069d8b85b6c79b2518e32ac583ae9c7d37c51d119e18b3fb4", size = 117484, upload-time = "2025-08-04T15:47:32.622Z" }, +] + +[[package]] +name = "ipython" +version = "9.5.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "colorama", marker = "sys_platform == 'win32'" }, + { name = "decorator" }, + { name = "ipython-pygments-lexers" }, + { name = "jedi" }, + { name = "matplotlib-inline" }, + { name = "pexpect", marker = "sys_platform != 'emscripten' and sys_platform != 'win32'" }, + { name = "prompt-toolkit" }, + { name = "pygments" }, + { name = "stack-data" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/6e/71/a86262bf5a68bf211bcc71fe302af7e05f18a2852fdc610a854d20d085e6/ipython-9.5.0.tar.gz", hash = "sha256:129c44b941fe6d9b82d36fc7a7c18127ddb1d6f02f78f867f402e2e3adde3113", size = 4389137, upload-time = "2025-08-29T12:15:21.519Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/08/2a/5628a99d04acb2d2f2e749cdf4ea571d2575e898df0528a090948018b726/ipython-9.5.0-py3-none-any.whl", hash = "sha256:88369ffa1d5817d609120daa523a6da06d02518e582347c29f8451732a9c5e72", size = 612426, upload-time = "2025-08-29T12:15:18.866Z" }, +] + +[[package]] +name = "ipython-pygments-lexers" +version = "1.1.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "pygments" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/ef/4c/5dd1d8af08107f88c7f741ead7a40854b8ac24ddf9ae850afbcf698aa552/ipython_pygments_lexers-1.1.1.tar.gz", hash = "sha256:09c0138009e56b6854f9535736f4171d855c8c08a563a0dcd8022f78355c7e81", size = 8393, upload-time = "2025-01-17T11:24:34.505Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/d9/33/1f075bf72b0b747cb3288d011319aaf64083cf2efef8354174e3ed4540e2/ipython_pygments_lexers-1.1.1-py3-none-any.whl", hash = "sha256:a9462224a505ade19a605f71f8fa63c2048833ce50abc86768a0d81d876dc81c", size = 8074, upload-time = "2025-01-17T11:24:33.271Z" }, +] + +[[package]] +name = "jedi" +version = "0.19.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "parso" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/72/3a/79a912fbd4d8dd6fbb02bf69afd3bb72cf0c729bb3063c6f4498603db17a/jedi-0.19.2.tar.gz", hash = "sha256:4770dc3de41bde3966b02eb84fbcf557fb33cce26ad23da12c742fb50ecb11f0", size = 1231287, upload-time = "2024-11-11T01:41:42.873Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/c0/5a/9cac0c82afec3d09ccd97c8b6502d48f165f9124db81b4bcb90b4af974ee/jedi-0.19.2-py2.py3-none-any.whl", hash = "sha256:a8ef22bde8490f57fe5c7681a3c83cb58874daf72b4784de3cce5b6ef6edb5b9", size = 1572278, upload-time = "2024-11-11T01:41:40.175Z" }, +] + [[package]] name = "jinja2" version = "3.1.6" @@ -208,6 +522,108 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/62/a1/3d680cbfd5f4b8f15abc1d571870c5fc3e594bb582bc3b64ea099db13e56/jinja2-3.1.6-py3-none-any.whl", hash = "sha256:85ece4451f492d0c13c5dd7c13a64681a86afae63a5f347908daf103ce6d2f67", size = 134899, upload-time = "2025-03-05T20:05:00.369Z" }, ] +[[package]] +name = "jupyter-client" +version = "8.6.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "jupyter-core" }, + { name = "python-dateutil" }, + { name = "pyzmq" }, + { name = "tornado" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/71/22/bf9f12fdaeae18019a468b68952a60fe6dbab5d67cd2a103cac7659b41ca/jupyter_client-8.6.3.tar.gz", hash = "sha256:35b3a0947c4a6e9d589eb97d7d4cd5e90f910ee73101611f01283732bd6d9419", size = 342019, upload-time = "2024-09-17T10:44:17.613Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/11/85/b0394e0b6fcccd2c1eeefc230978a6f8cb0c5df1e4cd3e7625735a0d7d1e/jupyter_client-8.6.3-py3-none-any.whl", hash = "sha256:e8a19cc986cc45905ac3362915f410f3af85424b4c0905e94fa5f2cb08e8f23f", size = 106105, upload-time = "2024-09-17T10:44:15.218Z" }, +] + +[[package]] +name = "jupyter-core" +version = "5.8.1" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "platformdirs" }, + { name = "pywin32", marker = "platform_python_implementation != 'PyPy' and sys_platform == 'win32'" }, + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/99/1b/72906d554acfeb588332eaaa6f61577705e9ec752ddb486f302dafa292d9/jupyter_core-5.8.1.tar.gz", hash = "sha256:0a5f9706f70e64786b75acba995988915ebd4601c8a52e534a40b51c95f59941", size = 88923, upload-time = "2025-05-27T07:38:16.655Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/2f/57/6bffd4b20b88da3800c5d691e0337761576ee688eb01299eae865689d2df/jupyter_core-5.8.1-py3-none-any.whl", hash = "sha256:c28d268fc90fb53f1338ded2eb410704c5449a358406e8a948b75706e24863d0", size = 28880, upload-time = "2025-05-27T07:38:15.137Z" }, +] + +[[package]] +name = "kiwisolver" +version = "1.4.9" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/5c/3c/85844f1b0feb11ee581ac23fe5fce65cd049a200c1446708cc1b7f922875/kiwisolver-1.4.9.tar.gz", hash = "sha256:c3b22c26c6fd6811b0ae8363b95ca8ce4ea3c202d3d0975b2914310ceb1bcc4d", size = 97564, upload-time = "2025-08-10T21:27:49.279Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/86/c9/13573a747838aeb1c76e3267620daa054f4152444d1f3d1a2324b78255b5/kiwisolver-1.4.9-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:ac5a486ac389dddcc5bef4f365b6ae3ffff2c433324fb38dd35e3fab7c957999", size = 123686, upload-time = "2025-08-10T21:26:10.034Z" }, + { url = "https://files.pythonhosted.org/packages/51/ea/2ecf727927f103ffd1739271ca19c424d0e65ea473fbaeea1c014aea93f6/kiwisolver-1.4.9-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:f2ba92255faa7309d06fe44c3a4a97efe1c8d640c2a79a5ef728b685762a6fd2", size = 66460, upload-time = "2025-08-10T21:26:11.083Z" }, + { url = "https://files.pythonhosted.org/packages/5b/5a/51f5464373ce2aeb5194508298a508b6f21d3867f499556263c64c621914/kiwisolver-1.4.9-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:4a2899935e724dd1074cb568ce7ac0dce28b2cd6ab539c8e001a8578eb106d14", size = 64952, upload-time = "2025-08-10T21:26:12.058Z" }, + { url = "https://files.pythonhosted.org/packages/70/90/6d240beb0f24b74371762873e9b7f499f1e02166a2d9c5801f4dbf8fa12e/kiwisolver-1.4.9-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:f6008a4919fdbc0b0097089f67a1eb55d950ed7e90ce2cc3e640abadd2757a04", size = 1474756, upload-time = "2025-08-10T21:26:13.096Z" }, + { url = "https://files.pythonhosted.org/packages/12/42/f36816eaf465220f683fb711efdd1bbf7a7005a2473d0e4ed421389bd26c/kiwisolver-1.4.9-cp312-cp312-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:67bb8b474b4181770f926f7b7d2f8c0248cbcb78b660fdd41a47054b28d2a752", size = 1276404, upload-time = "2025-08-10T21:26:14.457Z" }, + { url = "https://files.pythonhosted.org/packages/2e/64/bc2de94800adc830c476dce44e9b40fd0809cddeef1fde9fcf0f73da301f/kiwisolver-1.4.9-cp312-cp312-manylinux_2_24_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:2327a4a30d3ee07d2fbe2e7933e8a37c591663b96ce42a00bc67461a87d7df77", size = 1294410, upload-time = "2025-08-10T21:26:15.73Z" }, + { url = "https://files.pythonhosted.org/packages/5f/42/2dc82330a70aa8e55b6d395b11018045e58d0bb00834502bf11509f79091/kiwisolver-1.4.9-cp312-cp312-manylinux_2_24_s390x.manylinux_2_28_s390x.whl", hash = "sha256:7a08b491ec91b1d5053ac177afe5290adacf1f0f6307d771ccac5de30592d198", size = 1343631, upload-time = "2025-08-10T21:26:17.045Z" }, + { url = "https://files.pythonhosted.org/packages/22/fd/f4c67a6ed1aab149ec5a8a401c323cee7a1cbe364381bb6c9c0d564e0e20/kiwisolver-1.4.9-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:d8fc5c867c22b828001b6a38d2eaeb88160bf5783c6cb4a5e440efc981ce286d", size = 2224963, upload-time = "2025-08-10T21:26:18.737Z" }, + { url = "https://files.pythonhosted.org/packages/45/aa/76720bd4cb3713314677d9ec94dcc21ced3f1baf4830adde5bb9b2430a5f/kiwisolver-1.4.9-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:3b3115b2581ea35bb6d1f24a4c90af37e5d9b49dcff267eeed14c3893c5b86ab", size = 2321295, upload-time = "2025-08-10T21:26:20.11Z" }, + { url = "https://files.pythonhosted.org/packages/80/19/d3ec0d9ab711242f56ae0dc2fc5d70e298bb4a1f9dfab44c027668c673a1/kiwisolver-1.4.9-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:858e4c22fb075920b96a291928cb7dea5644e94c0ee4fcd5af7e865655e4ccf2", size = 2487987, upload-time = "2025-08-10T21:26:21.49Z" }, + { url = "https://files.pythonhosted.org/packages/39/e9/61e4813b2c97e86b6fdbd4dd824bf72d28bcd8d4849b8084a357bc0dd64d/kiwisolver-1.4.9-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:ed0fecd28cc62c54b262e3736f8bb2512d8dcfdc2bcf08be5f47f96bf405b145", size = 2291817, upload-time = "2025-08-10T21:26:22.812Z" }, + { url = "https://files.pythonhosted.org/packages/a0/41/85d82b0291db7504da3c2defe35c9a8a5c9803a730f297bd823d11d5fb77/kiwisolver-1.4.9-cp312-cp312-win_amd64.whl", hash = "sha256:f68208a520c3d86ea51acf688a3e3002615a7f0238002cccc17affecc86a8a54", size = 73895, upload-time = "2025-08-10T21:26:24.37Z" }, + { url = "https://files.pythonhosted.org/packages/e2/92/5f3068cf15ee5cb624a0c7596e67e2a0bb2adee33f71c379054a491d07da/kiwisolver-1.4.9-cp312-cp312-win_arm64.whl", hash = "sha256:2c1a4f57df73965f3f14df20b80ee29e6a7930a57d2d9e8491a25f676e197c60", size = 64992, upload-time = "2025-08-10T21:26:25.732Z" }, + { url = "https://files.pythonhosted.org/packages/31/c1/c2686cda909742ab66c7388e9a1a8521a59eb89f8bcfbee28fc980d07e24/kiwisolver-1.4.9-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:a5d0432ccf1c7ab14f9949eec60c5d1f924f17c037e9f8b33352fa05799359b8", size = 123681, upload-time = "2025-08-10T21:26:26.725Z" }, + { url = "https://files.pythonhosted.org/packages/ca/f0/f44f50c9f5b1a1860261092e3bc91ecdc9acda848a8b8c6abfda4a24dd5c/kiwisolver-1.4.9-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:efb3a45b35622bb6c16dbfab491a8f5a391fe0e9d45ef32f4df85658232ca0e2", size = 66464, upload-time = "2025-08-10T21:26:27.733Z" }, + { url = "https://files.pythonhosted.org/packages/2d/7a/9d90a151f558e29c3936b8a47ac770235f436f2120aca41a6d5f3d62ae8d/kiwisolver-1.4.9-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:1a12cf6398e8a0a001a059747a1cbf24705e18fe413bc22de7b3d15c67cffe3f", size = 64961, upload-time = "2025-08-10T21:26:28.729Z" }, + { url = "https://files.pythonhosted.org/packages/e9/e9/f218a2cb3a9ffbe324ca29a9e399fa2d2866d7f348ec3a88df87fc248fc5/kiwisolver-1.4.9-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:b67e6efbf68e077dd71d1a6b37e43e1a99d0bff1a3d51867d45ee8908b931098", size = 1474607, upload-time = "2025-08-10T21:26:29.798Z" }, + { url = "https://files.pythonhosted.org/packages/d9/28/aac26d4c882f14de59041636292bc838db8961373825df23b8eeb807e198/kiwisolver-1.4.9-cp313-cp313-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:5656aa670507437af0207645273ccdfee4f14bacd7f7c67a4306d0dcaeaf6eed", size = 1276546, upload-time = "2025-08-10T21:26:31.401Z" }, + { url = "https://files.pythonhosted.org/packages/8b/ad/8bfc1c93d4cc565e5069162f610ba2f48ff39b7de4b5b8d93f69f30c4bed/kiwisolver-1.4.9-cp313-cp313-manylinux_2_24_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:bfc08add558155345129c7803b3671cf195e6a56e7a12f3dde7c57d9b417f525", size = 1294482, upload-time = "2025-08-10T21:26:32.721Z" }, + { url = "https://files.pythonhosted.org/packages/da/f1/6aca55ff798901d8ce403206d00e033191f63d82dd708a186e0ed2067e9c/kiwisolver-1.4.9-cp313-cp313-manylinux_2_24_s390x.manylinux_2_28_s390x.whl", hash = "sha256:40092754720b174e6ccf9e845d0d8c7d8e12c3d71e7fc35f55f3813e96376f78", size = 1343720, upload-time = "2025-08-10T21:26:34.032Z" }, + { url = "https://files.pythonhosted.org/packages/d1/91/eed031876c595c81d90d0f6fc681ece250e14bf6998c3d7c419466b523b7/kiwisolver-1.4.9-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:497d05f29a1300d14e02e6441cf0f5ee81c1ff5a304b0d9fb77423974684e08b", size = 2224907, upload-time = "2025-08-10T21:26:35.824Z" }, + { url = "https://files.pythonhosted.org/packages/e9/ec/4d1925f2e49617b9cca9c34bfa11adefad49d00db038e692a559454dfb2e/kiwisolver-1.4.9-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:bdd1a81a1860476eb41ac4bc1e07b3f07259e6d55bbf739b79c8aaedcf512799", size = 2321334, upload-time = "2025-08-10T21:26:37.534Z" }, + { url = "https://files.pythonhosted.org/packages/43/cb/450cd4499356f68802750c6ddc18647b8ea01ffa28f50d20598e0befe6e9/kiwisolver-1.4.9-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:e6b93f13371d341afee3be9f7c5964e3fe61d5fa30f6a30eb49856935dfe4fc3", size = 2488313, upload-time = "2025-08-10T21:26:39.191Z" }, + { url = "https://files.pythonhosted.org/packages/71/67/fc76242bd99f885651128a5d4fa6083e5524694b7c88b489b1b55fdc491d/kiwisolver-1.4.9-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:d75aa530ccfaa593da12834b86a0724f58bff12706659baa9227c2ccaa06264c", size = 2291970, upload-time = "2025-08-10T21:26:40.828Z" }, + { url = "https://files.pythonhosted.org/packages/75/bd/f1a5d894000941739f2ae1b65a32892349423ad49c2e6d0771d0bad3fae4/kiwisolver-1.4.9-cp313-cp313-win_amd64.whl", hash = "sha256:dd0a578400839256df88c16abddf9ba14813ec5f21362e1fe65022e00c883d4d", size = 73894, upload-time = "2025-08-10T21:26:42.33Z" }, + { url = "https://files.pythonhosted.org/packages/95/38/dce480814d25b99a391abbddadc78f7c117c6da34be68ca8b02d5848b424/kiwisolver-1.4.9-cp313-cp313-win_arm64.whl", hash = "sha256:d4188e73af84ca82468f09cadc5ac4db578109e52acb4518d8154698d3a87ca2", size = 64995, upload-time = "2025-08-10T21:26:43.889Z" }, + { url = "https://files.pythonhosted.org/packages/e2/37/7d218ce5d92dadc5ebdd9070d903e0c7cf7edfe03f179433ac4d13ce659c/kiwisolver-1.4.9-cp313-cp313t-macosx_10_13_universal2.whl", hash = "sha256:5a0f2724dfd4e3b3ac5a82436a8e6fd16baa7d507117e4279b660fe8ca38a3a1", size = 126510, upload-time = "2025-08-10T21:26:44.915Z" }, + { url = "https://files.pythonhosted.org/packages/23/b0/e85a2b48233daef4b648fb657ebbb6f8367696a2d9548a00b4ee0eb67803/kiwisolver-1.4.9-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:1b11d6a633e4ed84fc0ddafd4ebfd8ea49b3f25082c04ad12b8315c11d504dc1", size = 67903, upload-time = "2025-08-10T21:26:45.934Z" }, + { url = "https://files.pythonhosted.org/packages/44/98/f2425bc0113ad7de24da6bb4dae1343476e95e1d738be7c04d31a5d037fd/kiwisolver-1.4.9-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:61874cdb0a36016354853593cffc38e56fc9ca5aa97d2c05d3dcf6922cd55a11", size = 66402, upload-time = "2025-08-10T21:26:47.101Z" }, + { url = "https://files.pythonhosted.org/packages/98/d8/594657886df9f34c4177cc353cc28ca7e6e5eb562d37ccc233bff43bbe2a/kiwisolver-1.4.9-cp313-cp313t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:60c439763a969a6af93b4881db0eed8fadf93ee98e18cbc35bc8da868d0c4f0c", size = 1582135, upload-time = "2025-08-10T21:26:48.665Z" }, + { url = "https://files.pythonhosted.org/packages/5c/c6/38a115b7170f8b306fc929e166340c24958347308ea3012c2b44e7e295db/kiwisolver-1.4.9-cp313-cp313t-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:92a2f997387a1b79a75e7803aa7ded2cfbe2823852ccf1ba3bcf613b62ae3197", size = 1389409, upload-time = "2025-08-10T21:26:50.335Z" }, + { url = "https://files.pythonhosted.org/packages/bf/3b/e04883dace81f24a568bcee6eb3001da4ba05114afa622ec9b6fafdc1f5e/kiwisolver-1.4.9-cp313-cp313t-manylinux_2_24_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:a31d512c812daea6d8b3be3b2bfcbeb091dbb09177706569bcfc6240dcf8b41c", size = 1401763, upload-time = "2025-08-10T21:26:51.867Z" }, + { url = "https://files.pythonhosted.org/packages/9f/80/20ace48e33408947af49d7d15c341eaee69e4e0304aab4b7660e234d6288/kiwisolver-1.4.9-cp313-cp313t-manylinux_2_24_s390x.manylinux_2_28_s390x.whl", hash = "sha256:52a15b0f35dad39862d376df10c5230155243a2c1a436e39eb55623ccbd68185", size = 1453643, upload-time = "2025-08-10T21:26:53.592Z" }, + { url = "https://files.pythonhosted.org/packages/64/31/6ce4380a4cd1f515bdda976a1e90e547ccd47b67a1546d63884463c92ca9/kiwisolver-1.4.9-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:a30fd6fdef1430fd9e1ba7b3398b5ee4e2887783917a687d86ba69985fb08748", size = 2330818, upload-time = "2025-08-10T21:26:55.051Z" }, + { url = "https://files.pythonhosted.org/packages/fa/e9/3f3fcba3bcc7432c795b82646306e822f3fd74df0ee81f0fa067a1f95668/kiwisolver-1.4.9-cp313-cp313t-musllinux_1_2_ppc64le.whl", hash = "sha256:cc9617b46837c6468197b5945e196ee9ca43057bb7d9d1ae688101e4e1dddf64", size = 2419963, upload-time = "2025-08-10T21:26:56.421Z" }, + { url = "https://files.pythonhosted.org/packages/99/43/7320c50e4133575c66e9f7dadead35ab22d7c012a3b09bb35647792b2a6d/kiwisolver-1.4.9-cp313-cp313t-musllinux_1_2_s390x.whl", hash = "sha256:0ab74e19f6a2b027ea4f845a78827969af45ce790e6cb3e1ebab71bdf9f215ff", size = 2594639, upload-time = "2025-08-10T21:26:57.882Z" }, + { url = "https://files.pythonhosted.org/packages/65/d6/17ae4a270d4a987ef8a385b906d2bdfc9fce502d6dc0d3aea865b47f548c/kiwisolver-1.4.9-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:dba5ee5d3981160c28d5490f0d1b7ed730c22470ff7f6cc26cfcfaacb9896a07", size = 2391741, upload-time = "2025-08-10T21:26:59.237Z" }, + { url = "https://files.pythonhosted.org/packages/2a/8f/8f6f491d595a9e5912971f3f863d81baddccc8a4d0c3749d6a0dd9ffc9df/kiwisolver-1.4.9-cp313-cp313t-win_arm64.whl", hash = "sha256:0749fd8f4218ad2e851e11cc4dc05c7cbc0cbc4267bdfdb31782e65aace4ee9c", size = 68646, upload-time = "2025-08-10T21:27:00.52Z" }, + { url = "https://files.pythonhosted.org/packages/6b/32/6cc0fbc9c54d06c2969faa9c1d29f5751a2e51809dd55c69055e62d9b426/kiwisolver-1.4.9-cp314-cp314-macosx_10_13_universal2.whl", hash = "sha256:9928fe1eb816d11ae170885a74d074f57af3a0d65777ca47e9aeb854a1fba386", size = 123806, upload-time = "2025-08-10T21:27:01.537Z" }, + { url = "https://files.pythonhosted.org/packages/b2/dd/2bfb1d4a4823d92e8cbb420fe024b8d2167f72079b3bb941207c42570bdf/kiwisolver-1.4.9-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:d0005b053977e7b43388ddec89fa567f43d4f6d5c2c0affe57de5ebf290dc552", size = 66605, upload-time = "2025-08-10T21:27:03.335Z" }, + { url = "https://files.pythonhosted.org/packages/f7/69/00aafdb4e4509c2ca6064646cba9cd4b37933898f426756adb2cb92ebbed/kiwisolver-1.4.9-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:2635d352d67458b66fd0667c14cb1d4145e9560d503219034a18a87e971ce4f3", size = 64925, upload-time = "2025-08-10T21:27:04.339Z" }, + { url = "https://files.pythonhosted.org/packages/43/dc/51acc6791aa14e5cb6d8a2e28cefb0dc2886d8862795449d021334c0df20/kiwisolver-1.4.9-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:767c23ad1c58c9e827b649a9ab7809fd5fd9db266a9cf02b0e926ddc2c680d58", size = 1472414, upload-time = "2025-08-10T21:27:05.437Z" }, + { url = "https://files.pythonhosted.org/packages/3d/bb/93fa64a81db304ac8a246f834d5094fae4b13baf53c839d6bb6e81177129/kiwisolver-1.4.9-cp314-cp314-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:72d0eb9fba308b8311685c2268cf7d0a0639a6cd027d8128659f72bdd8a024b4", size = 1281272, upload-time = "2025-08-10T21:27:07.063Z" }, + { url = "https://files.pythonhosted.org/packages/70/e6/6df102916960fb8d05069d4bd92d6d9a8202d5a3e2444494e7cd50f65b7a/kiwisolver-1.4.9-cp314-cp314-manylinux_2_24_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:f68e4f3eeca8fb22cc3d731f9715a13b652795ef657a13df1ad0c7dc0e9731df", size = 1298578, upload-time = "2025-08-10T21:27:08.452Z" }, + { url = "https://files.pythonhosted.org/packages/7c/47/e142aaa612f5343736b087864dbaebc53ea8831453fb47e7521fa8658f30/kiwisolver-1.4.9-cp314-cp314-manylinux_2_24_s390x.manylinux_2_28_s390x.whl", hash = "sha256:d84cd4061ae292d8ac367b2c3fa3aad11cb8625a95d135fe93f286f914f3f5a6", size = 1345607, upload-time = "2025-08-10T21:27:10.125Z" }, + { url = "https://files.pythonhosted.org/packages/54/89/d641a746194a0f4d1a3670fb900d0dbaa786fb98341056814bc3f058fa52/kiwisolver-1.4.9-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:a60ea74330b91bd22a29638940d115df9dc00af5035a9a2a6ad9399ffb4ceca5", size = 2230150, upload-time = "2025-08-10T21:27:11.484Z" }, + { url = "https://files.pythonhosted.org/packages/aa/6b/5ee1207198febdf16ac11f78c5ae40861b809cbe0e6d2a8d5b0b3044b199/kiwisolver-1.4.9-cp314-cp314-musllinux_1_2_ppc64le.whl", hash = "sha256:ce6a3a4e106cf35c2d9c4fa17c05ce0b180db622736845d4315519397a77beaf", size = 2325979, upload-time = "2025-08-10T21:27:12.917Z" }, + { url = "https://files.pythonhosted.org/packages/fc/ff/b269eefd90f4ae14dcc74973d5a0f6d28d3b9bb1afd8c0340513afe6b39a/kiwisolver-1.4.9-cp314-cp314-musllinux_1_2_s390x.whl", hash = "sha256:77937e5e2a38a7b48eef0585114fe7930346993a88060d0bf886086d2aa49ef5", size = 2491456, upload-time = "2025-08-10T21:27:14.353Z" }, + { url = "https://files.pythonhosted.org/packages/fc/d4/10303190bd4d30de547534601e259a4fbf014eed94aae3e5521129215086/kiwisolver-1.4.9-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:24c175051354f4a28c5d6a31c93906dc653e2bf234e8a4bbfb964892078898ce", size = 2294621, upload-time = "2025-08-10T21:27:15.808Z" }, + { url = "https://files.pythonhosted.org/packages/28/e0/a9a90416fce5c0be25742729c2ea52105d62eda6c4be4d803c2a7be1fa50/kiwisolver-1.4.9-cp314-cp314-win_amd64.whl", hash = "sha256:0763515d4df10edf6d06a3c19734e2566368980d21ebec439f33f9eb936c07b7", size = 75417, upload-time = "2025-08-10T21:27:17.436Z" }, + { url = "https://files.pythonhosted.org/packages/1f/10/6949958215b7a9a264299a7db195564e87900f709db9245e4ebdd3c70779/kiwisolver-1.4.9-cp314-cp314-win_arm64.whl", hash = "sha256:0e4e2bf29574a6a7b7f6cb5fa69293b9f96c928949ac4a53ba3f525dffb87f9c", size = 66582, upload-time = "2025-08-10T21:27:18.436Z" }, + { url = "https://files.pythonhosted.org/packages/ec/79/60e53067903d3bc5469b369fe0dfc6b3482e2133e85dae9daa9527535991/kiwisolver-1.4.9-cp314-cp314t-macosx_10_13_universal2.whl", hash = "sha256:d976bbb382b202f71c67f77b0ac11244021cfa3f7dfd9e562eefcea2df711548", size = 126514, upload-time = "2025-08-10T21:27:19.465Z" }, + { url = "https://files.pythonhosted.org/packages/25/d1/4843d3e8d46b072c12a38c97c57fab4608d36e13fe47d47ee96b4d61ba6f/kiwisolver-1.4.9-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:2489e4e5d7ef9a1c300a5e0196e43d9c739f066ef23270607d45aba368b91f2d", size = 67905, upload-time = "2025-08-10T21:27:20.51Z" }, + { url = "https://files.pythonhosted.org/packages/8c/ae/29ffcbd239aea8b93108de1278271ae764dfc0d803a5693914975f200596/kiwisolver-1.4.9-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:e2ea9f7ab7fbf18fffb1b5434ce7c69a07582f7acc7717720f1d69f3e806f90c", size = 66399, upload-time = "2025-08-10T21:27:21.496Z" }, + { url = "https://files.pythonhosted.org/packages/a1/ae/d7ba902aa604152c2ceba5d352d7b62106bedbccc8e95c3934d94472bfa3/kiwisolver-1.4.9-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:b34e51affded8faee0dfdb705416153819d8ea9250bbbf7ea1b249bdeb5f1122", size = 1582197, upload-time = "2025-08-10T21:27:22.604Z" }, + { url = "https://files.pythonhosted.org/packages/f2/41/27c70d427eddb8bc7e4f16420a20fefc6f480312122a59a959fdfe0445ad/kiwisolver-1.4.9-cp314-cp314t-manylinux_2_24_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:d8aacd3d4b33b772542b2e01beb50187536967b514b00003bdda7589722d2a64", size = 1390125, upload-time = "2025-08-10T21:27:24.036Z" }, + { url = "https://files.pythonhosted.org/packages/41/42/b3799a12bafc76d962ad69083f8b43b12bf4fe78b097b12e105d75c9b8f1/kiwisolver-1.4.9-cp314-cp314t-manylinux_2_24_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:7cf974dd4e35fa315563ac99d6287a1024e4dc2077b8a7d7cd3d2fb65d283134", size = 1402612, upload-time = "2025-08-10T21:27:25.773Z" }, + { url = "https://files.pythonhosted.org/packages/d2/b5/a210ea073ea1cfaca1bb5c55a62307d8252f531beb364e18aa1e0888b5a0/kiwisolver-1.4.9-cp314-cp314t-manylinux_2_24_s390x.manylinux_2_28_s390x.whl", hash = "sha256:85bd218b5ecfbee8c8a82e121802dcb519a86044c9c3b2e4aef02fa05c6da370", size = 1453990, upload-time = "2025-08-10T21:27:27.089Z" }, + { url = "https://files.pythonhosted.org/packages/5f/ce/a829eb8c033e977d7ea03ed32fb3c1781b4fa0433fbadfff29e39c676f32/kiwisolver-1.4.9-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:0856e241c2d3df4efef7c04a1e46b1936b6120c9bcf36dd216e3acd84bc4fb21", size = 2331601, upload-time = "2025-08-10T21:27:29.343Z" }, + { url = "https://files.pythonhosted.org/packages/e0/4b/b5e97eb142eb9cd0072dacfcdcd31b1c66dc7352b0f7c7255d339c0edf00/kiwisolver-1.4.9-cp314-cp314t-musllinux_1_2_ppc64le.whl", hash = "sha256:9af39d6551f97d31a4deebeac6f45b156f9755ddc59c07b402c148f5dbb6482a", size = 2422041, upload-time = "2025-08-10T21:27:30.754Z" }, + { url = "https://files.pythonhosted.org/packages/40/be/8eb4cd53e1b85ba4edc3a9321666f12b83113a178845593307a3e7891f44/kiwisolver-1.4.9-cp314-cp314t-musllinux_1_2_s390x.whl", hash = "sha256:bb4ae2b57fc1d8cbd1cf7b1d9913803681ffa903e7488012be5b76dedf49297f", size = 2594897, upload-time = "2025-08-10T21:27:32.803Z" }, + { url = "https://files.pythonhosted.org/packages/99/dd/841e9a66c4715477ea0abc78da039832fbb09dac5c35c58dc4c41a407b8a/kiwisolver-1.4.9-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:aedff62918805fb62d43a4aa2ecd4482c380dc76cd31bd7c8878588a61bd0369", size = 2391835, upload-time = "2025-08-10T21:27:34.23Z" }, + { url = "https://files.pythonhosted.org/packages/0c/28/4b2e5c47a0da96896fdfdb006340ade064afa1e63675d01ea5ac222b6d52/kiwisolver-1.4.9-cp314-cp314t-win_amd64.whl", hash = "sha256:1fa333e8b2ce4d9660f2cda9c0e1b6bafcfb2457a9d259faa82289e73ec24891", size = 79988, upload-time = "2025-08-10T21:27:35.587Z" }, + { url = "https://files.pythonhosted.org/packages/80/be/3578e8afd18c88cdf9cb4cffde75a96d2be38c5a903f1ed0ceec061bd09e/kiwisolver-1.4.9-cp314-cp314t-win_arm64.whl", hash = "sha256:4a48a2ce79d65d363597ef7b567ce3d14d68783d2b2263d98db3d9477805ba32", size = 70260, upload-time = "2025-08-10T21:27:36.606Z" }, +] + [[package]] name = "mako" version = "1.3.10" @@ -282,6 +698,72 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/4f/65/6079a46068dfceaeabb5dcad6d674f5f5c61a6fa5673746f42a9f4c233b3/MarkupSafe-3.0.2-cp313-cp313t-win_amd64.whl", hash = "sha256:e444a31f8db13eb18ada366ab3cf45fd4b31e4db1236a4448f68778c1d1a5a2f", size = 15739, upload-time = "2024-10-18T15:21:42.784Z" }, ] +[[package]] +name = "matplotlib" +version = "3.10.6" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "contourpy" }, + { name = "cycler" }, + { name = "fonttools" }, + { name = "kiwisolver" }, + { name = "numpy" }, + { name = "packaging" }, + { name = "pillow" }, + { name = "pyparsing" }, + { name = "python-dateutil" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/a0/59/c3e6453a9676ffba145309a73c462bb407f4400de7de3f2b41af70720a3c/matplotlib-3.10.6.tar.gz", hash = "sha256:ec01b645840dd1996df21ee37f208cd8ba57644779fa20464010638013d3203c", size = 34804264, upload-time = "2025-08-30T00:14:25.137Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ea/1a/7042f7430055d567cc3257ac409fcf608599ab27459457f13772c2d9778b/matplotlib-3.10.6-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:31ca662df6a80bd426f871105fdd69db7543e28e73a9f2afe80de7e531eb2347", size = 8272404, upload-time = "2025-08-30T00:12:59.112Z" }, + { url = "https://files.pythonhosted.org/packages/a9/5d/1d5f33f5b43f4f9e69e6a5fe1fb9090936ae7bc8e2ff6158e7a76542633b/matplotlib-3.10.6-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:1678bb61d897bb4ac4757b5ecfb02bfb3fddf7f808000fb81e09c510712fda75", size = 8128262, upload-time = "2025-08-30T00:13:01.141Z" }, + { url = "https://files.pythonhosted.org/packages/67/c3/135fdbbbf84e0979712df58e5e22b4f257b3f5e52a3c4aacf1b8abec0d09/matplotlib-3.10.6-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:56cd2d20842f58c03d2d6e6c1f1cf5548ad6f66b91e1e48f814e4fb5abd1cb95", size = 8697008, upload-time = "2025-08-30T00:13:03.24Z" }, + { url = "https://files.pythonhosted.org/packages/9c/be/c443ea428fb2488a3ea7608714b1bd85a82738c45da21b447dc49e2f8e5d/matplotlib-3.10.6-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:662df55604a2f9a45435566d6e2660e41efe83cd94f4288dfbf1e6d1eae4b0bb", size = 9530166, upload-time = "2025-08-30T00:13:05.951Z" }, + { url = "https://files.pythonhosted.org/packages/a9/35/48441422b044d74034aea2a3e0d1a49023f12150ebc58f16600132b9bbaf/matplotlib-3.10.6-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:08f141d55148cd1fc870c3387d70ca4df16dee10e909b3b038782bd4bda6ea07", size = 9593105, upload-time = "2025-08-30T00:13:08.356Z" }, + { url = "https://files.pythonhosted.org/packages/45/c3/994ef20eb4154ab84cc08d033834555319e4af970165e6c8894050af0b3c/matplotlib-3.10.6-cp312-cp312-win_amd64.whl", hash = "sha256:590f5925c2d650b5c9d813c5b3b5fc53f2929c3f8ef463e4ecfa7e052044fb2b", size = 8122784, upload-time = "2025-08-30T00:13:10.367Z" }, + { url = "https://files.pythonhosted.org/packages/57/b8/5c85d9ae0e40f04e71bedb053aada5d6bab1f9b5399a0937afb5d6b02d98/matplotlib-3.10.6-cp312-cp312-win_arm64.whl", hash = "sha256:f44c8d264a71609c79a78d50349e724f5d5fc3684ead7c2a473665ee63d868aa", size = 7992823, upload-time = "2025-08-30T00:13:12.24Z" }, + { url = "https://files.pythonhosted.org/packages/a0/db/18380e788bb837e724358287b08e223b32bc8dccb3b0c12fa8ca20bc7f3b/matplotlib-3.10.6-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:819e409653c1106c8deaf62e6de6b8611449c2cd9939acb0d7d4e57a3d95cc7a", size = 8273231, upload-time = "2025-08-30T00:13:13.881Z" }, + { url = "https://files.pythonhosted.org/packages/d3/0f/38dd49445b297e0d4f12a322c30779df0d43cb5873c7847df8a82e82ec67/matplotlib-3.10.6-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:59c8ac8382fefb9cb71308dde16a7c487432f5255d8f1fd32473523abecfecdf", size = 8128730, upload-time = "2025-08-30T00:13:15.556Z" }, + { url = "https://files.pythonhosted.org/packages/e5/b8/9eea6630198cb303d131d95d285a024b3b8645b1763a2916fddb44ca8760/matplotlib-3.10.6-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:84e82d9e0fd70c70bc55739defbd8055c54300750cbacf4740c9673a24d6933a", size = 8698539, upload-time = "2025-08-30T00:13:17.297Z" }, + { url = "https://files.pythonhosted.org/packages/71/34/44c7b1f075e1ea398f88aeabcc2907c01b9cc99e2afd560c1d49845a1227/matplotlib-3.10.6-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:25f7a3eb42d6c1c56e89eacd495661fc815ffc08d9da750bca766771c0fd9110", size = 9529702, upload-time = "2025-08-30T00:13:19.248Z" }, + { url = "https://files.pythonhosted.org/packages/b5/7f/e5c2dc9950c7facaf8b461858d1b92c09dd0cf174fe14e21953b3dda06f7/matplotlib-3.10.6-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:f9c862d91ec0b7842920a4cfdaaec29662195301914ea54c33e01f1a28d014b2", size = 9593742, upload-time = "2025-08-30T00:13:21.181Z" }, + { url = "https://files.pythonhosted.org/packages/ff/1d/70c28528794f6410ee2856cd729fa1f1756498b8d3126443b0a94e1a8695/matplotlib-3.10.6-cp313-cp313-win_amd64.whl", hash = "sha256:1b53bd6337eba483e2e7d29c5ab10eee644bc3a2491ec67cc55f7b44583ffb18", size = 8122753, upload-time = "2025-08-30T00:13:23.44Z" }, + { url = "https://files.pythonhosted.org/packages/e8/74/0e1670501fc7d02d981564caf7c4df42974464625935424ca9654040077c/matplotlib-3.10.6-cp313-cp313-win_arm64.whl", hash = "sha256:cbd5eb50b7058b2892ce45c2f4e92557f395c9991f5c886d1bb74a1582e70fd6", size = 7992973, upload-time = "2025-08-30T00:13:26.632Z" }, + { url = "https://files.pythonhosted.org/packages/b1/4e/60780e631d73b6b02bd7239f89c451a72970e5e7ec34f621eda55cd9a445/matplotlib-3.10.6-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:acc86dd6e0e695c095001a7fccff158c49e45e0758fdf5dcdbb0103318b59c9f", size = 8316869, upload-time = "2025-08-30T00:13:28.262Z" }, + { url = "https://files.pythonhosted.org/packages/f8/15/baa662374a579413210fc2115d40c503b7360a08e9cc254aa0d97d34b0c1/matplotlib-3.10.6-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:e228cd2ffb8f88b7d0b29e37f68ca9aaf83e33821f24a5ccc4f082dd8396bc27", size = 8178240, upload-time = "2025-08-30T00:13:30.007Z" }, + { url = "https://files.pythonhosted.org/packages/c6/3f/3c38e78d2aafdb8829fcd0857d25aaf9e7dd2dfcf7ec742765b585774931/matplotlib-3.10.6-cp313-cp313t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:658bc91894adeab669cf4bb4a186d049948262987e80f0857216387d7435d833", size = 8711719, upload-time = "2025-08-30T00:13:31.72Z" }, + { url = "https://files.pythonhosted.org/packages/96/4b/2ec2bbf8cefaa53207cc56118d1fa8a0f9b80642713ea9390235d331ede4/matplotlib-3.10.6-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:8913b7474f6dd83ac444c9459c91f7f0f2859e839f41d642691b104e0af056aa", size = 9541422, upload-time = "2025-08-30T00:13:33.611Z" }, + { url = "https://files.pythonhosted.org/packages/83/7d/40255e89b3ef11c7871020563b2dd85f6cb1b4eff17c0f62b6eb14c8fa80/matplotlib-3.10.6-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:091cea22e059b89f6d7d1a18e2c33a7376c26eee60e401d92a4d6726c4e12706", size = 9594068, upload-time = "2025-08-30T00:13:35.833Z" }, + { url = "https://files.pythonhosted.org/packages/f0/a9/0213748d69dc842537a113493e1c27daf9f96bd7cc316f933dc8ec4de985/matplotlib-3.10.6-cp313-cp313t-win_amd64.whl", hash = "sha256:491e25e02a23d7207629d942c666924a6b61e007a48177fdd231a0097b7f507e", size = 8200100, upload-time = "2025-08-30T00:13:37.668Z" }, + { url = "https://files.pythonhosted.org/packages/be/15/79f9988066ce40b8a6f1759a934ea0cde8dc4adc2262255ee1bc98de6ad0/matplotlib-3.10.6-cp313-cp313t-win_arm64.whl", hash = "sha256:3d80d60d4e54cda462e2cd9a086d85cd9f20943ead92f575ce86885a43a565d5", size = 8042142, upload-time = "2025-08-30T00:13:39.426Z" }, + { url = "https://files.pythonhosted.org/packages/7c/58/e7b6d292beae6fb4283ca6fb7fa47d7c944a68062d6238c07b497dd35493/matplotlib-3.10.6-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:70aaf890ce1d0efd482df969b28a5b30ea0b891224bb315810a3940f67182899", size = 8273802, upload-time = "2025-08-30T00:13:41.006Z" }, + { url = "https://files.pythonhosted.org/packages/9f/f6/7882d05aba16a8cdd594fb9a03a9d3cca751dbb6816adf7b102945522ee9/matplotlib-3.10.6-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:1565aae810ab79cb72e402b22facfa6501365e73ebab70a0fdfb98488d2c3c0c", size = 8131365, upload-time = "2025-08-30T00:13:42.664Z" }, + { url = "https://files.pythonhosted.org/packages/94/bf/ff32f6ed76e78514e98775a53715eca4804b12bdcf35902cdd1cf759d324/matplotlib-3.10.6-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:f3b23315a01981689aa4e1a179dbf6ef9fbd17143c3eea77548c2ecfb0499438", size = 9533961, upload-time = "2025-08-30T00:13:44.372Z" }, + { url = "https://files.pythonhosted.org/packages/fe/c3/6bf88c2fc2da7708a2ff8d2eeb5d68943130f50e636d5d3dcf9d4252e971/matplotlib-3.10.6-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:30fdd37edf41a4e6785f9b37969de57aea770696cb637d9946eb37470c94a453", size = 9804262, upload-time = "2025-08-30T00:13:46.614Z" }, + { url = "https://files.pythonhosted.org/packages/0f/7a/e05e6d9446d2d577b459427ad060cd2de5742d0e435db3191fea4fcc7e8b/matplotlib-3.10.6-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:bc31e693da1c08012c764b053e702c1855378e04102238e6a5ee6a7117c53a47", size = 9595508, upload-time = "2025-08-30T00:13:48.731Z" }, + { url = "https://files.pythonhosted.org/packages/39/fb/af09c463ced80b801629fd73b96f726c9f6124c3603aa2e480a061d6705b/matplotlib-3.10.6-cp314-cp314-win_amd64.whl", hash = "sha256:05be9bdaa8b242bc6ff96330d18c52f1fc59c6fb3a4dd411d953d67e7e1baf98", size = 8252742, upload-time = "2025-08-30T00:13:50.539Z" }, + { url = "https://files.pythonhosted.org/packages/b1/f9/b682f6db9396d9ab8f050c0a3bfbb5f14fb0f6518f08507c04cc02f8f229/matplotlib-3.10.6-cp314-cp314-win_arm64.whl", hash = "sha256:f56a0d1ab05d34c628592435781d185cd99630bdfd76822cd686fb5a0aecd43a", size = 8124237, upload-time = "2025-08-30T00:13:54.3Z" }, + { url = "https://files.pythonhosted.org/packages/b5/d2/b69b4a0923a3c05ab90527c60fdec899ee21ca23ede7f0fb818e6620d6f2/matplotlib-3.10.6-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:94f0b4cacb23763b64b5dace50d5b7bfe98710fed5f0cef5c08135a03399d98b", size = 8316956, upload-time = "2025-08-30T00:13:55.932Z" }, + { url = "https://files.pythonhosted.org/packages/28/e9/dc427b6f16457ffaeecb2fc4abf91e5adb8827861b869c7a7a6d1836fa73/matplotlib-3.10.6-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:cc332891306b9fb39462673d8225d1b824c89783fee82840a709f96714f17a5c", size = 8178260, upload-time = "2025-08-30T00:14:00.942Z" }, + { url = "https://files.pythonhosted.org/packages/c4/89/1fbd5ad611802c34d1c7ad04607e64a1350b7fb9c567c4ec2c19e066ed35/matplotlib-3.10.6-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:ee1d607b3fb1590deb04b69f02ea1d53ed0b0bf75b2b1a5745f269afcbd3cdd3", size = 9541422, upload-time = "2025-08-30T00:14:02.664Z" }, + { url = "https://files.pythonhosted.org/packages/b0/3b/65fec8716025b22c1d72d5a82ea079934c76a547696eaa55be6866bc89b1/matplotlib-3.10.6-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:376a624a218116461696b27b2bbf7a8945053e6d799f6502fc03226d077807bf", size = 9803678, upload-time = "2025-08-30T00:14:04.741Z" }, + { url = "https://files.pythonhosted.org/packages/c7/b0/40fb2b3a1ab9381bb39a952e8390357c8be3bdadcf6d5055d9c31e1b35ae/matplotlib-3.10.6-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:83847b47f6524c34b4f2d3ce726bb0541c48c8e7692729865c3df75bfa0f495a", size = 9594077, upload-time = "2025-08-30T00:14:07.012Z" }, + { url = "https://files.pythonhosted.org/packages/76/34/c4b71b69edf5b06e635eee1ed10bfc73cf8df058b66e63e30e6a55e231d5/matplotlib-3.10.6-cp314-cp314t-win_amd64.whl", hash = "sha256:c7e0518e0d223683532a07f4b512e2e0729b62674f1b3a1a69869f98e6b1c7e3", size = 8342822, upload-time = "2025-08-30T00:14:09.041Z" }, + { url = "https://files.pythonhosted.org/packages/e8/62/aeabeef1a842b6226a30d49dd13e8a7a1e81e9ec98212c0b5169f0a12d83/matplotlib-3.10.6-cp314-cp314t-win_arm64.whl", hash = "sha256:4dd83e029f5b4801eeb87c64efd80e732452781c16a9cf7415b7b63ec8f374d7", size = 8172588, upload-time = "2025-08-30T00:14:11.166Z" }, +] + +[[package]] +name = "matplotlib-inline" +version = "0.1.7" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "traitlets" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/99/5b/a36a337438a14116b16480db471ad061c36c3694df7c2084a0da7ba538b7/matplotlib_inline-0.1.7.tar.gz", hash = "sha256:8423b23ec666be3d16e16b60bdd8ac4e86e840ebd1dd11a30b9f117f2fa0ab90", size = 8159, upload-time = "2024-04-15T13:44:44.803Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/8f/8e/9ad090d3553c280a8060fbf6e24dc1c0c29704ee7d1c372f0c174aa59285/matplotlib_inline-0.1.7-py3-none-any.whl", hash = "sha256:df192d39a4ff8f21b1895d72e6a13f5fcc5099f00fa84384e0ea28c2cc0653ca", size = 9899, upload-time = "2024-04-15T13:44:43.265Z" }, +] + [[package]] name = "mccabe" version = "0.7.0" @@ -341,6 +823,78 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/79/7b/2c79738432f5c924bef5071f933bcc9efd0473bac3b4aa584a6f7c1c8df8/mypy_extensions-1.1.0-py3-none-any.whl", hash = "sha256:1be4cccdb0f2482337c4743e60421de3a356cd97508abadd57d47403e94f5505", size = 4963, upload-time = "2025-04-22T14:54:22.983Z" }, ] +[[package]] +name = "nest-asyncio" +version = "1.6.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/83/f8/51569ac65d696c8ecbee95938f89d4abf00f47d58d48f6fbabfe8f0baefe/nest_asyncio-1.6.0.tar.gz", hash = "sha256:6f172d5449aca15afd6c646851f4e31e02c598d553a667e38cafa997cfec55fe", size = 7418, upload-time = "2024-01-21T14:25:19.227Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a0/c4/c2971a3ba4c6103a3d10c4b0f24f461ddc027f0f09763220cf35ca1401b3/nest_asyncio-1.6.0-py3-none-any.whl", hash = "sha256:87af6efd6b5e897c81050477ef65c62e2b2f35d51703cae01aff2905b1852e1c", size = 5195, upload-time = "2024-01-21T14:25:17.223Z" }, +] + +[[package]] +name = "numpy" +version = "2.3.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/d0/19/95b3d357407220ed24c139018d2518fab0a61a948e68286a25f1a4d049ff/numpy-2.3.3.tar.gz", hash = "sha256:ddc7c39727ba62b80dfdbedf400d1c10ddfa8eefbd7ec8dcb118be8b56d31029", size = 20576648, upload-time = "2025-09-09T16:54:12.543Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/51/5d/bb7fc075b762c96329147799e1bcc9176ab07ca6375ea976c475482ad5b3/numpy-2.3.3-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:cfdd09f9c84a1a934cde1eec2267f0a43a7cd44b2cca4ff95b7c0d14d144b0bf", size = 20957014, upload-time = "2025-09-09T15:56:29.966Z" }, + { url = "https://files.pythonhosted.org/packages/6b/0e/c6211bb92af26517acd52125a237a92afe9c3124c6a68d3b9f81b62a0568/numpy-2.3.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:cb32e3cf0f762aee47ad1ddc6672988f7f27045b0783c887190545baba73aa25", size = 14185220, upload-time = "2025-09-09T15:56:32.175Z" }, + { url = "https://files.pythonhosted.org/packages/22/f2/07bb754eb2ede9073f4054f7c0286b0d9d2e23982e090a80d478b26d35ca/numpy-2.3.3-cp312-cp312-macosx_14_0_arm64.whl", hash = "sha256:396b254daeb0a57b1fe0ecb5e3cff6fa79a380fa97c8f7781a6d08cd429418fe", size = 5113918, upload-time = "2025-09-09T15:56:34.175Z" }, + { url = "https://files.pythonhosted.org/packages/81/0a/afa51697e9fb74642f231ea36aca80fa17c8fb89f7a82abd5174023c3960/numpy-2.3.3-cp312-cp312-macosx_14_0_x86_64.whl", hash = "sha256:067e3d7159a5d8f8a0b46ee11148fc35ca9b21f61e3c49fbd0a027450e65a33b", size = 6647922, upload-time = "2025-09-09T15:56:36.149Z" }, + { url = "https://files.pythonhosted.org/packages/5d/f5/122d9cdb3f51c520d150fef6e87df9279e33d19a9611a87c0d2cf78a89f4/numpy-2.3.3-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:1c02d0629d25d426585fb2e45a66154081b9fa677bc92a881ff1d216bc9919a8", size = 14281991, upload-time = "2025-09-09T15:56:40.548Z" }, + { url = "https://files.pythonhosted.org/packages/51/64/7de3c91e821a2debf77c92962ea3fe6ac2bc45d0778c1cbe15d4fce2fd94/numpy-2.3.3-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:d9192da52b9745f7f0766531dcfa978b7763916f158bb63bdb8a1eca0068ab20", size = 16641643, upload-time = "2025-09-09T15:56:43.343Z" }, + { url = "https://files.pythonhosted.org/packages/30/e4/961a5fa681502cd0d68907818b69f67542695b74e3ceaa513918103b7e80/numpy-2.3.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:cd7de500a5b66319db419dc3c345244404a164beae0d0937283b907d8152e6ea", size = 16056787, upload-time = "2025-09-09T15:56:46.141Z" }, + { url = "https://files.pythonhosted.org/packages/99/26/92c912b966e47fbbdf2ad556cb17e3a3088e2e1292b9833be1dfa5361a1a/numpy-2.3.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:93d4962d8f82af58f0b2eb85daaf1b3ca23fe0a85d0be8f1f2b7bb46034e56d7", size = 18579598, upload-time = "2025-09-09T15:56:49.844Z" }, + { url = "https://files.pythonhosted.org/packages/17/b6/fc8f82cb3520768718834f310c37d96380d9dc61bfdaf05fe5c0b7653e01/numpy-2.3.3-cp312-cp312-win32.whl", hash = "sha256:5534ed6b92f9b7dca6c0a19d6df12d41c68b991cef051d108f6dbff3babc4ebf", size = 6320800, upload-time = "2025-09-09T15:56:52.499Z" }, + { url = "https://files.pythonhosted.org/packages/32/ee/de999f2625b80d043d6d2d628c07d0d5555a677a3cf78fdf868d409b8766/numpy-2.3.3-cp312-cp312-win_amd64.whl", hash = "sha256:497d7cad08e7092dba36e3d296fe4c97708c93daf26643a1ae4b03f6294d30eb", size = 12786615, upload-time = "2025-09-09T15:56:54.422Z" }, + { url = "https://files.pythonhosted.org/packages/49/6e/b479032f8a43559c383acb20816644f5f91c88f633d9271ee84f3b3a996c/numpy-2.3.3-cp312-cp312-win_arm64.whl", hash = "sha256:ca0309a18d4dfea6fc6262a66d06c26cfe4640c3926ceec90e57791a82b6eee5", size = 10195936, upload-time = "2025-09-09T15:56:56.541Z" }, + { url = "https://files.pythonhosted.org/packages/7d/b9/984c2b1ee61a8b803bf63582b4ac4242cf76e2dbd663efeafcb620cc0ccb/numpy-2.3.3-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:f5415fb78995644253370985342cd03572ef8620b934da27d77377a2285955bf", size = 20949588, upload-time = "2025-09-09T15:56:59.087Z" }, + { url = "https://files.pythonhosted.org/packages/a6/e4/07970e3bed0b1384d22af1e9912527ecbeb47d3b26e9b6a3bced068b3bea/numpy-2.3.3-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:d00de139a3324e26ed5b95870ce63be7ec7352171bc69a4cf1f157a48e3eb6b7", size = 14177802, upload-time = "2025-09-09T15:57:01.73Z" }, + { url = "https://files.pythonhosted.org/packages/35/c7/477a83887f9de61f1203bad89cf208b7c19cc9fef0cebef65d5a1a0619f2/numpy-2.3.3-cp313-cp313-macosx_14_0_arm64.whl", hash = "sha256:9dc13c6a5829610cc07422bc74d3ac083bd8323f14e2827d992f9e52e22cd6a6", size = 5106537, upload-time = "2025-09-09T15:57:03.765Z" }, + { url = "https://files.pythonhosted.org/packages/52/47/93b953bd5866a6f6986344d045a207d3f1cfbad99db29f534ea9cee5108c/numpy-2.3.3-cp313-cp313-macosx_14_0_x86_64.whl", hash = "sha256:d79715d95f1894771eb4e60fb23f065663b2298f7d22945d66877aadf33d00c7", size = 6640743, upload-time = "2025-09-09T15:57:07.921Z" }, + { url = "https://files.pythonhosted.org/packages/23/83/377f84aaeb800b64c0ef4de58b08769e782edcefa4fea712910b6f0afd3c/numpy-2.3.3-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:952cfd0748514ea7c3afc729a0fc639e61655ce4c55ab9acfab14bda4f402b4c", size = 14278881, upload-time = "2025-09-09T15:57:11.349Z" }, + { url = "https://files.pythonhosted.org/packages/9a/a5/bf3db6e66c4b160d6ea10b534c381a1955dfab34cb1017ea93aa33c70ed3/numpy-2.3.3-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:5b83648633d46f77039c29078751f80da65aa64d5622a3cd62aaef9d835b6c93", size = 16636301, upload-time = "2025-09-09T15:57:14.245Z" }, + { url = "https://files.pythonhosted.org/packages/a2/59/1287924242eb4fa3f9b3a2c30400f2e17eb2707020d1c5e3086fe7330717/numpy-2.3.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:b001bae8cea1c7dfdb2ae2b017ed0a6f2102d7a70059df1e338e307a4c78a8ae", size = 16053645, upload-time = "2025-09-09T15:57:16.534Z" }, + { url = "https://files.pythonhosted.org/packages/e6/93/b3d47ed882027c35e94ac2320c37e452a549f582a5e801f2d34b56973c97/numpy-2.3.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:8e9aced64054739037d42fb84c54dd38b81ee238816c948c8f3ed134665dcd86", size = 18578179, upload-time = "2025-09-09T15:57:18.883Z" }, + { url = "https://files.pythonhosted.org/packages/20/d9/487a2bccbf7cc9d4bfc5f0f197761a5ef27ba870f1e3bbb9afc4bbe3fcc2/numpy-2.3.3-cp313-cp313-win32.whl", hash = "sha256:9591e1221db3f37751e6442850429b3aabf7026d3b05542d102944ca7f00c8a8", size = 6312250, upload-time = "2025-09-09T15:57:21.296Z" }, + { url = "https://files.pythonhosted.org/packages/1b/b5/263ebbbbcede85028f30047eab3d58028d7ebe389d6493fc95ae66c636ab/numpy-2.3.3-cp313-cp313-win_amd64.whl", hash = "sha256:f0dadeb302887f07431910f67a14d57209ed91130be0adea2f9793f1a4f817cf", size = 12783269, upload-time = "2025-09-09T15:57:23.034Z" }, + { url = "https://files.pythonhosted.org/packages/fa/75/67b8ca554bbeaaeb3fac2e8bce46967a5a06544c9108ec0cf5cece559b6c/numpy-2.3.3-cp313-cp313-win_arm64.whl", hash = "sha256:3c7cf302ac6e0b76a64c4aecf1a09e51abd9b01fc7feee80f6c43e3ab1b1dbc5", size = 10195314, upload-time = "2025-09-09T15:57:25.045Z" }, + { url = "https://files.pythonhosted.org/packages/11/d0/0d1ddec56b162042ddfafeeb293bac672de9b0cfd688383590090963720a/numpy-2.3.3-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:eda59e44957d272846bb407aad19f89dc6f58fecf3504bd144f4c5cf81a7eacc", size = 21048025, upload-time = "2025-09-09T15:57:27.257Z" }, + { url = "https://files.pythonhosted.org/packages/36/9e/1996ca6b6d00415b6acbdd3c42f7f03ea256e2c3f158f80bd7436a8a19f3/numpy-2.3.3-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:823d04112bc85ef5c4fda73ba24e6096c8f869931405a80aa8b0e604510a26bc", size = 14301053, upload-time = "2025-09-09T15:57:30.077Z" }, + { url = "https://files.pythonhosted.org/packages/05/24/43da09aa764c68694b76e84b3d3f0c44cb7c18cdc1ba80e48b0ac1d2cd39/numpy-2.3.3-cp313-cp313t-macosx_14_0_arm64.whl", hash = "sha256:40051003e03db4041aa325da2a0971ba41cf65714e65d296397cc0e32de6018b", size = 5229444, upload-time = "2025-09-09T15:57:32.733Z" }, + { url = "https://files.pythonhosted.org/packages/bc/14/50ffb0f22f7218ef8af28dd089f79f68289a7a05a208db9a2c5dcbe123c1/numpy-2.3.3-cp313-cp313t-macosx_14_0_x86_64.whl", hash = "sha256:6ee9086235dd6ab7ae75aba5662f582a81ced49f0f1c6de4260a78d8f2d91a19", size = 6738039, upload-time = "2025-09-09T15:57:34.328Z" }, + { url = "https://files.pythonhosted.org/packages/55/52/af46ac0795e09657d45a7f4db961917314377edecf66db0e39fa7ab5c3d3/numpy-2.3.3-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:94fcaa68757c3e2e668ddadeaa86ab05499a70725811e582b6a9858dd472fb30", size = 14352314, upload-time = "2025-09-09T15:57:36.255Z" }, + { url = "https://files.pythonhosted.org/packages/a7/b1/dc226b4c90eb9f07a3fff95c2f0db3268e2e54e5cce97c4ac91518aee71b/numpy-2.3.3-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:da1a74b90e7483d6ce5244053399a614b1d6b7bc30a60d2f570e5071f8959d3e", size = 16701722, upload-time = "2025-09-09T15:57:38.622Z" }, + { url = "https://files.pythonhosted.org/packages/9d/9d/9d8d358f2eb5eced14dba99f110d83b5cd9a4460895230f3b396ad19a323/numpy-2.3.3-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:2990adf06d1ecee3b3dcbb4977dfab6e9f09807598d647f04d385d29e7a3c3d3", size = 16132755, upload-time = "2025-09-09T15:57:41.16Z" }, + { url = "https://files.pythonhosted.org/packages/b6/27/b3922660c45513f9377b3fb42240bec63f203c71416093476ec9aa0719dc/numpy-2.3.3-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:ed635ff692483b8e3f0fcaa8e7eb8a75ee71aa6d975388224f70821421800cea", size = 18651560, upload-time = "2025-09-09T15:57:43.459Z" }, + { url = "https://files.pythonhosted.org/packages/5b/8e/3ab61a730bdbbc201bb245a71102aa609f0008b9ed15255500a99cd7f780/numpy-2.3.3-cp313-cp313t-win32.whl", hash = "sha256:a333b4ed33d8dc2b373cc955ca57babc00cd6f9009991d9edc5ddbc1bac36bcd", size = 6442776, upload-time = "2025-09-09T15:57:45.793Z" }, + { url = "https://files.pythonhosted.org/packages/1c/3a/e22b766b11f6030dc2decdeff5c2fb1610768055603f9f3be88b6d192fb2/numpy-2.3.3-cp313-cp313t-win_amd64.whl", hash = "sha256:4384a169c4d8f97195980815d6fcad04933a7e1ab3b530921c3fef7a1c63426d", size = 12927281, upload-time = "2025-09-09T15:57:47.492Z" }, + { url = "https://files.pythonhosted.org/packages/7b/42/c2e2bc48c5e9b2a83423f99733950fbefd86f165b468a3d85d52b30bf782/numpy-2.3.3-cp313-cp313t-win_arm64.whl", hash = "sha256:75370986cc0bc66f4ce5110ad35aae6d182cc4ce6433c40ad151f53690130bf1", size = 10265275, upload-time = "2025-09-09T15:57:49.647Z" }, + { url = "https://files.pythonhosted.org/packages/6b/01/342ad585ad82419b99bcf7cebe99e61da6bedb89e213c5fd71acc467faee/numpy-2.3.3-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:cd052f1fa6a78dee696b58a914b7229ecfa41f0a6d96dc663c1220a55e137593", size = 20951527, upload-time = "2025-09-09T15:57:52.006Z" }, + { url = "https://files.pythonhosted.org/packages/ef/d8/204e0d73fc1b7a9ee80ab1fe1983dd33a4d64a4e30a05364b0208e9a241a/numpy-2.3.3-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:414a97499480067d305fcac9716c29cf4d0d76db6ebf0bf3cbce666677f12652", size = 14186159, upload-time = "2025-09-09T15:57:54.407Z" }, + { url = "https://files.pythonhosted.org/packages/22/af/f11c916d08f3a18fb8ba81ab72b5b74a6e42ead4c2846d270eb19845bf74/numpy-2.3.3-cp314-cp314-macosx_14_0_arm64.whl", hash = "sha256:50a5fe69f135f88a2be9b6ca0481a68a136f6febe1916e4920e12f1a34e708a7", size = 5114624, upload-time = "2025-09-09T15:57:56.5Z" }, + { url = "https://files.pythonhosted.org/packages/fb/11/0ed919c8381ac9d2ffacd63fd1f0c34d27e99cab650f0eb6f110e6ae4858/numpy-2.3.3-cp314-cp314-macosx_14_0_x86_64.whl", hash = "sha256:b912f2ed2b67a129e6a601e9d93d4fa37bef67e54cac442a2f588a54afe5c67a", size = 6642627, upload-time = "2025-09-09T15:57:58.206Z" }, + { url = "https://files.pythonhosted.org/packages/ee/83/deb5f77cb0f7ba6cb52b91ed388b47f8f3c2e9930d4665c600408d9b90b9/numpy-2.3.3-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:9e318ee0596d76d4cb3d78535dc005fa60e5ea348cd131a51e99d0bdbe0b54fe", size = 14296926, upload-time = "2025-09-09T15:58:00.035Z" }, + { url = "https://files.pythonhosted.org/packages/77/cc/70e59dcb84f2b005d4f306310ff0a892518cc0c8000a33d0e6faf7ca8d80/numpy-2.3.3-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:ce020080e4a52426202bdb6f7691c65bb55e49f261f31a8f506c9f6bc7450421", size = 16638958, upload-time = "2025-09-09T15:58:02.738Z" }, + { url = "https://files.pythonhosted.org/packages/b6/5a/b2ab6c18b4257e099587d5b7f903317bd7115333ad8d4ec4874278eafa61/numpy-2.3.3-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:e6687dc183aa55dae4a705b35f9c0f8cb178bcaa2f029b241ac5356221d5c021", size = 16071920, upload-time = "2025-09-09T15:58:05.029Z" }, + { url = "https://files.pythonhosted.org/packages/b8/f1/8b3fdc44324a259298520dd82147ff648979bed085feeacc1250ef1656c0/numpy-2.3.3-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:d8f3b1080782469fdc1718c4ed1d22549b5fb12af0d57d35e992158a772a37cf", size = 18577076, upload-time = "2025-09-09T15:58:07.745Z" }, + { url = "https://files.pythonhosted.org/packages/f0/a1/b87a284fb15a42e9274e7fcea0dad259d12ddbf07c1595b26883151ca3b4/numpy-2.3.3-cp314-cp314-win32.whl", hash = "sha256:cb248499b0bc3be66ebd6578b83e5acacf1d6cb2a77f2248ce0e40fbec5a76d0", size = 6366952, upload-time = "2025-09-09T15:58:10.096Z" }, + { url = "https://files.pythonhosted.org/packages/70/5f/1816f4d08f3b8f66576d8433a66f8fa35a5acfb3bbd0bf6c31183b003f3d/numpy-2.3.3-cp314-cp314-win_amd64.whl", hash = "sha256:691808c2b26b0f002a032c73255d0bd89751425f379f7bcd22d140db593a96e8", size = 12919322, upload-time = "2025-09-09T15:58:12.138Z" }, + { url = "https://files.pythonhosted.org/packages/8c/de/072420342e46a8ea41c324a555fa90fcc11637583fb8df722936aed1736d/numpy-2.3.3-cp314-cp314-win_arm64.whl", hash = "sha256:9ad12e976ca7b10f1774b03615a2a4bab8addce37ecc77394d8e986927dc0dfe", size = 10478630, upload-time = "2025-09-09T15:58:14.64Z" }, + { url = "https://files.pythonhosted.org/packages/d5/df/ee2f1c0a9de7347f14da5dd3cd3c3b034d1b8607ccb6883d7dd5c035d631/numpy-2.3.3-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:9cc48e09feb11e1db00b320e9d30a4151f7369afb96bd0e48d942d09da3a0d00", size = 21047987, upload-time = "2025-09-09T15:58:16.889Z" }, + { url = "https://files.pythonhosted.org/packages/d6/92/9453bdc5a4e9e69cf4358463f25e8260e2ffc126d52e10038b9077815989/numpy-2.3.3-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:901bf6123879b7f251d3631967fd574690734236075082078e0571977c6a8e6a", size = 14301076, upload-time = "2025-09-09T15:58:20.343Z" }, + { url = "https://files.pythonhosted.org/packages/13/77/1447b9eb500f028bb44253105bd67534af60499588a5149a94f18f2ca917/numpy-2.3.3-cp314-cp314t-macosx_14_0_arm64.whl", hash = "sha256:7f025652034199c301049296b59fa7d52c7e625017cae4c75d8662e377bf487d", size = 5229491, upload-time = "2025-09-09T15:58:22.481Z" }, + { url = "https://files.pythonhosted.org/packages/3d/f9/d72221b6ca205f9736cb4b2ce3b002f6e45cd67cd6a6d1c8af11a2f0b649/numpy-2.3.3-cp314-cp314t-macosx_14_0_x86_64.whl", hash = "sha256:533ca5f6d325c80b6007d4d7fb1984c303553534191024ec6a524a4c92a5935a", size = 6737913, upload-time = "2025-09-09T15:58:24.569Z" }, + { url = "https://files.pythonhosted.org/packages/3c/5f/d12834711962ad9c46af72f79bb31e73e416ee49d17f4c797f72c96b6ca5/numpy-2.3.3-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:0edd58682a399824633b66885d699d7de982800053acf20be1eaa46d92009c54", size = 14352811, upload-time = "2025-09-09T15:58:26.416Z" }, + { url = "https://files.pythonhosted.org/packages/a1/0d/fdbec6629d97fd1bebed56cd742884e4eead593611bbe1abc3eb40d304b2/numpy-2.3.3-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:367ad5d8fbec5d9296d18478804a530f1191e24ab4d75ab408346ae88045d25e", size = 16702689, upload-time = "2025-09-09T15:58:28.831Z" }, + { url = "https://files.pythonhosted.org/packages/9b/09/0a35196dc5575adde1eb97ddfbc3e1687a814f905377621d18ca9bc2b7dd/numpy-2.3.3-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:8f6ac61a217437946a1fa48d24c47c91a0c4f725237871117dea264982128097", size = 16133855, upload-time = "2025-09-09T15:58:31.349Z" }, + { url = "https://files.pythonhosted.org/packages/7a/ca/c9de3ea397d576f1b6753eaa906d4cdef1bf97589a6d9825a349b4729cc2/numpy-2.3.3-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:179a42101b845a816d464b6fe9a845dfaf308fdfc7925387195570789bb2c970", size = 18652520, upload-time = "2025-09-09T15:58:33.762Z" }, + { url = "https://files.pythonhosted.org/packages/fd/c2/e5ed830e08cd0196351db55db82f65bc0ab05da6ef2b72a836dcf1936d2f/numpy-2.3.3-cp314-cp314t-win32.whl", hash = "sha256:1250c5d3d2562ec4174bce2e3a1523041595f9b651065e4a4473f5f48a6bc8a5", size = 6515371, upload-time = "2025-09-09T15:58:36.04Z" }, + { url = "https://files.pythonhosted.org/packages/47/c7/b0f6b5b67f6788a0725f744496badbb604d226bf233ba716683ebb47b570/numpy-2.3.3-cp314-cp314t-win_amd64.whl", hash = "sha256:b37a0b2e5935409daebe82c1e42274d30d9dd355852529eab91dab8dcca7419f", size = 13112576, upload-time = "2025-09-09T15:58:37.927Z" }, + { url = "https://files.pythonhosted.org/packages/06/b9/33bba5ff6fb679aa0b1f8a07e853f002a6b04b9394db3069a1270a7784ca/numpy-2.3.3-cp314-cp314t-win_arm64.whl", hash = "sha256:78c9f6560dc7e6b3990e32df7ea1a50bbd0e2a111e05209963f5ddcab7073b0b", size = 10545953, upload-time = "2025-09-09T15:58:40.576Z" }, +] + [[package]] name = "packaging" version = "25.0" @@ -350,6 +904,49 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/20/12/38679034af332785aac8774540895e234f4d07f7545804097de4b666afd8/packaging-25.0-py3-none-any.whl", hash = "sha256:29572ef2b1f17581046b3a2227d5c611fb25ec70ca1ba8554b24b0e69331a484", size = 66469, upload-time = "2025-04-19T11:48:57.875Z" }, ] +[[package]] +name = "pandas" +version = "2.3.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "numpy" }, + { name = "python-dateutil" }, + { name = "pytz" }, + { name = "tzdata" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/79/8e/0e90233ac205ad182bd6b422532695d2b9414944a280488105d598c70023/pandas-2.3.2.tar.gz", hash = "sha256:ab7b58f8f82706890924ccdfb5f48002b83d2b5a3845976a9fb705d36c34dcdb", size = 4488684, upload-time = "2025-08-21T10:28:29.257Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ec/db/614c20fb7a85a14828edd23f1c02db58a30abf3ce76f38806155d160313c/pandas-2.3.2-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:3fbb977f802156e7a3f829e9d1d5398f6192375a3e2d1a9ee0803e35fe70a2b9", size = 11587652, upload-time = "2025-08-21T10:27:15.888Z" }, + { url = "https://files.pythonhosted.org/packages/99/b0/756e52f6582cade5e746f19bad0517ff27ba9c73404607c0306585c201b3/pandas-2.3.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:1b9b52693123dd234b7c985c68b709b0b009f4521000d0525f2b95c22f15944b", size = 10717686, upload-time = "2025-08-21T10:27:18.486Z" }, + { url = "https://files.pythonhosted.org/packages/37/4c/dd5ccc1e357abfeee8353123282de17997f90ff67855f86154e5a13b81e5/pandas-2.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0bd281310d4f412733f319a5bc552f86d62cddc5f51d2e392c8787335c994175", size = 11278722, upload-time = "2025-08-21T10:27:21.149Z" }, + { url = "https://files.pythonhosted.org/packages/d3/a4/f7edcfa47e0a88cda0be8b068a5bae710bf264f867edfdf7b71584ace362/pandas-2.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:96d31a6b4354e3b9b8a2c848af75d31da390657e3ac6f30c05c82068b9ed79b9", size = 11987803, upload-time = "2025-08-21T10:27:23.767Z" }, + { url = "https://files.pythonhosted.org/packages/f6/61/1bce4129f93ab66f1c68b7ed1c12bac6a70b1b56c5dab359c6bbcd480b52/pandas-2.3.2-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:df4df0b9d02bb873a106971bb85d448378ef14b86ba96f035f50bbd3688456b4", size = 12766345, upload-time = "2025-08-21T10:27:26.6Z" }, + { url = "https://files.pythonhosted.org/packages/8e/46/80d53de70fee835531da3a1dae827a1e76e77a43ad22a8cd0f8142b61587/pandas-2.3.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:213a5adf93d020b74327cb2c1b842884dbdd37f895f42dcc2f09d451d949f811", size = 13439314, upload-time = "2025-08-21T10:27:29.213Z" }, + { url = "https://files.pythonhosted.org/packages/28/30/8114832daff7489f179971dbc1d854109b7f4365a546e3ea75b6516cea95/pandas-2.3.2-cp312-cp312-win_amd64.whl", hash = "sha256:8c13b81a9347eb8c7548f53fd9a4f08d4dfe996836543f805c987bafa03317ae", size = 10983326, upload-time = "2025-08-21T10:27:31.901Z" }, + { url = "https://files.pythonhosted.org/packages/27/64/a2f7bf678af502e16b472527735d168b22b7824e45a4d7e96a4fbb634b59/pandas-2.3.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:0c6ecbac99a354a051ef21c5307601093cb9e0f4b1855984a084bfec9302699e", size = 11531061, upload-time = "2025-08-21T10:27:34.647Z" }, + { url = "https://files.pythonhosted.org/packages/54/4c/c3d21b2b7769ef2f4c2b9299fcadd601efa6729f1357a8dbce8dd949ed70/pandas-2.3.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:c6f048aa0fd080d6a06cc7e7537c09b53be6642d330ac6f54a600c3ace857ee9", size = 10668666, upload-time = "2025-08-21T10:27:37.203Z" }, + { url = "https://files.pythonhosted.org/packages/50/e2/f775ba76ecfb3424d7f5862620841cf0edb592e9abd2d2a5387d305fe7a8/pandas-2.3.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0064187b80a5be6f2f9c9d6bdde29372468751dfa89f4211a3c5871854cfbf7a", size = 11332835, upload-time = "2025-08-21T10:27:40.188Z" }, + { url = "https://files.pythonhosted.org/packages/8f/52/0634adaace9be2d8cac9ef78f05c47f3a675882e068438b9d7ec7ef0c13f/pandas-2.3.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4ac8c320bded4718b298281339c1a50fb00a6ba78cb2a63521c39bec95b0209b", size = 12057211, upload-time = "2025-08-21T10:27:43.117Z" }, + { url = "https://files.pythonhosted.org/packages/0b/9d/2df913f14b2deb9c748975fdb2491da1a78773debb25abbc7cbc67c6b549/pandas-2.3.2-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:114c2fe4f4328cf98ce5716d1532f3ab79c5919f95a9cfee81d9140064a2e4d6", size = 12749277, upload-time = "2025-08-21T10:27:45.474Z" }, + { url = "https://files.pythonhosted.org/packages/87/af/da1a2417026bd14d98c236dba88e39837182459d29dcfcea510b2ac9e8a1/pandas-2.3.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:48fa91c4dfb3b2b9bfdb5c24cd3567575f4e13f9636810462ffed8925352be5a", size = 13415256, upload-time = "2025-08-21T10:27:49.885Z" }, + { url = "https://files.pythonhosted.org/packages/22/3c/f2af1ce8840ef648584a6156489636b5692c162771918aa95707c165ad2b/pandas-2.3.2-cp313-cp313-win_amd64.whl", hash = "sha256:12d039facec710f7ba305786837d0225a3444af7bbd9c15c32ca2d40d157ed8b", size = 10982579, upload-time = "2025-08-21T10:28:08.435Z" }, + { url = "https://files.pythonhosted.org/packages/f3/98/8df69c4097a6719e357dc249bf437b8efbde808038268e584421696cbddf/pandas-2.3.2-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:c624b615ce97864eb588779ed4046186f967374185c047070545253a52ab2d57", size = 12028163, upload-time = "2025-08-21T10:27:52.232Z" }, + { url = "https://files.pythonhosted.org/packages/0e/23/f95cbcbea319f349e10ff90db488b905c6883f03cbabd34f6b03cbc3c044/pandas-2.3.2-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:0cee69d583b9b128823d9514171cabb6861e09409af805b54459bd0c821a35c2", size = 11391860, upload-time = "2025-08-21T10:27:54.673Z" }, + { url = "https://files.pythonhosted.org/packages/ad/1b/6a984e98c4abee22058aa75bfb8eb90dce58cf8d7296f8bc56c14bc330b0/pandas-2.3.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2319656ed81124982900b4c37f0e0c58c015af9a7bbc62342ba5ad07ace82ba9", size = 11309830, upload-time = "2025-08-21T10:27:56.957Z" }, + { url = "https://files.pythonhosted.org/packages/15/d5/f0486090eb18dd8710bf60afeaf638ba6817047c0c8ae5c6a25598665609/pandas-2.3.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b37205ad6f00d52f16b6d09f406434ba928c1a1966e2771006a9033c736d30d2", size = 11883216, upload-time = "2025-08-21T10:27:59.302Z" }, + { url = "https://files.pythonhosted.org/packages/10/86/692050c119696da19e20245bbd650d8dfca6ceb577da027c3a73c62a047e/pandas-2.3.2-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:837248b4fc3a9b83b9c6214699a13f069dc13510a6a6d7f9ba33145d2841a012", size = 12699743, upload-time = "2025-08-21T10:28:02.447Z" }, + { url = "https://files.pythonhosted.org/packages/cd/d7/612123674d7b17cf345aad0a10289b2a384bff404e0463a83c4a3a59d205/pandas-2.3.2-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:d2c3554bd31b731cd6490d94a28f3abb8dd770634a9e06eb6d2911b9827db370", size = 13186141, upload-time = "2025-08-21T10:28:05.377Z" }, +] + +[[package]] +name = "parso" +version = "0.8.5" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/d4/de/53e0bcf53d13e005bd8c92e7855142494f41171b34c2536b86187474184d/parso-0.8.5.tar.gz", hash = "sha256:034d7354a9a018bdce352f48b2a8a450f05e9d6ee85db84764e9b6bd96dafe5a", size = 401205, upload-time = "2025-08-23T15:15:28.028Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/16/32/f8e3c85d1d5250232a5d3477a2a28cc291968ff175caeadaf3cc19ce0e4a/parso-0.8.5-py2.py3-none-any.whl", hash = "sha256:646204b5ee239c396d040b90f9e272e9a8017c630092bf59980beb62fd033887", size = 106668, upload-time = "2025-08-23T15:15:25.663Z" }, +] + [[package]] name = "passlib" version = "1.7.4" @@ -368,6 +965,93 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/cc/20/ff623b09d963f88bfde16306a54e12ee5ea43e9b597108672ff3a408aad6/pathspec-0.12.1-py3-none-any.whl", hash = "sha256:a0d503e138a4c123b27490a4f7beda6a01c6f288df0e4a8b79c7eb0dc7b4cc08", size = 31191, upload-time = "2023-12-10T22:30:43.14Z" }, ] +[[package]] +name = "pexpect" +version = "4.9.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "ptyprocess" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/42/92/cc564bf6381ff43ce1f4d06852fc19a2f11d180f23dc32d9588bee2f149d/pexpect-4.9.0.tar.gz", hash = "sha256:ee7d41123f3c9911050ea2c2dac107568dc43b2d3b0c7557a33212c398ead30f", size = 166450, upload-time = "2023-11-25T09:07:26.339Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/9e/c3/059298687310d527a58bb01f3b1965787ee3b40dce76752eda8b44e9a2c5/pexpect-4.9.0-py2.py3-none-any.whl", hash = "sha256:7236d1e080e4936be2dc3e326cec0af72acf9212a7e1d060210e70a47e253523", size = 63772, upload-time = "2023-11-25T06:56:14.81Z" }, +] + +[[package]] +name = "pillow" +version = "11.3.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/f3/0d/d0d6dea55cd152ce3d6767bb38a8fc10e33796ba4ba210cbab9354b6d238/pillow-11.3.0.tar.gz", hash = "sha256:3828ee7586cd0b2091b6209e5ad53e20d0649bbe87164a459d0676e035e8f523", size = 47113069, upload-time = "2025-07-01T09:16:30.666Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/40/fe/1bc9b3ee13f68487a99ac9529968035cca2f0a51ec36892060edcc51d06a/pillow-11.3.0-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:fdae223722da47b024b867c1ea0be64e0df702c5e0a60e27daad39bf960dd1e4", size = 5278800, upload-time = "2025-07-01T09:14:17.648Z" }, + { url = "https://files.pythonhosted.org/packages/2c/32/7e2ac19b5713657384cec55f89065fb306b06af008cfd87e572035b27119/pillow-11.3.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:921bd305b10e82b4d1f5e802b6850677f965d8394203d182f078873851dada69", size = 4686296, upload-time = "2025-07-01T09:14:19.828Z" }, + { url = "https://files.pythonhosted.org/packages/8e/1e/b9e12bbe6e4c2220effebc09ea0923a07a6da1e1f1bfbc8d7d29a01ce32b/pillow-11.3.0-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:eb76541cba2f958032d79d143b98a3a6b3ea87f0959bbe256c0b5e416599fd5d", size = 5871726, upload-time = "2025-07-03T13:10:04.448Z" }, + { url = "https://files.pythonhosted.org/packages/8d/33/e9200d2bd7ba00dc3ddb78df1198a6e80d7669cce6c2bdbeb2530a74ec58/pillow-11.3.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:67172f2944ebba3d4a7b54f2e95c786a3a50c21b88456329314caaa28cda70f6", size = 7644652, upload-time = "2025-07-03T13:10:10.391Z" }, + { url = "https://files.pythonhosted.org/packages/41/f1/6f2427a26fc683e00d985bc391bdd76d8dd4e92fac33d841127eb8fb2313/pillow-11.3.0-cp312-cp312-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:97f07ed9f56a3b9b5f49d3661dc9607484e85c67e27f3e8be2c7d28ca032fec7", size = 5977787, upload-time = "2025-07-01T09:14:21.63Z" }, + { url = "https://files.pythonhosted.org/packages/e4/c9/06dd4a38974e24f932ff5f98ea3c546ce3f8c995d3f0985f8e5ba48bba19/pillow-11.3.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:676b2815362456b5b3216b4fd5bd89d362100dc6f4945154ff172e206a22c024", size = 6645236, upload-time = "2025-07-01T09:14:23.321Z" }, + { url = "https://files.pythonhosted.org/packages/40/e7/848f69fb79843b3d91241bad658e9c14f39a32f71a301bcd1d139416d1be/pillow-11.3.0-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:3e184b2f26ff146363dd07bde8b711833d7b0202e27d13540bfe2e35a323a809", size = 6086950, upload-time = "2025-07-01T09:14:25.237Z" }, + { url = "https://files.pythonhosted.org/packages/0b/1a/7cff92e695a2a29ac1958c2a0fe4c0b2393b60aac13b04a4fe2735cad52d/pillow-11.3.0-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:6be31e3fc9a621e071bc17bb7de63b85cbe0bfae91bb0363c893cbe67247780d", size = 6723358, upload-time = "2025-07-01T09:14:27.053Z" }, + { url = "https://files.pythonhosted.org/packages/26/7d/73699ad77895f69edff76b0f332acc3d497f22f5d75e5360f78cbcaff248/pillow-11.3.0-cp312-cp312-win32.whl", hash = "sha256:7b161756381f0918e05e7cb8a371fff367e807770f8fe92ecb20d905d0e1c149", size = 6275079, upload-time = "2025-07-01T09:14:30.104Z" }, + { url = "https://files.pythonhosted.org/packages/8c/ce/e7dfc873bdd9828f3b6e5c2bbb74e47a98ec23cc5c74fc4e54462f0d9204/pillow-11.3.0-cp312-cp312-win_amd64.whl", hash = "sha256:a6444696fce635783440b7f7a9fc24b3ad10a9ea3f0ab66c5905be1c19ccf17d", size = 6986324, upload-time = "2025-07-01T09:14:31.899Z" }, + { url = "https://files.pythonhosted.org/packages/16/8f/b13447d1bf0b1f7467ce7d86f6e6edf66c0ad7cf44cf5c87a37f9bed9936/pillow-11.3.0-cp312-cp312-win_arm64.whl", hash = "sha256:2aceea54f957dd4448264f9bf40875da0415c83eb85f55069d89c0ed436e3542", size = 2423067, upload-time = "2025-07-01T09:14:33.709Z" }, + { url = "https://files.pythonhosted.org/packages/1e/93/0952f2ed8db3a5a4c7a11f91965d6184ebc8cd7cbb7941a260d5f018cd2d/pillow-11.3.0-cp313-cp313-ios_13_0_arm64_iphoneos.whl", hash = "sha256:1c627742b539bba4309df89171356fcb3cc5a9178355b2727d1b74a6cf155fbd", size = 2128328, upload-time = "2025-07-01T09:14:35.276Z" }, + { url = "https://files.pythonhosted.org/packages/4b/e8/100c3d114b1a0bf4042f27e0f87d2f25e857e838034e98ca98fe7b8c0a9c/pillow-11.3.0-cp313-cp313-ios_13_0_arm64_iphonesimulator.whl", hash = "sha256:30b7c02f3899d10f13d7a48163c8969e4e653f8b43416d23d13d1bbfdc93b9f8", size = 2170652, upload-time = "2025-07-01T09:14:37.203Z" }, + { url = "https://files.pythonhosted.org/packages/aa/86/3f758a28a6e381758545f7cdb4942e1cb79abd271bea932998fc0db93cb6/pillow-11.3.0-cp313-cp313-ios_13_0_x86_64_iphonesimulator.whl", hash = "sha256:7859a4cc7c9295f5838015d8cc0a9c215b77e43d07a25e460f35cf516df8626f", size = 2227443, upload-time = "2025-07-01T09:14:39.344Z" }, + { url = "https://files.pythonhosted.org/packages/01/f4/91d5b3ffa718df2f53b0dc109877993e511f4fd055d7e9508682e8aba092/pillow-11.3.0-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:ec1ee50470b0d050984394423d96325b744d55c701a439d2bd66089bff963d3c", size = 5278474, upload-time = "2025-07-01T09:14:41.843Z" }, + { url = "https://files.pythonhosted.org/packages/f9/0e/37d7d3eca6c879fbd9dba21268427dffda1ab00d4eb05b32923d4fbe3b12/pillow-11.3.0-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:7db51d222548ccfd274e4572fdbf3e810a5e66b00608862f947b163e613b67dd", size = 4686038, upload-time = "2025-07-01T09:14:44.008Z" }, + { url = "https://files.pythonhosted.org/packages/ff/b0/3426e5c7f6565e752d81221af9d3676fdbb4f352317ceafd42899aaf5d8a/pillow-11.3.0-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:2d6fcc902a24ac74495df63faad1884282239265c6839a0a6416d33faedfae7e", size = 5864407, upload-time = "2025-07-03T13:10:15.628Z" }, + { url = "https://files.pythonhosted.org/packages/fc/c1/c6c423134229f2a221ee53f838d4be9d82bab86f7e2f8e75e47b6bf6cd77/pillow-11.3.0-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:f0f5d8f4a08090c6d6d578351a2b91acf519a54986c055af27e7a93feae6d3f1", size = 7639094, upload-time = "2025-07-03T13:10:21.857Z" }, + { url = "https://files.pythonhosted.org/packages/ba/c9/09e6746630fe6372c67c648ff9deae52a2bc20897d51fa293571977ceb5d/pillow-11.3.0-cp313-cp313-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:c37d8ba9411d6003bba9e518db0db0c58a680ab9fe5179f040b0463644bc9805", size = 5973503, upload-time = "2025-07-01T09:14:45.698Z" }, + { url = "https://files.pythonhosted.org/packages/d5/1c/a2a29649c0b1983d3ef57ee87a66487fdeb45132df66ab30dd37f7dbe162/pillow-11.3.0-cp313-cp313-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:13f87d581e71d9189ab21fe0efb5a23e9f28552d5be6979e84001d3b8505abe8", size = 6642574, upload-time = "2025-07-01T09:14:47.415Z" }, + { url = "https://files.pythonhosted.org/packages/36/de/d5cc31cc4b055b6c6fd990e3e7f0f8aaf36229a2698501bcb0cdf67c7146/pillow-11.3.0-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:023f6d2d11784a465f09fd09a34b150ea4672e85fb3d05931d89f373ab14abb2", size = 6084060, upload-time = "2025-07-01T09:14:49.636Z" }, + { url = "https://files.pythonhosted.org/packages/d5/ea/502d938cbaeec836ac28a9b730193716f0114c41325db428e6b280513f09/pillow-11.3.0-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:45dfc51ac5975b938e9809451c51734124e73b04d0f0ac621649821a63852e7b", size = 6721407, upload-time = "2025-07-01T09:14:51.962Z" }, + { url = "https://files.pythonhosted.org/packages/45/9c/9c5e2a73f125f6cbc59cc7087c8f2d649a7ae453f83bd0362ff7c9e2aee2/pillow-11.3.0-cp313-cp313-win32.whl", hash = "sha256:a4d336baed65d50d37b88ca5b60c0fa9d81e3a87d4a7930d3880d1624d5b31f3", size = 6273841, upload-time = "2025-07-01T09:14:54.142Z" }, + { url = "https://files.pythonhosted.org/packages/23/85/397c73524e0cd212067e0c969aa245b01d50183439550d24d9f55781b776/pillow-11.3.0-cp313-cp313-win_amd64.whl", hash = "sha256:0bce5c4fd0921f99d2e858dc4d4d64193407e1b99478bc5cacecba2311abde51", size = 6978450, upload-time = "2025-07-01T09:14:56.436Z" }, + { url = "https://files.pythonhosted.org/packages/17/d2/622f4547f69cd173955194b78e4d19ca4935a1b0f03a302d655c9f6aae65/pillow-11.3.0-cp313-cp313-win_arm64.whl", hash = "sha256:1904e1264881f682f02b7f8167935cce37bc97db457f8e7849dc3a6a52b99580", size = 2423055, upload-time = "2025-07-01T09:14:58.072Z" }, + { url = "https://files.pythonhosted.org/packages/dd/80/a8a2ac21dda2e82480852978416cfacd439a4b490a501a288ecf4fe2532d/pillow-11.3.0-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:4c834a3921375c48ee6b9624061076bc0a32a60b5532b322cc0ea64e639dd50e", size = 5281110, upload-time = "2025-07-01T09:14:59.79Z" }, + { url = "https://files.pythonhosted.org/packages/44/d6/b79754ca790f315918732e18f82a8146d33bcd7f4494380457ea89eb883d/pillow-11.3.0-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:5e05688ccef30ea69b9317a9ead994b93975104a677a36a8ed8106be9260aa6d", size = 4689547, upload-time = "2025-07-01T09:15:01.648Z" }, + { url = "https://files.pythonhosted.org/packages/49/20/716b8717d331150cb00f7fdd78169c01e8e0c219732a78b0e59b6bdb2fd6/pillow-11.3.0-cp313-cp313t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:1019b04af07fc0163e2810167918cb5add8d74674b6267616021ab558dc98ced", size = 5901554, upload-time = "2025-07-03T13:10:27.018Z" }, + { url = "https://files.pythonhosted.org/packages/74/cf/a9f3a2514a65bb071075063a96f0a5cf949c2f2fce683c15ccc83b1c1cab/pillow-11.3.0-cp313-cp313t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:f944255db153ebb2b19c51fe85dd99ef0ce494123f21b9db4877ffdfc5590c7c", size = 7669132, upload-time = "2025-07-03T13:10:33.01Z" }, + { url = "https://files.pythonhosted.org/packages/98/3c/da78805cbdbee9cb43efe8261dd7cc0b4b93f2ac79b676c03159e9db2187/pillow-11.3.0-cp313-cp313t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:1f85acb69adf2aaee8b7da124efebbdb959a104db34d3a2cb0f3793dbae422a8", size = 6005001, upload-time = "2025-07-01T09:15:03.365Z" }, + { url = "https://files.pythonhosted.org/packages/6c/fa/ce044b91faecf30e635321351bba32bab5a7e034c60187fe9698191aef4f/pillow-11.3.0-cp313-cp313t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:05f6ecbeff5005399bb48d198f098a9b4b6bdf27b8487c7f38ca16eeb070cd59", size = 6668814, upload-time = "2025-07-01T09:15:05.655Z" }, + { url = "https://files.pythonhosted.org/packages/7b/51/90f9291406d09bf93686434f9183aba27b831c10c87746ff49f127ee80cb/pillow-11.3.0-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:a7bc6e6fd0395bc052f16b1a8670859964dbd7003bd0af2ff08342eb6e442cfe", size = 6113124, upload-time = "2025-07-01T09:15:07.358Z" }, + { url = "https://files.pythonhosted.org/packages/cd/5a/6fec59b1dfb619234f7636d4157d11fb4e196caeee220232a8d2ec48488d/pillow-11.3.0-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:83e1b0161c9d148125083a35c1c5a89db5b7054834fd4387499e06552035236c", size = 6747186, upload-time = "2025-07-01T09:15:09.317Z" }, + { url = "https://files.pythonhosted.org/packages/49/6b/00187a044f98255225f172de653941e61da37104a9ea60e4f6887717e2b5/pillow-11.3.0-cp313-cp313t-win32.whl", hash = "sha256:2a3117c06b8fb646639dce83694f2f9eac405472713fcb1ae887469c0d4f6788", size = 6277546, upload-time = "2025-07-01T09:15:11.311Z" }, + { url = "https://files.pythonhosted.org/packages/e8/5c/6caaba7e261c0d75bab23be79f1d06b5ad2a2ae49f028ccec801b0e853d6/pillow-11.3.0-cp313-cp313t-win_amd64.whl", hash = "sha256:857844335c95bea93fb39e0fa2726b4d9d758850b34075a7e3ff4f4fa3aa3b31", size = 6985102, upload-time = "2025-07-01T09:15:13.164Z" }, + { url = "https://files.pythonhosted.org/packages/f3/7e/b623008460c09a0cb38263c93b828c666493caee2eb34ff67f778b87e58c/pillow-11.3.0-cp313-cp313t-win_arm64.whl", hash = "sha256:8797edc41f3e8536ae4b10897ee2f637235c94f27404cac7297f7b607dd0716e", size = 2424803, upload-time = "2025-07-01T09:15:15.695Z" }, + { url = "https://files.pythonhosted.org/packages/73/f4/04905af42837292ed86cb1b1dabe03dce1edc008ef14c473c5c7e1443c5d/pillow-11.3.0-cp314-cp314-macosx_10_13_x86_64.whl", hash = "sha256:d9da3df5f9ea2a89b81bb6087177fb1f4d1c7146d583a3fe5c672c0d94e55e12", size = 5278520, upload-time = "2025-07-01T09:15:17.429Z" }, + { url = "https://files.pythonhosted.org/packages/41/b0/33d79e377a336247df6348a54e6d2a2b85d644ca202555e3faa0cf811ecc/pillow-11.3.0-cp314-cp314-macosx_11_0_arm64.whl", hash = "sha256:0b275ff9b04df7b640c59ec5a3cb113eefd3795a8df80bac69646ef699c6981a", size = 4686116, upload-time = "2025-07-01T09:15:19.423Z" }, + { url = "https://files.pythonhosted.org/packages/49/2d/ed8bc0ab219ae8768f529597d9509d184fe8a6c4741a6864fea334d25f3f/pillow-11.3.0-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:0743841cabd3dba6a83f38a92672cccbd69af56e3e91777b0ee7f4dba4385632", size = 5864597, upload-time = "2025-07-03T13:10:38.404Z" }, + { url = "https://files.pythonhosted.org/packages/b5/3d/b932bb4225c80b58dfadaca9d42d08d0b7064d2d1791b6a237f87f661834/pillow-11.3.0-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:2465a69cf967b8b49ee1b96d76718cd98c4e925414ead59fdf75cf0fd07df673", size = 7638246, upload-time = "2025-07-03T13:10:44.987Z" }, + { url = "https://files.pythonhosted.org/packages/09/b5/0487044b7c096f1b48f0d7ad416472c02e0e4bf6919541b111efd3cae690/pillow-11.3.0-cp314-cp314-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:41742638139424703b4d01665b807c6468e23e699e8e90cffefe291c5832b027", size = 5973336, upload-time = "2025-07-01T09:15:21.237Z" }, + { url = "https://files.pythonhosted.org/packages/a8/2d/524f9318f6cbfcc79fbc004801ea6b607ec3f843977652fdee4857a7568b/pillow-11.3.0-cp314-cp314-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:93efb0b4de7e340d99057415c749175e24c8864302369e05914682ba642e5d77", size = 6642699, upload-time = "2025-07-01T09:15:23.186Z" }, + { url = "https://files.pythonhosted.org/packages/6f/d2/a9a4f280c6aefedce1e8f615baaa5474e0701d86dd6f1dede66726462bbd/pillow-11.3.0-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:7966e38dcd0fa11ca390aed7c6f20454443581d758242023cf36fcb319b1a874", size = 6083789, upload-time = "2025-07-01T09:15:25.1Z" }, + { url = "https://files.pythonhosted.org/packages/fe/54/86b0cd9dbb683a9d5e960b66c7379e821a19be4ac5810e2e5a715c09a0c0/pillow-11.3.0-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:98a9afa7b9007c67ed84c57c9e0ad86a6000da96eaa638e4f8abe5b65ff83f0a", size = 6720386, upload-time = "2025-07-01T09:15:27.378Z" }, + { url = "https://files.pythonhosted.org/packages/e7/95/88efcaf384c3588e24259c4203b909cbe3e3c2d887af9e938c2022c9dd48/pillow-11.3.0-cp314-cp314-win32.whl", hash = "sha256:02a723e6bf909e7cea0dac1b0e0310be9d7650cd66222a5f1c571455c0a45214", size = 6370911, upload-time = "2025-07-01T09:15:29.294Z" }, + { url = "https://files.pythonhosted.org/packages/2e/cc/934e5820850ec5eb107e7b1a72dd278140731c669f396110ebc326f2a503/pillow-11.3.0-cp314-cp314-win_amd64.whl", hash = "sha256:a418486160228f64dd9e9efcd132679b7a02a5f22c982c78b6fc7dab3fefb635", size = 7117383, upload-time = "2025-07-01T09:15:31.128Z" }, + { url = "https://files.pythonhosted.org/packages/d6/e9/9c0a616a71da2a5d163aa37405e8aced9a906d574b4a214bede134e731bc/pillow-11.3.0-cp314-cp314-win_arm64.whl", hash = "sha256:155658efb5e044669c08896c0c44231c5e9abcaadbc5cd3648df2f7c0b96b9a6", size = 2511385, upload-time = "2025-07-01T09:15:33.328Z" }, + { url = "https://files.pythonhosted.org/packages/1a/33/c88376898aff369658b225262cd4f2659b13e8178e7534df9e6e1fa289f6/pillow-11.3.0-cp314-cp314t-macosx_10_13_x86_64.whl", hash = "sha256:59a03cdf019efbfeeed910bf79c7c93255c3d54bc45898ac2a4140071b02b4ae", size = 5281129, upload-time = "2025-07-01T09:15:35.194Z" }, + { url = "https://files.pythonhosted.org/packages/1f/70/d376247fb36f1844b42910911c83a02d5544ebd2a8bad9efcc0f707ea774/pillow-11.3.0-cp314-cp314t-macosx_11_0_arm64.whl", hash = "sha256:f8a5827f84d973d8636e9dc5764af4f0cf2318d26744b3d902931701b0d46653", size = 4689580, upload-time = "2025-07-01T09:15:37.114Z" }, + { url = "https://files.pythonhosted.org/packages/eb/1c/537e930496149fbac69efd2fc4329035bbe2e5475b4165439e3be9cb183b/pillow-11.3.0-cp314-cp314t-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:ee92f2fd10f4adc4b43d07ec5e779932b4eb3dbfbc34790ada5a6669bc095aa6", size = 5902860, upload-time = "2025-07-03T13:10:50.248Z" }, + { url = "https://files.pythonhosted.org/packages/bd/57/80f53264954dcefeebcf9dae6e3eb1daea1b488f0be8b8fef12f79a3eb10/pillow-11.3.0-cp314-cp314t-manylinux2014_x86_64.manylinux_2_17_x86_64.whl", hash = "sha256:c96d333dcf42d01f47b37e0979b6bd73ec91eae18614864622d9b87bbd5bbf36", size = 7670694, upload-time = "2025-07-03T13:10:56.432Z" }, + { url = "https://files.pythonhosted.org/packages/70/ff/4727d3b71a8578b4587d9c276e90efad2d6fe0335fd76742a6da08132e8c/pillow-11.3.0-cp314-cp314t-manylinux_2_27_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:4c96f993ab8c98460cd0c001447bff6194403e8b1d7e149ade5f00594918128b", size = 6005888, upload-time = "2025-07-01T09:15:39.436Z" }, + { url = "https://files.pythonhosted.org/packages/05/ae/716592277934f85d3be51d7256f3636672d7b1abfafdc42cf3f8cbd4b4c8/pillow-11.3.0-cp314-cp314t-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:41342b64afeba938edb034d122b2dda5db2139b9a4af999729ba8818e0056477", size = 6670330, upload-time = "2025-07-01T09:15:41.269Z" }, + { url = "https://files.pythonhosted.org/packages/e7/bb/7fe6cddcc8827b01b1a9766f5fdeb7418680744f9082035bdbabecf1d57f/pillow-11.3.0-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:068d9c39a2d1b358eb9f245ce7ab1b5c3246c7c8c7d9ba58cfa5b43146c06e50", size = 6114089, upload-time = "2025-07-01T09:15:43.13Z" }, + { url = "https://files.pythonhosted.org/packages/8b/f5/06bfaa444c8e80f1a8e4bff98da9c83b37b5be3b1deaa43d27a0db37ef84/pillow-11.3.0-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:a1bc6ba083b145187f648b667e05a2534ecc4b9f2784c2cbe3089e44868f2b9b", size = 6748206, upload-time = "2025-07-01T09:15:44.937Z" }, + { url = "https://files.pythonhosted.org/packages/f0/77/bc6f92a3e8e6e46c0ca78abfffec0037845800ea38c73483760362804c41/pillow-11.3.0-cp314-cp314t-win32.whl", hash = "sha256:118ca10c0d60b06d006be10a501fd6bbdfef559251ed31b794668ed569c87e12", size = 6377370, upload-time = "2025-07-01T09:15:46.673Z" }, + { url = "https://files.pythonhosted.org/packages/4a/82/3a721f7d69dca802befb8af08b7c79ebcab461007ce1c18bd91a5d5896f9/pillow-11.3.0-cp314-cp314t-win_amd64.whl", hash = "sha256:8924748b688aa210d79883357d102cd64690e56b923a186f35a82cbc10f997db", size = 7121500, upload-time = "2025-07-01T09:15:48.512Z" }, + { url = "https://files.pythonhosted.org/packages/89/c7/5572fa4a3f45740eaab6ae86fcdf7195b55beac1371ac8c619d880cfe948/pillow-11.3.0-cp314-cp314t-win_arm64.whl", hash = "sha256:79ea0d14d3ebad43ec77ad5272e6ff9bba5b679ef73375ea760261207fa8e0aa", size = 2512835, upload-time = "2025-07-01T09:15:50.399Z" }, +] + +[[package]] +name = "platformdirs" +version = "4.4.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/23/e8/21db9c9987b0e728855bd57bff6984f67952bea55d6f75e055c46b5383e8/platformdirs-4.4.0.tar.gz", hash = "sha256:ca753cf4d81dc309bc67b0ea38fd15dc97bc30ce419a7f58d13eb3bf14c4febf", size = 21634, upload-time = "2025-08-26T14:32:04.268Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/40/4b/2028861e724d3bd36227adfa20d3fd24c3fc6d52032f4a93c133be5d17ce/platformdirs-4.4.0-py3-none-any.whl", hash = "sha256:abd01743f24e5287cd7a5db3752faf1a2d65353f38ec26d98e25a6db65958c85", size = 18654, upload-time = "2025-08-26T14:32:02.735Z" }, +] + [[package]] name = "pluggy" version = "1.6.0" @@ -377,6 +1061,51 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/54/20/4d324d65cc6d9205fabedc306948156824eb9f0ee1633355a8f7ec5c66bf/pluggy-1.6.0-py3-none-any.whl", hash = "sha256:e920276dd6813095e9377c0bc5566d94c932c33b27a3e3945d8389c374dd4746", size = 20538, upload-time = "2025-05-15T12:30:06.134Z" }, ] +[[package]] +name = "prompt-toolkit" +version = "3.0.52" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "wcwidth" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/a1/96/06e01a7b38dce6fe1db213e061a4602dd6032a8a97ef6c1a862537732421/prompt_toolkit-3.0.52.tar.gz", hash = "sha256:28cde192929c8e7321de85de1ddbe736f1375148b02f2e17edd840042b1be855", size = 434198, upload-time = "2025-08-27T15:24:02.057Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/84/03/0d3ce49e2505ae70cf43bc5bb3033955d2fc9f932163e84dc0779cc47f48/prompt_toolkit-3.0.52-py3-none-any.whl", hash = "sha256:9aac639a3bbd33284347de5ad8d68ecc044b91a762dc39b7c21095fcd6a19955", size = 391431, upload-time = "2025-08-27T15:23:59.498Z" }, +] + +[[package]] +name = "psutil" +version = "7.0.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/2a/80/336820c1ad9286a4ded7e845b2eccfcb27851ab8ac6abece774a6ff4d3de/psutil-7.0.0.tar.gz", hash = "sha256:7be9c3eba38beccb6495ea33afd982a44074b78f28c434a1f51cc07fd315c456", size = 497003, upload-time = "2025-02-13T21:54:07.946Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ed/e6/2d26234410f8b8abdbf891c9da62bee396583f713fb9f3325a4760875d22/psutil-7.0.0-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:101d71dc322e3cffd7cea0650b09b3d08b8e7c4109dd6809fe452dfd00e58b25", size = 238051, upload-time = "2025-02-13T21:54:12.36Z" }, + { url = "https://files.pythonhosted.org/packages/04/8b/30f930733afe425e3cbfc0e1468a30a18942350c1a8816acfade80c005c4/psutil-7.0.0-cp36-abi3-macosx_11_0_arm64.whl", hash = "sha256:39db632f6bb862eeccf56660871433e111b6ea58f2caea825571951d4b6aa3da", size = 239535, upload-time = "2025-02-13T21:54:16.07Z" }, + { url = "https://files.pythonhosted.org/packages/2a/ed/d362e84620dd22876b55389248e522338ed1bf134a5edd3b8231d7207f6d/psutil-7.0.0-cp36-abi3-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1fcee592b4c6f146991ca55919ea3d1f8926497a713ed7faaf8225e174581e91", size = 275004, upload-time = "2025-02-13T21:54:18.662Z" }, + { url = "https://files.pythonhosted.org/packages/bf/b9/b0eb3f3cbcb734d930fdf839431606844a825b23eaf9a6ab371edac8162c/psutil-7.0.0-cp36-abi3-manylinux_2_12_x86_64.manylinux2010_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4b1388a4f6875d7e2aff5c4ca1cc16c545ed41dd8bb596cefea80111db353a34", size = 277986, upload-time = "2025-02-13T21:54:21.811Z" }, + { url = "https://files.pythonhosted.org/packages/eb/a2/709e0fe2f093556c17fbafda93ac032257242cabcc7ff3369e2cb76a97aa/psutil-7.0.0-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5f098451abc2828f7dc6b58d44b532b22f2088f4999a937557b603ce72b1993", size = 279544, upload-time = "2025-02-13T21:54:24.68Z" }, + { url = "https://files.pythonhosted.org/packages/50/e6/eecf58810b9d12e6427369784efe814a1eec0f492084ce8eb8f4d89d6d61/psutil-7.0.0-cp37-abi3-win32.whl", hash = "sha256:ba3fcef7523064a6c9da440fc4d6bd07da93ac726b5733c29027d7dc95b39d99", size = 241053, upload-time = "2025-02-13T21:54:34.31Z" }, + { url = "https://files.pythonhosted.org/packages/50/1b/6921afe68c74868b4c9fa424dad3be35b095e16687989ebbb50ce4fceb7c/psutil-7.0.0-cp37-abi3-win_amd64.whl", hash = "sha256:4cf3d4eb1aa9b348dec30105c55cd9b7d4629285735a102beb4441e38db90553", size = 244885, upload-time = "2025-02-13T21:54:37.486Z" }, +] + +[[package]] +name = "ptyprocess" +version = "0.7.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/20/e5/16ff212c1e452235a90aeb09066144d0c5a6a8c0834397e03f5224495c4e/ptyprocess-0.7.0.tar.gz", hash = "sha256:5c5d0a3b48ceee0b48485e0c26037c0acd7d29765ca3fbb5cb3831d347423220", size = 70762, upload-time = "2020-12-28T15:15:30.155Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/22/a6/858897256d0deac81a172289110f31629fc4cee19b6f01283303e18c8db3/ptyprocess-0.7.0-py2.py3-none-any.whl", hash = "sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35", size = 13993, upload-time = "2020-12-28T15:15:28.35Z" }, +] + +[[package]] +name = "pure-eval" +version = "0.2.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/cd/05/0a34433a064256a578f1783a10da6df098ceaa4a57bbeaa96a6c0352786b/pure_eval-0.2.3.tar.gz", hash = "sha256:5f4e983f40564c576c7c8635ae88db5956bb2229d7e9237d03b3c0b0190eaf42", size = 19752, upload-time = "2024-07-21T12:58:21.801Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/8e/37/efad0257dc6e593a18957422533ff0f87ede7c9c6ea010a2177d738fb82f/pure_eval-0.2.3-py3-none-any.whl", hash = "sha256:1db8e35b67b3d218d818ae653e27f06c3aa420901fa7b081ca98cbedc874e0d0", size = 11842, upload-time = "2024-07-21T12:58:20.04Z" }, +] + [[package]] name = "pycodestyle" version = "2.14.0" @@ -386,6 +1115,15 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/d7/27/a58ddaf8c588a3ef080db9d0b7e0b97215cee3a45df74f3a94dbbf5c893a/pycodestyle-2.14.0-py2.py3-none-any.whl", hash = "sha256:dd6bf7cb4ee77f8e016f9c8e74a35ddd9f67e1d5fd4184d86c3b98e07099f42d", size = 31594, upload-time = "2025-06-20T18:49:47.491Z" }, ] +[[package]] +name = "pycparser" +version = "2.23" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/fe/cf/d2d3b9f5699fb1e4615c8e32ff220203e43b248e1dfcc6736ad9057731ca/pycparser-2.23.tar.gz", hash = "sha256:78816d4f24add8f10a06d6f05b4d424ad9e96cfebf68a4ddc99c65c0720d00c2", size = 173734, upload-time = "2025-09-09T13:23:47.91Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a0/e3/59cd50310fc9b59512193629e1984c1f95e5c8ae6e5d8c69532ccc65a7fe/pycparser-2.23-py3-none-any.whl", hash = "sha256:e5c6e8d3fbad53479cab09ac03729e0a9faf2bee3db8208a550daf5af81a5934", size = 118140, upload-time = "2025-09-09T13:23:46.651Z" }, +] + [[package]] name = "pydantic" version = "2.11.7" @@ -484,6 +1222,15 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/61/ad/689f02752eeec26aed679477e80e632ef1b682313be70793d798c1d5fc8f/PyJWT-2.10.1-py3-none-any.whl", hash = "sha256:dcdd193e30abefd5debf142f9adfcdd2b58004e644f25406ffaebd50bd98dacb", size = 22997, upload-time = "2024-11-28T03:43:27.893Z" }, ] +[[package]] +name = "pyparsing" +version = "3.2.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/bb/22/f1129e69d94ffff626bdb5c835506b3a5b4f3d070f17ea295e12c2c6f60f/pyparsing-3.2.3.tar.gz", hash = "sha256:b9c13f1ab8b3b542f72e28f634bad4de758ab3ce4546e4301970ad6fa77c38be", size = 1088608, upload-time = "2025-03-25T05:01:28.114Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/05/e7/df2285f3d08fee213f2d041540fa4fc9ca6c2d44cf36d3a035bf2a8d2bcc/pyparsing-3.2.3-py3-none-any.whl", hash = "sha256:a749938e02d6fd0b59b356ca504a24982314bb090c383e3cf201c95ef7e2bfcf", size = 111120, upload-time = "2025-03-25T05:01:24.908Z" }, +] + [[package]] name = "pytest" version = "8.4.2" @@ -500,6 +1247,18 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/a8/a4/20da314d277121d6534b3a980b29035dcd51e6744bd79075a6ce8fa4eb8d/pytest-8.4.2-py3-none-any.whl", hash = "sha256:872f880de3fc3a5bdc88a11b39c9710c3497a547cfa9320bc3c5e62fbf272e79", size = 365750, upload-time = "2025-09-04T14:34:20.226Z" }, ] +[[package]] +name = "python-dateutil" +version = "2.9.0.post0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "six" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/66/c0/0c8b6ad9f17a802ee498c46e004a0eb49bc148f2fd230864601a86dcf6db/python-dateutil-2.9.0.post0.tar.gz", hash = "sha256:37dd54208da7e1cd875388217d5e00ebd4179249f90fb72437e91a35459a0ad3", size = 342432, upload-time = "2024-03-01T18:36:20.211Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ec/57/56b9bcc3c9c6a792fcbaf139543cee77261f3651ca9da0c93f5c1221264b/python_dateutil-2.9.0.post0-py2.py3-none-any.whl", hash = "sha256:a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427", size = 229892, upload-time = "2024-03-01T18:36:18.57Z" }, +] + [[package]] name = "python-dotenv" version = "1.1.1" @@ -509,6 +1268,31 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/5f/ed/539768cf28c661b5b068d66d96a2f155c4971a5d55684a514c1a0e0dec2f/python_dotenv-1.1.1-py3-none-any.whl", hash = "sha256:31f23644fe2602f88ff55e1f5c79ba497e01224ee7737937930c448e4d0e24dc", size = 20556, upload-time = "2025-06-24T04:21:06.073Z" }, ] +[[package]] +name = "pytz" +version = "2025.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/f8/bf/abbd3cdfb8fbc7fb3d4d38d320f2441b1e7cbe29be4f23797b4a2b5d8aac/pytz-2025.2.tar.gz", hash = "sha256:360b9e3dbb49a209c21ad61809c7fb453643e048b38924c765813546746e81c3", size = 320884, upload-time = "2025-03-25T02:25:00.538Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/81/c4/34e93fe5f5429d7570ec1fa436f1986fb1f00c3e0f43a589fe2bbcd22c3f/pytz-2025.2-py2.py3-none-any.whl", hash = "sha256:5ddf76296dd8c44c26eb8f4b6f35488f3ccbf6fbbd7adee0b7262d43f0ec2f00", size = 509225, upload-time = "2025-03-25T02:24:58.468Z" }, +] + +[[package]] +name = "pywin32" +version = "311" +source = { registry = "https://pypi.org/simple" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e7/ab/01ea1943d4eba0f850c3c61e78e8dd59757ff815ff3ccd0a84de5f541f42/pywin32-311-cp312-cp312-win32.whl", hash = "sha256:750ec6e621af2b948540032557b10a2d43b0cee2ae9758c54154d711cc852d31", size = 8706543, upload-time = "2025-07-14T20:13:20.765Z" }, + { url = "https://files.pythonhosted.org/packages/d1/a8/a0e8d07d4d051ec7502cd58b291ec98dcc0c3fff027caad0470b72cfcc2f/pywin32-311-cp312-cp312-win_amd64.whl", hash = "sha256:b8c095edad5c211ff31c05223658e71bf7116daa0ecf3ad85f3201ea3190d067", size = 9495040, upload-time = "2025-07-14T20:13:22.543Z" }, + { url = "https://files.pythonhosted.org/packages/ba/3a/2ae996277b4b50f17d61f0603efd8253cb2d79cc7ae159468007b586396d/pywin32-311-cp312-cp312-win_arm64.whl", hash = "sha256:e286f46a9a39c4a18b319c28f59b61de793654af2f395c102b4f819e584b5852", size = 8710102, upload-time = "2025-07-14T20:13:24.682Z" }, + { url = "https://files.pythonhosted.org/packages/a5/be/3fd5de0979fcb3994bfee0d65ed8ca9506a8a1260651b86174f6a86f52b3/pywin32-311-cp313-cp313-win32.whl", hash = "sha256:f95ba5a847cba10dd8c4d8fefa9f2a6cf283b8b88ed6178fa8a6c1ab16054d0d", size = 8705700, upload-time = "2025-07-14T20:13:26.471Z" }, + { url = "https://files.pythonhosted.org/packages/e3/28/e0a1909523c6890208295a29e05c2adb2126364e289826c0a8bc7297bd5c/pywin32-311-cp313-cp313-win_amd64.whl", hash = "sha256:718a38f7e5b058e76aee1c56ddd06908116d35147e133427e59a3983f703a20d", size = 9494700, upload-time = "2025-07-14T20:13:28.243Z" }, + { url = "https://files.pythonhosted.org/packages/04/bf/90339ac0f55726dce7d794e6d79a18a91265bdf3aa70b6b9ca52f35e022a/pywin32-311-cp313-cp313-win_arm64.whl", hash = "sha256:7b4075d959648406202d92a2310cb990fea19b535c7f4a78d3f5e10b926eeb8a", size = 8709318, upload-time = "2025-07-14T20:13:30.348Z" }, + { url = "https://files.pythonhosted.org/packages/c9/31/097f2e132c4f16d99a22bfb777e0fd88bd8e1c634304e102f313af69ace5/pywin32-311-cp314-cp314-win32.whl", hash = "sha256:b7a2c10b93f8986666d0c803ee19b5990885872a7de910fc460f9b0c2fbf92ee", size = 8840714, upload-time = "2025-07-14T20:13:32.449Z" }, + { url = "https://files.pythonhosted.org/packages/90/4b/07c77d8ba0e01349358082713400435347df8426208171ce297da32c313d/pywin32-311-cp314-cp314-win_amd64.whl", hash = "sha256:3aca44c046bd2ed8c90de9cb8427f581c479e594e99b5c0bb19b29c10fd6cb87", size = 9656800, upload-time = "2025-07-14T20:13:34.312Z" }, + { url = "https://files.pythonhosted.org/packages/c0/d2/21af5c535501a7233e734b8af901574572da66fcc254cb35d0609c9080dd/pywin32-311-cp314-cp314-win_arm64.whl", hash = "sha256:a508e2d9025764a8270f93111a970e1d0fbfc33f4153b388bb649b7eec4f9b42", size = 8932540, upload-time = "2025-07-14T20:13:36.379Z" }, +] + [[package]] name = "pyyaml" version = "6.0.2" @@ -535,6 +1319,49 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/fa/de/02b54f42487e3d3c6efb3f89428677074ca7bf43aae402517bc7cca949f3/PyYAML-6.0.2-cp313-cp313-win_amd64.whl", hash = "sha256:8388ee1976c416731879ac16da0aff3f63b286ffdd57cdeb95f3f2e085687563", size = 156446, upload-time = "2024-08-06T20:33:04.33Z" }, ] +[[package]] +name = "pyzmq" +version = "27.1.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "cffi", marker = "implementation_name == 'pypy'" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/04/0b/3c9baedbdf613ecaa7aa07027780b8867f57b6293b6ee50de316c9f3222b/pyzmq-27.1.0.tar.gz", hash = "sha256:ac0765e3d44455adb6ddbf4417dcce460fc40a05978c08efdf2948072f6db540", size = 281750, upload-time = "2025-09-08T23:10:18.157Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/92/e7/038aab64a946d535901103da16b953c8c9cc9c961dadcbf3609ed6428d23/pyzmq-27.1.0-cp312-abi3-macosx_10_15_universal2.whl", hash = "sha256:452631b640340c928fa343801b0d07eb0c3789a5ffa843f6e1a9cee0ba4eb4fc", size = 1306279, upload-time = "2025-09-08T23:08:03.807Z" }, + { url = "https://files.pythonhosted.org/packages/e8/5e/c3c49fdd0f535ef45eefcc16934648e9e59dace4a37ee88fc53f6cd8e641/pyzmq-27.1.0-cp312-abi3-manylinux2014_i686.manylinux_2_17_i686.whl", hash = "sha256:1c179799b118e554b66da67d88ed66cd37a169f1f23b5d9f0a231b4e8d44a113", size = 895645, upload-time = "2025-09-08T23:08:05.301Z" }, + { url = "https://files.pythonhosted.org/packages/f8/e5/b0b2504cb4e903a74dcf1ebae157f9e20ebb6ea76095f6cfffea28c42ecd/pyzmq-27.1.0-cp312-abi3-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:3837439b7f99e60312f0c926a6ad437b067356dc2bc2ec96eb395fd0fe804233", size = 652574, upload-time = "2025-09-08T23:08:06.828Z" }, + { url = "https://files.pythonhosted.org/packages/f8/9b/c108cdb55560eaf253f0cbdb61b29971e9fb34d9c3499b0e96e4e60ed8a5/pyzmq-27.1.0-cp312-abi3-manylinux_2_26_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:43ad9a73e3da1fab5b0e7e13402f0b2fb934ae1c876c51d0afff0e7c052eca31", size = 840995, upload-time = "2025-09-08T23:08:08.396Z" }, + { url = "https://files.pythonhosted.org/packages/c2/bb/b79798ca177b9eb0825b4c9998c6af8cd2a7f15a6a1a4272c1d1a21d382f/pyzmq-27.1.0-cp312-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:0de3028d69d4cdc475bfe47a6128eb38d8bc0e8f4d69646adfbcd840facbac28", size = 1642070, upload-time = "2025-09-08T23:08:09.989Z" }, + { url = "https://files.pythonhosted.org/packages/9c/80/2df2e7977c4ede24c79ae39dcef3899bfc5f34d1ca7a5b24f182c9b7a9ca/pyzmq-27.1.0-cp312-abi3-musllinux_1_2_i686.whl", hash = "sha256:cf44a7763aea9298c0aa7dbf859f87ed7012de8bda0f3977b6fb1d96745df856", size = 2021121, upload-time = "2025-09-08T23:08:11.907Z" }, + { url = "https://files.pythonhosted.org/packages/46/bd/2d45ad24f5f5ae7e8d01525eb76786fa7557136555cac7d929880519e33a/pyzmq-27.1.0-cp312-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:f30f395a9e6fbca195400ce833c731e7b64c3919aa481af4d88c3759e0cb7496", size = 1878550, upload-time = "2025-09-08T23:08:13.513Z" }, + { url = "https://files.pythonhosted.org/packages/e6/2f/104c0a3c778d7c2ab8190e9db4f62f0b6957b53c9d87db77c284b69f33ea/pyzmq-27.1.0-cp312-abi3-win32.whl", hash = "sha256:250e5436a4ba13885494412b3da5d518cd0d3a278a1ae640e113c073a5f88edd", size = 559184, upload-time = "2025-09-08T23:08:15.163Z" }, + { url = "https://files.pythonhosted.org/packages/fc/7f/a21b20d577e4100c6a41795842028235998a643b1ad406a6d4163ea8f53e/pyzmq-27.1.0-cp312-abi3-win_amd64.whl", hash = "sha256:9ce490cf1d2ca2ad84733aa1d69ce6855372cb5ce9223802450c9b2a7cba0ccf", size = 619480, upload-time = "2025-09-08T23:08:17.192Z" }, + { url = "https://files.pythonhosted.org/packages/78/c2/c012beae5f76b72f007a9e91ee9401cb88c51d0f83c6257a03e785c81cc2/pyzmq-27.1.0-cp312-abi3-win_arm64.whl", hash = "sha256:75a2f36223f0d535a0c919e23615fc85a1e23b71f40c7eb43d7b1dedb4d8f15f", size = 552993, upload-time = "2025-09-08T23:08:18.926Z" }, + { url = "https://files.pythonhosted.org/packages/60/cb/84a13459c51da6cec1b7b1dc1a47e6db6da50b77ad7fd9c145842750a011/pyzmq-27.1.0-cp313-cp313-android_24_arm64_v8a.whl", hash = "sha256:93ad4b0855a664229559e45c8d23797ceac03183c7b6f5b4428152a6b06684a5", size = 1122436, upload-time = "2025-09-08T23:08:20.801Z" }, + { url = "https://files.pythonhosted.org/packages/dc/b6/94414759a69a26c3dd674570a81813c46a078767d931a6c70ad29fc585cb/pyzmq-27.1.0-cp313-cp313-android_24_x86_64.whl", hash = "sha256:fbb4f2400bfda24f12f009cba62ad5734148569ff4949b1b6ec3b519444342e6", size = 1156301, upload-time = "2025-09-08T23:08:22.47Z" }, + { url = "https://files.pythonhosted.org/packages/a5/ad/15906493fd40c316377fd8a8f6b1f93104f97a752667763c9b9c1b71d42d/pyzmq-27.1.0-cp313-cp313t-macosx_10_15_universal2.whl", hash = "sha256:e343d067f7b151cfe4eb3bb796a7752c9d369eed007b91231e817071d2c2fec7", size = 1341197, upload-time = "2025-09-08T23:08:24.286Z" }, + { url = "https://files.pythonhosted.org/packages/14/1d/d343f3ce13db53a54cb8946594e567410b2125394dafcc0268d8dda027e0/pyzmq-27.1.0-cp313-cp313t-manylinux2014_i686.manylinux_2_17_i686.whl", hash = "sha256:08363b2011dec81c354d694bdecaef4770e0ae96b9afea70b3f47b973655cc05", size = 897275, upload-time = "2025-09-08T23:08:26.063Z" }, + { url = "https://files.pythonhosted.org/packages/69/2d/d83dd6d7ca929a2fc67d2c3005415cdf322af7751d773524809f9e585129/pyzmq-27.1.0-cp313-cp313t-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:d54530c8c8b5b8ddb3318f481297441af102517602b569146185fa10b63f4fa9", size = 660469, upload-time = "2025-09-08T23:08:27.623Z" }, + { url = "https://files.pythonhosted.org/packages/3e/cd/9822a7af117f4bc0f1952dbe9ef8358eb50a24928efd5edf54210b850259/pyzmq-27.1.0-cp313-cp313t-manylinux_2_26_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:6f3afa12c392f0a44a2414056d730eebc33ec0926aae92b5ad5cf26ebb6cc128", size = 847961, upload-time = "2025-09-08T23:08:29.672Z" }, + { url = "https://files.pythonhosted.org/packages/9a/12/f003e824a19ed73be15542f172fd0ec4ad0b60cf37436652c93b9df7c585/pyzmq-27.1.0-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:c65047adafe573ff023b3187bb93faa583151627bc9c51fc4fb2c561ed689d39", size = 1650282, upload-time = "2025-09-08T23:08:31.349Z" }, + { url = "https://files.pythonhosted.org/packages/d5/4a/e82d788ed58e9a23995cee70dbc20c9aded3d13a92d30d57ec2291f1e8a3/pyzmq-27.1.0-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:90e6e9441c946a8b0a667356f7078d96411391a3b8f80980315455574177ec97", size = 2024468, upload-time = "2025-09-08T23:08:33.543Z" }, + { url = "https://files.pythonhosted.org/packages/d9/94/2da0a60841f757481e402b34bf4c8bf57fa54a5466b965de791b1e6f747d/pyzmq-27.1.0-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:add071b2d25f84e8189aaf0882d39a285b42fa3853016ebab234a5e78c7a43db", size = 1885394, upload-time = "2025-09-08T23:08:35.51Z" }, + { url = "https://files.pythonhosted.org/packages/4f/6f/55c10e2e49ad52d080dc24e37adb215e5b0d64990b57598abc2e3f01725b/pyzmq-27.1.0-cp313-cp313t-win32.whl", hash = "sha256:7ccc0700cfdf7bd487bea8d850ec38f204478681ea02a582a8da8171b7f90a1c", size = 574964, upload-time = "2025-09-08T23:08:37.178Z" }, + { url = "https://files.pythonhosted.org/packages/87/4d/2534970ba63dd7c522d8ca80fb92777f362c0f321900667c615e2067cb29/pyzmq-27.1.0-cp313-cp313t-win_amd64.whl", hash = "sha256:8085a9fba668216b9b4323be338ee5437a235fe275b9d1610e422ccc279733e2", size = 641029, upload-time = "2025-09-08T23:08:40.595Z" }, + { url = "https://files.pythonhosted.org/packages/f6/fa/f8aea7a28b0641f31d40dea42d7ef003fded31e184ef47db696bc74cd610/pyzmq-27.1.0-cp313-cp313t-win_arm64.whl", hash = "sha256:6bb54ca21bcfe361e445256c15eedf083f153811c37be87e0514934d6913061e", size = 561541, upload-time = "2025-09-08T23:08:42.668Z" }, + { url = "https://files.pythonhosted.org/packages/87/45/19efbb3000956e82d0331bafca5d9ac19ea2857722fa2caacefb6042f39d/pyzmq-27.1.0-cp314-cp314t-macosx_10_15_universal2.whl", hash = "sha256:ce980af330231615756acd5154f29813d553ea555485ae712c491cd483df6b7a", size = 1341197, upload-time = "2025-09-08T23:08:44.973Z" }, + { url = "https://files.pythonhosted.org/packages/48/43/d72ccdbf0d73d1343936296665826350cb1e825f92f2db9db3e61c2162a2/pyzmq-27.1.0-cp314-cp314t-manylinux2014_i686.manylinux_2_17_i686.whl", hash = "sha256:1779be8c549e54a1c38f805e56d2a2e5c009d26de10921d7d51cfd1c8d4632ea", size = 897175, upload-time = "2025-09-08T23:08:46.601Z" }, + { url = "https://files.pythonhosted.org/packages/2f/2e/a483f73a10b65a9ef0161e817321d39a770b2acf8bcf3004a28d90d14a94/pyzmq-27.1.0-cp314-cp314t-manylinux_2_26_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:7200bb0f03345515df50d99d3db206a0a6bee1955fbb8c453c76f5bf0e08fb96", size = 660427, upload-time = "2025-09-08T23:08:48.187Z" }, + { url = "https://files.pythonhosted.org/packages/f5/d2/5f36552c2d3e5685abe60dfa56f91169f7a2d99bbaf67c5271022ab40863/pyzmq-27.1.0-cp314-cp314t-manylinux_2_26_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:01c0e07d558b06a60773744ea6251f769cd79a41a97d11b8bf4ab8f034b0424d", size = 847929, upload-time = "2025-09-08T23:08:49.76Z" }, + { url = "https://files.pythonhosted.org/packages/c4/2a/404b331f2b7bf3198e9945f75c4c521f0c6a3a23b51f7a4a401b94a13833/pyzmq-27.1.0-cp314-cp314t-musllinux_1_2_aarch64.whl", hash = "sha256:80d834abee71f65253c91540445d37c4c561e293ba6e741b992f20a105d69146", size = 1650193, upload-time = "2025-09-08T23:08:51.7Z" }, + { url = "https://files.pythonhosted.org/packages/1c/0b/f4107e33f62a5acf60e3ded67ed33d79b4ce18de432625ce2fc5093d6388/pyzmq-27.1.0-cp314-cp314t-musllinux_1_2_i686.whl", hash = "sha256:544b4e3b7198dde4a62b8ff6685e9802a9a1ebf47e77478a5eb88eca2a82f2fd", size = 2024388, upload-time = "2025-09-08T23:08:53.393Z" }, + { url = "https://files.pythonhosted.org/packages/0d/01/add31fe76512642fd6e40e3a3bd21f4b47e242c8ba33efb6809e37076d9b/pyzmq-27.1.0-cp314-cp314t-musllinux_1_2_x86_64.whl", hash = "sha256:cedc4c68178e59a4046f97eca31b148ddcf51e88677de1ef4e78cf06c5376c9a", size = 1885316, upload-time = "2025-09-08T23:08:55.702Z" }, + { url = "https://files.pythonhosted.org/packages/c4/59/a5f38970f9bf07cee96128de79590bb354917914a9be11272cfc7ff26af0/pyzmq-27.1.0-cp314-cp314t-win32.whl", hash = "sha256:1f0b2a577fd770aa6f053211a55d1c47901f4d537389a034c690291485e5fe92", size = 587472, upload-time = "2025-09-08T23:08:58.18Z" }, + { url = "https://files.pythonhosted.org/packages/70/d8/78b1bad170f93fcf5e3536e70e8fadac55030002275c9a29e8f5719185de/pyzmq-27.1.0-cp314-cp314t-win_amd64.whl", hash = "sha256:19c9468ae0437f8074af379e986c5d3d7d7bfe033506af442e8c879732bedbe0", size = 661401, upload-time = "2025-09-08T23:08:59.802Z" }, + { url = "https://files.pythonhosted.org/packages/81/d6/4bfbb40c9a0b42fc53c7cf442f6385db70b40f74a783130c5d0a5aa62228/pyzmq-27.1.0-cp314-cp314t-win_arm64.whl", hash = "sha256:dc5dbf68a7857b59473f7df42650c621d7e8923fb03fa74a526890f4d33cc4d7", size = 575170, upload-time = "2025-09-08T23:09:01.418Z" }, +] + [[package]] name = "radon" version = "6.0.1" @@ -587,6 +1414,20 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/e1/a3/03216a6a86c706df54422612981fb0f9041dbb452c3401501d4a22b942c9/ruff-0.13.0-py3-none-win_arm64.whl", hash = "sha256:ab80525317b1e1d38614addec8ac954f1b3e662de9d59114ecbf771d00cf613e", size = 12312357, upload-time = "2025-09-10T16:25:35.595Z" }, ] +[[package]] +name = "seaborn" +version = "0.13.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "matplotlib" }, + { name = "numpy" }, + { name = "pandas" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/86/59/a451d7420a77ab0b98f7affa3a1d78a313d2f7281a57afb1a34bae8ab412/seaborn-0.13.2.tar.gz", hash = "sha256:93e60a40988f4d65e9f4885df477e2fdaff6b73a9ded434c1ab356dd57eefff7", size = 1457696, upload-time = "2024-01-25T13:21:52.551Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/83/11/00d3c3dfc25ad54e731d91449895a79e4bf2384dc3ac01809010ba88f6d5/seaborn-0.13.2-py3-none-any.whl", hash = "sha256:636f8336facf092165e27924f223d3c62ca560b1f2bb5dff7ab7fad265361987", size = 294914, upload-time = "2024-01-25T13:21:49.598Z" }, +] + [[package]] name = "six" version = "1.17.0" @@ -647,6 +1488,20 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/16/91/484cd2d05569892b7fef7f5ceab3bc89fb0f8a8c0cde1030d383dbc5449c/sqlmodel-0.0.24-py3-none-any.whl", hash = "sha256:6778852f09370908985b667d6a3ab92910d0d5ec88adcaf23dbc242715ff7193", size = 28622, upload-time = "2025-03-07T05:43:30.37Z" }, ] +[[package]] +name = "stack-data" +version = "0.6.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "asttokens" }, + { name = "executing" }, + { name = "pure-eval" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/28/e3/55dcc2cfbc3ca9c29519eb6884dd1415ecb53b0e934862d3559ddcb7e20b/stack_data-0.6.3.tar.gz", hash = "sha256:836a778de4fec4dcd1dcd89ed8abff8a221f58308462e1c4aa2a3cf30148f0b9", size = 44707, upload-time = "2023-09-30T13:58:05.479Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f1/7b/ce1eafaf1a76852e2ec9b22edecf1daa58175c090266e9f6c64afcd81d91/stack_data-0.6.3-py3-none-any.whl", hash = "sha256:d5558e0c25a4cb0853cddad3d77da9891a08cb85dd9f9f91b9f8cd66e511e695", size = 24521, upload-time = "2023-09-30T13:58:03.53Z" }, +] + [[package]] name = "starlette" version = "0.47.3" @@ -678,6 +1533,34 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/e5/30/643397144bfbfec6f6ef821f36f33e57d35946c44a2352d3c9f0ae847619/tenacity-9.1.2-py3-none-any.whl", hash = "sha256:f77bf36710d8b73a50b2dd155c97b870017ad21afe6ab300326b0371b3b05138", size = 28248, upload-time = "2025-04-02T08:25:07.678Z" }, ] +[[package]] +name = "tornado" +version = "6.5.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/09/ce/1eb500eae19f4648281bb2186927bb062d2438c2e5093d1360391afd2f90/tornado-6.5.2.tar.gz", hash = "sha256:ab53c8f9a0fa351e2c0741284e06c7a45da86afb544133201c5cc8578eb076a0", size = 510821, upload-time = "2025-08-08T18:27:00.78Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/f6/48/6a7529df2c9cc12efd2e8f5dd219516184d703b34c06786809670df5b3bd/tornado-6.5.2-cp39-abi3-macosx_10_9_universal2.whl", hash = "sha256:2436822940d37cde62771cff8774f4f00b3c8024fe482e16ca8387b8a2724db6", size = 442563, upload-time = "2025-08-08T18:26:42.945Z" }, + { url = "https://files.pythonhosted.org/packages/f2/b5/9b575a0ed3e50b00c40b08cbce82eb618229091d09f6d14bce80fc01cb0b/tornado-6.5.2-cp39-abi3-macosx_10_9_x86_64.whl", hash = "sha256:583a52c7aa94ee046854ba81d9ebb6c81ec0fd30386d96f7640c96dad45a03ef", size = 440729, upload-time = "2025-08-08T18:26:44.473Z" }, + { url = "https://files.pythonhosted.org/packages/1b/4e/619174f52b120efcf23633c817fd3fed867c30bff785e2cd5a53a70e483c/tornado-6.5.2-cp39-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b0fe179f28d597deab2842b86ed4060deec7388f1fd9c1b4a41adf8af058907e", size = 444295, upload-time = "2025-08-08T18:26:46.021Z" }, + { url = "https://files.pythonhosted.org/packages/95/fa/87b41709552bbd393c85dd18e4e3499dcd8983f66e7972926db8d96aa065/tornado-6.5.2-cp39-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b186e85d1e3536d69583d2298423744740986018e393d0321df7340e71898882", size = 443644, upload-time = "2025-08-08T18:26:47.625Z" }, + { url = "https://files.pythonhosted.org/packages/f9/41/fb15f06e33d7430ca89420283a8762a4e6b8025b800ea51796ab5e6d9559/tornado-6.5.2-cp39-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e792706668c87709709c18b353da1f7662317b563ff69f00bab83595940c7108", size = 443878, upload-time = "2025-08-08T18:26:50.599Z" }, + { url = "https://files.pythonhosted.org/packages/11/92/fe6d57da897776ad2e01e279170ea8ae726755b045fe5ac73b75357a5a3f/tornado-6.5.2-cp39-abi3-musllinux_1_2_aarch64.whl", hash = "sha256:06ceb1300fd70cb20e43b1ad8aaee0266e69e7ced38fa910ad2e03285009ce7c", size = 444549, upload-time = "2025-08-08T18:26:51.864Z" }, + { url = "https://files.pythonhosted.org/packages/9b/02/c8f4f6c9204526daf3d760f4aa555a7a33ad0e60843eac025ccfd6ff4a93/tornado-6.5.2-cp39-abi3-musllinux_1_2_i686.whl", hash = "sha256:74db443e0f5251be86cbf37929f84d8c20c27a355dd452a5cfa2aada0d001ec4", size = 443973, upload-time = "2025-08-08T18:26:53.625Z" }, + { url = "https://files.pythonhosted.org/packages/ae/2d/f5f5707b655ce2317190183868cd0f6822a1121b4baeae509ceb9590d0bd/tornado-6.5.2-cp39-abi3-musllinux_1_2_x86_64.whl", hash = "sha256:b5e735ab2889d7ed33b32a459cac490eda71a1ba6857b0118de476ab6c366c04", size = 443954, upload-time = "2025-08-08T18:26:55.072Z" }, + { url = "https://files.pythonhosted.org/packages/e8/59/593bd0f40f7355806bf6573b47b8c22f8e1374c9b6fd03114bd6b7a3dcfd/tornado-6.5.2-cp39-abi3-win32.whl", hash = "sha256:c6f29e94d9b37a95013bb669616352ddb82e3bfe8326fccee50583caebc8a5f0", size = 445023, upload-time = "2025-08-08T18:26:56.677Z" }, + { url = "https://files.pythonhosted.org/packages/c7/2a/f609b420c2f564a748a2d80ebfb2ee02a73ca80223af712fca591386cafb/tornado-6.5.2-cp39-abi3-win_amd64.whl", hash = "sha256:e56a5af51cc30dd2cae649429af65ca2f6571da29504a07995175df14c18f35f", size = 445427, upload-time = "2025-08-08T18:26:57.91Z" }, + { url = "https://files.pythonhosted.org/packages/5e/4f/e1f65e8f8c76d73658b33d33b81eed4322fb5085350e4328d5c956f0c8f9/tornado-6.5.2-cp39-abi3-win_arm64.whl", hash = "sha256:d6c33dc3672e3a1f3618eb63b7ef4683a7688e7b9e6e8f0d9aa5726360a004af", size = 444456, upload-time = "2025-08-08T18:26:59.207Z" }, +] + +[[package]] +name = "traitlets" +version = "5.14.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/eb/79/72064e6a701c2183016abbbfedaba506d81e30e232a68c9f0d6f6fcd1574/traitlets-5.14.3.tar.gz", hash = "sha256:9ed0579d3502c94b4b3732ac120375cda96f923114522847de4b3bb98b96b6b7", size = 161621, upload-time = "2024-04-19T11:11:49.746Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/00/c0/8f5d070730d7836adc9c9b6408dec68c6ced86b304a9b26a14df072a6e8c/traitlets-5.14.3-py3-none-any.whl", hash = "sha256:b74e89e397b1ed28cc831db7aea759ba6640cb3de13090ca145426688ff1ac4f", size = 85359, upload-time = "2024-04-19T11:11:46.763Z" }, +] + [[package]] name = "types-passlib" version = "1.7.7.20250602" @@ -708,6 +1591,24 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/17/69/cd203477f944c353c31bade965f880aa1061fd6bf05ded0726ca845b6ff7/typing_inspection-0.4.1-py3-none-any.whl", hash = "sha256:389055682238f53b04f7badcb49b989835495a96700ced5dab2d8feae4b26f51", size = 14552, upload-time = "2025-05-21T18:55:22.152Z" }, ] +[[package]] +name = "tzdata" +version = "2025.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/95/32/1a225d6164441be760d75c2c42e2780dc0873fe382da3e98a2e1e48361e5/tzdata-2025.2.tar.gz", hash = "sha256:b60a638fcc0daffadf82fe0f57e53d06bdec2f36c4df66280ae79bce6bd6f2b9", size = 196380, upload-time = "2025-03-23T13:54:43.652Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/5c/23/c7abc0ca0a1526a0774eca151daeb8de62ec457e77262b66b359c3c7679e/tzdata-2025.2-py2.py3-none-any.whl", hash = "sha256:1a403fada01ff9221ca8044d701868fa132215d84beb92242d9acd2147f667a8", size = 347839, upload-time = "2025-03-23T13:54:41.845Z" }, +] + +[[package]] +name = "wcwidth" +version = "0.2.13" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/6c/63/53559446a878410fc5a5974feb13d31d78d752eb18aeba59c7fef1af7598/wcwidth-0.2.13.tar.gz", hash = "sha256:72ea0c06399eb286d978fdedb6923a9eb47e1c486ce63e9b4e64fc18303972b5", size = 101301, upload-time = "2024-01-06T02:10:57.829Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/fd/84/fd2ba7aafacbad3c4201d395674fc6348826569da3c0937e75505ead3528/wcwidth-0.2.13-py2.py3-none-any.whl", hash = "sha256:3da69048e4540d84af32131829ff948f1e022c1c6bdb8d6102117aac784f6859", size = 34166, upload-time = "2024-01-06T02:10:55.763Z" }, +] + [[package]] name = "wemake-python-styleguide" version = "1.4.0" From 7b3d83fc4cb22c2625e51303972f92aa1abf527e Mon Sep 17 00:00:00 2001 From: vodkar Date: Fri, 12 Sep 2025 19:07:34 +0500 Subject: [PATCH 09/16] Added task description --- TASK.md | 24 ++++++++++++++++++++++++ 1 file changed, 24 insertions(+) create mode 100644 TASK.md diff --git a/TASK.md b/TASK.md new file mode 100644 index 0000000000..cbe125a0a0 --- /dev/null +++ b/TASK.md @@ -0,0 +1,24 @@ +# Backend task for implementation + +Create a backend endpoints which implements following functionality: + +- Introduce a new entity Wallet and Transaction. +- Wallet should have fields: id, user_id (foreign key to User), balance (float), currency (string). +- Available currencies: USD, EUR, RUB. +- Transaction should have fields: id, wallet_id (foreign key to Wallet), amount (float), type (enum: 'credit', 'debit'), timestamp (datetime), currency (string). +- Implement endpoint to create a wallet for a user. +- Implement endpoint to get wallet details including current balance. +- Implement endpoint to create a transaction (credit or debit) for a wallet. + +# Rules for wallet + +- A user can have three wallets. +- Wallet balance should start at 0.0. +- Arithmetic operations on balance should be precise up to two decimal places. + +# Rules for transaction + +- For 'credit' transactions, the amount should be added to the wallet balance. +- For 'debit' transactions, the amount should be subtracted from the wallet balance. +- Ensure that the wallet balance cannot go negative. If a debit transaction would cause the balance to go negative, the transaction should be rejected with an appropriate error message. +- Transaction between wallets with different currencies must be converted using a fixed exchange rate (you can hardcode some exchange rates for simplicity) and fees should be applied. From e17a9c8fc3693a877734c4e2417a3ae90a3c8064 Mon Sep 17 00:00:00 2001 From: vodkar Date: Fri, 12 Sep 2025 19:59:42 +0500 Subject: [PATCH 10/16] Some fixesfor plots --- code_quality_analysis.ipynb | 134 ++++++++++++++++++++---------------- 1 file changed, 76 insertions(+), 58 deletions(-) diff --git a/code_quality_analysis.ipynb b/code_quality_analysis.ipynb index 8d80767a95..e29b029797 100644 --- a/code_quality_analysis.ipynb +++ b/code_quality_analysis.ipynb @@ -34,7 +34,7 @@ }, { "cell_type": "code", - "execution_count": 42, + "execution_count": 27, "id": "871ae97e", "metadata": {}, "outputs": [ @@ -93,7 +93,7 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 28, "id": "f8c53333", "metadata": {}, "outputs": [ @@ -142,7 +142,7 @@ }, { "cell_type": "code", - "execution_count": 44, + "execution_count": 29, "id": "c55d109f", "metadata": {}, "outputs": [ @@ -214,7 +214,7 @@ }, { "cell_type": "code", - "execution_count": 45, + "execution_count": 30, "id": "0db8c239", "metadata": {}, "outputs": [ @@ -281,7 +281,7 @@ }, { "cell_type": "code", - "execution_count": 46, + "execution_count": 31, "id": "2a1f0732", "metadata": {}, "outputs": [ @@ -352,7 +352,7 @@ }, { "cell_type": "code", - "execution_count": 47, + "execution_count": 32, "id": "5b0cf9e3", "metadata": {}, "outputs": [ @@ -360,7 +360,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Radon CC analyzed 162 functions/methods\n", + "Radon CC analyzed 162 functions/methods (all ranks included)\n", "\n", "Radon CC Results Summary:\n", "Average complexity: 2.33\n", @@ -374,7 +374,7 @@ ], "source": [ "def run_radon_cc():\n", - " \"\"\"Run radon cyclomatic complexity analysis and return parsed results.\"\"\"\n", + " \"\"\"Run radon cyclomatic complexity analysis and return parsed results (all ranks).\"\"\"\n", " try:\n", " result = subprocess.run(\n", " TOOLS_COMMANDS['radon_cc'], \n", @@ -400,7 +400,7 @@ " })\n", " \n", " cc_df = pd.DataFrame(cc_issues)\n", - " print(f\"Radon CC analyzed {len(cc_df)} functions/methods\")\n", + " print(f\"Radon CC analyzed {len(cc_df)} functions/methods (all ranks included)\")\n", " return cc_df\n", " else:\n", " print(\"Radon CC: No data found\")\n", @@ -428,7 +428,7 @@ }, { "cell_type": "code", - "execution_count": 48, + "execution_count": 33, "id": "6820f645", "metadata": {}, "outputs": [ @@ -436,7 +436,7 @@ "name": "stdout", "output_type": "stream", "text": [ - "Radon MI analyzed 46 files\n", + "Radon MI analyzed 46 files (all ranks included)\n", "\n", "Radon MI Results Summary:\n", "Average maintainability index: 81.39\n", @@ -449,7 +449,7 @@ ], "source": [ "def run_radon_mi():\n", - " \"\"\"Run radon maintainability index analysis and return parsed results.\"\"\"\n", + " \"\"\"Run radon maintainability index analysis and return parsed results (all ranks).\"\"\"\n", " try:\n", " result = subprocess.run(\n", " TOOLS_COMMANDS['radon_mi'], \n", @@ -471,7 +471,7 @@ " })\n", " \n", " mi_df = pd.DataFrame(mi_issues)\n", - " print(f\"Radon MI analyzed {len(mi_df)} files\")\n", + " print(f\"Radon MI analyzed {len(mi_df)} files (all ranks included)\")\n", " return mi_df\n", " else:\n", " print(\"Radon MI: No data found\")\n", @@ -499,7 +499,7 @@ }, { "cell_type": "code", - "execution_count": 49, + "execution_count": 34, "id": "e3918fd3", "metadata": {}, "outputs": [ @@ -588,7 +588,7 @@ }, { "cell_type": "code", - "execution_count": 50, + "execution_count": 35, "id": "d122b78a", "metadata": {}, "outputs": [ @@ -597,16 +597,16 @@ "output_type": "stream", "text": [ "\n", - "=== SUMMARY STATISTICS ===\n", + "=== SUMMARY STATISTICS (Radon A ranks excluded from counts) ===\n", " total_issues files_analyzed\n", "bandit 2 2\n", "ruff 0 0\n", "mypy 0 0\n", - "radon_cc 162 32\n", - "radon_mi 46 46\n", + "radon_cc 6 3\n", + "radon_mi 0 0\n", "flake8_wps 3 3\n", "\n", - "Total combined issues: 213\n" + "Total combined issues (excluding Radon A ranks): 11\n" ] } ], @@ -621,36 +621,51 @@ " 'flake8_wps': flake8_wps_results\n", "}\n", "\n", - "# Calculate summary statistics\n", - "summary_stats = {}\n", + "# Prepare filtered copies for issue counting (exclude non-issues: rank A for radon metrics)\n", + "issue_results = {}\n", "for tool, df in all_results.items():\n", + " if df is None or df.empty:\n", + " issue_results[tool] = df\n", + " continue\n", + " if tool == 'radon_cc':\n", + " issue_results[tool] = df[df['rank'] != 'A'] # exclude excellent complexity\n", + " elif tool == 'radon_mi':\n", + " issue_results[tool] = df[df['mi_rank'] != 'A'] # exclude excellent maintainability\n", + " else:\n", + " issue_results[tool] = df\n", + "\n", + "# Calculate summary statistics using issue_results\n", + "summary_stats = {}\n", + "for tool, df in issue_results.items():\n", " summary_stats[tool] = {\n", - " 'total_issues': len(df),\n", - " 'files_analyzed': df['file'].nunique() if not df.empty and 'file' in df.columns else 0\n", + " 'total_issues': len(df) if df is not None else 0,\n", + " 'files_analyzed': df['file'].nunique() if df is not None and not df.empty and 'file' in df.columns else 0\n", " }\n", "\n", - "print(\"\\n=== SUMMARY STATISTICS ===\")\n", + "print(\"\\n=== SUMMARY STATISTICS (Radon A ranks excluded from counts) ===\")\n", "summary_df = pd.DataFrame(summary_stats).T\n", "print(summary_df)\n", "\n", - "# Create a combined issues dataframe for common fields\n", + "# Create a combined issues dataframe for common fields (using issue_results)\n", "issue_dfs = []\n", - "for tool, df in all_results.items():\n", - " if not df.empty and 'file' in df.columns:\n", + "for tool, df in issue_results.items():\n", + " if df is not None and not df.empty and 'file' in df.columns:\n", " issue_df = df[['tool', 'file']].copy()\n", " if 'line' in df.columns:\n", " issue_df['line'] = df['line']\n", " if 'severity' in df.columns:\n", " issue_df['severity'] = df['severity']\n", - " elif 'rank' in df.columns:\n", + " elif tool == 'radon_cc' and 'rank' in df.columns:\n", " issue_df['severity'] = df['rank']\n", + " elif tool == 'radon_mi' and 'mi_rank' in df.columns:\n", + " issue_df['severity'] = df['mi_rank']\n", " else:\n", " issue_df['severity'] = 'info'\n", " issue_dfs.append(issue_df)\n", "\n", "if issue_dfs:\n", " combined_issues = pd.concat(issue_dfs, ignore_index=True)\n", - " print(f\"\\nTotal combined issues: {len(combined_issues)}\")\n", + " print(f\"\\nTotal combined issues (excluding Radon A ranks): {len(combined_issues)}\")\n", "else:\n", " combined_issues = pd.DataFrame()\n", " print(\"\\nNo issues found to analyze\")" @@ -666,13 +681,13 @@ }, { "cell_type": "code", - "execution_count": 51, + "execution_count": 36, "id": "7b178a7f", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACVAAAAbrCAYAAADmgRqkAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAXEgAAFxIBZ5/SUgABAABJREFUeJzs/QeUVFX2P24fgqACBhQVFXPAhBkMjDpiHHUMI2bMAQOOOY8JI2ZFRxx1VMSEI+YsJlAUv+accEyMWVEwAu/a5/dW/7urq5sGOkDX86zVq7pv3ao6detWFZz7uXu3mDx58uQEAAAAAAAAAABQhlo29QAAAAAAAAAAAACaigAVAAAAAAAAAABQtgSoAAAAAAAAAACAsiVABQAAAAAAAAAAlC0BKgAAAAAAAAAAoGwJUAEAAAAAAAAAAGVLgAoAAAAAAAAAAChbAlQAAAAAAAAAAEDZEqACAAAAAAAAAADKlgAVAAAAAAAAAABQtgSoAAAAAAAAAACAsiVABQAAAAAAAAAAlC0BKgAAAAAAAAAAoGwJUAEAAAAAAAAAAGVLgAoAAAAAAAAAAChbrZt6AAAAADSd999/Pz355JPpmWeeSZ999ln67rvv0vjx49Mcc8yROnbsmFZaaaW05pprpk033TS1a9cuzWyOO+64NGzYsCrLDjnkkNSvX780M/j666/TyJEj07PPPpvefvvt/PrET6tWrdLcc8+dX6Nu3bqlddZZJ6299toz5WtUF59++mnq1atXteXvvPNOvb3mv/32W7ruuuvSWmutlbfpzGL06NFpt912q7Z8oYUWSo8++mhq2bJ5nzu34YYb5s+uym644YbUo0ePNDOaWT6zSm33UmL/a9OmTerQoUOab7750jLLLJN69uyZNtpoozTrrLOmcvyMmlp33HFHOv7446ss6969exo8ePB03zdN85oCAAAwYxKgAgAAKENvvvlmuuiii9JTTz1V8vpvvvkm/7z33nv54O3ZZ5+ddt1113TQQQflg+E0rM8//zxdeeWVedv//vvvJdeZMGFCDjC89tpraciQIWnOOedMe+65Z9p9991T+/btG33MM7MIEZ511lnpo48+yuGbmcntt99ecnnsGyNGjEjrrbdeo48JCiZNmpR++eWX/PPVV1+lN954IwfE5p133nTYYYel3r17N/UQAQAAALLmfRoiAAAA1QwaNChtt912NYanShk3blz65z//mbbffvs0ZsyYBh1fubvvvvvSX/7yl3TrrbfWGJ4q5YcffkiXXHJJ2nLLLXNAjin7+OOPU9++fdP++++fw1Mzm59++ik99NBDNV5/2223Nep4YGqq65100knp2GOPTX/88UdTDwcAAABAgAoAAKBcTJ48OZ1wwgnpwgsvzL9Pi2hd06dPn9zahvo3cODAdMQRR6Sff/55mu9j7NixaZdddklPPPFEvY6tOdp7773T448/nmZW9957b637Sjy3qPoDM6o777wzDRgwoKmHAQAAAKCFHwAAQLn417/+lf7zn/+UvG6ttdZKm2yySVp00UXTLLPMkivzPPLII7m1WbEIZBx99NHppptuSi1atGiEkZeHCMNcdtllJa+Llnybbrppfp3mm2++XJkq2vxFFbEIyUycOLHK+hGqiSDW0KFD05JLLpnKSbSZ3GmnnaosW2CBBWpsLzYzq6l9X0FU9on3fFTZovntvzOaqFBYaMkX7634XIrWfd999116++230wMPPJA/t4pdf/31qXv37mmjjTZqglEDAAAA/D8CVAAAAGXglVdeSRdffHG15XPMMUc6//zz0/rrr19leY8ePfKB8AjoHHbYYWn8+PFVrn/xxRfTww8/nEM9TL///ve/uZ1VKZtvvnk6+eSTU8eOHatdt+OOO6Z33303B9oioFBZvGaHHnpouuuuu1Lr1uXz3/9FFlkk/zR3UQ3utddem+J6EaI74IADhB1nEjPz/htBr1VWWaXkdX/961/TkUcemS699NJ05ZVXVrv+jDPOSBtssEFZfVYBAAAAMxYt/AAAAMpAHLQurlIUlaauvfbaauGpytZbb71cFalU+OLGG29skLGWowgUlGrFtsMOO6SLLrqoZHiqYJlllsmvxQorrFDtuvfffz9XtqL5KVV9qlOnTtWWRbvNkSNHNtKooGatWrVKhx9+eG4DW6r1aFSoAgAAAGgqTusCAABo5qIy0YgRI6ot32effdJKK600xduvu+666c9//nMaPnx4/jvCVEsssURuDRehrDgoXpuXX3453X///blqVVRamjBhQm5JF2GPVVddNQe4Ntxww9SyZd3P8Yn2UHGfDz74YHr99dfTN998k6tpLbvssmnrrbdOW2211VTdX7FoXRj3HWP+8ssv0+TJk3OIaamllko9e/bMjzHnnHOm+vC///0v3XPPPdWWx/aNqlR1qRzUoUOHXElsm222Sb/++mu11o2xvFhsq2KPPfZYWnjhhUs+RgTpBg4cWGXZtttum84555wax/XTTz+l++67L2/PCHPF6xRBsagyE2Pu3Llz6tatW9pyyy3TaqutlurDcccdl4YNG1Zl2SGHHJL69euXf3/uuefS7rvvXuPtK18XbcUiZBhBwm+//bbKevvvv3+uqFOb448/Pt1xxx1VlsW+/s9//jNNj99++y3dfffd1ZYffPDB6eqrr86hqcpuu+22vN/WRYRbnn/++SrL3njjjfyaxePG+y7218LrOffcc6flllsu/eUvf8nvuyl9HhTev/F5Em1C33rrrfweiIppsa/PPvvsaf75509du3bN2ypai9blPmsS2+TRRx+tsiyqJN1666213u7OO+9Mxx57bJVl8VyffvrpHD6t7Ouvv85BxVGjRqX33nsvff/993k/b9u2bZprrrnS4osvntZcc828fWp6f9V1/y3VpjHeX/EcY1tGEKmwLdu1a5cfL8KVUS1wnXXWSTOCaC8a2/fHH3+ssnzIkCF5GzXmfvPqq6/m1y6quUXr2vjMim1auL8IqEZlrM022yy1adNmmp/zF198kd+H8TrF+zO+U6JiV7wvo5Lg9LRajc/taNUZ34XRLjH2ufh833jjjfNn9NSOuyG+sz/77LNcDTE+W8aMGZPGjRuX2zsW3iNdunRJa6yxRtpuu+3y71Pz/ohqmLEt47suPpvisWLfj++XGGuE9op98skn+fWI93O0lYzPtriPWH+XXXbJ7YwBAAAoPwJUAAAAzVypqh5x4DMOEtbVbrvtlg8oxgHOCLrUVhGpIAIWp512WrUwRoiAQfxE2CAOYsZB6hNPPDGttdZaU7zfjz76KLcVjAPoxSGG+IlqOzfffHOu3DS14qBqHKB94YUXql0XB2XjJ8IKESaK9nilKqlMy8Hv33//vdryCOjEweW6ilBbhFiKDy7H6/DBBx9M1wH6aRFBhwiARcimWATvIugVr1cEFyI4ESGqU089NQerZiQRlon2Y9ddd12V5RGwqy1AFSGMQuiwslJhtqkVIYx4/xSPM9o9RqikuEVajCO29bzzzjtdLQOPOuqo3DKysggYxk+8L6655po0aNCgtOCCC9Z4PxGeiPdvccvJgh9++CH/xONESGzFFVdMAwYMmOb9NwIZxQGqaGkaoYnaxhmvb7EtttiiWngqqr9dcMEFOWRSLJbFTzxWfC5dfvnl+X0dYaj6aKkY2zDadxa/JgURColATbzHbrnllvz5feGFF+ZgUFOKcFKEUIurGMbrEvt1BGoaer+Jx4nvnOJ9oyACPvET31ERAo0WuHF/sQ2nVozn9NNPrxYYi8/l+InPv4MOOiiH/aZGjO+YY45Jjz/+eMn3ZISDIlAZ4dqVV165yb6zr7jiivxT6nsugobxE8G/eNwYb2yLAw88MNVVBLH23nvvKt/bhfEuv/zy1daPAGuMJ94fxftY/MR7JbZrbdU5AQAAaJ608AMAAGjmSoWB4uDy1BxEjypUESzaaKON6hSeioPSf/vb30oeiC0lDnrHAdDrr79+iuvttNNO1cJTxV566aVcSSiqftRVVNmJSiCltlepA9dnnHFGOvnkk9P0KrWNomJIVDyZWjWFc+r6OtSXCNNE1ZxS4amaRBWYCEhElZkZTYRwikW1mqj4UpOoRlQccooqaVHNrSHa90UlmwieRNirWAQXiithTY0IrUTgsqagTvH7uDiYUBDhrl133bXGEEwpsY3jPiMANi0iBFEcHIvqP6UCUgVRhahU28MI/VQWYY/+/fuXDE+VEq9DhKjOPPPMNL0+/PDD/Bk3pdeksvhsi9exeL9sCqWCN/Hef/PNNxt8v4nwZlxXU3iqlAjP7rXXXrk609SIMG+E3IrDU8Vhy2ize9NNN9X5fmMfjedQHJ4q9Tm1xx575M+jpvjOjiDzJZdcUjI8VUp8dkRYrTgEWpsIp9X0vV1c0eyUU07J91/TZ1QhkBX3GRWtAAAAKC8CVAAAAM1YHJiNFkXFouVWQ4kDmRGEiYOQUyOqEp111lm5FVEpcX/RiicqqtRFHDh+5pln6rRuBAqmNvATog3Y4MGD0/QodUA+Xp9ZZ511qu8rWjKWaqsUgbLGEi21TjjhhPx6Tq1oNVmq3WRTi3ZY0QatLtXdCh566KFqy6JC1PS0ASsEOZ599tkagwJRcafUWIcOHZqDQ9PigAMOyIGNuogKLqUCXiECh1P7HisEaIorgNVVtB4sFSqr7bWLUEpxwCLa8EW7ycrV6iKIMS3iM6PUazg1IrgVFZemVrSPq48A1/SKink1BcMaer+JtpwRmJ1asU9EFba6hoFCVHSqq9if6vq9GUGzqCxWF1HhKarl1bQNG+o7O/7tERXppkUEDSOoXBc1haei5WCPHj0q/o62kVFdqq6mZl0AAACaBy38AAAAmrEIG5WqtLDwwgs3yONFZY+oVFXqAHO0/tt+++3TIosskgNLUfEiWhsVVxyKChGrrLJKtdZL0TYoWgwVizZ3UVUlqmRFWCIO2sZB82+//bbO444WXNFmq7JosbXtttumXr16pXbt2uVWS1FtI4JZlZ133nm5dd4888yTpkWpg9pLLbXUNN1XjLNz5845ZFPZtFbvmRYR1Cl+vGh7FtVy4mB2jDEOjEelkwiSRMivstGjR6f11luvwcYX4aIIvoUIzX311VdVro+wRiGA1L59+4rlUZ2lOHQRVYyiukypYEGp6jbFFYymRVSSKn7PREu0DTfcsOLvCAwVjzX22wjtrLPOOlP9mIXXM9p27bzzzjlMFMtuuOGGkgHNeO7FLUKjalxUJiu26aab5tZ48f6JAEdUGYqAS/H7IvaL6akgFvdZWYw7wkSlPgtLhd+KX7sIYBV/zi2wwAK53WkE7mI/j8+5CC9GZaEIFlYWFXbWXnvtaXo+sc8WB7AiONm7d+/8+kbFrfjcj3anEQKJ9oulqr0ttNBCqanU9HkZrecaer+J751SFdyijWi0dYzP/ghf3X///dUqPEVwLlr61bUVZ4QW4/Mv9p8NNtggtyiN1yOqlxU/1wjERei38nt5SmI/i1ay3bt3z/vAiy++mN+XxVXG4v161VVXpeOPP77RvrNjHy8ObUaoKSpXde3aNYdJYxvEdn7kkUeqrBf7b7R0/NOf/lTnbRHf1xFSjf3h4Ycfzu+DQqA47i9aGdYUPI7PtXie8d665557SrZfBQAAoPkToAIAAGjGaqpQEgddGyo8EweYi/Xt2zdXj6ps4403zlVzDjrooHwQtyAO5EYljssuu6xaK6RSzyMOFkdLwoIIJcSB1Gj5VBx2KiUOLEdlimIXXnhhDkZVvt8ddtghj/fpp5+uWB5jj3DXgQcemKZWVPUpdeA6Wr1NqznnnLNagKoxW3ZF28Q4SF45mBTVcuI1qSxCAhEsiIP6lUWopSFFKCoO9odS1aAivFa4vrIIV5xzzjlVAokx1gjiVK5MFCIcVhzg69KlS1p99dWna+wRXCjVii9aa84222wVf0ewZMCAAdWqgEVwbFoCVIXnf+655+aQYuUQS7TULA5rRdiwWCxbdNFF8+dDIYARwaazzz67WpAlAkj77rtvve0XSy+9dA5JFFfsiRDUfvvtV2VZtOOr/P4OEagprmJVajzxubXqqqtWWRYBzGjHGZ8d8XrE/hdBkwhrxN+tWrWa6ucT7+/iYEqEp6LtWGXxWkfwL8KLUekuXrvYD2N7RNCoKQNUEforpbjqUEPsN8XLIhAYgaZ4nSuL1zwqLBXa1EU4tTgkNCWxzaMVXOWwXLQvjM+/+P6L6lCVRbiqrgGqCAjdeOONefwF8TixfSLAWBwKjspwRxxxRA4dN/R3duzbERqMwFihfWF83kdotvJ4Q4SeIsBUXClxat7zEfSqXFktPpsqB70i/FUclg0RbIvP9cqVG+N7P16zmgJXAAAANF8CVAAAAM1YTS1wpreNWE0iSFQsKkMVH4itfNA7KqFEMKOyqEYRB/gLVUoilFOqtVPctnJ4qmC++eZLJ510Utp///2nOOZS7bpizJXDU5W324knnpgDEZVFBY1pCVAVV6UpmJb2fbXdtq7t1+rDsccem38iQBRhgGjpVlO1ljXWWKNagKqubZsaWwTTIgxT3Pot/i4OUJWqYFSqjdzUiuo0xaGIyu37CiLAFkGK4naIjz32WH5dOnbsOFWPG+tHOKdyeKrwfoigYrRsnFJgLwJY8RMBpffeey/vG+uvv36N+0Wx6d0vIlRSlwDVE088Ua2VWYynOGxUKuQYnwNRWadymC3EZ1RUgorXJUI40ytCKcX+7//+L/33v//NYaPKIiwTYdD4DIjgSkN99k+tCNOUUvxZ3BD7Tbx2lavkRbWpmqqzHXrooTmQGMGpyhXp6iqCc6UqjUWQLR4v3pOVTU2rwqgcVRxGCrGPxffUwQcfXGV57APxHqi8nRrqOzuCgYXgWQSh4nWLaoOlxhvBtah2VRygKgSv6tpmtFjlUFSpdr7x74T4XCvV9jY+F6KKVakKewAAADRf1f+HCAAAQLNRudJEZcVVL+pDhJyKW0WFPffcs9bbRQWb4mokUV2lchWY4uBDiIOexVWNKovWP3PPPfcUxx0tj4rFwdyaxAHgCNMUV0mZlm1aUyWwCAtMq1KhrGk58D+9InQTwYGohFK5sku8trG9hgwZkv75z39Wu12pilwzigjhFCsOS0XVk4Zq3xcVZIpFYKFU8KM4VFXYtqUqWE1JBFZq2ldLBSIqV6cpFu/1lVdeOQdL5p9//irXRTuvaC8X4cdSY58eEcIp/jyMylnF1Xfq0r4vlNrmUQ0vlkeFnqi08+abb1ZUAYuQXX2EpwrbPFrNVRbtTTfZZJNcceqiiy7Kn5+FAEqEv6I604wSnqrt9aypMlV97jfFgab47N5rr71yQPLUU0/Nwbr4Pit8dsbjTutnaFRXqknxaxiKw3s1iZBecZC3sj//+c/VvqeKv0sb8ju7smiTGds2qkIVvzbRpu/yyy8v+b4r1X64lCWWWCJXdKtNqX9DRDCutrByfYReAQAAmLmoQAUAANCMzTXXXFNV+Wh6lDoQG8GZUlVBKosDsSussEIaPXp0jW3A4gB5qYOypSqxVA5YRWhg1KhRtT5+VG0pFq2IilsI1iZCElEdpbgS0ZTEQfmoxFJ8kH96qu2Uqv5TlyDZlBS3DKur7777Lr3wwgu5kkcEVuKntpaC0/o4jSEqs0R4oxCuKLRTi/ZohbZ/EcgrbhUVbd2KKwNNy3YsFcyKgEZxZahCu60IgxQH+6JlV3GbsympLZxQKqRRl9cwQlaxrWK/eP311/N+Udx6cmrvszZRdShaHd53331VlkdYplCpLsIrTz31VJXrI3RVKqgSIZz11luv2voRfoyqQoXKQhE8i0BmrB8Bp6g8NL3is+3oo48uWSUotmX8VP4M7N69ew6wxGfxtLQMbAg1hUSn1L60Pvabfv36peHDh1f7HoxKSdEqttAuNoJnse0iQBg/NYW7alMqYFhQ6v6K227WJCpi1VTFK8TrvMwyy1T7Xq1ceashv7NLibBifBdEmCnChW+99VatgbG6vufr8tlaqn3fcsstV+ttpnQ9AAAAzY8AFQAAQDMWVYDigGjxgciPP/643h+rVCgmAk51Oegcra2KVW5lVKoF3ZQOtNc1OPTDDz+k+lBbKKg2UUEoWkhV9u67705zyKZyuGdqA1S1HbCu64H9ggj7RAunOGAeVZmagwglRDvCQYMGVQvhFAJUDz74YINUMrn77rtLVtOJgEYEuEqJ1nHFIYePPvoohwrXWmutOj92qZBUQW0hjlLefvvtvP2idWZDVMKbUgWx2gJUUUGnONiz4YYblgxqxufqxRdfnNuoRauvmkRIJ+43fgYMGJArVEWAp7Yqd3URLUZjrNGCrKaKX/G+i5BK/MR7MSpg7b333rkqXKnQXWOKVpKl1PS5Xp/7TQRurrvuuvw6FH/2VhbBrGHDhuWf+B7r3bt3ri5WUzC5lNrWLfUa1DU0NK3ff5XDuQ35nV0Qn1lRbTBaBU4pYDWt6tKStFQ7wNo+1+oreAwAAMDMRYAKAACgGYs2P0svvXS1QE6pyhO1iSof55xzTq7gEpVtSrUemp4D8qUOGkf1lNrUJdBTl2orf/zxR6oPpQ7Q1kW0hyoVoIrgRam2abGtotpVVBcp9n//9381PkZd1Hbwvq6tpeJ1ieo4xUGVygf+o3pJjCn2z2g3NjOJtpHFAaoITUWQJjzyyCPVAkYRdmmI9n2hf//+U31fEWaYmgBVba3fpvQ+rSxCPBEiKvWei8eIakmxX6y++uolqytNrwgvLbDAAlXeb1EJJ0Jliy22WMnwW22tF+P9GZXqnnvuuVzZK8I9pcKelT3zzDPp2WefzfvLlFqlTcn222+fW5Xeeuut+f0Wz6M2Y8eOTWeeeWZul3bVVVfV2JaxMZSq/BdKfa41xH4T1QIjPHfnnXfmcGKEEGv7/IuwWozj/vvvz5dRAaouagsYVm5tOrXq0tKy1Pdf5fE09Hd2VH2KwF5NgeCo5rfSSivl8Gl8p911113TNJa67MeltvWUvvun5rMNAACA5kGACgAAoJlbc801qx3AjNBAHEyPiiR1EaGQ559/Pv+cddZZubJNBKkiADDrrLPWWK0hwgRRLSSCMrUp1aIvKjPVVimiciui2ioy1aWNXrHjjz9+usMNdRUtoiLQUHxwPA7UR8WTUpWdDjnkkByA2WeffXIbsSmFbKJ9WF3UVMkmTCkYUhBVeYrDU9EKa6+99sot8KJiUuFgdgRJZjYx/qgeFG3ECiKQE3/HAffiMFy0/pqaijWlRLuyaa1KVtP7OSoA1aVyS6iPtm9PPvlkOvvss6sEL6LSze67757by0W7rEK4IyonNUSAKl6fqCB25ZVXVlkeQZp4Lz3xxBNVlsf2iYDSlPTo0SP//Pbbb3k/iP06Kn9Fi7lS76nYBueee25ulRafpdMjQiiHHnpo/vnwww/TyJEj82NHmLKmz8ioChfBxZNOOik1lVJV02I/Kw57NuR+E/cT1bjiJ6onxbaLMFxsn5rCaBEKOuKII3LwanoCUNOr1HdmXb7/Kleuasjv7BDfU8WfW7HP77zzzvl7b7755qtYfskll6RpNaWxFp53cRu/UhWzpvbfDwAAADQvTqUBAABo5iLoVCwORt9yyy11un1UHioO5kQw4Oabb65SmWaJJZaodts4oB0Ho2sTlT0i0FVbJZJSFa/iYGhtB0CjElJUzpqShRdeuNqyhmhxWJNoEVaqEsjVV19dslXVFVdckS+jDdt+++2XD1LHtojgRoQNikV4aamllqq2vNTB/9pCUrW1uqpchevGG2+s1hIqqvP06dMn7yOVH7e4XdrMIlrBFYsQTnEQLkRgZ3rVFIybVhH0iQBIY4rQUnHVmksvvTQHXqIaUOXKOA25X9T02o0YMaLa/r/FFltMVZWe+DyMYGM8p5tuuimHmKLa18EHH1ytDWB8Ntb3axDvr3ifxXaNMNBjjz2WK06VCmlFtZ+mbK1Zqu1h7AfF1YQaa7+J8E+02ixU6IrP18svvzxtttlmJdsJlvrOakyffPJJjW0QQ7y2pSpNxvdBY3xnR6W14pBcBE8HDx6cttxyyyrhqcJ9Tqu6VIqq/LwLorVlbV577bVpHhMAAAAzJwEqAACAZi6qD0XLtGLXXHPNFA8gFipDFFduCFtttVWVA5dRCSXaYBW77rrrar3/aD9VHBSK+41qRQXR4qdU4CdaL9VWZef7779PU1KqvV3cNkImpcTB9T//+c85vBRVZP7zn//kCkHTKsJhEdQoFhVQTjvttCrhgQiuFR8Uj7HG7aMqSqlARIyzlELlsMo+/fTTkuvGdnzppZem+FxifMUHwhdZZJFqlUlqq0LTmErtU3UJlWy++ea5ek3xflEcConKU1GBanrEe6OmdojTI4I9jSXeS6Ve61VXXbXk+nXZ16bVoosumqvgVBbvqWhpV9f2fRG0isDVDTfckE455ZQcWtp0002r7fsR7onPl6gOddBBB1W7nym13KtJfN4MGzYsnX/++fl+I+Rz7733lgyHRpu/CGMWGzduXK0BnIYU75WollWqPWZD7zfROjACcxGOOvLII/NjlmqDGdWZomVtfP+VaitYUwvCxhKfU/HdWZOnnnqqZAWl+C5tjO/sqFZZLN4LNYWdpue7oC4V8io/78rfnaVCyoUAdny3AwAAUF4EqAAAAMrA3//+92rLok1ctKmLShulRHAnqh1de+211a6L8Ei0ZCsVqioWQYOa2vNEq6to+VbsL3/5S5W2Z1G9pTj0UKhEUqpKRBzcPuOMM1JdK3QVB2miPdHpp59eLUwTB1vjwPvnn3+eD1DHtjnhhBPyutOjb9++qW3bttWWR0giXrtC0CEqyUQLvwhsVK6M88MPP+SWjKXazf3tb38r+ZjzzjtvtWVRVeyPP/6oFmL4xz/+kcaPHz/F51GqIli0cPrggw+qLY8D7FGNpFhjVsUpVV2oLs8z2j5GYKZ4n/nss8+qLItgS+UqbdPiwQcfLFkZ7F//+lcO/tTlZ4cddqh2+zFjxpQMOTSECOCVel0jyFLsiy++yFWASqmvfaPUe6I4fBPVeVZaaaWSt4/WeNHyL8YZlfxiO0YYKtri1eT999+vtqw4hFdX0Ub1uOOOy/tAVJmK1/Kyyy6rMRBV6v03PY8/PaIyVnyeFIuKRMXV2hpiv7njjjvSYYcdlr87InQWlZSiQl5N4av4bC3Vrq4ptl2x+C6K7VlqW5T6TopAXXE1wob6zi61L0aLzFKBpQhzlwpQ1ed3QYSeS72Po41lhKWKRTixVAUvAAAAmre61yEHAABgphVVcCLw9O9//7vaAeo99tgjrbfeemmTTTapaGcXoZc40BytikqJqielqgrtuuuuORRTXPkpgljPPfdcrobSpUuXfFA6gkBRQar44GVURoqKLcV23333NHr06CrLouJLPGb8ROusCKtE26yooBHt5OoixrPBBhukxx9/vMryOKgeoYeddtopt/+JcEzcb6mDqnvvvXeaHhHWOPXUU9Pxxx9fslpLHLSOqkfxHDt16pT+9Kc/5QPUtVUmikBWHOiuKcATVVWiDVRlse1iP9l5551Tx44dczBjyJAh6b333qvT84ixlQrqxWsXlbCWXXbZHLKK1z6eV6kD5NEysrEUtwsLUYkolsfB9Qil7b///jW2gouAW21qqmA0ve37YjtXrvYyJb179y5ZcSoqyXTv3j01tAhWRDWm2BcqiwprsY9Flbxff/01tw6LMdXUziv2jfoIrkSwLaoO1dY2rLbXLqr29OjRI3+mVRYVqeIzM1rBxWdp7N+xDxVaBBaLlmbTIj6TigM/EeCKMe+4445pueWWS3PMMUfeh+M9XWo/7dq1a72HgKLNZ3EQJgKZEQCMtqjxvo+wWXFLvnDsscdWC5E2xH4T79sI7FS+z7iP+NyLAFe8rhEujQpd8bkX75vi77MYU7QPbGrxHOJzNQKBERCKYGdUJ4tgb6kwa3xPFoeFG+o7u9R3Qbxmu+yyS/43R1S/iu+fqPJUU/Wp+vwuiO/O+M6Lf9tUFiG6CFzHeyqqJcZ7Jr77owUhAAAA5UeACgAAoEwcddRR+SB7cVAoRDWl+KmLXr16pX333bfkddH2KCpfRNWk4oPkcSA/fqYkqohEm61SlaIi6FU8zjj4HQeMa6qUVVtIoiCqSMXB4uJ1I6QwpbZQcWA2qm9MrziwH6/PoEGDql0XB/MjIFBby6ZSrQHjQH9Noj1VVK8pFgGHUpWJ4v6i8lZtorXWnHPOmQ+2VxYHpc8+++w6jbv4tg0pggFvvPFGlWWvvPJKrswWIgRTU4BqzTXXzLcvDqEVxD48rQGZyoGDCIcUi6oxdWlbVRBhj1LhgWg5GMGJypVjGkKE+NZZZ5305JNPVguARJglfuq6b9RH6CfuI0JUERItJUImEYKqTYQdI6wUnz91ef8Ui4BJccu6uoqxReWr4s+mqJQUlajqoqbWntMb9isV+JuSCOlsueWWjbLfxPsy3t9RvauyqIwUFfjipy6f1REwbUqF77YIM0XIa0otOeP9H2GpxvrOjtD2wIEDq60bFb8iLNcU3wURUo7qjcUBsKhiWaqS5dT8GwIAAIDmQQs/AACAMhHtyqKqRFQDmlZxkDuqGhVXsagsWptF+7zawjs1jS8OcJY6kB7iMc8555y05JJL1un+osJFqVZRpUTlidg2pdro1SZa5NXWtmtqHXHEEencc8+d7rZvhfBNVKSJ+yvVgiquq2sVlWivFfczJTHuUu0ia1McBIqKPY11wLpnz561Xh+tsEpVyynsj7UFYKYUwKmLqM5SyrQEb6IKVbFoz3jnnXemxhBt06Zmvy7VXrGmVnTToqbWloVwXAQGaxNVnuLzaGo/58Jss82WLrzwwhw2nBYtW7bMQamoXDctIkhT0+dsY4vKP1FRqjH3m8MPPzxXXJwWq6yySjrmmGNSU4uKT1FFrC6iolZ8T9X0/dYQ39nx3RIhxam5r2Iffvhhqk+rr756Dj7W9u+Xyg4++OA6b2MAAACaBwEqAACAMhIH3k888cR0/fXXp5VXXrnOt+vcuXO64IIL8k9dDmZHRZGokBIHLOsiDlLGmKJ1XG2ibWC0lIsWdlOqhHTjjTemBRZYINVVtIOK26ywwgp1Wj8qYsVzrO9KJNFG6v7778+Bl6k5oF2qIlFUaonKXBtuuGG1AFSsHxVCIhBQm2jxFi2NIpBW13DGIYcckve12kTbpxhTcZAhWn5Fy8LGECGy2FdqEtuvVCusykGmmp7n9AaoYjuUCjfF/hnVZKZWjKfUe3dKlWvqy/LLL58uueSS3GZsSiLkedxxx1Vb/vTTT9fbeNZYY42Sle6mpvViVJ6Lz62peT3isy4+w6a3dWJUsIqKdLEP1jUQEtV0otreySefnJra0ksvnUNgEZ4qFZ5pyP0mPvviPiOwWteKZrGNo+JYfJ7WZSwNLcYQLXnje6g28Xlx0003paWWWqrRv7MjYBitBackWuRG5a/itn/RjrC4teD0igpUAwYMyC0uaxJBswhalWolDAAAQPOmhR8AAEAZirZzEZyIFlDRHina10W1nW+//Ta3t+nQoUM+qLniiiumDTbYIFfqmZqWYSFuGwduozVOBIKiFdB///vf9NNPP6V27drlg6XR4izCPfEYdQ0BRMuhq6++Oo87WnBFy7UIuUQbsqgKE+GHqHwR4/3000+nasxRNSNaUMUB9+HDh+ftE+3nopVQBH6iKk2MOUILUwoeTY9oDRcVQaL6yogRI/Lr8/bbb6fvvvsu/0S4JrZhBNuWXXbZXDEnWvJF8Kh///75dSwOAkVgoViEoiI0dt9996W77747vffee/mAdVSciuBCVOmJtokREorXrq769euXWz3G6z969Oj0v//9L+9XUXEnquZEWC3CCBGIi5DYAw88UOX2EdiK2ze0CBTdcMMNeZyxDaJSTWzbGNdiiy2W21DFdq5J7A8RnonXprIIZUVVs+kR+/dXX301zeGeYvH+iLDavffeW2V5POdoExiBooYW7/X4LIjtHe+x2Kd++eWXvI1jn4/tFvtF7KvxeXTWWWelSZMmVdw+9tEjjzyyXiq0hXh94/UvDk9MTeWcCJxE0G3kyJHp0UcfTa+//nr67LPP0vjx4/NnWnyWxn4SQZbY/rHvTylcWFcRAomQSt++ffPr+uKLL+bXMz6vorpYhINiX47PiHjcLbbYotbgSEOIbRDv8XjvF2+Hptxv4jU44IAD0g477JA/f5555pnc4jI+7+O+Yz+I90xUPIz7jwBiPNaMJMK7EYKNfS8+MyNwFNUGY9zx+R2vd7T7rOv+Vt/f2VFp7corr8zvi3iPxPjiuym+m2PssV/G91aMMbZ33G/lNrXxnTFs2LC01157pfoUr+W6666bQ1vxPf/xxx/nx4qWrfGZEPvE9H5+AwAAMHNqMbmmWvQAAADATCcOUEeA4J577qlYFsGCCBHUV3CD/yfCChEkiIPvlUVbqylVU6PpRcDk/fffr1ZVqj7bcgIAAAAwczBzCgAAAM1IVPY4//zz0+DBg9M666yTq4QcfvjhwlMN4IorrqgWnopqO5tvvnmTjYm6iQo7xeGp6anwBQAAAMDMTQs/AAAAaIa6d++ef6KlVbTqo35Fy6xbbrml2vJoSRUttJhxvfzyy+n000+vtjzeJ9GuFAAAAIDyI0AFAAAAzZjwVP3YZ5990oQJE1KbNm3Sf//73zR27NiS6+25556NPjZqFy35Ro4cmdq3b5+++eab9N5776XJkydXW2+33XZLrVubKgMAAAAoR2aFAAAAAOrgxRdfrPX6TTbZJK2yyiqNNh7qpl27dum1116rdZ0FFlgg9enTp9HGBAAAAMCMpWVTDwAAAABgRhcBm9osuuii6bTTTmu08VB/Vdhmm222dOGFF+ZLAAAAAMqTABUAAADANAaoZplllrT11lunW265JXXs2LHRx8X0hd/WWGONdPPNN6fVV1+9UccEAAAAwIylxeTJkyc39SAAAAAAZmRfffVVGj16dPriiy/Szz//nGafffa08MIL5+DN3HPP3dTDoxa//PJLevbZZ9Mnn3ySxo8fn1q3bp1DVdFusUuXLk09PAAAAABmAAJUAAAAAAAAAABA2dLCDwAAAAAAAAAAKFsCVAAAAAAAAAAAQNkSoAIAAAAAAAAAAMqWABUAAAAAAAAAAFC2BKgAAAAAAAAAAICyJUAFAAAAAAAAAACULQEqAAAAAAAAAACgbLVu6gEAADO3O+64Ix1//PFTfbvu3bunwYMHT/Pjvvfee2nppZdO0+vTTz9NvXr1yr8//PDDadFFF63T7fr06ZOef/75tO2226ZzzjlnusdRLp577rm0++6759/feOON1Lp167LYXxtjnwQAAICZwbLLLjtV648ePTrNMcccNf5/+bLLLksDBw5Mq622Wrr55pvTjGyzzTZLY8aMSa1atUqPP/54mn/++dOMYmbajnVVmL/r27dvOvzww6dq//z3v/+d1llnndSYKu/jU+udd95JjWXDDTdMn332WTrjjDNS7969G+1xAaChCVABANNlnnnmyRMrxcaOHZt/2rRpk1ZcccVq1y+zzDLT9HgxyRT/OZ8wYUKzmcyh+e6vAAAAQGmLLbZY6tix4xTXi7BRc/B///d/eV4rTJw4Md12222pX79+TT0sZiBt27YtOW/1008/pXfffTf/HvNWMX8FANQ/ASoAYLqsv/76+aems9Y6depUr0Gne++9N40YMaLkZALMaPsrAAAAUNoBBxyQtttuuzqvH9Wa7r///vz7ggsumGY2//nPf/JlzEs8+eSTaejQoemggw5qNgExpl9N81KVK7pfcsklaeGFF26C0QFA89eyqQcAAAAAAAAAtZllllnSkksumX/i95lJVFJ/4IEH8u8HHnhgateuXfriiy9yGz8AAGYMAlQAAAAAAADQQB588MEcoooKQ6usskrq1atXXq4KNgDAjEMLPwCgST300EO5ZPnrr7+efvrppzTXXHOlVVddNe2yyy5p7bXXrljv008/rZhcCi+++GJadtll00ILLZSGDx9esfzLL79MQ4YMSSNHjkwff/xxGj9+fD6rb4kllkibbLJJvt9ZZ521QZ/TBx98kK6++upcXjvG07Zt29SlS5dcoj3Kbc8zzzxV1p84cWK69dZb0z333JPefffd9Ouvv+btsPLKK6ftt98+/fnPfy7Zbi7aGE6prPc777xT7fq33347/fvf/87rff3113n7rLjiimmHHXZIm266acnn9PTTT+ft+sorr6Rx48al9u3bp2WWWSZtttlmqXfv3qlNmzZTvZ1+++23dOWVV6a77747jR07Ns0999xp3XXXTfvvv39afPHFK9a75ZZb0imnnJK3SbRvLHWWadx+ww03TC1atMhnb0ZZ/6bcX4tf3zvuuCM/z9j2P//8c5p33nnTmmuumfbcc8+0wgorNMhYAQAAoDmpPDf08MMPp0UXXbROt3v00UfTbbfdll577bX0448/5vmH7t27p7333rvk/8mndp5matr3xfhj7mLLLbfM8wQxf/XJJ5/keaOa5nficWNOZvDgwenOO+9M//3vf/PcyPLLL5+v32ijjUo+5vPPP5/nMF566aU8//PHH3/k5x4BrtrmMQomTZqUNthgg1wp67jjjkt77bVXyfVOOumk/Dg77bRTOu200/J8XV1su+226Zxzzpmu1yrEPNUNN9yQK3x99tlnec4qxv33v/89Ta94ja6//vr0/vvv5/nE2HaxzWP+quDDDz9Mm2++ef495n9qGmfMuX300UfpoosuSn/5y19SQ4jtFtti9OjR+TWfffbZ8+ux9dZb5+1dU7vIZ599Nt100015X/n+++/zNizMFcZ8KgCUCxWoAIAm8fvvv6dDDjkkHXrooTmc07p169S1a9c8mROTYBEsOfvssyvWjxBSBIY6d+6c/47/yMff8Z/5gpdffjltscUWOZQTE1zzzTdfWnrppfOET0wAnHvuuWmfffbJE2ENJR4nJtNiwiQmeuLxI8wT44lxxWRFhH0KJk+enA4//PA8wRShsAhXxcRGjDEmjfr27ZsuueSSehtfTLhtt912ecLthx9+yOOLyZQIJsVrceSRR1bbPjHxsu++++ZgUuF1itBVTMSdfvrp07xNIygVYbA4AzPCWDHhFdstJnVinyiIScWYpIoJnCeffLLkfd111135dY4JrIYIT03t/loQIatdd901TybG9urQoUN+fWPfiEm42Feuu+66eh8vAAAAlLv4P/tRRx2VDj744DyfEMGl+D95nNB177335hPCbrzxxiq3aYh5mgg8vfDCC/n3rbbaKl/G/EXHjh3z48WJY1Oak9hvv/3yvFacqBctDGM8EbCK51bq5LoLLrgg9enTJ889xMmFcWLhggsumL799tuKeYwIidWmZcuWeR6rMO9Syi+//FLRmvBvf/tbvoz5upp+YhwFMZ7pea3C559/nnbcccc8vzRmzJgcqos5wwh0xfxXbK9pdcUVV6Sjjz463+9SSy2Vt8cTTzyRw1xxYmNBPKc4ua627RT7UoSn5pxzzhoDb9PrX//6Vw48xWse806x/WJbxHzUiSeemF/zWF6sf//++brYL2Jfi/muCOjF/Fe/fv3SYYcdlpcDQDkQoAIAmkScYfbII4/k8E5MPEWA5/bbb89n3p188sk5oBLBkkK4JEqcx4RQYTImAjfx96WXXpr/jomjmNSIEE5MRMR/8mOCJYJCcRZVBINCTFhVDufUtwjRRCAoJqniuQwbNizdf//9uXLRYostls/a++c//1mxfowlrotJs5jgiMmKOCsxtscRRxyR1xk0aFD63//+N91jiwmomBSJCZ+YOIltEeOLYFRs55gUjG0Wk04FsT3PP//8/PuFF16Yxxvji6pf11xzTQ42xURMlKKfWjF5FK914T6feuqpfFZbnNkZk2YxqRdisqdwtltso1LieYSYHJsR9teCeB4Rqov9N4Josd3iucY+edBBB+XQV+wz8boDAAAA9Sf+/x5VpBZYYIFcKfyZZ57J/yePyzjRKUI6Z5xxRv6/fUPO0xSqT0UV9dVXXz3/HvMIhSpEcTJZBIVq8uabb+aK4DE/M2rUqLx+zKEUKkhdfPHFOYBUEMGqq666Ks//nHXWWfn5xW3iuTz22GO5olNh+8S8RG0K8yxvvfVWPjmwWITK4uSxCBh169YtL4v5ulI/8RoUqsLH2GNeZHpeqxDXRQWoCAvF6xYBppijigBV3CZCS9MqqjjFiW/x2hf2gQgThZg7i7mdgsJ85X333VfyJMOYnwxx4ue0VHGfknjusX/E6xnbNcZWmL+LClpRCT3m74455pgqt7v22mtzMC32x5jfitvFfFe8D2K/inmwCMhFeA8AyoEAFQDQ6GKSqXB2XQR6og1cQZSSjoo9hTLbcUZXnCk3JdEaLSoUxSRETKjEGV0FcdZUVDsqlEMvNeFTX2IchYmTyhMi8djHHntsLvMeE2bF68eZapVLnMd2OOCAA/K2iQpMUS1qekWJ8DizMUI9UW68ctnumLgqVFCK9n7fffdd/j3OsotAU2zP4vLiPXv2zNs1SpCXaqs3JXH2ZLzWMaEV5phjjnyG5CKLLJJfy8pnYBYmoiLsFaGuyqLyWEyIRTn9ym0em3p/jXHFeEME/Xr06FFxu9g34jZxlmQohNQAAACgXBx//PF5LqSmnzg5bVpF+7LCSU5RSehPf/pTlf/Lx31H1Z2YJ4mgSEPN00SgpRCeiepThTmQ8Ne//jVfFqpC1SYqYheqV4WocB0nEoaYQ4n5m4IIv8Q8zcYbb5znUyJIVRABpcIcxjfffJN/ahMVndZcc80aqyvV9YS2CBVFAC3CYIsvvngOTEVoZ3peq1dffTUHqmKdmI+p3AYxwlwxxzQ9IuwWc4wRIiqM5cADD6x43SJIVxBzZrFePJcIWlUW82qFKl0NdeJfzPmFmGeK17fynORaa61VUTErAlWFamgxrsJJnrF/xfxW5X0l2hLG8w/R3i9aaAJAcydABQA0ujhLLs6Mi6o8xaGcgt122y1P9kRp6ThDakpWWGGFfGZY/Mw999zVro8z+Qqhqp9//jk1lJhYCqeccko+a6tyiesNN9wwt/GLCbeCqEpVqA4VEy+V2/uFmFAaMGBAlUm7aRGTHHG2YChM9BRbf/3187aL8uuFs+gWXnjhPKEVE4PHHXdcxURiQZRWj3BQoULU1IiJmWIxwRMt/ELldn0RPoqJsHgdo6JXqcm6mMBsiLP4pnV/LYSnYtIuytSXEmXfC+X8GzLYBwAAADOamBOprd1bVB+fnv/LxxxCVEaKOaNSCvMPEcQpBInqe54mwkxRjbzUfMzKK69c8Xil2vBVFifkFYtWfgWVTzaLE+dee+21dN5555W8r0IVqBBzQFNSOKktKkRVrlgV7fFi/ijmjQrbsiYRxIn2d3HyW8yNVT7xcVpfq8K8SwSd4mS8YhH8ivucVrvsskuVwFtBtMkLMQcZVehDu3btKk64Kw6aRdWveH1if15ppZVSfYuTCgsBuj322KPkOhEILLQZjPGECFLFuOL1KzVHF2IebP75588BuHj9AKC5+3/xbgCARhSltcNyyy1X5cymyuKsrTgjLUIlMQlQaqKopkmguP84o+3jjz9On3zySXr//ffTO++8k8+sClMqTz494uy/OBstSqvH2XHxPGLCZp111kkbbLBBxcRY5VBVlE6P0E20yIufJZZYIq8fZ9xFZai2bdtO97jee++9KqGnmhS2UeE1irZ+++67b57cijMm4yeCRHH2WlSgWm+99XJZ+6kV9zHffPOVvK5r16758oMPPqhYFhNW2267bQ5rxUTUTjvtlJfHBFtDn8U3rftr4XY1Tf6F2B+iRWGUu4/bTc/kMAAAAMxM4gSzhvq/fGEeJKpK77zzziXXiYpGBfF/+JgDqe95mkL7vpgbqBx4KoiqUtEOLsIsMX9VU+AnQiy1BaGK28bFPEr8FO435sdinizmx+IkroK6zJFFMCgqckcQLFoIxrYI0eIwHjfmQKJFXE2iTVxUMIoTz2Jep3hubFpfq0JoqLa5lJhjiuc/LZZffvmSywvhuTjZLrZlzBcVgmbRKjECSjHPE/M9oVCBrKHnrWabbbaS+1jBiiuumF566aWK7Va4XZwMWhhrsdiHYjvEa1+5yhkANFcCVABAo4tJhEK58doU/vNelxZ+IUJLp556ag5PVRZVlaK6Uixv6HLTESi6/fbb07/+9a98ZlaMPc5ajJ9okRdnxZ1++ukVE2Jxltc111yThgwZkidZIoATExjxc+ONN+ZtEAGmvn37ljzrra6iMlLBiy++OFXrH3744XmSJcYTE29fffVVPuswfmL8cTbaySefPMXXs7I4M29K1xWfBRkTTVFyPMYfE39RkSpKj0d1rJi8qi2o1BT7a11vF8831q3rfg4AAADUbV4j/r9dl3mQQgWn+pyn+e677/K8RXjjjTemWLXqlltuSSeddFLJ6yJ8VJvKAaP4PZ5DVNCqXJkqxhsnf0U1p1Lt+GoSwZyY+xk6dGi+XSFAVQgGFSpUlRKtCQuVsKJae1QYr6/XqnBZaLFXSuVKV1OrprmryssrV7lfY401cjgsKkI99NBDebvEHFq09Iv9qqaK8NOrMP9UUwiqeNxTO281tfOzADAzE6ACABpd4T/slUM6pRQmQmoL2xREtaLdd989h24inBSTFHGWWZx5VThLL6oWNXSAKsSZZ3GGYrTvi1DXc889l5555pk8CfR///d/uTJVTCAVJnii7dxee+2Vf+JsuzibL24TJcy//vrrdPHFF+ezCuP6mibHKivVorDwWFEqPe57am288cb5JyZX4izM+IlQWEwgxhmH8VpGlaq6qm3SpbBfzDHHHFWWd+7cOU/SxcRThLcOOuigigm/hjqLb3r217rernB9XfZzAAAAoG6hn7DpppvmqkdTY1rnaYrFfEnMDUU166jEXdu8QLSCizmOI488smLs0+ryyy/PVa1CBJ/iZL+YK4tKWjH3EAGfqQlQhZhniwBVzGeddtppeT4oKkfFSYtRcb2UaLcXldqjytXee++devfuXa+vVcxxVQ4ClVKXFoU1KbTnK1Z5nqc4oBXzUzEnGPNWsc3uu+++XKWrV69euWpWQyjMJ9W2HaZn3mpq5mcBYGZXugcJAEADigmb8NZbb9VYKjz+0x8TOoVS0lNy/fXX50mRuO+oABUTMxG2qVziPMpNN6SYEInS3aNHj644OzDOPouWeXHmYvzE2X5x9lkEqkJUT3r55ZfT2LFj898LLLBA2mabbXK1qqhgVWhdWHliq1WrVhXt60r58ssvqy2LMwzD999/nx+/JlFhKsJohQmmuHz77bfzT+Gssyhnf9xxx+XWeTGxFx5//PEpTrhUFhOOlc+CrCzOyqypBHvhrMZHHnkkT2SNHDkyb+eGOotvevbXwu0Kz6eU2NaFCbm67OcAAADAlBXmQQrt4Wo6AS1OEIsq14UWeNMyT1OTqGAVIsAU4auafuK+Q8yTROBmekRgK6pPhZiPuuiii9K2226bVlpppYoATITCptaqq66aT1IszMXEvEyI+ZhS1bFim0aVrphXim0WQar6fq0Kt4v5mppMa/u+yi3uihUq30eIbpFFFqlyXewrMW8Xc4MxB1fYTg154l9h/im2Ucwz1eT1118vOW8Vc5k1ha9iHqzwfM1bAVAOBKgAgEYXE0dRujqCPPfff3/JdaIs+h9//JHPQuvevXvF8kJ59OLqS5999lm+jMmcUmfqxeTO559/nn8vTLTUt5jo2WSTTdIee+xRMqQUk02FyapCEOeEE05IO+64Y275VywmoArPvfKY4+y+ENW0SoWoCpMzlcV2KUx0xLYtJapj7brrrvnsxJgsDLfeemsu7R4TXaUqXhXKthePcUrivgoTiZXFhM2wYcPy7xHUKrbRRhvlMwxj8ua2225Lv/76az7TsWPHjmlG218Lk6pxxmVNJeivu+66ignZKZXyBwAAAOpm/fXXz0GWCMHEnFBN/yfv06dPnvcoVPOelnmaUuJkqsLJaLW1uCvMdRQqVN18881pekTbwMKJWiussELJdaKSVEHMZdRV4Xk8+uij6bHHHqsxGBRBsP333z998803ea7jggsuyFW46vu1ijm4EHNYhZBPZbH9Y05mWv3nP/8puXzw4MH58k9/+lO18FicyBnLY7vGvNdLL72UK0/VVKWrPkSQrBAmixNMS4l5qcK2iHmusPrqq+cKWjHWOOmzlAj0xXxYzMfG8wKA5k6ACgBodNGKbYcddsi//+Mf/0gPPvhgxXURLLrpppsqSo1Hm7YOHTpUXF8IIEWVpcqTPIWJgphoiSpKBbHOvffemw4//PB6Kd9dm2gZGFWTYhLtiCOOqHJGXwSd4qy/CAhFO72oTBVi4qcQVLrzzjurhJQikFWYlInJpIKY4CicFRn3WdgOMYEUk1Jx9mIpf//73/PlVVddlScCK4evYpsVrl9llVXSWmutlX/ffPPN82TQu+++m84666wq5cu//fbb/Phh5ZVXriidXldR0rzyax8Ta/369cuVwrp06ZK23377kmX0t9pqq/z7JZdc0uBn8U3P/hqBucLrduihh1ZpnRjbPsrSRwgsHHPMMRXhQAAAAGD6LLTQQhUt42KOZvjw4VX+Lx8hooEDB+a/42SyqLg9rfM0tYVv4oSvwglWNYmTtgpjjSpBtVWynpJ4vML8TISOogpS5XmcU089Nc+TTcscWWybGGvMi7zzzjs5oBVzYZXFfEdUvoow1IILLpjnn6bU+m1aX6sIZ2255Zb5NTrkkEOqVKKK1yrmYkqdDFhXERKLuavC/FlcnnvuuXl8MVcWz7O2oFnMFcUcYVTpiu3WkApzerHfxnxT5Tm/mI+KbREiBFU4GTJOAoygW4jbRIiqcuX1hx56KJ188sn595gXK8y9AkBz1rDf2AAANTj++ONzUCYmI+I/+fPNN1+uwhOluONsubDbbrul/fbbr8rtlltuuYqKU3GmWdwuzs6Lln0xARS3jcmUxRZbLE/QRJWmCBpFaCkCLXHm17SUKq+rCBTttNNOuax4nEG48MIL5wmJGEecgRdn1J1++ukVFZPiOcQkRARpjj322DwRE4GdCFp9/PHHeaKnW7duuex5QYS0IkR0zz33pGuvvTaXjY9tVyi5fdhhh6WLL7642ti22GKL3GYuJnDOP//8NGjQoLydYgKtUMErJkOuuOKKitvE9o3gVFSguuGGG3J7xChPHhNAMb6oABUVsc4888yp2k4xORbbIF77mFCL+4jJrZjgibMuL7/88vya1TQRFROWEeaad955K86cmxH31wEDBuTXLva73XffveJ5jxkzJr9WsT/E6xWvDQAAAFB/oppU/F/+8ccfTwceeGD+v3xUCIo5kJgLCZtuumn+f3nBtMzTFIu5jUJIqaYWd8XiMWOeJuZbYp7rjDPOmKbnHEGdmLc47bTT8txUVD6KuZ8YU8wbxUl4yy+/fG5RGPMZMUdWU6WqYjEHE8Gx2qpPRQgnHjfEXE8EcOKEv2gtWEqh4ta0vFbhlFNOyRXno8JStM9beuml8wlqMcc0xxxz5IphhfFMrXi8eE0ilBTzezEHFHOM8XpG28XCHGWxCMzF3E9h3A194l/hBMjYP2NeMubUohJVzPFVnvOLbXHeeedVOYFvn332yXOW8TrEfGXMGcZJjbFfxMmrhe1w4oknNvhzAIAZgQAVANAkopJQ/If+gQceyGflxRl2caZYhGfiTKgol96jR49qt4vKSFGtJyZk4j/yMQH09ddf5xDO3XffncM/zz77bJ4IinBKTHLFZFW01YsJg7iMM68ifFNTQGd6LLXUUrkF3TXXXJPHEZM4MbkWEz8bb7xx2muvvfJkTmUxqRXhrjizMc7gi58If0WlqWinF5NoxZNtMYEXt4ltF2f1xSTJSiutlINksf1KBahCnB3Xs2fPHECKqlNRzjzuOybPYnyxfYrPDIztF2GhaFP3yiuvpA8++CDfJloCxqTQnnvuOdUt9OL1j8mcOIMw9oGocBXbKEJnMQlZ2/3FBFWc4Rhjb4yz+KZnf42zPmNbxz4R+2e8tlH6PCYBN9tssxz2i20PAAAA1K+2bdumf/7zn/n/8tFOrfB/+Zj3iP/DR7Al5hWK28tNyzxNZdHiLoI2dWnfVxDzVxF2inBStE077rjjpvl577LLLjk8E9WfIkgUP1G1KaqHxwlcMf6TTjopP78ILPXq1avO9x3bLMYY8yRR/alYBM0KpqaS1rS+VhGSivmlCADF3EuExGJsEfqJalZRhX1aA1SxjeKx475j3iq2Ybz+BxxwQLXKW5XFvhHbJk5EXHHFFfOJkI0hxrX22mvn7VGY84vtE8siXFZq+0WYKqqSxZxgVFiPdoix3SP8FnN+UR0+5uoAoFy0mDw99SsBAKCRxdmSccZjBOdiUjFCawAAAAA0rDhJLKpjxUlhl1xySVMPZ4bVr1+/9PDDD+cKXHHyHAAwc6gaNQYAgBnc8OHDc3gqzgYVngIAAABoHEOHDs2XUcWK0qLyeFT2mm222XLVJwBg5qGFHwAAM7xoUxjl3MeMGZNL6YdohwgAAABAw5gwYUL65JNP0qyzzpquueaa3M4wWtKtu+66TT20GcoXX3yRfvnll7y9Yt7q999/TzvuuGPq0KFDUw8NAJgKAlQAAMzwrrvuunTrrbdW/N2zZ8+06aabNumYAAAAAJqzn376qUoVpZYtW6ZTTjmlScc0Ixo9enQ68sgjK/7u1KlTOuSQQ5p0TADA1NPCDwCAGd4KK6yQZp999jTHHHOk7bbbLl1yySVNPSQAAACAZi2CQIsttliaZZZZcuWpK664Iq2xxhpNPawZzhJLLJHmmWeeXKlr7bXXTjfccEOae+65m3pYAMBUajF58uTJU3sjAAAAAAAAAACA5kAFKgAAAAAAAAAAoGwJUAEAAAAAAAAAAGVLgAoAAAAAAAAAAChbAlQAAAAAAAAAAEDZEqACAAAAAAAAAADKlgAVAAAAAAAAAABQtgSoAAAAAAAAAACAsiVABQAAAAAAAAAAlC0BKgAAAAAAAAAAoGwJUAEAAAAAAAAAAGVLgAoAAAAAAAAAAChbAlQAAAAAAAAAAEDZEqACAAAAAAAAAADKlgAVAAAAAAAAAABQtgSoAAAAAAAAAACAsiVABQAAAAAAAAAAlC0BKgAAAAAAAAAAoGwJUAEAAAAAAAAAAGVLgAoAAAAAAAAAAChbAlQAAFDCYYcdltZbb72S102cODENHjw4bbPNNmnllVdOPXv2TH379k2vv/56yfUfeuih1KdPn7TaaqulFVdcMW266abpoosuShMmTGjgZwEAAAAAAMCUCFABAECRgQMHpgceeKDkdZMmTUqHHnpoOuOMM3KQapdddkk9evRII0aMSDvttFN66aWXqt1XrP/uu++mzTbbLK8/66yzpiuvvDLttttuQlQAAAAAwExp1KhRqWvXrum4446rdt0vv/ySLr/88rT55punlVZaKa2//vrpiCOOSB999FGTjBVgSlpPcQ0AACgTv/76a+rfv38aOnRojevccsst6dFHH01/+ctf0nnnnZdat/5//6TeYYcd0u67757OOuusitt/+OGH6YorrkidO3dOt99+e5p33nkrQlgnnnhiuuOOO9LVV1+dA1YAAAAAADOLn376KZ1wwglp8uTJ1a77+eef01577ZVPNl111VXTn//85/Tf//433X///flE1Jg/XXTRRZtk3AA1UYEKAABSSsOHD89nQ8V/3uNsqJpcf/31ac4550ynn356RXgqRBWqffbZJ3Xr1i398ccfFa37okrV3nvvXRGeCi1btqwITT3++OMN+rwAAAAAAOrbmWeemT777LOS10VV/ghPxbxonJB6zDHH5GpUZ599dvrhhx/SRRdd1OjjBZgSFagAACClXCFq/Pjx6ZRTTkk777xzLj1dbMyYMbnE9BZbbJE6dOhQ7fqYCKhs9dVXz0Gpddddt9q6bdq0yZfxmAAAAAAAM9PJqFFdf8MNN8y/F1f5v/nmm9Niiy2WjjzyyCrXbb311umFF16ocrIpwIxCgAoAAFJKe+yxRxowYEBq3759jeu8/fbb+XKZZZZJr776arrsssvSiy++mMtUd+/ePR1++OFp2WWXrVg/lsVPKQ8++GC+rLw+AAAAAMCM7Ntvv03/+Mc/8rznbrvtVi1ANXr06HzS6K677lqlgn+hMn9UrgKYEWnhBwAA//8WfLWFp8KXX36ZL19++eVcpWrcuHGpd+/eebLgiSeeSDvttFO+bko+//zzHL4Ku+yySz09AwAAAACAhnXqqaemCRMmpLPOOiu1aNGi1pNQn3rqqdSnT5+06qqr5vnXqEhVU9s/gKYmQAUAAHUUEwPh8ccfT3vttVe69dZb03HHHZeuvPLKdN555+Xrjz/++DRp0qRaQ1h77713+u6779KOO+6Y1l577UZ8BgAAAAAA0+buu+9ODz30UDrqqKNSly5daj0JNSrw77fffrkKVcyDRiX+e++9N22//fbp448/buSRA0yZABUAANRRq1at8uV8882X/v73v1e5bquttspnUn344YfpzTffLHn7uC4qV40ZMyZtuOGGudQ1AAAAAMCM7osvvkj9+/fPJ4TWVlW/cBLqo48+mqtV/fvf/84nod5www3p8MMPzy0AYznAjEaACgAA6qjQ4m+55ZZLs8wyS7XrV1hhhXxZ6gyqUaNG5TOtPv3007TlllumSy+9tOR9AAAAAADMaE444YQ0ceLEdOaZZ5Zs3VfQsuX/iyCstNJK+WTSyqIiVefOndMzzzyTg1QAMxIBKgAAqKPFF188X/7+++8lry8sn3XWWassv+eee9K+++6bxo0bly/PP/984SkAAAAAYKZw8803pxEjRqRjjz02LbTQQrWu26FDh4oAVakK/127dk2TJ09On3zySYONF2BatJ6mWwEAQBnq1q1bDke9/PLLafz48aldu3ZVrn/ttdfy2VfLLrtsxbL7778/HXPMMfn3KE1dfNYVAAAAAMCMLOY4w8knn5x/ig0bNiz/bLvttmmNNdaYppNQAZqaABUAANRRBKa23nrrdOutt6azzjornXHGGRXlqocOHZrefPPN1LNnz4qzsMaMGZNLW0+aNCkNGDAg3xYAAAAAYGYSwaju3btXWx5VpO66665cVWqjjTZKyy23XFpmmWXydaNGjcrzooWWfuG3335L77zzTpp99tnToosu2qjPAWBKBKgAAGAqHH300enVV19Nt99+e3rrrbdSjx49clDq8ccfT/POO2+uMlUwcODA9PPPP+dA1ccff5wuu+yyavfXvn37tNdeezXyswAAAAAAqJvtttuu5PJnnnkmB6giONWvX7+K5XGSabT8++c//5kOPvjgiuWXX355+uqrr9KOO+6oAhUww2kxORqMAgAAVUQbvvnnnz899dRT1a6bMGFCuvrqq9N9992XPv/88zTXXHOlP/3pT3mSoHPnzhXrrbnmmmncuHG1Pk5NjwEAAAAAMCOLAFWcHBoVqs4555yK5TFnuttuu6XPPvssV65accUV0+uvv56ef/75tNhii6XbbrstzTnnnE06doBiAlQAAAAAAAAAQL0EqMK3336bK1A99thj6csvv0ydOnVKG2+8ca5IJTwFzIgEqAAAAAAAAAAAgLLVsqkHAAAAAAAAAAAA0FQEqAAAAAAAAAAAgLIlQAUAAAAAAAAAAJQtASoAAAAAAAAAAKBstW7qAQAAMPPpcceQph4CM7jnttu1qYcAAAAAAA2u543fNPUQmMGN2G2eph4CUAcqUAEAAAAAAAAAAGWr2QSoDjvssLTeeuuVvG7ixIlp8ODBaZtttkkrr7xy6tmzZ+rbt296/fXXS67/3nvvpUMOOSStu+66adVVV0077rhjevjhhxv4GQAAAAAAAAAAAI2tWQSoBg4cmB544IGS102aNCkdeuih6YwzzshBql122SX16NEjjRgxIu20007ppZdeqrL+G2+8kQNTI0eOTL169Uq9e/dOn3/+eerXr18OYQEAAAAAAAAAAM1H6zQT+/XXX1P//v3T0KFDa1znlltuSY8++mj6y1/+ks4777zUuvX/e8o77LBD2n333dNZZ51V5fb/+Mc/0m+//ZZuv/321LVr17wsqlVFqCpuv8kmm6T555+/EZ4dAAAAAAAAAADQ0GbaClTDhw9Pm2++eQ4/rb/++jWud/3116c555wznX766RXhqRBVqPbZZ5/UrVu39Mcff+RlL7zwQq5Atemmm1aEp0LHjh1ziCoCW8OGDWvgZwYAAAAAAAAAADSWmTZAFRWixo8fn0455ZQ0aNCgkuuMGTMmffTRR6lnz56pQ4cO1a4/5phjcsWpQrBq1KhR+XLttdeutm5hWWEdAAAAAAAAAABg5jfTtvDbY4890oABA1L79u1rXOftt9/Ol8sss0x69dVX02WXXZZefPHFNHny5NS9e/d0+OGHp2WXXbZK4Cosuuii1e5rgQUWSLPMMkv68MMPG+T5AAAAAAAAAAAAjW+mrUAVLfhqC0+FL7/8Ml++/PLLaeedd07jxo1LvXv3zuGpJ554Iu200075uoLvv/8+X0bLv2ItW7ZM7dq1Sz/++GO9PxcAAAAAAAAAAKBpzLQVqOpiwoQJ+fLxxx9P++23XzrqqKMqrrvnnnvy38cff3y67777ckDq999/z9e1adOm5P1FBSoBKgAAAAAAAAAAaD5m2gpUddGqVat8Od9886W///3vVa7baqut0qqrrppb8r355pt52ayzzpovC0GqYrF89tlnb/BxAwAAAAAAAAAAjaNZB6gKLf6WW265XD2q2AorrJAvP/744yqt+6LVX7FJkyal8ePHpw4dOjTwqAEAAAAAAAAAgMbSrANUiy+++BQrSlWuPLXEEkvky08++aTaumPHjs3rL7nkkg04YgAAAAAAAAAAoDE16wBVt27dcjjq5ZdfztWjir322mupRYsWadlll81/d+/ePV+OGjWq2rrPPvtsvlx99dUbfNwAAAAAAAAAAEDjaNYBqnbt2qWtt946TZgwIZ111llp8uTJFdcNHTo0vfnmm2nddddNCy20UF622mqr5SpU9957b3r11Vcr1v3222/ToEGDUtu2bdP222/fJM8FAAAAAAAAAACof61TM3f00UfnMNTtt9+e3nrrrdSjR480ZsyY9Pjjj6d55503nXrqqRXrRjWq/v37p7333jv16dMnbbnllql9+/bp/vvvT19++WU6+eSTU6dOnZr0+QAAAAAAAAAAAPWnWVegCh06dEg33XRTOvjgg3MbvxtvvDG98cYb6W9/+1sOVXXp0qXK+mussUYaMmRIbuf34IMP5nWiQtXAgQPTrrvu2mTPAwAAAAAAAAAAqH8tJlfuawcAAHXQ444hTT0EZnDPbefkAwAAAACav543ftPUQ2AGN2K3eZp6CEAdNPsKVAAAAAAAAAAAADURoAIAAAAAAAAAAMqWABUAAAAAAAAAAFC2BKgAAAAAAAAAAICyJUAFAAAAAAAAAACULQEqAAAAAAAAAACgbAlQAQAAAAAAAAAAZUuACgAAAAAAAAAAKFsCVAAAAAAAAAAAQNkSoAIAAAAAAAAAAMqWABUAAAAAAAAAAFC2BKgAAAAAAAAAAICyJUAFAAAAAAAAAACULQEqAAAAAAAAAACgbAlQAQAAAAAAAAAAZUuACgAAAAAAAAAAKFsCVAAAAAAAAAAAQNkSoAIAAAAAAAAAAMqWABUAAAAAAAAAAFC2BKgAAAAAAAAAAICyJUAFAAAAAAAAAACULQEqAAAAAAAAAACgbAlQAQAAAAAAAAAAZUuACgAAAAAAAAAAKFsCVAAAAAAAAAAAQNkSoAIAAAAAAAAAAMqWABUAAAAAAAAAAFC2BKgAAAAAAAAAAICyJUAFAAAAAAAAAACULQEqAAAAAAAAAACgbAlQAQAAAAAAAAAAZUuACgAAAAAAAAAAKFsCVAAAAAAAAAAAQNkSoAIAAAAAAAAAAMqWABUAAAAAAAAAAFC2BKgAAAAAAAAAAICyJUAFAAAAAAAAAACULQEqAAAAAAAAAACgbAlQAQAAAAAAAAAAZUuACgAAAAAAAAAAKFsCVAAAAAAAAAAAQNkSoAIAAAAAAAAAAMqWABUAAAAAAAAAAFC2BKgAAAAAAAAAAICyJUAFAAAAAAAAAACULQEqAAAAAAAAAACgbAlQAQAAAAAAAAAAZUuACgAAAAAAAAAAKFsCVAAAAAAAAAAAQNkSoAIAAAAAAAAAAMqWABUAAAAAAAAAAFC2BKgAAAAAAAAAAICyJUAFAAAAAAAAAACULQEqAAAAAAAAAACgbAlQAQAAAAAAAAAAZUuACgAAAAAAAAAAKFsCVAAAAAAAAAAAQNkSoAIAAAAAAAAAAMqWABUAAAAAAAAAAFC2BKgAAAAAAAAAAICyJUAFAAAAAAAAAACULQEqAAAAAAAAAACgbAlQAQAAAAAAAAAAZUuACgAAAAAAAAAAKFsCVAAAAAAAAAAAQNkSoAIAAACAejZq1KjUtWvXdNxxx1W77rvvvktnnHFG6tWrV+rWrVvabLPN0r/+9a/0xx9/NMlYAQAAAMpd66YeAAAAAAA0Jz/99FM64YQT0uTJk6tdN27cuNSnT5/0/vvvp0022SQtssgiaeTIken8889Pr732Wrr00kubZMwAAAAA5UwFKgAAAACoR2eeeWb67LPPSl53+eWXp/feey+dfPLJOSx11FFHpdtvvz2HqR566KH08MMPN/p4AQAAAMqdABUAAAAA1JPhw4enO+64I2244YbVrvvll1/Sbbfdljp37px22mmniuWtWrVKxxxzTP79lltuadTxAgAAANCMAlSHHXZYWm+99eq07mWXXZaWXXbZPJlVSpwFeMghh6R11103rbrqqmnHHXd09h8AAAAAtfr222/TP/7xj9S9e/e02267Vbv+1VdfTRMmTMjXt2xZdVquS5cuaeGFF06jR49OEydObMRRAwAAANAsAlQDBw5MDzzwQJ3Wff3119OVV15Z4/VvvPFGDkyNHDky9erVK/Xu3Tt9/vnnqV+/fmnw4MH1OGoAAAAAmpNTTz01B6TOOuus1KJFi2rXf/TRR/lykUUWKXn7CFH99ttv6dNPP23wsQIAAADw/2mdZmK//vpr6t+/fxo6dGid1z/22GPTH3/8UeM6cZZgTFTdfvvtqWvXrnlZ3759c6jqvPPOS5tsskmaf/756+05AAAAADDzu/vuu9NDDz2UTj755ByE+uSTT6qt8/333+fLueaaq+R9dOjQIV+OGzeugUcLAAAAQLOoQDV8+PC0+eab5/DU+uuvX6fbXHTRRflMv5pa/b3wwgu5AtWmm25aEZ4KHTt2zCGqCGANGzas3p4DAAAAADO/L774Ip/kt/baa6dddtmlxvXipL3Qpk2bktcXlsccFAAAAACNZ6YNUEWFqPHjx6dTTjklDRo0aIrrjx49Ol1//fVp//33T8svv3zJdUaNGpUvY7KrWGFZYR0AAAAACCeccEKaOHFiOvPMM0u27iuYddZZ8+Xvv/9ea8CqXbt2DTRSAAAAAJpVgGqPPfZIjz32WD6rr7aJqfDTTz+l4447Li2zzDLpoIMOqnG9MWPG5MtFF1202nULLLBAmmWWWdKHH35YD6MHAAAAoDm4+eab04gRI9Kxxx6bFlpooVrXnXPOOWtt0ffjjz/my/bt2zfASAEAAACoSes0k+rRo0ed1z3nnHNyKfXLL788h6Bq8v3331eZzKqsZcuW+ey/wkQWAAAAANx///358uSTT84/xYYNG5Z/tt1229S7d++87OOPPy55X7F89tlnTwsuuGADjxoAAACAZhGgqqsnn3wyDR06NPXr1y917dq11nUL5dPbtGlT8voIXwlQAQAAAFAQwaju3btXW/7JJ5+ku+66K89HbbTRRmm55ZZLK664Yj5B7/nnn0+TJk3KJ+xVXv+zzz5L66yzTmrVqlUjPwsAAACA8tasA1RRUerEE09MK6ywQurbt+8U15911lmrBKmKxfI4CxAAAAAAwnbbbVdy+TPPPJMDVBGcihP7Crbccst06623phtuuCHtueeeednEiRPTgAED8u+77rprI40cAAAAgLIIUJ122mk5RHXttdem1q2n/FQLrfvGjRtX7bo4K3D8+PGpU6dODTJWAAAAAJq/ww47LI0YMSKdffbZadSoUWmppZbKYas33ngjbb755qlXr15NPUQAAACAsvP/1Qlvhu6///5cNWqrrbZKyy67bMXPlVdema8//vjj89933HFH/nuJJZaoKJlebOzYsfm+llxyyUZ+FgAAAAA0Fx07dky33HJL2n777dNrr72WK1H98ssv6eijj85VqFq0aNHUQwQAAAAoO826AtUhhxxScnmc3ffCCy/kM/qijHr8hO7du1dcv80221S5zbPPPpsvV1999QYfNwAAAAAzt3XWWSe98847Ja+bb7750plnntnoYwIAAACgDANU/fr1K7n8jz/+yAGqjTbaKG233XYVy1dbbbVcheree+9Nu+yyS+rWrVte/u2336ZBgwaltm3b5rMDAQAAAAAAAACA5qFZB6imVpRI79+/f9p7771Tnz590pZbbpnat2+fWwF++eWX6eSTT06dOnVq6mECAAAAAAAAAAD1RICqyBprrJGGDBmSLr300vTggw/mZUsvvXQOT2288cZNPTwAAAAAAAAAAKAetZg8efLk+rxDAACavx53DGnqITCDe267XZt6CAAAAADQ4Hre+E1TD4EZ3Ijd5mnqIQB10LIuKwEAAAAAAAAAADRHAlQAAAAAAAAAAEDZEqACAAAAAAAAAADKlgAVAAAAAAAAAABQtgSoAAAAAAAAAACAsiVABQAAAAAAAAAAlC0BKgAAAAAAAAAAoGwJUAEAAAAAAAAAAGVLgAoAAAAAAAAAAChbAlQAAAAAAAAAAEDZEqACAAAAAAAAAADKlgAVAAAAAAAAAABQtgSoAAAAAAAAAACAsiVABQAAAAAAAAAAlC0BKgAAAAAAAAAAoGwJUAEAAAAAAAAAAGVLgAoAAAAAAAAAAChbAlQAAAAAAAAAAEDZEqACAAAAAAAAAADKlgAVAAAAAAAAAABQtgSoAAAAAAAAAACAsiVABQAAAAAAAAAAlC0BKgAAAAAAAAAAoGwJUAEAAAAAAAAAAGVLgAoAAAAAAAAAAChbAlQAAAAAAAAAAEDZEqACAAAAAAAAAADKlgAVAAAAAAAAAABQtgSoAAAAAAAAAACAsiVABQAAAAAAAAAAlC0BKgAAAAAAAAAAoGwJUAEAAAAAAAAAAGVLgAoAAAAAAAAAAChbAlQAAAAAAAAAAEDZEqACAAAAAAAAAADKlgAVAAAAAAAAAABQtgSoAAAAAAAAAACAsiVABQAAAAAAAAAAlC0BKgAAAAAAAAAAoGwJUAEAAAAAAAAAAGVLgAoAAAAAAAAAAChbAlQAAAAAAAAAAEDZEqACAAAAAAAAAADKlgAVAAAAAAAAAABQtgSoAAAAAAAAAACAsiVABQAAAAAAAAAAlC0BKgAAAAAAAAAAoGwJUAEAAAAAAAAAAGVLgAoAAAAAAAAAAChbAlQAAAAAAAAAAEDZEqACAAAAAAAAAADKlgAVAAAAAAAAAABQtgSoAAAAAAAAAACAsiVABQAAAAAAAAAAlC0BKgAAAAAAAAAAoGwJUAEAAAAAAAAAAGVLgAoAAAAAAAAAAChbAlQAAAAAAAAAAEDZEqACAAAAAAAAAADKlgAVAAAAAAAAAABQtgSoAAAAAAAAAACAsiVABQAAAAAAAAAAlC0BKgAAAAAAAAAAoGwJUAEAAAAAAAAAAGVLgAoAAAAAAAAAAChbAlQAAAAAAAAAAEDZEqACAAAAAAAAAADKlgAVAAAAAAAAAABQtgSoAAAAAAAAAACAstVsAlSHHXZYWm+99Upe9/HHH6fjjjsu/elPf0orrLBCWnvttdOhhx6a3n777ZLrv/fee+mQQw5J6667blp11VXTjjvumB5++OEGfgYAAAAAAAAAAEBjaxYBqoEDB6YHHnig5HURktpuu+3SsGHD0nLLLZd23333tPrqq6dHHnkk9e7dO40aNarK+m+88UYOTI0cOTL16tUrr/P555+nfv36pcGDBzfSMwIAAAAAAAAAABpD6zQT+/XXX1P//v3T0KFDa1zntNNOSz/++GO64IIL0pZbblmx/Jlnnkn77LNPOvHEE3OYqmXL/5cl+8c//pF+++23dPvtt6euXbvmZX379s2hqvPOOy9tsskmaf7552+EZwcAAAAAAAAAADS0mbYC1fDhw9Pmm2+ew1Prr79+yXW++OKL9OKLL6bll1++SngqrLPOOql79+7p008/Te+++25e9sILL+QKVJtuumlFeCp07Ngxh6gisBWVrAAAAAAAAAAAgOZhpg1QRYWo8ePHp1NOOSUNGjSo5DqtWrVKxxxzTNprr71KXt+mTZt8GfcTCu381l577WrrFpYVt/wDAAAAAAAAAABmXjNtC7899tgjDRgwILVv377Gdeadd97cpq+Ur7/+Olecat26dVpyySXzsjFjxuTLRRddtNr6CyywQJplllnShx9+WG/PAQAAAAAAAAAAaFozbYCqR48e03X7M844I02YMCH99a9/TXPNNVde9v333+fLOeecs9r6LVu2TO3atUs//vjjdD0uAAAAAAAAAAAw45hpW/hNb3jqgQceyFWljj/++Irlv//+e5XWfsWiAtWvv/7aaOMEAAAAAAAAAAAa1kxbgWpaREDqH//4Rxo2bFjq2LFj+te//pUvC2adddaK9Wq6/eyzz95o4wUAAAAAAAAAABpW2QSoxo0blw4++OD0/PPPp86dO6drrrkmLbnkklXWKbTui3WLTZo0KY0fPz516tSp0cYMAAAAAAAAAAA0rLJo4Td27Ni000475fDUcsstl2699dZq4amwxBJL5MtPPvmk5H1EBapStwMAAAAAAAAAAGZOzT5A9fXXX6c99tgjffDBB6lnz55pyJAhaf755y+5bvfu3fPlqFGjql337LPP5svVV1+9gUcMAAAAAAAAAAA0lmYfoDr66KPTf//737TeeuulK6+8MrVr167GdVdbbbVcheree+9Nr776asXyb7/9Ng0aNCi1bds2bb/99o00cgAAAAAAAAAAoKG1Ts3YiBEj0jPPPJN/X3TRRXOAqpRtttkmdenSJbVo0SL1798/7b333qlPnz5pyy23TO3bt0/3339/+vLLL9PJJ5+cOnXq1MjPAgAAAAAAAAAAaCjNOkD11FNPVfw+ePDgGteLtnwRoAprrLFGbvN36aWXpgcffDAvW3rppXN4auONN26EUQMAAAAAAAAAAI2lxeTJkyc32qMBANAs9LhjSFMPgRncc9vt2tRDAAAAAIAG1/PGb5p6CMzgRuw2T1MPAaiDlnVZCQAAAAAAAAAAoDkSoAIAAAAAAAAAAMpW66YeAAAAAAAAAEC5+v7779OgQYPS8OHD09ixY9M888yTevXqlQ466KDUsWPHKuu++eab6corr0yjR49OP/74Y5p77rnTuuuumw4++ODUpUuXJnsOADCzE6ACAAAAAAAAaAIRgtpll13SBx98kNZee+0cnPrwww/T4MGD00MPPZRuu+221Llz57zuyJEj0wEHHJAmT56c11tooYXSu+++m4YNG5bDVzfddFNaaqmlmvopAcBMSYAKAAAAAAAAoAkMHDgwh6f69euXDjnkkIrlN954Y+rfv3+69NJL09lnn50mTpyYTjrppDRp0qR0ww03pDXWWKNi3dtvvz2deOKJ6dRTT823AwCmXstpuA0AAAAAAAAA0+nTTz9N8847b9pnn32qLN96663z5UsvvZQvX3755fT555+nDTfcsEp4Kmy//fa5fd8LL7yQK1oBAFNPBSoAAAAAAACAJnD55ZeXXB5VqUKnTp3yZYSsjjzyyLTMMsuUXL9Nmza5td+ECRNShw4dGnDEANA8CVABAAAAAAAAzAB++OGHNGrUqHTOOeek1q1bp4MOOigvX3TRRdP+++9f8jbvvvtuGjNmTJp77rkrAlcAwNQRoAIAAAAAAABoYjfffHM69dRT8++tWrVK5513Xlp77bVrvc3vv/+eTjnllDRp0qS00047pZYtWzbSaAGgefENCgAAAAAAANDEOnbsmPbbb7+0zTbbpLZt26ajjjoqXX311bWGp4444oj04osvpuWWWy4deOCBjTpeAGhOWkyOZrgAADAVetwxpKmHwAzuue12beohAAAAAMy0Pv3007Tjjjumr7/+Ot1+++1ppZVWqnL9Tz/9lP7+97+nESNG5PZ+gwcPTvPPP3+Tjbec9bzxm6YeAjO4EbvN09RDAOpABSoAAAAAAACAGcjCCy+c9t133/z7Y489VuW6sWPHpp133jmHp5Zddtl04403Ck8BwHQSoAIAAAAAAABoZL/99lsaOXJkeuqpp0pe36VLl3z57bffVix7++230w477JDefffdtM4666SbbropzTfffI02ZgBorlo39QAAAAAAAAAAyjFAtd9++6XZZ589PfPMM6lNmzZVrn/jjTfy5eKLL54vP/jgg7Tnnnum7777Lm277bapf//+aZZZZmmSsQNAc6MCFQAAAAAAAEAja9++ferVq1f68ccf08CBA6tc9/rrr6frrrsuh6u23HLLHLb6+9//nsNTvXv3TmeffbbwFADUIxWoAAAAAAAAAJrAiSeemMNSgwYNSi+88EJaeeWV0+eff54ee+yx1KJFi3TRRRelTp06pVtvvTW99957OTTVsWPHaoGrgj59+qS55pqr0Z8HAMzsBKgAAAAAAAAAmsACCyyQ/vOf/6Qrrrgih6ZeeeWVNMccc6SNNtoo9e3bN3Xt2jWv99RTT+XL33//PYetavLXv/5VgAoApkGLyZMnT56WGwIAUL563DGkqYfADO657XZt6iEAAAAAQIPreeM3TT0EZnAjdpunqYcA1EHLuqwEAAAAAAAAAADQHAlQAQAAAAAAAAAAZUuACgAAAAAAAAAAKFsCVAAAAAAAAAAAQNlq3dQDAAAAAAAAACjocceQph4CM4Hnttu1qYcAQDOiAhUAAAAAAAAAAFC2BKgAAAAAAAAAAICyJUAFAAAAAAAAAACULQEqAAAAAAAAAACgbAlQAQAAAAAAAAAAZUuACgAAAAAAAAAAKFsCVAAAAAAAAAAAQNkSoAIAAAAAAAAAAMqWABUAAAAAAAAAAFC2BKgAAAAAAAAAAICyJUAFAAAAAAAAAACULQEqAAAAAAAAAACgbAlQAQAAAAAAAAAAZUuACgAAAAAAAAAAKFsCVAAAAAAAAAAAQNkSoAIAAAAAAAAAAMqWABUAAAAAAAAAAFC2BKgAAAAAAAAAAICyJUAFAAAAAAAAAACULQEqAAAAAAAAAACgbAlQAQAAAAAAAAAAZUuACgAAAAAAAAAAKFutm3oAAAAAANAcfP/992nQoEFp+PDhaezYsWmeeeZJvXr1SgcddFDq2LFjlXW/++67dPnll6fHH388ffXVV2nBBRdMf/vb39Jee+2VWrc2ZQcAAADQmFSgAgAAAIDp9OOPP6ZddtklXXvttalz585pt912S8suu2waPHhw2nrrrXOgqmDcuHGpT58+6cYbb0wrrLBC2n333dNss82Wzj///HTEEUc06fMAAAAAKEdOZwMAAACA6TRw4MD0wQcfpH79+qVDDjmkYnmEpPr3758uvfTSdPbZZ+dlUXnqvffeS6ecckoOXYXDDz88HXbYYemhhx5KDz/8cNpkk02a7LkAAAAAlBsVqAAAAABgOn366adp3nnnTfvss0+V5VF9Krz00kv58pdffkm33XZbrlK10047VazXqlWrdMwxx+Tfb7nllkYdOwAAAEC5U4EKAAAAAKZTVJUqJapShU6dOuXLV199NU2YMCFtvPHGqWXLquc2dunSJS288MJp9OjRaeLEiTlUBQAAAEDDU4EKAAAAAOrZDz/8kNvxRWu+1q1bp4MOOigv/+ijj/LlIossUvJ2EaL67bffckUrAAAAABqHClQAAAAAUI9uvvnmdOqpp+bfo4rUeeedl9Zee+389/fff58v55prrpK37dChQ74cN25co40XAAAAoNzVe4AqyovHT5s2bfLfP/30U7rlllvS2LFjU7du3dKWW26p/DgAAAAAzVbHjh3Tfvvtl7766qv08MMPp6OOOirPje277765ulQozJ0VKyz/9ddfG3XMAAAAAOWsXlv4XXvttalHjx5p+PDh+e+YENp5553TBRdckIYMGZKOO+64PHkUASsAAAAAaI423XTTHJo699xz0z333JMDVVGF6rXXXkuzzjprXuf3338vedtCwKpdu3aNOmYAAACAclZvAapHH300DRgwIFec+vHHH/OyO++8M7333nupU6dO6ZBDDknLLrtsevbZZ3NFKgAAAABo7hZeeOFceSo89thjac4556y1RV9hXq19+/aNOEoAAACA8lZvAapbb701tWzZMl1zzTWpd+/eedkDDzyQWrRokU4++eQcoLrxxhtThw4d0t13311fDwsAAAAATSqqRo0cOTI99dRTJa/v0qVLvvz222/TEksskX//+OOPS64by2efffa04IILNuCIAQAAAKisdaonr7/+elpttdXSuuuum//++eef0+jRo1ObNm3SeuutV3Hm3CqrrJJefPHF+npYAAAAAGjyANV+++2Xg0/PPPNMng+r7I033siXiy++eFpxxRVze77nn38+TZo0KZ+QWPDJJ5+kzz77LK2zzjqpVatWjf48AAAAAMpVvVWgitZ98847b8XfMQn0xx9/pG7dulWZNIrff/311/p6WAAAAABoUnHSYK9evXL7vYEDB1Y76fC6667L4aott9wytW3bNl9++umn6YYbbqhYb+LEiWnAgAH591133bXRnwMAAABAOau3ClQLLLBAPkOuIEqWR/u+OGOuIM6qe+utt1KnTp3q62EBAAAAoMmdeOKJOSw1aNCg9MILL6SVV145ff755+mxxx7Lc2QXXXRRxZzYYYcdlkaMGJHOPvvsNGrUqLTUUkvlylVRqWrzzTfPYSwAAAAAZsIA1XLLLZceeeSRNHTo0NSlS5d011135eWFCZ/ff/89XXjhhXniaOutt66vhwUAAACAJhcnF/7nP/9JV1xxRQ5NvfLKK2mOOeZIG220Uerbt2/q2rVrxbodO3ZMt9xyS7rkkkvSE088kcNTCy+8cDr66KPT7rvvngNXAAAAADSeFpMnT55cH3cUZ9jtvPPOuW1fiLvdYIMN0pVXXpn/Xm+99dJXX32VOnTokCeIllhiifp4WAAAmkCPO4Y09RCYwT23ndZDAAAAwLQx98TMNP/U88ZvmnoIzOBG7DZPUw8BqIOWqZ6suOKK6dprr01rrbVWDkftsssu6YILLqi4vnPnzmnNNddMN998s/AUAAAAAE1m4sSJ6bvvvmvqYQAAAADQ3Fr4hQhI/fvf/y553Q033JDatm1bnw8HAAAAADUaN25cuu2221LPnj0rWugNHTo0nXvuuWn8+PGpS5cu6dRTT03rrLNOUw8VAAAAgOYSoKrs119/TV9++WWaZZZZ0gILLJAvAQAAAKAxfPPNN2n77bdP//vf/9Icc8yRA1TvvPNOOuWUU9KkSZNSq1at0scff5wOOOCANGzYsLTUUks19ZABAAAAmNlb+BU88cQTadddd02rr7562mSTTdJFF12Ulx988MH5jL4JEybU90MCAAAAQBVXX311Gjt2bK6Yvuqqq+ZlUY0qwlM77LBDevXVV9M555yTfv/997wuAAAAAOWrXitQXXrppemf//xnmjx5cmrZsmW+jJ/w/vvv53DV22+/ndv5tWnTpj4fGgAAAAAqPPXUU2m++eZL11xzTUVl9Mcffzy1aNEi7bvvvrkC1TbbbJPnqUaNGtXUwwUAAACgOVSgevLJJ9MVV1yRJ6YuvvjiNHr06CrXX3jhhbkU+iuvvJKGDh1aXw8LAAAAANV8/vnnaeWVV64IT3344Yd5WefOndMiiyxSsV6XLl1yuz8AAAAAyle9BajibL2YkLr22mvTZpttltq1a1fl+pVWWimf8ReVp+666676elgAAAAAqCbmoKI9X8GIESPyZY8ePaqs9+2336a2bds2+vgAAAAAaIYBqtdeey2tvvrqackll6xxnahOtcYaa6SPP/64vh4WAAAAAKqJKlMvv/xy+vnnn/PfDzzwQG7ft95661Ws89FHH6WXXnopV00HAAAAoHzVW4Dql19+qVZ1qpSoUlWYuKpPhx12WJUJsMomTJiQLr300rTpppumbt26pQ033DBdcMEFNY7jvffeS4ccckhad91106qrrpp23HHH9PDDD9f7mAEAAABoGBtvvHH6/vvv03bbbZf69OmTg1JzzDFH2mCDDfL1V111Vdp1113TxIkT01//+temHi4AAAAAzSFAteCCC6Y333wzTZo0qcZ1/vjjj7xO586dU30aOHBgPouwlN9++y317ds3XX755WnhhRdOe+yxR1pooYXyJNlee+2Vr6/sjTfeyIGpkSNHpl69eqXevXunzz//PPXr1y8NHjy4XscNAAAAQMOIeZ8//elPacyYMWn06NH5pL7+/fun2WabLV9/2223pW+++SbP/ey8885NPVwAAAAAmlDr+rqjqOr073//O1d6impQpUSI6auvvsohpvrw66+/5omvoUOH1rjOLbfckp577rm07777pqOPPrpi+ZlnnpluuOGGNGTIkDyhVvCPf/wjh6puv/321LVr17wsAlgRqjrvvPPSJptskuaff/56GT8AAAAADSMCU//617/Siy++mL744ou02mqrVZnT2W+//dISSyyR1lxzzSYdJwAAAADNqAJVBJQ6deqUBg0alHbbbbdcFSqMHTs2B5wihHTllVemueaaK+2zzz7T/XjDhw9Pm2++eb7v9ddfv8b1IiTVpk2bdOCBB1ZZHiGvOOMwAlYFL7zwQq5AFa3+CuGp0LFjxzz+CGwNGzZsuscOAAAAQOOI4FTMIRWfEBcnywlPAQAAAFCvAaoIGV177bVpscUWy0GkqDYV4veTTz45PfHEE2mBBRbIrfMiaDW9okLU+PHj0ymnnJJDW6V89tln6ZNPPkndunVL7du3r3Jdu3bt8vKPPvoo/e9//8vLRo0alS/XXnvtavdVWFZYBwAAAICZw7PPPpsuuuiidMwxx+ST7cKDDz5YMScEAAAAQHmrtxZ+Yamllkr33ntveuSRR/LEVFSfmjRpUg5M9ejRI/3lL3/J1aDqQ7QBHDBgQLVgVGURjgqLLLJIyeu7dOmS2/t9+OGHOdw1ZsyYvHzRRRettm5cH6XfY10AAAAAZnxxYt0RRxyRXn/99TR58uTUokWLiuuivd+7776bzj333DxnBQAAAED5qtcAVWjVqlXabLPN8k9DikDWlHz//ff5MtoGltKhQ4d8OW7cuCrrzznnnNXWbdmyZa5a9eOPP07XuAEAAABoeDHPEyfgff7552nppZdO6623Xrrmmmsqro8T6N5444109NFHp8UXXzwtt9xyTTpeAAAAAJpBC78Z0e+//54va6p6VVj+66+/1mn9qEBVWBcAAACAGddVV12Vw1N77713uvvuu3NQqrILL7wwnXTSSWnixInp2muvbbJxAgAAANCMKlDtvvvudV43yqVff/31qaG1bds2X/72228lry8sj8pSYdZZZ60SpCoWy2efffYGGi0AAAAA9eWxxx5LCy64YA5OVW7dV9luu+2WhgwZkl555ZVGHx8AAAAAzTBA9fzzz09xnZismjx5co2TVvWt0LqvprZ7heXt27ev0rqv0NKvskmTJqXx48enTp06NeCIAQAAAKgPY8eOTX/+85+nOA8V7f2efPLJRhsXAAAAAM04QDVw4MCSyyN49MMPP6QXX3wx3XPPPWnrrbdOhx9+eGoMSyyxRL78+OOPS15fWL7UUktVWf+TTz5Jq6++erVJt6hAteSSSzbwqAEAAACYXrPNNlv68ssvp7je//73v4qq5AAAAACUp3oLUG200Ua1Xt+7d+/Uq1ev1K9fv7TOOuukLbbYIjW0+eefPy266KLp1VdfTRMmTKjSfi+qSb322mv5+nnnnTcv6969e74cNWpU2mabbarc17PPPpsvi4NVAAAAAMx4VlxxxVwx/YMPPqjxhLi33347vfnmm6lHjx6NPj4AAAAAZhwtG/PBImS13HLLpeuuu67RHnP77bdPP//8c7r44ourLI+/Y/kuu+xSsWy11VbLVajuvffeHLoq+Pbbb9OgQYNS27Zt8/0BAAAAMGPbbbfdcjXxAw88MJ8Y98cff1S5/o033kiHHXZYmjhxYtpxxx2bbJwAAAAANKMKVHW18MILp6effrrRHm/PPfdMDz74YLr++uvTW2+9lVZZZZX08ssv5zMQ11hjjSoBqhYtWqT+/funvffeO/Xp0ydtueWWqX379un+++/PJd9PPvnk1KlTp0YbOwAAAADT5s9//nPafffd0w033JDnelq1apXnfp588sm0/vrr57meyZMnp2233TZtsskmTT1cAAAAAMolQBVn9MXZfW3atGm0x4zHiomygQMH5iBVhKc6d+6c+vbtm/bbb79qY4lQ1ZAhQ9Kll16a1w9LL710Dk9tvPHGjTZuAAAAAKbPCSeckFZYYYV01VVX5VZ+4Ycffsg/Cy20UA5W7brrrk09TAAAAACaWIvJcapdPXj77bdrDU599dVXafDgwemZZ57JZwBeccUV9fGwAAA0gR53DGnqITCDe247B6MBmLF8/fXX6fPPP89Vp6LC+IILLtjUQwIAoAbmnpiZ5p963vhNUw+BGdyI3eZp6iEAjVmBaptttsll0GsTE1Rt27ZNBx98cH09LAAAAABM0bzzzpt/AAAAAKDBAlS1nbXXsmXLNPvss6euXbumPffcMy2//PL19bAAAAAAkB577LHpun2vXr3qbSwAAAAAlGmAavjw4fV1VwAAAAAwVaLi+ZSqo9fmrbfeqtfxAAAAAFCGASoAAAAAaCprrrlmUw8BAAAAgJlUvQeovv7669SmTZs0xxxz5L/Hjh2brrrqqnzZrVu3tPvuu6f27dvX98MCAAAAUMYGDx7c1EMAAAAAYCbVsj7vrH///mn99ddPTz/9dP77p59+SjvttFO65ZZb0hNPPJEuu+yytOuuu6ZffvmlPh8WAAAAAAAAAACgaStQ3XHHHWnIkCFp1llnTS1atMjLhg4dmr744ou09NJLp7333jvdf//9acSIEem6665Lffv2ra+HBgAAAKDMvf322/lyySWXTLPMMkvF33XVtWvXBhoZAAAAAGUToBo2bFhq3bp1rjZVmHB66KGHcpjqhBNOSGuvvXbaYost0oYbbpgefPBBASoAAAAA6s0222yTWrZsme677760+OKL578LJ/lNSaz35ptvNvgYAQAAAGjmAap33303de/evSI8NW7cuPTqq6+m2WabLS8Pbdq0SSuttFIaNWpUfT0sAAAAAKQFF1wwX8YJfpX/BgAAAIBGC1D98ssvqUOHDhV/P/vss2nSpElptdVWS61ataqy7sSJE+vrYQEAAAAgDR8+vNa/AQAAAKAmLVM96dy5cxozZkzF30888UQuf77uuutWLPvtt9/Sa6+9ltcFAAAAAAAAAABoNgGqVVZZJb333nvp4osvTv/5z3/Sfffdl5dvtNFG+fKLL75Ixx13XPrmm29Sz5496+thAQAAACCdffbZ6Z577mnqYQAAAABQzi38DjrooPToo4+mQYMG5b8nT56ctttuu9SlS5f899Zbb52+//77tOCCC6YDDjigvh4WAAAAANL111+f/vrXv6atttqq2nV33nlnnqNaffXVm2RsAAAAAJRJgGqRRRZJt99+e7r66qvTl19+mXr06JH23HPPiuu7deuW5plnnnTkkUemeeedt74eFgAAAABqFVXRI1wlQAUAAABAgwaowmKLLZbOOOOMktddddVV9flQAAAAAAAAAAAAM1aAqiavvvpqGjt2bFphhRXSwgsv3BgPCQAAAAAAAAAAMEUtUz166aWX0v77759GjhxZseyYY45JO+64YzrssMPSpptumgYOHFifDwkAAAAAAAAAAND0Aaq333477bHHHunpp59OH374YV725JNPprvvvju1atUqrbHGGmnWWWdNl19+eV4OAAAAAAAAAADQbAJU1157bfrtt99yBartttsuL7vrrrtSixYtchWqwYMHp1tuuSWHqW666ab6elgAAAAAAAAAAIBp1jrVk9GjR6ell146HX744fnvSZMm5WpUEaDaaqut8rK4fvXVV0+vvvpqfT0sAAAAAAAAAABA0weovv7667TyyitX/B0hqR9//DF17do1zT333BXL55prrrwcAAAAAOrTyy+/nI4//vipvi5OADzrrLMaeHQAAAAANPsAVQSjfvjhh4q/n3rqqXy51lprVVnvk08+SXPMMUd9PSwAAAAAZB9//HH+mdrrBKgAAAAAylu9BaiWXHLJ9MILL6QPP/wwzTfffOnuu+/Ok08bbLBBxToPP/xwevPNN9P6669fXw8LAAAAAOmQQw5p6iEAAAAAUO4Bqh133DGNGjUq/fWvf01t27ZN48ePz6GqQgWqvn37pqeffjqHqvr06VNfDwsAAAAAAlQAAAAATLOWqZ5svvnm6YgjjkizzDJLDk8tvfTS6dJLL624/tNPP01t2rRJAwYMSD179qyvhwUAAAAAAAAAAGj6ClRh//33T3vuuWf66aefUseOHatcd9ZZZ+VQ1WyzzVafDwkAAAAAAAAAADBjBKhCVJkqDk+Fbt261fdDAQAAAAAAAAAAzBgt/AAA4P/H3n2ASVWdj+N/KSJSFFFEEMQYI6jEFkSxRgGVaGxYsWDXGAuIXWOJYjeWiBGxBRuiwWgSCypRowbBaGwJRDRESixR6QEU9v+c8/vPfilLVFx2dmc+n+eZZ2bvvTtzFo93zn3ve94DAAAAAAAAZVOBqnv37sv9ofXq1YtnnnlmuX8fAAAAAAAAAACgqAlUU6ZM+VYJVAAAAAAAAAAAAHU2gWro0KHV2xIAAAAAWE4HH3xwbL311tG/f//889SpU6NJkybRokWLYjcNAAAAgFJNoOratWv1tgQAAAAAltP48eOjbdu2lT9379499tprr7jqqquK2i4AAAAAar/6xW4AAAAAAHxb9erViwkTJsTChQvzzxUVFfkBAAAAACusAhUAAAAA1BadOnWK119/PXbcccdo1apV3vb888/Hvvvu+7WSr0aMGFEDrQQAAACgNpJABQAAAECdd8YZZ8Txxx8f//nPf/IjmT59en58nQQqAAAAAMqXBCoAAAAA6rwtt9wynnvuuXjvvfdi7ty50bdv39huu+3ihBNOKHbTAAAAAKjlJFABAAAAUBKaNWsWm222WeXPa6yxRnTt2rWobQIAAACg9pNABQAAAEDJGTduXLGbAAAAAECpJ1AdfPDBsfXWW0f//v3zz1OnTo0mTZpEixYtqrN9AAAAALDcPv/883jwwQdj9OjR8fHHH0ejRo1yZapu3brF3nvvHa1atSp2EwEAAACoqwlU48ePj7Zt21b+3L1799hrr73iqquuqq62AQAAAMByGzNmTJxyyikxY8aMqKioWGzfyy+/HLfffntcf/31OZkKAAAAgPK13AlU9erViwkTJsTChQujfv36OQi1ZCAKAAAAAIphypQpcdJJJ8WsWbNi5513jh//+MfRrl27HMv64IMP4ve//3288MIL0a9fv/jtb38bbdq0KXaTAQAAAKhrCVSdOnWK119/PXbcccfKUufPP/987Lvvvl8r+WrEiBHL+9EAAAAA8D8NGTIkJ0+dfvrpcfzxxy+2b/PNN8+V1AcPHpwrUP3617+Oc845p2htBQAAAKCOJlCdccYZOfj0n//8Jz+S6dOn58fXSaACAAAAgBXlT3/6U3To0GGp5KlFnXDCCfGb3/wm/vjHP0qgAgAAAChjy51AteWWW8Zzzz0X7733XsydOzf69u0b2223XQ48AQAAAEAxffzxx9G9e/evPG7jjTfOCVQAAAAAlK/lTqBKmjVrFptttlnlz2ussUZ07dq1OtoFAAAAAMutSZMm8emnn37lcemYxo0b10ibAAAAACjBBKpFjRs3rrreCgAAAAC+lc6dO8crr7ySY1adOnWq8pi077XXXottttmmxtsHAAAAQAkmUBV8/vnn8eCDD8bo0aNzqfRGjRrlylTdunWLvffeO1q1alXdHwkAAAAAiznkkEPipZdeiuOOOy4uuuii2GWXXaJ+/fp538KFC2PUqFFxySWX5NcHH3xwsZsLAAAAQKkkUI0ZMyZOOeWUmDFjRlRUVCy27+WXX47bb789rr/++pxMBQAAAAArSo8ePeLAAw+M4cOH53hVWqavbdu2ed/UqVNj7ty5OX61//77R8+ePYvdXAAAAABKIYFqypQpcdJJJ8WsWbNi5513jh//+MfRrl27PIvvgw8+iN///vfxwgsvRL9+/eK3v/1ttGnTpro+GgAAAACW8vOf/zw23njjuOOOO2LSpEnx3nvvVe5r3759HH300blSFQAAAADlrdoSqIYMGZKTp04//fQ4/vjjF9u3+eabx1577RWDBw/OFah+/etfxznnnFNdHw0AAAAAVUrL86XHRx99lB/JWmutFWuvvXaxmwYAAABALVG/ut7oT3/6U3To0GGp5KlFnXDCCbHuuuvGH//4x+r6WAAAAAD4Sq1bt45NN900PyRPAQAAALBCEqg+/vjj2Gijjb7yuFQ2/cMPP6yujwUAAAAAAAAAACh+AlWTJk3i008//crj0jGNGzeuro8FAAAAAAAAAAAofgJV586d4/XXX49x48Yt85i077XXXsvHAgAAAAAAAAAAlEwC1SGHHBJffvllHHfccfHMM8/EwoULK/el12lb2pdeH3zwwdX1sQAAAAAAAAAAAMutYVSTHj16xIEHHhjDhw+PU045JS/T17Zt27xv6tSpMXfu3KioqIj9998/evbsWV0fCwAAAAAAAAAAUPwEquTnP/95bLzxxnHHHXfEpEmT4r333qvc1759+zj66KNzpSoAAAAAWJEuvfTS+O53vxt9+vQpdlMAAAAAKKcEqiQtz5ceH330UX4ka621Vqy99trV/VEAAAAAUKXHHnssT+iTQAUAAABAjSdQFbRu3To/AAAAAKCmffnll9G2bdtiNwMAAACAOqB+sRsAAAAAANVtt912i5deeikmTJhQ7KYAAAAAUK4VqAAAAACgWH784x/HG2+8Efvuu29su+22sdFGG0WLFi2ifv2q5xMeccQRNd5GAAAAAGoHCVQAAAAAlJxjjjkm6tWrFxUVFfH888/HCy+8UOVxaX86TgIVAAAAQPmSQAUAAABAydlnn31yYhQAAAAAfBUJVAAAAACUnCuvvLLYTQAAAACgjqhfXW906aWXxv33319dbwcAAAAAAAAAAFB3Eqgee+yxePjhh6vr7QAAAADgW/vkk0/ixhtvjEMOOSR++MMfxsUXX5y3X3/99fH4448Xu3kAAAAAlNISfl9++WW0bdu2ut4OAAAAAL6V559/PgYMGBCzZ8+OioqKqFevXsyZMyfvGzVqVNx2223x2muvxQUXXFDspgIAAABQChWodtttt3jppZdiwoQJ1fWWAAAAALBc3nvvvTj11FNj7ty5cfDBB8fgwYNzElXB/vvvH02bNo377rsvJ1MBAAAAUL6qrQLVj3/843jjjTdi3333jW233TY22mijaNGiRdSvX3WO1hFHHFFdHw0AAAAAi/nVr34V8+fPz8v37brrrkvt79u3b3Tu3DkOO+ywnES1yy67FKWdAAAAAJRQAtUxxxyTy6CnmXypPPoLL7xQ5XGFcukSqAAAAABYUUaPHp0n+FWVPFXwgx/8IDbbbDMV1QEAAADKXLUlUO2zzz45Maq2+vLLL+POO++MRx55JCZNmhSrrLJKbLHFFvHTn/40B8oW9fnnn8egQYPij3/8Y3zyySfRtm3b6N27dxx11FHRsGG1/ZMBAAAAsIJMnz49ttxyy688rlWrVvHOO+/USJsAAAAAqJ2qLRvoyiuvjNrstNNOi2eeeSY6dOgQffr0yUlSTzzxRLz88stx6623xvbbb5+PmzFjRhx++OF55mGaobjuuuvGSy+9FNdee2289dZbcdNNNxX7TwEAAADgK6y++uoxceLErzzu/fffj5YtW9ZImwAAAAConepHGUgJUCl5qnPnzvG73/0uzjvvvLjmmmvi9ttvjwULFsQll1xSeWyqPPXuu+/GhRdemJOlzjjjjHj44YdzMtVTTz0VI0eOLOrfAgAAAMBX23rrrXOM59lnn13mMSnW895778VWW21Vo20DAAAAoMQTqNKSdzfeeGMccsgh8cMf/jAuvvjivP3666+Pxx9/PIrhjTfeyM977713rLzyypXbt9lmm1h//fXjgw8+iE8//TTmzp0bw4cPjzZt2sTBBx9ceVyDBg3irLPOyq+HDRtWhL8AAAAAgG/i+OOPj4YNG0b//v1zrGrMmDF5+xdffJFjQXfddVecc845+Zijjjqq2M0FAAAAoBSW8Euef/75GDBgQMyePTsqKiqiXr16MWfOnLxv1KhRcdttt8Vrr70WF1xwQdR0yfZkypQpi22fP39+XspvpZVWiubNm8df//rX3N6ePXtG/fqL55a1b98+2rVrF2PHjs1Vq1JSFQAAAAC10/e+9724+uqrc5LUrbfemh8pVvXkk0/mR5LiOxdddFFssskmxW4uAAAAAKVQgSqVOz/11FNzFadUvWnw4ME5iapg//33j6ZNm8Z9992Xk6lq0u677x5rrLFG3H///fHII4/ErFmzYurUqTmAlipPHX744dGoUaOYOHFiPn7dddet8n1SElVKupo8eXKNth8AAACAb65Xr17x2GOP5VjVeuutlyuTp4l0bdu2jX322ScefvjhOOCAA4rdTAAAAABKpQLVr371q5xclEqi77rrrkvt79u3b3Tu3DkOO+ywnES1yy67RE1WoEpL76WEqcKjIJVxP+GEE/LradOm5ecWLVpU+T6pSlUyY8aMGmk3AAAAAN9Ohw4dcpUpAAAAAFjhCVSjR4+OjTbaqMrkqYIf/OAHsdlmm8WECROiJqXErltuuSVef/31XJK9S5cuMX369Hj66adzpazWrVvHvvvum49LUjWqqhS2z5s3r0bbDwAAAMC3kyqSf/zxx7kC1VprrZWrUQEAAABAtSZQpYSkLbfc8iuPa9WqVbzzzjs1+q9/1VVX5aX7jjjiiDjvvPOiXr16eftpp50Wffr0iXPPPTe++93vRuPGjfP2L774osr3KSRYpaUIAQAAAKj9RowYEffee2+MGzcuKioq8rYGDRrE5ptvHsccc0zsvPPOxW4iAAAAAEVWvzqXyZs4ceJXHvf+++9Hy5Yto6YsXLgwHnroobz83plnnlmZPJW0bds2+vXrl4NnDz/8cKy22mr/c4m+mTNn5udmzZrVUOsBAAAAWN6YUIr7nH/++fG3v/0tx4TWWGON/Ej7Xn311TjppJPiF7/4RbGbCgAAAECpJFBtvfXW8e6778azzz67zGOeeuqpeO+992KrrbaKmvLpp5/mJffWXXfdKpfm69ixY36eMmVKrL/++vn1Bx98UOV7pe1NmjTJiVcAAAAA1F5pstyTTz6Zl+u74YYb4rXXXosXX3wxP/7yl7/EFVdcES1atIghQ4bEM888U+zmAgAAAFAKCVTHH398NGzYMPr37x833nhjjBkzpnI5vJR4dNddd8U555yTjznqqKOipqSqUilxavLkyZVL8C3qn//8Z35OwbTOnTvn5flS29NMxEVNmjQpJ1ml8u6pzDsAAAAAtdfw4cOjcePGMXTo0Nh9991j5ZVXrty3yiqrxL777pvjVSnOk54BAAAAKF/VlkD1ve99L66++upcDv3WW2+Nvn375tdppt9uu+2W96Vkqosuuig22WSTqCkpeWrXXXeN6dOn58SuRX322WeV2/baa68cSNtzzz1zslUKrhUsWLAgtz859NBDa6ztAAAAACyfCRMm5IrpHTp0WOYxnTp1ysekJf4AAAAAKF8Nq/PNevXqFRtvvHHcfffdMXr06Pj3v/+dKzm1atUqunbtmpOqUmCqpp177rnx9ttvx+23357bldqSEqrScoPTpk2Lo48+Orp165aP7devXy7lnsq4p2M32GCDePnll+Odd97Jf1/37t1rvP0AAAAAfDNNmjTJk/u+SppQt9JKK9VImwAAAAAogwSqJM3qS1WmapM111wzHn744Rg8eHA8/fTTcc899+TKVCnZ67DDDstl3AtatmwZw4YNy5WpnnvuuZw81a5duzjzzDPjiCOO+FqBNwAAAACKa6eddoonnngiVxpPsZ2qpOrkY8aMiR122KHG2wcAAABA7VGvoqKiYkW88axZs+Ljjz/OM/jWWmutPJsPAIDSsPWI+4rdBGq5V/az9DUAxfXpp5/GQQcdVFmdfMmq4u+++26cffbZ+bg0ma5NmzZFaikAAEsSe6IuxZ+2v/fTYjeBWu7Fw9YodhOAYlSgGjFiRNx7770xbty4KORmNWjQIDbffPM45phjYuedd67ujwQAAACgzHXt2nWpbfPnz4958+bFySefHE2bNs2VqNIkv48++ig/krZt28app54aDz30UBFaDQAAAEBJJVAtXLgwTj/99Hjqqady4lRKmkrL4RXKob/66qvxl7/8JY477rh8HAAAAABUlxkzZnxltfQ04W9JU6ZMialTp67AlgEAAABQNglUDz/8cDz55JPRunXrXBY9VZoqLNv33//+N++7+uqrY8iQIbHppptGjx49quujAQAAAChzzz77bLGbAAAAAEC5J1ANHz48GjduHEOHDo0OHTostm+VVVaJfffdNzbaaKPYf//946677pJABQAAAEC1WWeddYrdBAAAAADqqPrV9UYTJkyIrbfeeqnkqUV16tQpH/O3v/2tuj4WAAAAAAAAAACg+BWomjRpEvXq1fvK49KyfiuttFJ1fSwAAAAAVOlPf/pTPPDAAzFx4sSYN2/eMo9LMa1nnnmmRtsGAAAAQAkmUO20007xxBNPxOTJk6Ndu3ZVHvPZZ5/FmDFjYocddqiujwUAAACApTz//PNx4oknRkVFxVce+3UmBQIAAABQuqotgeqMM86IsWPHxpFHHhnnnntudO/efbH97777bpx99tnRtGnTOOuss6rrYwEAAABgKbfccktOnjrggANijz32iNVWW02iFAAAAADVm0DVtWvXpbbNnz8/l0M/+eSTc6JUqkSVluz76KOP8iNp27ZtnHrqqfHQQw8t70cDAAAAwP80YcKE2HjjjePSSy8tdlMAAAAAKNUEqhkzZvzP/bNmzYpx48YttX3KlCkxderU5f1YAAAAAPhKjRo1ijZt2hS7GQAAAACUcgLVs88+W70tAQAAAIBqsu2228bYsWNztfRUIR0AAAAAqj2Bap111lneXwUAAACAFer000+P3r17x5lnnhkXXXRRrLHGGsVuEgAAAACllkAFAAAAALVVmvw3YMCA+NnPfhbPPPNMrLXWWrH66qtXeWy9evVixIgRNd5GAAAAAEowgepPf/pTPPDAAzFx4sRcHn1ZUlAqBa4AAAAAYEV4/vnn4+KLL86vFy5cGB9++GF+LCtWBQAAAED5alidQakTTzwxKioqvvJYQSkAAAAAVqRBgwbFggULonv37rHnnntGy5YtxaQAAAAAWLEJVLfccktOnjrggANijz32iNVWW01QCgAAAICiePfdd6Njx445kQoAAAAAaiSBasKECbHxxhvHpZdeWl1vCQAAAADLpXHjxrHuuusWuxkAAAAA1AH1q+uNGjVqFG3atKmutwMAAACA5bbtttvG66+/HvPnzy92UwAAAAAolwSqFJR66623Yt68edX1lgAAAACwXPr165eTp0477bT497//XezmAAAAAFAOS/idfvrp0bt37zjzzDPjoosuijXWWKO63hoAAAAAvpE77rgjOnbsGM8991x+rLnmmtGiRYto2HDpcFi9evVixIgRRWknAAAAACWUQLXOOuvEgAED4mc/+1k888wzsdZaa8Xqq69e5bGCUgAAAACsSMOGDVvs508++SQ/lhWrAgAAAKB8VVsC1fPPPx8XX3xxfr1w4cL48MMP86MqglIAAAAArEhDhw4tdhMAAAAAKLcEqkGDBsWCBQuie/fuseeee0bLli0lSgEAAABQFF27di12EwAAAAAotwSqd999Nzp27JgTqQAAAAAAAAAAAMoqgapx48ax7rrrVtfbAQAAAMByO/fcc7/2samK+uWXX/6tPm/27NkxePDgGDlyZEyZMiVWWmml2HjjjaNv377Rs2fPxY79/PPP8yTEP/7xj/HJJ59E27Zto3fv3nHUUUdFw4bVFq4DAAAA4GuqtojMtttuG6+88krMnz8/GjVqVF1vCwAAAADf2COPPPKVSVNJRUXFt06gmjVrVvTp0yfGjx8fm2yySX49c+bMnEx18sknx+mnnx4nnHBCPnbGjBlx+OGHx4QJE2LXXXfNExJfeumluPbaa+Ott96Km266abnbAQAAAECRE6j69euXZ8qddtppceGFF0abNm2q660BAAAAoFoqUC1cuDCmT58ef/nLX2Ls2LGx3377xUEHHfStPmvIkCE5eerggw+Oiy++uDI5K8XJUrzsxhtvjN133z06dOiQK0+9++67cdFFF+VEq6R///45tvbUU0/lpKuUWAUAAABAHUyguuOOO6Jjx47x3HPP5ceaa64ZLVq0qLLseAoijRgxoro+GgAAAAAWk5bO+yr33XdfXHbZZbHHHnt8q8964okncrxrwIABlclTSevWreOQQw7JVaWef/75OPDAA2P48OF54mFKtipo0KBBnHXWWTl5atiwYRKoAAAAAOpqAlUK7izqk08+yY+qLBpIAgAAAIBiOPTQQ3MS1eDBg2O77bb7Vslaacm+VVdddal9jRo1ys+zZ8+ON998M+bMmRM9e/aM+vXrL3Zc+/bto127drkq1oIFC3JSFQAAAAB1LIFq6NCh1fVWAAAAAFAjNthgg3jppZe+dSJWVSoqKnJVqSRVbp84cWJ+ve6661Z5fEqimjx5cn6k5f4AAAAAqGMJVF27dq2utwIAAACAGvHee++tsPe+//77c9WplBi1ww47xF133ZW3t2jRosrjmzdvnp9nzJixwtoEAAAAwApMoAIAAACA2mLWrFnL3Pfll1/GJ598EnfffXe8//77sc0221T75z/++OMxcODAaNiwYVx55ZWx0korxfz58xdb1m9Jhe3z5s2r9vYAAAAAUAMJVOeee+7XPrZevXpx+eWXV9dHAwAAAMBittpqq688Ji2x16BBgzj++OOrvfLUpZdemmNgV111VXTp0iVvb9y4cX7+4osvqvy9QoJV06ZNq7U9AAAAANRQAtUjjzzyP/engFEhMCWBCgAAAIAVKcWgliXFppo0aRKdOnWK4447Lrp161Ytn7lw4cK4+uqr81J9qZrUddddF7vuumvl/tVWW+1/LtE3c+bM/NysWbNqaQ8AAAAAtaQCVQocTZ8+Pf7yl7/E2LFjY7/99ouDDjqouj4WAAAAAJYybty4Gv28VD1qwIABMXLkyGjRokUMGjSosvJUwfrrr5+fP/jggyrfI21PiV1t27atkTYDAAAAUM0JVH379v3KY+6777647LLLYo899qiujwUAAACAolqwYEGcdtppMWrUqGjXrl0MGTKkMllqUZ07d87L840ZMyZPOqxfv37lvkmTJsWUKVNi2223zcsKAgAAAFBz/i9KUwMOPfTQ+M53vhODBw+uyY8FAAAAgBXmtttuy8lTqXLU/fffX2XyVLLyyivHnnvuGZMnT46hQ4culoCVlv4rxM8AAAAAqKMVqL6uDTbYIF566aWa/lgAAAAASti555673L9br169uPzyy5frd6dNm5YTqJKNNtoohg8fXuVxaTm/bt26Rb9+/eLFF1+MK664IkaPHp1jZS+//HK888470atXr+jevfty/x0AAAAA1JEEqvfee6+mPxIAAACAEvfII49846SpRS1vAtWrr74ac+bMya+fffbZ/KjKiSeemBOoWrZsGcOGDYsbb7wxnnvuuZw8lZb9O/PMM+OII45Yql0AAAAA1KEEqlmzZi1z35dffhmffPJJ3H333fH+++/HNttsU10fCwAAAADfqAJVilWlJfQ+/vjjqKioiPbt2y/35/bo0SPGjx//jX5nrbXWioEDBy73ZwIAAABQSxOottpqq688JgWkGjRoEMcff3x1fSwAAAAARN++fb/Wcf/4xz/inHPOqUyeOuCAA/LPAAAAAJSvakugSgGnZUmlx5s0aRKdOnWK4447LpcrBwAAAICadPvtt8dNN90U8+fPj1atWsVll10WO+20U7GbBQAAAECpJFCNGzeuut4KAAAAAKrNpEmTcpWp1157LU8C7NWrV1x88cWx2mqrFbtpAAAAAJRSAhUAAAAA1DbDhg2Lq6++OubMmZMTpi666KL40Y9+VOxmAQAAAFCLSKACAAAAoOR8/PHHcd5558VLL72Uq07tuOOOMXDgwLx0HwAAAABUSwLVueeeu7y/GvXq1YvLL798uX8fAAAAAJbld7/7XVx22WUxffr0aNKkSV6+78ADDyx2swAAAAAotQSqRx555BsnTS1KAhUAAAAA1WnatGlx4YUXxtNPP52rTnXp0iWuuOKKaN++fbGbBgAAAEC5V6D68ssvY+jQobl0egpeCVoBAAAAUJ1GjRqVk6c+/fTTaNSoUfTv3z+OPPLIYjcLAAAAgFJOoOrbt+/XOu4f//hHLpNeSJ464IAD8s8AAAAAUF1OOumkygrozZo1i0cffTQ/vo70eyNGjFjBLQQAAACg5BKovo7bb789brrpppg/f360atUqLrvssthpp51W5EcCAAAAUKbS5L0kVaFKj6+rkHgFAAAAQHlaIQlUkyZNylWmXnvttRy46tWrV1x88cWx2mqrrYiPAwAAAKDMDR06tNhNAAAAAKCOqvYEqmHDhsXVV18dc+bMyQlTF110UfzoRz+q7o8BAAAAgEpdu3YtdhMAAAAAKPcEqo8//jjOO++8eOmll3LVqR133DEGDhyYl+4DAAAAAAAAAAAo2QSq3/3ud3HZZZfF9OnTo0mTJnn5vgMPPLA63hoAAAAAAAAAAKB2JlBNmzYtLrzwwnj66adz1akuXbrEFVdcEe3bt6++FgIAAAAAAAAAANS2BKpRo0bl5KlPP/00GjVqFP37948jjzyyelsHAAAAAAAAAABQGxOoTjrppKhXr15+3axZs3j00Ufz4+tIvzdixIjl/WgAAAAAAAAAAIDiL+GXlu1LUhWq9Pi6ColXAAAAAAAAAAAAdTKBaujQodXbEgAAAAAAAAAAgLqSQNW1a9fqbQkAAAAAAAAAAEANq1/THwgAAAAAAAAAAFBbSKACAAAAAAAAAADKlgQqAAAAAAAAAACgbEmgAgAAAAAAAAAAypYEKgAAAAAAAAAAoGxJoAIAAAAAAAAAAMqWBCoAAAAAAAAAAKBsSaACAAAAAAAAAADKlgQqAAAAAAAAAACgbDWMMvL888/HXXfdFW+99VbUq1cvvvvd70bfvn3jRz/60WLHff755zFo0KD44x//GJ988km0bds2evfuHUcddVQ0bFhW/2QAAAAAAAAAAFDSyiYb6O67744rrrgi1lhjjdh7771j4cKF8dRTT0X//v3jww8/jKOPPjofN2PGjDj88MNjwoQJseuuu8a6664bL730Ulx77bU58eqmm24q9p8CAAAAAAAAAABUk7JIoBo/fnxcc801ueLUPffck5OokpNPPjknU/3iF7+IAw44IJo3b54rT7377rtx0UUXRZ8+ffJxKcmqX79+OeFq5MiRObEKAAAAAAAAAACo++pHGUhJU19++WVccskllclTyZprrpmTo/bbb7/4z3/+E3Pnzo3hw4dHmzZt4uCDD648rkGDBnHWWWfl18OGDSvK3wAAAAAAAAAAAFS/sqhA9dxzz0WrVq1iq622Wmrf/vvvnx/JmDFjYs6cOdGzZ8+oX3/x3LL27dtHu3btYuzYsbFgwYKcVAUAAAAAAAAAANRtJV+B6rPPPotPPvkkNtxww/j444/j/PPPj+222y423XTTnDj1zDPPVB47ceLE/LzuuutW+V4piWr+/PkxefLkGms/AAAAAAAAAACw4pR8AlVKmkpmzZqVl+p75ZVXYvfdd49evXrFe++9Fz/96U/zEn/JtGnT8nOLFi2qfK/mzZvn5xkzZtRY+wEAAAAAAAAAgBWn5Jfwmz17dn5+4403Yptttolf/epX0aRJk7zt+OOPjwMOOCCuuuqq2GWXXXJ1qaRRo0ZVvldh+7x582qs/QAAAAAAAAAAwIpT8hWoGjRoUPn6Zz/7WWXyVPLd7343Dj/88Pjiiy/iqaeeisaNG+ft6eeqFBKsmjZtusLbDQAAAAAAAAAArHgln0BVWHYvJU6lhKklbbzxxvn5X//6V6y22mr/c4m+mTNn5udmzZqtwBYDAAAAAAAAAAA1peQTqNq3bx8NGzaML7/8MioqKpbaX6g2tcoqq8T666+fX3/wwQdVvlfanhKx2rZtu4JbDQAAAAAAAAAA1ISST6Bq1KhRbL755nn5vbFjxy61/6233srPnTp1is6dO+fl+caMGRMLFy5c7LhJkybFlClT8nstuiwgAAAAAAAAAABQd5V8AlXSp0+f/HzllVdWLsOXjBs3LoYNGxYtWrSIHj16xMorrxx77rlnTJ48OYYOHVp53IIFC+Lqq6/Orw899NAi/AUAAAAAAAAAAMCK0DDKwB577BEvvvhijBgxIr/eddddY9asWfHkk0/m5KiBAwdGs2bN8rH9+vXLx15xxRUxevTo2GCDDeLll1+Od955J3r16hXdu3cv9p8DAAAAAAAAAABUk7JIoEouv/zy6NKlSzzwwAPx8MMP56X9ttpqq/jJT34SW265ZeVxLVu2zFWpbrzxxnjuuedy8lS7du3izDPPjCOOOCLq1atX1L8DAAAAAAAAAACoPmWTQJUSn3r37p0fX2WttdbKVakAAAAAAAAAAIDSVr/YDQAAAAAAAAAAACgWCVQAAAAAAAAAAEDZkkAFAAAAAAAAAACULQlUAAAAAAAAAABA2ZJABQAAAAAAAAAAlC0JVAAAAAAAAAAAQNmSQAUAAAAAAAAAAJQtCVQAAAAAAAAAAEDZkkAFAAAAAAAAAACULQlUAAAAAAAAAABA2ZJABQAAAAAAAAAAlC0JVAAAAAAAAAAAQNmSQAUAAAAAAAAAAJQtCVQAAAAAAAAAAEDZkkAFAAAAAAAAAACULQlUAAAAAAAAAABA2ZJABQAAAAAAAAAAlC0JVAAAAAAAAAAAQNmSQAUAAAAAAAAAAJQtCVQAAAAAAAAAAEDZkkAFAAAAAAAAAACULQlUAAAAAAAAAABA2ZJABQAAAAAAAAAAlC0JVAAAAAAAAAAAQNmSQAUAAAAAAAAAAJQtCVQAAAAAAAAAAEDZkkAFAAAAAAAAAACULQlUAAAAAAAAAABA2ZJABQAAAAAAAAAAlC0JVAAAAAAAAAAAQNmSQAUAAFCCRo8eHZ06dYpzzjlnqX1z586NQYMGRa9eveL73/9+7LTTTnH66afHxIkTi9JWAAAAAAAopoZF/XQAAACq3axZs+K8886LioqKpfb997//jaOOOipef/312GKLLWLnnXeOf/3rX/H444/Hiy++GA899FB06NChKO0GAAAAAIBikEAFAABQYgYOHBhTpkypct/NN9+ck6eOPvroOPvssyu3P/LII7la1fXXXx833HBDDbYWAAAAAACKyxJ+AAAAJWTUqFExYsSI2GWXXZbaN2/evHjggQdivfXWiwEDBiy2b++99479999f9SkAAAAAAMqOClQAAAAl4rPPPouf/exn0bVr1zjssMNyMtWixo4dG7Nnz45DDz00GjZc/HKwfv36uXIVAAAAAACUGxWoAAAASsTFF18cc+bMicsvvzzq1au31P5x48bl5w033DBeeOGFOPzww2OLLbaIrbfeOlekWtayfwAAAAAAUMokUAEAAJSAxx57LJ566qk444wzon379lUe8/HHH+fnJ598Mo477rhcheqggw6Kjh07xu9///u8hN8HH3xQwy0HAAAAAIDisoQfAABAHffRRx/FpZdeGt26dYs+ffos87hUnSp55plncrWqQw45pHLfrbfeGtdff33efuedd9ZIuwEAAAAAoDZQgQoAAKCOO++882LBggUxcODAKpfuK6hf//9dAn7/+99fLHkqSRWp2rRpEy+//HJ89tlnK7zNAAAAAABQW0igAgAAqMMeeOCBePHFF+Pss8+OddZZ538e27x588oEqiU1aNAgOnXqFBUVFTFp0qQV1l4AAAAAAKhtLOEHAABQhz3++OP5+cILL8yPJT3yyCP5se+++0aXLl3yti+++KLK9ypsb9y48QptMwAAAAAA1CYSqAAAAOqwlBjVtWvXpbanKlKPPvporirVo0eP2GijjWLDDTfM+0aPHh0LFy6sXNIvmT9/fowfPz6aNGkSHTp0qNG/AQAAAAAAikkCFQAAQB223377Vbn95ZdfzglUKXHqlFNOqdy+/fbb5yX/fvWrX8VPf/rTyu2DBg2KTz75JA466CAVqAAAAAAAKCsSqAAAAMrIpZdeGocddljcdNNNuRJV586d4+23344xY8bEeuutFwMGDCh2EwEAAAAAoEb933oNAAAAlLy2bdvGww8/HEcccURMmTIl7rnnnpg8eXL07ds3hg8fHquttlqxmwgAAAAAADVKBSoAAIAStO2228b48eOr3NeyZcs4//zz8wMAAAAAAMqdClQAAAAAAAAAAEDZkkAFAAAAAAAAAACULQlUAAAAAAAAAABA2ZJABQAAAAAAAAAAlC0JVAAAAAAAAAAAQNlqWOwGAAAArCjb3/tpsZtALffiYWsUuwkAAAAAABSZClQAAAAAAAAAAEDZkkAFAAAAAAAAAACULQlUAAAAAAAAAABA2ZJABQAAAAAAAAAAlC0JVAAAAAAAAAAAQNmSQAUAAAAAAAAAAJQtCVQAAAAAAAAAAEDZkkAFAAAAAAAAAACULQlUAAAAAAAAAABA2ZJABQAAAAAAAAAAlC0JVAAAAAAAAAAAQNmSQAUAAAAAAAAAAJQtCVQAAAAAAAAAAEDZkkAFAAAAAAAAAACULQlUAAAAAAAAAABA2ZJABQAAAAAAAAAAlC0JVAAAAAAAAAAAQNkqywSq0aNHR6dOneKcc85Zat/nn38el112WXTv3j023XTT2H333WPIkCHx5ZdfFqWtAAAAAAAAAADAitMwysysWbPivPPOi4qKiqX2zZgxIw4//PCYMGFC7LrrrrHuuuvGSy+9FNdee2289dZbcdNNNxWlzQAAAAAAAAAAwIpRdhWoBg4cGFOmTKly36BBg+Ldd9+NCy+8MCdLnXHGGfHwww/nZKqnnnoqRo4cWePtBQAAAAAAAAAAVpyySqAaNWpUjBgxInbZZZel9s2dOzeGDx8ebdq0iYMPPrhye4MGDeKss87Kr4cNG1aj7QUAAAAAAAAAAFasskmg+uyzz+JnP/tZdO3aNQ477LCl9r/55psxZ86cvL9+/cX/Wdq3bx/t2rWLsWPHxoIFC2qw1QAAAAAAAAAAwIpUNglUF198cU6Quvzyy6NevXpL7Z84cWJ+Xnfddav8/ZRENX/+/Jg8efIKbysAAAAAAAAAAFAzyiKB6rHHHounnnoqzjjjjJwIVZVp06bl5xYtWlS5v3nz5vl5xowZK7ClAAAAAAAAAABATSr5BKqPPvooLr300ujWrVv06dNnmcel6lJJo0aNqtxf2D5v3rwV1FIAAAAAAAAAAKCmlXwC1XnnnRcLFiyIgQMHVrl0X0Hjxo3z8xdffPE/E6yaNm26gloKAAAAAAAAAADUtJJOoHrggQfixRdfjLPPPjvWWWed/3nsaqut9j+X6Js5c2Z+btas2QpoKQAAAAAAAAAAUAwNo4Q9/vjj+fnCCy/MjyU98sgj+bHvvvvGAQcckLd98MEHVb5X2t6kSZNo27btCm41AAAAAAAAAABQU0o6gSolRnXt2nWp7ZMmTYpHH300OnXqFD169IiNNtooOnfunJfnGzNmTCxcuDDq16+/2PFTpkyJbbfdNho0aFDDfwUAAAAAAAAAALCilHQC1X777Vfl9pdffjknUKXEqVNOOaVy+5577hkPPvhgDB06NI488si8bcGCBXH11Vfn14ceemgNtRwAAAAAAAAAAKgJJZ1A9U3169cvXnzxxbjiiiti9OjRscEGG+Rkq3feeSd69eoV3bt3L3YTAQAAAAAAAACAavR/69QRLVu2jGHDhsX+++8fb731Vq5ENXfu3DjzzDNzFap69eoVu4kAAAAAAAAAAEA1KssKVNtuu22MHz++yn1rrbVWDBw4sMbbBAAAAAAAAAAA1DwVqAAAAAAAAAAAgLIlgQoAAAAAAAAAAChbEqgAAAAAAAAAAICyJYEKAAAAAAAAAAAoWxKoAAAAAAAAAACAsiWBCgAAAACqWb9+/WLHHXesct+cOXPipptuit122y023XTT2GWXXeK6666L//73vzXeTgAAAAAkUAEAAABAtbr55pvjiSeeqHLf/Pnz48QTT4xBgwZFu3btom/fvrHOOuvEbbfdFkcddVTeDwAAAEDNaljDnwcAAAAAJWnevHlx6aWXxkMPPbTMY4YNGxavvPJKHHvssXHmmWdWbh84cGAMHTo07rvvvpxIBQAAAEDNUYEKAAAAAL6lUaNGRa9evXLy1E477bTM41KSVKNGjeInP/nJUkv+rbLKKjnBCgAAAICaJYEKAAAAAL6lhx9+OGbPnh0XXXRRDB48uMpjpkyZEpMmTYpNN900mjVrtti+pk2b5u0TJ06MDz/8sIZaDQAAAEAigQoAAAAAvqW+ffvGs88+G3369Il69epVeUxKjkrWXXfdKve3b98+P7///vsrsKUAAAAALKnhUlsAAAAAgG9k6623/spjpk2blp9btGhR5f7mzZvn5xkzZlRz6wAAAAD4X1SgAgAAAIAa8MUXX+TnRo0aVbm/sH3evHk12i4AAACAcieBCgAAAABqwMorr5yf58+fX+X+wvamTZvWaLsAAAAAyp0EKgAAAACoAYWl+2bOnFnl/sL2Zs2a1Wi7AAAAAMqdBCoAAAAAqAHrr79+fv7ggw+q3F/YvsEGG9RouwAAAADKnQQqAAAAAKgBrVu3jg4dOsSbb74Zc+bMWWzf7Nmz46233sr711xzzaK1EQAAAKAcSaACAAAAgBqy//77x3//+9+44YYbFtuefk7b+/TpU7S2AQAAAJSrhsVuAAAAAACUiyOPPDKefPLJ+PWvfx1///vfY/PNN4+//vWvMWbMmOjSpYsEKgAAAIAiUIEKAAAAAGpIo0aNYujQoXHUUUfFpEmT4u67746PPvooTjzxxBg8eHDeDwAAAEDNUoEKAAAAAKrZ+PHjl7mvWbNmcc455+QHAAAAAMWnAhUAAAAAAAAAAFC2JFABAAAAAAAAAABlSwIVAAAAAAAAAABQtiRQAQAAAAAAAAAAZUsCFQAAAAAAAAAAULYkUAEAAAAAAAAAAGVLAhUAAAAAAAAAAFC2JFABAAAAAAAAAABlSwIVAAAAAAAAAABQtiRQAQAAAAAAAAAAZUsCFQAAAAAAAAAAULYkUAEAAAAAAAAAAGVLAhUAAAAAAAAAAFC2JFABAAAAAAAAAABlSwIVAAAAAAAAAABQtiRQAQAAAAAAAAAAZUsCFQAAAAAAAAAAULYkUAEAAAAAAAAAAGVLAhUAAAAAAAAAAFC2JFABAAAAAAAAAABlSwIVAAAAAAAAAABQtiRQAQAAAAAAAAAAZUsCFQAAAAAAAAAAULYkUAEAAAAAAAAAAGVLAhUAAAAAAAAAAFC2JFABAAAAAAAAAABlSwIVAAAAAAAAAABQtiRQAQAAAAAAAAAAZUsCFQAAAAAAAAAAULYkUAEAAAAAAAAAAGVLAhUAAAAAAAAAAFC2JFABAAAAAAAAAABlSwIVAAAAAAAAAABQtiRQAQAAAAAAAAAAZUsCFQAAAAAAAAAAULYkUAEAAAAAAAAAAGVLAhUAAAAAAAAAAFC2JFABAAAAAAAAAABlSwIVAAAAAAAAAABQtiRQAQAAAAAAAAAAZUsCFQAAAAAAAAAAULYkUAEAAAAAAAAAAGVLAhUAAAAAAAAAAFC2JFABAAAAAAAAAABlSwIVAAAAAAAAAABQtiRQAQAAAAAAAAAAZUsCFQAAAAAAAAAAULYkUAEAAAAAAAAAAGWrYZSJ2bNnx+DBg2PkyJExZcqUWGmllWLjjTeOvn37Rs+ePRc79vPPP49BgwbFH//4x/jkk0+ibdu20bt37zjqqKOiYcOy+ScDAAAAAAAAAICSVxYVqGbNmhWHHHJITqBq0qRJ9OnTJ3bfffcYN25cnHzyyXl7wYwZM+Lwww+Pe++9NzbZZJM44ogjYpVVVolrr702Tj/99KL+HQAAAAAAAAAAQPUqi3JKQ4YMifHjx8fBBx8cF198cdSrVy9vP+2003JlqRtvvDEnVHXo0CFXnnr33XfjoosuyolWSf/+/aNfv37x1FNP5QpWu+66a5H/IgAAAAAAAAAAoDqURQWqJ554IidNDRgwoDJ5KmndunWuTLVgwYJ4/vnnY+7cuTF8+PBo06ZNTrYqaNCgQZx11ln59bBhw4ryNwAAAAAAAAAAANWvLCpQ9e3bN2bOnBmrrrrqUvsaNWqUn2fPnh1vvvlmzJkzJ3r27Bn16y+eW9a+ffto165djB07NidcpaQqAAAAAAAAAACgbiuLBKpDDz20yu0VFRV5Sb6kY8eOMXHixPx63XXXrfL4lEQ1efLk/EjL/QEAAAAAAAAAAHVbWSzhtyz3339/rjqVEqN22GGHmDZtWt7eokWLKo9v3rx5fp4xY0aNthMAAAAAAAAAAFgxyjaB6vHHH4+BAwdGw4YN48orr4yVVlop5s+fv9iyfksqbJ83b16NthUAAAAAAAAAAFgx6pdr5akBAwbk11dddVV06dIlv27cuHF+/uKLL6r8vUKCVdOmTWusrQAAAAAAAAAAwIrTMMrIwoUL4+qrr4677rorV5O67rrrYtddd63cv9pqq/3PJfpmzpyZn5s1a1ZDLQYAAAAAAAAAAFakskmgStWjUtWpkSNHRosWLWLQoEGVlacK1l9//fz8wQcfVPkeaXuTJk2ibdu2NdJmAAAAAAAAAABgxSqLJfwWLFgQp512Wk6eateuXTzwwANLJU8lnTt3zsvzjRkzJlerWtSkSZNiypQpsfnmm0eDBg1qsPUAAAAAAAAAAMCKUhYJVLfddluMGjUqV466//77KytNLWnllVeOPffcMyZPnhxDhw5dLAErLf2XHHrooTXWbgAAAAAAAAAAYMUq+SX8pk2blhOoko022iiGDx9e5XGpIlW3bt2iX79+8eKLL8YVV1wRo0ePjg022CBefvnleOedd6JXr17RvXv3Gv4LAAAAAAAAAACAFaXkE6heffXVmDNnTn797LPP5kdVTjzxxJxA1bJlyxg2bFjceOON8dxzz+XkqbTs35lnnhlHHHFE1KtXr4b/AgAAAAAAAAAAYEUp+QSqHj16xPjx47/R76y11loxcODAFdYmAAAAAAAAAACgdqhf7AYAAAAAAAAAAAAUiwQqAAAAAAAAAACgbEmgAgAAAAAAAAAAypYEKgAAAAAAAAAAoGxJoAIAAAAAAAAAAMqWBCoAAAAAAAAAAKBsSaACAAAAAAAAAADKlgQqAAAAAAAAAACgbEmgAgAAAAAAAAAAypYEKgAAAAAAAAAAoGxJoAIAAAAAAAAAAMqWBCoAAAAAAAAAAKBsNSx2AwAAAAAAAAAAYEWbNm1aDB48OEaNGhX//ve/Y4011oju3bvHSSedFC1btix28ygiFagAAAAAAAAAAChpM2fOjD59+sSdd94Zbdq0icMOOyw6duwY99xzT+y99945oYrypQIVAAAAAAAAAAAl7eabb4733nsvTjnllDj55JMrt997771x6aWXxk033RRXXHFFUdtI8ahABQAAAAAAAABASZs8eXKsueaaccwxxyy2PVWfSl5//fUitYzaQAUqAAAAAAAAAABK2qBBg6rcnqpSJa1atarhFlGbSKACAAAAAAAAAKCsTJ8+PUaPHh1XXnllNGzYME466aRiN4kikkAFAAAAAAAAAEDZeOCBB+Liiy/Orxs0aBDXXHNNdOvWrdjNoojqF/PDAQAAAAAAAACgJrVs2TKOO+642GeffWLllVeOM844I26//fZiN4siUoEKAAAAAAAAAICysdtuu+VHcsopp8RBBx2Uq1BtvfXW8f3vf7/YzaMIVKACAAAAAAAAAKAstWvXLo499tj8+tlnny12cygSFagAAAAAAAAAAChZ8+fPj7Fjx8aCBQtixx13XGp/+/bt8/Nnn31WhNZRG0igAgAAAAAAAACgpBOojjvuuGjSpEm8/PLL0ahRo8X2v/POO/n5O9/5TpFaSLFZwg8AAAAAAAAAgJLVrFmz6N69e8ycOTNuvvnmxfa9/fbbcffdd+fkqj333LNobaS4VKACAAAAAAAAAKCknX/++TlZavDgwfHqq6/GZpttFlOnTo1nn3026tWrF9dff320atWq2M2kSCRQAQAAAAAAAABQ0tZee+34zW9+E7fccktOmnrjjTdi1VVXjR49esSJJ54YnTp1KnYTKSIJVAAAAAAAtdTs2bPz7OiRI0fGlClTYqWVVoqNN944+vbtGz179ix28wAAAOqUli1bxgUXXJAfsKj6i/0EAAAAAECtMGvWrDjkkENyAlWTJk2iT58+sfvuu8e4cePi5JNPztsBAACAb08FKgAAAACAWmjIkCExfvz4OPjgg+Piiy+OevXq5e2nnXZa9O7dO2688cacUNWhQ4diNxUAAADqNBWoAAAAAABqoSeeeCInTQ0YMKAyeSpp3bp1rky1YMGCeP7554vaRgAAACgFKlABAAAAANRCffv2jZkzZ8aqq6661L5GjRrl59mzZxehZQAAAFBaJFABAAAAANRChx56aJXbKyoqYuTIkfl1x44da7hVAABAXfTRCSZf8L+1Htw0ypkl/AAAAAAA6pD7778/3nzzzWjfvn3ssMMOxW4OAAAA1HkSqAAAAAAA6ojHH388Bg4cGA0bNowrr7wyVlpppWI3CQAAAOo8CVQAAAAAAHWk8tSAAQPy66uuuiq6dOlS7CYBAABASWhY7AYAAAAAALBsCxcujKuvvjruuuuuaNSoUVx33XWx6667FrtZAAAAUDIkUAEAAAAA1FLz58/PVadGjhwZLVq0iEGDBqk8BQAAANVMAhUAAAAAQC20YMGCOO2002LUqFHRrl27GDJkSKy//vrFbhYAAACUHAlUAAAAAAC10G233ZaTp9q2bRv3339/tG7duthNAgAAgJIkgQoAAAAAoJaZNm1aTqBKNtpooxg+fHiVx6Xl/Lp161bDrQMAAIDSIoEKAAAAAKCWefXVV2POnDn59bPPPpsfVTnxxBMlUAEAAMC3JIEKAAAAAKCW6dGjR4wfP77YzQAAAICyIIEKAAAAqDXLVQ0ePDhGjRoV//73v2ONNdaI7t27x0knnRQtW7YsdvMAAAAAgBJVv9gNAAAAAJg5c2b06dMn7rzzzmjTpk0cdthh0bFjx7jnnnti7733zglVAAAAAAArggpUAAAAQNHdfPPN8d5778Upp5wSJ598cuX2e++9Ny699NK46aab4oorrihqGwEAAACA0qQCFQAAAFB0kydPjjXXXDOOOeaYxban6lPJ66+/XqSWAQAAAAClTgUqAAAAoOgGDRpU5fZUlSpp1apVDbcIKLa5p19d7CZQyzX+xVnFbgIAAAAlQgIVfAuzZ8+OwYMHx8iRI2PKlCmx0korxcYbbxx9+/aNnj17Frt5AAAAddb06dNj9OjRceWVV0bDhg3jpJNOKnaTAAAAAIASJYEKltOsWbOiT58+MX78+Nhkk03y65kzZ+ZkqpNPPjlOP/30OOGEE4rdTAAAgDrngQceiIsvvji/btCgQVxzzTXRrVu3YjcLAAAAAChR9YvdAKirhgwZkpOnDj744PjNb34T5557blx++eXxhz/8IS8tceONN8a//vWvYjcTAACgzmnZsmUcd9xxsc8++8TKK68cZ5xxRtx+++3FbhYAAAAAUKIkUMFyeuKJJ6JevXoxYMCA/FzQunXrOOSQQ2LBggXx/PPPF7WNAAAAddFuu+2Wk6auuuqq+N3vfpcTqlIVqrfeeqvYTQMAAAAASpAEKlhOffv2jX79+sWqq6661L5GjRrl59mzZxehZQAAAKWjXbt2ceyxx+bXzz77bLGbAwAAAACUoIbFbgDUVYceemiV2ysqKmLkyJH5dceOHWu4VQAAAHXP/PnzY+zYsbmS74477rjU/vbt2+fnzz77rAitAwAAAABKnQQqqGb3339/vPnmmznAv8MOOxS7OQAAAHUigeq4446LJk2axMsvv1xZ1bfgnXfeyc/f+c53itRCAAAAAKCUWcIPqtHjjz8eAwcOjIYNG8aVV14ZK620UrGbBAAAUOs1a9YsunfvHjNnzoybb755sX1vv/123H333Tm5as899yxaGwEAAACA0qUCFVRj5alLL7006tWrF1dddVV06dKl2E2Cpfz2t7+NoUOHxj//+c9o3LhxbLfddtG/f/9YZ511it00WIy+CgDl5/zzz8/JUoMHD45XX301Nttss5g6dWo8++yz+Trr+uuvj1atWhW7mQAAAABACVKBCr6lhQsX5mpTl1xySa48dcMNN5gVTa2UbjidffbZMW/evOjTp09069YtV03r3bt3TJo0qdjNg0r6KgCUp7XXXjt+85vfxOGHHx7//ve/czL1mDFjokePHvHQQw/lZwCg9k+I2m+//WKLLbbI1/NnnHFGTJkypdjNgirprwAALEoFKvgW5s+fHwMGDIiRI0dGixYtYtCgQSpPUSuNGzcubr311vjBD36Qlz9p1KhR3t6rV684+eST89KTaT8Um74KAOWtZcuWccEFF+QHAFD3JkSla/YNNtggT4hKCdFpQtSLL76Yk6Hbt29f7CZCJf0VAIAlSaCC5bRgwYI47bTTYtSoUdGuXbsYMmRIrL/++sVuFlQpzd5PfvrTn1YmpCQ9e/aMrbbaKp577rn46KOPonXr1kVsJeirAAAAUBeZEEVdor8CAFAVS/jBcrrtttty8lTbtm3j/vvvlzxFrTZ69Oi8xGRKQFnSNttsExUVFfkYKDZ9FQAAAEp3QhTUBvorAABVUYEKlsO0adNyAlWy0UYbxfDhw6s8Li3nl9ZOh2IvNTl16tRYZ511FgsIFBTKUb///vtFaB38H30VAAAASnNC1NixY/Mxe++9d1HaB4vSXwEAqIoEKlgOr776asyZMye/fvbZZ/OjKieeeKIEKopu+vTpuWrPaqutVuX+5s2b5+eZM2fWcMtgcfoqAAAA1D0mRFGX6K8AACyLBCpYDj169Ijx48cXuxnwtXzxxRf5uaqAwKLb582bV6PtgiXpqwAAAFD3mBBFXaK/AgCwLBKoAEpc48aNF0tOqWrWVdKkSZMabRcsSV8FoJx9dMLsYjeBOqD14KbFbgIALMWEKOoS/RUAgGWpv8w9AJSEZs2aRf369Zc5a6qwvTC7CopFXwUAAIC6x4Qo6hL9FQCAZZFABVDi0qyp9u3bx9SpU6sMDEyaNCk/b7DBBkVoHfwffRUAAADqHhOiqEv0VwAAlkUCFUAZ6Nq1a05Iee2115ba9+c//znq1asXW265ZVHaBovSVwEAAKBuMSGKukR/BQBgWRoucw98hbmnX13sJlDLNf7FWcVuAv+/3r17x0MPPRTXX3993H333ZWlqp9++ul49dVXo3v37rH22msXu5mgrwIAAEAdnRCVrufThKitt956sX0mRFHb6K8AAFRFBSqAMrDFFlvEoYceGq+//nrsvffecfXVV8eAAQPitNNOizXXXDPOPffcYjcRMn0VAAAA6uaEqCRNiJo7d27l9sKEqF122cWEKGoN/RUAgKqoQPU//Pa3v42hQ4fGP//5z1wBY7vttov+/fvHOuusU+ymAXxjP/vZz2L99dePBx98MO65555o0aJF/OhHP8qJKalsNdQW+ioAAOVC7AkotQlR9913X54QlSpIf/TRR/HEE0+YEEWto78CAFAVCVTLkGYe3HrrrXmd6z59+sS///3vePzxx+PFF1/MpV3dwAXqmlR6+rDDDssPqM30VQAAyoHYE1BqTIiiLtFfAQBYkgSqKowbNy4HsH7wgx/E3XffHY0aNcrbe/XqFSeffHIMHDgw7wcAAACAb0rsCShFJkRRl+ivAAAsqf5SW8il05Of/vSnlQGspGfPnrHVVlvFc889l8u5AgAAAMA3JfYEAAAAULtIoKrC6NGjo2HDhjlgtaRtttkmKioq8jEAAAAA8E2JPQEAAADULhKoljB//vyYOnVqrL322ovNACworH39/vvvF6F1AAAAANRlYk8AAAAAtU/DYjegtpk+fXqe5bfaaqtVub958+b5eebMmVHuGp10cLGbAAAUyS079Ch2E+Br+WXPVYvdBPhaVj+9cbGbANQQsaevT+wJAMqX2BN1ifgTdYX4E/xvEqiW8MUXX+TnqmYALrp93rx5Ue7qb7BusZsAABTJD1q1LnYT4GvZovVKxW4CfC2NOjYodhOAGiL29PWJPQFA+RJ7oi4Rf6KuEH+C/80Sfkto3LjxYsGsqsqsJ02aNKnRdgEAAABQ94k9AQAAANQ+EqiW0KxZs6hfv/4yy6QXthfKqQMAAADA1yX2BAAAAFD7SKCqokx6+/btY+rUqVXOBJw0aVJ+3mCDDYrQOgAAAADqMrEnAAAAgNpHAlUVunbtmgNYr7322lL7/vznP0e9evViyy23LErbAAAAAKjbxJ4AAAAAahcJVFXo3bt3fr7++utj7ty5lduffvrpePXVV2OXXXaJtddeu4gtBAAAAKCuEnsCAAAAqF3qVVRUVBS7EbXRz3/+87jvvvtivfXWi+7du8dHH30UTzzxRKy++uoxbNiwXGodAAAAAJaH2BMAAABA7SGBahnSP0sKYj344IMxceLEaNGiRWy99dZx2mmnCWABAAAA8K2IPQEAAADUHhKoAAAAAAAAAACAslW/2A0AAAAAAAAAAAAoFglUAAAAAAAAAABA2ZJABQAAAAAAAAAAlC0JVAAAAAAAAAAAQNmSQAUAAAAAAAAAAJQtCVQAAAAAAAAAAEDZkkAFAAAAAAAAAACULQlUAGXsgw8+iLfffrvYzQAAAACgRIk/AQAAdYEEKiiiioqKYjeBMvbmm2/GoYceGi+88ELMmTOn2M0BAOq40aNHF7sJAEAVxJ8oJvEnAKA6iT8BK5IEKqhhs2bNitdffz2/rlevniAWRTFp0qQ49dRTo0GDBtG5c+do0qRJsZsEANRh+++/fxx77LG5ugAAUHziT9QG4k8AQHUSfwJWNAlUUMMWLFgQ5513XgwbNqwyiPWf//yn2M2izEyZMiU+//zz2G677WLHHXfM2z777LP8LKhKXb9JAKVo0XOz8zS1Ue/evePss8+O1VdfvdhNgeXm/AqUEvEnagPxJ0qV+BOlSvyJ2k78iVLg/Fq71avwXwhWuPS/WQpUpeDVW2+9FQcffHDefvPNN+cs6b/+9a9xwQUXxFprrVXsplLixo8fHw0bNozZs2fHgQceGKusskqMGDEi/vCHP8QTTzwRQ4cOjTXWWKPYzYTl8sYbb8S1114bl19+ebRv377YzYFqsXDhwqhfv37Mnz9/scoBjRo1KnbTYLFxbvLFF1/ESiutlM/HH3/8cfTs2bPYzYNvfL798MMPY8KECfHPf/4zOnXqFBtuuGGsttpqxW4ewNci/kRtIf5EKRN/ohSJP1HbiT9RKsSfar+GxW4AlIPp06dHixYtcrnqzTffPF9cpVmAJ598ct5/wgkn5C97WJHefPPNOOigg2LXXXeNG2+8MY4//vi47bbbcsnTFNDq27dvfPnll8VuJiy3p59+OsaOHRsfffRRDmAVBqJQVxX68Lvvvhu33357Po+n83WauZ3GEGuvvXaxmwiVwask3ST79NNP45BDDsn996abbsrjDqgr59uUbHD++efHv/71r5g3b160adMmV24RwALqCvEnagPxJ0qd+BOlRvyJukD8iVIg/lQ3GNXBCpYupnbeeecYPXp05bb99tsvunXrlgNaSfPmzSvLTaaTJ1S3lIV/1llnxbrrrhv77LNP3nb66afH97///fjvf/+bZwJuttlm0bp165zJrzghdVG6SGratGkO0M6dO1fwijotnYcLF1PpBsPLL78cq666arRt2zYHCNK5G2pjMCtVEujfv3/++dRTT40nn3yy2M2Cr3W+HTduXBxzzDH55+OOOy4uu+yynHiQxseLcr0G1FbiT9QG4k+UA/EnSon4E3WR+BN1kfhT3aECFaxg77zzTi6NXggIpDLq//jHP+L999/PwYNUPj2V/G3ZsmUObKWTp1krVLd///vfMWnSpNhyyy1z8DS544478oVRKguZ+uQVV1yR+2qXLl2K3VxYLptuuml07do1X+i//fbbuS87n1KXAwHp3J0qBqQxwoABA/INsTSeSOV906wUqG0l1Avn3HTxn8r8p7FFv3794oYbbojdd9+92E2FKqX+O23atBg4cGC+SZACsDvttFPl/jSG/tOf/pSXskjj6I4dOxpfALWS+BO1gfgT5UD8iVIi/kRdIf5EXSf+VHf4F4cV7Mgjj4w777yzMmgwefLk2GijjXJJyaFDh8ZVV12Vt6cB6ogRI/LrQhALqksKTK233np5Ld00GzUNKG+++eb46U9/mvthGmh+8skneZCZZq0WmAlIXZHWPU9+8pOf5H772GOP5Z8NLqnrN8EmTpwYe+21Vw5eFS60Fg1e/fnPf84PKIY0Xk198rPPPsvLV0yZMqVyX5q5eu655+bXaXxhJiC12YwZM/KN3XTNVghepXPw3XffnZcb+vnPfx5XXnllXh4gbTe+AGoj8SdqA/EnSp34E6VI/InaTvyJUiH+VDf4V4cVIK0Rfd9991X+vM466+TnNNNvt912i2eeeSaXq06Z0XvvvXdceumleb8gFitKixYt4rDDDsuDzDPOOCN+/etfx49+9KM48MAD8740s+Soo46K//znPznruRDESscLYlEbpTKnqZ+mUtLJSiutlJ9T5v4WW2wRjz76aLz66qtFbiV8O3/5y19ycHabbbZZLFCbpDFCmpWSzt3XXHNNzJ4927iBGlWYAfX3v/89jj/++Ojdu3fsueeeMXjw4PjXv/6VjxHEoq6YNWtWXn5l5ZVXjqlTp8aDDz4YZ599dg5atWrVKp9rDzrooJgzZ04MGzYsV3UBqA3En6htxJ8oNeJPlAPxJ2oz8SdKifhT3SCBCqrZ9OnT47TTTstBqXvuuWexfU2aNMnPKYDw1FNPVW4/4IADFgtiFWaupBLAEyZMqNH2U5pWWWWVnLG8wQYb5C/n1BfT6/SFXJC+pAWxqAvSTOp99tknDj/88DjllFPioYceiv/+9795MLnmmmvmvj5v3rzKAJaLeuqKJc+1hXXP0+ztRQO1SQoctG/fPn74wx9WBnLNSKEmpf42fvz4PHZIwdTvfOc70bhx47j++utjyJAheXmWqoJYI0eOLHLLYWlrr712XoYl9d0f//jHcdFFF+XrsJNPPjkvAZDGyZdcckkeZ6TlLQBqA/EnaiPxJ0qJ+BOlSvyJukT8iVIi/lQ3+JaDarbaaqvlC6pUsjqtY5pmWhWcdNJJcc455+QAQppxtawg1llnnZX3pxPl5Zdfno8XQGB5FPpNei6U2e3cuXPObk6l01OwNGU8LyuIVQgAFNaWhtqgXbt2cf755+dM/Ndeey1+9rOf5dknt956a+7P6YI+lZu+/fbbc/lpF/XUlXP1kufa1NeTVFUgzXotSMHaQmA2zeJOa6enWSlQUwqzn373u9/lMe/VV1+db9ymC/1Ufvrhhx/OpaerCmKdeuqp+fegGBa9qZXOvYXzb8uWLfNY4uCDD87VW9J4+I477sgBrHTTN0nj4jTbepNNNokGDRoU7W8AKBB/ojYRf6IUiT9RasSfqGvEn6irxJ/qtobFbgCUYinJ/fbbL2fpp+DTFVdckU+MRx55ZD4mPaefr7rqqhykSlJZ9UIQK50M0yzAP/zhD7H66qvHTTfdlLOp4ZtK/axwMZRmQ6U1dW+55ZZcYvr111+Pm2++OWfpJz179oymTZtWBrGSu+66K/fXFOjacssti/iXwNLS7L/C+fPZZ5/NM0rSrNV0UXTooYfmmVFpLelRo0blQWj6/0Egi9o8dkgle9O5OT2n/tqnT5/o0aNHntH6wAMP5HNxOidvuOGGlRdOaXZKWgt9o402ymOFRc/7sCL7a6EPvvHGG/H9738/B62SNNZIN8mSwrJAhX6bgljp99MY+JNPPiniX0G599/3338/Hn/88TxOSP31e9/7Xh47bL/99vmRbggUKrcUpPNtqjiQzrHGxUBtIP5EbSL+RCkTf6JUiD9Rl4g/UZeJP9V9EqigGqUTYlofOgWvUum99OWeglhp7dL0+rDDDssnvXQxlVQVxErBr1SCcsaMGfnLvk2bNkX9m6i7ChcxN954Y7z44ot5TehddtmlclbJ/Pnzc5nIZQWx0pd3Wn83BVKh2NKs1FSi9+OPP45VV101Dx7ToHPbbbeNH/zgB3HiiSfmGX9plmuafZ0CWOl3/vjHP8bRRx/top5afTGVLqLS8ir/+te/KvelGw9pvJDGDlOmTIlHHnkkl+1NQYDU/9PvDB8+PN59993c55s3b17Uv4Xy6a9pZnWhDHoar6633nr5dVrKIi3ZkvrnCSecsFgQK/XlFCRIz9tss00OukJNKtzIevPNN3NVls8++yyPe9N4N/Xn559/Po444og8Hk7Bq3Teve222/J44ssvv8xj6b/85S9x5plnVgZsAYpJ/InaRPyJUiL+RCkSf6IuEX+iLhN/Kg31KtRlhmr/Yk+eeeaZfOJLAYJ0EZVccMEFeSBakGZYpSBWw4YN47rrrqsMYkF1mTlzZhx33HHx17/+NXbYYYccTF1jjTXyvlQCMpU4TV/OqQ+mkumLBrGStK554XgolnShns6f6UK9UPo0Ba523XXXXEa9EJxKA8x00T9s2LB44YUX8syUtARFKrGeMvuhNnrvvfdyUCrdsNp3331j6623zjMB06yqjh075mP+/ve/53LUjz76aOVyLemiK52707ItKUibmAHIilLoW+niP5WZTmX7C9KsvzSmTdLNsUaNGuXXaYmLdPPspZdeij322CPPBFw0cLXouBlqov9+/vnneXZ1s2bN8jVZWm4l3ThI4+Ennngij4FPO+202GuvvfKyFakqS2H5ipRgkM61qWJLov8CxSb+RG0j/kQpEH+ilIk/UReIP1GXiT+VDglUsAKkMtW//OUvc0Z0yhpNMwJTid/CzKrCDMBFg1gpY/rSSy+NPffcs4gtpxRNnjw5Lrvssnjuuediu+22y+tEF4JSs2bNit/85jeVQaw0IzXNEkxf7FAbpJKlKfjUokWL3DfT7NVUKj1l4qeAVbog6tev31IX7x999FEelP7kJz/Js00GDRpU5L8ElpYu9tONhTRLKlUM+NGPfpS3p76dzsmFPp36c5rh9+STT+agQDqvd+nSJTbffPNc7jdxMcWKlm7IpnNuClClG15pLJFuwE6fPj0OPPDA+PnPf75UEKuwZEsKYt1555355gPUpMK5MfXf9Ny7d+8chE3LUyx6wzYlH6SqGWuvvXYOvLZq1SrefvvtfDM4Xculnzt06LDYewLUBuJP1CbiT9Rl4k+UMvEn6hLxJ+oi8acSkxKogOozatSoik033bTi9NNPr5gwYULl9ieeeKJi3333rejYsWPFnXfeudjv3HXXXXn7tttuWzFz5syKhQsXFqHl1HULFixY5rZJkyZVHHvssbmfHX300RX/+c9/Ko9Jfe7uu++u2HHHHSs222yzij/84Q/6ILXGkCFDKrbffvuK559/vnLbtGnTKp588smKbt26VXz/+9+veOCBB5bq84U+fO211+Z+P3bs2CK0Hv63uXPnVuy33355fLCsc/krr7xS8cMf/rDi3XffXeYxVZ3/oToU+tacOXMqxowZk8cKjz/+eOX+v//97xVbbbVVPs9ecsklldvnzZtX+Tr93jPPPFPDLYf/k86fnTt3rujdu3fFFltsUfHBBx/k7V9++eViY4vrr78+9+Wrr756me9ljAzUJuJPFIv4E6VI/IlSJv5EbSf+RCkQfyod0tagmr3zzjs5Yz+V1/vud78bCxYsyNt33333vL50p06d8oy/e++9Nx+XpGzqVOI3ZUanmVfKn7K86+omaWZImj2SpG0pSznNmrroootyGfWUhX/WWWflbOck9bn9998/z7JKWc8bb7yxPkjRpfLn119/fUydOjU22GCD2HHHHSv7eiofnZacSLNZGzduHH/4wx/y2udJ4f+DQqn1VIY6mTRpUtH+FliWdB5Os/tSf00zshc9lydpDJGWY/n3v/8djz/+eOX2JWeemInCipL6Vlq+Yp999snLU6QxQ69evSpn+qVxbRrTrrrqqnH//fdXzgJMMwDT/mSrrbaK7t27L3ZuhhWt0NfSeXXllVfOlQTef//9fF5NS1cU9hWkscWPf/zj/Py3v/1tme9rjAzUJuJPFIP4E6VG/IlyIP5EbSf+RF0l/lSafNtBNSmcANNa6Q0aNMil05fcl8pGppJ9SSppnb7wC1LwoLDWNHzTL+jCl+k999yTB5mjR49eZhCra9euOYh1/vnnVwax0pq7qQ8++OCDufQ/FNMXX3yRA/qphOkDDzyQL4IKNwMWHTimi6J99903l1R/9dVXF3uPdB5OXnnllcr3hNqmbdu2+aZBClKlR+rfhb6exg6pH6c10lM59VSmGoohlZ5O/TLdLJg4cWIuK52kstJprLHhhhsuFsRKY9xCEGvJgJVgKzUl9bWUWJDKoqfrsttvvz2fc+fNm5eXD0rSuTX17UI/TckHrVu3zuPjQgAWoDYSf6JYxJ8oNeJPlAvxJ+oC8SfqIvGn0uQMAtWkcFG12Wab5ZkohYupwkVUIYiV1pdOF12rrLJKDBw4cLEgFnxTi66B+9BDD+V+lwaUqW+lC/eqglhpnfOU3fzcc8/F2WefnQemhSBW2g7FlGbqzZkzJ04++eQ8yySdKz/88MMYP378UsemjP4f/OAH+fVnn3221P60nvR9990XLVu2jO23375G2g9fV2FckAJUaY3zVAkgjR/SuGHRGxMTJkzI5/K11lqryC2mXHXp0iUuvvjifAMsXeynm2Vpdnbqo6m/LhrEWn311fPzueeem39XwIpiSQGoW2+9NT/++c9/5kSBVFnge9/7Xjz99NO5IkuS+nChn/71r3/NY440tkgBWIDaSvyJYhB/otSIP1EuxJ+oK8SfqIvEn0qTMwosh/9V/jFl8ie33HJLZRArfcEXAglpwJpKoW6yySax3XbbxTbbbFNDraYUFb5wb7755nzxky7804yoVEY9lTFdMoiVvsxTECuViOzQoUO8+OKLeSagkqbUluDVHnvsESNHjswDzKOPPjoHntLMqF//+teLHVvos6nsdLLGGmss9X7p/JrKrKcgVsr6h9qkEKBKfb5nz57x5ptvxlFHHRUffPBB5YzVv//973kWbLqQ2nTTTYvcYspRGremG2Nbb711HHfccXlZilTOP830S+X/lwxi3X333fn30hgDiimdNwul+2+66aaYMWNGHlvccMMNeWmWu+66Ky688ML4/PPP85giLd2SgrNpLJ2u0QBqC/EnagvxJ0qJ+BPlRPyJukD8ibpK/Kk0NSx2A6Auz7hKg8100kvZ0JtvvnmeZfLDH/4wf8EPGTIkl+xLs1jSl3768k+efPLJmDt3bhx77LH54iqtnw7fph+mmU/Dhw/PF0Gpv33nO9/JJSHTBX8KYqUv59QH07ZCNnOaTZVKpffu3Tt/ucvQpzZIF+1pVt9jjz0W++23X75QOumkk3J/f/TRR/NswP79++cyvanPpn6cSvq2atUq2rRps9T7pbXS99prr6L8LfB1pL6d+vMll1ySxwZ/+tOf4sgjj8w3w9JMqrQcRgrsnnnmmdGtW7diN5cyDrSmcWyhD6ZZVOlCPzn88MNzyelCECvNskr9tkWLFpUBsEWXvoAVpaq+lpYVSuOEtHTQe++9F1tssUUuk56u0fr165fHzy+//HL+3TQGSUGu008/PXr06FG0vwNgUeJP1AbiT5Qi8SfKjfgTtZ34E3WF+FN5qFdRqN8IfKMTY1rHNAWpCmtCpyDAQQcdFDvuuGPMnj07l6lO65umktQpo3/dddeNcePGxRNPPJFLpKYTphkpfFuDBg3KAaw0WCwEqpL0BZz6aApirb322nmWXwqYpgBWKiudZkWlL+5U0h9qizRDNZXdTYPNX/ziF5X98x//+EcebD777LO5j6cLpObNm8fzzz+f10JPs18PPfTQYjcflku6CZYu/tN4Ip2zX3jhhbxueurjabbK/vvvn2d2L3nzAoohBanSmCMFsVJ5/xTAKgSxFr2sTONl/ZWaUuhrqQJG6ofppla6cVuYSd23b988Dk4zAQvef//9OO200+Ldd9/NN7zSuCP9XjrvLvqeAMUi/kRtI/5EKRF/ohyJP1GXiD9RG4k/lQ8JVLAc7rjjjrjmmmtyGfS0Rulbb72VZwN27tw5z1bZaaedchZpOm7w4MExb968fBJMs1fSrKsUPCicHGF5pSDVwQcfnL+Ak8suuyxf6BQCram0dAqypguiFEhN5SDT7Krnnnsu98e0RnT79u2L/WdQxha9KVAYKKYM/XQzIJWUvuKKKyqPTUGsX/7ylzlolQJd6QZAKimdbh6kJQGWfD+oSwr9PwWz0pghBQbSDMCmTZvm6gKLHgO1KYj1z3/+M5+zjzjiiCpnYkNNSYkCacZfqh6QxhCpX6bx78yZM/O110MPPRTXXntt7LnnnpXjhTTmSEGsdM5N29P+JI0zClUzAIpN/InaQPyJuk78Cf4f8SfqEvEnaiPxp/IggQq+hkUHjZ988kmccsopeUbfT3/607zGbvryfuSRR+LOO++MTp065TLWqZR6koJbKas/BRnSvlS2r6q10mF5pLXKU+ndVP4x9bmzzz47B0kLUhArlTlNM6rSl3PKhk5Bq5QBLYhKsS0ZcEoXReniPc0CHDlyZD6nbrvttosNTm+55ZYchE3bU39PSwYsOosKSpHgLLVNOl+/8sorcdVVV+UbDPfdd1++qQvF8uqrr8Zhhx2WX6+55pr5JkAaI2+55Zb5Wi0tG5RmAV533XV5Cas0bkjj4hTESlUx0kzA3XffPW644Yb8HsYVQLGIP1FbiT9Rl4k/wdcj/kRtI/5EbSP+VB4kUME3kMr3pjWi00VTOrktuj7phx9+GPfff3++4Npoo43ixBNPzDNTYEVL65OnPvnaa69Fnz594ic/+Um0atWqcn8KCKQgagpypez89ddff7H9UKyBZsq0P+6442LDDTdcbDZqCl6deuqpueRpCmalC6VCKdQUxEpLBzz99NOx8847x1lnnZWDti7uAWpWOje/+OKLeemgPfbYo9jNoYwVgvzpBm260ZWWW0lj3xS4SktQpDL/f/3rX+OCCy7IY4hddtkl/05KUkhBqkXLqW+//fZ5GSKAYhN/ojYSf6IuEn8CqNvEn6gtxJ/KhwQq+JoKwYG11147zwZMZfjSTL5UKn2llVZaKoi18cYb5xmCqZw61EQQ68wzz8xfzin7+YQTThCkolZKg8U09EhB/j/96U/5/JkCUGlwmWaxrrXWWvm4FIhN590RI0bEOuuss9hM7EI59RTE2nXXXfOgM82uhlJdWsAMQGqrRc/NZkxRUwp9rfBcuNGVbo5dfvnleemJAw88MAdYhw8fnn/ecccd489//nO+fktjiDS2WLQPp2BXunH28ccf50oD6ZoPoFjEn6jNxJ+oK8Sf4H8Tf6IuEX+iGMSfypeFbOFrSiXT+/fvn0+QU6dOzYGqNKBMF1/p5JmkE10Kch1zzDE5gzSdQNMFGqxoafbUNddcE5tvvnnce++9MXjw4FzuH2qbdN5Mg82Ugf/AAw/kzPxUvvTCCy/MswHTrMBp06bl7Px0g2Do0KH5uXCBlKQZg2kpi1TqNM0WvPXWW/MxUCxVzUdYnjkKiwaqUgA39e9UeUDwiroSvDI3h5qQ+lpapuriiy/ON3ELVQK6dOkSXbt2jb/85S+5T/785z/P12NpyavHH388Pvroo3wdlwJdhb6a+nDqy2lJljTmSOddwSug2MSfqM3En6grxJ8oReJPlCPxJ4pF/Kl8qUAFVVhWpn066f3+97/PF0urrrpqDmilkpHp2EWzntNxqfTeH/7wh3jwwQcXKw0MNTUTMGUxH3300dG6detiNwuyFKgaNmxY/Pe//803BY4//vi8fcyYMXkwmYKvn332WXzve9+L3XbbLR/brl27uOOOO6Jp06ZLnZv//ve/x1133ZXfZ4MNNijiX0Y5K1zEp+/+VOI/lZNOfTg9volF+3eatZIuupo0aZLHEy1atFhBrafcVDXGXZ4ZpksGW9OsqTSLu3HjxtXaXqhKWh7o2GOPjbFjx+bzY6q6ksqmpxtcyX777ZdvbD322GO5n6bKAW+88UZcf/31eZxx9dVXx1577bXMgCxATRJ/oq4Sf6I2E3+iFIk/UZeIP1EKxJ/KlwQqWMKiJ680g2rmzJmxyiqrRJs2bfK2NEBNJ8O0vmkqvXfSSSdFr169qgxipdmBqWQf1HQQ69xzz80BgTSjql+/fkqaUnRvvvlmLpueBo4F2223XR5EpnKmhWUofve738WTTz6ZB5spoz8Fu84666wcjK3K/Pnzo1GjRjX2d0BVY4Y0E+Wcc87JQdok9cmrrroqjw++aTDgpZdeiuuuuy6X873vvvvykixQHQRbKSVpfHDPPffkhIHx48fHRhttlMumH3LIIXm230UXXZSDVD/72c8qf2fKlCnx9ttv55tkALWB+BN1nfgTtZH4E6VI/Im6RPyJUiL+VJ4kUMEygleptO9DDz0Uf/vb36Jjx465VG9aEz1JX/yPPvpo/OpXv/qfQSwoln/961+5bGQKZJkZRbGlkuhpaYkU1D/ggAPyOTVd8KRZIyljPwWxCjNVC+fhVMY0DTLTDYO0NECaeb3aaqspJU2tk4Kthx9+eDRv3jy6deuWxwEjRozI/fiyyy7LM1G+SfAqLSOQzuFpqZZOnTrV0F9BqRNspVSv2SZOnBhPP/10Ti5IQa1UnWWHHXbIN8Q+/fTTOPvss/O5OS2DVSi1vuR7ABSD+BOlQvyJ2kT8iVIm/kRdIP5EKRF/Kl8SqKCKL+Rf/vKXeX30tdZaK9q2bZu/mGfMmJFnU51++ulVBrFS6b4U5HJxRW2RSkemgAEU2+TJk3NWfprJt88++1TOVB04cGA899xzeWB55ZVX5iDWogPKNLsvZfdfc801uYx6mjEItcGi/TQFqV544YW48MILY/vtt8/b0sV8KtWbZlil/b17967yfQSvqEmCrZSSJUv/p0oDTzzxRDz88MO5j6+88sr5Gu6oo47KQSyA2kT8iVIj/kRtIf5EqRF/oi4Sf6KUiD+Vp/9LgYMyVzgBpkHn4MGD85d4+pJP5fjSBdbJJ5+cv6CTFMRKF1p77713/jmVjEwXYimrtGfPnkX9O6BA8Ipi+/zzz/MyFO+++25eTqJHjx6Vgan27dtXljVN59g0IyXNQkk3DgqD0tSH0wzB9Pz73/8+ttpqq/zajQKKLV3wv/POO/Gf//wn3+BKfbMQvEoOPfTQXA0gXeBfcMEFeduSQSzBAGo62Dp8+PA8k3rRYOsmm2ySg63nn39+7pOCrdQVhf5Y6Jubbrppvm7r06dPrjLwwQcf5P133XVXHHTQQdGhQwfjB6DWEH+i1Ig/UWziT5Qq8SfqCvEnSpX4U3mSQAWLSDNSUtn0dMGUyv1+97vfzSfFv/71r3mN9DRIve222/LJr3///pVBrLlz58ZvfvMbX+AA/79U/jxdEKULnFS2ND3SmuddunTJQag08yTNnl40iJVK/qdBZzq3Fpaj6Ny5c6y++uoxffr0XOoXaoPUH0877bQ8u3WVVVaJ448/Pm9PY4YUMEh99+CDD87bCkGsFETYd999K48TDKAmCLZS6hYNSqW+nG6Q3XDDDTF69Oj4wx/+EOutt15+ANQ24k8A1UP8iVIm/kRdIf5EqRN/Ki8WXYRFfPzxxzF+/Pi8Dm8heJVOfqNGjYqdd945z05ZddVVcynfVO43SRdahx12WPz2t7/NJ0yAcpfK9KabAGnt5w033DCfT5O05EQqZ5oGm+miatEgVvfu3fOFUZptndaQToPQJJ1307k5BQnSzEErD1MbpFlUP/nJT2L99dfP/TUFZ2fNmpX7duq7qW8nKYh1xhln5ONTgPaBBx5Y7ILrT3/6U1x33XWCAazwYOsJJ5wQTz/9dLRr1y5vT+fSJftp06ZNcxDrkUceqfx9wSvqkjS2SDcRUvn0nXbaKa6++uo46aST8r60HaA2EX8C+PbEnyh14k/UFeJPlBPxp9IngQoWOaGl7Oj0Rf3JJ5/kn9NFUyqn/tlnn8WJJ54Yu+66a+y11155JsuDDz6YS6xPnDgxlwZOM1QAiFzuPJVCv+aaa+Lee+/NAartttsuX/zcfPPNuazpkkGsdHGfZqbstttuOViVpGDXRx99lGdgp8BWmgGo/CnFHiukMUBhllSa+demTZt46qmnKpdZSZYMYp1yyin5dQrCFvz973+PX/7yl3mJAcEAVhTBVuqib3OzqrBkwJLvV9V2gGIQfwKoPuJPlCLxJ+oi8SfqIvEnlsUSfkS5r8ebFF6ndXjTBdQGG2yQf7777rvj9ddfzzP+1l577bxt3XXXzc/NmzfPpdWdDAH+nzfffDPef//9fDPg+9//fnTr1i1v32KLLeKcc86JK664IpczTdKMlHQ+LQSx0qyUNEOwWbNmle/3ne98Jwe/0sAz3SiAYo4ZUj9Nz6kMdRoDpKUA9tlnn3yBn4K1v/jFL6Jhw4Zx9NFH598rBAfScypTncYXaUZsQdretm3buPTSS6Njx45F/Asp1T6bgq2pT6Zga+pvN954Yw62pvFuoez/ov00BbHS69QnlxVsTUsNCV5R3UuupIoBhfFCqraSzquLzj79ppb8XTe/gGISfwKofuJPlCLxJ+oa8SfqEvEnvol6FWqRUgYKX+BLvk4XW2n96DTDL5X4/cEPfpCzo9OJM5UAPuigg6JPnz45I7oQqBowYEBMmjQpz2JJ29Zcc82i/m0AtUG62EkX7q+++mo+xx5yyCFx/vnnL3ZMuvhJQayXX3459thjj8og1pIDzW8zaIUVEQh477338qynd955J6ZOnZoDTmnMkKoDFGa9pqVVUvD2rLPOqgxiJYXgwJLvmcydOzcaN25chL+MUlToW1988UUOsKbxbSHYmjz66KM52PpV/TSNgRcNtqafb7nlljyTULCV6pSuq1J1gGnTpuWf042vFPDv0aPHcr/nomOIdMMhXdcZVwA1SfwJYMUSf6IUiT9Rl4g/UdeIP/FNqUBFyXvrrbfi8ccfjyOPPDJat25dGby67bbbYsiQITFz5szKY7fffvtcIj09UiZqGli2atWqcqCZ1u5N75cGramk76IDUoBylsqbX3bZZXnmyCuvvJJvEKSA1fe+973KY9Lr8847Ly6//PI8EzBdMKUgVprptyiDTGpTMCD15RNOOCGPF1LAtUmTJvHiiy/mktJpZlQKXO255565P1977bV5zfP0e2nckSw5Vli0coDgFTUZbN17771zf0x9NvXTpKoZq4XgVeE908/pd/RXqtNRRx2Vq6nssMMOseWWW8bYsWPzDa4UbErXZMvT3xYNVKVzdKrmkgKvXbp0WQF/AcDSxJ8AVjzxJ0qN+BN1ifgTdY34E8tDAhUlPyMlZTqPGTMmfwkfe+yxOSD14IMP5lKnaU30NOhMx6UT6GOPPZYHqvPmzcvlf1Ow67XXXov11lsvr7n7m9/8Jn+5n3TSSYJXAEtI58qLLrooB6nSTMB77703fvrTn8Zaa61VeUxaoiLtv+SSS+LJJ5/MpX2XDGBBMSw5QyRduKfv/lNOOSXfALvgggvyzNV0c2vcuHF5hmsqR51+76abbsrBgfQ7aXyRLvZTRYF04QQrmmArdc1dd90Vo0ePjv79++dqK2n5lF69esUNN9wQjzzySIwfPz4222yzZS5/9VXn8DSr8Prrr48JEybEueeeu8L/HoBE/Amg5og/UZeJP1FXiT9R14g/sbwkUFHyM1LSbJQ0yPz1r3+dy6enINYf//jH2HbbbfPa5umCK0lf6ClD+sILL8zl0VOQqmfPnnnWX3ok7du3j1tvvTU/A7C0dNGUyqSn8rzpZkEq3ZsuqNLNg0WDWOm8nJawSJn/UBukC5/CRVLheeTIkfHRRx/lQGwKXhUu8jfffPMctEr9OB2TLrr69esXP/7xj/MxKdjlgp8VRbCVuu7tt9/O58h0zkzBqxRUTX13/fXXz1VW0r4UfEpjiHbt2uXz7v8KYi0ZvEoB2vT/xPDhw/OYA6AmiD8B1CzxJ+oq8SfqCvEn6jrxJ5bX/06jgxLQoUOHfDGVBpv33Xdf/OpXv8pr6e600045eJVOmEnTpk1j//33jzPOOCOvzTtx4sS8LmoKgB144IFxzjnn5DJ8i5YDBmBpKcifZpak826aBTh48OD45JNPFjumU6dOlWtMp0EpFEsqLZ3GBsmiwaskLZvSvHnz2GefffLPaV+6oEoXS9/97nfj4osvztUC0o2xQh9PF2S//e1vc3lgWJHB1qTwXAi2ptlUVQVb03Mh2Frop6effnqsvPLKgq3UqC+++CKmTZuWz52Fc23heizNXk2PI444Ig444IB8bXb88cfHxx9/nI8tHPd1gldpKYE01gCoSeJPADVL/Im6RPyJukb8ibpM/IlvQwIVZXMxlUqppy/vhx9+OK/J+9lnn1VZLnLXXXfN6/Xec889+cS67777xs9//vNcXnKdddYp0l8AUHfPuymIdfvtt+cBaFW+qiwqrCivvPJKPPfcczFkyJAYOnRoZX9MF1ipakC6yErLrKRxw6IXSek57U8XR2mt9A8++CBmz55d+b6FZQEEZ6lOgq2UgtQv27ZtmwNV6WZXOs9+/vnneamq2267LVZfffVchSUtsZJmBaagVApizZo1K1+3pT5dIHgF1EbiTwA1S/yJukD8ibpE/IlSIP7Et2HESNnNSOnatWs++aW1eJeckZKkMn1pzdM0MJ0xY0ZR2gpQSkGsLl265GUs0iyUVKoXaoutt946l5FO3/lpvfLUTwsXWOliP/XdefPmxZgxY/JFUnqkC6b0SPuTtG2VVVbJZYCXJDhLdRFspRQUgk+nnnpqrqryhz/8IXbcccfo27dvLvWflrhK5+LLLrssLwWQSqCnagFpKYDC7NVC3xa8Amoz8SeAmiX+RG0n/kRdIf5EKRB/4tvyrUrZrY2eZvOlGSkvvPBCXh+9KikLtUWLFrHaaqvVeBsBSi2IlZaxSAPV9EgX+lCb/OhHP4qBAwfmi/wUzLrrrrsq96UbWilQdeGFF8aoUaMqtxcumt5555382HTTTXMZakEAVhTBVkqp/H+rVq1yIDYtU7XffvvFlltumfcfdNBBla9TQLZJkyb5/JuuyyZNmrTUeyWCV0BtJf4EULPEn6jtxJ+oC8SfKAXiT3xbzlSUZRDryiuvzEGsm2++OZeiTAGrglRaMn35b7TRRlV+wQPwzYNYDzzwQM7wTxYtfwrFVAg47bnnnnHVVVfl4MCdd94Zd9xxR96+0047Rb9+/fLrk046Kc9GKSwF8Nprr+Vj05IsqRR1GjMIArAiCbZSCtJ5csGCBblU+iWXXJLL+6frs3QO3WabbfIxqX82atQoP6+66qo5kDV58uQ843XRMUSaFXvdddflma2CV0BtJP4EULPEn6itxJ+oS8SfKAXiT3wb/y8dFMq0rO+ZZ54ZN954Y4wePTo22GCDHMh6880380k1le1r2rRpsZsKUBIKNwQWLXkKxZQujNKFVFpSJZWl/vDDD/P3f1pe5dZbb8399Oijj45jjz02H5sCBik4kGaupAoB6WIqzVAZMGBA7LHHHvk99W9WdH9Nwda0FFAaw6YAatp+zDHHVAZb00yoFGxNFS/SttatW+dg63333bdYsBVq0pLnxtSHk3TOTYHXWbNm5cdbb72VS/0Xbgak57/97W/5Gm2XXXbJM14LAax0/JNPPpn3//a3vxW8Amot8SeAmiX+RG0j/kRdIv5EXSb+RHWpVyENnzKWSvGdc8458cYbb+Rs6l69euWBaZ8+fWK99dYrdvMAgBUorWt++OGHx5prrpnXPu/QoUP885//jIcffjhfbKWAQApiJU899VQu1fvqq6/mi6rOnTvntdHTY9EAA9REsDUFpZLmzZvHT37yk8p+etttt+Vga1JVsDUFuxLBVmq6/6YAanq8//77ud+m2aiFZIFnnnkmTj755Hwz4LzzzsuzA9PvjB8/Pt9QePbZZ+Omm26KH/7wh5Xvm/rw22+/nWcIpnM3QG0n/gQA5Uv8ibpA/Im6TPyJ6iSBirKXSu6l8n1pUJqe09qnAEBp++9//xv9+/fPM/9TWeqdd965ct+f//znOOGEE/IFUjqmEBxI5XvnzZuXL6zSTJT0SASvWNEEW6mLCn0tBZrSrNQ0Wy8lDSSpD6fga5rxl6QA6yuvvBJbbbVVbLLJJnmmagpspb5/1llnVfZvgLpM/AkAyo/4E3WJ+BN1kfgT1U0CFUTExIkT80n1/2PvPsCkLK/+AZ+l2HvvXTEq9q6xp6oxakzRWNM00XQ1pn+JnybqZ0wsicYSe++994KKgh3FhiiKICggsGXmf53XzP4XWHCBZd8t931dc83u7JQzZVffw+85zzHHHBNrrrlm2eUAAHNYrkTZY489igOlXGFSO9hKecA1cODAOPjgg4vxvjmSOkep166TP9cEoKNottIV1VaZZtMqm6/LLrts8dndcsst45577ombb765+GxneCBX/eX1zj777KL5+uGHHxZ/e1dbbbXitvvss09xnz6/QHeg/wQAPYv+E12F/hNdkf4Tc0KfOXKv0MXkuPQzzzyz+T/uAED3lgdOEyZMaN4LPdUOjPIgaZNNNikaAieccEJcfPHFxWXf//73p9gbHTrqs/r8888XI6drzatas3WrrbaK8847r2i2nnbaacXl2WzN/6fNz3at2Vrjc0tHyeZVNqL+8pe/FCtXjzzyyNh+++2Lny2++OLx7LPPFk3ZzTffvLhsnXXWiT/84Q8xZsyYYnT68ssvH4sttlgst9xyxc81r4DuQv8JAHoW/Se6Cv0nuiL9J+YEnwD4L80rAOi+ph66uvDCCxcHR3kA9fTTT09z4JVy9Uk2AUaMGBEnn3xyvPjiix1aM8yo2VprTtWarXm9bLaeddZZzddpeQ4dbfz48UWjaptttmluXtVW+uXf3uOPP74Y7Z/fDx06tPi7nMGCL3zhC8Xo/1rzKv9++xwD3Yn+EwB0X/pPdFX6T3RV+k+0N58CAAC6rdrqp1pTqib3N//Od75TjFK/9NJL45133pmm2ZVNg9wn/a9//Wv87ne/i8985jMdXD09kWYr3Wmbqmysbrrpps3Nq3POOSduuumm+P3vfx977rln3HnnnXHSSSfFf/7zn+nez9R/vwEAADob/Se6Gv0nugv9J9qbLfwAAOiWaiN3hw0bFtdff3289957RTPgpz/9abHyP/dC32GHHeKGG24oDv733Xff6N+/f3Gbl19+ubi8qakpPv/5z8e88847xX1Ce6t9tqbXbD322GOLZuvSSy89xcqovH6t2Zpj/nPVlWYrHS3/Vubf0XHjxsWCCy5YXFY7f/jhh2PVVVctxv3ffPPNxaj0b33rW8XP+vXrV5z7uwoAAHRV+k90JfpPdGX6T3QEASoAALptMyBXTWXDquUKv5deeqnYFz0PqLIxkAde1113XTz11FOx4YYbFk2uxx57rGhi/eY3v2luXiUHWcwJmq10RS0/Y/m5HDx4cPzf//1fnH766UXzap111om11167aFrl5zTHqf/pT3+Kr3/96833kZen1VdfvbTnAQAAMKv0n+hK9J/oivSf6GgCVAAAdCu1/cpzXO8hhxwSyy67bPz85z+PrbbaKk455ZRiNcrRRx9djEbfeOON48gjj4wtttgizj333KJ5kHIF1Z///OfYZ599mu/TGF/mBM1WuprHH388Nttss+IzVhv5nyv/jjnmmKKRlc2r+vr6mGuuuYpVqccdd1zRvMq/py2bV0OHDi2ar4suumisu+66JT4jAACAmaf/RFei/0RXo/9EWeqqU29yCgAAXdyoUaPiiCOOiMmTJxdNge222664PPc5/9vf/lZcnk2rE088MZZaaqniZx9++GGMHTu2+HqhhRYqDqqSlVTMKbXGaDZbDzjggKLZuvvuu0/RbN16662LZuuSSy4Zr776ajzwwANFs/X9999vbrbmikDNVjrCoYceWqz0+93vfhdf+tKXmj9r+Xdy1113LUb859/Zmg8++CAuueSSuOiii4rG1vbbb1+sZn377bfjpptuiieeeKJovu6///4lPisAAIBZo/9EV6D/RFej/0SZBKgAAOgWWjaa8gDroIMOKg62fvCDHxSXZZMgx/umhoaGYhXLtttuW4z0XW655Vq9T80A5jTNVrqKjz76KM4555yiGZV/Mw877LDmJtbHH38ce+65ZyyxxBJx8cUXF39jc/x/7TN+1113xXnnnRdvvvlm8/3lfeTK1v3226/43ucXAADoCvSf6Ir0n+gq9J8omy38AADo8moHPrlCatKkScXqkokTJ8aWW27ZvAolx6Pn6Ol///vfsdZaa8Uee+wRDz30UPzhD3+I733ve8VliyyyyBT3q3nFnNDyQD0/qzkqPZutteZVNlsffPDB2HTTTe8IZqMAAQAASURBVItGwIABA+LXv/51c7M1R6fnqbWtA2BOyWZprlSdf/7545///GecccYZxeWf+9znYr755os+ffrEPPPMU1yWzasc+Z8j1bOp9bWvfa1odt15550xYcKEWGWVVYoVr/l3N2leAQAAXYH+E12J/hNdkf4TZfMJAQCgy8sDn2eeeSa++tWvFvud1zz//PPFeTYDLrjggvjRj35UNAXyQCwPpmo/y4Oy3A8dOrLZmp/PGTVbc4XVaaedVhzo15qtuXK1tvqvJc1WOsLiiy8ee++9d/HZzM9uNrJydV82q3JEeq7wu+qqq4rP9jvvvNP8mc/mVjZds5F14IEHFqPUa80rzVcAAKCr0H+iq9B/oivTf6JMJlABANBl1VaY1NfXF42rXFWS43hzJdXJJ58cm2yySYwcOTKOP/74YpXKIYcc0nzbbBQstthiRVMrV/5lYws6qtman9P111+/eXx0HvBvsMEGzc3WX/ziF82fyWy2nnvuucXP8pQjrH1eKbuJlbKBdeqppxaj/nP19fDhw+O3v/1t8bMFFlggNtpoo2IF4Gc/+9niHw7yb/QKK6wwxf1pvgIAAJ2d/hNdjf4TXZ3+E2URoAIAoMvK5lU2AwYNGlSM8N1ll13iy1/+cvGzz3/+88Wqk9tvvz3Gjx8fO+64Y/Mqk+eeey6efPLJ4jpf//rXm/dKN8aXOUWzle7WxNpzzz2Lr3OUep7GjBkTG264Yey0004xYsSIePjhh4u/zePGjYtrr722uO6ZZ545TQMLAACgs9N/oqvQf6I70X+iDAJUAAB0WdkMOPHEE+OJJ54ovq+NoU7ZLEh5INXY2Ng8zvell16KSy+9ND7++OPYdtttm5tXSfOKOUWzla6q9lnLVX75NzdX7OXqviWXXLLYtiK/P/vss4tG1TLLLBPf//73i9t99NFHxarA/PzmlgHZfM3R6QAAAF2N/hNdhf4TXZX+E52FABUAAF3WXHPNFX/+85+L02OPPVaMl87VJ2ussUbzWN4c3Vsb8/vAAw8UDa1cafWrX/2qaCJAR9BspSs3r1555ZWiSTV48OBYeumli0ZUrlJdaqmlYvfddy+uc9ZZZ8WAAQPipptuii9+8YvFyPQ81Rq1U98nAABAV6H/RFeh/0RXpP9EZ1JXrVarZRcBAACzY9iwYXHMMcfEwIED45vf/Gb88Ic/LA6sUv7v7n333VeMps4VKssvv3x8+9vfLlauJAdTdJQ33nijudm68cYbxx/+8Iei2VqTq6T23Xff+PDDD2ODDTaYotl60EEHlVo7PU/tb2OuXM1Vfbmib+GFFy5W9eUpL/vZz35WXPe9996LG264oRilniPSDzvssPjSl75U/EOCv7EAAEB3of9EV6D/RFei/0RnI0AFAEC38NZbb8VRRx0VTz/9dNGgyoOrWhMr5cHXxIkTiwOpHP2bHFjR0TRb6UqGDBkSBx54YCy77LLF+XbbbRdDhw6NH/zgB8XY//wM/+IXv2huYl1//fXx73//OxZbbLGiiVX77AIAAHQX+k90BfpPdCX6T3QmtvADAKBbWHHFFeOEE06II488Mi666KLispZNrNo439r6gTzXDKCjrbTSSvGXv/ylaLZedtllRROg9jnN1VI77rhjbLLJJpqtlG7ChAnxr3/9KxZccMH4yU9+EjvssEPzPwbMN998RZM1x6rn5zJXAuZo9T322KP4rJ5yyilllw8AADBH6D/RFeg/0VXoP9HZ+AsIAEC3amKdeOKJseGGGxZNrHPOOacYQd1SNglankNZzdba5/Sss86a4nOajdZsBiyxxBLF95qtzEl//OMfi/H9Uxs/fnwMGjQoNttss+bmVW4DkKPS+/XrF7/+9a+Lz2qu+PvrX/9a/Dw/t3vvvXdceeWVVv8BAADdlv4TXYH+E52J/hNdhb+CAAB0yybWpptuGueff3784x//KFZTQWei2UpncPTRRxcrUbMZ9eabb07xs9GjR8eIESOaP3+TJk0qRqTfcccdseeeexbj03OUerriiivipz/9aXEfuWq1f//+xeW5GhAAAKA70n+iK9B/ojPQf6IrEaACAKBbNgeOP/74WHPNNYvTvPPOW3ZJMA3NVsp08MEHx4MPPhirr756DB48OH7+859P0cRaZpllYtVVV20e4z9gwIBiteoPf/jD2H333YvLVl555aJJlU2u2267rVgx2JKVqwAAQHem/0RXoP9EmfSf6GrqqrVNeAEAoJvJEcALLLBA8XX+b6+VVHRGb731VtEU+NrXvhYHHnhg2eXQAxx33HFxwQUXxG9+85v47Gc/G2eeeWZce+21sfbaa8cpp5wSq6yySnG9t99+O+aee+7i7+jXv/71WHjhheOMM84ovs+/p7ny7//+7/+K5mvaYostSn5mAAAAHU//ia5A/4mOpv9EVySOBwBAt6V5RVdZCXjppZc2N6+scWFOyhV72Zjq27dvsUI6m1V777130ch66aWXplgJuNxyy8USSyxRjFJ/7bXXYqWVVooFF1yw+Hs6ZMiQuOmmm4rL1l133ebmlbHpAABAT6P/RFeg/0RH0n+iqxKgAgCg29O8orPTbKWj5FjzxRdfPBoaGuI///lP3HjjjXHMMccUjdQvfvGL8cILL8TPfvazoolV+yz27t27uN3IkSOLnz/66KPFOPVnn3029ttvv+bPb+3+AQAAeiLH83R2+k90FP0nuqo+ZRcAAADAJzSvmJNqDdIjjzwyxo4dG3fccUc88MADseqqq8YhhxwS8803X9Gsuvnmm4sm1t/+9rdYeeWVY7HFFosvfOELccstt8Rjjz1WNKmampril7/8ZXz1q1+d4r4BAACAzs3xO3OS/hNdmQAVAAAA9ADZYMpGU45B32uvvYoGVo48n3feeYvzbFT96le/Kq5ba2KdfPLJxZj17373u9GvX7+4++67i4ZXjlz/0pe+VFw3b2vlHwAAAAD6T3RldVUbnAIAAECPMXHixPja174W88wzT9F4ylHo2ZDK5tXqq68eo0ePjuOOO65oYq2zzjrNTaxUX18fffv2bV7tp3kFAAAAwNT0n+iKBKgAAACghxk2bFh8+OGHscIKKxSNq/vvvz+23Xbb+PWvfx2rrbbaFE2s/v37xwknnFCs/AMAAACAttB/oqsRoAIAAIAe7P333y8aVw8++OA0Tay//vWvccMNN8TKK68cV111VTF+HQAAAABmhv4TXYEAFQAAAPRw2aw65phj4oEHHpiiiTVq1Kj43e9+F5tttlkccsghZZcJAAAAQBel/0RnJ0AFAAAATNHE2n777eOoo46K1VdfPSZNmhTzzDNPcZ1sIdTV1ZVdKgAAAABdkP4TnZkAFQAAANDcxPrNb34T9913X2y00UZx5plnxgILLBC9evXSvAIAAABgtuk/0Vn1KrsAAAAAoHNYfPHF49hjj42NN944dt5551hooYWK5lXSvAIAAABgduk/0VmZQAUAAABMwdh0AAAAAOYk/Sc6GwEqAAAAoFWaVwAAAADMSfpPdBYCVAAAAAAAAAAAQI/1yUaSAAAAAAAAAAAAPZAAFQAAAAAAAAAA0GMJUAEAAAAAAAAAAD2WABUAAAAAAAAAANBjCVABAAAAAAAAAAA9lgAVAAAAAAAAAADQYwlQAQAAAAAAAAAAPZYAFQAAAAAAAAAA0GMJUAEAAAAAAAAAAD2WABUAAAAAAAAAANBjCVABAAAAAAAAAAA9lgAVAAAAAAAAAADQYwlQAQAAAAAAAAAAPZYAFQAAAAAAAAAA0GMJUAEAAAAAAAAAAD2WABUAAAAAAAAAANBjCVABAAAAAAAAAAA9lgAVAAAAAAAAAADQYwlQAQAAAAAAAAAAPZYAFQAAAAAAAAAA0GMJUAEAAAAAAAAAAD2WABUAAAAAAAAAANBjCVABAAAAAAAAAAA9lgAVAAAAAAAAAADQYwlQAUAX9atf/Sr69esX+++/f9mldBr33ntv/OIXv4idd945Nthgg9hoo41il112KS674447orsaMGBA8VnIU2Nj4zQ/f/fdd2P8+PFztIaddtqpuYaWp8985jOx4YYbxvbbbx+HHHJIXHbZZTFp0qTp3k/tdo888ki71PXKK6/M9G1OPfXUooZvfetbrT7HK6+8MjpKtVqNV199dYrLhg8f3vw6vfnmmx1WCwAAAJ3bNddc0+qx+aedOntv6eWXX4711lsvfvnLX37qda+77rr4xje+UfSE8rTXXnvFxRdfHJVKpd16HdM7vfjiizPsb9Ten+222y66q097jtnjyF5HS/n5y9v87W9/a7c6ar2d2un5559v0+1222235tu0Zz2zYlb6ebXPbD5/AGDm9ZmF2wAAdCoZyPnxj38c999/f/H9kksuGWuuuWbRkMmwyU033VScNtlkk/jnP/8ZCy+8cPQE9fX1xfM999xz44YbbogFFlhgjj/msssuW5xq8j34+OOPY8SIEfHwww8Xp/POOy/+/ve/x9prrz3H6hg5cmT89a9/jSeffLL5c9HVPPPMM/HnP/85Vl555TjppJPKLgcAAIBObvHFF4+NN954msvzmDxPc801VxFEmtpaa60VndWYMWPi5z//eTQ0NHzqdfMY+qKLLiq+Xm211aJ3795FcCZP99xzT/zrX/+Kvn37znavY3rmm2++mb7vniKDQCeffHJcfvnlMXjw4OjTp2P/efK2226Ldddd91MX4c3KQrzu0M8DAD4hQAUAdHl/+MMfipBMNsdOOOGE6N+//xQBnoceeqiY2DVw4MD40Y9+1NxM6y7WX3/9uOWWW4qvWzagMkR0xhlndGgte++9dxxxxBHTXJ7vw2OPPRZ//OMf44033ojvfve7cemll8aKK644xfVqz2O55ZabrTryPc/Q3NJLLz3Tt91vv/3iy1/+csw777xRpksuuaQIUWWAqqV8Tu31OgEAANB95PTnPE0tp9GcdtppxYKzPBbvKt5555047LDD2hRqyclH2e9ZcMEFi6DUpptuWlz+3HPPxaGHHlr0CU4//fT46U9/2m69jhnpqcftn/vc54qp8FMH1TLElpPAOlr2yXJaewaockJ9W96zspXRzwMAPmELPwCgS3v77beL1Vgpm4Etw1Oprq4uPvvZzzaP3X7iiSfi0Ucfje4kgz6rr756ceqs8n3YaqutimbZMsssE++//3786U9/muZ6tedRZnhpscUWK2rorE3ObELWXqdZWTkLAAAAnV2GWfbcc8946aWXPvW6TU1NxcSelNv81cJTKSdunXjiicXX559/fowbNy46Qmfob5QhA2z5vFdaaaXoDD7zmc/EQgstFMOGDYsXXnjhUz9z2WfpzBPZAIA5S4AKAOjSsvlRqVSKcdYzChBtvvnmscoqqxRf56hwyrHEEksU08DSAw88UExYAgAAAKj55je/GT/72c9i7Nix8YUvfKE4zciTTz5ZBGQy/LLHHntM8/Nc0JXTnT/++OO4++6752DldDb5mdhll12Kr3MK1fS8+OKLxcT0/KwsssgiHVghANCZCFABQDf03nvvxbHHHls0mHKl3UYbbVRsSZaXDR8+vNXb5HZnBx98cBE0yttkw+A73/lOMd0pA0pTj0Xv169fbLfddq3eVz5G/jxPrT3eW2+9VWzllmO9c2JUrgzcd99948orryxWDc6M2gSe8ePHFw2zGTnrrLPi9ttvj/3337/Vn991113x/e9/v3ju+Rrk5Koc751jxqeuf+211y6e34xWr+Xrn9fJ5zU7zz8DR3k/OWb/8ssvjx122KG43ec///kYMGBAcaq93jmWPOVz3HnnnZvvI6+bP8/r/vznPy++zhH205Pve17nS1/6UrS3fF0WXXTR5te8pdrzeOSRR2b5M523P+aYY5pvV7vPmp122qn4Plex5u0322yz4v722muvojmbWxvkz7/1rW9N9zk8+OCD8e1vf7u4Xb5/BxxwwHRHvU/vOdXke5U/z8dNtffz2muvLb6/8cYbi+9rn9uWv19vvvnmNPf3+uuvF9ta5ucrX6tNNtkkvv71r8d//vOfmDRp0gw/X3nf+drl73beNs9/85vfTPfvBgAAAN1H9ky++93vxpZbblkcE2677bbF1nXTm+RdOzb96KOP4rrrrismRuX2bXm77Dk8/vjjs1TH008/Hcsuu2z83//9X/zjH/+I+eabb4bXHzRoUHG+zjrrTHfi08Ybb1ycz2pNM+vTegGtyanpP/7xj4vXL1//rbfeOn74wx/OcJL6zPTzZhRYy1prU7xaGjhwYPNzuffee6f5+QUXXFD87Ac/+MF0e4bZh8m+Sc2666473Z7hyy+/XPStttlmm6L3lbf9n//5n2KS+az64he/+KkBqlpPZ9ddd53hfWXfLvt32aPJflK+5tmnO/LII6fpH9ZkLyZ7ktl3yj5SPq8dd9yx6Dnm69vSjPp5sysXlOYWltnvzPcg689+UdaWfdXZqbtlfymnwLWm9tnI97Qzff4BoCUBKgDoZnLFXTasLrzwwhg5cmSsuuqqscIKKxShnbwsV+JNHfo5/vjji4PfbOrkJKc8mO3Tp0889NBDRQOgNjGoPdxxxx2x2267FWGNrG+11VYrtkzLA+/f/va3xUHuhAkT2nx/2QCrNdIy/JRb9Q0dOrTV6+Zqw5xCNf/8809xeYaO8uD+Rz/6Udx///3FdnP5GtTX1xcH4vvss09cdNFFzddfccUViwPzVNs+sLXmXa5cy8ZdyxDS7Dz/fKzf//73Ua1Wi+eRzaMcRd6aHDeejYOabIzka5Wj1Pfee+/isnx/P/jgg1Zvn43PlE2S9tarV6/YcMMN29y4nNnPdD7P2rSxDNjl97VGaUvZgMvbL7XUUkWga6655mrTKsN8bbKhnNOzspb8/GUjK1fH1oJbsyPfo6x38cUXL77Pz0d+35YR8vkZ+cpXvhKXXXZZ8VrlbXLqVzbJ8vc8P8vvvvtuq7fN1zBfy3x++bnN35cMoF111VXF7UaMGDHbzw0AAIDOp6GhIQ4//PAivJALhrInlAvHsl+SfYyDDjqoOKacngw5HX300UUfZI011ihul2GbDM2cc845M11PHq9nmCv7J21RW1yU/ZrpWX755YvzrLEzOumkk4qFWvm8sx+Vx/PZP8mJWfn658+n1l79vFqg5eGHH57mZy0DYI899tg0P7/vvvuK89qUp9Zkf6plT6PWp5l77rmneazsWeVrkL2QpZdeOt5555245JJLir7QqFGjYlZkECf7Pfk5yUlTrbn11luLemb0PDJktN9++xX9u+xnZf8mX/PcFjL7MV/72teKxWst5XuZ71+GAXMh3zLLLBNrrrlmcV/Zc8z7a7nwckb9vNmRv8e5eDOfZ/6+Z935GmdvK2vLEF3LENXM1t2VP/8A0JIAFQB0MxkgGj16dDGpJw8Yc3pNnrJxlauF8kA3D35rXn311eLgPpsEuWrsnnvuiauvvrpomP31r38tDlavv/765tV8syMPuPPAdvLkyXHYYYcVoZO87zyIz2k7GXrJVUU5namtFlpooebQSgaP/vWvfxWrxXKlWz5WBpU+rTn297//vXiNshlw9tlnFwfe+RrkeTZFMlCVk4paNpJqwaKbb7651RVN+bxqK8XyIL49nv9TTz1VNBPyPcp6s4mQz781v/vd74rn1fJzka9FrsbM1VjLLbdc0TBpbWpShmayjt69e7c6+r49ZAAqZSOsvT/T+TxrKx+zGZTf56m11zPvO9/DfE3POOOMNtWek85ydWGG7XL1XG5F+L//+79Fkya/z8DR7Mj3KOutrdbMVZf5fb6nM5IhqfxdyEZTriDMz2vWk82nDEXl5ytXcubqvdqkspauuOKKotGdn4m8Tb4uGcTKwGEG7c4999zZel4AAAB0Tn/5y1/izjvvLBYIZS8hj73z2DaPK3MhVx7vZu9o6nBITS5O2n333YteUvZT8nY5uSoXgJ144onF8ffMyDDH1OGaGaktDssewPTUFkyNGTMmOps89v73v/9d9Hjy9cpwTh7P5+uZfYt8X/LnLQMr7dnPq008yutOPYmoZS9s6gBV9uGy1nys6U0VqgXssr/W8vOSfY4ll1xyiutlmCenfNf6Xjm1/LzzzisWvOUiwvx6VuTiutpzbG0KVT5uLtLbfvvtm3t4rcnFlzkdLetu+ZpnDy17LdkfzFBP9vlq8ud5m+zJ5PPJAFO+t/k7liGk/B3J9yt7hZ/Wz5tVWdef/vSnoheUwaKW/aKsL39vXnnllSKoNqt1d+XPPwC0JEAFAN1MhnRSTqFpOWkpp9DkVlw5pjlDEjVDhgwpznOSzhZbbDHFfX31q18ttjHLFX8ZyphduUVZ3k+GgHJk9DzzzNP8s2wEZEMlQzvZJJneFKnWZFgkx4zXVhPWQkC5IirDSBm8ye3e8uA7D/BbytVrtQZgBmjy9anJWnJ0dq50ytudcsopzT/L+8zXN6f8TN1AahlMajnBaXaffzYFMoCV1/m0xuCMZBMhV+61DHq1lJdlcyVfi5zONCfUPpu5ZV57f6bbKpty+bmoaevrudJKKxXvVW0bwpSrDL/3ve8VX+d48zJkTdkMy1Hnf/7zn6do+uWksgwH5mcuR8pnOKq1huJpp51W/C2oqW1tmGa24Q0AAEDnl1OKM8CQ8liytt1Zyv5DhiV+8pOfFN/nMWNrU7Nza68MLdSOQ/N2OdEq+0nZTzn99NPn6HOYOHFicT6j0FWtB9Pa1vafJp93bRu71k4zCg99muwTZb8oHXfccUXvoyYX9GXfIkMvKa9XWxDVnv281VdfvZhCnf2sllvF5WSlDBflz7Nnko/ZMoCWCw/zNjllvDZFe3ZknyWfY06eqslFgPl8UmvbxrVVbTp8awGqWg+vZY9oahnEqW1hmP2Xlq95Brzyd+Qb3/hG8X3LaUm1nlYuksvFjDX5Wc0JSdnD+dznPtem/tisyoBhbQvE7KHW+oq1CVc5UT0nb7Wcyt5RdXeGzz8AtCRABQDdTDY8agfruUKoZWMoG1oZomi5zVjt+nlgnM2uqac15UrDnO5T27JuVuUBa07qSS0PhlvKplOOiM/mWq0p0VbZrMrVkjklJ0NPUwdqcmVSPu+c/NTy4Dlryu/z+tk0aE1tClM2jXISUsotzmqNlQw8tZSTibKBkIGu2kF8ezz/DFnVtiucXRmKyUZEPqfXXnutw7bvq8kGW8oa2vsz3VabbLJJzIoMS7XWlM0mVMqR8FO/pnPaxx9/3NzkzC0SWpNbGdRG0ef0sqnliPipV3+m3Gay1jgFAACge8leRYYS8nhwegGSXAiWi27yuDCnw0wtj0NbhjJaTpJKebzaWvCqvbT22NPTlj7E1JZddtnmbedaO7Xccm1m5ZSfXNyXC8ZqU5Kmln2kXAyXiwVfeOGFOdLPa20bv3zfmpqaii3wMiSV/aqW739t+77p1T2z8nFamwCV/bKWk8ZmRQaxMiCUr1MtHJTyOeV0pey37bjjjtO9fa1Pt/766xfveWsOOeSQ5r5QTgBPOcEp5US3nPDU8jlk8Cq3uMypVS1DY+0tg2kLL7zwFFO0Wk7Tz35Whhxrfa2OrLuzfP4BoKZP81cAQLeQK56ywfH666/Hj370o+KgNqfI5DZgOYo6AzotZWgox6xnCCjDR3nK4E82FnI1UU73mdH46rbKA9lacOl//ud/irpaU9vSbVYCKNkwy+eZp5QH9/laZEMnV5Pl42fDI1cs5SSnlCOqaysuc3VSa1pOrcq6aqvq9t5772J8dI7m/sMf/tC8mrE21SmnPNUac+3x/FsLt8zOFnoZ7srpWVlvrjZLGajKsFk2lWbUOJpdtZHw09uCcHY+0201q6/n9Mam54q8BRdcsGgo5/tXCx51hBw1Xwulzahxmz/LyWz5Wk5tek2v2ue6tW3/AAAA6Npq/YecXJwhhdZkuCQnvWQoJI8np+4XZKikNbXgSx6vDh8+vPn79lZbbDaj7cRqi7FaTgNvq+z/5JaEc0KtL5WvUU77mlHPK0Mv+X7l693e/bwMUOUWeblFW03t6y233LIIBeU2adlHyqns2SvLBYSptlhrdk2vL1F7f2dlelhNbkP5+c9/Pq644ooiMFXrJeW07ewJ5rSiGX02ar8n01t8WQsd5WuePa/8PVlrrbVin332KUJIOWk++4G5lV7+ruX7lO/RZpttVtQ2J+VnJ4NTuT1gvmd5ykBV9gWzt7bDDjvEMsssM8VtOqruzvL5B4AaASoA6GbyYPaGG26IM888s5jIlJOQMnySp5NPPrk4eM+wT25fVpP7y2czJMNAgwcPjrfffrs4SM5TTtrJFUhHHXXUdEM/bdFyes1zzz03U9efVTlePEd05ym3zPv+979fNPty5dTPf/7zItxUe5xsbrRli7KPPvqo+esM8WQDMZsi2UTKlZoffvhhEdjK+66NGG+v5z+jUfSzIhuA2fjKZkO+PllzbfpUNiFm5/3+NBnSSjkGfk58pttiVpqmqeU2gq39LN+72vYBHaUWSEsZ4pqeWvOotZW/uZoYAACAnqV2PDmjY8lPO56sTbeZWssp2nNyqnFO2Ekz2k6stvVce2w1155qr0suupvZvlR79vNySncupsugVIbdcuFdbtGXwZUM2tS2ccs+Uq23ldvC5UT32rSi2TUn+1Ap+4MZoMpt/GoLCTNMlTJA1R6/J9kXyuvWfk/y9+byyy8vAj65oC1f35yilKec4pSfx+zJtZz+NCfk/efUpgzJ5fua/ctcEJqn7AfmAsUMStWCVB1Vd2f5/ANAjQAVAHRDuVXXscceW6wOyoZGjtd+9NFHi8BJBoi++93vFg2CHEGe8kA5tyXLU21qU94mVyTlweeFF15YXO+3v/3tdCcztdRaeKRl0ywPiGcUQmmrHCOe4+Bz1PNf/vKXafa8bymf69FHHx3f+c53ikZGNnmWWmqpYiu+lKvn/vGPf8x0DbnNXY6EzhBSBqjydc2D/hwRne/DnHz+sytX3uVnJN/jgQMHFuPYb7755uZw1ZySK0JrI7enN/Z8dj/Tc3q7vE9r/LQ2WWt6vy8zur+2avl5yhqm1xDOBtnU1wcAAKDnqh0fflrAqRZcaO14MvtAtRBTSy3vMxe5zSm1xVnZ35ie2s/aK+zTXmp9qZyoc80118zUbWe1n9eaDEpliCanlOfkqZzik6GZnPaToaFc3JbvcU4AGjlyZPP0qfbavq8jZN8wP4e1bfxyQV6GqTIAmM+3PX5Paj9v+XuSYaQf//jHxSlf09qiwNw+c/To0cVkqAyvZZ9uTj//POUkryeffDKeeOKJePDBB+P5558vFoP+4Ac/KBZW1qbpz2rdM9Mv7iyffwCoaX0eKwDQJeUBaq4Sy5VEKUevZ6MjwyW5OihDPnnwmwesucIoZZgoAym1UdS1qU050efuu+9u3tauti1dramSalvSTS0bKa0FYGq3y/HP05NbyA0ZMqTVFY1Ty/vL8FRue5cH+m3dsi1flzzATzlBquXI6Nbk65UH4LlNWoa2WsopU1lHNpfytczXuLUA0px4/rMrJzDtuuuuxdc52SkbJ7laM5tieZpTcuVaLTRUe/z2/EzPadPbXjKbSbX3reW2BLPy+zKzVlpppebR6TOacFb7Wa46BAAAgNr28y+++GKxRVZrst+RoZPpHU9Or6eSIZXaorLcXmtOqW0hmIu1pnfs/fTTTzdPE+9Man2pfH0bGxun2xvJyU95ndrzm5V+Xlu28UvZ48owSsot0WphlZz2k/Jn9957b7tu39cRsj/zuc99rvg6g1PZB8sFlnnZp03lrv2eZNhoRtPWa/2u2u9JBo0yrJQBn9rlORkpF2NmL3O99dab6fdpZuVnJmvLKU21fmAGxnIKV4aWcrp77fc1e5KzWnet/5Xb8bW1/9WZPv8AkASoAKAbyfBLTlI6+OCD49lnn231oLQ2crvWFMupSxn2+etf/zrN9bM5UmuUtAwO1VYV5jSbPKCeWoZxppYhl5zKlC644IJW68+A0r777htf+cpXikZGW+R102WXXdZ8kD89telKW2+9dfP45lxdlwf4ecD98MMPt3q7//znP7H//vvHHnvsMc1qqZxi9dnPfrY4gL/66quLSU65yizfh454/jOSYaNPW/2Vq7Rq71k2GGpTteaU/Lz87W9/K77OFWqftoXfrHymWz736T3v2ZGr8aYO0qXayrZ11lmneeR5y9+X1oJXGZibXoCqtuKvLc8hm9G1RuaMPl+51WTabrvtPvU+AQAA6P7y+DAX5GSQ5JZbbmn1OhdddFERbshpMbXeRku5ZVZrLr300uJ8xx13LLbUmlMyFJXH4dmzaS0wkYuyctFT9mZqAZrOYrPNNismPOWCrOlN4MnFYwceeGAREHn33XdnuZ/3aTJUk0GiDKvUFrLV7qfWT6vVk0Gi7In179+/3XpUHSFfw5SL8Gq9t09b3Ff7DNf6ONPbai77hyk/i7WFdTkJf7/99otrr712mutn/zCnwU/9PrX3a5UTo3Jq/ve///1WA4a197VlHbNS94z6X3m9Wk+qs37+ASAJUAFAN5IHqhnmSb/+9a+L1UU1GS65+OKLi+3O8kC8dr0M6+SBZa4eOvvss6dYJZSTnf71r381B41qNthgg6Khkgfxxx13XDH6OeVtzz///Ljiiitare+II44owko5gej444+fYspS1pUH8nkfuSpx9913b9NzzmBNjl/PFV4ZcsoQS22bsppcLZUrpM4666xildXPf/7z5p/lY+2zzz7F13l5y4P5fM2uvPLKOO2004rvs3GQzbap1QJHf//734vX5Itf/GLzCOo5/fxnpOW2gfletiYbXdnUydHWGQDL97U9Hntq2WjNz1iuAKttn9iWEdqz8plu+dzzs5Cr0tpTNgl/85vfNK8qzDqySZYN5fTTn/50iutvsskmxfl55503Rf0ZCGv5WZxabdz79N67qR1++OFF0ztXiuYY9ZbPO1cRfu973yu2T1x77bWLyWkAAACw7LLLFpNlUh5LtlzQlce7l1xySZx66qnF9z/84Q+LsMPUMoySPZHaBJnsbeTiqdtvv71YwJbHq3NS9rV+9KMfFV9nvyWPi1sewx999NHF19k3aq3+MmX/IvtB6X//93+L3kzLBWJ33XVXMVUnZYAkJ1DPaj/v02TPK7d4y23o8r3L0NvGG2/c/PNaKCW3SMv+V06sqi3+asvzbFlfWTIAuMQSSxT9mQzb5df5nNsS0qu9lrmlXW1CV8pQUgZ6av3Qo446qvl1ycWYKXuLGWRqKSc81QJ/Ld+n9n6tMiSZ/bVcpJi/C3lek72jWggp/xasueaas1x3rf+VE+lycV8t/JW9uezpZf+uM3/+ASB9ss8HANBt/OlPf4pvfOMbxUHpbrvtFiussELRHMqDxzFjxhTXyRHNa6yxRvF1jlzOwEc2tk488cQ488wzi9vkqr2cWJPNrzw4/dWvftX8GAsvvHCxEikPRjMM9OCDDxa3yRBOHoRnSCaDSO+9994UteWB9J///OfiwDcDJzk1KicQZZAoVwLmgXU2LnJrttqEqE+TW/FlMCWf06BBg+LYY4+Nv/zlL0U9Cy20UHz00UfN97344osXP1t33XWnuI88iM9ac/z4YYcdVoR7ll566eL51EZV5xSkqYMxLVehZR21BsT0JjjNief/aa9NhrHyeWQjMceN/+QnP5lm+lDWmw3GDATl86ytGJsV2eiorVJM2fTI55efpVrQLus4/fTTi9d4TnymU4bCMlSVgaEMtOV7mq/r7Dy3mnyNcgVeNohzAlaufsutJLNxc+SRR07TnMnPVP6OZHAsw2lZZ9aVo8dza8dcMZev29Rq2yjmysZ8Dnm7Wphves28bDZlMC2bdjfccEPx+cr39fXXXy+us9ZaaxX30R6fLwAAALqHY445puiL5GTq7BvkMXRO0clj+dpx97e//e1iYU5r8ljzjDPOKMJWeZybt8seSS5iy35DbfuzOSkXxz3++OPFtJrsWeViuzz2zTBH9luyFzKng1yzKl/XfM3yWD57VNmfy95Hvie1qdXZU8pj/ppZ6ee1RYaiMoCWgZQMTLWcHJbvbT7G8OHDZ3r7vnw/MiyTPYoM7OX95PPJRV5lbOOX09GyX5ULzGpbz32aE044IQ499NBiO8gDDjig6Lnl1nHZc8kgUt5PvictJ1rl9bJPliGkfJ/zdytP+XuV/braa15b3Dkz/by2yt+DDDjm70VOmcvf8/xsZN8sPyv5nuRC0OyZ1vpFs1J39sM23XTTImCV7+25555b9OFyIlV+nnJhaS2M2Vk//wAgQAUA3UwezObo9AyLZGgjDxpHjBhRhIfyAD4bXi1Xj6U8+M9wRh6o5sq8DKpkkysDHNlUyBV6LVc/tQysZMPhxRdfLJoFGVqpbUHX2ljmlGGRHPOck6ryQDwbWRk8yaDHDjvsEIccckhR68zILdwyjJQNgDxlkCqDT9nQybBXBkvyoD4bNPn91LIZ9M9//jNuvfXWYlz0c889VzynnACUq9AyYJTPqeUI7ZayuZDBmJx+tfLKKxfNgumZE89/RrJBkg2GfD4Z2Bk2bNg018nnlk2gHGs9u9v35WctTy1lEyaDYdkUy89Tfg5z0tWc/Ezn+5BN2nxfs7GTzy3P2yNAle9RBpqynqFDhxbvf7532fBp7b3P36OsP2vJMfjZOMpGdN5Prt7NlXKtySZeXjdX9eVnOZtNLVfhTe82OVUsA3q1z1f+7ubrk+Gz3LJxTm6bAAAAQNeTx7W50Cn7IrnAp9YXWXLJJYvtvXJR04ym9ORUm1wYlj2iIUOGFMfr2Yf57ne/W/Q7OkL2VjJIkfVmfyvryBBFTtTJaTq5BVhObe6MsvZccJcLtrK/lX2tfP3z+D17SHk8n+/B1IuhZqWf92l23nnnYiHb1Nv31dRe39q0qrbKHlv2qHJCfPY6ss+Rp44OUKXczq62vWR+3VYZbMreXy6qy0Vr+RnLxXK5QDD7RDm5fp111pniNhmqyt+tfLz8/crJVzklPBd95paJ+dnMnuLUk7za0s+bGfle5ZT9XIQ6cODA4j7z9yH7U1lH9qiyvzo7dWffNHtl+Rg333xz8TchA035OcrFhfn6tRag6kyffwCoq5a52TAAAKXLhk+GqLIxmmPY27ryDgAAAOi5ciFdysBEBmsAAKAra32MAgAAPUauQKtNxxKeAgAAAAAAoKfpnPNKAQCYo1544YViO8P77ruvGMedY7Bz+0UAAAAAAADoaQSoAAB6oJ/97GfxxhtvTPH90ksvXWpNAAAAAAAAUAYBKgCAHmjjjTeOd955JxZbbLHYb7/94vvf/37ZJQEAAAAAAEAp6qrVarWchwYAAAAAAAAAAChXr5IfHwAAAAAAAAAAoDQCVAAAAAAAAAAAQI8lQAUAAAAAAAAAAPRYAlQAAAAAAAAAAECPJUAFAAAAAAAAAAD0WAJUAAAAAAAAAABAjyVABQAAAAAAAAAA9FgCVAAAAAAAAAAAQI8lQAUAAAAAAAAAAPRYAlQAAAAAAAAAAECPJUAFAAAAAAAAAAD0WAJUAAAAAAAAAABAjyVABQAAAAAAAAAA9FgCVAAAAAAAAAAAQI8lQAUAAAAAAAAAAPRYAlQAAAAAAAAAAECPJUAFAAAAAAAAAAD0WAJUAAAAAAAAAABAjyVABQAAAAAAAAAA9FgCVAAAAAAAAAAAQI8lQAUAAAAAAAAAAPRYAlQAAAAAAAAAAECPJUAFAAAAAAAAAAD0WAJUAAAAAAAAAABAjyVABQAAAAAAAAAA9FgCVAAAAAAAAAAAQI8lQAUAAAAAAAAAAPRYAlQAAAAAAAAAAECPJUAFAAAAAAAAAAD0WAJUAAAAAAAAAABAjyVABQAAAAAAAAAA9FgCVAAAAAAAAAAAQI8lQAUAAAAAAAAAAPRYAlQAAAAAAAAAAECPJUAFAAAAAAAAAAD0WAJUAAAAAAAAAABAjyVABQAAAAAAAAAA9FgCVAAAAAAAAAAAQI8lQAUAAAAAAAAAAPRYfcouAAAAAABof5Whw6L+jMvKLgO6nHlOPqrsEgAAAOhgJlABAAAAAAAAAAA9lgAVAAAAAAAAAADQYwlQAQAAAAAAAAAAPZYAFQAAAAAAAAAA0GMJUAEAAAAAAAAAAD2WABUAAAAAAAAAANBjCVABAAAAAAAAAAA9lgAVAAAAAAAAAADQYwlQAQAAAAAAAAAAPZYAFQAAAAAAAAAA0GMJUAEAAAAAAAAAAD2WABUAAAAAAAAAANBjCVABAAAAAAAAAAA9lgAVAAAAAAAAAADQYwlQAQAAAAAAAAAAPZYAFQAAAAAAAAAA0GMJUAEAAAAAAAAAAD2WABUAAAAAAAAAANBjCVABAAAAAAAAAAA9lgAVAAAAAKX51a9+Ff369YtHHnlkjj/W/vvvXzzWm2++OccfCwAAAICuo0/ZBQAAAABAR9hzzz1j8803j4UXXrjsUgAAAADoRASoAAAAAOgR9tprr7JLAAAAAKATsoUfAAAAAAAAAADQYwlQAQAAANCpjBgxIn7/+9/HDjvsEOutt15ss8028Ytf/CJeeeWVaa5bqVTi/PPPj9122y022GCD4jannHJKPProo9GvX7849dRTm6+7//77F5e9+eabxffDhw8vvv/Tn/4UAwcOjIMOOig23njj2GijjeKAAw6IAQMGtKnefIy8n7yP008/vagha9ljjz3i8ssvn+K63/3ud4vrPvHEE9Pcz/jx42PDDTeMr371q7PwqgEAAAAwqwSoAAAAAOg0Xnzxxebg0UorrRTf/va3o3///nHLLbfE1772tXjwwQenuP6RRx4Zxx13XEyePDn22Wef2HLLLeOcc84pAlht9dRTT8WBBx4YjY2N8Y1vfCO23nrrIjz1ne98J5555pk238/xxx8f//rXv2KrrbYqtgscM2ZMUcf//M//NF9n7733Ls6vu+66aW5/6623xsSJE201CAAAANDB+nT0AwIAAABAa3KaVAaiPvzwwyIUVQsbpQceeCB+8IMfxC9/+cu4++67Y4EFFijOb7rppmJq1Nlnnx3zzz9/cd1vfetbxWlmQltHH310HHLIIc2X/eMf/yimSV1xxRWx/vrrt+l+Xnrppbjkkkuar3/EEUfEfvvtV1y26667xqabbho777xzLLLIInH77bcX4aq55567+fbXXntt9O3bN3bfffc21w4AAADA7DOBCgAAAIBOYdCgQcU2fdtuu+0U4am03XbbFVvbjR07tggfpauvvro4z9BVLTyVatvntdWCCy5YbNnX0i677NK8zV9b7bnnnlOErRZbbLEiRNVy4tRcc81VBKTGjRtXBMBqhg0bVmwBuNNOO8Wiiy7a5scEAAAAYPYJUAEAAADQKbzwwgvF+RZbbNHqz3OCU21iVMrt9Xr37t3qhKjaddsitwrs06fPNKGqVF9f3+b7ya37prbhhhtO8dxSbkWYrr/++immTyXb9wEAAAB0PAEqAAAAADqFnMqUcnu+1iy99NLF+ccff1yc5zSqnNY0dfip5XXbouU2ejV1dXXFebVabfP9LLPMMtNctuSSSxbnH330UfNla6+9dqy77rrx0EMPxejRo4vHyDBVXvezn/1smx8PAAAAgPYhQAUAAABAp1ALTr333nut/rwWQlpkkUWK89y2b8KECa2GnPLyjjZp0qTphsJyO7+WcovCxsbGuO222+Kpp56Kt99+u9h2MCdqAQAAANCxBKgAAAAA6BTWWWed4vyJJ55o9eePPfZYcb7WWmsV5+utt15MnDgxXnrppWmuO2jQoOhogwcPnuaygQMHFucbbLDBFJfvtttuxeSr22+/Pe6+++7iMtv3AQAAAJRDgAoAAACATmGjjTaK1VZbrQgdXX755VP87JFHHolrrrkmFl544dh5552Ly/bZZ5/i/KSTTiqCVDUZqLriiis6uPqICy64IN54443m70eNGhWnnHJKMVUqJ061lM9jl112iSeffDJuueWWImC1+uqrd3jNAAAAAET0KbsAAAAAAEi9evUqwlAHHXRQ/P73vy+CRTmVKkNJ9913XzGx6cQTT4wFF1ywuP4Xv/jF+PznPx933HFHsf3ddtttF2PHjo0777wz5ptvvub7bE//+c9/im359txzz1hhhRWm+FlDQ0MRlMqa+vbtG/fcc0+8//778fOf/zzWXnvtae4rr3vzzTfHiBEj4tBDD23XOgEAAABoOwEqAAAAADqNddddN6699tr45z//GQ8++GAxjWqxxRYrAlLf+973ppnSdPLJJ8c555xT3Oayyy6LJZdcMr7//e/H/PPPH8cff3xzkKo9p0y9/fbbsfnmm08ToPrpT38a77zzTlx//fXx8ccfF6GpP/7xj8WkqdZstdVWsfjii8eECRNi1113bdc6AQAAAGi7umq1Wp2J6wMAAABAp/Duu+8WAamFFlpomp/97W9/i3/961/FFnpf+tKX5mgdp556apx22mlx7LHHNm8r2BYZtsrtCHfbbbdislZ7qwwdFvVnXNbu9wvd3TwnH1V2CQAAAHSw9p1hDgAAAAAd5Nxzz43NNtssbr/99ikuHzVqVDGRKrfRy593RrmmMYNXlUol9t1337LLAQAAAOjRbOEHAAAAQJf0ta99LS6//PL45S9/GbfeemustNJKMXr06Ljrrrti7Nixccwxx8QSSywRnUmGuw4++OCYOHFivPXWW7HjjjvGRhttVHZZAAAAAD2aABUAAAAAXdJaa60VV199dZx99tnx+OOPx9133x0LLLBArLfeenHAAQfE9ttvH53NYostFpMnTy6CVF/4wheKbf8AAAAAKFddNeeFAwDQqVXrGyIm1zefx+SGqNZ/cj7F5Q2NxXYwUftfvOKsGlGpfd/ifIqv//tAfXpH3bzzRMw7d9TNM/cn51N/P/dcHf8CAAAw0ypDh0X9GZeVXQZ0OfOcfFTZJQAAANDBTKACAChBBp6qYz+KGP9xVMdPjOr4jyMm1L6eEPHfy6oT8vKJEU2V6DR69ZoqYDV3xDytBK1q3y+6UNQtvsgnlwMAAAAAAEAnI0AFADAHVMdNKAJS1Q8+mvJ8zCenIhTVVVUqRf3V/z6HNo8znX/eqFts4ahbYpFPAlWL5fnC0WuJRSMWXjDqetXNyaoBAAAAAACgVQJUAACzKANE1ZGjo/L+mKiO/CCq7+dpTFRHjy220mMq/w1dVd96d9qf9e4ddYst1ByqKkJWxdeLfPK1bQMBAAAAAACYQwSoAAA+RfXjSVF5+72ojhj1SWDq3Tz/oNh+j3bS1PRJ+Oz9MdOfXpVhqsUXiV5LLRZ1Ky4TvVZaNuoWmK+jKwUAAAAAAKCbEaACAGih+tH4qAx/L6rD3ytCU/l15JZ7dI7pVcNGRKXl5YsuVASpeq24TNTl+QpLR908c5dXJwAAAAAAAF2OABUA0LPDUm+8E5Xh70Z1+MgiMBXjJpRdFjNjzEdRydPgIZ98X1cXdbUJVSsuG71WWibqll8q6vr4314AAAAAAABa51+SAIAeoVqpRvXdUVF5Y3hUXn87qnn64MOyy6K9VatRfW90cao8+fwnl/XuFXXLLvnJlKpaqGqZJaKuV6+yqwUAAAAAAKATEKACALqlan1DVIaNKIJSGZiqvPl2xMTJZZdFGZoqxZaMTbkd46ODP7lsrr7FZKpi+788rbFS1C04f9mVAgAAAAAAUAIBKgCgW6hWKlEdNiIqQ96IppffjOqwd4rgDLSqvqEI1zXlKb+vi6hbbqno1W/V6LX2qtFr1eWjrnfvsqsEAAAAAACgAwhQAQBdVuX9D6Ly8ptFaKoydFjEJBOmmEXViOrbI6MpT/cMiJi7bzGVqghU9Vslei25WNkVAgAAAAAAMIcIUAEAXUZ14qRPwlLFlKk3IsZ8VHZJdFeTG6Ly/KvFKdUttvAnk6kyULXmSlE3z9xlVwgAAAAAAEA7EaACADq16ofjoum5oVF59pWovDrMtnyUovrBh9H0yKDiFL16Rd0qy0XvnEy19qpRt8IyUVdXV3aJAAAAAAAAzCIBKgCg06mMHF0EppqefSWqb40otleDTqNSieprw6PxteERtz4UsciC0bv/WtG7/5pRt9qKUddLmAoAAAAAAKArEaACAEpXrVaj+ta7RWCq8uzLUR35QdklQduNHRdNDw4sTrHAfNF7vTWi1/r9Ptnqr3fvsqsDAAAAAADgU9RV818sAQA6WLWpUmzJV0yaen5oEUKBbmXeeaLXuqtH7/XXil79Vo26vtYuAAAAAAAAdEYCVABAh8n/7ai8/GY0DXw+Ks+/GjFxUtklQceYe67otf5a0XuTdaLXGivb5g8AAAAAAKATEaACAOa4am5xNuCZaHriuah+8GHZ5UC5Fl4gem+8TvTeZN3otdySZVcDAAAAAADQ4wlQAQBzRLWpKSrPDS2CU5Uhb+T4qbJLgk6nbrmlovem6xSBqrqFFii7HAAAAAAAgB5JgAoAaFeV90Z/Mm3qyecjxn9cdjnQNdTVRa81V47em60bvdbvF3V9+5RdEQAAAAAAQI8hQAUAzLbq5PpoGjwkmh57JqpvvF12OdC1zTdP9N5svei91QbRa6nFy64GAAAAAACg2xOgAgBmWeXNdz6ZNvX0SxGT68suB7qdXquvGL233jB69V8r6vr0LrscAAAAAACAbkmACgCYKdUJE4vt+TI4VX13VNnlQM+wwHzRe/P+n0ylWnyRsqsBAAAAAADoVgSoAIBPlf+7UHn5zSI0VXnulYjGprJLgp6pLqLXWqtE7202il7rrBF1verKrggAAAAAAKDLE6ACAKar2tQUTQNfiKZ7BkR15AdllwO0ULfEItH7s5sUk6nq5p6r7HIAAAAAAAC6LAEqAGAa1fqGaHpscDTe90TE2HFllwPMyDxzR+8t148+n90k6hZdqOxqAAAAAAAAuhwBKgCgWXXipGh66KlofGBgxISJZZcDzIxevaLXhv2iz46bR6/lly67GgAAAAAAgC5DgAoAiOpH46Px/iej6ZFBEZPryy4HmE291lw5eu+4efRee9WySwEAAAAAAOj0BKgAoAerjB4bTfc+Hk2PPxfR2Fh2OUA7q1txmejzua2i93prll0KAFCCytBhUX/GZWWXAV3OPCcfVXYJAAAAdLA+Hf2AAED5KiPej8a7B0Rl0EsRlUrZ5QBzSPWtd6Ph3Gujcfmlos8uW0Wv9deKurq6sssCAAAAAADoVASoAKAHqbzxTjTe/VhUXhgaYQYl9BjVt0dGw/nXR90ySxQTqXptsHbU9RKkAgAAAAAASAJUANADNA15I5ruejQqr75VdilAiarvjoqGC2+Mutsf/mQi1cafibpevcouCwAAAAAAoFQCVADQTVWr1ag8+0oxcSq38QKoqY78IBouuTnq7ng4+nx+m+i18TomUgEAAAAAAD2WABUAdEOV196KhuvvFZwCZqg6auwnQap7H48+u24XvddZveySAAAAAAAAOpwAFQB0I5XRY6Pxxvui8szLZZcCdCHVEe9Hw9lXR+PqK0bf3baPXisvV3ZJAAAAAAAAHUaACgC6gerEydF45yPR9OBTEU1NZZcDdFHVV9+K+r9fFL36r1lMpOq11OJllwQAAAAAADDHCVABQBdWrVSi6dHB0XjbQxETJpZdDtBNVJ59JeqfHxq9N+sffb64TdQtvGDZJQEAAAAAAMwxAlQA0EU1vfhaNN5wb1TfG112KUB3VKlG04BnoumpF6L39ptGn523jLq55yq7KgAAAAAAgHYnQAUAXUzl3VHReP29URnyetmlAD1BQ2M03fVYND3xXPTdbfvovcm6ZVcEAAAAAADQrgSoAKCLqI7/uNiqr+mxwcVkGIAO9eH4aLj45mh8ZFD03XPn6LXCMmVXBAAAAAAA0C4EqACgk6s2NkbTAwOj8a5HIybVl10O0MNVX3876v92YfTeon/0+fJ2UbfAfGWXBAAAAAAAMFsEqACgE2sa9FI03nR/VD/4sOxSAP6/ajWaHnsmmgYPiT5f2CZ6b7Nx1PXuVXZVAAAAAAAAs0SACgA6ocqwEdFw/T3FpBeATmvi5Gi87p4iTNVnz52j95orl10RAAAAAADATBOgAoBOpDppcjTecF80DRgcUS27GoC2qb47Khr+eXlUNu8ffb6yY9TNN0/ZJQEAAAAAALSZfTYAKN3pp58e/fr1i/79+8eYMWOip2p64dWYfMK50fSY8BTQNTU9/mxM/us5xfajAAAAAAAAXYUAFQClqlarce2118Z8880X9fX1cc0110RPU50wMeovvikazr46Yuy4sssBmD3jJkTDBTdE/bnXRNXfNAAAAAAAoAsQoAKgVAMGDIi33norDjjggJh33nnjiiuuKEJVPUXT4CHF1KnKwBfKLgWgXVWeGxqTTzgnGh95ukf9XQcAAAAAALoeASoASnX11VcX57vssktsv/328cYbb8Sjjz4a3V113ISo/8910XD+9cW0FoBuaVJ9NF51Z9SffmlURo4uuxoAAAAAAIBWCVABUJrx48fHHXfcEUsssUSst956sdtuuxWXX3rppdGdNT35fEz+6zlReeblsksB6BDV14ZH/Un/icY7H4lqU1PZ5QBQkl/96lfRr1+/eOSRR5ovy+OBl156qdS6AAAAAKBP2QUA0HPddNNNMWnSpPjGN74RdXV1xQSqRRZZJO65554YOXJkLLXUUtGdVMeOi4arbo/KC6+VXQpAx2tsisZbH4qmQUOi7ze+GL1WWrbsigDoYDl1dvnll48VV1yx+P6kk06Kf//733HeeeeVXRoAAAAAPZwJVACUvn3fV7/61eJ8rrnmii9/+cvR2NgYV155ZXQnjY8OisknnCM8BfR41RHvR/3fL4qG6+6O6uT6sssBoIMDVEcccURzgGrUqFFllwQAAAAABQEqAEoxdOjQeOaZZ2LNNdeMddZZp/nyPffcszjPAFVTN9jmqfrBh1H/z8uj8co7IiYJCgAUqtVoemBgsa1f5a13y64GAAAAAADo4QSoACh1+tQee+wxxeXrr79+rLbaajFixIi47777oitreuqFmJzhgFfeLLsUgE6pOnps1P/j4mi8/8mySwGgA/zqV7+Kfv36xSOPPFKcX3vttcXlBx98cPF9Sw8//HAccsghsdlmmxXHCLvvvnucc8450dDQ0Op9vvfee3HCCSfEdtttV1w/p9zm1uApz/fZZ5/YYIMNYscdd4xjjz02JkyYMMX9vPXWW3HUUUcVU7LWW2+92GabbYppWc8991ybntv+++8f/fv3jzFjxhQ1bb755rHpppvGgQceGI899ljz9SZPnlz8bKONNoqJEydOcz+11+a4446biVcWAAAAgNklQAVAh8st+m644Ybi65NOOqn4B4KWp9de+2Sbu8suuyy6ouqkyVF/yc3RcNFNEZMml10OQOfW1BSN198T9edcHdUJ0/5DMgDd0+GHHx5rr71286KK/L7m3HPPLcJTL7zwQnzuc5+Lb3/729GrV68iIHXooYcWxxNTO+yww+KWW26JL37xi8VpyJAhxX2eeOKJRRBq+eWXj/322y/69u0bF1544RQBpQ8++CC++c1vxm233RYbbrhh8dhbbrll3HvvvbHvvvvGSy+91KbnVK1WizDYQw89VDynnXbaKQYNGlTc380331xcZ+65545dd901Pv7447jjjjumuY9aqGyvvfaahVcVAAAAgFnVZ5ZvCQCzKCdLjRo1KlZZZZXYYostpjuhKv/hYfjw4bHCCitEV1F5c0Q0XHRjMVUFgLarPP9qTP6//8Rc3949eq3Wdf7uAzBrMtT09ttvF+GknBa19dZbF5fn9xl6WmONNYqg02KLLdYcTvrNb35THCf85z//ie9+97tT3N+4ceOKRRoLLbRQ8f1SSy0V//73v+Pss8+Os846K7bffvvi8u9///vFFKrrr78+/vznPxfBrFtvvbU4PsnJVDmpqianWeVUqosvvri47qfJ6Vjjx48v6qjVfcABB8S3vvWt+NOf/lTUsMACC8Tee+8dl1xySXG9lhN587Z33nlnrLvuus3hMgAAAAA6hgAVAB3uqquuKs5/8IMfTHdldf4Dxt133x1XXHFF/PznP4/OrlqpRtPdj0Xj7Q9HVCpllwPQNY0dF/VnXBp9vrBN9N55q6jrVVd2RQB0sMsvvzwqlUpxDFALIaW6uro4+uijiwlNV1555TQBqq9//evN4am0ySabFAGqz3zmM83hqbTIIovE6quvHs8++2yMHDkylllmmeLx0uDBg4swV06pSl/+8pdj4403jmWXXbbN9f/kJz+Zou7cDjADU5deemmxleBXvvKV4rKcvPvoo48WNWTYK+UErNzWz/QpAAAAgI5nCz8AOtT7778fDz74YMw333zxhS98YbrXy38AqYWtciV3Z1Yd81HU//OyaLz1QeEpgNlVqUbjrQ9Fw5lXRPWj8WVXA0AHy2BTeuSRR+LUU0+d4nTBBRfE/PPPH2+88UZMmDBhitutuuqqU3yfxxtppZVWmuYx5p133uJ88uRPttvOLf8y9JTBrG222SZ+/OMfF0GuXNSx4oorRp8+bV9/uNVWW01zWW4LmHJLwpoMVTU1NcWNN97YfFmGw+aaa67Ybbfd2vx4AAAAALQPE6gA6FDXXXddNDY2xu67717848f05HYZudJ7xIgRxTYWufq7M2oaPCQarrg9YuKksksB6FYqr7wZk0/6T/Tdb9fo3W/KfxQHoPv66KOPivOLLrroU6/X8niiFpiaWgaSPs2SSy4Z11xzTZx55plx1113xe23316c0pZbbhl//OMfpwlotSYnVy2xxBKt3n+t5pqcRJVbFeZWgt/5znfirbfeioEDBxaLTHJKFgAAAAAdywQqADpU/sNE2nPPPWd4vV69esXXvva14uvc7qKzqTY1RcO1d0fD+dcLTwHMKeM/joazroyGm+6PapMJfwA9QS0U9fDDD8eQIUOme5qZbfXaIu8vg1I5LfeGG26IY445Jvr37x+PPfZYHHrooVGtVj/1PnKhSGvTc2vBqZZb+y266KKx0047Fc/llVdeiZtuuql4DNv3AQAAAJRDgAqADnXrrbcW/0iwxRZbfOp1Dz/88OK6F154YXQm1bHjov70y6LpwYFllwLQ/VUjmu4ZEPWnX1psmQpA91FXVzfNZZ/5zGeK88GDB0/zs9xy77jjjovzzjuvTYGmtrrlllviD3/4Q4wbN66oqV+/fnHQQQcV2/itssoqxZaBI0eO/NT7yZqeeeaZaS7PyVItt/JruY1fymlXd999dyy11FKx7bbbttvzAgAAAKDtBKgAYCY05ZZSJ58f1TfeLrsUgB4l/+7mln5Nz75SdikAtJM+ffoU5y2nNtWm0J5wwgnThJZOOeWUOP/88+Ppp59uNXw1q1566aW47LLLptk2MCdHjR07tpiKlROj2uLkk0+O8ePHN3+fgaqrrrqqmHD12c9+dorr5vdLL710MaX3ueeeiz322CN69+7dTs8KAAAAgJnxSacKAPjU1eRNdz8Wjbc9FFFpv9XuAMyEiZOi4bxro7LtxtHnKztE3X//4R2Arqm2Dd/f//73ePLJJ+NHP/pRbLzxxvHDH/4wzjjjjNh1112Lbe4WX3zxYorToEGDYvnlly+212tPBx54YLGFXga0BgwYEOuss05MnDgx7rzzziJA9bvf/S7mmmuu5lBVhrjSEUccMc195QTdDELtuOOOMWbMmLjjjjuKUNTxxx8fc8899zTblufW5v/617/atM05AAAAAHOOf3EAgE9RzX+wv/jmqLzwatmlAJDTAB96KiqvD4++B3wlei25WNnlADCL9t1332Ka1OOPPx7Dhg0rgkdrrLFG/OQnP4n+/fsXW3nn1nb19fWx3HLLxSGHHBLf+c53YokllmjXOjKgdckll8RZZ50VDz/8cFFTBqbWXXfd+NOf/lSEuGoyQHXaaadNN0B1+umnF/eVU6X69u0bO+ywQxEMW3vttVt97N12260IUG200Uax+uqrt+vzAgAAAKDt6qo5UgMAaFVl+HvRcP71UR09tuxSAJja3H2j7ze/HL036Fd2JQD0cPvvv38RBMuJUyuvvHKbb3f99dfHUUcdFccee2zss88+7V5XZeiwqD/jsna/X+ju5jn5qLJLAAAAoIP16ugHBICuomngC1H/j4uFpwA6q8kN0XDB9dF492NlVwIAM238+PFxzjnnxMILL1xMogIAAACgPLbwA4Cp5HDGxlsfjKa7/IM8QKdXjWi8+YGojhoTfb72+ajr3bvsigBghu66664444wzYsSIEfHBBx/E0UcfHfPOO2/ZZQEAAAD0aAJUANBCdXJ9NFxyc1SefaXsUgCYCU0Dno3qBx9F34P2iLp55ym7HACYrmWWWSbefffdqFQqcdhhh8XBBx9cdkkAAAAAPV5dNcdsAABRHfNR1J97TVTfHll2KQDMorqlF4++3907ei2+SNmlAEDpKkOHRf0Zl5VdBnQ585x8VNklAAAA0MF6dfQDAkBnVHnjnZh8yoXCUwBdXPW90VH/94uKv+sAAAAAAABtIUAFQI/X9OTzUX/GpRHjJpRdCgDtYfzHxbSNpkEvlV0JAAAAAADQBfQpuwAAKEvuYtt4y4PRdPdjZZcCQHtrbIyGC2+I6qgx0WeXrcquBgAAAAAA6MQEqADokar5D+uX3BIV00kAuq9qFEHZ6qix0Wefz0dd795lVwQAAAAAAHRCAlQA9DjViZOi/txro/rqW2WXAkAHaHr82aiO+TD6HvTVqJt3nrLLAQAAAAAAOpleZRcAAB2pOuajqP/HxcJTAD1M5ZVhUf/3i6IyemzZpQAAAAAAAJ2MABUAPUblnfdj8j8uiup7o8suBYASVEd+8EmI6vW3yy4FAAAAAADoRASoAOgRKq++FfWnXxLx4fiySwGgTOM/jvp/Xh5NT79YdiUAAAAAAEAnIUAFQLfX9MzLUX/mlRETJ5ddCgCdQWNjNFx0YzTe+UjZlQAAAAAAAJ1An7ILAIA5qfHRwdF49R0RlWrZpQDQmVQjGm99KKoTJkbfr+5cdjUAAAAAAECJBKgA6LYa73s8Gm+4r+wyAOjEmh4YWIRs++61S9mlAAAAAAAAJRGgAqBbarzjkWi87aGyywCgC2h66KmIajX67LVL1NXVlV0OAAAAAADQwQSoAOh2Gm5+IJrufqzsMgDoQpoefvqTENXenxOiAgAAAACAHkaACoBupeHau6PpwYFllwFAF9T0yKCISiX67PMFISoAAAAAAOhB6qrVarXsIgBgduV/zhqvuiOaHh1cdikAdHG9t+gfffb5YtT1EqICAAAAAICeQIAKgC6vWqlEw2W3RuXJ58suBYBuovdm60Wfb3xJiAoAAAAAAHoAASoAurRqUyUaLr4xKoOGlF0KAN1Mr03Xjb7f/LIQFQAAAAAAdHMCVAB07fDUhTdE5ZmXyy4FgG6q18brRN99M0TVq+xSAAAAAACAOcS/AgDQJVUr1Wi45GbhKQDmqMpTL0TDxTcX28UCAAAAAADdkwAVAF1ODk9svPzWqDz9YtmlANAD5H9vGi66sZh8CAAAAAAAdD8CVAB0OY1X3xlNTzxXdhkA9CCVQUOEqAAAAAAAoJsSoAKgS2m47u5oemRQ2WUA0ANVBg+Jhguuj2pTU9mlAAAAAAAA7UiACoAuo+HmB6LpgYFllwFAD1Z59pVoOP/6qDYKUQEAAAAAQHchQAVAl9B4+8PRdPdjZZcBAFF5bmg0nH+d7fwAAAAAAKCbEKACoNNrvPfxIkAFAJ1F5flXo/GK28ouAwAAAAAAaAcCVAB0ak1PPBeNN95XdhkA0Op/oxpufbDsMgAAAAAAgNkkQAVAp9X04mvRcLnpHgB0Xk13PhqNjw4quwwAAAAAAGA29JmdGwPAnFJ5c0Q0nH99RKVSdikAMEONV98ZdQstEL3XXaPsUgBgCpWhw6L+jMvKLgOgXc1z8lFllwAAAHRDJlAB0OlU3v8g6s++KqK+oexSAODTVarRcOGNRfgXAAAAAADoegSoAOhUqh+Nj4Yzr4yYMLHsUgCg7eobov6cq6Py/piyKwEAAAAAAGaSABUAnUZ10uSo//dVUf3gw7JLAYCZN/7jaDjryqiO/7jsSgAAAAAAgJkgQAVAp1BtbIqG866N6tsjyy4FAGZZdfTYqD/76qjahhYAAAAAALoMASoAOoWGy26JyivDyi4DAGZbddiIaLjg+qhWKmWXAgAAAAAAtIEAFQCla7zz0ag89WLZZQBAu6m88Fo0XnVH2WUAAAAAAABtIEAFQKmann0lGm97sOwyAKDdNT32TDTe8UjZZQAAAAAAAJ9CgAqA0lTeGRkNF98UUS27EgCYMxpveyianny+7DIAAAAAAIAZEKACoBTV8R9H/TnXRNQ3lF0KAMxRDVfcHpVhI8ouAwAAAAAAmA4BKgA6XLWxKerPuy5izEdllwIAc15jY9Sfd21UPxpfdiUAAAAAAEArBKgA6HCNV90R1deHl10GAHScD8dH/X+ui2pjY9mVAAAAAAAAUxGgAqBDNd7/ZDQ9/mzZZQBAh6u+8U40XnVn2WUAAAAAAABTEaACoMM0vfR6NN54b9llAEBpMkTc+MCTZZcBAAAAAAC0IEAFQIeojBwdDRfcEFGpll0KAJSq8Yb7ounlN8suAwAAAAAA+C8BKgDmuOrHk6LhnGsiJk0uuxQAKF+lEg0XXB+V0WPLrgQAAAAAABCgAmBOqxb/SHxDVN8fU3YpANB5/DdcXK1vKLsSAAAAAADo8QSoAJijGm+8Lyovv1F2GQDQ6VTfHRUNV99ZdhkAAAAAANDjCVABMMc0vfBqNN3/ZNllAECnVXniuWgc8EzZZQAAAAAAQI8mQAXAHFH9aHw0XHZr2WUAQKfXeM1dUXnn/bLLAAAAAACAHkuACoB2V61Wo+HSWyLGf1x2KQDQ+TU0RsMF10d1cn3ZlQDdxFtvvRXXXntthzzWiy++GHfeOevbkV5zzTXRr1+/+Nvf/hYd4dRTTy0e78orr+yQxwMAAACgaxCgAqDdNd3/RFSGvFF2GQDQZVRHfhANV9xedhlAN/DSSy/Fl7/85Xj44Yfn+GPdf//9sddee8Vzzz0XXcXmm28ehx9+eKyzzjpllwIAAABAJ9Kn7AIA6F4qw9+NxpsfLLsMAOhyKk+/GI2rrxB9tt6o7FKALuzDDz+M+vqOmWg3evToqFQq0ZVsscUWxQkAAAAAWjKBCoB2k1sPNVx4Y0RTU9mlAECX1HjdPVEZ/l7ZZQAAAAAAQI8iQAVAu2m89u6ovj+m7DIAoOtqbIqG86+P6qTJZVcCdEG/+tWv4oADDii+vvHGG6Nfv35xzTXXFN+/99578cc//jF23HHHWG+99WLbbbeNY445JoYPHz7N/bz44ovFNne162633XZx9NFHxxtv/P9tuvfff//i9ulf//pX8VgDBgxot+cyadKkOP3002PXXXeN/v37x6abbhoHHXRQ3HfffdPdTnC//faLTTbZpJgwdeSRR8bIkSOLrfqy1ppTTz21qPXKK69svmynnXaK3XbbLd59993idltttVXxmF/5ylfisssua1O9+dzzfs8666y49dZbY/fdd4/111+/uO//+7//iwkTJjRfN6+T1z3ttNNava9vfetbxev+wQcfzMQrBgAAAMDsEKACoF00DXopmh5/tuwyAKDLq44eGw3X3FV2GUAXtMsuu8See+5ZfL3WWmsVIajPfOYz8eqrr8Zee+1VhIHy8gMPPLAIGl1//fWx9957F4Gpmtdee60I8Dz22GNFkOjggw8uwjw33HBDfOMb3yhCSSkfZ+eddy6+znBTPtbyyy/fLs9j3Lhx8c1vfjP+8Y9/RF1dXfG4GeZ69tln4wc/+EERrGrp8ssvLy5/+eWX4/Of/3wRXnr00UeL51GtVtu89WE+zjPPPFOEtvbYY49466234g9/+EOcf/75ba79jjvuiJ/+9Kex7LLLxr777hsLLbRQEZjKENfkyZ+EY7/61a9G7969i9d0am+++WY89dRTscMOO8Riiy3W5scFAAAAYPb0mc3bA0BUP/gwGq68vewyAKDbqDz5fDSts3r03nDtsksBuliAasEFF4xrr722mHB0xBFHFJdneCqnGeWkqAzm1GRIKgNSRx11VBHmybBSTmaaOHFi/Oc//ykCVDVnnHFG/P3vfy8mWh166KHFfaa77767CFDVHqs9nHTSSUWoa5999immZvXp80n7KgNN3/72t4tg1ZZbblmEwDLQ9Ze//CUWXnjhovaVVlqpuO4Pf/jD4vaVSqVNj5n3k+Grk08+Ofr27VtcllOpMmx28cUXF+dtkSGvnMyV07JSY2NjMdXqlltuiXPPPTcOO+ywWGqppYqpXvfee288/fTTsdFGGzXfPt+7VHt9AQAAAOgYJlABMFuqlUrUX3xzxERbDQFAe2q46o6ofjiu7DKALi4nKj3//PPFtKiW4amUIaS8PCc3DRo0qLisNrFp4MCBU0xvqm2f9/3vf3+O1ltfX1+EuXJy029/+9vm8FRaccUVi+lO6YorrijOM5j08ccfF0GwWngq5fSmmQ115XOrhadqr08G0lrb5nB6VlttteZtFFPWn1sr5nktHJVy8le67rrrmi/L1zuf+xJLLFEErAAAAADoOCZQATBbmu58NKqvt/0fFACANvp4UjRcemv0/cE+xVQYgFmRE5FSTqA69dRTW926Lr3wwgvFJKTaVn953UsvvTS23nrr2GabbYpAT25LN6e98cYbRSBq2223jXnmmWean+e0q1q9LZ/fhhtuOM11c0LVzMjw09QyQJVbCjY1NRXb7n2azTffPHr1mnK94tJLLx3LLLNMsT3f+PHjY4EFFijCbIsvvnjcdttt8Zvf/CbmmmuuYiLY22+/HYcccsgUwTEAAAAA5jzdGABmWeW14dF45yNllwEA3Vbl5Tei6cGB0We7TwIDADPro48+ap4olafpGTt2bHG+1lprFVvh/fvf/y4mTuVEpDxleGinnXYqttTLCUlzSoaVasGl1mQYKeU2g2nMmDHF+ZJLLjnd67bV3HPPPc1ltQBry2lcMzK9kFnWl5Os8vllgConXX3lK1+J8847r3idc/vA2jSq2nQqAAAAADqOABUAs6Q6cVLUX3xTRKVt/5AAAMyaxpseiF5rrRK9lplzgQWg+5p//vmL81/84hdt3n5vzTXXjBNOOKGYupTb/z3yyCNx/fXXx5133hkTJkwoQj9zSoaL0nvvvTfDQNgiiywyxfPLyU5Ty1o7Wi3YNb1g2KKLLtp8WQal8rW86aabiolUd9xxR6y//vqxxhprdFi9AAAAAHxiypniANBGDVfeHjHmk3+8AADmoMbGaLjopqg2NpVdCdAFTL3l5zrrrFOcP/PMM61eP6dN/eMf/4jXXnut+D637/vzn/9cTFzKqVMZ6Dn00EPj6quvjvnmmy+eeOKJ6T5We8ht9Oadd94YMmRI8/aCLQ0YMKB5Ulbq379/cf70009Pc93BgwdHR2vtdc7tE3NrwrXXXnuKbQkzqJav74MPPhj33ntvsXXhnnvu2cEVAwAAAJAEqACYaY0DnonKoCFllwEAPUb1nZHReOuDZZcBdAF9+nwybLyhoaE433jjjYtQUk6Puu2226a47rPPPluEpc4+++zmiU4ZkLrooovixhtvnOK6o0aNismTJ8cKK6ww3cdqD7Wt7XJ61HHHHReNjY3NP8st8P72t78VX9eCRnnd3HovJznlz1tuSfj3v/89Otqjjz5avNY1+dr87//+b/E8vv71r09z/ZxClcGpv/71r8Xz2G233Tq4YgAAAACSLfwAmCmVkR9E47V3l10GAPQ4Tfc9Eb3XXSN6rfb/wwsAU1t22WWL8wceeKAI5ey8885x4oknxsEHHxw/+clPYptttol+/frFyJEjiy3jMuBz/PHHx2KLLVbc7kc/+lFx26OPPjpuvfXWWH311Ysw0u23315MpfrlL385zWPdcMMNxTSqPfbYo3ky1Ow48sgji4lS1113XbGF4JZbblls3XfPPfcUW+EdfvjhsdlmmxXXXWaZZYqaMqSUoapddtkl5pprruK6tfBVr17tu37wrrvuihdffDE233zz2GKLLabZgvCII44oXvfll1++CFS9/PLLsf3228e3vvWtae4rA1P5+r/99tux6667xkILLdSutQIAAADQNiZQAdBm1Uo1Gi6+KaK+/VaYAwBtVK1Gw+W3RtV/h4EZyFDTL37xi2IbvJwk9cgjj8R6660X1157bTEBKbfqu/DCC+Pxxx8vwlR5nZbbxuW0qtzGLyc7ZfDn/PPPLyYqbbLJJsV1M6BUs+mmm8aBBx5YTKbKn7XXlnkLLrhgUUOGuZqamuLyyy+P+++/PzbaaKNiWlYGlFo64IAD4pRTTolVVlklbrnlliL4te222zZPq8rXor0DVKeddlrxGk5thx12KKZ6vfrqq8VzyPqPOuqoOOOMM1oNcmXgKsNVaa+99mrXOgEAAABou7pqLh8EgDZofHCg6VMAULLeO2wWfb+yY9llAHQKY8aMKaZoLbXUUtP87OGHH45DDjkk9t133/jDH/4wR+sYMGBAEeTafffd46STTpqp237+858vpmVlMKu9p2VVhg6L+jMua9f7BCjbPCcfVXYJAABAN2QCFQBtUv1ofDTe+mDZZQBAj9f0wJNReXNE2WUAdAoDBw6Mz372s8XUp5YykHTeeecVX2+99dbRWeVksDfffDO+8Y1vtHt4CgAAAIC26zMT1wWgB2u47u6ISfVllwEA5Ja6l98ac/38wKjr07vsagCa5QSlF198sc3X33zzzWOLLbaYrcfMrfpy677cQnDo0KHFdoW5peBDDz0Ur7/+euy8887xuc99Ljqb73znOzFq1KgYMmRILL300sWULAAAAADKI0AFwKdqeun1qAwaUnYZAMB/Vd8dFY13PRp9v7ht2aUATBGgyolKbXX44YfPdoBqnnnmiUsvvTTOP//8uPPOO+OSSy4pJjmtuuqq8bvf/a7TBpOWWGKJePLJJ6N///5x7LHHxoILLlh2SQAAAAA9Wl21Wq2WXQQAnVe1oTHqTzg3qqPHll0KANBS794x1y8OjF7LLFF2JQB0UpWhw6L+jMvKLgOgXc1z8lFllwAAAHRDvcouAIDOLadbCE8BQCfU1BQNV9we1sQAAAAAAMDsEaACYLoqI0dH0z2Pl10GADAd1TfejqaHny67DAAAAAAA6NIEqACYrsar7iymWwAAnVfjzQ9E9aPxZZcBAAAAAABdlgAVAK1qevL5qAwdVnYZAMCnmVwfDTfcV3YVAAAAAADQZQlQATCN6seTouGGe8suAwBoo8pTL0Tl1bfKLgMAAAAAALokASoAptF40/0R4z8uuwwAYCY0XHNXVJsqZZcBAAAAAABdjgAVAFOovPF2NA0YXHYZAMBMqo54P5oefqrsMgAAAAAAoMsRoAKgWU6taLjyjohq2ZUAALOi8baHozpuQtllAAAAAABAlyJABUCzpgefLKZXAABd1KTJ0XDjfWVXAQAAAAAAXYoAFQCF6piPovH2h8suAwCYTZUnn4/Ka8PLLgMAAAAAALoMASoACg3X3h0xuaHsMgCAdtBw9Z1RrVTKLgMAAAAAALoEASoAoun5oVF57pWyywAA2kluydv02OCyywAAAAAAgC5BgAqgh6s2VaLxhnvLLgMAaGeNtz8S1cn1ZZcBAAAAAACdngAVQA/X9MSzUX1/TNllAADtbdyEaLxnQNlVAAAAAABAp1dXrVarZRcBQDmqjY0x+bh/R4wdV3YpAMCcMFffmPvX34u6hRYouxIAAAAAAOi0TKAC6MGaHh4kPAUA3Vl9QzTe+lDZVQAAAAAAQKcmQAXQQ1Un10fj3Y+VXQYA0AHb9VbeHVV2GQAAAAAA0Gn1KbsAAMrR9MDAiPEfl10Gs2CDm8/51Ot8ZYU1488bbNf8/bNj348zX3k6XvxwVExobIjVFlgkvrbS2rHnimtFXV1dmx63oVKJi15/Lm5+e2gMm/BRcbvV/3s/e63Ub4rrVqrV+PtLT8R1b70cuVfwlkssF0evu1UsPve8U1xvclNj7HH/VbH1EivE79ffts2vAQAzoVKNxhvvi7m+97WyKwEAAAAAgE5JgAqgB6p+PCka73u87DKYRYeuuVGrl2dQKQNOGZDafPFlmy9/eOTwOOLJO2KuXr3jC8uuFgv07RsPjRwe//PsQzHwg3fjfzfc/lMfs6laicOfuD0eG/VOrDL/wrHniv2iodoUD7z3VnE/z334fvy+//8PQF3+5ovxn9eeja2WWD5Wmn+hIkj13qQJcf7Wu09xv5e+8UKMrZ8ch6218Wy9JgDMWOXF16LplTej95orl10KAAAAAAB0OgJUAD1Q4z0DIiZOLrsMZtH0wkbnv/ZsEZ7KiVC7r7BmcVljpRK/HXx/9O3VOy7e5iux+oKLFpf/dO2m+M6jt8RNbw8tplBt2iJw1Zrr33qlCE9tt9SKcfImOxf3l8atXR8HPXpTXD1sSHxx2dVi8yWWKy6/athLxZSrf27+hWJS1dLzzB//GPJkMQHrMwsvUVzno4bJcc6rg2P/VdeLJeeZr11fIwCmlVOoev3sgDZPHgQAAAAAgJ6iV9kFANCxquMmRNNDT5VdBu1s6LgxceqQJ2OF+RaMX66zRfPlr48fGwv1nbsIN9XCUykDUF9YbtXi68FjRn7q/d8+4rXi/Ih+mzaHp9KCfeeKg1brX3x9/8hhzZcPn/BRrLngos3/SL/2Qot/cvnH45qv8+9XBkWful5x0Oqf3B6AOas6/L2oPP1i2WUAAAAAAECnYwIVQA/TeOejEfUNZZdBOzvxhceioVKJY9bdKubt/f//877mQovF9Tt8rdXbvDb+w+K8LdOfdl9+zei/yFKx6gILT/Oz3Bowfdz4/z9XC881T3zc1Nj8/fjG+uI8w1zpnY/HxWVvvhi/+MzmMX+fuWbimQIwOxrveCR6bfiZqOtlChUAAAAAANQIUAH0INUxH0XTo4PLLoN29tDIt4rt9bZcYrnYdqkVZ3jdpmolRkycENe99XJcPeylWH2BReLzy34yiWpGdlthjen+7K533yjO11xwsebLNlh0qbj/vWEx6IP3YuUFFo4r3nwx5uvdN/ot9Ml1Tnt5YCwz7/zFdoMAdJzqyA+i8vQL0XuTdcsuBQAAAAAAOg0BKoAepPH2hyOamsoug3Z23qvPFOc/WHOjT73ugY/cFM+Ofb/4eqX5F4p/bfHFmKfFxKqZ9eDIt+KOEa/Hgn3mii8vv3rz5Yf32ySe/uC9OPDRm4rv+9TVxW/7bxuLzDVPvPTh6Ljl7VfjpI13ij69PtlNuFKtRq//bvcHQAdModoop1DZ0R0AAAAAAJIAFUAPURk5OpqefK7sMmhnL344Kp784N3YeLGlY+PFlvnU62+6+LKxyWLLxAsfjorHR4+IfR+6If65+ReKrf5m1sDRI+LIp+4pvv5N/62LcFTNyvMvHFdvt1fc996bMb6xIbZYYrlYY8FFi5/97aXHY/1Flopdll013p04Pv7wzIPxxOgRxYSqvVbqFz/ut2lzsAqA9ld9f0xUnnoxem9qChUAAAAAACQBKoAeovG2h3LMT9ll0M6uH/5Kcf6Nlddp0/V/uvZmzV/ntnr/+9wj8etB98cVn/1q1M3EBKh7330zfvX0vTGp0lTc55eW+//Tp2oWnmvu2GPFtaa47JH3hxfbDZ631a7F978ZdH+8OeGjOGGjneK9SRPi5BcHxMJ9547vrLFBm2sBYOY13vlI9NrYFCoAAAAAAEi65QA9QOXt96IyeEjZZTAH5ISneXv3ie2XXmmmb/v1lT8Tay64aLw87oMY/vG4Nt/ugteejZ8PvDvqK5X41bpbxcGrr9+m21Wr1TjlpSdix6VXKqZlvTpuTDE96+DV+8cuy64S+626bnx2qZXiotdNSgPokClUA18ouwwAAAAAAOgUBKgAeoDGWx6MMHyq2xny0egYMXFCEZ7KEFVrRkwcH3e/+0a8OeHDVn++wnwLFudj6ie1KQD1l+cfjf978fHo26tXnLjxTvGtVdo2+Srd9PbQIjT1k/9OwXp9/IfN2/3VrLLAwvFB/aQY11Df5vsFYNY03vFIVJsqZZcBAAAAAACls4UfQDdXeX14VF58rewymAMGjxlZnG+y2DLTvc4D7w2L455/NL6+0trxm/7bTPGzpmolhnz0QfSKuuYg1Ywc//yjcfmbL8YifeeOf2z2udhg0aXbXGt9U1Oc8fJT8dUV+8WqCyzS/PipsVqd4nqpV9t3EwRgFlVHj42mgc9Hn837l10KAHNIZeiwqD/jsrLLAOi25jn5qLJLAAAA2okJVADdXENOn6Jben7sqOL8MwsvMd3r7LzMKjFP7z5x/fBXiolVLadJnTZkYLwzcXzstMzKsdjc887wsW5+e2gRnlqwz1xxzla7zlR4Kl36xgvFlKvD1tyo+bLV/hukevqDd5svGzTmvVhqnvli/j5zzdT9AzBrmu58NKoVU6gAAAAAAOjZTKAC6MaaXnkzqq++VXYZzCFvffxRcZ6Bo+lZYp754tfrbhV/fOah2P/hG+Nzy64ai8w1dzz9wXvx/IejYvUFFonfTjWZ6qLXnyu20PvKCmvG8vMtGI2VSvzjpSeLn/VbaLG4c8TrxWlqay64WOyy7CrTXP5Rw+Q4+9VBccBq/Yt6mq+/0GKx4aJLx4X/fbz3Jk0oajpqnS1m63UBYOamUFUGD4neG32m7FIAAAAAAKA0AlQA3VjTvU+UXQJzUE50SjkVakb2WHGtYou+c159Ju5/b1hMqjTG8vMuGN9fY8M4ePX1Y74+fae4/sWvP19Mptp08WWLANWr48fEu5MmFD978oN3i1Nrvrzc6q0GqM4ZOjj61PWKg1abdouokzfZOf73uUeKCVdZx6FrbhTfWmXdmXodAJg9jfc9IUAFAAAAAECPVlfNPXwA6HYq742O+hPOifBXHgD4FHP98JvRa42Vyi4DgHZWGTos6s+4rOwyALqteU4+quwSAACAdtKrve4IgM6l6YEnhacAgDZPoQIAAAAAgJ5KgAqgG6pOmBhNA18ouwwAoIuovPhqMb0SAAAAAAB6IgEqgG6o6dHBEfUNZZcBAHQV1Yim+02hAgAAAACgZxKgAuhmqk1N0fjQU2WXAQB0MU1PvhDVcRPKLgMAAAAAADqcABVAN1MZ9FLER+PLLgMA6GoaG4WwAQAAAADokQSoALqZxvufLLsEAKCLanpkUFRtAwwAAAAAQA8jQAXQjVReeyuqw98ruwwAoKuaMDGanniu7CoAAAAAAKBDCVABdCOmTwEAs6vp/ieiWqmWXQYAAAAAAHQYASqAbqIyemxUnhtadhkAQBdXHZX/T/FK2WUAAAAAAECHEaAC6CaaHhgYUTUtAgCYfY33PV52CQAAAAAA0GEEqAC6geqkydH0+LNllwEAdBPVN96Jyhtvl10GAAAAAAB0CAEqgG6gacAzEZPryy4DAOhGmh4dXHYJAAAAAADQIQSoALqBpkcGlV0CANDNNA0eElUBbQAAAAAAegABKoAurvLqW1F9f0zZZQAA3U19QxGiAgAAAACA7k6ACqCLa3zM9joAwJzR9MRzZZcAAAAAAABznAAVQBdWnTgpKs+8XHYZAEA3VX3traiMHlt2GUAXsdNOO0W/fv2isbGx+H7AgAHF97/85S87rIb6+vo466yzoqmpqfmyU089tajjyiuvnG6tAAAAAPRsfcouAIBZ1/TkCxENGv4AwBxS/WQKVa8vblt2JUAXcMABB8S4ceOiV6/y1ut9+9vfjsGDB8chhxzSfNnmm28ehx9+eKyzzjql1QUAAABA5yZABdCFNQ14puwSAIBurvLk81H9wjZRV1dXdilAJ3fQQQeVXUKMGjVqmsu22GKL4gQAAAAA02MLP4AuqjJsRFTfGVl2GQBAN1f94MOovPpW2WUAAAAAAMAcI0AF0EU1PWb6FADQMXIbP6BzmDx5cpx55pmx2267xfrrrx+bbbZZfPe7340nnnhiiuv169cvfvjDH8ZLL70U3/ve92LjjTcurvvjH/84Ro4cWdzPySefHDvssENsuOGGsccee8Qtt9wyzePldf/yl7/El7/85eJ6/fv3j8997nNx7LHHxtixY6e47k477VQ8bmNj+20zPr37zO/z8vx5GjBgQPH922+/XXy/7rrrxv777198feqppxY/u/LKK2f4WG+99VYcddRRscsuu8R6660X22yzTRxxxBHx3HNt+xuYj5evz5gxY+JXv/pVsXXgpptuGgceeGA89thjzdfL1z5/ttFGG8XEiROnuZ9HHnmkqPe4445r0+MCAAAAMPsEqAC6oOrk+mh6+sWyywAAeojK4CHF/38A5cqwzQEHHFAEn+aaa6741re+FV/84hfjmWeeKS6/5pprprj+a6+9Ft/85jejvr6+OF955ZXj9ttvL4JVP/jBD+L6668vAkgZxsrr/uxnP4snn3yy+fbvvfde7LXXXnHhhRfGaqutFt/+9reL7/P+8rIMbnUWyy+/fBx++OGx4IILFt/nc9xzzz3bfPsPPvigeI1uu+22Iih2yCGHxJZbbhn33ntv7LvvvkUQrS2q1WocfPDB8dBDDxWhtHx9Bw0aVNzfzTffXFxn7rnnjl133TU+/vjjuOOOO6a5j2uvvbY4z9caAAAAgI7Rp4MeB4B21DR4SIR/xAQAOkp9Q/H/H3027192JdCj/f3vfy/CODlR6he/+EXU1dUVl2dw6Otf/3r84Q9/iK233jqWWWaZ4vLXX3+9CPPkNKTU0NBQTFd69tlnizBVBnoWWGCB4mc5Oen3v/99XHfddcXUpHTWWWfF+++/X0xC2nvvvZvrmDRpUjGRKu9n6NChscYaa0TZVlhhhWJaVIaPxo0bFz/60Y+iT5+2t71uvfXWGDVqVDFZa5999mm+fLvttiumUl188cXx5z//+VPvJ1/j8ePHxw033BCLLbZYcVmG2zLs9qc//Sm233774jXP1/OSSy4prpdBq5q87Z133llM0Fp77bVn+nUAAAAAYNaYQAXQBVUGvlB2CQBAD9P0+LNllwA9WlNTU7EFXYZyclJULTyVll566fjOd75TTIbKqVItZdiqpm/fvrHBBhsUX++3337N4am0ySabFOfDhw9vviynJP3P//xPfPWrX53iPueZZ55iSlMaPXp0dAeVSqU4Hzx4cBGCqsmg2F133VWE09rqJz/5SXN4KuV2gBmYyi0P77nnnubLcpu+Rx99tNgmsSYnYOWkMdOnAAAAADqWCVQAXUz1o/FRGTqs7DIAgB6m+vrwqIweG70WX6TsUqBHymlSOZ0op0udccYZ0/z87bffLs6ff/755styO7vFF198iuvNN998xflKK600TSgqTZ48ufmyjTfeuDjl4w4ZMiSGDRtWnF588cUYMGDAFMGjri63QszXNUNqua1ebt+3zTbbFBOoVlxxxZm6r6222mqayzJwdumll8YLL7wQX/nKV4rLMlSV071uvPHGIgCXcoJWbs+Y2yoCAAAA0HEEqAC6mKZBL0VUq2WXAQD0NNWIpieei15f3LbsSqBH+vDDD4vzd999N0477bRPvV7LsFRr5p577k99zAxOnXjiicW2frltX1pkkUWKMFAGsF566aWodpNjkyWXXDKuueaaOPPMM4uJU7fffntxShmm+uMf/xirrrrqp95PTvlaYoklWr3/9NFHHzVflkGqfH1zalgGqN56660YOHBgfOELXyheZwAAAAA6jgAVQBfT9NSLZZcAAPRQlSefj+oXtpli6zCgY8w///zF+Wc/+9k4++yzO+QxjzrqqLj77ruL6Uzf/OY3Y6211mqeaJXbCGaAqqNMPekqt7lrb8suu2wRlMrt+l5++eVie72bbropHnvssTj00EOL7fU+7e9fY2NjsQVgBqlaqgWnWm7tt+iii8ZOO+1UBLVeeeWVIriVgTTb9wEAAAB0vF4lPCYAs6gyakxUh40ouwwAoIeqfvChrYShJKuttlqxzV6Glurr66f5+RNPPBEnnXRSPPLII+3yeBn4ueeee2KVVVaJv//978W2dC23Axw6dGhxPqcnUNWCSBMmTJji8jfeeKNdH+eWW24pglPjxo0rQlL9+vWLgw46KC6//PLiNcjHGzly5KfeT74ezzzzzDSX52SplNO7Wspt/FKGqDKsttRSS8W225r0BwAAANDRBKgAupCK6VMAQMlyGz+g480111zFlm/vv/9+se1by4lMY8aMid/97nfx73//OyZPntxuwaVevXoVQarcyq+ls846q5jQVJu4NCetvvrqxfm9997bfFk+5r/+9a/p1p1yCtTMyGDaZZddFhdddNEUl+fzHzt2bDEBLCdGtcXJJ588xWuWgaqrrrqqmHCVE8Rayu+XXnrpYvvA5557LvbYY4/o3bv3TNUOAAAAwOyzhR9AF9L01AtllwAA9HCVZ16O6l67RN08c5ddCvQ4Rx55ZAwaNCguuOCCGDBgQGy++eZFmOiOO+6I0aNHx9e+9rXYYYcd2uWx5p133vjSl75UbGGXW8rtuOOOxeWPP/54vPDCC7HEEkvEqFGjivDWnLTvvvsWk5lyOlQ+doaYHnjggZg0aVIst9xy01w/Q0o5LeqXv/xl8foceOCBbXqcvF4+11NOOaV4bddZZ51im8A777yzCFBlQC1DbLVQ1fnnn198fcQRR0xzX0OGDCmCUPma5euT70+Goo4//viYe+4p/3ZmSG3PPfdsDoTl1wAAAAB0PBOoALqIyvD3ojryg7LLAAB6uvqGaBo8pOwqoEdaaKGFiilJGdppamoqtpe79dZbY6WVVoq//vWv8ec//7nYfq695P0deuihxbZ0l156afFYCyywQDEBK7f1S/fdd1/MSbmd3amnnlpsqZfb7F177bXRv3//4nXI12NqGZzK695///3TTJOakdye8JJLLon99tsvRowYERdffHERqFpjjTXin//8Z3z7299uvm4GqE477bTi1JrTTz891ltvvWKq1EMPPVSE2rLe3AaxNbvttltxvtFGGzVP3AIAAACgY9VVswsGQKfXcON90XTv42WXAQAQvdZcOeY67BtllwHQqey///7FlKycOLXyyiu3+XbXX399HHXUUXHsscfGPvvs0641VYYOi/ozLmvX+wTg/5vn5KPKLgEAAGgnJlABdBFNg14quwQAgELltbeiOmly2WUAdHnjx4+Pc845JxZeeOHmSVQAAAAAdLw+JTwmADOpMvzdiDEflV0GAMAnmipRGfJG9N6gX9mVAF1Ebnt3/vnnz9RtcqvC7uquu+6KM844o9gu8IMPPoijjz465p133rLLAgAAAOixBKgAuoCmZ18puwQAgCk0vfCqABUwUwGq0047baZu050DVMsss0y8++67UalU4rDDDouDDz647JIAAAAAejQBKoAuoPLc0LJLAACYQuXF16JaqUZdr7qySwG6gBVWWCGGDBkS3dmFF17Y5uuut9568cgjj8zRegAAAABou14zcV0ASlAZPTaqI94vuwwAgCmN/ziqw0aUXQUAAAAAAMw2ASqATq7ynO37AIDOqenFV8suAQAAAAAAZpsAFUAn12T7PgCgk6q8IEAFAAAAAEDXJ0AF0IlVJ0yM6uvDyy4DAKBV1bdHRnXsuLLLAAAAAACA2SJABdCJNT0/NKJSLbsMAIDpso0fAAAAAABdnQAVQCdWsX0fANDJ2cYPAAAAAICuToAKoJOqNjZG5eU3yi4DAGCGKq8Mi2pDY9llAAAAAADALBOgAuikKq8Nj6hvKLsMAIAZq2+Iyitvll0FAAAAAADMMgEqgE6q8tLrZZcAANAmlRdfK7sEAAAAAACYZQJUAJ2UABUA0FU0vfBq2SUAAAAAAMAsE6AC6ISqY8dF9d1RZZcBANA2Yz6Kyjvvl10FAAAAAADMEgEqgE6o6eU3yi4BAGCmVF40hQoAAAAAgK5JgAqgE6oIUAEAXYxt/AAAAAAA6Kr6lF0AANOqvDKs7BIAAGZK9c13ojphYtTNP2/ZpQDwX73WWCnmOfmosssAAAAA6PRMoALoZCrvvB8xbkLZZQAAzJxKNSovvVZ2FQAAAAAAMNMEqAA6mcortu8DALqmpiH+PwYAAAAAgK5HgAqgk7F9HwDQlbfxAwAAAACArkaACqATqVarUXl9eNllAADMkur7Y6I6YWLZZQAAAAAAwEwRoALoRKrvjoqYOLnsMgAAZlnFFCoAAAAAALoYASqATsT0KQCgqxOgAgAAAACgqxGgAuhEKq+9XXYJAACzpfrmiLJLAAAAAACAmSJABdCJVN8QoAIAurbKsBFRrVbLLgMAAAAAANpMgAqgk6iOHRfVDz4suwwAgNkzaXJU3xtddhUAAAAAANBmAlQAnUTl9eFllwAA0C4qb7xTdgkAAAD/j737gI6rPLc+vs80jXqzZcm9N9wN7lTTseklhIRAICQhmBQSEm7yJbkJN0BISIFwuYRLqIm59B5676YY44Z7w022XNSmnm+9r5Bs2bIt29KckfT/rXXWWKMzZ/YIyVjW9vMIAAAAaC4KVACQJpLLWN8HAADaB3cFBSoAAAAAAAAAQNtBgQoA0gQTqAAAQHuRpEAFAAAAAAAAAGhDKFABQBpwI1G5azd6HQMAAKBFuOs3ya2NeB0DAAAAAAAAAIBmCTTvNABAa3LXrJeSrtcxAAAAWobrKrlynfwDe3mdBAA6tOTilYreOtPrGADQboVvutrrCAAAAABaCBOoACANJFev9zoCAABAi3JZ4wcAAAAAAAAAaCMoUAFAGqBABQAA2pvkijVeRwAAAAAAAAAAoFkoUAFAGnApUAEAgHYmuWKt1xEAAAAAAAAAAGgWClQA4DE3GpO7YZPXMQAAAFpWVY2SGyu8TgEAAAAAAAAAwD5RoAIAj7lfbJSSrtcxAAAAWpy74guvIwAAAAAAAAAAsE8UqADAY8k1rO8DAADtU5ICFQAAAAAAAACgDaBABQAec1ev8zoCAABAq6BABQAAAAAAAABoCyhQAYDHkquZQAUAANrvqmI3Hvc6BgAAAAAAAAAAe0WBCgA85MYTctdt8joGAABA60gm5ZZv8ToFAAAAAAAAAAB7RYEKADzkbtwsJRJexwAAAGg17obNXkcAAAAAAAAAAGCvKFABgIfc9UyfAgAA7RsFKgAAAAAAAABAuqNABQAeokAFAADau6SZuAkAAAAAAAAAQBqjQAUAHkoykQEAAHSElcUAAAAAAAAAAKQxClQA4CF3AxOoAABA+8YKPwAAAAAAAABAuqNABQAecV2XHygCAID2r7pWbmW11ykAAAAAAAAAANgjClQA4BG3YpsUi3sdAwAAoNWxxg8AAAAAAAAAkM4oUAGAR9z1rO8DAAAdQ3JjhdcRAAAAAAAAAADYIwpUAOARClQAAKCjYG0xAAAAAAAAACCdUaACAI+4GyhQAQCAjoECFQAAAAAAAAAgnVGgAgCPuKyyAQAAHYS7kQIVAG+89tprmj59uoYPH67x48frjTfe0DHHHKNBgwYpHo97HQ8AAAAAAABpIuB1AADoqNyKbV5HAAAASAm3fIvcZFKOj3/DAyB1tmzZou9///uKxWI644wzlJeXp4EDB+rCCy/U9u3b5eP3JAAAAAAAAHyJAhUAeMB1XblbK72OAQAAkBqJhNzNW+V0KvQ6CYAOZPHixaqpqdFRRx2la6+9tuH+iy66yNNcAAAAAAAASD/8UzsA8ML2KvuDRAAAgI7C3cAaPwCpFY1G7W1hIeVNAAAAAAAA7B0FKgDwAOv7AABAR2MmUAHoWMzqvDvuuEOnnXaaRo0apSlTpujb3/62Pv3000bnffzxx7r88ss1fvx4DRs2TMcee6xuuOEGVVRUNDrv5ptv1qBBgzR79mzdeeedOumkkzR8+HB73V/+8pfavHlHUfOYY47RxRdfbH/96KOP2sf97Gc/a3ifeTsejzecn0wmdffdd2vatGkaOXKknVr15z//We+884491zz3vpjrnnjiiVqzZo19PWPGjLGv6bvf/a7mzZvXcN769es1dOhQ+zqb8uCDD9rnNHkAAAAAAACQGqzwAwAPuFu2ex0BAAAgpfjzD9Dxpj994xvf0EcffaQ+ffrorLPOUm1trZ5++mm99dZbtlg1YcIEPfzww/rFL34hv9+vqVOnqrS01D7GFKSee+453X///SorK2t07d/+9rdatGiRTjjhBB199NF65ZVX9MADD+izzz7TQw89JJ/PpwsvvNCWlh5//HENHjzYlpWGDBmyx7w/+clP9NRTT6lnz54655xzVFlZqf/93/+1efeHedwFF1ygYDCo8847z5apXnzxRVvEuv322zVu3Dh16dLFlr5ee+01zZo1S4ceemija5jCl3n89OnT9/OjDgAAAAAAgANFgQoAPMAEKgAA0NG4WylQAR3JP/7xD1uEMhOdrrvuOoVCIXv/V77yFVssMvf993//t379618rNzdXd911l53KZLiua6c/3Xbbbfr5z39uy1Q7W7lypZ544gn16tXLvv39739fp556qubOnWunWY0dO1YXXXSR3n77bVugMsWpGTNm7DHrSy+9ZMtTZmKUKXZlZ2fb+88//3x77I+NGzfaaVtmelQ4HLb3mYLXd77zHf2///f/9Oyzz9qClymUmQKVeR07F6jMa/vwww91/PHHq6ioaL+eGwAAAAAAAAeOFX4A4AF3CwUqAADQwTCBCuhQHnvsMQUCAVuAqi9PGWbl3tVXX60zzzxTjzzyiJ1UdckllzSUpwzHcWzhyRSkzLSqVatWNbq2KWXVl6eMjIwMHX744fbXq1ev3u+sZgpW/RSq+vKUYVb5mfWD++unP/1pQ3nKMFOyjjjiCC1fvtwWvOrX/RUWFtpClfkY7Dx9yjAfHwAAAAAAAKQOBSoA8IBbwQ8QAQBAx8IEKqDjiEQiWrp0qS05NTVFyUyHMuv9Pv/8c/v2+PHjdzvHlK9Gjx5tfz1//vxG7+vbt+9u5+fl5dnbnctIzfXpp5/aFYIjRozY7X27rtfbF1OcMpOsdmXKWIZZK2iYFX1mata2bdv08ssvN0zeMhOzOnfu3FAIAwAAAAAAQGpQoAIADzCBCgAAdDTu1kqvIwBIkS1btthbs5pvb7Zv377X87p06WJvq6urG91vJk7tykytOpi8ZhqUKW3tKUNzlZaWNnl/SUmJvTWFqXpmjV/9tC7jvffe05o1a2yxqqksAAAAAAAAaD0UqADAAy4rbAAAQEcTi8utqvE6BYAUyMrKalSQ2lVNTY2dtpSTk2PfXr9+fZPnbd261d6aclNrMmv7qqqqbKZdmfv3h3ltTakvTu08kWvQoEEaNmyY3nzzTftan3rqqUbFKgAAAAAAAKQOBSoASDE3Hpcq9+8v4QEAANoD1vgBHYOZKNWtWzetWLGiYRrVzn7605/adXmmQGS8//77TV6n/v4BAwa0al5TYjLFpwULFuz2vk8++WS/rmXKYOvWrdvt/g8//NDejho1qtH9piwVi8X00ksv6ZVXXrEfl379+u33awAAAAAAAMDBoUAFACnmVmyXdv+HzQAAAO0eUziBjuP0009XPB7XDTfcYG/rzZ071xaFunfvrjPOOEPBYFB333235s2b1+jxt956q5YuXaoJEyaoa9eurZr1nHPOsbd/+MMfGk2QMoWq//u//9vv61133XW2FFXPlKNeffVVW9QaMmRIo3OnTZtmVxLecsstKi8v15lnnnlQrwUAAAAAAAAHJnCAjwMAHCB3S93qBgAAgI6GCVRAx/Htb3/brqZ75JFHbGlq/PjxdqXfM888I8dx9Pvf/95OqfrVr36lX/7ylzr33HM1depUlZaW2qlP5jDv/93vftfqWU888UQdf/zxev7553XaaafpiCOOsJOzXnjhhYZ1hD7fjn+DuHr1aj366KN20tZFF1202/XeeustW4SaOHGi1qxZo5dffln5+flNvpa8vDwdd9xxdn2fKVKdcsoprfxqAQAAAAAA0BQmUAFAqjF5AQAAdFDu1kqvIwBIEVMGuueee3TllVfaaUz/+te/9OKLL2rSpEn218OHD2+Y/nTvvfdqypQpeuedd/TPf/7TlpdMAcuUlEyJKhVuuukm/fCHP7TlrpkzZ9qVe5dddpnNYdQXqQxTijITo8zra8p9992nkpISO73KFMFMKevBBx9sWFm4q+nTp9tbU6QyhSoAAAAAAACknuO6LoukACCF4i+8o/izb3gdAwAAIOX8U8YoeOaxXscAgEbWrVtnC1JNlZf+9Kc/6bbbbtOf//xnnXTSSXu9zjHHHGPLVWbiViDQ/KHvZl3hX/7yF9111112alVLSi5eqeitM1v0mgCAHcI3Xe11BAAAAAAthAlUAJBibnWN1xEAAAA8wZ+DAKSjO++8U4cddpiee+65RveXl5fbKVjBYNC+vzWsX7/eTuTq06ePJkyY0CrPAQAAAAAAgH1r/j+HAwC0jEjU6wQAAADeqKr1OgEA7Obss8/WAw88oB//+Md69tln1bNnT23atMmuHDTrBK+55hp16tSpRZ/z/vvv1yOPPKLly5ersrJSf/3rX+36QAAAAAAAAHiDAhUApJgbiXkdAQAAwBNMoAKQjgYOHKiHH35Yd9xxh95//3299NJLysnJ0bBhw3ThhRfqyCOPbPHnLCsr06pVq5SZmakf/vCHOuGEE1r8OQAAAAAAANB8juu67n6cDwA4SNE7HlZy3hKvYwAAAKScU1ygjJ9f5nUMAOgwkotXKnrrTK9jAEC7Fb7paq8jAAAAAGghvpa6EACgeVxW+AEAgA6KCVQAAAAAAAAAgHREgQoAUo0CFQAA6KhqI3KTSa9TAAAAAAAAAADQCAUqAEg1ClQAAKCjMgvkq2u9TgEAAAAAAAAAQCMUqAAgxVjhBwAAOjLW+AEAAAAAAAAA0g0FKgBINQpUAACgI2MCFQAAAAAAAAAgzVCgAoAUcl1Xisa8jgEAAOAZN8KfhQAAAAAAAAAA6YUCFQCkkilPuV6HAAAA8FCMAhUAAAAAAAAAIL1QoAKAVGJ9HwAA6Ohica8TAAAAAAAAAADQCAUqAEghlwIVAADo4FwKVAAAAAAAAACANEOBCgBSiQIVAADo6ChQAQAAAAAAAADSDAUqAEilWgpUAACgg4vFvE4AAAAAAAAAAEAjFKgAIIVY4QcAADq8KBOoAAAAAAAAAADphQIVAKRSlIkLAACgY3NZ4QcAAAAAAAAASDMUqAAghVxW+AEAgI6OFX4AAAAAAAAAgDQT8DoAAHQorPADAAAdHROoACBlfP17KnzT1V7HAAAAAAAASHtMoAKAVKJABQAAOjg3nvA6AgAAAAAAAAAAjVCgAoAUcpm4AAAAOjrX9ToBAAAAAAAAAACNsMIPAFLJcbxOAABASjy5epHuXzZXy6u2KuwPaGKnbpoxaKy6ZuU26/FvbVytOxd/qnlby+V3HA3JL9Y3+g7XlJIeu5379JrF+tvCj7Q5WqPBecW6+pAJGprfabfzfvLRy1q8vUIPHXGG/A7/lsQzFKgAAAAAAAAAAGmGnxoAQCr5+W0XAND+3bxgln4x+3VFkgmd12uIxnfqqufWLtVX33pCq6u37/PxM5fP0/fef06fVKzT5M7ddFqPAdoUqdH3Pnhedyz+pNG5n2/brJ9/8poy/H6d3XOwvqip1GXvPqvNkZpG583ZslHPr12m7w8+lPKU1+hPAQAAAAAAAADSDBOoACCFnIDf6wgAALSqhds26Y4lszW6sIv+PuEkBX11/+87vqyPfvThS/r93Hf118OO2+Pj11Rv143z3lPA59Pfx5+s0UVd7P2xZMJOkLpl4YcaV9xVIwpL7P0Pr1woR47+Z/yJKgln2+f5+ttP6uk1S/T1vsMarvvn+e9rbFGpjurSq9U/BtgHJlABAAAAAAAAANIMBSoASCUfEy8AeGtzX58WdM9WeaCzEslCxZUluUG5CijpBhR3/Uq4PrmsHMUBev6hv9rbPmd+T/cPGN3ofd02r9Nry+fplhGHKye/uMnHf/Daw4q7SY2edKpmT/+WZu/0vr4jD9cr11+i/9y2SdNPvcze9+7iTxTOydczx11g347HotLbT+qFgk5KHH66vW/p/Pc1a/M6feXyP+iunoNa6ZWjufoVZ2jPFToAAAAAAAAAAFKPAhUApBITqAB4bHvJRiXX/0vZeV20pqSbFvvi2pbMUUagh1xfZ0USOdoaDWhb1Ce/E1LYH1aGk6EMX4Z92xw++0fIgNxkQImkX/GkT7GET5GEo5q4VBOTvUXHtGnxZ5LPr9dLjpBTFWr0vqqeE6VlczVz3lKFRwxs8vHb11fY2yWl47S6apeSVbBYTmaeliydp/u+fN+2UCdFo/N1b2WRHMdRsmqzvX+Rv7O+qCqWm0yo4pn7FBpytF4qniRVtc7rRvMd2znkWYHq5ptv1i233KIrrrhCM2bMaNZjXNfVs88+qyeffFJz5szRli1bVFRUpF69eum0007TtGnTFA6HGz1m6tSpWr16tZ577jn17t17t2tefvnleumll5SVlaX33ntPoVDjrxXjyCOP1Pr16/XWW2+puLjpwiEAAAAAAAAAoGVQoAKAVPJToALgrYhTaW8ztq1XX3OY+/JLtaakVnPj72hD1Yq690vKCfZQbsZAhQLdlHCLVZ3I0saIow01ETshqElmcFVI8occZQUylekPK9OfaQtYQXOYEpaCcswfQ83kKzPxKulXzBwJR5G4o9q4VB2XvUXb4iZiSm5ZJ19BmZzA7oUQf0FXe5vYVPd51hTHH6y7Vjy6+/XdpNxojZSIyY1WywllKdh9mCJznlPNBw8qc9Q0Vb/zT3tusOdIe1s7+xklNq1S/rk3tNjrxMFpS/M4N23aZItWH374oQoLC3X44YertLRU5eXltvj085//XLfffrstZg0atGO62cSJE/Xggw/qo48+2q1AFYvF9O6778rn86m6ulqzZs3SpEmTGp2zatUqrVu3TkOGDKE8BQAAAAAAAAApQIEKAFLJ35Z+ZAigPYokt+12X8bWdeprDvP+gq5a3blMc5Mbtap6pSpjq3Y7v4s/oPxwf2WH+ingL1PMLVRlLEPlkaQ21UbkmoKMXG2PV9tjv/nqS1g+ZQXCyvJn1k3C8oUV8oUUsCWs0JclrIBcs3ow6VN8pxJWjTlirmoTB/qRwoFwa8znlytfZl6T73fCOfY2WVtX5GtKoNsh0gcPKTL/ZYVHnNjofdFFb9vyVN01quQPZSk8+lTVznleVc/92R5GeNQ0hfqNlxuLqPq1OxQee7r8Rd135HRdO60K3mgrH/qamhpddNFF+vzzz+3tD37wA2VmZja8P5FI6P7779f111+v888/X48//rh69Ohh32cKUfUFqjPPPLPRdc19VVVVOuWUU/T000/rjTfe2K1A9cEHH9jbyZMnp+S1AgAAAAAAAEBHR4EKAFLIYQIVAI9Fopv2+v6MLWvVzxymPFDYTas7lWpucoPWVO8oUrmKa0vtAnvszMwb6hnKUUF4kMLB3nJ8XRRJ5mlbLKANNXFtj9UVX5oroeTBlbAyzB92/baElWmmYfnCyvDXTcEKOBmNJmElk34lXL/iCZ+ipoSV+HISVkyKUMLarwlU1pdTpPY0XUpNTJeqlzHkaFW/fqein7+p7c/cqKyJF8jJylds6fva/uwf7NQpM33KfCbWX7PgG39TdOGbSmz5QoHSgQr1OdS+r/q9mXIjVco+/GKbrfLfN9mylZJxhfpPVO7JV8uXU9TiHwe0D2aqlClPXXDBBbrmmmt2e7/f79eFF15ob3/zm9/Yc+677z77vgkTJtiSnplctStTmDIuu+wyvf766/btn/70p00WqKZMmdJKrw4AAAAAAAAAsDMKVACQSgEKVAC84zquIrV7L1DtLLPiCw0whylTFfXQquISzU2s1xc1q/f4mFiyUhurTWGgcWkgV1JJuER54YHKCPSU63RSbSJHFVGfNtREVZtonZZSXAlti1fZ42BKWNmmgGVLWBkKfXmYKVh+x5SwgnYSVvLLdYR1JSyfInGp5st1hNEOUsJyAhlftt9iey1YOaHMvVwjpLyv/EHb/u+nqv3wUXvUvcOnrMkXKr5+kaKL3pITDO94jC+gjCFHNbpOsnqLat6+T5mTLpAvu1BVr92h2k+eUs5xV8qX20mV//6Ttj3+GxVcUDe1CqkT8KX/CKra2lrNnDlT4XBYV1555V7PNdOnTHHKlJ4WLFigwYMHq6ioyK70W7hwoSoqKuz6v3pvvvmmunTpYs8zRasXXnjBruszqwHrmbV+ZtrV2LFjW/V1AgAAAAAAAADqUKACgFTyscIPgHdieT65yfgBPTZz82oNNIeZ6lPUQ6s7leiz+DqtrVnT7GvUxDeopnLDbvcXyVFuVm/lZvRX0N9NCRWpKpGpzRFpQ01ECbdu0pBXTAlra7zSHvvN9Gb9UtAxk7Ay69YRmklYvgwFv1xH6NtpHWH9JKzYriWsmCmnKe3ZFX2OT26k6Y+V++XqPiejbpXfngSKe6jw2/couvhdJTYuteeH+k2Qv7CrKv5+sdnvKCdsanl7Vv3GP2xRK2vC+fbtmlmPKDRgsjLHnWPfTmzboKrn/6L4xuUKdO59gK8YByLYBvrkH3/8sV2zN3HiRBUUFOz1XJ/PpxNOOEH//d//reeff94Wowyzls8Uqsy1jjnmGHvfxo0b7X31a/3MhClToDJTqM45p+5zc/369Vq5cqUOP/xwhUJmth8AAAAAAAAAoLVRoAKAVGICFQAPRQtapoiUtXOZqriXVhV30mfxtVpX88WBXdBxtT26zB6N7pbU1R9SfniAskN95fOXKZYs0PZ4SBtrk9ociaitiLkJbY1V2uPAS1gBOwkryx9W2J+pkC/UsI7Q9+U6Qtc1h1+JhF+xZOpLWGadnik5Jbaul5uIy/E3/nYjUVFXuPM3o7Bkp0oNnCKZ40tutEbxjcsU6NzHrkfbE/M8NR8+ppyTrrKTqpI12+RWb5G/qEfDOYHiXnXnbl5JgSrFgm1gAtXSpUvtbb9+ZqHpvg0YYGb1SatW7Vh3aspXd955p13jV1+gMtOnXNdtWM03efJke7tzgYr1fQBaUnLxSkVvnel1DABot8I3Xe11BAAAAAAthAIVAKSSnwIVAO9EcxJmnFKLytq0UoPMIamqU2+tLCrS3NgXWl+7rkWun1BUm2vn2mNnZnlb71CeCjIHKxzoJflKFEnkamssoPU1MVXFW/iFpoGYG9eW2HZ7HGgJK+QEG0pYGf7wlyWsDDsJy29WEdp1hH4lkwHFkz57ROI+RRJSTaxuHWF8HyWsYK/RSnz8pGKrPlWo95jGr2H5LFuNC/YYsefXuXahts38iTJGnKicqZc3el9k4etSIqrQgEl7zVD18m3yF3ZXeOQpdXfUT15zd+xSdONfFvAcpkOmWrANfMi3b6/7OsvJ2fu0tHr1U6o2b97ccN9hhx2mYDCojz76qOE+U5QyE6vMdCqjR48e6t27t95++20lEgn5/f6GAlV9uQoAAAAAAAAA0PooUAFAKvnbwE8MAbRbkYxoixeodpZdvkJDzNFQpirWnNhqbaxd3yrPF01u04aq9yWZY4d8SWWZZcrLGKhQoIdcp5Nq4lmqiPq0viaiaLIN7MJrJVE3pmgsporYtgP7ziEgZfhMCStLmaaE5cuoW0doJ2GZVYQhbZ16jGZ9/KTcN/9b7qfF2rZ8vob/4nFtnP2aNq6crYxBh8ufV7LnpynpKzdWo9rZzyhr4gWqfOFmRT59Rrln/lZVr9wmJ5TVsIYvtnaBKp+5UfENS+Qv6KasKRfKX9xDkXkvK++8G+T46orLkfmv1L3+ZR82PE9s9Rx76/9yEhVSJ+RP/wlU+fnmdxKptra2WeebdX9GYWFhw32ZmZkaNWqUZs+erWg0qkAgoLfeekvDhw9vtBbQTJq67777NHfuXI0YMUKzZs1SSUlJw1QrAAAAAAAAAEDro0AFACnkMIEKgIeioWqp7mf8rW7nMlVl575aWVSgOZFVKo9sTMnzV8fW2mNXnR2f8rL7Kjujv4K+roqrUFXxsDZFpI01ESXVMmsO27NIMqZIdKskczShWApNOEzb3q2boqNQUJ/ed5lic+bKyclW6NRR8ue8bCdhJZauVGTJMuX16KsuoybJ74TsOsK1535b8+69SVtvO0/xqrqyV9XT18mNR9X53N/Kl12geCyibQ/8VG6sVpljz1Bs1Rxtf+w/5e/SX8Feo+rW/9m1f9Wqev0fCnQdovgX87X1X1fJl9tJtZ88o9CgIxQo3rHWD6kRagN/HOrZs2ejVX77smjRInvbvXv3RvebNX5motScOXPsNKotW7boggsuaHSOmTRlClTvvfeeffySJUt0+umnt9hrAQAAAAAAAADsGwUqAEglClQAPBRxKj153pyNyzR0o+rKVCX9tKIwX3MiK7U5Up7yLK6T1NbIYnvszPzu3D0YVn54oDJDfeT3lSmazNe2WFAbaxPaEo2mPGtb5cbicuOxHXdEY4ovW6HgiGEKH3eU/EWFqk1GVRuNqmbBx4q89LrKx4zU+r55Ox4zNEeZ55yumoefaLjLKS1W1rQTFO1eI+nf0rJFSm7fqB4XflNdDp0sf/x4fXDN5UqsX6wxV9+k/NJKua5fS566V1uSUY287EateuVf2vT+k4olYgofMlXZJ/4oxR8dGBltYALVuHHj7JSo999/XxUVFY0mSzXl+eeft7cnnHBCo/vNqr6//vWv+vTTTxumWZmJUzsbP368LVd9+OGH6tWrl1zXZX0fAAAAAAAAAKQYBSoASCVW+AHwUCS5h4lBKWIqE7kblmrYBukQU6bq0l8rCvL0aWSFKiKb5LW4W6tNNZ9K5thJllnLlVGkgvAgZQR6Sr4S1SZytCXm14aamKrjrbgXsY2JzV+omiefU7JiiwKD+iu+cLGcvFzlX/PDJs/PPPYoezQlPm+BnV7lLytVYtkKhY8/WoHuXRveX7txg73dUhzW9qoV9tdOSSf5olEtKtwibXtTye2V2vbyPxU+5ggtyXhfOrGfck/8Qd25rhQKfKhsf2bDOsKQL2xXEQacoJ2EJQXlJgNKuj7Fk37FEj5FE45qYlJNvO5IMrSsXRaoTKHpq1/9qm699Vb94Q9/0H/913/t8dyHHnpICxYs0OjRozVkiKmK7mBW8uXk5Oizzz6z06fy8vI0cuTIRudkZ2fbx5prmBKV4zgUqAAAAAAAAAAgxShQAUAqBZhABcA7kWiF0oUtU61fomHr68pU20sHaHl+rj6rXa6K6Galm0his9ZXvSPJHDsUmMlVmT2UGx6goL+7kipWdSJLFVFHG2oiiiWT6kgisz6RG4ko87STFRo/Vlv/47cHdJ3ox58qNneBMs+arviS5Uo0cY6TlfXlir4d08HMcztZmQ1v1774mpzMTGVMGr/b411HqklE7HFAn8BByQlImYGwsmwJK0MZ/rBCToaCTqhhHaHcgFzXlLD8iid8iiV9isQd1calalPCiqnDLY7MCKR/gcr47ne/q1dffdUWpDIyMvSTn/xEmZk7Pr/MpKj/+7//029/+1tlZWXphhtu2O0afr9fhx12mGbPnq1Nmzbp8MMPt/ftykyluummm/TGG2/YElZRUVGrvz4AAAAAAAAAwA4UqAAglZhABcAjruMqUpv6lXnNYaoUeesWa8Q6abjjaFvpQC3Py9Gc2mXamkalrz2pjK2yx65KfAHlZ/VTdqifAr6uiqlAVfGwymuTKq+NtMvSTMbk8Qqce7qcjIwDvkZy6zbVPPFvO8Eq49DRtkDVlECPbvaTJ/Lmu/KffopiS5YpuaFcGUfVTe5JbCxXdNbHyjpzupxg63zbY0pY1YlaexxoCcsXcJQZzFCW78tJWH4zCStDASdDfgUblbASrl8JMwWroYRlpmG5dhJWW/p8ykqD70IfffRRu56vKT179rQTp0KhkO666y5dddVVuv/++/XMM8/oyCOPVGlpqZ0m9e6772r58uV27Z4pP5nbppg1fq+88kqT6/t2LVAtWbJE3/rWt1rwlQIAAAAAAAAAmiMN/uoaADoOp4mJAwCQCrE8n9xk+q+ac1xX+WsXaeRaaURDmSr7yzLVFrUlruLaUrvQHjszi+F6hLJVEB6ozGBv+XyliiTztC0W1IaauLbFYmqrgn17H9TjzUSf6oeesL82xae98ZeWKGPKBEXeeFdbZ39Wd19ZqcJH1RVUav/9knxdOis4esSO6yddOb70mn6UdFxVxWtVpQMsYYUkX9BRVjBTWf6wwvXrCB1TwqqfhGW+7QvYdYSJpF/xpFlF+OU6wi+nYJnbVMkOel8oX7NmjT2asm3btoZf5+fn6+9//7tef/11Pfjgg3bF3vr16+39ffv21SWXXKJp06bZCVR7YgpU9fa0mm/o0KF26tTmzZtZ3wcAAAAAAAAAHqBABQCpxAQqAB6JFrSl+TRNlal82lY2WEtzMzWnZqm2x7aqLYsnq1Re/bEkc+yQI6lzuER54QHKCPSUnM6qSeRoS9Sn9TVR1SaaWmbXfkTfnaX44qXKOuc0+fJy93l+5snHKzh0sOKr1shXkK/gkEFyAn7FV6xSbN5CZV/8VVuYirz9vmpfeUNuVZX8XcvsikE7waqdMCWsyni1PQ60hOUPOcoK1E3ByvRn2hJW0BymhKWgHPOtoxuUa6ZgJf2KmSPhNFpHaG6bIzvoXYltxowZ9tgfjuPYyVPmOBD9+/fXwoUL9/kc77zTeEUoAAAAAAAAACB1KFABQCqFQl4nANBBRXMSUvoPoNojx00q/4uFGi1plM+nLWWDtSwnbMtUlbEd02Lag5r4BtVUbpD0VqP7i+QoL6uXsjP6K+jvrqSKVJXI1OaItKEmooTb9kpyO0uUb1bNv19UYMhAhcaMbPbjAr172mNnNc++oEC/PgoO7K/Y0uWqefLfCo0fq+DQQbZIVXX3v5T34xlywge+arC9ScjV9ni1Pfabr76E5VNWIKwsf+aOSVh2HaEpYYW+LGEFlB0yVUG+FQUAAAAAAAAApA/+1hoAUsjJzJACASnehlsMANqkSEa0TReoduYkkypcs1CFkkbbMtUQLc3J0JzqJaqKb1e75bjaFl1uj0Z3SyrzB5UfHqDsUF/5/WWKuQXaHstQeW1SmyIRpTuzWq/6ocfk+APKOmPaQV0rOneBEitXK+eKb9W9/e4sOdlZypx+khy/T77cHG3/6+2KfjJHGRMObaFXACOhZLNKWDmhs1KWCQAAAAAAAACA5qBABQCplpslVbSvaSkA0l80VC1VeZ2itcpUCzTWlqn82tJ1qJZmB22ZqjpeqY4iqZgqaufZY2dmvlLvUK7yw4MUDvaW4ytRNJmnLdGANtbGtT0WUzpIbt2qxIrV9tfbfndTk+dU/f0ee5v9rQsV7Nu7yXPcRFK1z72k4MjhCnQts/clNpbLV1hgy1OGr1Onuucs39QqrwX7lsdETgAAAAAAAABAmqFABQAp5uRmy6VABSDFIk77LxP5kgkVrZ6vIkljfAFVdD1ES7MDmlO9WDXxdtgea6Zocrs2Vs+SZI4dciV1ySxVXsZAZQR6KOl0Uk0iWxURn9bXRBRNJlOW0QmHlTH1iCbfF5u7QMl1GxQcM1K+wnxbhtqT6KyPlKzYopyLL9hxp3kdyR3rDd36KZCOmd2FVMv0BxTw1ZXZAAAAAAAAAABIFxSoACDFnLxs7fgxLgCkRiS5VR2JLxlX8ep5KpZ0qD+oTV2HaWmWT59VLVZNYu/rxTqS6tg6e+yqk+MoP7uvckL95fd3VUJFqopnalPEVXltRAm3Zf9P5ssMK/PYo5p8X3JThS1QhcaO3OPkKcONRFX70uvKmHBYo5KVv3MnxT5frGRVtXzZWUqsWFn3nCV1k6iQWrlMnwIAAAAAAAAApCEKVADgwQQqAEi1SLRCHZWTiKnTqrkydZlD/SFbplqS5dPcqkWqTdR4HS89Oa62RpbYY2d+SV0DGcoPD1RWqK98vlLF3Hxtj4W0sTahiki0WZePf7FOsXkLbNEpY+yoFokceeMdKRZXxtGHN7o/NH6snWJVecc9Cvbro+gnc+Tk5So0cniLPC/2T16QAhUAAAAAAAAAIP1QoAKAVKNABSDFXMdVpLbc6xhpwZeIqvOqueosaVzAlKmGa3GmbJkqkqj1Ol6bkHAj2lwzxx47y5RUkFGg/PAghYNmUlRn/dt8w+FzlB0IqKp+dZ65xtp1irz0uvx9erVIgSpZWaXaN95ReOoR8mWZJDsEB/RT1jmnqfbF1xR5d5b8Pbop67ST5ISCB/282H9MoAIAAAAAAAAApCPHdVt4/wYAYK/ib3+s+EMveB0DQAcSzXf0fulMr2OktUQgQ5u6DqgrU1V+rmgy4nWkdicn2F25GQMUCnRXUsWqTmSrIupofU1EsWTS63hIkaO79tD1E47wOkbaW716taZOnaoxY8boX//6l9dxALRhycUrFb2VPwcCQGsJ33S11xEAAAAAtBAmUAFAijm5OV5HANDBRAvoy++LPx5RycrPVCJpfDBT5V1HaHE4qXm2TNW8tXTYu8rYanvsqsQXUH5WX2UH+ykQ6Kq4W6jKeFibal2V10aUFJ+/7UlxuPGEMDQtLy9PV1xxhcrKyryOAgAAAAAAAAAdAgUqAEgxJ48VfgBSK5qTkHZsT8M++GM16rJijrpImhDKUnnXwVqUkdC8ykWKUaZqca7i2lL7uT12/UalezBL+ZkDlRnsI5+vi6LJfG2PBbWhNqGtUf5btEWdKFA1u0A1Y8YMr2MAAAAAAAAAQIdBgQoAUszJpUAFILUiGVEKVAfIH61Wl+VflqkyslReNkSLMuJ2MlU8GfM6XrsXd6u1qfoTSebYwfyftDhcrLyMQQoHe5o5VqpJZmtL1K8NNVHVJBKeZcbeMYEK8M6qVas0a9YsnXHGGa3+XPPnz7erKI877rhWfy4AAAAAAACgJfha5CoAgOZjAhWAFIuGqr2O0C4EItUqXf6pDl84T5eWh3VmeJSG5Q5VwOHfJHihNr5JG6re1sotM7Vyy1+1cdt1itVeq0Ln9xqU9aAOLZytiZ3KNa6Tq2GFYXXNCivg8O2P14rD4ZQ/5znnnKPBgwervLy80f033XSTBg0apJ///OeN7q+qqtKwYcP09a9/3b69YcMGXX/99Tr55JM1atQoDR8+3JZCrr32Wm3ZsqXRY4855hhNmzZNL730kv21Off888+X67oN71u3bp1+8pOfaOLEifb9p556qmbOnNnoOqZ4YrKZx9a7+eab7X2zZ8/WnXfeqZNOOsk+fsqUKfrlL3+pzZs37/baFy9erCuvvFKTJk2y2S+88EL7+IsuusheCx3HggUL7OfwW2+91erP9dprr+nMM8/UZ5991urPBQAAAAAAALQUftoDACnmBAJSZoZUE/E6CoAOIuJUeR2h3fFHKlW2bLbKJE0O52pDWV99HoxoQeXnSrhMP/La9uhKe+yq1B9Ufri/skP95PeXKeYWqDKWofJIUptqI3I9SduxeLHC7+ijj9ann35qiyOnnXZaw/31RZL33nuv0fnvvPOOYrGYpk6dqvXr1+uss85SRUWFvY4pQW3fvl2vvvqq7r33Xn3yySd66KGHGj3ePOZHP/qRjj32WBUUFCg/P1+O49j3bd26Veedd57C4bBOOeUU1dbW6umnn9avfvUrRSIRfeMb39jn6/ntb3+rRYsW6YQTTrCZXnnlFT3wwAO2rGKy+Hx1RUHztrledXW1fS09e/bUm2++aYthJhM6FvO5F03R6tNNmzYpmUym5LkAAAAAAACAlkKBCgA8WuPnUqACkCKRZOMJKWhZgdrt6rpstrpKmpKZq/WmTBWo1YLKRUpSpkorScVUUTvfHjsLSeoZylFB2KwE7C3H10WRZJ62xQLaUBPX9hjrGttygcqUnv7yl780KlCZyVHz5s1Tdna2XWv2xRdfqGvXrg3Tc+ofd/vtt2vjxo363e9+Z4tU9UzxyUzzmTNnjp3y1L9//4b3bdu2TZdddpmuuuqq3bKYaVbHH3+8nX4VDAbtfWYqlSk63X///c0qUK1cuVJPPPGEevXqZd/+/ve/b6dYzZ07Vx9//LHGjh1r7zdTqSorK/W3v/3NlrkMk2nGjBl2QhYAAAAAAAAAYAd2WACARwUqAEiVSLTC6wgdRqBmu7otna2jP1+ob1Xk6LTM0RqcO0g+x+91NOxDLFmpjdUfatXWh7Wy4lat33q9aqqvVa57vfqF79Xogvc0odNaTegc14iiDPXMyVSGn/+u+8OsUCzKSP0KP7O+z5Sj3n777Yb73n33XTsh56tf/WrD2/Vef/11DRgwwE5sMlOi/vM//1Onn356o2uaCVJmJV79tJ1dmXLVnphyVX15ypgwYYJyc3Pt2r7mMIWr+vKUkZGRocMPP9z+uv4a8+fPt4WqyZMnN5SnDL/fr2uuuaZhShU6hp/97Gd2faPx5JNP2vWNjzzySMPEtF//+td2mplZXWlWQprPkaY+H83n1RVXXNFw7hFHHKGf/vSnWr58ecM5ZsKZebxx22232efadcpbc5h85rF/+tOfdnufuW/n12DE43FbeDzjjDM0evRojRkzxq7v/Oc//2lXaO7KFCq/+c1v6rDDDtOIESM0ffp0/e///q+dPrfrx84814cffqizzz7bvm5TrjTFy6aY95144olas2aNLr/8cptj/Pjx+u53v2tLm/XMx33o0KGNvj539uCDD9rnvfvuu/fr4wYAAAAAAIADxwQqAPBCHgUqAKnhOq4iteVex+iQAjXb1H3pJ+ou6cisAq0t662FviotqlyspNrPaqNkxNXGl2PaPieuWIUr0xULd/OpaEpQecOb9+1G7ZqENr4QU/WyhBIRKVToKH90QMXHBOUL1K0+q1e5MK71T0YV3eQqo4tPJScFlTNo9+dZ/1RUW2bF1P9nWfKHG19jf9XEN6imcsNu9xfLUV52H+WE+isY6KaEW6SqRFibaqWNtRElmvihfUfWOTOzYZVdqh111FG2SLFgwQJbqDJlqqysLDvx6Y477rAFjzPPPNO+f926dQ2Tqkz5wRxmktPChQvt9CdzmCJJfSmkqVVlPXr02GOWvn377nafKVCZ1YCJRMKWnPamqcfn5eXZ2/oVbWZloVFf8to1W2lpqZ26hY6hvqTz6KOPauDAgXYK2pAhQ7RkyRJbrDIlwCOPPNIW/0xx6vHHH9fLL7+su+66y55nLF26VOeff74CgYB9fHFxsX28mYZmVlqaYlZJSYktMJnPZzPl7NBDD7UFwW7durX6azQT1x5++GH79fqVr3zFFqFMBlOANF/TZq1mvTvvvFM33HCDCgsLddxxx9lVm6ZQ9fvf/97+3vA///M/9nXu7Morr1SfPn1sQcyUo/b2NW5+v7jgggtsUdKs7DTnv/jii3Y9qCl5jRs3Tl26dLFlNTPxbtasWfZjtTPz38o83hS7AAAAAAAAkBoUqADAA0ygApAqsTyf3GTc6xgdXqB6i3os+UTmx61HZhdqXWlvLfBt1+LKJW26TJWodbX81lpF1iZtaapwol/JWmnbnLhW3xNRyUlJdTrGLMjbs+oVCa24rVZm22HecL8CBY6qPq8rVFUtS6jXt8JyfHWlm/h2V6vujsif7ahwUkCVCxJaeWdE/X7ks2WqerEtSW1+K6aSU0IHXZ7aK8fVtshSe+zMJOnqDyk/c5Cygn3k95cqlizQ9nhIG2uT2hzpmGt8SzKzPHtuMzHHFKhMScIUqEyRway669y5s327vgxVv75v6tSpDUWIG2+8UY899phd22eYsoUpJpkJVaZw1dR0GzOhak/MxKhd1RfLmrrW/jy+XkVF3eRB8/qaYsobFKg6VoHKlJpMKcdMNTJrHA1TGty8ebOdFGVKhvXMRLaLL75YV199tS1Imc8vMxGppqbGlqomTpzYcO6tt95qV2SaaVDf+c537DWN+gJV/XO1JvN1ar5GzfOZVZj1zLSsk046Sffee6/NYQpJ5mvWfE2btZvm/qKiooavvZ///Oe2hGVe46WXXtroOUxh6p577mnW9Daz9tP8HmGmR9X/XvDKK6/Yj8//+3//T88++6y9jlkLan7PMR/jnQtUpqRpJl6Zolp9PgAAAAAAALQ+5vYDgAec3ByvIwDoIKIFTMBJN8GqCvVY8rGOW7RYl24r1PSsMRqQ01+OvJnMczA2vRqz5anCCQH1+X5YpadmqOu5Ger340wF8hxteC6maPneC2JmmpQbl7p/LUPdvx5W6fQM9f1BprIH+FS9OKmtHycazt36UVxuTOr+9Qx7Xq/LwpIrVbzbeOXShn/HFMh3VDTRu38vklBUm2vmaPW2J7Si4nZ9sfX32l51rcKJ36l36O8alf+GJhSv1ITOtRpdFFTf3Exl7zLxpL3p4mGBykzBMROnTIHKTNgxBQVzn2HKIGvXrtWKFStsmcGUjsxKL8MUSGbOnGnLJaZUYabTmLKVmVDT1CSodJGdXVfWN1OtmlJVVZXiREg3ZkqZWfNoyoI7l6cM87Vh7v/888/1ySefNCr3mWLPzkW/iy66yE6gMqspvWLymElw5ut459WDpuxoClFvvPFGw9rMBx54wJ5rJlLtXE4yJTGzjtAUm0xZbFdmLd/+rL4019q5SGlKnGbloVl3+PHHHzes+zNTsEyhqn56nGGKbkZ9GQ0AAAAAAACp0b7/hh4A0pTDCj8AKRLNTpgmB9JUsGqzei7ZrJ5mxVhOsdZ26an5vq1aWrlUrmkGpblts+Myva+Sk0ONJuAE8322VLXx+Zi2L0ioeMqef+hcsyopX6aUN2LHtyaO31Hh+KCqFkVUsyKhgrF174tuqitjhct8Dc9jplGZdX71ar9I2qJVtwsy7HXSUTS5TRuq3pdkjh3yJZVllikvY6BCgR5ynU6qjmepIurThpqIok2simtLvJxAFQqFNHnyZL3++uv2MOoLVObWrPR67rnnbFnETIUxn8/btm2za8x69+5tJ+zsavHixc2eGpVqw4cPt7f15Zedbd26VcuWLfMgFdLJnDlz7K2ZQHXzzTc3+XlizJs3T6NHj7ZlHlMmNOf+61//0qRJk+zXlCkFlZWVyUtmutapp55qVw+aqU2mAGmymRV5I0eObFR8qn/dpgxpXltT5UNTcjIlw/oiorG3lX27MsUps0pwVyaL+f3HPK+ZgGdKXSa3mVRlfq8xJS3z+4l5HabIefjhhx/ARwMAAAAAAAAHigIVAHiBFX4AUiSaGZUqvU6B5ghVblIvc5j/brmd9EWXHpqvrVpatUTpqmhK0K7x82fuXlRyvvxOIxnZe7nEn+UoUe3aw/y6Xmxb3eNMQWrnc+01o5Iv+OXUkah5/h3XW/90VOHuPuWN8Kstqo6ttceuOjs+5eX0U06onwL+roq7RaqKh1UecVVeE1GyDRTuumR5++cfMwHmhRde0B133KH8/HwNHTrU3m9WZ5kiw9///nclEgk7FcYw95nihSlSmRVhOTk7JojefvvtdjqPEY+n35pUsz5s4MCBdjKQKWyYkothXt8NN9ygWKzx1DZ0PObzun6ilDn2ZMuWLfbWfD6ZyUzm68R8Xpm1c+bw+/32a+bXv/61OnXqJK/87ne/s8Ups0rQFAfNlKdbbrnFrqs006ZOP/30Rq/7vvvu2+v1zHk7F6gyM3f6H80+lJaWNnl/SUlJowyGKWyaApVZQWgKVGbC3Zo1a3TJJZco0M6nEgIAAAAAAKQb/jYGADzABCoAqRIJVnsdAQcgtL1cvc1hy1QlWtOlu+arQsuq0mtqTNHkupVIuzLFpm1zEo2mRe3xGpPqJlWtvq9WpadnKFjgqOrzhDa+EJU/Syoct+Nblsxeddfa9EpMnY8LquKDuNyolNWnrixVuShhH9vrO+FGE7HaA9dJamvtInvszHx0ugfDys8cpKxgH/l8pYom87UtFtTG2oS27LQWymtdPS5QmTVlphBlygnHHntsw1QaU5IwE5s++ugju+bPTNapL0ycdNJJeuqpp+z0HVPAMt5//307QcaURcrLy1VRUaF0dO211+rCCy/Ut7/9bft6u3btassZZlVhRkYGJaoOrr4cdNVVVzV7/d6AAQP0+9//3hbxzPo/M8XJTEsyxUQzsekf//hHi+Wr/z28qQlvNTU1u91nykZf+9rX7GGmar377ru26PXMM8/YdXrdu3e3Zcn6123WebZW4aupfDsXp3ZeHTho0CANGzZMb775pp36ZX6/qS9WAQAAAAAAILX2/tMMAECrcIrMkh4AaH0Rp8rrCDhIoe0b1Wfxxzp58XJdWlWqk7LHqle2qValr4p34qpdlVSwyFHOoL1Pgup8XEilp4dUvTSpJTfWaMHPq7Xq7oiCeY76zMhUsHDHtyy5QwLKHeHXptdiWvCLaq1/PKrsgX4VjAvYH7JveDqqnCF+Zffb8ZxuMv0nMx2suFurTdWztWrrY1pRcZvWbr1BVdXXKit5nfpk/EOj89/WhOLVmtA5qlFFIfXOzVSWB5NNeuTkyUvFxcV2Qs3O6/vqTZw40d6a8pQpF9X77W9/q+985zv288usLXv22WftJKobb7yxYa2fKWmkI7MuzGQ206feeecdu37NFDfMfaYctj8TddD27VoqrZ/A9umnnzZ5vpk29de//lVLly61b5vPH/P1YL4WzNQp87VkvjYefvhhWzz84IMP9vhcB8JMgDNMMWtXpgS4syVLluiPf/yjXnnlFfu2+Tw/+eSTbdnLZDRmzZplb4cMGWJvZ8+evdt1I5GInWRlimAHs5pz/fr1Wrdu3W7310/6MhPidmbKUqbQ+NJLL9nXYD62/fr1O+DnBwAAAAAAwIFhAhUAeMAJZ0j5OdJW9moBaF2RZN3qHbQPGdvWq685zH/b/DKtKemquW65VlY1/mGyl7bOjmvd42bHntTtKxly/Hv/QXrV4oTKX4nZ8/NH+OXPcVSzIqmalUl98WBEPb4RbrTar8fXw6pcEFdkvatQZ8cWpswP67d+HFft2qT6nZ9pf/C98bmYNr8dUzJiJlT5VHZWhjI6d7x/PxJJbNb6qnckmWOHAjO5KrOHcsMDFAp0V8ItVnUiS5sjjjbURBR3ky2aw+846rrTOiyvPPDAA03ef+WVV9pjV6YY8sMf/tAeTVm4cGGjt19++eU9Pvf+vM9My9n12jNmzLBHU3Z9XzQatSUOM93mf/7nfxqdW1tbq+3bt6tPnz57zIP2p34dXP3ksTFjxqhv3752etS///1vuz6u3pw5c2xZyjATnQxTkDLTkUwx79RTT20410xhM8Wjnj177vG5DkR9gchMijKfz6FQyL5t1vOZaU07M9PkzFpN8/luypDhcLjhfatXr7a3PXr0sLdnn322LX2ZcpWZPFe/Vs/485//bNfpnXDCCbr44ot1MK677jr94Q9/aCiCmXKUKVuaaVP1Ja5606ZN0/XXX29XDpqP5xVXXHFQzw0AAAAAAIADQ4EKADzi61KsJAUqAK0sEk3P1VI4eBlb16mvOUwhoqCbVncu1bzkRq2qXulZJlNYWvdYVHLqylP1q/X2JLYlqZV31soXlPr+MLNRwWnD81GVvxDTmpkR9fzmjh+GGzmDA8oZvONtN+5qw7NRFRwaUEYXn7Z8EFP5SzF1Oi6ozB4+rX8qqtV316rvjzLl+NrXar+DURlbZY9ddfEHlB/ur+xQPwX8ZYq5haqMZ2hTbVLltREdyFyWkswsBX17/3xAy64QO/744zV48GA7Sai+0GLceeeddgVb/dQtdAxlZWX29vXXX9cNN9ygqVOn2klqpij0/e9/X5MnT7YFpA0bNuj555+35SdTAqpfN/e9733PPtaswzOT2EzBacuWLXruuedsafXHP/7xbs/1xBNP2ILraaedpoEDB+5XXlMyGj16tD7++GM7oclMUjNTnUw2U/4yqzTrmTLg+eefb6ermbWbZt2mKVGZKVNm8pS5jvl6MMxjL7/8ct1666065ZRTdMwxx9jpdGY6lClndevWTddcc80+85li1qOPPqrc3FxddNFFu73fFL/M6k/zdWbWhpqSZH5+vp1wtau8vDwdd9xxtqBmJuCZXAAAAAAAAEg9ClQA4BGnpFj6PH0mhgBof1zHVaS23OsYSIHwli/U3xymOFHYTas7lWpucoPWVO9ejmkNZk3e+qej2vx6XE5A6vbVDOUN3/e3Gls/isuNScXHBXebDtX5uKC2fRxX5fyEYtuSCubteXrU5rfjile66nx83aSPze/EFe7qU8nxdRNLlJBdC1j5eUK5g/kWaF9cxbWldoE9dmY+uj1C2SrIGKTMUG85vi6KJvO0LRbUhpq4tu1l2kyPnNwUJEc9U9SYPn26Hn/8cTstaMqUKXbt2meffWaLJ2bCFVNuOhZTarrqqqt011136b777rMrHM3UNVMCMlPK3njjDfu5UVhYaMtUl156qQ499NCGx5tpVWaNn5n0ZEpJZgqUmdA2duxYfetb37K39czjvvGNb9hrm+fq3bv3fheoDFNyMlOhzPSme+65R/3799d//dd/2efduUBl/OIXv7CFwYceekhPP/20LRGaz3Mzme2b3/xmwyQowxTGzPSpe++9117bTLjq2rWrPe+SSy5Rp06d9pnNlKLMxChTuGqqQGVetymo/d///Z+ys7NticyU0OonYe3KfL2aApUpUplCFQAAAAAAAFLPcc0/FQQApFz8rY8Vf/gFr2MAaMei+Y7eL53pdQx4qKaou1YVl2huYr2+qKlbY9TSzPSn1fdHtP2zhPxZUo+LwvucPFVv7cMRVbwbV4+LM5Q7dPdi06q7arV9bkK9rwgrq1fT10zUuFp8fbUKJwZVcmJdYWrBL6qUM9iv7l+rm1wV2ZDUkhtr1OXUkIoP3/FDdLSszECJ8sIDlBHoKTmdVZPI0ZaoT+trojq5Z1/9dPQ4ryN2KPF43E6feuSRR7Ry5Uq7uq+0tNROHvr2t79tS1YAWpaZaGXKVXPnzm00+a05ZbG//OUvtuDW0tPhkotXKnorfx4EgNYSvulqryMAAAAAaCH882sA8IjTpdjrCADauWgBPfmOLnPzag00h6Tq4h62TPVZfK3W1XzRItc3k6dW3RtR5byEgkWOel4SVkbJnidF7cqfW7dOL7LBVe7Q3d8fLU/a20Dentfulb8SsysDi4/aUYxyk5Kb2ClnrO5rwWF7X6uqiW9QTeUGs7yq0f1FcnRI/s8kUaBKJVPeMGvNzAEgfa1fv96uHzSrCCdMmOB1HAAAAAAAgA6LAhUAeMRHgQpAK4tmJ+zqMsDI2rRag8xhy1S9tKq4k+bEv9D6mrUHfE1TXrLlqQJHvS8PK5jf/PKUkT8yoPIXY9r0Wkx5I/wKFe14/KY3Y4qsd5XZx6dQYdPXjW1JavMbMXU5JSR/eEc7ypS4alYl5SZcOX5H1cvrilih/Sh3oQU5rsqyu3qdAoBHXnzxRc2fP7/Z548bN07jx49Xe3f//ffbCXHLly9XZWWl/vrXv8qh6QsAAAAAAOAZClQA4BEnN1vKCkvVtV5HAdBORTOjUqXXKZCOsjat1CBzSKrq1Fsri4r0WewLbahd1+xrJKpdlb8cs78Od/Op4r14k+dl9/Uru79fVUsS9gh39SlvWN23IRldfLb8tP6pqJbeVKPcYQEFchzVrEqoemlSgVxHXc/J2GOGDc/FbHmrcGLjb2vM22sfimr5bbU225b34/Y2ewAFKq90z+ntdQQAHhaoHn300Waff8UVV3SIAlVZWZlWrVqlzMxM/fCHP9QJJ5zgdSQAAAAAAIAOzXFdl90uAOCRyM33y122xusYANqpFRM2aVXFi17HQBtS2bm3VhaaMtVqbaxdv9dzt38W16q7I/u8ZqepQZWcGNKG56MqfyGm/LEBdftK41JU5ecJO4XKFKeSUSmY5yhnqF+djwkqkNd06al2bVJL/1Sj7hdkKG/k7v8upPzVqDa/EbdFr+wBfpWdEVJwD5Os0LpC/rD+dfKb8jl8/AEg1ZKLVyp660yvYwBAuxW+6WqvIwAAAABoIUygAgAP+UqKlaBABaCVRJwqryOgjcnZuFxDzWHLVH21sqhAcyKrVB7ZuNu5ZlrU0Bub/+1EyfEhezT5vAP99tgf4TKfhv4+e4/v73RUyB7wXtfsHpSnAAAAAAAAAABpjQIVAHjI6VLsdQQA7VgkucXrCGjDcjYu09CN0hBTpirppxWFpky1Qpsj5V5HQxvTjfV9AAAAAAAAAIA0R4EKADxEgQpAa4pEK7yOgHbAMdOmNizVsA3SIWZ1X5f+WlGQZ8tUFZFNXsdDG9A9p4/XEQAAAAAAAAAA2CsKVADgIR8FKgCtxHVcRWqZFISWL1PlrV+i4eulYaZMVTpAy/Nz9VntclVEN3sdD2mqT/5gryMAAAAAAAAAALBXFKgAwEuFeVIoKEVjXicB0M7E8nxyk3GvY6C9l6nWLdaIddJwx9G20oFanpejObXLtJXpZ9hJ3/xBXkcAAAAAAAAAAGCvKFABgIccx5FTUiR39XqvowBoZ6IFXidAR+K4rvLXLtLItdIIx6etpYO0PC9Lc2qWaVtsi9fx4KG8UIE6Z5V5HQMAAAAAAAAAgL2iQAUAHnNKO1GgAtDiotlxKeF1CnREjptUwdrPNWqtNNKUqcoGa1lupubULNH22Dav4yHFWN8HAAAAAAAAAGgLKFABgMd83bsoOWuu1zEAtDPRzKhU6XUKdHS2TPXFQo2WNMrn05ayIVqWk6E5NUtVSZmqQ2B9HwAAAAAAAACgLaBABQAe8/Uo9ToCgHYoEqz2OgLQiJNMqnDNAhXaMpVfW8qGallOSHOqF6sqTtuvverLBCoAAAAAAAAAQBtAgQoAPOZ06yL5HCnpeh0FQDsScaq8jgDskS+ZUNGa+SqSNNoXUEXXoVqWHdSc6iWqpkzVrvTNH+J1BAAAAAAAAAAA9okCFQB4zAkF5XTpJHftRq+jAGhHIsktXkcAmsWXjKt49XwVSxpjy1SHaGl2wE6mqolTBGzLsgI5Ksvu4XUMAAAAAAAAAAD2iQIVAKTJGr8EBSoALSgSrfA6AnCAZap5tkx1qD+oTV0P0ZIsvz6rWqTaRI3X8bCfeucNkOM4XscAAAAAAAAAAGCfKFABQBpwepRK78/xOgaAdsJ1XEVqN3kdAzgoTiKmTqvmqZOkw/whbeo6TEuyfJpLmarN6Fsw2OsIAAAAAAAAAAA0CwUqAEiTCVQA0FJieT65yZjXMYAW40tE1XnVXHWWNC5gylTDtThTtkwVSdR6HQ970Dd/iNcRAAAAAAAAAABoFgpUAJAGnK4lkt8vJRJeRwHQDkQLvE4AtB5fPKrOKz+zZarxgbDKu47Q4syk5lYuUjQZ8ToedtI3f5DXEQCgw/P176nwTVd7HQMAAAAAACDtUaACgDTgBPxyyjrJXb3e6ygA2oFodlyij4kOwBevVcnKOSoxZapgZl2ZKpzUvMrPFU1GvY7XoYX9Weqe29frGAAAAAAAAAAANAsFKgBIE76eZUpQoALQAqKZUanS6xRAavljNeqyYo66SJoQylJ518FalFFXpopRpkq5QYXD5Xf8XscAAAAAAAAAAKBZKFABQJrw9e6mxNufeB0DQDsQCVZ7HQHwlD9arS7L68pUEzOytaFsqBaFoppftUjxZMzreB3CkOJRXkcAAAAAAAAAAKDZKFABQJrw9evhdQQA7UTEqfI6ApA2/JEqlS2frTJJkzNytKHrIfo8GNWCys8Vd+Nex2u3BhdRoAIAAAAAAAAAtB0UqAAgTTiFeZI5KrZ5HQVAGxdJbvE6ApCW/JFKlS37skwVztWGsr76PBixZaqEm/A6XrvhdwIaWDg85c97880365Zbbtnt/oyMDHXq1EkTJkzQd7/7XfXoQWkdAAAAAAAAANAYBSoASLMpVMlZc72OAaCNi0QrvI4ApL1A7XZ1XTZbXSVNyczV+rK+Whio1cLKRUpSpjoovfMGKDOQ5dnzjxs3zh6G67qqqanRsmXL9Nhjj+n555/XAw88oH79+nmWDwAAAAAAAACQfihQAUAa8fXtToEKwEFxHVeR2k1exwDalEDNdnVbOlvdJB2ema/1ZX20MFCtzysXU6Y6AEOKvV3fZ8pTM2bM2O3+p556SldddZVuvPFG3XbbbZ5kAwAAAAAAAACkJ5/XAQAAO/j6slIGwMGJ5fnkJmNexwDarGDNVnVf+ommfv65vrUlT6dljdGgnIHy8a1Tsw0rPlTp6JRTTlFOTo7ee+89r6MAAAAAAAAAANIME6gAII34Soqk3Gxpe5XXUQC0UdECrxMA7Uegeou6L/lY3SUdmV2otaW9tdC3XYsrlyippNfx0pIjR0OKRysdOY4jv9+vQIBvgwEAAAAAAAAAjfE3xwCQjmv8Zi/0OgaANiqaHZfYOAa0uGBVhXouqVBPSUdlF2ltaS8t8G2zZSpXrtfx0kbP3H7KC6Vnk/Pf//63tm7dqgsuuMDrKAAAAAAAAACANEOBCgDScI0fBSoAByqaGZUqvU4BtG/Bqs3quWRzXZkqp5PWlvbUfG3R0qqlHb5MNayT9+v73n//fd18880Nb0ciES1dulSvvvqqJkyYoB//+Mee5gMAAAAAAAAApB8KVACQZnz9engdAUAbFglWex0B6FBCleXqtbhcvUyBMbezvujSvaFM1REdUjw2LQpU5mhKYWGhNm3apKysrJTnAgAAAAAAAACkLwpUAJBmnLJOUm62tL3K6ygA2qCIw+8dgFdC2zeqtznM12JeF31R0k3zVaFlVcvUEThydEjxGK9j6IorrtCMGTMaTaDasGGDnn76af3lL3/RrFmz9Oijj6pz586e5gSAVEguXqnorTO9jgEA6EDCN13tdQQAAADggPgO7GEAgNbiOI58g8yPXgFg/0WSW72OAEBSxrYN6rP4Y528eLkurS7VSTlj1Cu7ff//vV/BUOVlFCrdZGRkqEePHvrOd76jCy+8UBs3btS9997rdSwAAAAAAAAAQBqhQAUAacg/uI/XEQC0UZHoZq8jANhFxtb16rvoY01bvEKXVJfpxJyx6plllv61L2NLJivdTZo0yd4uWLDA6ygAAAAAAAAAgDTCCj8ASEO+QX3MKCrJdb2OAqANcR1XkdpNXscAsBfhrevUzxySagu6aXXnUs1LbtSq6pVq68Z0Sf8CVUVFhb3Nzc31OgoAAAAAAAAAII1QoAKANORkZ8rp3kXuqnVeRwHQhsTyfHKTMa9jAGim8JYv1N8ckmoKu2l1p1LNTW7QmupVamvyQoXqX3CI0ll1dbXuuece++vjjjvO6zgAAAAAAAAAgDRCgQoA0pRvcB8lKFAB2A/RAq8TADhQmRVfaIA5TJmqqIdWFZdobmKdvqhZo7ZgdMlE+Zz02BD//vvv6+abb25423VdlZeX64UXXtDmzZs1depUnXDCCZ5mBAAAAAAAAACkFwpUAJCm/IP7KvHCO17HANCGRLPjUsLrFAAOVubm1RpoDjM1qbiuTPVZfK3W1XyhdDWmJH3W95kClTnq+f1+u7Jv4MCBmjZtms4++2w5ZlUyAAAAAAAAAABfokAFAGnK6VUmZYalmlqvowBoI6KZUanS6xQAWlLWptUaZA5bpuqlVcWdNCf+hdbXrFW68Mmn0SWTvI6hGTNm2AMAAAAAAAAAgP1FgQoA0pTj88k3sJeSsxd6HQVAGxEJ1ngdAUArytq0UoPMIamqU2+tLCrSZ7EvtKHW25W/AwqHKTeU72kGAAAAAAAAAAAOBgUqAEhjvsF9KFABaLaIw/gpoKPILl+hIeaQVNm5j1YWmjLVam2sXZ/yLGO7TEn5cwIAAAAAAAAA0JIoUAFAGvMP7ae440iu63UUAG1AJLnV6wgAPJCzcbmGmsOWqfpqZVGh5kRWqjyyMSXPPyYN1vcBAAAAAAAAAHAwKFABQBpzcrPl9Ooqd/kar6MAaAMi0c1eRwDgsZyNyzR047K6yVQl/bSiMN+WqTZHylvl+QozOqlvvnk2AAAAAAAAAADaLgpUAJDm/MP6K06BCsA+uI6rSO0mr2MASBOOpNwNSzVsg3SIpO1d+mtFQZ7mRFaoItJyv1eMLpkox0zLBAAAAAAAAACgDaNABQBpzjd8oPTUa17HAJDmYnk+ucmY1zEApCFTb8pbv0TD10vDTJmqdIBW5Ofq09rl2nKQk+vGlR7dYjkBAAAAAAAAAPAKBSoASHO+zoVySjvJXdc6q3cAtA/RAq8TAGgzZap1izV8nTTMcbStdKCW52VrTu0ybY1u2a9rZQay7QQqAAAAAAAAAADaOgpUANAG+IYPUIICFYC9iGbHpYTXKQC0JY7rKn/tIo1cK41wfNpaOkjL87I0p2aZtsX2XaYa22WKQv6MlGQFAAAAAAAAAKA1UaACgDbAP3KQEi+843UMAGksmhmVKr1OAaCtctykCtZ+rlFrpZGmTFU2RMtyMzSnZqm2x7Y1+ZhJZcemPCcAAAAAAAAAAK2BAhUAtAG+riVyOhfK3VjhdRQAaSoSrPE6AoD2VKb6YoFGSxrl82mLKVPl1JWpKr8sU4X9mRrTZbLXUQEAAAAAAAAAaBEUqACgjfANH6jEy+95HQNAmoo4jJ8C0PKcZFKFaxao0Jap/NpSNlTLckLKzuuuDH/Y63gAAAAAAAAAALQIX8tcBgCQijV+ALAnkeRWryMAaOd8yYSK1szX2IWzdU7BEV7HAQAAAAAAAACgxVCgAoA2wtej1K7xA4CmRKKbvY4AoIPwB7PVqecUr2MAAAAAAAAAANBiKFABQBviHzPU6wgA0pDruIrUbvI6BoAOonOvI+QPsL4PAAAAAAAAANB+UKACgDbEN5YCFYDdxfJ8cpMxr2MA6CC69D/e6wgAAAAAAAAAALQoClQA0Ib4OhXK6d3V6xgA0kw03/U6AoAOIpCRp+LuE72OAQAAAAAAAABAi6JABQBtjH/sIV5HAJBmojlJryMA6CBK+hwjnz/odQwAbdDPfvYzDRo0SG+//fZu7zv//PPt+1avXm3f3rx5s/7zP/9TJ554okaMGKHx48fr0ksvbfKxyWRS999/v84880yNGjVKY8aM0de+9jW9+OKLu517zDHHaNq0aXrppZfsr4cPH26f23VdVVdX649//KOmT59ur3PooYfq61//up555plmvb6bb77ZvoYPP/xQf/vb33TUUUdp5MiROu200/TAAw80Ote8FnPuBx98sNt1Kisr7fOffvrpzXpeAAAAAAAAtAwKVADQxvhHDZb8/PYNYIdoZsTrCAA6iLKB07yOAKCdi0ajtrhkSkcDBgzQN77xDVt2MsWkSy65RK+99lqj8tSMGTP0m9/8RjU1NTr77LNt8WjFihX63ve+p1tuuWW3669fv14/+tGPNHr0aJ177rmaOHGiHMfR5Zdfrttvv10lJSW64IILdMopp2jRokX64Q9/uFsBam+uu+463Xbbbfa6ptRVUVGhX/7yl7YQVu+ss86yt4899thuj3/22WftazGPBQAAAAAAQOoEUvhcAIAW4GRnyje4r5JzF3sdBUCaiARrvI4AoAPIyu+lwrLRXscA0M6ZKVOLFy/Wd7/7Xf3gBz9oVDoyxaa7775bRx55pL3PTJ4yk6bM1ChTXAoG6ybkmdKTmUJlClRHHHGEnWJVb9u2bbrssst01VVXNdxnilLvvPOOTj31VN14442NJkWddNJJuvPOO3Xeeec1K/+CBQv0z3/+s+E5TcHL5Db3mVKWmWw1depUFRQU6LnnnrPlqoyMjIbHP/roo/Z1mNcEAAAAAACA1GGECQC0Qf6xQ72OACCNRJxKryMA6AC6DuKH+QBan5kqZcyfP9+u1atnikfPP/+8ne5Ub+bMmfL5fLaEVF+eMnJzc3XllVfa1XwPPfTQbs9x8sknN/mcS5cutesD6/Xo0cNOhHr88cebnf+MM85oVNgqKiqyJaqdJ06FQiFbkNq+fbtdJ1hv5cqVdtKWmbhVWFjY7OcEAAAAAADAwWMCFQC0Qb5D+kvhDKmWtV0ApEhyq9cRALRzjuNnfR+AlJg0aZJ69+6tV199VZMnT9a4cePsfWaSVJ8+fRrOM+UqM6kqKyvLTqXalZk0ZcydO3e395li1M4GDRpkC1qzZs2yzzN27Fj73IcffriGDBmyX/nN6r5djRo1yt7Omzev4T6zbvDee++15az6QpeZPmWwvg8AAAAAACD1KFABQBvkBAPyjxyoxHtzvI4CIA1EojsmJQBAayjuMUkZ2Z29jgGgAwiHw3rggQd0++2369///rctUpnjd7/7nQ455BD9+te/thOezPSm+iKVWdW3J1u3bm3yOXZ1xx136B//+Ieeeuopvfvuu/b44x//aMtc//Ef/9GwNnBfSktLd7uvc+fOjUpdxuDBg+3refPNN7Vp0yY7qcqUqcy5prgFAAAAAACA1KJABQBtlH/8SApUAOQ6riK1m7yOAaCd6zr4NK8jAGjjHMdptC5vZzU1NY3eLigo0NVXX22PFStW6O2339Zzzz2nd955R5deeqlefvllZWdn23P79u1r1+wdrMzMTF1++eX2WLdunS1Qvfjii3rhhRf0ve99z5a5unfvvs/r1NbW7nZffdnLlKR2dtZZZ+k3v/mNvbYpVK1Zs8a+Pr/ff9CvBwAAAAAAAPvHt5/nAwDShK93VzllTIIAOrpYnl9uMuZ1DADtWCizWJ16MQ0FwMEJBoP2tqqqqtH9iURCq1atanj7jTfe0LXXXmuLU0avXr10/vnn66677tL48ePtRKnPP/9cOTk5dhWfeezmzbtP41y0aJFuuOEGW07al08++UTXX3+9va2fInX66afbyVZmnV4sFtPHH3/crNc5e/bs3e778MMP7e3IkSMb3T9t2jRlZGTYcthLL71k72N9HwAAAAAAgDcoUAFAG+afNMrrCAA8Fs3ffYoDALSksgEny+djeDGAg2MmRRmvvPJKo/tNMaqysrLh7S+++EL33nuv/v73vzc6LxKJaOPGjfL5fOrWrZu97+yzz7blJrPWLxqNNpoC9atf/Up33nmnysvL95nNPL9Z33fzzTc3mpDluq6dCmWYslZz3HPPPVq+fHnD2+b5//znP9upUmbi1M7y8/N17LHHatasWXrmmWdswapfv37Neh4AAAAAAAC0LP4WHADaMP/YoYo/+aoUZfoM0FFFc5JSwusUANoz1vcBaAmnnXaaLSg9+uijtlRkVtbNnTvXlodGjRrVMP3p1FNP1QMPPKAHH3xQCxcu1KGHHmpLUq+//rqdSvXNb35TXbp0sedecskldtWemeA0f/58TZ48WYFAwK74M8WnI444Queee+4+s02aNElHHXWUXn31VU2fPt2+bQpP5trmuieccILNuHPpy6zlO+OMM3Zb62eymqLU8ccfb6dumSym+PWjH/3IvuZdmXOffvpprV27Vt/5znda4CMNAAAAAACAA0GBCgDaMCecIf/owUq8N8frKAA8Es2MSDuGNgBAi8ovGa7swj5exwDQDhQWFur+++/Xn/70J33wwQd2rd3o0aPtfU8++WRDgSozM9NOjjIToV588UXNnDnT3j9o0CB997vftav16pmCkplUZa7xxBNP2HKWKVCZtX8XX3yxzjvvPIVCoX1mM1OtzJSo++67z2Yx14nH4+rTp4+uueYaXXDBBbtNmTIFrXHjxu1WoPrBD35gp2g9/vjjqq6utqUpMyHLTJpqysSJE1VcXGxXG55yyikH9LEFAAAAAADAwXNcM48cANBmJVesVfQv93odA4BHVkzYrFUVL3gdA0A7NeSIX6jbkDO8jgEAac9M17rlllt07bXX6pxzzmn240zZaurUqZo2bZpuvPHGFs+VXLxS0VvrSmgAAKRC+KarvY4AAAAAHBDfgT0MAJAufL3K5HQr8ToGAI9EHMZPAWgd/mC2uvQ73usYANBumX/TaIpXyWRSX/3qV72OAwAAAAAA0KGxwg8A2gH/xJGKP8QEGqAjiiS3eh0BQDvVddB0BULZXscAgHanvLzcrhisqanRqlWrdPTRR9t1hgAAAAAAAPAOE6gAoB3wjxkqZQS9jgHAA5HoZq8jAGiPHJ96DPuK1ykAoF0qKipSJBKxRaoTTjhBv//9772OBAAAAAAA0OExgQoA2gEnnGFLVIl3ZnsdBUAKuY6rSO0mr2MAaIc69ZyirPweXscAgDZjxowZ9mgOn8+n559/vtUzAQAAAAAAoPmYQAUA7YT/iEMlx+sUAFIplueXm4x5HQNAO9Rz2PleRwAAAAAAAAAAIGUoUAFAO+HrUizfoL5exwCQQtH8pNcRALRD2UX9VNR9nNcxAAAAAAAAAABIGQpUANCO+I881OsIAFIomkOBCkDL6znsK15HAAAAAAAAAAAgpShQAUA74h/UW05ZZ69jAEiRaGbE6wgA2plgOF+lA072OgYAAAAAAAAAAClFgQoA2hmmUAEdRyRY43UEAO1Mt8Fnyh8Iex0DAAAAAAAAAICUokAFAO2Mf8wQKTfb6xgAUiDiVHodAUA74vj86n7IOV7HAAAAAAAAAAAg5ShQAUA74wQCCkwa5XUMACkQSW71OgKAdqSkz1SFc7p4HQMAAAAAAAAAgJSjQAUA7ZB/8mgpEPA6BoBWFolVeB0BQDvSc/hXvY4AAAAAAAAAAIAnKFABQDvk5GTJf+hQr2MAaEWu4ypSU+51DADtRGHXscrvMtzrGAAAAAAAAAAAeIICFQC0U/6jx0k+x+sYAFpJLM8vNxnzOgaAdqLPmEu9jgAAAAAAAAAAgGcoUAFAO+XrXCTf6CFexwDQSqL5Sa8jAGgn8ruMVFG3cV7HAAAAAAAAAADAMxSoAKAdCxw3UXKYQgW0R9EcClQAWkafMd/0OgIAAAAAAAAAAJ6iQAUA7ZivpFi+UYO9jgGgFUQzI15HANAO5HYaok49p3gdAwAAAAAAAAAAT1GgAoB2LnD8JKZQAe1QJFDjdQQA7QDTpwAAAAAAAAAAkAJeBwAAtC5fl2L5Rg5S8pMFXkcB0IKivkqvIwBo43KK+qtz76O9jgEAaEW+/j0Vvulqr2MAAAAAAACkPSZQAUCHmULldQoALak2udXrCADauN6jvymHKZUAAAAAAAAAAFCgAoCOwFfaSb4Rg7yOAaAFRWIVXkcA0IZl5fdSl37HeR0DAAAAAAAAAIC0QIEKADqIwHFMoQLaC9dxFakp9zoGgDas9+iL5Th8OwgAAAAAAAAAgMHfmANAB+Hr2lm+YQO9jgGgBcTy/HKTMa9jAGijMnO7qXTASV7HAAAAAAAAAAAgbVCgAoAOJHA8U6iA9iCan/Q6AoA2rO+h35bPF/A6BgAAAAAAAAAAaYMCFQB0IL5uJfId0t/rGAAOUjSHAhWAA5NTPJDpUwAAAAAAAAAA7IICFQB0xClUANq0aGbE6wgA2qj+42bIcfg2EAAAAAAAAACAnfE35wDQwfi6l8p3SD+vYwA4CJFAjdcRALRBhV0PU6eeFKkBAAAAAAAAANgVBSoA6IACJx8h+RyvYwA4QFFfpdcRALQ5jgZMuNLrEAAAAAAAAAAApKWA1wEAAKnnK+ss/6TRSrz5kddRAByA2uRWryO0C7VRV8+9H9XsRXFt2uYq4Je6d/bp6DEhjRqw5z8mb6lM6tq7q3XkqKCmT87Yr+dctzmpZ9+JauGqhH3+4nyfxg0J6JgxQQUDjYutL86K6uUPY4rEXPXt6tc5R2eopHD3f//w+39WKzPD0YyzMvcrCzqWkr5Tldd5qNcxAAAAAAAAAABIS0ygAoAOKnDiFCmbH7YDbVEkVuF1hDbPlJdumlmj59+PKRR0dMTIoEYPCGhNeVJ/f7LWFquaUl3r6rbHalUT2f/nXLwmoRvur9Yni+Ma3Muvw0cGZSpTT7wZ1f8+XSvXdRvOnbM0rkdfj6ow19HEYUEtX5vQ3x6pUSy+4xzjo8/jWrk+qdMPD+1/IHQYjs+v/uOu8DoGAAAAAAAAAABpiwlUANBBOVlhW6KKP/yC11EA7AfXcRWpKfc6Rpv3wgdRW5aaMiKgr0zNkOPUTX+aNimp3/+zRk+9FbWFqp0nPn1RntAdT9Vq/ebGJabmiMZc3f1srf31D87JVJ+ufvvrxBRXtz5WqzlLEpq3PKFD+tT98fzNT2PKypC+f06mLXj1LvXpH89ENHdZomE6ViLh6ok3IzpscEA9SuquBzSl2+AzlJXfw+sYAAAAAAAAAACkLSZQAUAH5p84Uk5ZZ69jANgPsTy/3GTM6xht3ocL43b602lTdpSnjIJcn50MlXSlucvi9r5E0tXDr0Z0w/01Kt/i2ulR+8tMndq8zdVxh4YaylOG3+/olIkhTTgkoJ0GUKl8S9KWt0x5yuj+ZUGqfGuy4Zw3Po2pYrur6ZOZPoU98wcy1WfsZV7HAAAAAAAAAAAgrTGBCgA6MMfnU+D0YxT77we8jgKgmaL5Owo0OHBHjwnaNXxZ4R3lqXqBL/tNkS97apGo9PJHMfUp8+m8qRlavTGpBSsS+/V8c5fWnT920O5//O7b1W+PnWVnOqquG1hl1Ubq2lVZGU7DCsJn343pyFFBFeXxbyKwZz1HXKCMrGKvYwAAPJJcvFLRW2d6HQMAAE+Eb7ra6wgAAABoQyhQAUAH5x/QS4nhA5Wc87nXUQA0QzQnIe1fdwdNOHJU01ObXNfVx4vqJk9161RXTAoGpCvODGtI77o/OpsC1f5aXZ6U3ycV5Tl65p2o3p9fNz2qMNfRpGFBHXtoUD7fjjJXnzK/XpwV0yeL4hrU028LXObd9UUrs4IwmXR14nimT2HPQplF6jXyQq9jAAAAAAAAAACQ9ihQAQAUOO1oRecvleJ1pQEA6SuaGZMqvU7Rfr0xO64V65LqlO9oaO+6slIw4DSUpw7U1sqkQkHpb4/UavXGhEb0Cygj6OizZXE9/mZUK9YndOm0cMM6weMOC2nOkrj+/uSOMVRm1V9psc9e6+UPYzplUqhhgpYpfu28ihAw+o+foUAo2+sYAAAAAAAAAACkPQpUAAD5ivLlP+owJV58x+soAPYhEqj2OkK79eHCmB58JSKfT/r6iWH5/S1XSDLrAJNJad3mpK75WpaK8+umW50aCemvD9Xok0UJzVoQ12FDgvb+nExHP/talmYvjmt7tWsnT/Uuqyt0Pf1OVDlZjl3fVxNxdf/ztZqzNGEnVI0ZFNA5R2coHKJM1dHldxmhsoHTvY4BAAAAAAAAAECbUPeTGwBAhxeYOl7Kz/E6BoB9iPoYP9UaXp8d0z+eidhff+PEDPXvVldWain12/lOnhBqKE8ZmRmOTp1St4Zv1sLGUwBDQccWqo4ZG2ooT63blNQ7n8U1fVLITsYyha/5KxL66nEZOm9qhl3598hrda8DHZjj06DJVzOVDAAAAAAAAACAZqJABQCwnIyQgtOO8joGgH2oTW71OkK7knRdPfxaRA+8FJHfJ10yLaxDB9dNgWpJpihl9Crd/Y/fPUrqylEbtyT3eZ3H3oyoW2efDhsSsNOnPlgQ18RhQY0fGtSEQ4L216ZgVRt1W/w1oO3oNuQM5XUe4nUMAAAAAAAAAADaDApUAIAG/rFD5fTp5nUMAHsRiVV4HaHdiCdc/e+TtXr5w5iyw9KMszM1akDrbLguKawrUMUTu78vkagrO4UCe58WtHh1QnOWJHT64SE7WcgUrsxawJLCHX+k71LoU9KVyrfuu4yF9ikYzlf/w77ndQwAAAAAAAAAANoUClQAgEaCp0+VWPkDpCXXcRWpKfc6RruQTLq646lafbI4oeJ8R1d9JavF1/btbGD3umsvWNF4TZ+xYn1d2clMltqbx96IaEgvvwb3qit5mfJU3e2OaVOxL8tY/C7ecfU77ApbogIAAAAAAAAAAM1HgQoA0IivR6n8hw3zOgaAJsRyfXKTMa9jtAvPfxCz05wKcx396NxMdSlq3T8Wm9V6Qb/08kcxfVG+YwxVda2rJ9+K2sLT5OF7Xh340edxLV+X1OlHhBruM5OnfI60ZM2OaVNL1yTsKsLOBfwxvyPK6zxU3Yac7nUMAAAAAAAAAADanNbZUQIAaNMCpxyhxKcLpdqo11EA7CRa4HWC9qGqxtVz79f9/tajxKe35jRdSuvf3a9BPff/j8vvzI1p89akRvQPqEdJ3eSp4nyfzpuaoftfiOjGf9Zo9MCAwiFHny6Jq2K7q6ljg+rbtekJWImkqyffjGjckIC6d95xTlbY0ZhBAc1aEJfv6VqZ2VMfL0ro6DFBhYLMoOp4HA2afLUch/IcAAAAAAAAAAD7iwIVAGA3Tm62AsdNUvzJV72OAmAn0Zy4tGN4EQ7Q4jUJRb/sTH26JGGPppw4XgdUoHpvbkyLVidVlO9rKFDVT6HqXOjTc+9FbXEqkZBKi32aPjmk8UP3PH3qrU/rSlZXTt4xfareV4/LsJOtPl4Ut9tXjxgZ1GlTdj8P7V/XQacqv8twr2MAAAAAAAAAANAmOa7rmn+sDgBAI24ioejv75S7scLrKAC+tG5srRZXPu51DABpJhDK1aSvPKpQZqHXUQAAaSa5eKWit870OgYAAJ4I33S11xEAAADQhrDfAQDQJMfvV+C0Y7yOAWAnkUC11xEApKH+46+kPAUAAAAAAAAAwEGgQAUA2CP/0H7yjRrkdQwAX4r6Kr2OACDNFHY9TN2GnOF1DAAAAAAAAAAA2jQKVACAvQqedbyUm+11DACSapNbvY4AII34AmENOfIXchzH6ygAAAAAAAAAALRpFKgAAHvlZGcqeO4JXscAYFb4xSq8jgAgjfQ/7HvKyuvudQwAAAAAAAAAANo8ClQAgH3yH9Jf/nHDvY4BdGiu4ypSU+51DABpIr/LSPUY/hWvYwAAAAAAAAAA0C5QoAIANEvg9GOkwjyvYwAdVizXJzcZ8zoGgDTg84c09Mj/J8fh2zkAAAAAAAAAAFoCf+MOAGgWJ5yh4HknSY7XSYCOKVrgdQIA6aLP2G8pu7CP1zEAAAAAAAAAAGg3KFABAJrNP7CX/JNGex0D6JCiOXGvIwBIA7mdBqvXyAu9jgEAAAAAAAAAQLtCgQoAsF8C04+S04lROECqRTNZ3wd0dI4voKFH/Uo+X8DrKADSxKpVq/Too4+m5Lnmz5+vF1544YAf/8gjj2jQoEH605/+1KLXBQAAAAAAAFoCBSoAwH5xQkEFzz9FctjlB6RSJFDtdQQAHus96hvKLR7odQwAaWLBggU6+eST9dZbb7X6c7322ms688wz9dlnnx3wNYYMGaIrrrhCEyZMaNHrAgAAAAAAAC2Bf7oMANhvvj7d5D/qMCVeed/rKECHEfVVeh0BgIdyigaoz5hveR0DQBrZunWrotFoSp5r06ZNSiaTB3UNU6AyR0tfFwAAAAAAAGgJTKACAByQwElT5JR28joG0GHUJrd6HQGAR3yBDA2b+l/y+YNeRwEAAAAAAAAAoF2iQAUAOCBOIKDgV0+W/PyvBEiFSKzC6wgAPDJgwg+UU9TP6xgA0sjPfvYzXXjhhfbXTz75pAYNGqRHHnnEvr1+/Xr9+te/1tFHH61hw4ZpypQpuuaaa7R69erdrjN//ny7Vq/+3COOOEI//elPtXz58oZzvv71r9vHG7fddpt9rvfee2+/M5t85rF/+tOfmnXdZcuW6Sc/+YnNb7Idc8wxuvbaa7V58+Ymr/vCCy9o5syZOuWUUzR8+HB7/u233y7XdbV48WJ95zvf0dixY+0Kwcsvv1yrVq1qdJ3q6mr98Y9/1PTp0zVq1CgdeuihNuMzzzzTrNd388032xwffvih/va3v+moo47SyJEjddppp+mBBx5odO6ll15qz/3ggw92u05lZaV9/tNPP30/ProAAAAAAAA4WKzwAwAcMF/3UgWOnaj4c295HQVo11zHVaSm3OsYADzQqdcR6nHIuV7HAJBmjj32WHv76KOPauDAgTr++OPterwlS5bYYpVZjXfkkUfq5JNPtsWpxx9/XC+//LLuuuuuhjV6S5cu1fnnn69AIGAfX1xcbB//xBNP6NVXX7XFrJKSEp1xxhnKzc3VSy+9ZEtFpoDUrVu3g34Ne7uuKRZddtlldkXh1KlT1bNnTy1cuFD33nuvPf9f//qXSktLG13vv//7v23p6qSTTtLEiRPt6zCFqHXr1umxxx7TIYccovPOO09z5syx1zAlMfNxCQbrpvuZUtU777xjC1umSGaKTM8995x++MMfavv27faxzXHdddfZrNOmTVM4HLbP9ctf/lILFizQr371K3vOWWedpTfeeMPmOuywwxo9/tlnn1VNTY3OPPPMg/4YAwAAAAAAoPkoUAEADor/2IlKzF0sd/V6r6MA7VYs1yc3GfM6BoAUC2UVa+iRv/Q6BoA0LVCZ8pEpUJlJRjNmzLD3m9KNmdBkJjqZCUj13n33XV188cW6+uqrbbHIcRw9+OCDtqhjSlWmcFTv1ltv1V/+8hc72clMbaov8tQXneqf62Dt6bqmNPWjH/1IyWTSTm4y06fqmddrpm+ZQpKZLrUzU1oyr2no0KH2bVOC+ta3vqX7779fl1xyiX3thplIZYpjH3/8sT799FM7lWrRokW2PHXqqafqxhtvbDQpyhSy7rzzzmYXqExR6p///KdGjBhh3zav64ILLrD3melY5rWaUlhBQYEtaJnXkpGR0eg1mlKXmYQFAAAAAACA1GHvEgDgoDh+n4JfPUUK+L2OArRb0QKvEwBIPUeHHPWfCmUWeh0EQBthykBz58615Zydy1OGme5k7v/888/1ySefNBSJDLNyrv7XxkUXXWQnUJkJUF4whaoNGzboK1/5SqPyVP3UKlOQeu211+yqwp1NmjSpoTxlmGJUve9+97sNvzblsTFjxthf1681NGWt+qlcO68I7NGjh50IZSZVNZfJWF+eMoqKihrKYWbilBEKhWxByky2Mq+33sqVK+1/D7N+sLCQ3/8BAAAAAABSiQlUAICD5ivtpMCJUxR/6jWvowDtUjQnLiW8TgEglXqO+KqKe+yYCAMA+2JW0xmmAHTzzTfv9v6tW7fa23nz5mn06NF2AtTMmTPtuWYlnikgTZ482U5uKisrk9evY8WKFU2+jvqy0/z589WlS5eG+3v37t3ovOzsbHtrJj2ZaV07y8zMbJh2ZZgpXmYy1KxZs+zrN+Ur87E4/PDDG1YeNtfO07zqjRo1quFjX+/ss8+2KwlNOcusWqyfPmWwvg8AAAAAACD1KFABAFqE/6hxSsxdIndZ3b/iBtByopkxqdLrFABSJad4kPqPa5kVWQA6jm3bttlbM8HIHHuyZcsWeztw4EC78u7vf/+7nThlVvuZw+/32wlIv/71r9WpUyd59TpeeeUVe+zrddTLyspq8ryd1+PtzR133KF//OMfeuqpp+zKQ3P88Y9/tMWs//iP/9CRRx7ZrOuUlpbudl/nzp0bvTZj8ODBOuSQQ/Tmm29q06ZNdlKVKVOZc01xCwAAAAAAAKlFgQoA0CIcn6PgBacoetPdUnWt13GAdiUSqPY6AoAU8QXCGj71v+TzB72OAqCNqZ+4dNVVVzV7/d6AAQP0+9//XolEwq7/e/vtt22J54UXXlBVVZUtFHn1Ov70pz81TGZKBTOV6vLLL7fHunXrbIHqxRdftB+L733ve/r3v/+t7t277/M6tbW7fy9kVvUZpiS1s7POOku/+c1v7LVNoWrNmjW69NJLbYkNAAAAAAAAqeVL8fMBANoxX1G+gl+bLjmO11GAdiXqY/wU0FEMnPgjZRf28ToGgDbA2eXP3EOHDrW3n376aZPnm2lTf/3rX7V06VL7tlnf99vf/lau69rCzogRI/Sd73xHDz/8sJ3m9MEHH+zxuVrrNRj1K/Nmz569x0lRf/vb37Rhw4YWy/HJJ5/o+uuvt7f1U6ROP/103XLLLXadXiwW08cff9ysazWVu34i2MiRIxvdP23aNDsh67nnntNLL71k72N9HwAAAAAAgDcoUAEAWpR/cB8FTpridQygXYkkd6x7AdB+lfSZqu5Dz/I6BoA2IhCoGypuyj3GmDFj1LdvXzsxyUw02tmcOXNsWcqUjwoKCux9piB133336cknn2x0bnl5uSKRSKNpS7s+V2u9BuPYY4+1Gf/5z3/qo48+anT+yy+/rBtvvFH/+te/Gl5HS6isrLTTtm6++WYlk8mG+025zEyFMnr06NGsa91zzz1avnx5o4/nn//8Z1tSMxOndpafn29f76xZs/TMM8/YglW/fv1a7HUBAAAAAACg+VjhBwBocf6pE5RctU7JOYu8jgK0C7WxzV5HANDKsgp6a+hRv/I6BoA2pKyszN6+/vrruuGGGzR16lRbLrr44ov1/e9/X5MnT9agQYPspKbnn3/elpSuu+66hjVyZi2deexPf/pTPfvss7a4s2XLFjsNyRSHfvzjH+/2XE888YSdGnXaaadp4MCBLfYadr2uWSs4Y8YMfe1rX9NRRx2lPn362FLSK6+8olAoZF+vuW0pkyZNss/z6quvavr06fZtU3gya/zmz5+vE044QaNGjWo4/6677rJr+c4444zd1vqZj7MpSh1//PEKBoO29LVx40b96Ec/smv6dmXOffrpp7V27Vo7AQwAAAAAAADeYAIVAKDFmR9+BM8/WU5J3Q9nABw413EVqSn3OgaAVuQPZmnk8X9QIJTtdRQAbYgpH1111VXKzMy0k6TefvttDRs2TI8++qjOPfdcu6rv3nvv1fvvv2/LVOYcU/ipZ6ZVmTV+p556qj7//HPdfffddnrV2LFj7blmMlK9Qw89VN/4xjfsZCrzvj2t19tfe7rukUceaVcOnnTSSXYlock2b948nXjiifZ+83paks/ns1OiTGnMFKfMx9B8bMz3Nddcc43++Mc/7jZlyqz3q59OtbMf/OAHOu+882w5zUz3MpOrzMrBb3/7200+98SJE1VcXKxwOKxTTjmlRV8XAAAAAAAAms9xzT8rBACgFSTXb1L0z/dKkajXUYA2K5rn6P2ymV7HANCKhh97vbr0O87rGACAg2DW/5lS1bXXXqtzzjmn2Y/74osv7PSwadOm2QliLS25eKWit/JnSQBAxxS+6WqvIwAAAKANYQIVAKDV+LoU20lUcrxOArRd0QKvEwBoTT1HXEB5CgA6KPNvGk3xKplM6qtf/arXcQAAAAAAADq0gNcBAADtm3/EQCWPmaDES+96HQVok6I5cSnhdQoAraGgbKz6j7/S6xgAsN9efPFFzZ8/v9nnjxs3TuPHj2/VTG1JeXm5Lr74YtXU1GjVqlU6+uijNXr0aK9jAQAAAAAAdGgUqAAArS5w0uFyV69TcuFyr6MAbU40MyZVep0CQEvLyC7RiOOul8/Ht2QA2maB6tFHH232+VdccQUFqp0UFRUpEonYItUJJ5xg1/4BAAAAAADAW45r5oUDANDK3KoaRf90j9zNW72OArQpK8Zv1qotL3gdA0ALcnwBjZ3+dxWUjvA6CgCgnUsuXqnorTO9jgEAgCfCN13tdQQAAAC0IT6vAwAAOgYnO1PBi0+XgkzaAPZH1Mf4KaC9GTjxR5SnAAAAAAAAAABIIxSoAAAp4+vWRcFzTvA6BtCmRJLbvI4AoAWVDjhZPYad53UMAAAAAAAAAACwEwpUAICU8h96iPxTxngdA2gzamObvY4AoIXklQzTkCN+4XUMAAAAAAAAAACwCwpUAICUC5x2tJy+3b2OAaQ913EVqSn3OgaAFhDOKdPIE26SP5DhdRQAAAAAAAAAALALClQAgJRz/H6FvnGalJfjdRQgrcVyfXKTMa9jADhI/lC2Rp30Z2VkFXsdBQAAAAAAAAAANIECFQDAE05utkIXnSb5/V5HAdJWtMDrBAAOluPza8Sx1yunqL/XUQAAAAAAAAAAwB5QoAIAeMbXu5sCZx3rdQwgbUVz4l5HAHCQBk2+WsU9JnkdAwAAAAAAAAAA7AUFKgCApwITRsp/PD9YBpoSDUe9jgDgIPQY/lV1H3q21zEAAAAAAAAAAMA+UKACAHgueOIU+SeO9DoGkHYiwVqvIwA4QJ16HaGBE3/odQwAAAAAAAAAANAMFKgAAGkhcNZx8g0b4HUMIK1Efdu9jgDgAOR2GqThU38nx+HbLQAAAAAAAAAA2gL+Rh8AkBYcn0/Br0+X07e711GAtBFJbvM6AoD9lJFdopEn/ln+YKbXUQAAAAAAAAAAQDNRoAIApA0nGFDokjPllHbyOgqQFmpjm72OAGA/BEI5GnXinxXOLvE6CgAAAAAAAAAA2A8UqAAAacXJDCt02TlSYZ7XUQBPuY6rSE251zEANJMvkGEnT5n1fQAAAAAAAAAAoG2hQAUASDtOQW5diSqb9UfouGK5PrnJmNcxADSD4/NrxLE3qLBstNdRAAAAAAAAAADAAXBc13UP5IEAALS25PIvFL3tASlKiQQdT2VPR59kzvQ6BoB9cjTsmN+qdMBJXgcBAAAAAAAAAAAHiAlUAIC05evdVcELT5V8/O8KHU80J+51BADNMGjy1ZSnAAAAAAAAAABo4/iJNAAgrfmH9lPg3BO8jgGkXDQc9ToCgH3oe+i31WPYuV7HAAAAAAAAAAAAB4kCFQAg7QXGDVfglCO8jgGkVCRY63UEAHvRY9j56jv2Mq9jAAAAAAAAAACAFkCBCgDQJgSmTpD/mPFexwBSJurb7nUEAHtQNvAUDZx0ldcxAAAAAAAAAABAC6FABQBoM4LTjpT/qMO8jgGkRCS5zesIAJrQufeRGnLkL+U4jtdRAAAAAAAAAABAC6FABQBoU4KnHi3/4WO9jgG0utrYZq8jANhFUffxGjb1Ovl8Aa+jAAAAAAAAAACAFkSBCgDQ5gTPmCr/5NFexwBajeu4itSUex0DwE6Ku0/UyBP+JH8gw+soAAAAAAAAAACghVGgAgC0SYEzj5V/4kivYwCtIpbrk5uMeR0DwJeKe0zWyBNvojwFAAAAAAAAAEA7RYEKANAmOY6jwNnHyz9+uNdRgBYXLfA6AYB6nXpO0cgT/iCfP+R1FAAAAAAAAAAA0EooUAEA2naJ6pwT5T9smNdRgBYVzYl7HQGAKU/1OlIjjqc8BQAAAAAAAABAe0eBCgDQpjk+R4HzTpLv0EO8jgK0mGg46nUEoMPr3PsojTjuBvn8Qa+jAAAAAAAAAACAVkaBCgDQLkpUwfNPln/SKK+jAC0iEqz1OgLQoXXuc4yGH3s95SkAAAAAAAAAADqIgNcBAABoqXV+wbOPlzJCSrzyvtdxgIMS9W33OgLQYZX0naphU38nn49vlQAAbV9y8UpFb53pdQwAAAAALSh809VeRwCAdokJVACAdiU4/SgFTjrc6xjAQYkkt3kdAeiQSvoeS3kKAAAAAAAAAIAOiAIVAKDdCRw3UYHTp0qO10mAA1Mb2+x1BKDD6Tr4dA2nPAUAAAAAAAAAQIfETwcAAO1S4IixUjik+AP/llzX6zhAs7mOq2jtJq9jAB1K79GXqP+4y72OAQAAAAAAAAAAPEKBCgDQbgXGDZcTCip2/1NSIul1HKBZYrk+JRNRr2MAHYSjgZN/rJ7DvuJ1EAAAAAAAAAAA4CEKVACAds0/arBkSlR3Py7F4l7HAfYpWuB1AqBjcHxBHXL0f6q0/wleRwEAAAAAAAAAAB7zeR0AAIDW5h/aT6HvfkXKzvQ6CrBP0RyKfkBr8wezNOqkP1OeAgAAAAAAAAAAFgUqAECH4OvdVaErL5BTzHgfpLdomPV9QGsKhgs1dvr/qLj7BK+jAAAAAAAAAACANEGBCgDQYfg6Fyn0/a/J6VnmdRRgjyLBWq8jAO1WOLerDj3tf5XXeajXUQAAAAAAAAAAQBqhQAUA6FCcnCyFLv+KfIf09zoK0KSob7vXEYB2Kaeovw477U5lF/TyOgoAAAAAAAAAAEgzFKgAAB2OEwoqePHp8k8e7XUUYDeR5FavIwDtTlH38Rp76h3KyO7sdRQAAAAAAAAAAJCGAl4HAADAC47Pp+BZx8kpyFP8mdck1+tEQJ3aWIXXEYB2pfsh52rgpKvk8/GtDwAAAAAAAAAAaBo/RQAAdGiBqePlFOYqNvNZKZ7wOg46ONdxFa3d5HUMoF1wfH4NnPRj9TjkXK+jAAAAAAAAAACANEeBCgDQ4fnHDJVTVKDoPx6Vtld5HQcdWCzXp2Qi6nUMoM0LZORp+LHXq7j7eK+jAAAAAAD+f3v3ASVVef4P/NnC0nsXKQKC2BALiBob9q5YSey9G41Gk/yjxmiMJmqMGjUmwRY1iTX23nvvGrtYsIEobWF3/+d9ze5vgVXRwM4u8/mcc8/s3rlz73Nn51x2me88DwAANAOlhS4AAJqC0gGLRcvDdo6SPj0KXQpFrLJToSuA5q9Nx36xylbjhacAAAAAAID5JkAFAP9V0rlDVBz8wygdPrTQpVCkKtvNLnQJ0Kx16TMyVtn6wmjbqX+hSwEAAAAAAJoRASoAqKekokW02GWLKN9ojYiSQldDsalsZXwffF99lh4bK2zyx2jRskOhSwEAAAAAAJqZ8kIXAABNTUlJSZRvsFqULNY9Zl16Q8RMoRYax8wWMwpdAjQ7JSVlMWS1I6LvsjsUuhQAAAAAAKCZ0oEKAL5G2bJLRsVhO0dJ986FLoUiUVn6RaFLgGalonXXGLHp2cJTAAAAAADA/0SACgC+QWnPrlFx2C5RuuzgQpdCEZhZ/XmhS4Bmo1OvETFq7KXRpc8qhS4FAAAAAABo5gSoAOBblLRuGRV7bBPlW6wdUeqfThaeGbMmFboEaAZKov/wXWLFzc+Nlm27F7oYAArgJz/5SQwdOjQeeeSR7/X49Lj0+LQfAAAAAEjKPQ0AMH/K1x4Zpf37ROXF10VMNmqNBaumpCYqZ3xa6DKgSSuvaB9Lr3Nc9BiwdqFLAQAAAAAAFiHaaADAd1C6RJ9oefiuUTp0QKFLYREzq31pVFdVFroMaLLad1sqRo69RHgKAAAAAABY4ASoAOA7KmnXJlrsvV2Ub7RGRElJocthEVHZqdAVQNPVZ9g2scpWf4s2HRYvdCkAAAAAAMAiSIAKAL6HktKSKN9gtWix7/YR7doUuhwWAZXtZhe6BGhySstbxTLr/CqGrfnzKC2rKHQ5AEXt6KOPjqFDh8bEiRPjlFNOiTXXXDOWX3752GqrreLOO+/M26Tb7bbbLoYPHx7rrLNO/PrXv46pU6fOsZ+nnnoqDjjggBg1alQsu+yysd5668Vvf/vbmDRp0jzHTI/93e9+F2PGjMnH2mJBYBbLAABDD0lEQVSLLeKmm2762hpTbccdd1w+dtr3GmusEcccc0xMmDBhvs7xlltuiZ133jlGjx6dj7fRRhvF73//+/jii28f352OkZ6fX/7yl/Hwww/XPQ9rrbVWrunTT/9vVPONN96Yt021NeQnP/lJvv/ll1+er7oBAAAA+N8JUAHA/6BsSP9o+ZPdonRQ30KXQjNX2cr4PqivbeeBMXLrC6P3kE0LXQoA9ey///45AJTCRWl55ZVX4qCDDopTTz01Dj744OjTp0/88Ic/jBYtWsTFF18cJ510Ut1jr7zyyhg3blzce++9seqqq+btOnfuHH/9619j7Nix8cEHH9RtO3PmzBxm+vOf/xydOnWKnXbaKbp37x6HHXZYDijN7fXXX49tttkmLr/88hgyZEjsuuuusdJKK8W1116b9/3SSy9943ldc801ccghh+QaNt100/jRj34UHTp0iPPPPz/23nvvqKmpma/n59lnn4299torKioq8vml5+Oyyy6LHXbYIT755JO8TQqNpXNKga0ZM2bM8fgvv/wybr/99lh66aVjqaWWmq9jAgAAAPC/K18A+wCAolbSoV202H/HqLr70Zh90/0RVVWFLolmaGaL6YUuAZqIkui77A4xeNQhUVbestDFADCX1I3puuuuy+GipEePHjnkdMEFF+SwUeq4lOyzzz65E1QKMJ1wwgnx4Ycf5k5M7du3j/Hjx+eAUJKCSWeccUace+658fOf/zyHqZJ0+8ILL+TgUXpcaelXnwFMYaT0/dyOPPLI+Oyzz/J+1l577br1KWy1++67x1FHHZXrLvmaEdwp7NWmTZscpGrXrl1dbXvssUc8+OCDuXPWiiuu+K3PTwpq7bLLLvlcaqUOW+l80nmmrlwpXLXZZpvFJZdcksNS6etaqcPW9OnTcxgMAAAAgMajAxUALKiRfuuOiopDfxQlPbsWuhyaocrSOcfbQDFq2aZ7jNj0rBi6+pHCUwBN1Pbbb18XnkpSl6dk2LBhdeGpJHVYGjRoUMyaNSs++uijHF6qrKyMPffcsy48laRAU+pc1b9//3jggQfi3XffzetT8Cp1sUrj7GrDU0nqRFX/8bVdn1LYKo36qx+eSlKnq7T+1VdfjaeffvprzyuFpVI3qOeee26O2tIIv4ceemi+wlO1533ooYfOsS51tkrrb7jhhvwcJKkrVpICW/Wl79N51w9VAQAAALDw6UAFAAtQ6eI9o+LHu8Tsf98dVQ88VehyaEZmVk8udAlQUD0GrhfDfvCzaNGqY6FLAeAbLLHEEnN8n7o2Jf369Ztn29atW9eN43vxxRfz16NGjZpnu/Ly8hgxYkS8/fbbuYNTGtX35ptvxuDBg+cIa9UPbdXuL6kNPaUOVH/84x/n2f7zzz/Pt+kx6TgNSaMFU9eo3XbbLQYOHBirr756rLHGGjmA1apVq5hfyy23XF0Hq/rPw9ChQ+ORRx7J55W+TiGwFDpL3a0+/vjjfM4pPPbEE0/EBhtskEcbAgAAANB4BKgAYAErqWgRLcauH6VLD4pZl98U8YXOQny7GbMmFboEKIiyirax1Oo/jd5DNi10KQDMh9rA1NzSWLpvG/2XpBF+DenZs2e+nTZtWl3gae4gUq2OHecM206ZMiXfpvBRWr7O5MlfH1jfdttto1u3bnmUXwo6pdvasX477rhjHHHEETno9W169+7d4PoUkKr/PNR2oUoj/a6//vo8ZvDqq6/OnbBqu1MBAAAA0HgEqABgISkbNjBKj9w9Zl1xc1S/8Fqhy6EJqympicoZnxa6DGh0nXqNiGXWPSFat2/4zWYAFh21YaiJEyfm0X5zqw1Npc5Ladxd/WDU3FLIqr62bdvm2xRy2meffb53jWn8X1qmT58eTz75ZNx33315pN5f//rX3Alr//33/9Z9pMc2pDY4Vb+z1Oabbx6nnHJKXYAq3aagVep8BQAAAEDjKm3k4wFAUSlp1yYq9twmyrfbMKLlN38qn+I1q31pVFdVFroMaDQlpS1i8KiDY6UtzheeAigSaWRd8uijjzZ4f+36JZdcMlq2bBlDhgzJI/0++eSTebZ99tlnG9z33Otr/fOf/4wzzzwz3njjjQbv//LLL+Pss8+Ov/3tb3Uj99IIv6OPPrpuJOBjjz02X+fZUA2zZs3K61MwrH///nXr0/djxoyJ559/Pu655558vltuuWWUlZXN17EAAAAAWHAEqACgEZSPHh4tj9ojSpdaotCl0ARVftVkAYpC2y6DYuTWF8aAFXaLkhJ/jgAUiy222CJatGgRF154Ybz44otz3HfOOefkcNOqq64aiy22WF63/fbbR1VVVR5xlwJItW666aZ4/PHH53j8iiuuGAMHDozbbrstbr755jnue+655+KEE06ICy64oK6z1dzSmL4rrrgih6zefPPNOe5799138+3iiy8+X+eZQlDjx4+v+z6N5Dv99NNj0qRJsc0228wzBrB2XN/xxx+fb9M2AAAAADQ+I/wAoJGUdO4QFftsF1WPPR+zrr0zYtqMQpdEE1HZdnZEdaGrgIXfdWrAiN1jiRF7RGlZi0KXA0Aj69OnTxx77LHxy1/+MoejUuelXr16xdNPP52XdP9JJ51Ut/24cePirrvuyoGp119/PUaPHh0TJkyIO++8M3dxSkGlWqWlpXHqqafmMXiHHnpo7h41dOjQ+Oijj+LWW2/NAazf/OY30aVLlwZrS4//6U9/GocffngOMG244YZ5lF46xh133JEft/fee9dt/8gjj+SOWcOGDYv11ltvnlGFJ598cu4olWp46qmn8vkts8wycfDBB89z7FRr796947333osVVlihwfGGAAAAACx8PvINAI2sbJVlo+VP94zS5YcUuhSaiMrW/9dVARZFHXosE6PGXhKDVt5XeAqgiG233XZx8cUXxxprrBEPPfRQ/P3vf4/JkyfHvvvuG1dffXUOUdVKY+zOO++8OOyww6KysjIuu+yyHKRK3aQ23njjefa97LLL5n2kcFbqZpWOk0JOKaB0ySWXxNZbb/2NtW266abx17/+NXezeuCBB/I4v2eeeSY/7sorr4y+ffvWbZv2e9ZZZ8Xtt98+z37S6ME0DjB1nLr00kvj008/jf333z/XkDpdNRTeqj0f3acAAAAACqekJvUSBwAKouqZV2LWVbdHfDG10KVQQG+P+izenXxbocuABa60vFUMWmX/6LfcOOP6AFikpe5YqatWCmClsNd3sdtuu+Ww1n333Zc7WC1I1a+9E5XnXL5A9wkAABRWq9OOKnQJAIskI/wAoIDKhg+N0sH98ki/6sdfKHQ5FEhlqQAdi56ufVeLpdY4Olp3+L9uIgDAnB5++OG8pM5ZCzo8BQAAAMD8E6ACgAIrads6KsZtGlUrLR2zr7o9aj6eVOiSaGQzqycXugRYYCpad40hqx0RvQZvWOhSAKDJOuaYY+KVV17JS+vWrfMYQwAAAAAKxxwNAGgiyoYuERVH7hHlm6wZUdGi0OXQiGbMEppjUVASfYZtE6N3uFJ4CgC+RY8ePeKNN96IJZZYIs4999zo00fHRgAAAIBCKqmpqakpaAUAwDxqJn8Rs667M6qffqXQpbCQ1ZTUxEPDronqqspClwLfW/tuS8XQ1Y+MTr1WKHQpAEA91a+9E5XnXF7oMgAAgAWo1WlHFboEgEWSEX4A0ASVdGofFbtsGVWj347ZV98RNR9+UuiSWEhmtS8VnqLZatGqcwweeWAsttSWUVKiuS0AAAAAANA8CVABQBNWtmT/KD1it6i6/8mYfcsDETNmFrokFrDKToWuAL67ktLy6LvsDjFwxb2jvGX7QpcDAAAAAADwPxGgAoAmrqSsNMrXWjnKVhwWs66/J6offz7CAN5FRmXb2RHVha4C5l/XvqvHkNUOj7adBhS6FAAAAAAAgAVCgAoAmomS9m2jYqdNonr08Jh11e1RM2FioUtiAahsPStiaqGrgG/XpmP/HJzq1m+NQpcCAAAAAACwQAlQAUAzUzqgT1QctktUPfx0zL7xvohpMwpdEv+DmS2mFboE+EZlFW3zqL6+y+4YpWUtCl0OAAAAAADAAidABQDNUElpSZSvNiLKhi8Vs29/KKoefDpi1uxCl8X3UFmq/RRNU0lpWSw2dMsYtMr+UdG6S6HLAQAAAAAAWGgEqACgGStp2zpabLlulK8zMmbf8UhUPfR0xOyqQpfFdzCzenKhS4C5lETPwRvEoJX3jzYd+xa6GAAAAAAAgIVOgAoAFgElHdpFi63H/DdI9XBUPfxsRJUgVXMwY9akQpcAdbr1+0EMGnlgtO+6ZKFLAQAAAAAAaDQCVACwCCnp1D5ajF0/ytcdFbNveyiqHnsuoqq60GXxNWpKaqJyxqeFLgOi82IrxaBVDopOvZYvdCkAAAAAAACNToAKABZBJZ07RIvtN4yy9VaNqlsfjKrHX4ioFqRqama1L43qqspCl0ER69B9mRg08oDouviqhS4FAAAAAACgYASoAGARVtqlY5TuuHEOUs2+9cGofvLFiOqaQpfFf83qVOgKKFZtOw+KQavsFz2WWLfQpQAAAAAAABRcaaELAAAWvtJunaNi3KZRcdSeUbrisIiSkkKXRETMbDu70CVQZNp1GRzLrvvrWHW7y5tVeOroo4+OoUOHxoMPPvi9Hj9t2rQ45phjYtSoUbH88svH7rvvvsBrBAAAAAAAmi8dqACgiJT26BIVP9o8qtdfLWbfcn9UP/NKhIZUBVPZelbE1EJXQTHo2Gt4LLHC7tGt/w+iOVpvvfWiT58+0bdv3+/1+HPOOSeuuuqqHMJaa621ol+/fgu8RgAAAAAAoPkSoAKAIlTas2tU7LJlVL//ccy+5YGofv5VQaoCmNliWqFLYBHXrd8aMWCF3aJT7xHRnKUAVVq+r+eeey7fnnjiibHccsstwMoAAAAAAIBFgQAVABSx0sW6R8XuW0X1exNj9q0PRvXzr0XUSFI1lspS7adY8EpKyqLHoPViwAq7R/uuSxa6nCahsrIy33bu3LnQpQBAoyod3C9anXZUocsAAAAAaPJKC10AAFB4pX16RsXuW0fFz/eJsnVGRrRtXeiSisLM6smFLoFFSGlZy+iz9NgYveNVsdyYkxap8NTRRx+dx+89+OCD+fv09b777huvvfZaHHDAAbHKKqvE8OHDY/vtt49bbrml7nG1Y/uefPLJ/P2YMWPy9xMmTKjb5tprr40dd9wxRowYkfex9dZbx4UXXhizZ88uwJkCAAAAAACFoAMVAFCntEvHKN187SjfaI2oeuqlqLr/yaiZMLHQZS2yZsyaVOgSWAS0aNUp+iy1dfRdbsdo2aZbFIu33347dthhh+jfv3+MHTs2Pvnkk7jpppvikEMOibPPPjuP/Bs2bFgcdNBBceWVV8YHH3wQu+yyS3To0CEvNTU18fOf/zzf161bt9h4442joqIi7rvvvjjppJPi3nvvjfPOOy/Ky/3JBAAAAAAAizrvBgAA8yhpUR7lI5fLS/Vb78fs+5+M6mdeiaiqKnRpi4yakpqonPFpocugGevQfZlYfNnto9egDaK0rCKKzZtvvhk777xzDkGVlJTkdaNHj46f/exncemll9YFqNKSOlelANWuu+4aiy++eN72xhtvzOGpZZddNv785z9Hly5d8vpp06bFwQcfHPfff39ccMEFsd9++xX0PAEAAAAAgIXPCD8A4BuVDlgsKn60WbT85X5RvvEPIjq1L3RJi4RZ7Uujuqqy0GXQDMf09R6yWayy9UUxcpuLYrEhmxVleKpWGt9XG55KUmgqqT+i7+v861//yre/+MUv6sJTSZs2beK4446L0tLSuOKKKxZK3QAAAAAAQNOiAxUAMF9K2reN8vVHR9mYUVH9/Gt5vF/1a+8Uuqxma1anQldAc9KqXe9YfOmxsdhSW0VF686FLqdJ6NSp0xzBpySN5ksqK789nPjCCy9Eq1atYvjw4fPc17dv3+jVq1e8//77MXny5HwsAAAAAABg0SVABQB8JyWlpVG2/JC8VH/4SVQ98FRUPf58xMxZhS6tWZnZdnZEdaGroGkriS6Lj4zFl9k+uvdfM0pKNI+tr2XLlvOsq+1GVVNT862P//LLL6Njx46501RDevbsmQNU06dPF6ACAAAAAIBFnAAVAPC9lfbqFqVj14/yTdeMqseez2Gqmo8+K3RZzUJl61kRUwtdBU1Ry7Y9oteSG8diQ7eItp0GFLqcRVa7du1i0qRJuVtVRcW8YxA///zzfCs8BQAAAAAAiz4BKgDgf1bSqmWU/2ClvFS9+lYOUlW/+EZEVVWhS2uyZraYVugSaEJKy1tGjwHrRO8hm0WXxUfpNtUIll566XjwwQfjiSeeiNGjR89x38SJE+Ott97Ko/xat25dsBoBAAAAAIDGIUAFACxQZUMG5KVm+oyoeu4/Uf3Uy1H9n7cjqs2rq6+yVPspIjr1GhG9h24WPQeuF+UV7QpdTlEZO3ZsDlCdfPLJ8be//S26dOmS16eRfccee2xUV1fH1ltvXegyAQAAAACARiBABQAsFCWtW0X5yOUiRi4XNVOnR9Wzr0b10y9H9evvRFTXRLGbWT250CVQIK3b94leQzaN3kM2jTYdFi90OUVrs802i/vuuy+uueaa2HzzzWPttdfOo/zSunfffTdWX3312GeffQpdJgAAAAAA0AgEqACAha6kbesoHz08YvTwqPliag5TVT39ctS8MSGipjjDVDNmTSp0CTSiFq06RfcBa0fvJTeJTr1XjJKSkkKXRETuPjVy5Mj4xz/+ETfccEP+uQwaNCh233332GmnnaK01ChFAAAAAAAoBiU1NUX6riUAUHA1n38RVc/8N0z19nsRRfJbSU1JTTw07JqorqosdCksRC3bdI/uS6wbPQauG517jYiS0rJClwQAAAAAAEADBKgAgCahZtKUqHrmla/CVO98EIuyyg4l8WjvywtdBgtBq/aLRY8UmlpiTHTsuZxOUwBAQVW/9k5UnuP3TgAAAODrtTrtqEKX0CQY4QcANAklnTtE+dqr5KX6s8+j+umXvwpTTZgYi5pZnQpdAQtSm04DcmCqxxLrRIfuwwpdDgAAAAAAAN+RABUA0OSUdukYpeuOivJ1R0X1x59F9bOvRvUrb0X1W+9FzK6K5m5m29kR1YWugu+rpLRFdOq1QnTtOzq69f9BtOs8sNAlAQAAAAAA8D8QoAIAmrTS7l2idMyqEWNWjZrKWVH95oSvwlT/eTtq3v8oohkOI65sPStiaqGr4Lto07F/dO27anRdfHR0XmzlKGvRutAlAQAAAAAAsIAIUAEAzUZJRYsoG7pEXpKaL6flIFX1q29F1atvR0yaEs3BzBbTCl0C36Ksom10WWxk7jKVltbtFyt0SQAAAAAAACwkAlQAQLNV0q5NlI0YlpcWEVH98aQcpqp+9e2ofu2diOkzoimqLNV+qqkpLWsZHbovHZ0XWzF3merQc7koLfWrMgAAAAAAQDHwrhAAsMgo7d45L7H6iKipromaCR9+1aHqrfei+q33I6ZOj6ZgZvXnhS6h6LVo1Sk69RoeHXuuEJ16rRAdug+L0rIUwwMAAAAAAKDYCFABAIukktKSKOnXO0r79a5blzpU1bz9/leBqrffj5oPPo6ormn02mbM+qzRj1nsWnfom4NSnXqvEJ16Do+2nb8aAwkAAAAAAAACVABA0cjdqbp3jrKVl8nf18ysjOp3PvhvqOr9qH5vYsTnXy7UGmpKaqJyxqcL9RjFrmXbHtG+65Bo13VodOi+VA5OVbTuUuiyAAAAAAAAaKIEqACAolXSsiLKluwfkZb/qvlyWlS//3HUvP9RVL//UdS891HUfPRpRFX1AjnmrPalUV1VuUD2VexKSsqiTcd+0b7b0ByWat9tSLTvOjQqWncudGkAAAAAAAA0IwJUAAD1lLRrE2VD+kek5b9qZldFzcRPoub9j3OXqpqJn0ZNGgc4aUpEzXcbATir00IoepFXkrtKtenYN9p2GhDtug75KjTVZXCUlbcqdHEAAAAAAAA0cwJUAADfoqS8LEr69Izo0zPKVlm2bn3N7NlR88nkqPnos6j5ZFLUfPxZVKdg1ceTIr6Y2uC+ZradHbFgmlktcipad80dpb5a+kbr2q87LB5lLVoXujwAAAAAAAAWUQJUAADfU0l5eZT06haRlrnUzJj5Vahq0he5U1XN5Clfdazq8kG0nNIzKqd9EjXVVVEsSstaRss23aKibbdo1aZHVLTtHi3bdI9W7XrlsFQKSpVXtC10mQAAAAAAABQhASoAgIWgpFXLKFm8V0Ra6lksL/tFTU11VE7/LGZO/firZdrHMWvG5Jg1c0peZufbL2L2zM/z7ayZn0f17BnRVJSWt4zyinZRXtH+v7ftokVF+2jRqlO0TOGo/wakam9btOpY6JIBAAAAAACgQQJUAAAFUFJSmjsypSW6D5uvx1RXzaoXrpoSVbOm5nXV1bOiuqoyaqpm/9/X+fa/S3XtfbOjpLQsSkvK8m1JaflXtyXldV+X1q376v7yFm2/Cki1/L+gVFpKy1os9OcIAAAAAAAAGoMAFQBAM5FCSy3bdM0LAAAAAAAAsGCULqD9AAAAAAAAAAAANDsCVAAAAAAAAAAAQNESoAIAAAAAAAAAAIqWABUAAAAAAAAAAFC0BKgAAAAAmpl33303rr766kY51ksvvRS33XZboxwLAAAAAApBgAoAAACgGXn55Zdjk002iQceeGChH+uee+6JbbbZJp5//vmFfiwAAAAAKBQBKgAAAIBm5PPPP4/KyspGOdann34a1dXVjXIsAAAAACgUASoAAAAAAAAAAKBoCVABAAAANBNHH3107LLLLvnrf//73zF06NC46qqr8vcTJ06M4447LtZZZ51YdtllY4011ohjjjkmJkyYMM9+XnrppTjooIPqtl1zzTXjpz/9abz11lt12+y888758cm5556bj/XII49855pTfemxp59++jz3pXX1zyGZPXt2nH/++bH11lvHiBEjYsUVV4ztttsu/v73v0dNTc08+0ijDPfYY49YZZVVYvnll4/NN988/vKXv8SsWbPmee7SsZ544onYdttt83mvu+668e677+b7r7jiithhhx3yflZYYYXYYost4rzzzpuvbl/peUn7TnXfdNNNuYZUS9r/73//+5g6dWrdtmmbtO1ZZ53V4L522mmnXNtnn332rccFAAAAYMEQoAIAAABoJtZbb70cLEqGDBmSQ1DDhg2L119/PbbZZpu4/PLL8/pdd901Vlpppbj22mtj7NixOTBV64033sghnYcffjhGjx4du+++ew7sXHfddTlA9NFHH+Xt0nHGjBmTv1555ZXzsfr06bPQz/GXv/xlDh21atUqdtxxx3xen3zySRx//PHzhLD++te/5vDUiy++GOuvv3786Ec/itLS0jjllFNiv/32y2GsuR1yyCF53ykgls67b9++cfbZZ+fjTps2LR8vHbeqqipOO+20uhDZ/Lj11lvjsMMOi969e8e4ceOiQ4cOOTCVjjVz5sy8zVZbbRVlZWX5+Z7b22+/HU8++WSsvfba0aVLl+/1/AEAAADw3ZV/j8cAAAAAUKAAVfv27ePqq6/OXYwOPvjgvD6FflLHotQpKoVvaqWQVApIHXXUUTmwU1JSEv/85z9j+vTpMX78+BygqnXOOefEH/7wh9wNKoWP0j6TO+64Iweoao+1MH355ZdxzTXX5ONdeumldetTeGvjjTeOiy++ONfRokWLePnll+PUU0+NwYMH5/W1gaPUpernP/95XHnllfkc99prrzmOkQJTF110UQ5a1UqPT+vTuad9J4cffngOkV1//fX5+evZs+e31v/cc8/lwNVuu+2Wv08BriOPPDJuvPHGHPbaf//9o0ePHrnj11133RVPPfVU7rJVK/1ck9rnHgAAAIDGoQMVAAAAQDP27LPPxgsvvJC7RdUPTyWrrrpqXv/qq6/G008/ndfVjsFLo+zqj8RLoZ+777479tlnnyiUVE91dXV88MEHc4we7NSpUw5E3XfffXUBpzRyL22bgk71uzWlkFgaR5gCUiksNreNNtpojvBU7XEnTZqUO3nVqqioyKGnxx57bL7CU8nAgQPrRiwm5eXleXRguq0NRyWpK1iSwmL1a0ght27duuWAFQAAAACNRwcqAAAAgGYsdT1KUgeqP/7xj/Pc//nnn+fbNOYudTuqHfWXtr3ssstitdVWi9VXXz2HdtLouUJK3bW22GKLPHpwgw02iOWXXz7XtsYaa8Tw4cPnCD7VnveDDz6Yz21ubdu2jbfeeiumTp2av66VOk3NLY3bSx240ni9NBIxPSfpmKkTVm1ga36MHDlynnBWCl/16tUrj+dLHbbatWuXg25du3aNm2++OXfLSmGt1C3svffeyyMJU+AKAAAAgMbjf2MAAAAAmrEpU6bUdZRKy9eZPHlyvh0yZEjuzPTnP/85d5xKXY/SUlZWFuuuu24cd9xxuQtSoZx00kk5OJXG6aWuWWnM3VlnnZWDSKnbVAo51T/vSy655Bv3l7arH6Bq3br1PNsceuihMWDAgPjHP/6Rj5cCWRdccEHufLX33nvPMwbw63xdAK179+65o9YXX3yRA1QplJWCYn/729/yzyCFxWq7UdV2pwIAAACg8QhQAQAAADRjteGgI444Yr7H7y255JJxyimnRFVVVR7/l7o4pa5Pt912W+7YlII9C0oaqZfUHxdYa/r06fOsS92XfvSjH+UlddVKnZlSyOjGG2/Mo/kWX3zx3Bmq9rwfeOCBBRL42nLLLfOSQk5pbN8999yTg2Wnnnpq9OjRIweevk1D55OkfSadO3euW5eCUul5vv7663NHqltvvTUHxwYPHvw/nwsAAAAA382cPcUBAAAAaNJqA0m1ll566Xz77LPPNrh96jZ15plnxhtvvJG/T+P7TjjhhBxoSl2nUmhnv/32iyuvvDLatGmTw0Nfd6zvo3YEXgpmzS2Ntavv9ddfj9///vdx11135e+7dOkSm2yySQ57pRqTxx9/PN+mUXvJM888M89+Z86cmTtZpYBSQ8Gt+iZOnBh/+MMfcser2jGCqRPX8ccfH8cee2xeV/85+SYN/QxSCCyNElxqqaWiVatWc4TY0nN/33335fOdNm1abL311vN1HAAAAAAWLAEqAAAAgGYkdWhKZs2alW9XXHHFGDhwYO4edfPNN8+x7XPPPZfDUrXj6GrDQGns3b///e85tv3kk09y8Ch1ePq6Y30fgwYNqusUVVlZWbc+jee7//7759i2tLQ0zj///Dj99NNjxowZc9yXRuAlffv2zbfbbrttvk3hqo8++miObc8444y48MIL8zi+bwuBpU5Wf/nLX/IxU9ipvnfffXeOY36bhx56KP8caqXn7cQTT4zZs2fH9ttvP8/2qQtVCk799re/jZYtW8Zmm202X8cBAAAAYMEywg8AAACgGendu3e+vffee3PwZsyYMXnM3O677x6HHnporL766jF06NAcKkpj4VKI5ze/+U3u5pQceOCB+bFpHN5NN92UA06TJ0+OW265JXdr+slPfjLPsdIouxRESiPuhgwZ8p3qTZ2iRowYkcNMKTC05pprxocffphrS+GvRx99tG7bJZZYInbaaae47LLLYuONN4511lknd21KXaZS56m0nw022CBvmx57wAEHxDnnnBObbrpp7hrVtWvXeOKJJ3I4q0+fPnHMMcd8a33t2rWLgw8+OH73u9/l/ay//vrRoUOHeOWVV3J3qP79+8cOO+xQt/3tt98eL730UowcOTJGjRrV4L7SzyQdPwWqXn311VhrrbXyec0tBabSz+a9997Lx07HBQAAAKDxCVABAAAANCMp1HTEEUfE+PHjcyep1q1bxyGHHBJXX311nHfeeTn0k0JJnTt3zmGqvfbaK1ZeeeW6x6duVWmMX+r0lEJJqQtUGt230korxd57751va6XH7brrrnnf6VgDBgz4zgGqJIWcUleoO+64Iy666KIYPHhw7syUjls/QJX84he/yOPu/vWvf8UNN9wQ06dPz12xUjBpjz32qBsJmKTA2HLLLRcXX3xx3nfqcLXYYovl7fbcc8/o1q3bfNWXzjsFni699NIckJoyZUr06tUrn3saHdixY8e6bdP96fk46KCD5glQrb322nld6miVfg6p7qOOOirvJ3XXmlsKXKVwVQqvbbPNNt/5eQUAAABgwSipSR8tBAAAAAC+l0ceeSR22WWX2HzzzXMnq+8iddRKI/5SMKuhkNX/ovq1d6LynMsX6D4BAACARUur044qdAlNwoL9XxkAAAAAYL6kTlZvv/12HhG4oMNTAAAAAMw/I/wAAAAAmC+pS9JLL70039uPHDlynjF3RB4v+Mknn8Qrr7wSPXv2jHHjxhW6JAAAAICiJkAFAAAAwHwHqFLXpPl10EEHCVA1oFu3bvH444/HcsstF7/+9a+jffv2hS4JAAAAoKiV1NTU1BS6CAAAAABgwap+7Z2oPOfyQpcBAAAANGGtTjuq0CU0CaWFLgAAAAAAAAAAAKBQBKgAAAAAAAAAAICiJUAFAAAAAAAAAAAULQEqAAAAAAAAAACgaAlQAQAAAAAAAAAARUuACgAAAAAAAAAAKFoCVAAAAAAAAAAAQNESoAIAAAAAAAAAAIqWABUAAAAAAAAAAFC0BKgAAAAAAAAAAICiJUAFAAAAAAAAAAAULQEqAAAAAAAAAACgaAlQAQAAAAAAAAAARUuACgAAAAAAAAAAKFolNTU1NYUuAgAAAAAAAAAAoBB0oAIAAAAAAAAAAIqWABUAAAAAAAAAAFC0BKgAAAAAAAAAAICiJUAFAAAAAAAAAAAULQEqAAAAAAAAAACgaAlQAQAAAAAAAAAARUuACgAAAAAAAAAAKFoCVAAAAAAAAAAAQNESoAIAAAAAAAAAAIqWABUAAAAAAAAAAFC0BKgAAAAAAAAAAICiJUAFAAAAAAAAAAAULQEqAAAAAAAAAACgaAlQAQAAAAAAAAAARUuACgAAAAAAAAAAKFoCVAAAAAAAAAAAQNESoAIAAAAAAAAAAIqWABUAAAAAAAAAAFC0BKgAAAAAAAAAAICiJUAFAAAAAAAAAAAULQEqAAAAAAAAAACgaAlQAQAAAAAAAAAARUuACgAAAAAAAAAAKFoCVAAAAAAAAAAAQNESoAIAAAAAAAAAAIqWABUAAAAAAAAAAFC0BKgAAAAAAAAAAICiJUAFAAAAAAAAAAAULQEqAAAAAAAAAACgaAlQAQAAAAAAAAAARUuACgAAAAAAAAAAKFoCVAAAAAAAAAAAQNESoAIAAAAAAAAAAIqWABUAAAAAAAAAAFC0BKgAAAAAAAAAAICiJUAFAAAAAAAAAAAULQEqAAAAAAAAAACgaAlQAQAAAAAAAAAARUuACgAAAAAAAAAAKFoCVAAAAAAAAAAAQNESoAIAAAAAAAAAAIqWABUAAAAAAAAAAFC0BKgAAAAAAAAAAICiJUAFAAAAAAAAAAAULQEqAAAAAAAAAACgaAlQAQAAAAAAAAAARUuACgAAAAAAAAAAKFrlhS4AAAAAAFgwrrnmmrjooovizTffjFatWsXqq68eP/7xj6NPnz6FLg3mcdlll8Vxxx33tfc/9NBD0aVLl0atCRpy2GGHxZNPPhn33nvvPPdNmzYtLrjggrjhhhvigw8+iG7dusWmm24aBxxwQLRu3bog9cK3vW7T7wY33nhjg49bcskl4/rrr2+ECiFi6tSpcd5558Wtt94a7733XrRo0SKWXnrp2HXXXWP99defY9tJkybF2WefHXfddVd8/PHHsdhii8XYsWNj9913j/Jyb3nT9F6z22+/fTzzzDMN7mfttdfO+4HGMHny5Px6u/POO/Pvq127do0xY8bk31fn/ntrUpFfaxf9MwQAAACAInD66afHueeeG4MHD45x48bl/xhNb47ef//98c9//jP69u1b6BJhDi+99FK+3W233aJdu3bz3C98QlNw1llnxU033RQ9e/ac577KysrYb7/94pFHHok11lgjNthgg3j66afj/PPPj8ceeywHWisqKgpSN8Xtm163tdffjh07xs477zzPfYKrNJYvv/wy/876yiuvxDLLLJO//uKLL3Iw5aCDDorDDz889t1337ztlClT8uv1tddey9fafv36xQMPPBC/+93v4rnnnoszzzyz0KdDEfgur9nq6up49dVXY/HFF4+tttpqnn0NGDCgAGdAMUqv0fRaff3112P06NE5OPXGG2/ExRdfHLfcckv84x//iN69e+dtp7jWClABAAAAQHP38ssv5/DUSiutFOPHj697w37jjTfO/5l/4okn5vuhqb1uU6e0n/70p1FaWlrocmAOM2fOjBNOOCEHUL/O5ZdfnsNTe+21Vxx55JF169M1N4WnLr300vxpfWhKr9vp06fH22+/HauttlocfPDBjVof1PfnP/85B1F23HHH3JGypKQkrz/00ENzt5M//OEPsdFGG0X//v1zN5T//Oc/ceyxx+YgQG0ntdRpLQUAUoAlvdkPTeU1mzoCp+tt6gjsWkuhQ9UpPJVeh+n/Bmpdcskl+XeGFIr6zW9+k9ed7Vob/ioFAAAAgGYuvVGfHHjggXN0O0ljJFZZZZW4++67Y+LEiQWsEOZU+6n8NCpKeIqmJo03SQHUFEJZa621vna72g5T+++//xzr05tMqYNaClhBU3vdpmtvugYPHTq0UeuDuaUuaSmAcsQRR9QFUZLUOW2nnXaKqqqquOeee2LGjBl1HVJScKVWWVlZHHXUUflr11ua0ms2SUGrxLWWQpswYUIeMb3nnnvOsX7LLbfMt0899VS+da39ir9MAQAAAKCZe/jhh6O8vDyHpea26qqrRk1NTd4Gmoq33norfyp/qaWWKnQpMI9//etfMXXq1Pzp+/POO6/Bbd5777149913Y/nll59nBGXbtm3z+vQ6//DDDxupaord/Lxu649Pdf2l0HbdddccOO3QocM899V+ICC9pp999tmYNm1ajBw5cp7QdRpRnUakpbGpKbwCTeE1m7jW0lSkrlJpDN/c49FTV6qke/fu+da19itG+AEAAABAM1ZZWRnvv/9+9OnTZ47uU/X/szN54403ClAdfP34viR9ej+NhXj88cfj888/jyFDhsRuu+0Wm222WaFLpMjfID3llFPmCUbVl8JRSb9+/Rq8P11703i/dO3t1avXQqsVvsvrtv6b+ul3h5133jlfj1PQOo0BTp0sU/gPGsMPf/jDBten12MaE1XbvWd+rrepw0pa0ug0KPRrtv619sUXX4zf/va3eSxa+lstjU895JBDYokllmjEyuH/pL+50oerTj755PwhrAMOOCCvd639ig5UAAAAANDM/wM0/ad9x44dG7y/ffv2+faLL75o5Mrg2wNUaUzEp59+GltssUUeOZk+CZ3Gopx22mmFLpEiNmrUqG8NoUyePDnfdurU6RuvvVOmTFkIFcL3e93WHyuVOlJ07do1tttuu1hxxRXz2Klx48bFXXfd1QjVwtf7+9//njuhpDfrf/CDH7je0uxes/V/1z399NNj4MCBeSRa+qDAjTfeGNtuu23eHhrbZZddljtMpRDfxIkTc/B69OjR+T7X2q/oQAUAAAAAzdisWbPybUPdp+qvnzlzZqPWBd8khf5S17SDDz44tt5667r1aSTaTjvtlMdPrbnmmrHyyisXtE74Oq69NFetWrXKnSPOPPPMOUZLpQDVfvvtF0cffXTccccd8xXGggUthUtOPPHE3BUldUdp0aJF7raauN7SXF6zaQxajx49ckj1T3/6Uyy22GJ1219++eV51OqRRx6ZH1tWVlbQ+ikuXbp0ib333js+/vjj3DXtJz/5SXzwwQex1157udb+lw5UAAAAANDM3wit/2b+3Gr/I7RNmzaNWhd8k9Rl6s4775wjPJWkT+6nT0Qn1113XYGqg2/XsmXLOa6xc6td37Zt20atC77N+PHj85um9cNTyVprrRWbbLJJ7kBx9913F6w+iruLT/r9IEkjz2pD1PP7u67rLU3lNZv+7rrqqqvi2muvnSM8laROVCNGjMjj0nShorFtuOGGOTSVXq///ve/c6Dq1FNPjeeee8619r8EqAAAAACgGUsdIkpLS792RF/t+tqW+9DULb/88vn2nXfeKXQp8LVqx5t827VXFx+aE9dfCqG6ujp37jn++ONzF58zzjgjNttss7r7a8dUf93YKNdbmtpr9tu41tIULL744rnzVJI6T7rWfsUIPwAAAABoxlIr/dS15/3338+fFk1jI+pLI9GSwYMHF6hCmPdNpxdffDGPNxk5cuQ896f1Se2noKEpGjhw4De++Vm73rWXpuTLL7+M1157LV9f5+5AlUyfPj3fuv7SWFJHk9TBJ3VFS8HUs88+e57xvfNzvU0df+bu9AOFes1OmjQp3njjjdzdZ4kllphnH661NObr9bHHHouqqqo8Hn1u6f8Rks8++yx+8IMf5K+L/VqrAxUAAAAANHMphJLCU08++eQ89z300ENRUlISK664YkFqg4bsvPPOscsuu8Snn346z32PP/54vl1uueUKUBnMn549e0b//v3z+J3a0F+tqVOn5lEo6f5u3boVrEaYW3pDf4cddsjjexqS3mSt3x0FFqb0hv6hhx6agyipE8pll102TxAlWXbZZfPIqEcffTSHsOf+oMB7770XK6ywQpSVlTVi9RSj+X3Npr+/xo0bl7tUzS29htPfbOnvM7/r0hgBqr333jsOP/zwBsdOv/DCC/k2Bf1ca78iQAUAAAAAzdzYsWPz7emnnx4zZsyoW3/bbbflMMq6664bvXr1KmCF8H/SyMmNNtooampq4tRTT53jP+hffvnlOO+88/Knm7fddtuC1gnfJr1GUxeJNLqnvvR9Wp/ePIWmJL052q9fv/jPf/4T//rXv+a476qrror7778/lllmmVhppZUKViPF4/zzz48777wzdzP5+9//Xtdpam4tW7bM49EmTJgQF1100RxhllNOOSV//cMf/rDR6qZ4ze9rNnX6SePT77333njggQfmuC91rEqdANdff/1FvpMPhZfG7Y0ZMyaP3zvrrLPmuO/555+P8ePH57+70jXWtfYrJTXpr1QAAAAAoFn71a9+FZdeemkMGDAg/yfpxIkT46abborOnTvH5ZdfXteeH5qC1Hlqp512irfffjuWXnrpGDVqVH7N3n777TlQlcKAG2ywQaHLhGzo0KG541R6I7S+9En+HXfcMX96P3UCTJ/Kf/rpp/Mn91NHir/97W95zCo0pddtClbvtddeOeS31lprxaBBg3J49cEHH4zu3bvHxRdf3ODIKViQJk+eHOuss07u4Jd+bx02bFiD26Vr6ejRo/N4qRRaTR1Q0uPSeNT0mk3X34033jj/3pA6+kBTec3eeOONdd3+Uliqd+/e8dRTT+XfE1Lw6pJLLomuXbs28llQjD788MP8d9f777+fA9LDhw/PX99xxx35upmun+utt17e9jPXWgEqAAAAAFgUpP/mSwGqK664It56663o1KlTDqWkMRPCUzRFn3/+efzpT3/KndJSeCqNjFhllVViv/32y11SoKkHUZIvv/wyf6L/5ptvzsHA9AZpeoMpjUtJn/qHpvi6ff3113MXlIcffjimTJmSR02uvfbaceCBB+YQFSxsKTCdXm/fJv1O8OMf/zh//dFHH8Uf/vCHuPvuu3M3lTRCbZtttskjgYVVaYqv2RSWOvfcc/PIvhS8Sh2nNtxww9h33339jkCjSsGoc845J4em0rW0Q4cO+f8K0ut1qaWWmmPbj4r8WitABQAAAAAAAAAAFK3SQhcAAAAAAAAAAABQKAJUAAAAAAAAAABA0RKgAgAAAAAAAAAAipYAFQAAAAAAAAAAULQEqAAAAAAAAAAAgKIlQAUAAAAAAAAAABQtASoAAAAAAAAAAKBoCVABAAAAAAAAAABFS4AKAAAAAAAAAAAoWgJUAAAAAAAAAABA0RKgAgAAAAAAAAAAipYAFQAAAAAAAAAAULQEqAAAAAAAACgajzzySAwdOjQvt99++zduO378+Lzd0UcfHU3FhAkTck0rr7xyLEqefPLJGDduXIwYMSJWWGGF2GGHHebr57juuus2Wo0AwKKrvNAFAAAAAAAAQCH88pe/jBVXXDG6dOlS6FKK2pdffhn77LNPfPHFFzFkyJAYNGhQ9OvXr9BlAQBFRIAKAAAAAACAovTpp5/GscceG3/84x8LXUpRe+2113J4qmvXrnHVVVdFixYtCl0SAFBkjPADAAAAAACg6KSuUxUVFXHrrbfGtddeW+hyitrMmTPzbffu3YWnAICCEKACAAAAAACg6PTo0SN+/OMf569//etfx8SJE+f7sUOHDs3LlClT5rlv/Pjx+b6jjz66bt0jjzyS16WRge+++24cccQRseqqq8YKK6wQ2223Xdx99915u/fee6/uvjRacPvtt6+7ryGffPJJHHPMMTF69OgYPnx4jB07Nq644oqoqqpqcPtXX301jjzyyPjBD34Qyy67bKyxxhr5eKkD1NxS/anm+++/P3+dal155ZXj+OOPn6/n6Pbbb48999wzRo4cmY+17rrr5m5fEyZMmOe53GWXXfLXL7/8ct1zO/d238VNN90Uu+22Wz6/dOy11147n/dLL700z7Zvv/12Pr8NN9wwll9++VzvzjvvHFdeeWXU1NTMsW06h1RbQ/tJ55vuS4+d22effRannHJKPsZyyy0Xq6yySuyxxx5xzz33NFj/888/H4ccckist956uf70ethrr73yMQCAhUOACgAAAAAAgKKUQjYpFJSCUD/72c8W+vHeeOON2GabbeLhhx+OlVZaKfr27RvPPvts7L///vHPf/4z35fCViNGjIh+/frFM888E/vuu2+DQZvKysrYYYcd4oYbbsihnBT8+c9//pNDWikYNnf4J4WK0v6vu+666NSpU6yzzjq549P111+f1991110N1pzCZTfffHOsttpqsfjii8fgwYO/9TxTDQceeGA89NBDseSSS+bgUVlZWVx++eWx5ZZb5nOstfnmm+d9Jx07dszfp6VNmzbf4xmOOP/88+Owww6Lxx9/PAYNGpSP3bZt23zeKZD2xBNP1G375ptv5tDZ1VdfnbuRpaDV0ksvHU8++WR+PZxwwgnxv0rhtK222ir+8pe/xIwZM3Koa9iwYfHoo4/GPvvsE2ecccYc2z/22GOx4447xi233JKfj1T/wIEDc5AtPadpPwDAgle+EPYJAAAAAAAATV5paWmcfPLJscUWW+SAyt///vcYN27cQjteCsekkM6ZZ54ZLVu2zCGnFIq544474he/+EXuOPS73/0uWrdunbdP61Kw6rLLLou11lprnrF36fEpAJXCVrWBoF133TWHb1IHpW233Tavf+utt+KnP/1p/vqss86K9ddfv24/KRyVulClJYWsevbsOcdxUieotK/UXSmprq7+xnNMIanUBatbt245zLTMMsvUPe7Pf/5znHbaaXHwwQfn46Yxiul8U6DqwQcfjN69e+fvv68UKvvTn/4U5eXlcc0118wR9krHPe+88/L9F1xwQV6XwkhffPFFDqkdfvjhddumDlMpxJSe9/322y93K/s+Zs+enc81dTdLx0hdpVJtSQq7pQ5dqZ7U+SoFpZJzzjknZs2aFb/61a9yQK7Wfffdl7tQnX322bljl1GHALBg6UAFAAAAAABA0UpdoGrH7Z166qnxzjvvLNTj/b//9/9yeCopKSmJzTbbrO7r4447ri48lWy66aZ1AaiGpPF9teGpZIkllsjrkksvvbRu/YUXXpgDVymwUz88lWy00UZ5jODUqVNzgGxuaTxgbXiqNnT2TWo7JKUuVLXhqdrHpRBR6nz1+eef56DVgpbCUNOmTcvdpOYOPaVuT6mrVAqY1aod25heA/WlDlEnnXRSHruX9vV93XbbbbnrWBrHmAJateGpJHXmqn3dpWDZ3DXV/7kmaexi6oiVOoJ93YhGAOD7E6ACAAAAAACgqKVOP2uuuWYO36ROTd/WZen7SiPz0hi8+lIXpiQFftL99aURbrWdleaWxtLNHYZKUkApjctLXZRSoChJo/Rqw1ANSY9J6o/Wq5VG2s2vDz/8MAfQUghszJgxDW6TxvMlaYzhgta1a9ccTEo/x6233jr+8Ic/xFNPPZUDR+3atcvhqRREqjVq1Kh8m7o9peBZ6oqVwl214bVUaxp3+H192/OeuoqlYFka1Th9+vQ5ajrooINyXXfffXc+nySNINxkk02iVatW37smAKBhRvgBAAAAAABQ9E488cQcmHnyySfziLfUsWhBqw1E1Zc6TyWdO3f+2vsaMncQq1YK16RQ1scffxwfffRRtG/fPj744IN8X/3uSw15//3351n3XQJE6XhJGsVXv9tSfbXdnmq3XdDOOOOMPDYvdX5K4/DSkp6DFJzacsst8wjFWrvttlu8/vrrcdVVV9UtKdA0fPjw2GCDDXJgKQWvvq/a5z2N3UvLN0nPR//+/fMoxfRzSMGp1EUsLWlc38orrxwbb7xxDob9L12xAICGCVABAAAAAABQ9FIHqDR2Lo1aO/PMM3N3oO/jm7pXfV2o6PuoHQPYkJqamjmOV1tTGteXwjhfp02bNt8pxPV1x/0mtePnFlYIaPDgwXHDDTfkblp33XVX7nT16quvxo033piXFJL73e9+V/f8/OY3v4n9998/j9t78MEHc4Auda1Ky/jx4+Oyyy6LPn36zPd51Vf7vK+yyirRq1evb3x87c8lBbbOO++8ePnll+OOO+7IXaxSh6p0m5ZLLrkkh6o6dOjwPZ8hAKAhAlQAAAAAAADw37FtKUhz00035VF+m222WYPbpVBRCgvNnj17nvtqR8AtbBMnTmxwfRr39tlnn+VwUAqFJWk04HvvvRc//vGPY8CAAQutptrjpc5L6blpKDCWRvwl3bp1W2h1pC5SaWxe7ei89Hxcd911OTj173//O3beeefcZapWv379Ys8998zLrFmz4tFHH42TTjopXnvttTj//PPj+OOPnyNM1tDPfcqUKV/7fGyxxRa5m9V3sdRSS+XlwAMPjBkzZsR9992XR/qlMNjll1++UDqkAUAxKy10AQAAAAAAANBUHHfccTlw9NJLL8VFF130jZ2a0pi8uaUORo0VoHrllVfmWX/LLbfkzkfLL798tG7dOq8bNWpUvk0djRpy4YUX5rDYaaed9j/VlEb3pRF906dPjzvvvLPBbVJ3qGTVVVeNBe3ZZ5/N57HvvvvOsT6NNEzj+kaMGDHHqMIUQkrPzYcffjhHJ6jVV189h6nqj+H7Pj/3kSNHfuPz/txzz8X6668f++23Xw5lpaDUDjvskMcNVlZWzjGWMW1XG8KqXxMAsGAIUAEAAAAAAMB/derUKU488cRv7PKUOgMlacRb/bF1abRa6l7UWI4++uj49NNP675PY99OOeWU/HVtACjZddddczeoP/7xj3HzzTfPsY8nnngijyz8z3/+E0OGDPmfa9pjjz3ybeqWlEJotdLzlEbT3XPPPdGxY8fYcsstY2GM70udtu69994cJKsvnd8LL7yQu1Mtu+yyeV3Xrl1j8uTJcfLJJ88RWEpfpy5kSQqizf1zT2P06nehuv3223OHq7ltsskmOVR29913xxlnnJG7W9X66KOP4mc/+1nuyJU6VaWfTwpKpdGG6b7f//73c4wF/PLLL+uCWPVrAgAWDCP8AAAAAAAAoJ611lortttuu/jnP//Z4P177713PPXUU3HVVVfFM888k4M7KaDzxhtvxDbbbJPXL2x9+vSJTz75JDbYYIPc6WjmzJk5vJVCOnvttVest956cwR/jj322Nxd69BDD41BgwbFwIED8+OffvrpHG4aN27c144s/C522mmneP755+PKK6+MsWPHxkorrZQ7QL344os5LNS+ffvc6apnz56xoKUOUWnc3pFHHhmHHHJILL300rkjVgpJpaBYCj0dcMABeV1y+OGHx0MPPZTDUo8//nhdsCrVn7pMpUBZCp/VSl2sUjDrgQceyM972n7ChAk5mNXQz71ly5Y5nJZeL3/605/yc5JqSnU89thj+WeWRgkeddRRdY9JP6cdd9wxh/PSOMlhw4blQFf6OaUxgalz14L4OQEAcxKgAgAAAAAAgAa6O6VwTQrIzG2dddaJv/zlL7mjUhobl0aqLbPMMnHMMcdEhw4dGiVAlTplpY5SqeNUCvSkUE4K9Oy+++6x4YYbzrN9Gv+WwjgpmJOCVqkrUufOnWP06NHxwx/+MMaMGbNA6iopKYmTTjoph9Auv/zyHEZKo+lSJ6Zddtklh5BS+Gth2WKLLfJzc/HFF+cReWnMYQptpfNMIbF11123bts0qvGKK66Ic889N+6///68pE5Q/fr1y0Gw9FzWju1L0s84dRk7++yzcyArddNK4blTTz0177+hn3vqFpW6U6XXS9r+wQcfzPtM4axUa/q5pM5TtdL+Uk3ptZVCVukxqStVCr1tvvnmua40ZhAAWLBKaur3FQUAAAAAAAAAACgipYUuAAAAAAAAAAAAoFAEqAAAAAAAAAAAgKIlQAUAAAAAAAAAABQtASoAAAAAAAAAAKBoCVABAAAAAAAAAABFS4AKAAAAAAAAAAAoWgJUAAAAAAAAAABA0RKgAgAAAAAAAAAAipYAFQAAAAAAAAAAULQEqAAAAAAAAAAAgKIlQAUAAAAAAAAAABQtASoAAAAAAAAAAKBoCVABAAAAAAAAAABFS4AKAAAAAAAAAAAoWgJUAAAAAAAAAABA0RKgAgAAAAAAAAAAipYAFQAAAAAAAAAAEMXq/wPkHAOUIO5xYgAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAACVEAAAbrCAYAAAAJQ3GaAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAXEgAAFxIBZ5/SUgABAABJREFUeJzs3QeUVOX9P/4HRERUotgRe8NeULBrxILRaDQWBBW7RkFj+cYaS+waa1CDvffeRUExFhSjsQZ7h9hFwQ77P5/nd2b/y+zssiy7O+zO63XOnN2d+sy9d+7Ac9/382lXVVVVlQAAAAAAAAAAACpU+3IPAAAAAAAAAAAAoJyEqAAAAAAAAAAAgIomRAUAAAAAAAAAAFQ0ISoAAAAAAAAAAKCiCVEBAAAAAAAAAAAVTYgKAAAAAAAAAACoaEJUAAAAAAAAAABARROiAgAAAAAAAAAAKpoQFQAAAAAAAAAAUNGEqAAAAAAAAAAAgIomRAUAAAAAAAAAAFQ0ISoAAAAAAAAAAKCiCVEBAAAAAAAAAAAVTYgKAAAAAAAAAACoaEJUAAAAAAAAAABARetQ7gEAAABQPm+//XYaOXJkevrpp9Mnn3ySvv766zRx4sTUpUuX1LVr17TSSiulNddcM22++eZpttlmS63NkUceme68884prhs0aFAaPHhwag2++OKL9NRTT6VnnnkmjRkzJq+fuMw000xprrnmyuto5ZVXTuuss05ae+21W+U6aoiPP/449enTp9b1b7zxRpOt859//jldddVVaa211srLtLUYPXp02mWXXWpdv9BCC6VHH300tW/fts+f23jjjfO+q6Zrrrkm9e7dO7VGrWWfVWq5lxLbX8eOHdMcc8yR5ptvvrTMMsuk9dZbL22yySapU6dOqRL3UdPqjjvuSEcdddQU1/Xq1Stde+210/3clGedAgAAMOMSogIAAKhAr7/+ejr33HPTE088UfL2L7/8Ml/eeuutfAD3tNNOSwMGDEgHHHBAPiBO8xo7dmz65z//mZf9L7/8UvI+33//fQ4xvPLKK+n6669Pv/nNb9Luu++edttttzT77LO3+JhbswgSnnrqqen999/PAZzW5Lbbbit5fWwbTz75ZNpggw1afExQMHny5PTjjz/my+eff55ee+21HBKbZ5550p///Oe0ww47lHuIAAAAANXa9umIAAAA1DJ06NC03Xbb1RmgKuXbb79NF198cdp+++3Te++916zjq3T3339/+t3vfpduvvnmOgNUpYwfPz6df/75aauttsohOabuww8/TPvvv3/ad999c4CqtZkwYUJ6+OGH67z9lltuadHxwLRU2Tv22GPTEUcckX799ddyDwcAAAAgE6ICAACoEFVVVenoo49O55xzTv69MaKNza677prb3ND0hgwZkg499ND0ww8/NPo5xo0bl/r3758ef/zxJh1bW7Tnnnumxx57LLVW9913X73bSry3qP4DM6q77rornXnmmeUeBgAAAECmnR8AAECFuPTSS9Ptt99e8ra11lorbbbZZmnRRRdNM888c67Q88gjj+Q2Z8UilPF///d/6YYbbkjt2rVrgZFXhgjE/OMf/yh5W7Tn23zzzfN6mm+++XKFqmj5F9XEIigzadKkKe4fwZoIY916661pySWXTJUkWk7269dviusWWGCBOluNtWZ1tfIriAo/8ZmPalu0ve13RhOVCgvt+eKzFfulaOP39ddfpzFjxqQHH3ww77eKXX311alXr15pk002KcOoAQAAAP5/QlQAAAAV4KWXXkrnnXdereu7dOmS/v73v6cNN9xwiut79+6dD4ZHSOfPf/5zmjhx4hS3v/DCC2nYsGE52MP0++CDD3Jrq1K22GKLdNxxx6WuXbvWum2nnXZKb775Zg61RUihplhnBx10ULr77rtThw6V89//RRZZJF/auqgK98orr0z1fhGk22+//QQeW4nWvP1G2GvVVVctedvWW2+dDjvssHTBBRekf/7zn7VuP/nkk9NGG21UUfsqAAAAYMajnR8AAEAFiAPXxdWKouLUFVdcUStAVdMGG2yQqyOVCmBcd911zTLWShShglJt2Xbcccd07rnnlgxQFSyzzDJ5Xaywwgq1bnv77bdzhSvanlJVqOadd95a10XrzaeeeqqFRgV1m2mmmdIhhxySW8KWakMalaoAAAAAysnpXQAAAG1cVCh68skna12/1157pZVWWmmqj1933XXTb3/72zRixIj8dwSqllhiidwmLoJZcWC8Pv/5z3/SAw88kKtXRcWl77//Preni8DHaqutlkNcG2+8cWrfvuHn+USrqHjOhx56KL366qvpyy+/zFW1ll122bTNNtuk3//+99P0fMWijWE8d4z5s88+S1VVVTnItNRSS6X11lsvv8ZvfvOb1BT+97//pXvvvbfW9bF8ozpVQyoIzTHHHLmi2B/+8If0008/1WrjGNcXi2VVbPjw4al79+4lXyPCdEOGDJnium233TadfvrpdY5rwoQJ6f7778/LMwJdsZ4iLBbVZmLMCy64YFp55ZXTVlttlVZfffXUFI488sh05513TnHdoEGD0uDBg/Pvzz77bNptt93qfHzN26LFWAQNI0z41VdfTXG/fffdN1fWqc9RRx2V7rjjjimui2394osvTtPj559/Tvfcc0+t6w888MB02WWX5eBUTbfcckvebhsiAi7PPffcFNe99tpreZ3F68bnLrbXwvqca6650nLLLZd+97vf5c/d1PYHhc9v7E+iZeh///vf/BmIymmxrXfu3DnNP//8qUePHnlZRZvRhjxnXWKZPProo1NcF9WSbr755nofd9ddd6Ujjjhiiuvivf7rX//KAdSavvjiixxWHDVqVHrrrbfSN998k7fzWWaZJc0555xp8cUXT2uuuWZePnV9vhq6/ZZq2Rifr3iPsSwjjFRYlrPNNlt+vQhYRtXAddZZJ80IotVoLN/vvvtuiuuvv/76vIxacrt5+eWX87qLqm7Rxjb2WbFMC88XIdWokNW3b9/UsWPHRr/nTz/9NH8OYz3F5zO+U6JyV3wuo6Lg9LRdjf12tO2M78JonRjbXOzfN91007yPntZxN8d39ieffJKrIsa+5b333kvffvttbvVY+IwsvPDCaY011kjbbbdd/n1aPh9RFTOWZXzXxb4pXiu2/fh+ibFGcK/YRx99lNdHfJ6jxWTs2+I54v79+/fPrY0BAACoTEJUAAAAbVyp6h5x8DMOFDbULrvskg8qxkHOCLvUVxmpIEIWJ554Yq1ARoiQQVwicBAHMuNA9THHHJPWWmutqT7v+++/n1sMxkH04iBDXKLqzo033pgrOE2rOLAaB2mff/75WrfFgdm4RGAhAkXRKq9URZXGHAD/5Zdfal0fIZ04wNxQEWyLIEvxAeZYD++88850HaRvjAg7RAgsgjbFInwXYa9YXxFeiPBEBKlOOOGEHK6akURgJlqRXXXVVVNcHyG7+kJUEcQoBA9rKhVom1YRxIjPT/E4o/VjBEuK26XFOGJZzzPPPNPVPvDwww/P7SNripBhXOJzcfnll6ehQ4embt261fk8EaCIz29x+8mC8ePH50u8TgTFVlxxxXTmmWc2evuNUEZxiCram0Zwor5xxvottuWWW9YKUEUVuLPPPjsHTYrFdXGJ14r90oUXXpg/1xGIaor2irEMo5Vn8TopiGBIhGriM3bTTTfl/fc555yTw0HlFAGlCKIWVzOM9RLbdYRqmnu7ideJ75zibaMgQj5xie+oCIJGO9x4vliG0yrG87e//a1WaCz2y3GJ/d8BBxyQA3/TIsb3l7/8JT322GMlP5MREIpQZQRsV1lllbJ9Z1900UX5Uup7LsKGcYnwX7xujDeWxZ/+9KfUUBHG2nPPPaf43i6Md/nll691/wixxnji81G8jcUlPiuxXOur0gkAAEDbpZ0fAABAG1cqEBQHmKflQHpUo4pw0SabbNKgAFUcmP7jH/9Y8mBsKXHgOw6CXn311VO9X79+/WoFqIq9+OKLuaJQVP9oqKi2ExVBSi2vUgevTz755HTcccel6VVqGUXlkKh8Mq3qCug0dD00lQjURPWcUgGqukQ1mAhJRLWZGU0EcYpF1Zqo/FKXqEpUHHSKamlR1a05WvlFRZsIn0Tgq1iEF4orYk2LCK5E6LKusE7x57g4nFAQAa8BAwbUGYQpJZZxPGeEwBojghDF4bGoAlQqJFUQ1YhKtUCM4E9NEfg46aSTSgaoSon1EEGqU045JU2vd999N+/jprZOaop9W6zH4u2yHEqFb+Kz//rrrzf7dhMBzritrgBVKRGg3WOPPXKVpmkRgd4IuhUHqIoDl9Fy94Ybbmjw88Y2Gu+hOEBVaj81cODAvD8qx3d2hJnPP//8kgGqUmLfEYG14iBofSKgVtf3dnFls+OPPz4/f137qEIoK54zKlsBAABQeYSoAAAA2rA4OBvtiopF+63mEgczIwwTByKnRVQnOvXUU3NbolLi+aItT1RWaYg4ePz000836L4RKpjW0E+IlmDXXnttmh6lDsrH+unUqdM0P1e0ZyzVYilCZS0l2msdffTReX1Oq2g7War1ZLlFa6xoidaQKm8FDz/8cK3rolLU9LQEK4Q5nnnmmTrDAlF5p9RYb7311hweaoz99tsvhzYaIiq5lAp5hQgdTutnrBCiKa4E1lDRhrBUsKy+dRfBlOKQRbTki9aTNavWRRijMWKfUWodTosIb0XlpWkVreSaIsQ1vaJyXl3hsObebqJFZ4Rmp1VsE1GNraGBoBCVnRoqtqeGfm9G2CwqjDVEVHqKqnl1LcPm+s6Of3tEZbrGiLBhhJUboq4AVbQf7N27d/Xf0UIyqkw11LTcFwAAgLZDOz8AAIA2LAJHpSoudO/evVleLyp8RMWqUgeZow3g9ttvnxZZZJEcWorKF9HmqLjyUFSKWHXVVWu1YYoWQtFuqFi0vIvqKlEtKwITceA2Dpx/9dVXDR53tOOKlls1RbutbbfdNvXp0yfNNttsue1SVN2IcFZNZ511Vm6jN/fcc6fGKHVge6mllmrUc8U4F1xwwRy0qamxVXwaI8I6xa8XLdCiak4c0I4xxsHxqHgSYZII+tU0evTotMEGGzTb+CJgFOG3EMG5zz//vFZgoxBCmn322auvjyotxcGLqGYUVWZKhQtKVbkprmTUGFFRqvgzE+3RNt544+q/IzRUPNbYbiO4s84660zzaxbWZ7Tw2nnnnXOgKK675pprSoY0470XtwuN6nFRoazY5ptvntvkxecnQhxRbShCLsWfi9gupqeSWDxnTTHuCBSV2heWCsAVr7sIYRXv5xZYYIHc+jRCd7Gdx34uAoxRYSjChTVFpZ211167Ue8nttniEFaEJ3fYYYe8fqPyVuz3o/VpBEGiFWOpqm8LLbRQKpe69pfRhq65t5v43ilVyS1aikaLx9j3RwDrgQceqFXpKcJz0d6voW05I7gY+7/YfjbaaKPcrjTWR1QxK36vEYqL4G/Nz/LUxHYWbWV79eqVt4EXXnghfy6Lq43F5/WSSy5JRx11VIt9Z8c2XhzcjGBTVLDq0aNHDpTGMojl/Mgjj0xxv9h+o73j+uuv3+BlEd/XEVSN7WHYsGH5c1AIFcfzRVvDusLHsV+L9xmfrXvvvbdkK1YAAAAqgxAVAABAG1ZXpZI48NpcAZo4yFxs//33z1Wkatp0001z9ZwDDjggH8gtiIO5UZHjH//4R622SKXeRxwwjvaEBRFMiIOp0f6pOPBUShxcjgoVxc4555wcjqr5vDvuuGMe77/+9a/q62PsEfD605/+lKZVVPcpdfA62r411m9+85taIaqWbN8VLRTjQHnNcFJUzYl1UlMEBSJcEAf2a4pgS3OKYFQc8A+lqkJFgK1we00RsDj99NOnCCXGWCOMU7NCUYiAWHGIb+GFF049e/acrrFHeKFUW75osznrrLNW/x3hkjPPPLNWNbAIjzUmRFV4/2eccUYOKtYMskR7zeLAVgQOi8V1iy66aN4/FEIYEW467bTTaoVZIoS09957N9l2sfTSS+egRHHlnghC7bPPPlNcF635an6+Q4RqiqtZlRpP7LdWW221Ka6LEGa05ox9R6yP2P4ibBKBjfh7pplmmub3E5/v4nBKBKiiBVlNsa4j/BcBxqh4F+sutsNYHhE2KmeIKoJ/pRRXH2qO7ab4uggFRqgp1nNNsc6j0lKhZV0EVIuDQlMTyzzawtUMzEUrw9j/xfdfVImqKQJWDQ1RRUjouuuuy+MviNeJ5RMhxuJgcFSIO/TQQ3PwuLm/s2PbjuBghMYKrQxjfx/B2ZrjDRF8ihBTccXEafnMR9irZoW12DfVDHtFAKw4MBsi3Bb79ZoVHON7P9ZZXaErAAAA2jYhKgAAgDasrnY409tSrC4RJioWFaKKD8bWPPAdFVEinFFTVKWIg/yFaiURzCnV5ikeWzNAVTDffPOlY489Nu27775THXOp1l0x5poBqprL7ZhjjsmhiJqikkZjQlTF1WkKGtPKr77HNrQVW1M44ogj8iVCRBEIiPZudVVtWWONNWqFqBrawqmlRTgtAjHFbeDi7+IQValKRqVayk2rqFJTHIyo2cqvIEJsEaYobo04fPjwvF66du06Ta8b94+ATs0AVeHzEGHFaN84tdBehLDiEiGlt956K28bG264YZ3bRbHp3S4iWNKQENXjjz9eq61ZjKc4cFQq6Bj7gaiwUzPQFmIfFRWhYr1EEGd6RTCl2L///e/0wQcf5MBRTRGYiUBo7AMivNJc+/5pFYGaUor3xc2x3cS6q1ktL6pO1VWl7aCDDsqhxAhP1axM11ARnitVcSzCbPF68ZmsaVraFkYFqeJAUohtLL6nDjzwwCmuj20gPgM1l1NzfWdHOLAQPoswVKy3qDpYarwRXouqV8UhqkL4qqEtR4vVDEaVau0b/06I/VqpFrixX4hqVqUq7QEAANC21f5fIgAAAG1GzYoTNRVXv2gKEXQqbhsVdt9993ofF5VsiquSRJWVmtVgisMPIQ58Flc3qinaAM0111xTHXe0PyoWB3TrEgeBI1BTXC2lMcu0ropgERhorFLBrMYc/J9eEbyJ8EBURKlZ4SXWbSyv66+/Pl188cW1HleqMteMIoI4xYoDU1H9pLla+UUlmWIRWigV/igOVhWWbalKVlMToZW6ttVSoYiaVWqKxWd9lVVWyeGS+eeff4rborVXtJqLAGSpsU+PCOIU7w+jglZxFZ6GtPILpZZ5VMWL66NST1Tcef3116urgUXQrikCVIVlHm3naopWp5tttlmuPHXuuefm/WchhBIBsKjSNKMEqOpbn3VVqGrK7aY41BT77j322COHJE844YQcrovvs8K+M163sfvQqLJUl+J1GIoDfHWJoF5xmLem3/72t7W+p4q/S5vzO7umaJkZyzaqQxWvm2jZd+GFF5b83JVqRVzKEksskSu71afUvyEiHFdfYLkpgq8AAAC0PipRAQAAtGFzzjnnNFVAmh6lDsZGeKZUdZCa4mDsCiuskEaPHl1nS7A4SF7qwGypiiw1Q1YRHBg1alS9rx/VW4pFW6LidoL1iaBEVEkprkg0NXFgPiqyFB/on56qO6WqADUkTDY1xe3DGurrr79Ozz//fK7oEaGVuNTXXrCxr9MSokJLBDgKAYtCa7VolVZoARihvOK2UdHirbhCUGOWY6lwVoQ0iitEFVpvRSCkONwX7buKW55NTX0BhVJBjYaswwhaxbKK7eLVV1/N20VxG8ppfc76RPWhaHt4//33T3F9BGYKFesiwPLEE09McXsEr0qFVSKIs8EGG9S6fwQgo7pQocJQhM8ilBn3j5BTVCCaXrFv+7//+7+S1YJiWcal5j6wV69eOcQS++LGtA9sDnUFRafWyrQptpvBgwenESNG1PoejIpJ0Ta20Do2wmex7CJEGJe6Al71KRUyLCj1fMUtOOsSlbHqquYVYj0vs8wytb5Xa1bgas7v7FIisBjfBRFoioDhf//733pDYw39zDdk31qqld9yyy1X72OmdjsAAABtkxAVAABAGxbVgOKgaPHByA8//LDJX6tUMCZCTg058BxtrorVbGtUqh3d1A62NzQ8NH78+NQU6gsG1ScqCUU7qZrefPPNRgdtagZ8pjVEVd9B64Ye3C+IwE+0c4qD5lGdqS2IYEK0Jhw6dGitIE4hRPXQQw81S0WTe+65p2RVnQhpRIirlGgjVxx0eP/993OwcK211mrwa5cKShXUF+QoZcyYMXn5RRvN5qiIN7VKYvWFqKKSTnG4Z+ONNy4Z1oz96nnnnZdbqkXbr7pEUCeeNy5nnnlmrlQVIZ76qt01RLQbjbFGO7K6Kn/F5y6CKnGJz2JUwtpzzz1zdbhSwbuWFG0lS6lrv96U202Ebq666qq8Hor3vTVFOOvOO+/Ml/ge22GHHXKVsbrCyaXUd99S66ChwaHGfv/VDOg253d2QeyzoupgtA2cWsiqsRrSnrRUa8D69mtNFT4GAACg9RGiAgAAaMOi5c/SSy9dK5RTqgJFfaLax+mnn54ruUSFm1JtiKbnoHypA8dRRaU+DQn1NKTqyq+//pqaQqmDtA0RraJKhagifFGqhVosq6h6FVVGiv373/+u8zUaor4D+A1tMxXrJarkFIdVah78jyomMabYPqP1WGsSLSSLQ1QRnIowTXjkkUdqhYwi8NIcrfzCSSedNM3PFYGGaQlR1dcGbmqf05oiyBNBolKfuXiNqJoU20XPnj1LVlmaXhFgWmCBBab4vEVFnAiWLbbYYiUDcPW1YYzPZ1Sse/bZZ3OFrwj4lAp81vT000+nZ555Jm8vU2ubNjXbb799blt68803589bvI/6jBs3Lp1yyim5ddoll1xSZ4vGllCqAmAotV9rju0mqgZGgO6uu+7KAcUIIta3/4vAWozjgQceyD+jElRD1BcyrNnmdFo1pL1lqe+/muNp7u/sqP4Uob26QsFR1W+llVbKAdT4Trv77rsbNZaGbMellvXUvvunZd8GAABA2yFEBQAA0MatueaatQ5iRnAgDqhHZZKGiGDIc889ly+nnnpqrnATYaoIAXTq1KnOqg0RKIiqIRGWqU+pdn1Roam+ihE12xLVV5mpIS31ih111FHTHXBoqGgXFaGG4gPkcbA+Kp+UqvA0aNCgHILZa6+9ckuxqQVtopVYQ9RV0SZMLRxSENV5igNU0RZrjz32yO3wonJS4YB2hElamxh/VBGKlmIFEcqJv+Oge3EgLtqATUvlmlKidVljq5PV9XmOSkANqeASmqIF3MiRI9Npp502RfgiKt7stttuudVctM4qBDyiglJzhKhi/UQlsX/+859TXB9hmvgsPf7441NcH8snQkpT07t373z5+eef83YQ23VUAIt2c6U+U7EMzjjjjNw2Lfal0yOCKAcddFC+vPvuu+mpp57Krx2Byrr2kVEdLsKLxx57bCqXUtXTYjsrDnw253YTzxNVueISVZRi2UUgLpZPXYG0CAYdeuihOXw1PSGo6VXqO7Mh3381K1g153d2iO+p4v1WbPM777xz/t6bb775qq8///zzU2NNbayF913c0q9U5axp/fcDAAAAbY9TagAAANq4CDsViwPSN910U4MeHxWIisM5EQ648cYbp6hQs8QSS9R6bBzUjgPS9YkKHxHqqq8iSanKV3FAtL6DoFERKSpoTU337t1rXdcc7Q7rEu3CSlUEueyyy0q2rbrooovyz2jJts8+++QD1bEsIrwRgYNiEWBaaqmlal1fKgBQX1CqvrZXNatxXXfddbXaQ0WVnl133TVvIzVft7h1WmsRbeGKRRCnOAwXIrQzveoKxzVWhH0iBNKSIrhUXL3mggsuyKGXqApUs0JOc24Xda27J598stb2v+WWW05TtZ7YH0a4Md7TDTfckINMUfXrwAMPrNUSMPaNTb0O4vMVn7NYrhEIGj58eK48VSqoFVV/ytlms1QLxNgOiqsKtdR2EwGgaLtZqNQV+9cLL7ww9e3bt2RrwVLfWS3po48+qrMlYoh1W6riZHwftMR3dlRcKw7KRfj02muvTVtttdUUAarCczZWQypG1XzfBdHmsj6vvPJKo8cEAABA6yVEBQAA0MZFFaJon1bs8ssvn+pBxEKFiOIKDuH3v//9FAcvoyJKtMQqdtVVV9X7/NGKqjgsFM8bVYsKot1PqdBPtGGqr9rON998k6amVKu7eGwETUqJA+y//e1vc4ApqsncfvvtuVJQY0VALMIaxaISyoknnjhFgCDCa8UHxmOs8fiojlIqFBHjLKVQQaymjz/+uOR9Yzm++OKLU30vMb7ig+GLLLJIrQol9VWjaUmltqmGBEu22GKLXMWmeLsoDoZEBaqoRDU94rNRV2vE6RHhnpYSn6VS63q11VYref+GbGuNteiii+ZqODXFZyra2zW0lV+ErSJ0dc0116Tjjz8+B5c233zzWtt+BHxi/xJVog444IBazzO19nt1if3NnXfemf7+97/n542gz3333VcyIBot/yKQWezbb7+tN4TTnOKzElWzSrXKbO7tJtoIRmguAlKHHXZYfs1SLTGjSlO0r43vv1ItButqR9hSYj8V3511eeKJJ0pWUorv0pb4zo6qlcXis1BX4Gl6vgsaUimv5vuu+d1ZKqhcCGHHdzsAAACVR4gKAACgAhx88MG1rouWcdGyLipulBLhnah6dMUVV9S6LQIk0Z6tVLCqWIQN6mrVE22vov1bsd/97ndTtECLKi7FwYdCRZJS1SLiAPfJJ5+cGlqpqzhME62K/va3v9UK1MQB1zj4Pnbs2HyQOpbN0Ucfne87Pfbff/80yyyz1Lo+ghKx7gphh6goE+38IrRRs0LO+PHjc3vGUq3n/vjHP5Z8zXnmmafWdVFd7Ndff60VZPjrX/+aJk6cONX3UaoyWLRzeuedd2pdHwfZoypJsZasjlOqylBD3me0gIzQTPE288knn0xxXYRbalZra4yHHnqoZIWwSy+9NId/GnLZcccdaz3+vffeKxl0aA4Rwiu1XiPMUuzTTz/N1YBKaapto9RnojiAE1V6VlpppZKPjzZ50f4vxhkV/WI5RiAqWuTV5e233651XXEQr6GipeqRRx6Zt4GoNhXr8h//+EedoahSn7/pef3pERWyYn9SLCoTFVdta47t5o477kh//vOf83dHBM+iolJUyqsrgBX71lKt68qx7IrFd1Esz1LLotR3UoTqiqsSNtd3dqltMdpllgotRaC7VIiqKb8LIvhc6nMcLS0jMFUsAoqlKnkBAADQ9jW8JjkAAACtVlTDidDTlVdeWesg9cCBA9MGG2yQNttss+rWdhF8iYPN0baolKh+Uqq60IABA3IwprgCVISxnn322VwVZeGFF84HpiMMFJWkig9gRoWkqNxSbLfddkujR4+e4rqo/BKvGZdooxWBlWihFZU0orVcQ8R4Ntpoo/TYY49NcX0cWI/gQ79+/XIroAjIxPOWOrC65557pukRgY0TTjghHXXUUSWrtsSB66h+FO9x3nnnTeuvv34+SF1fhaIIZcXB7rpCPFFdJVpC1RTLLraTnXfeOXXt2jWHM66//vr01ltvNeh9xNhKhfVi3UVFrGWXXTYHrWLdx/sqdZA82ke2lOLWYSEqEsX1cYA9gmn77rtvnW3hIuRWn7oqGU1vK79YzjWrvkzNDjvsULLyVFSU6dWrV2puEa6IqkyxLdQUldZiG4tqeT/99FNuIxZjqqu1V2wbTRFeiXBbVB+qr4VYfesuqvf07t0779NqispUsc+MtnCxL43tO7ahQrvAYtHerDFin1Qc+okQV4x5p512Ssstt1zq0qVL3objM11qO+3Ro0eTB4Gi5WdxGCZCmRECjBap8bmPwFlxe75wxBFH1AqSNsd2E5/bCO3UfM54jtjvRYgr1msETKNSV+z34nNT/H0WY4pWguUW7yH2qxEKjJBQhDujSlmEe0sFWuN7sjgw3Fzf2aW+C2Kd9e/fP/+bI6pgxfdPVHuqqwpVU34XxHdnfOfFv21qiiBdhK7jMxVVE+MzE9/90Y4QAACAyiREBQAAUCEOP/zwfKC9OCwUoqpSXBqiT58+ae+99y55W7RAigoYUT2p+EB5HMyPy9RENZFouVWqYlSEvYrHGQfA46BxXRWz6gtKFEQ1qThgXHzfCCpMrUVUHJyNKhzTKw7ux/oZOnRordvigH6EBOpr31SqTWAc7K9LtKqKKjbFIuRQqkJRPF9U4KpPtNn6zW9+kw+41xQHpk877bQGjbv4sc0pwgGvvfbaFNe99NJLuUJbiCBMXSGqNddcMz++OIhWENtwY0MyNUMHERApFtVjGtLCqiACH6UCBNF+MMITNSvINIcI8q2zzjpp5MiRtUIgEWiJS0O3jaYI/sRzRJAqgqKlRNAkglD1icBjBJZi/9OQz0+xCJkUt69rqBhbVMAq3jdFxaSoSNUQdbX5nN7AX6nQ39REUGerrbZqke0mPpfx+Y4qXjVFhaSoxBeXhuyrI2RaToXvtgg0RdBrau054/MfgamW+s6O4PaQIUNq3Tcqf0VgrhzfBRFUjiqOxSGwqGZZqqLltPwbAgAAgLZDOz8AAIAKEa3LorpEVAVqrDjQHdWNiqtZ1BRtzqKVXn0BnrrGFwc5Sx1MD/Gap59+elpyySUb9HxR6aJU26hSogJFLJtSLfXqE+3y6mvhNa0OPfTQdMYZZ0x3C7hCACcq08TzlWpHFbc1tJpKtNqK55maGHep1pH1KQ4DReWeljpovd5669V7e7TFKlU1p7A91heCmVoIpyGiSkspjQnfRDWqYtGq8a677kotIVqoTct2XarVYl1t6RqjrjaXhYBchAbrE9WeYn80rfu5MOuss6ZzzjknBw4bo3379jksFRXsGiPCNHXtZ1taVACKylItud0ccsghufJiY6y66qrpL3/5Syq3qPwU1cQaIiprxfdUXd9vzfGdHd8tEVSclucq9u6776am1LNnzxx+rO/fLzUdeOCBDV7GAAAAtB1CVAAAABUkDr4fc8wx6eqrr06rrLJKgx+34IILprPPPjtfGnJAOyqLRKWUOGjZEHGgMsYUbeTqEy0Eo71ctLObWkWk6667Li2wwAKpoaI1VDxmhRVWaND9ozJWvMemrkgSLaUeeOCBHHqZloPapSoTRcWWqNC18cYb1wpBxf2jUkiEAuoT7d6ivVGE0hoa0Bg0aFDe1uoTLaBiTMVhhmj/Fe0LW0IEyWJbqUssv1JtsWqGmep6n9MboorlUCrgFNtnVJWZVjGeUp/dqVWwaSrLL798Ov/883PLsamJoOeRRx5Z6/p//etfTTaeNdZYo2TFu2lpwxgV6GK/NS3rI/Z1sQ+b3jaKUckqKtPFNtjQUEhU1Ymqe8cdd1wqt6WXXjoHwSJAVSpA05zbTez74jkjtNrQymaxjKPyWOxPGzKW5hZjiPa88T1Un9hf3HDDDWmppZZq8e/sCBlGm8GpiXa5UQGsuAVgtCYsbjM4vaIS1ZlnnpnbXdYlwmYRtirVVhgAAIC2Tzs/AACAChQt6CI8Ee2golVStLKLqjtfffVVbnUzxxxz5AObK664Ytpoo41yxZ5paR8W4rFx8Dba5EQoKNoCffDBB2nChAlpttlmywdMo91ZBHziNRoaBIj2Q5dddlked7TjivZrEXSJlmRRHSYCEFEBI8b78ccfT9OYo3pGtKOKg+4jRozIyyda0UVboQj9RHWaGHMEF6YWPpoe0SYuKoNEFZYnn3wyr58xY8akr7/+Ol8iYBPLMMJtyy67bK6cE+35Inx00kkn5fVYHAaK0EKxCEZFcOz+++9P99xzT3rrrbfyQeuoPBXhhajWEy0UIygU666hBg8enNs+xvofPXp0+t///pe3q6i8E9VzIrAWgYQIxUVQ7MEHH5zi8RHaisc3twgVXXPNNXmcsQyiYk0s2xjXYostlltSxXKuS2wPEaCJdVNTBLOiutn0iO37888/b3TAp1h8PiKwdt99901xfbznaBkYoaLmFp/12BfE8o7PWGxTP/74Y17Gsc3HcovtIrbV2B+deuqpafLkydWPj230sMMOa5JKbSHWb6z/4gDFtFTQidBJhN2eeuqp9Oijj6ZXX301ffLJJ2nixIl5nxb70thOIswSyz+2/akFDBsqgiARVNl///3zen3hhRfy+oz9VVQZi4BQbMuxj4jX3XLLLesNjzSHWAbxGY/PfvFyKOd2E+tgv/32SzvuuGPe/zz99NO53WXs7+O5YzuIz0xUPoznjxBivNaMJAK8EYSNbS/2mRE6iqqDMe7Yf8f6jtafDd3emvo7Oyqu/fOf/8yfi/iMxPjiuym+m2PssV3G91aMMZZ3PG/NlrXxnXHnnXemPfbYIzWlWJfrrrtuDm7F9/yHH36YXyvat8Y+IbaJ6d1/AwAA0Hq1q6qrLj0AAADQ6sRB6ggR3HvvvdXXRbggggRNFd7g/4nAQoQJ4gB8TdHiampV1Si/CJm8/fbbtapLNWWLTgAAAABaD7OnAAAA0IZEhY+///3v6dprr03rrLNOrhZyyCGHCFA1g4suuqhWgCqq7myxxRZlGxMNE5V2igNU01PpCwAAAIDWTzs/AAAAaIN69eqVL9HeKtr20bSifdZNN91U6/poTxXttJhx/ec//0l/+9vfal0fn5NoXQoAAABAZRKiAgAAgDZMgKpp7LXXXun7779PHTt2TB988EEaN25cyfvtvvvuLT426hft+Z566qk0++yzpy+//DK99dZbqaqqqtb9dtlll9Shg6kyAAAAgEplZggAAACgAV544YV6b99ss83Sqquu2mLjoWFmm2229Morr9R7nwUWWCDtuuuuLTYmAAAAAGY87cs9AAAAAIAZXYRs6rPoooumE088scXGQ9NVY5t11lnTOeeck38CAAAAULmEqAAAAAAaGaKaeeaZ0zbbbJNuuumm1LVr1xYfF9MXgFtjjTXSjTfemHr27NmiYwIAAABgxtOuqqqqqtyDAAAAAJiRff7552n06NHp008/TT/88EPq3Llz6t69ew7fzDXXXOUeHvX48ccf0zPPPJM++uijNHHixNShQ4ccrIrWiwsvvHC5hwcAAADADEKICgAAAAAAAAAAqGja+QEAAAAAAAAAABVNiAoAAAAAAAAAAKhoQlQAAAAAAAAAAEBFE6ICAAAAAAAAAAAqWodyDwAAAFrayJEj05VXXpleeeWV1K5du7TkkkumgQMHpt/97nflHhoAAAAAAABl0K6qqqqqHC8MAADlcNVVV6XTTjstzT333Klv375p8uTJ6eGHH05fffVVOuKII9Kee+5Z7iECAAAAAADQwoSoAACoGG+88Ubabrvt0qKLLpquvfbaHKQKX3zxRdpmm23S+PHj0zPPPJPmmGOOcg8VAAAAAACAFqSdHwAAFSOCU7/++ms68cQTqwNUYZ555kmHHHJIevnll3OgSogKAAAAAACgsqhEBQBAxVhvvfXyzyeffLLcQwEAAAAAAGAG0r7cAwAAgJbw1Vdfpc8//zwts8wy6bPPPkvHHHNMWnfdddPKK6+ctt9++/Too4+We4gAAAAAAACUiRAVAAAVIYJTYcKECWm77bZLzz77bOrbt2/aYost0jvvvJMOPPDA3O4PAAAAAACAyqOdHwAAFeHf//536t+/f/59rbXWShdffHHq3Llz/jtCVDvssEP6+eef08MPP5wWWmihMo8WAAAAAACAlqQSFQAAFWGmmWaq/v2vf/1rdYAqLLnkkmnXXXdNv/zySw5RAQAAAAAAUFmEqAAAqAhzzDFH/hnhqQhNFVt++eXzzw8++KDFxwYAAAAAAEB5CVEBAFARFl544dShQ4f066+/plIdraMKVZh11lnLMDoAAAAAAADKqUNZXx0AKIs77rgjHXXUUdP8uF69eqVrr7220a/71ltvpaWXXjpNr48//jj16dMn/z5s2LC06KKLNuhx0a7tueeeS9tuu206/fTTp3scleLZZ59Nu+22W/79tddey0Gk1ri9duzYMa266qrp+eefT6NHj069e/ee4v6vvPJK/tmjR48W2yYBAACgLVt22WWn6f7x//UuXbrU+f/sf/zjH2nIkCFp9dVXTzfeeGOakfXt2ze99957aaaZZkqPPfZYmn/++dOMojUtx4YqzPvtv//+6ZBDDpmm7fPKK69M66yzTmpJNbfxafXGG2+klrLxxhunTz75JJ188slphx12aLHXBYByEaICgAo099xz50mSYuPGjcuXCJusuOKKtW5fZpllGvV6MWEU/9H+/vvv28zEDK1ze+3fv38OUUWI7pprrqlu8TdmzJh00003pTnnnDNtsskmzfROAAAAoDIttthiqWvXrlO9XwSO2oJ///vfeT4sTJo0Kd1yyy1p8ODB5R4WM5BZZpml5HzXhAkT0ptvvpl/j/mumPcCAFqOEBUAVKANN9wwX+o6C23eeedt0rDTfffdl5588smSEwPQktvrlltumbfFqG4Vv2+22WZ5cuqhhx7Kk5qnnHJKmn322ZvhXQAAAEDl2m+//dJ2223X4PtH1aYHHngg/96tW7fU2tx+++35Z8xnjBw5Mt16663pgAMOaDMhMaZfXfNZNSvCn3/++al79+5lGB0AVC4hKgAAKsqpp56a1lhjjTxRddttt+Uz+tZcc830pz/9SdAPAAAAZgAzzzxzWnLJJVNrFJXYH3zwwfx7zDVERexPP/00t/RT/RoAYMYmRAUAQEVp165d+uMf/5gvAAAAAE0pql1HkCoqDa266qqpT58+6Z577skncwlRAQDM2ISoAIBp9vDDD+cy5K+++mpuhTbnnHOm1VZbLfXv3z+tvfba1ff7+OOP80RRwQsvvJCWXXbZtNBCC6URI0ZUX//ZZ5+l66+/Pj311FPpww8/TBMnTkyzzTZbWmKJJXK7tXjeTp06Net7euedd9Jll12WS2bHeGaZZZa08MIL57LrUUJ77rnnnuL+0frt5ptvTvfee2968803008//ZSXwyqrrJK233779Nvf/rZk67modDS1Ut1vvPFGrdvHjBmTrrzyyny/L774Ii+fFVdcMe24445p8803L/me/vWvf+Xl+tJLL6Vvv/02t6lbZpllUt++fdMOO+yQKzBNq59//jn985//zJN/48aNS3PNNVdad91107777psWX3zx6vvddNNN6fjjj8/LJNrnxRmkxeLxG2+8cQ41xdmYUaq/nNtr8fqNln/xPmPZ//DDD2meeebJFat23333tMIKKzTLWAEAAIAp55SGDRuWFl100QY97tFHH0233HJLeuWVV9J3332X5y169eqV9txzz5L/l5/W+Z1paeUX4485j6222irPL8S810cffZTnm+qaF4rXjbmca6+9Nt11113pgw8+yHMqyy+/fL69rhDWc889l+c+XnzxxTxv9Ouvv+b3HiGu+uY/CiZPnpw22mijXDHryCOPTHvssUfJ+x177LH5dfr165dOPPHEPM/XENtuu206/fTTp2tdhZjfuuaaa3Klr08++STPdcW4Dz744DS9Yh1dffXV6e23387zkLHsYpnHvFfBu+++m7bYYov8e8wb1TXOmKt7//3307nnnpt+97vfpeYQyy2WxejRo/M679y5c14f22yzTV7edbWOfOaZZ9INN9yQt5VvvvkmL8PCHGPMwwJApWtf7gEAAK3HL7/8kgYNGpQOOuigHNDp0KFD6tGjR56YiQmtCJecdtpp1fePIFKEhhZccMH8d/ynPP6O/5gX/Oc//0lbbrllDubEZNV8882Xll566Tx5E/+ZP+OMM9Jee+2VJ7WaS7xOTIzF5EdM2sTrR6AnxhPjiomHCPwUVFVVpUMOOSRPFkUwLAJWMUkRY4wJoP333z+df/75TTa+mDzbbrvt8uTZ+PHj8/hiYiTCSbEuDjvssFrLJyZR9t577xxOKqynCF7FpNrf/va3Ri/TCEtFICzOqIxAVkxexXKLCZrYJgpigjAmnGIyZuTIkSWf6+67787rOSajmiNANa3ba0EErQYMGJAnBmN5zTHHHHn9xrYRE2qxrVx11VVNPl4AAACgceL/+ocffng68MAD8zxEhJfi//JxMth9992XTya77rrrpnhMc8zvROgp2veF3//+9/lnzHt07do1v16cdDa1uYx99tknz4fFSX7R0jDGEyGreG+lTsw7++yz06677prnLOLExDgpsVu3bumrr76qnv+IoFh92rdvn+e/CvM1pfz444/VbQoL1b1jnq+uS4yjIMYzPesqjB07Nu200055Xuq9997LwbqYa4xQV8ybxfJqrIsuuij93//9X37epZZaKi+Pxx9/PAe64qTIgnhPcWJefcsptqUIUP3mN79ptspjl156aQ49xTqP+apYfrEsYh7rmGOOyes8ri920kkn5dtiu4htLebJIqQX82aDBw9Of/7zn/P1AFDJhKgAgAaLM8YeeeSRHOCJSaQI8dx22235TLrjjjsuh1QiXFIImETZ8pjcKUysROgm/r7gggvy3zEJFBMUEcSJSYX4D3tMlkRYKM6KinBQiMmnmgGdphZBmggFxYRTvJc777wzPfDAA7mC0WKLLZbPwrv44our7x9jidtiAiwmK2LiIc4yjOVx6KGH5vsMHTo0/e9//5vuscVkUkxwxORNTILEsojxRTgqlnNM8MUyiwmkglief//73/Pv55xzTh5vjC+qf11++eU53BSTKlFeflrFRFCs68JzPvHEE/kstThTMybAYoIuxMRN4ey1WEalxPsIMdE1I2yvBfE+IlgX22+E0WK5xXuNbfKAAw7Iwa/YZmK9AwAAAOUX/++PalILLLBArjT+9NNP5//Lx884SSqCOieffHKeE2jO+Z1CFaqowt6zZ8/8e8w/FKoRxYloERaqy+uvv54rise8zqhRo/L9Y+6lUEnqvPPOyyGkgghXXXLJJXne6NRTT83vLx4T72X48OG5slNh+cR8Rn0K8zP//e9/84mFxSJYFieeRcho5ZVXztfFPF+pS6yDQlX5GHvMp0zPugpxW1SCisBQrLcIMcXcVoSo4jERXGqsqOYUJ83Fui9sAxEoCjHnFnNCBYV5zvvvv7/kCYoxrxnipNHGVIGfmnjvsX3E+ozlGmMrzPtFJa2opB7zfn/5y1+meNwVV1yRw2mxPca8WDwu5snicxDbVcyfRUguAnwAUMmEqACABokJo8LZchHqiZZwBVEeOir3FEpnxxlacebb1ESbtKhUFBMKMTkSZ2gVxFlQUfWoUOK81ORNU4lxFCZBak5uxGsfccQRuXR7TH4V3z/OPKtZtjyWw3777ZeXTVRiiqpR0yvKfseZihHsiRLiNUtxxyRUoZJStPr7+uuv8+9x1lyEmmJ5FpcMX2+99fJyjbLipVrsTU2cDRnrOianQpcuXfIZj4ssskhelzXPqCxMKkXgK4JdNUUFspjcihL5NVs+lnt7jXHFeEOE/Xr37l39uNg24jFx1mMoBNUAAACA+h111FF5DqWuS5zY1ljRyqxwglRUFFp//fWnmAOI547qOzG/EmGR5prfiVBLIUATVagKcydh6623zj8L1aHqExW1C1WsQlTIjpMQQ8y9xLxPQQRgYn5n0003zfMwEaYqiJBSYe7jyy+/zJf6RGWnNddcs84qSw09GS6CRRFCi0DY4osvnkNTEdyZnnX18ssv51BV3CfmcWq2RIxAV8xNTY8IvMXcZASJCmP505/+VL3eIkxXEHNtcb94LxG2qinm4wrVuprrpMGYKwwxPxXrt+Zc5lprrVVdOStCVYWqaDGuwgmisX3FvFjNbSVaFMb7D9HqL9ppAkClEqICABokznqLM92iOk9xMKdgl112yRM3US46zniamhVWWCGf6RWXueaaq9btcWZeIVj1ww8/pOYSk0Th+OOPz2dh1SxbvfHGG+eWfjF5VhDVqQpVomISpWarvxCTQ2eeeeYUE3CNERMWcfZfKEzaFNtwww3zsouS6oWz4rp3754np2KS78gjj6yeFCyIcukRECpUipoWMclSLCZrop1fqNm6LwJIMakV6zEqe5WaeIvJyOY4K6+x22shQBUTcFF6vpQo5V4o0d+c4T4AAABoK2Iupb7Wb1G9fHrmAGLuISokxVxTKYV5iwjjFMJETT2/E4GmqGZeah5nlVVWqX69Ui35aoqT+YpFW7+CmieqxUl3r7zySjrrrLNKPlehGlSIuaOpKZwQF5WialauilZ5Me8U802FZVmXCONEK7w4cS7m1GqeNNnYdVWYr4mwU5zIVyzCX/GcjdW/f/8pQm8F0TIvxNxlVLEPs802W/XJesVhs6j+FesntueVVlopNbU4IbEQohs4cGDJ+0QosNByMMYTIkwV44r1V2puL8T82fzzz59DcLH+AKBS/b/oNwDAVES57LDccstNcaZSTXEWVpxhFsGS+A99qUmfuiZ04vnjDLUPP/wwffTRR+ntt99Ob7zxRj5TKkyt5Pj0iLP54uyyKJceZ7vF+4jJl3XWWSdttNFG1ZNcNYNVUQ49gjfRLi8uSyyxRL5/nEEXFaJmmWWW6R7XW2+9NUXwqS6FZVRYR9Hib++9984TVXEGZFwiTBRno0Ulqg022CCXqp9W8RzzzTdfydt69OiRf77zzjvV18Xk07bbbpsDWzGp1K9fv3x9TJY191l5jd1eC4+rayIvxPYQ7QqjhH08bnomegEAAKASxMlpzTUHUJg/iarUO++8c8n7RGWjgvi/f8ydNPX8TqGVX8wp1Aw9FUR1qWgNF4GWmPeqK/QTQZb6wlDFLeRi/iUuheeNebWYX4t5tTgBrKAhc2sRDoqK3hEGi3aCsSxCtDuM1425k2gXV5doGReVjOKktZgPKp5Ta+y6KgSH6puDibmpeP+Nsfzyy5e8vhCgixP1YlnGPFMhbBZtEyOkFPNDMU8UCpXImnu+a9ZZZy25jRWsuOKK6cUXX6xeboXHxYmkhbEWi20olkOs+5rVzgCg0ghRAQANEhMChRLi9Sn8R7wh7fxCBJdOOOGEHKCqKaorRZWluL65S0hHqOi2225Ll156aT7TKsYeZyHGJdrlxVluf/vb36ont+Ksrcsvvzxdf/31ecIkQjgxGRGX6667Li+DCDHtv//+Jc9ia6iokFTwwgsvTNP9DznkkDxhEuOJSbTPP/88n0UYlxh/nF123HHHTXV91hRn2k3ttuKzGmPSKMqIx/hjEi8qU0U58aiSFRNR9YWVyrG9NvRx8X7jvg3dzgEAAIDmUZgPif+nN2T+pFDJqSnnd77++us83xFee+21qVavuummm9Kxxx5b8rYIINWnZsgofo/3EJW0alaoivHGiWNR1alUa766RDgn5oxuvfXW/LhCiKoQDipUqiol2hQWKmJFtfeoUN5U66rws9Bur5SaFa+mVV1zXjWvr1klf4011sgBsagM9fDDD+flEnNv0d4vtqu6KspPr8K8VV1BqOJxT+t817TO6wJAWyREBQA0SOE/3zWDOqUUJjXqC9wURNWi3XbbLQdvIqAUEw5x1licSVU46y6qFzV3iCrEmWRxxmG08otg17PPPpuefvrpPKHz73//O1eoismgwmRNtKDbY4898iXOnouz8+IxUZb8iy++SOedd14+SzBur2uiq6ZS7QoLrxXlz+O5p9Wmm26aLzFREmdVxiWCYTEZGGcQxrqMalUNVd8ESmG76NKlyxTXL7jggnnCLSaRIsB1wAEHVE/eNddZedOzvTb0cYXbG7KdAwAAAM0ngj9h8803z9WPpkVj53eKxTxLzClFNeyo5F3ffEK0hYu5kcMOO6x67I114YUX5upWIcJPcaJgzLFFRa2Ys4iQz7SEqELMz0WIKubBTjzxxDyPFBWk4oTHqNheSrTei0rvUe1qzz33TDvssEOTrquYG6sZBiqlIe0K61Jo1Ves5vxQcUgr5rViLjHmu2KZ3X///blaV58+fXL1rOZQmIeqbzlMz3zXtMzrAkBbVbq3CQBAkZh8Cf/973/rLP8d/4GPyZlCeeipufrqq/MERzx3VIKKSZYI3NQsWx4lpJtTTG5EOe7Ro0dXn+0XZ5NF+7w4EzEucfZenE0WoaoQVZT+85//pHHjxuW/F1hggfSHP/whV62KSlaFNoY1J6lmmmmm6lZ2pXz22We1roszBsM333yTX78uUWkqAmmFyaL4OWbMmHwpnEUWJeqPPPLI3EYvJunCY489NtXJk5pi8rDmWY01xVmWdZVVL5yl+Mgjj+RJqaeeeiov5+Y6K296ttfC4wrvp5RY1oXJtYZs5wAAAEDzKcyfFFrF1XXyWpxcFlWyC+3wGjO/U5eoZBUixBQBrLou8dwh5lcidDM9IrQVVahCzGOde+65adttt00rrbRSdQgmgmHTarXVVssnOBbmcGI+J8Q8TqkqWbFMo1pXzEfFMoswVVOvq8LjYp6nLo1t5Vez3V2xQuX8CNItssgiU9wW20rM98WcYszdFZZTc540WJi3imUU81N1efXVV0vOd8UcaF0BrJg/K7xf810AVDIhKgCgQWISKMpRR5jngQceKHmfKHX+66+/5rPKevXqVX19oeR5cRWmTz75JP+MiZlSZ97FRM3YsWPz74VJk6YWkzabbbZZGjhwYMmgUkwcFSaeCmGco48+Ou200065/V+xmEwqvPeaY46z9UJU1SoVpCpMtNQUy6UwaRHLtpSokjVgwIB8tmFM/IWbb745l2uPSatSla8KpdiLxzg18VyFScGaYvLlzjvvzL9HWKvYJptsks8YjImYW265Jf3000/5zMWuXbumGW17LUyQxhmUdZWVv+qqq6onV6dWnh8AAABoXhtuuGEOs0QQJuaS6vq//K677prnSwrVwBszv1NKnIhVOJGtvnZ3hTmSQqWqG2+8MU2PaCFYOMlrhRVWKHmfqChVEHMgDVV4H48++mgaPnx4neGgCIPtu+++6csvv8xzJGeffXauxtXU6yrm7kLMfRWCPjXF8o+5nMa6/fbbS15/7bXX5p/rr79+rQBZnAQa18dyjfmyF198MVegqqtaV1OIMFkhUBYnp5YS81mFZRHzY6Fnz565klaMNU4YLSVCfTGPFvO48b4AoFIJUQEADRJt2Xbcccf8+1//+tf00EMPVd8W4aIbbrihunx4tGybY445qm8vhJCi2lLNCZvCf/pj0iSqKRXEfe677750yCGHNElJ7vpE+8ConhQTYoceeugUZ+hF2CnO4ouQULTWiwpVISZxCmGlu+66a4qgUoSyChMsMTFUEJMVhbMc4zkLyyEmg2KCKc5GLOXggw/OPy+55JI8qVczgBXLrHD7qquumtZaa638+xZbbJEndt5888106qmnTlGS/KuvvsqvH1ZZZZXqcugNFWXKa677mCQbPHhwrhi28MILp+23375kafzf//73+ffzzz+/2c/Km57tNUJzhfV20EEHTdFGMZZ9lJqPIFj4y1/+Uh0QBAAAAMpjoYUWqm4fF3M7I0aMmGIOIIJEQ4YMyX/HiWhRsbux8zv1BXDiZLHCyVl1iRO+CmONakH1VcKemni9wrxOBI+iGlLN+Z8TTjghz681Zm4tlk2MNeZT3njjjRzSijm0mmKeJCpgRSCqW7dued5qam3gGruuIqC11VZb5XU0aNCgKSpSxbqKOZxSJxI2VATFYs6rMO8WP88444w8vphji/dZX9gs5phibjGqdcVya06FucDYbmOequZcYcxjxbIIEYQqnEgZJxBG2C3EYyJIVbNy+8MPP5yOO+64/HvMpxXmbAGgEjXvNzkA0KYcddRROSwTEwvxH/b55psvV+OJ8tpx9lvYZZdd0j777DPF45ZbbrnqylNx5lg8Ls62i/Z9MZkTj42JkcUWWyxPtkS1pggbRXApQi1xJldjyo83VISK+vXrl0uFxxmB3bt3z5MLMY44oy7OkPvb3/5WXTkp3kNMKESY5ogjjsiTKhHaibDVhx9+mCdtVl555VzKvCCCWhEkuvfee9MVV1yRS8HHsiuU0f7zn/+czjvvvFpj23LLLXPLuZiM+fvf/56GDh2al1NMhhUqecXExkUXXVT9mFi+EZ6KSlTXXHNNbpUYJcdjMifGF5WgojLWKaecMk3LKSa6YhnEuo/JsXiOmKiKyZo4i/LCCy/M66yuSaWYfIxA1zzzzFN9JtyMuL2eeeaZed3FdrfbbrtVv+/33nsvr6vYHmJ9xboBAAAAyi+qSsUcwGOPPZb+9Kc/5TmAqBQUcycxhxI233zz/P/5gsbM7xSLOZFCUKmudnfF4jVjfifmaWJ+7OSTT27Ue46wTsx3nHjiiXlOKyogxZxRjCnmm+IEvuWXXz63K4x5kJhbq6tiVbGYu4nwWH1VqCKIE68bYo4oQjhxsmC0GSylUHmrMesqHH/88blifVRailZ6Sy+9dD65LeamunTpkiuHFcYzreL1Yp1EMCnmBWPuKOYmY31GC8bC3GaxCM3FnFFh3M190mDh5MnYPmM+M+bioiJVzA3WnCuMZXHWWWdNcfLfXnvtlec6Yz3EPGfMNcYJkbFdxImvheVwzDHHNPt7AIAZmRAVANBgUVEo/nP+4IMP5rPs4oy5OPMrAjRxZlOUQO/du3etx0WFpKjaE5Mr8Z/ymMz54osvchDnnnvuyQGgZ555Jk/qREAlJqxi4ila7MV//uNnnEkVAZy6QjrTY6mllsrt6C6//PI8jpiQiYmymMTZdNNN0x577JEnZmqKCaoIeMWZinFGXlwiABYVp6K1XkyIFU+cxWRcPCaWXZylFxMeK620Ug6TxfIrFaIKcbbbeuutl0NIUX0qSpTHc8dEWIwvlk/xmX6x/CIwFC3rXnrppfTOO+/kx0R7wJjg2X333ae5nV6s/5iYiTMCYxuISlexjCJ4FhOK9T1fTDbFGYsx9pY4K296ttc4izOWdWwTsX3Guo1y5jGh17dv3xz4i2UPAAAAzBhmmWWWdPHFF+c5gGitVpgDiPmS+L9/hFtiPqK41Vxj5ndqinZ3EbZpSCu/gpj3isBTBJSihdqRRx7Z6Pfdv3//HKCJKlARJopLVG+K6uNx8leM/9hjj83vL0JLffr0afBzxzKLMcb8SlSBKhZhs4JpqajV2HUVQamYl4oQUMzZRFAsxhbBn6hqFVXcGxuiimUUrx3PHfNdsQxj/e+33361KnDVFNtGLJs4iXHFFVfMJ1G2hBjX2muvnZdHYa4wlk9cFwGzUssvAlVRnSzmEqNCe7RGjOUeAbiYK4zq8jHHBwCVrl3V9NS3BACABoizH+MMxgjPxQRhBNcAAAAAmDHFCWZRJStOKDv//PPLPZwZ1uDBg9OwYcNyJa448Q4AaN2mjCEDAEAzGDFiRA5QxdmdAlQAAAAAM7Zbb701/4xqVpQWlcujwtess86aqz8BAK2fdn4AADSLaFkYJdrfe++9XB4/RGtEAAAAAGYs33//ffroo49Sp06d0uWXX55bG0Z7unXXXbfcQ5uhfPrpp+nHH3/Myyvmu3755Ze00047pTnmmKPcQwMAmoAQFQAAzeKqq65KN998c/Xf6623Xtp8883LOiYAAAAAapswYcIU1ZTat2+fjj/++LKOaUY0evTodNhhh1X/Pe+886ZBgwaVdUwAQNPRzg8AgGaxwgorpM6dO6cuXbqk7bbbLp1//vnlHhIAAAAAJUQYaLHFFkszzzxzrkB10UUXpTXWWKPcw5rhLLHEEmnuuefOFbvWXnvtdM0116S55pqr3MMCAJpIu6qqqqqmejIAAAAAAAAApt0333yThg4dmkaMGJHGjRuXA1t9+vRJBxxwQOratWu5hwfQ6tnPMjVCVAAAAAAAAABl9N1336WddtopvfPOO7nK1fLLL5/efffd9Nhjj6X55psv3XLLLWnBBRcs9zABWi37WRqiQ4PuBQAAAAAAAECzGDJkSD6wP3jw4DRo0KDq66+77rp00kknpQsuuCCddtppZR0jQGtmP0tDtG/QvQAAAAAAAABoFh9//HGaZ5550l577TXF9dtss03++eKLL5ZpZABtg/0sDaESFQAAAAAAAEAZXXjhhSWvj6opYd55523hEQG0LfazNIQQFQAAAAAAAMAMZPz48WnUqFHp9NNPTx06dEgHHHBAuYcE0KbYz1KKEBUAAAAAAADADOLGG29MJ5xwQv59pplmSmeddVZae+21yz0sgDbDfpa6tK/zFgAAAAAAAABaVNeuXdM+++yT/vCHP6RZZpklHX744emyyy4r97AA2gz7WerSrqqqqqrOWwEAAAAAAAAoi48//jjttNNO6Ysvvki33XZbWmmllco9JIA2xX6WmlSiAgAAAAAAAJgBde/ePe2999759+HDh5d7OABtjv0sNXWY4i8AAAAAAAAAWszPP/+cRo8enSZNmpQ22GCDWrcvvPDC+edXX31VhtEBtH72szSUEBUAAAAAAABAGQ/u77PPPqlz587p6aefTh07dpzi9tdeey3/XHzxxcs0QoDWzX6WhtLODwAAAAAAAKBMZp999tSnT5/03XffpSFDhkxx26uvvpquuuqqfOB/q622KtsYAVoz+1kaql1VVVVVg+8NAAAAAAAAQJP63//+l3beeec0duzY1LNnz7TKKqvk34cPH57atWuXzj333LTJJpuUe5gArZb9LA0hRAUAAAAAAABQZl999VW66KKL8gH9zz77LHXp0iX17t077b///qlHjx7lHh5Aq2c/y9QIUQEAAAAAAAAAABWtfbkHAAAAAAAAAAAAUE5CVAAAAAAAAAAAQEUTogIAAAAAAAAAACqaEBUAAAAAAAAAAFDRhKgAAAAAAAAAAICKJkQFAAAAAAAAAABUNCEqAAAAAAAAAACgoglRAQAAAAAAAAAAFU2ICgAAAAAAAAAAqGhCVAAAAAAAAAAAQEUTogIAAAAAAAAAACqaEBUAAAAAAAAAAFDRhKgAAAAAAAAAAICKJkQFAAAAAAAAAABUNCEqAAAAAAAAAACgoglRAQAAAAAAAAAAFU2ICgAAAAAAAAAAqGhCVAAAAAAAAAAAQEXrkFqxkSNHpiuvvDK98sorqV27dmnJJZdMAwcOTL/73e/KPTQAAAAAWplvvvkmDR06NI0YMSKNGzcuzT333KlPnz7pgAMOSF27dm3Qc4wdOzZdcMEF6ZlnnsnPt9hii6UBAwakHXfcsdnHDwAAAEDjtauqqqpKrdBVV12VTjvttDyZ1bdv3zR58uT08MMPp6+++iodccQRac899yz3EAEAAABoJb777ru00047pXfeeSetvfbaafnll0/vvvtueuyxx9J8882XbrnllrTgggvW+xyffPJJ6tevX/r666/zSX7zzDNPevTRR9MHH3yQ9thjj3TkkUe22PsBAAAAoAJCVG+88Ubabrvt0qKLLpquvfbaHKQKX3zxRdpmm23S+PHj89l+c8wxR7mHCgAAAEArECfrxUl7gwcPToMGDaq+/rrrrksnnXRSnouK+9QnHvfII4+kSy65JG244Yb5uh9//DFXTn/ppZfSbbfdllZcccVmfy8AAAAATLv2qRWK4NSvv/6aTjzxxOoAVYiz+w455JA8qRWBKgAAAABoiI8//jjPLe21115TXB8n7IUXX3xxqlWoourUaqutVh2gCp06dcrzVXEe480339xMowcAAABgenVIrdDjjz+e5p133rTmmmvWum377bfPFwAAAABoqAsvvLDk9dHeL8RcVH2ee+65HJSKVoDFevbsmWaeeeY0atSoJhotAAAAAKnSK1F99dVX6fPPP0/LLLNM+uyzz9IxxxyT1l133bTyyivn8FSc8QcAAAAA02P8+PHp4YcfzlWkOnTokA444IB67//+++/nn4suumit2yJAteCCC+ZqVz///HOzjRkAAACACgpRRXAqTJgwIbfte/bZZ1Pfvn3TFltskc8MPPDAA3O7PwAAAABojBtvvDH16tUrHXTQQenTTz9NZ555ZskKUzV9/fXX+edvfvObkrfPMcccafLkyXlOCwAAAIAZT6tr5zdx4sT886WXXkprrbVWuvjii1Pnzp3zdfvuu2/aYYcd0hlnnJE23njjtNBCC5V5tAAAM47ed1xf7iHQSjy73YByDwEAyqpr165pn332ydXQhw0blg4//PA0bty4tPfee9f5mF9++SX/7NixY8nbC9erRAUAUJt5KxrCnBU03qf7/b+cBdRn/qGzpUrX6ipRzTTTTNW///Wvf60OUIUll1wy7brrrnnSKsqtAwAAAMC02nzzzXNwKk7Uu/fee3Oo6qyzzkqvvPJKnY/p1KnTFGGqYoXwVM25LAAAAABmHK0uRBWlzwsTThGaKrb88svnnx988EGLjw0AAACAtqV79+7VFaiGDx9e5/0Kbfy+/fbbkrd/9913qV27dmn22WdvppECAAAAUFHt/BZeeOHUoUOH9Ouvv6aqqqo8+VRT4Wy/WWedtUwjBAAAAKA1iSpRo0ePTpMmTUobbLBByfmo8NVXX9X5HEsssUT++eGHH9a6Learoh3g4osvntq3b3XnNAIAAABUhFY3a9OxY8e06qqrVk9uFSuUVe/Ro0cZRgcAAABAaxPzTPvss0869NBDq9vu1fTaa6/lnxGCqkuvXr3yyX7PPvtsrduef/75HKTq2bNnE48cAAAAgIoNUYX+/fvnn6effnouhV4wZsyYdNNNN6U555wzbbLJJmUcIQAAAACtRbTY69OnT55nGjJkyBS3vfrqq+mqq65KnTt3TltttVWdz7HAAgukddddNz333HPp0Ucfrb7+xx9/TOedd17+fcCAAc34LgAAAACoqHZ+Ycstt0xPPvlkuuOOO/Lvm222WZowYUJ66KGHctn1U045JU9+AQAAAEBDHHPMMTkwNXTo0Fw5apVVVkljx45Nw4cPzxWmzj333DTvvPPm+0a1qQhLLbfcclOcyHfsscemfv36pYMOOihtscUWaf7558+Pf//999Nee+2V7w8AAADAjKlVhqjCqaeemtZYY4104403pttuuy23+VtzzTXTn/70p7T66quXe3gAAAAAtCJRSer2229PF110UQ4+vfTSS6lLly45JLX//vunHj16VN83AlRRsWrbbbedIkQV7f5uvvnmXHkqTgD86aef0mKLLZZOPvnktP3225fpnQEAAADQEO2qqqqqGnRPAABatd53XF/uIdBKPLudVkMAAABAyzFvRUOYs4LG+3S/ieUeAq3A/ENnS5WufbkHAAAAAAAAAAAAUE5CVAAAAAAAAAAAQEUTogIAAAAAAAAAACqaEBUAAAAAAAAAAFDRhKgAAAAAAAAAAICKJkQFAAAAAAAAAABUNCEqAAAAAAAAAACgoglRAQAAAAAAAAAAFU2ICgAAAAAAAAAAqGhCVAAAAAAAAAAAQEUTogIAAAAAAAAAACqaEBUAAAAAAAAAAFDRhKgAAAAAAAAAAICKJkQFAAAAAAAAAABUNCEqAAAAAAAAAACgoglRAQAAAAAAAAAAFU2ICgAAAAAAAAAAqGhCVAAAAAAAAAAAQEUTogIAAAAAAAAAACqaEBUAAAAAAAAAAFDRhKgAAAAAAAAAAICKJkQFAAAAAAAAAABUNCEqAAAAAAAAAACgoglRAQAAAAAAAAAAFU2ICgAAAAAAAAAAqGhCVAAAAAAAAAAAQEUTogIAAAAAAAAAACqaEBUAAAAAAAAAAFDRhKgAAAAAAAAAAICKJkQFAAAAAAAAAABUNCEqAAAAAAAAAACgoglRAQAAAAAAAAAAFU2ICgAAAAAAAAAAqGhCVAAAAAAAAAAAQEUTogIAAAAAAAAAACqaEBUAAAAAAAAAAFDRhKgAAAAAAAAAAICKJkQFAAAAAAAAAABUNCEqAAAAAAAAAACgoglRAQAAAAAAAAAAFU2ICgAAAAAAAAAAqGhCVAAAAAAAAAAAQEUTogIAAAAAAAAAACqaEBUAAAAAAAAAAFDRhKgAAAAAAAAAAICKJkQFAAAAAAAAAABUNCEqAAAAAAAAAACgoglRAQAAAAAAAAAAFU2ICgAAAAAAAAAAqGhCVAAAAAAAAAAAQEUTogIAAAAAAAAAACqaEBUAAAAAAAAAAFDRhKgAAAAAAAAAAICKJkQFAAAAAAAAAABUNCEqAAAAAAAAAACgoglRAQAAAAAAAAAAFU2ICgAAAAAAAAAAqGhCVAAAAAAAAAAAQEUTogIAAAAAAAAAACqaEBUAAAAAAAAAAFDRhKgAAAAAAAAAAICKJkQFAAAAAAAAAABUNCEqAAAAAAAAAACgoglRAQAAAAAAAAAAFU2ICgAAAAAAAAAAqGhCVAAAAAAAAAAAQEUTogIAAAAAAAAAACqaEBUAAAAAAAAAAFDRhKgAAAAAAAAAAICKJkQFAAAAAAAAAABUNCEqAAAAAAAAAACgoglRAQAAAAAAAAAAFU2ICgAAAAAAAAAAqGhCVAAAAAAAAAAAQEUTogIAAAAAAAAAACqaEBUAAAAAAAAAAFDRhKgAAAAAAAAAAICKJkQFAAAAAAAAAABUNCEqAAAAAAAAAACgoglRAQAAAAAAAAAAFU2ICgAAAAAAAAAAqGhCVAAAAAAAAAAAQEUTogIAAAAAAAAAACqaEBUAAAAAAAAAAFDRhKgAAAAAAAAAAICKJkQFAAAAAAAAAABUNCEqAAAAAAAAAACgoglRAQAAAAAAAAAAFU2ICgAAAAAAAAAAqGhCVAAAAAAAAAAAQEUTogIAAAAAAAAAACqaEBUAAAAAAAAAAFDRhKgAAAAAAAAAAICKJkQFAAAAAAAAAABUNCEqAAAAAAAAAACgoglRAQAAAAAAAAAAFU2ICgAAAAAAAAAAqGhCVAAAAAAAAAAAQEUTogIAAAAAAAAAACpah9RK3XjjjemEE06o8/Znnnkmde3atUXHBAAAAEDrNXHixDR06NA0bNiw9Mknn6SZZ545Lb/88mngwIFp0003bdBzrLvuuumLL74oeduAAQPScccd18SjBgAAAKCiQ1T//e9/88/dd989zT777LVun3XWWcswKgAAAABaowkTJqT+/funN954I62wwgr59++++y4HqgYNGpQOPfTQtN9++9X7HJ9//nkOUEXwauONN651+8orr9yM7wAAAACAigxRjRkzJnXq1CkdccQRqX17XQkBAAAAaLxLL700B6j69euXq5+3a9cuX3/wwQenP/7xj+n8889Pffv2TYsuuuhUT/qL+00tcAUAAADAjKVVpo8mT56c3nzzzbT00ksLUAEAAAAw3R588MEcnDrssMOqA1Rh/vnnTzvvvHOaNGlSGjly5FRP+gs9evRo9vECAAAA0LRaZSWq999/P/3www8mpAAAAABoEgMHDszt+7p06VLrto4dO+afEydOrPc5hKgAAAAAWq9WGaIqTEjFWYGHHHJIev7559P48ePTMsssk3bfffe01VZblXuIAAAAALQiAwYMKHl9VVVVGjZsWP592WWXrfc5op1f586d08MPP5xuv/329MEHH6TZZ589bbTRRumggw5K8803X7OMHQAAAIDp1741h6huueWW9OWXX6att946bbrppumdd97JJdfPOeeccg8RAAAAgDbghhtuSC+//HJaeOGF0/rrr1/n/X788cccmvr+++/TRRddlFZZZZW044475naAt956a/rjH/+YPv744xYdOwAAAABtvBJVnAG40EILpcGDB6dtt922+vqPPvoo7bzzzmno0KFpgw02SGussUZZxwkAAABA6/XAAw+kU045JXXo0CGdfvrpaeaZZ67zvp9//nlaaqmlcjvAIUOGpDnnnLN6Huvcc8/N81XHHntsuuqqq1rwHQAAAADQpitRRbWpESNGTBGgCnFGYJRGD/fcc0+ZRgcAAABAW6hAFXNQ4YwzzpjqyXoxLxXzUdddd111gCq0a9cuz1d169YtPfPMM+mzzz5r9rEDAAAAUCEhqvqsvPLK+eeHH35Y7qEAAAAA0MpMnjw5V5068cQTcwWq8847L2211VbT9ZzxPMsvv3z+3ZwVAAAAwIypQ2ucyHr99dfT999/n3r16lXr9rg+dOrUqQyjAwAAAKC1+vnnn3P1qWHDhuVqUhdeeOFUK1AVfPrppzkg1b1797TgggvWuv2HH37IP81ZAQAAAMyYWmUlql133TXttttu6csvv6x12/PPP59/rrTSSmUYGQAAAACt0aRJk9LBBx+cA1QRhLrxxhsbHKAK0cpvl112SZdeemmt2yZOnJhee+21NOuss6all166iUcOAAAAQEWGqNq3b5/69u2bqqqq0llnnZUrUxWMGTMmDR06NHXu3Dltv/32ZR0nAAAAAK3HJZdckkaMGJG6deuWbrjhhrTEEktM0+M333zz3LbvjjvuSG+88Ub19b/++ms69dRT0zfffJP69euXZplllmYYPQAAAAAV184vHH744enf//53uvPOO/OkVO/evXPJ9EcffTSHqs4999w0//zzl3uYAAAAALQCEXCKEFVYbrnl0i233FLyflGZau21107PPvtseu655/J9N9lkk3zbIossklsBnnHGGWnHHXfMJwF26dIljRo1Kr355pupZ8+eudIVAAAAADOmVhmimnvuudOtt96aLr744vTII4+k6667Ls0222xpww03TPvvv39accUVyz1EAAAAAFqJ559/Pn3//ff59+HDh+dLKTHvFCGqCFANGTIkbbvtttUhqrDnnnumJZdcMl1xxRV5zuqXX35Jiy66aA5X7b777qljx44t9p4AAAAAmDbtqqIvHgAAbV7vO64v9xBoJZ7dbkC5hwAAAABUEPNWNIQ5K2i8T/ebWO4h0ArMP3S2VOnal3sAAAAAAAAAAAAA5SREBQAAAAAAAAAAVDQhKgAAAAAAAAAAoKIJUQEAAAAAAAAAABVNiAoAAAAAAAAAAKhoQlQAAAAAAAAAAEBFE6ICAAAAAAAAAAAqmhAVAAAAAAAAAABQ0YSoAAAAAAAAAACAiiZEBQAAAAAAAAAAVDQhKgAAAAAAAAAAoKIJUQEAAAAAAAAAABVNiAoAAAAAAAAAAKhoQlQAAAAAAAAAAEBFE6ICAAAAAAAAAAAqmhAVAAAAAAAAAABQ0YSoAAAAAAAAAACAiiZEBQAAAAAAAAAAVDQhKgAAAAAAAAAAoKIJUQEAAAAAAAAAABVNiAoAAAAAAAAAAKhoQlQAAAAAAAAAAEBFE6ICAAAAAAAAAAAqmhAVAAAAAAAAAABQ0YSoAAAAAAAAAACAiiZEBQAAAAAAAAAAVDQhKgAAAAAAAAAAoKIJUQEAAAAAAAAAABVNiAoAAAAAAAAAAKhoQlQAAAAAAAAAAEBFE6ICAAAAAAAAAAAqmhAVAAAAAAAAAABQ0YSoAAAAAAAAAACAiiZEBQAAAAAAAAAAVDQhKgAAAAAAAAAAoKIJUQEAAAAAAAAAABVNiAoAAAAAAAAAAKhoQlQAAAAAAAAAAEBFE6ICAAAAAAAAAAAqmhAVAAAAAAAAAABQ0YSoAAAAAAAAAACAiiZEBQAAAAAAAAAAVDQhKgAAAAAAAAAAoKIJUQEAAAAAAAAAABVNiAoAAAAAAAAAAKhoQlQAAAAAAAAAAEBFE6ICAAAAAAAAAAAqmhAVAAAAAAAAAABQ0YSoAAAAAAAAAACAiiZEBQAAAAAAAAAAVDQhKgAAAAAAAAAAoKIJUQEAAAAAAAAAABVNiAoAAAAAAAAAAKhoQlQAAAAAAAAAAEBFE6ICAAAAAAAAAAAqmhAVAAAAAAAAAABQ0YSoAAAAAAAAAACAiiZEBQAAAAAAAAAAVDQhKgAAAAAAAAAAoKIJUQEAAAAAAAAAABVNiAoAAAAAAAAAAKhoQlQAAAAAAAAAAEBFE6ICAAAAAAAAAAAqmhAVAAAAAAAAAABQ0TqUewAAAAAAAJVo4sSJaejQoWnYsGHpk08+STPPPHNafvnl08CBA9Omm25a7uEBAABARVGJCgAAAACghU2YMCHtvPPOOUTVuXPn1L9//9S3b980ZsyYNGjQoHw9AAAA0HJUogIAAAAAaGGXXnppeuONN1K/fv3SCSeckNq1a5evP/jgg9Mf//jHdP755+dQ1aKLLlruoQIAAEBFUIkKAAAAAKCFPfjggzk4ddhhh1UHqML888+fK1RNmjQpjRw5sqxjBAAAgEqiEhUAAAAAQAsbOHBg+u6771KXLl1q3daxY8f8c+LEiWUYGQAAAFQmISoAAAAAgBY2YMCAktdXVVWlYcOG5d+XXXbZFh4VAAAAVC7t/AAAAAAAZhA33HBDevnll9PCCy+c1l9//XIPBwAAACqGEBUAAAAAwAzggQceSKecckrq0KFDOv3009PMM89c7iEBAABAxRCiAgAAAACYASpQHXbYYfn3M844I62xxhrlHhIAAABUlA7lHgAAAAAAQKWaPHlyOvPMM9OVV16ZOnbsmM4+++y02WablXtYAAAAUHGEqAAAAAAAyuDnn3/O1aeGDRuW5pxzznThhReqQAUAAABlIkQFAAAAANDCJk2alA4++OA0YsSI1L1793TppZemJZZYotzDAgAAgIolRAUAAAAA0MIuueSSHKDq1q1buuGGG9L8889f7iEBAABARROiAgAAAABoQd98800OUYXlllsu3XLLLSXvF6391l577RYeHQAAAFQmISoAAAAAgBb0/PPPp++//z7/Pnz48HwpZf/99xeiAgAAgBYiRAUAAAAA0II22WST9MYbb5R7GAAAAEAN7Wv+AQAAAAAAAAAAUGmEqAAAAAAAAAAAgIomRAUAAAAAAAAAAFQ0ISoAAAAAAAAAAKCiCVEBAAAAAAAAAAAVTYgKAAAAAAAAAACoaEJUAAAAAAAAAABARROiAgAAAAAAAAAAKpoQFQAAAAAAAAAAUNGEqAAAAAAAAAAAgIomRAUAAAAAAAAAAFQ0ISoAAAAAAAAAAKCiCVEBAAAAAAAAAAAVTYgKAAAAAAAAAACoaEJUAAAAAAAAAABARROiAgAAAAAAAAAAKpoQFQAAAAAAAAAAUNGEqAAAAAAAAAAAgIrWZkJUo0aNSj169EhHHnlkuYcCAAAAQCs0ceLEdM4556S+ffumlVZaKa2++uppl112SY888kiDn2Ps2LF5fmrDDTdMq6yyStpmm23SLbfc0qzjBgAAAGD6tYkQ1YQJE9LRRx+dqqqqyj0UAAAAAFrp/NLOO++chg4dmjp37pz69++fw1RjxoxJgwYNytdPzSeffJJ22mmndN9996XevXunAQMGpB9++CH99a9/TaeffnqLvA8AAAAAGqdDagNOOeWUPEkFAAAAAI1x6aWXpjfeeCP169cvnXDCCaldu3b5+oMPPjj98Y9/TOeff34OVS266KJ1Psdpp52WPvvss3TJJZfkSlThoIMOSgMHDkxXXXVV2mqrrdKKK67YYu8JAAAAgAqqRDVixIh0xx13pI033rjcQwEAAACglXrwwQdzcOqwww6rDlCF+eefP1eomjRpUho5cmSdj48T/B599NG02mqrVQeoQqdOndIhhxySK6jffPPNzf4+AAAAAKjASlRfffVVLofeq1evtMsuu+RAFQAAAABMq6gW9d1336UuXbrUuq1jx47558SJE+t8/HPPPZeDUmuvvXat23r27JlmnnnmNGrUqCYeNQAAAABNpVWHqKK0+vfff59OPfXU9NFHH5V7OAAAAAC0UgMGDCh5fQSjhg0bln9fdtll63z8+++/n3+WavcXAaoFF1wwffzxx+nnn3+uDmUBAAAAMONote387rnnnvTwww+nww8/PC288MLlHg4AAAAAbdANN9yQXn755Tz/tP7669d5v6+//jr//M1vflPy9jnmmCNNnjw5TZgwodnGCgAAAECFVaL69NNP00knnZTLo/fv37/cwwEAAACgDXrggQfSKaeckjp06JBOP/30XFGqLr/88kv+WVeVqcL1UYmKlH489MxyD4FWotM5fyn3EAAAAKgQrbIS1dFHH50mTZqUJ7HatWtX7uEAAAAA0AYrUB122GH59zPOOCOtscYa9d6/U6dOU4SpihXCU507d27ysQIAAABQgZWobrzxxvTkk0+mv/3tb2mhhRYq93AAAAAAaEOi5d6ZZ56Zrrzyylw96uyzz06bbbbZVB9XaOP37bfflrz9u+++yycDzj777E0+ZgAAAAAqsBJVlFEPxx13XFp22WWrL3vssUe+/s4778x/H3nkkWUeKQAAAACtSVSLOvjgg3OAas4558w/GxKgCksssUT++eGHH9a6LapTjRs3Li2++OKpfftWNx0HAAAAUBFaXSWqbbfdNvXq1avW9R999FG6++67U48ePdImm2ySlltuubKMDwAAAIDWZ9KkSTlANWLEiNS9e/d06aWXVgejGiLmq6LS1LPPPpsGDRo0xW3PP/98DlL17NmzGUYOAAAAQEWGqLbbbruS1z/99NM5RBXhqcGDB7f4uAAAAABovS655JIcoOrWrVu64YYb0vzzzz9Nj19ggQXSuuuum5588sn06KOP5pP8wo8//pjOO++8/PuAAQOaZewAAAAAVGCICgAAAACa0jfffJNDVCFO0LvllltK3m+NNdZIa6+9dq429dxzz+X7FsJS4dhjj039+vVLBx10UNpiiy1yEGv48OHp/fffT3vttZfK6QAAAAAzMCEqAAAAACpatNv7/vvv8+8ReopLKfvvv38OUUWAasiQIWnbbbedIkS1+OKLp5tvvjlXnoqKVD/99FNabLHF0sknn5y23377Fns/AAAAAEy7dlVVVVWNeBwAAK1M7zuuL/cQaCWe3U6rIQCgef146JnlHgKtRKdz/lLuIQDQAsxb0RDmrKDxPt1vYrmHQCsw/9DZUqVrX+4BAAAAAAAAAAAAtKl2fpMmTcqXjh075r8nTJiQbrrppjRu3Li08sorp6222irNNNNMTf2yAAAAAAAAAAAA5a9EdcUVV6TevXunESNG5L9//vnntPPOO6ezzz47XX/99enII49M++yzTw5ZAQAAAAAAAAAAtKkQ1aOPPprOPPPMXHnqu+++y9fddddd6a233krzzjtvGjRoUFp22WXTM888kytTAQAAAAAAAAAAtKkQ1c0335zat2+fLr/88rTDDjvk6x588MHUrl27dNxxx+UQ1XXXXZfmmGOOdM899zTVywIAAAAAAAAAAMwYIapXX301rb766mndddfNf//www9p9OjRqWPHjmmDDTbI180+++xp1VVXTe+8805TvSwAAAAAAAAAAMCMEaKKNn7zzDNP9d/PPfdc+vXXX9PKK6+cg1QF8ftPP/3UVC8LAAAAAAAAAAAwY4SoFlhggfTJJ59U//3EE0/kVn7rrLNO9XWTJ09O//3vf9O8887bVC8LAAAAAAAAAAAwY4SolltuudzS79Zbb02jRo1Kd999d76+T58++ecvv/ySzjrrrDR27NjUq1evpnpZAAAAAAAAAACA6dIhNZF99903PfbYY+m4447Lf1dVVaWNNtooLbPMMtVhqs8//zzNMccc+b4AAAAA0FiTJk1K3377bZprrrnKPRQAAAAA2oAmq0S14oorpiuuuCKttdZaaYkllkj9+/dPZ599dvXtCy64YFpzzTXTjTfemG8HAAAAgKmJoNRll12WxowZU31dVELv3bt3WmedddJmm22Wnn766bKOEQAAAIDWr8kqUYUISV155ZUlb7vmmmvSLLPM0pQvBwAAAEAb9uWXX6btt98+/e9//0tdunRJPXr0SG+88UY6/vjj0+TJk9NMM82UPvzww7TffvulO++8My211FLlHjIAAAAAlV6JqthPP/2UPvroozzJFWaeeebmeikAAAAA2qCoQDVu3Lh84t5qq62Wr7vllltygGrHHXdML7/8cjr99NPTL7/8ku8LAAAAADNMiOrxxx9PAwYMSD179szl1M8999x8/YEHHphOOOGE9P333zf1SwIAAADQBj3xxBNpvvnmS5dffnlaeuml83WPPfZYateuXdp7771zJao//OEPafnll0+jRo0q93ABAAAAaMWatJ3fBRdckC6++OJUVVWV2rdvn3/GJbz99ts5YDVmzJjc2q9jx45N+dIAAAAAtDFjx45N6623XnWF83fffTdf161bt7TIIotU32/hhRdOb731VhlHCgAAAEBr12SVqEaOHJkuuuiifHbgeeedl0aPHj3F7eecc05aaqml0ksvvZRuvfXWpnpZAAAAANqoOAkvWvUVPPnkk/ln7969p7jfV199lWaZZZYWHx8AAAAAbUeThaiiulScFXjFFVekvn37ptlmm22K21daaaVcej0mv+6+++6melkAAAAA2qioNvWf//wn/fDDD/nvBx98MLfy22CDDarv8/7776cXX3wxn7wHAAAAAGUPUb3yyiupZ8+eackll6zzPlGlao011kgffvhhU70sAAAAAG3Upptumr755pu03XbbpV133TWHpbp06ZI22mijfPsll1ySBgwYkCZNmpS23nrrcg8XAAAAgFasyUJUP/74Y63qU6VEtarC2YMAAAAAUJc99tgjrb/++um9995Lo0ePzvNKJ510Upp11lnz7bfcckv68ssv0w477JB23nnncg8XAAAAgFasQ1M9Ubdu3dLrr7+eJk+enNq3L53N+vXXX/N9FlxwwaZ6WQAAAADaqAhNXXrppemFF15In376aVp99dXT/PPPX337Pvvsk5ZYYom05pprlnWcAAAAALR+TVaJauONN07/+9//0gUXXFDnfS688ML0+eefV5dcBwAAAICpifDUFltsMUWAKuy0004CVAAAAADMWJWo9t5773TfffeloUOHpueffz6ttdZa+fpx48alW2+9NQ0fPjyNHDkyzTnnnGmvvfZqqpcFAAAAoAI888wzadSoUXmuacUVV0y77bZbeuihh9Kqq66aFlhggXIPDwAAAIBWrslCVF27dk1XXHFFGjx4cA5R/fvf/87Xx+9xqaqqym38olLVvPPO21QvCwAAAEAb9tFHH6VDDz00vfrqq3l+qV27dtW3Rau/N998M51xxhnpd7/7XVnHCQAAAEDr1mQhqrDUUkvlalSPPPJIPjswzgycPHlyDk317t07T2Z17NixKV8SAAAAgDbqm2++SQMHDkxjx45NSy+9dNpggw3S5ZdfXn37oosuml577bX0f//3f2nxxRdPyy23XFnHCwAAAEDr1aQhqjDTTDOlvn375gsAAAAANNYll1ySA1R77rlnDkpFFaqaIapzzjknrb766unkk0/OFdLPOuusso4XAAAAgNarfbkHAAAAAAClDB8+PHXr1q06QFXKLrvskqtQvfTSSy0+PgAAAADajiarRLXbbrs1+L4x6XX11Vc31UsDAAAA0AaNGzcu/fa3v60zQFUQrf5GjhzZYuMCAAAAoO1pshDVc889N9X7xIRXVVXVVCe+AAAAAGDWWWdNn3322VTv97///S916tSpRcYEAAAAQNvUZCGqIUOGlLx+8uTJafz48emFF15I9957b9pmm23SIYcc0lQvCwAAAEAbteKKK+YT995555205JJLlrzPmDFj0uuvv5569+7d4uMDAAAAoO1oshDVJptsUu/tO+ywQ+rTp08aPHhwWmedddKWW27ZVC8NAAAAQBu0yy67pKeeeir96U9/SieeeGJac801p7j9tddeS4cddliaNGlS2mmnnco2TgAAAABavyYLUTU0aLXccsulq666SogKAAAA2qBvvvkmDR06NI0YMSKNGzcuzT333PmkqgMOOCB17dq13MOjlfntb3+bdtttt3TNNdekPffcM80000ypXbt2aeTIkWnDDTfMrf6qqqrStttumzbbbLNyDxcAAACAVqx9S79g9+7d09tvv93SLwsAAAA0s++++y71798/XXHFFWnBBRfMVYSWXXbZdO2116Ztttkmh6pgWh199NHpjDPOSEsssUT69ddfc2hq/Pjx6dNPP03dunVLf/3rX9Npp51W7mECAAAA0Mq1aCWqKK0eZdY7duzYki8LAAAAtIAhQ4akd955Jw0ePDgNGjSo+vrrrrsunXTSSemCCy4QdqFRIoQXly+++CKNHTs2B6nmnXfeHKICAAAAgBkqRDVmzJh6w1Off/55PvM0JrqiFDsAAADQtnz88cdpnnnmSXvttdcU10f4JUJUL774YtnGRtsQ21dcAAAAAGCGDVH94Q9/SO3atav3PnGW4CyzzJIOPPDApnpZAAAAYAZx4YUXlrw+qlOFqBwE9Rk+fPh0Pb5Pnz5NNhYAAAAAKkuThajqK5/evn371Llz59SjR4+0++67p+WXX76pXhYAAACYQY0fPz6NGjUqnX766alDhw7pgAMOKPeQmMHFiXdTO0mvPv/973+bdDwAAAAAVI4mC1GNGDGiqZ4KAAAAaOVuvPHGdMIJJ+TfZ5pppnTWWWeltddeu9zDYga35pprlnsIAAAAAFSoJgtRAQAAABR07do17bPPPunzzz9Pw4YNS4cffngaN25c2nvvvcs9NGZg1157bbmHAAAAAECFavIQ1RdffJE6duyYunTpkv+OCdJLLrkk/1x55ZXTbrvtlmafffamflkAAABgBrL55pvnSxg8eHDaaaedcjWq3r17p5VWWqncwwMAAAAAaL4Q1UknnZRuuummdOaZZ6Ytt9wyTZgwIfXr1y999tlnqaqqKo0cOTI9/PDD6eabb06dOnVqypcGAAAAZlDdu3fPFahOP/30NHz4cCEq6jRmzJj8c8kll0wzzzxz9d8N1aNHj2YaGQAAAABtXZOFqO644450/fXX53BUu3bt8nW33npr+vTTT9PSSy+d9txzz/TAAw+kJ598Ml111VVp//33b6qXBgAAAMrs559/TqNHj06TJk1KG2ywQa3bF1544fzzq6++KsPoaC3+8Ic/pPbt26f7778/Lb744vnvwjzT1MT9Xn/99WYfIwAAAABtU5OFqO68887UoUOHXImqcNZfVJ2KCayjjz46rb322rk61cYbb5weeughISoAAABoYyGqffbZJ3Xu3Dk9/fTTqWPHjlPc/tprr+WfEYyBunTr1i3/jDmmmn8DAAAAQKsJUb355pupV69e1QGqb7/9Nr388stp1llnzdeHmECNkv2jRo1qqpcFAAAAZgCzzz576tOnTxo2bFgaMmRIOvTQQ6tve/XVV3NV6ghYbbXVVmUdJzO2ESNG1Ps3AAAAAMzwIaoff/wxzTHHHNV/P/PMM2ny5Mlp9dVXTzPNNNMU943S/gAAAEDbcswxx+TA1NChQ9Pzzz+fVllllTR27Ng0fPjwXKn63HPPTfPOO2+5hwkAAAAAUEv71EQWXHDB9N5771X//fjjj+cJ0nXXXXeK0v6vvPJKvi8AAADQtiywwALp9ttvT7vuumsaN25cuuaaa9Jzzz2XNtlkk3Trrbfmn1Cf0047Ld17773lHgYAAAAAFajJKlGtuuqq6e67707nnXdeWnjhhdP999+fry9MkH766afpjDPOSF9++WXafPPNm+plAQAAgBlI165d07HHHpsvMK2uvvrqtPXWW6ff//73tW6766678pxTz549yzI2AAAAANq2JgtRHXDAAenRRx/NJftDVVVV2m677fLkVthmm23SN998k7p165b222+/pnpZAAAAACrAkUcemQNWQlQAAAAAzNAhqkUWWSTddttt6bLLLkufffZZ6t27d9p9992rb1955ZXT3HPPnQ477LA0zzzzNNXLAgAAAAAAAAAAzBghqrDYYoulk08+ueRtl1xySVO+FAAAAAAAAAAAwIwXoqrLyy+/nMaNG5dWWGGF1L1795Z4SQAAAAAAAAAAgAZp35RP9uKLL6Z99903PfXUU9XX/eUvf0k77bRT+vOf/5w233zzNGTIkKZ8SQAAAAAAAAAAgBkjRDVmzJg0cODA9K9//Su9++67+bqRI0eme+65J80000xpjTXWSJ06dUoXXnhhvh4AAAAAAAAAAKBNhaiuuOKK9PPPP+dKVNttt12+7u67707t2rXL1aiuvfbadNNNN+VA1Q033NBULwsAAAAAAAAAADBdOqQmMnr06LT00kunQw45JP89efLkXJUqQlS///3v83Vxe8+ePdPLL7/cVC8LAAAAQBvyn//8Jx111FHTfFvMQZ166qnNPDoAAAAA2qomC1F98cUXaZVVVqn+O4JS3333XerRo0eaa665qq+fc8458/UAAAAAUOzDDz/Ml2m9TYgKAAAAgBkiRBXhqPHjx1f//cQTT+Sfa6211hT3++ijj1KXLl2a6mUBAAAAaCMGDRpU7iEAAAAAUKGaLES15JJLpueffz69++67ab755kv33HNPPgNwo402qr7PsGHD0uuvv5423HDDpnpZAAAAANoIISoAAAAAWn2IaqeddkqjRo1KW2+9dZplllnSxIkTc7CqUIlq//33T//6179ysGrXXXdtqpcFAAAAAAAAAACYLu1TE9liiy3SoYcemmaeeeYcoFp66aXTBRdcUH37xx9/nDp27JjOPPPMtN566zXVywIAAAAAAAAAAMwYlajCvvvum3bfffc0YcKE1LVr1yluO/XUU3OwatZZZ23KlwQAAAAAAAAAAJhxQlQhqk0VB6jCyiuv3NQvBQAAAAAAAAAAMOO08wMAAAAAAAAAAKioSlR9+vRp9Iu2a9cuPfroo41+PAAAAAAAAAAAQNlDVJ988sl0hagAAAAAoKZ+/fql3r17p0MOOST/PXbs2NS5c+c055xzlntoAAAAALRxjQ5RXXPNNU07EgAAAAAq2htvvJG6des2RSX0rbfeOp1xxhllHRcAAAAAbV+jQ1S9evVq2pEAAAAAUNGievnbb7+dJk+enNq3b5+qqqryBQAAAABm2BAVAAAAADSlHj16pBdffDFtsMEGad55583XjRw5Mm277bYNCmDdcccdLTBKAAAAANoiISoAAAAAZgiHH3542nfffdMXX3yRL2H8+PH50pAQFQAAAAA0lhAVAAAAADOE1VdfPT3++OPpnXfeST/++GMaOHBgWnfdddN+++1X7qEBAAAA0MYJUQEAAAAww5h99tnTKqusUv333HPPnXr16lXWMQEAAADQ9glRAQAAADBDGjNmTLmHAAAAAECFEKICAAAAYIb29ddfp5tvvjmNGjUqffbZZ6ljx465QtXaa6+dttlmmzTvvPOWe4gAAAAAVGqIql+/fql3797pkEMOyX+PHTs2de7cOc0555xNOT4AAAAAKthzzz2XBg8enL799ttUVVU1xW1PP/10uuyyy9K5556bA1UAAAAA0OIhqjfeeCN169at+u8+ffqkrbfeOp1xxhmNHgwAAAAAFHzyySfpgAMOSBMmTEi//e1v0+9///vUvXv3NHny5PThhx+m++67Lz3xxBPpz3/+c7rrrrvSggsuWO4hAwAAAFBpIap27dqlt99+O09atW/fPp8JWHw2IAAAAAA01qWXXpoDVIceemjad999p7ht1VVXzSf0DR06NFeiuvrqq9ORRx5ZtrECAAAAUKEhqh49eqQXX3wxbbDBBmneeefN140cOTJtu+22DQpg3XHHHY19aQAAAAAqwL/+9a+06KKL1gpQ1bTffvul22+/PT322GNCVAAAAAC0fIjq8MMPzxNYX3zxRb6E8ePH50tDQlQAAAAAUJ/PPvss9enTZ6r3W3755XOICgAAAABaPES1+uqrp8cffzy988476ccff0wDBw5M6667bj77DwAAAACmV+fOndOXX3451fvFfTp16tQiYwIAAACgbWp0iCrMPvvsaZVVVqn+e+655069evVqinEBAAAAUOFWXHHF9Oyzz6YxY8akHj16lLxP3PbCCy+ktdZaq8XHBwAAAP8fe/cBZVV1/o97o4iIoIgKiCIWDGKv2EUFC5YoYsfYW+xdsUexYSKxRuxBsaCxRcUea8SGJRqxIRFBwYqgApb5r3d//3d+VAvOzG3Ps9Zdd7jnzJ09yfbM2Z/77r2ByjFHXb1RBFb9+vWrq7cDAAAAoMrtuuuu6fvvv0/7779/euSRR9KPP/5Yeyy+jtfiWHy9yy67FLWtAAAAAFTxSlQz88UXX6Rbb701DR06NI0bNy41adIkr1C1zjrrpG233TYtvPDCdf0jAQAAAKhA3bt3TzvttFMaPHhwOuyww/KWfe3atcvHxowZkyZNmpRqamrSDjvskDbddNNiNxcAAACAMlanRVTPP/98DrS++uqrHGBN7d///ne6+uqrU//+/XNBFQAAAAD8nDPPPDMtt9xy6ZprrkmjRo1K7733Xu2x9u3bp3322SevWAUAAAAAJVFENXr06HTwwQeniRMnpo033jhts802abHFFsvLqX/wwQfp3nvvTU8++WQ68sgj01133ZUWWWSRuvrRAAAAAFSw2KovHmPHjs2P0Lp169S2bdtiNw0AAACAClFnRVRXXXVVLqA6+uij0wEHHDDNsVVWWSX9/ve/TwMGDMgrUf39739PJ554Yl39aAAAAACqQJs2bfIDAAAAAOraHHX1Rk899VTq0KHDDAVUUzvwwAPT4osvnv71r3/V1Y8FAAAAAAAAAAAojSKqcePGpc6dO//secstt1z6+OOP6+rHAgAAAAAAAAAAlEYRVbNmzdJnn332s+fFOU2bNq2rHwsAAAAAAAAAAFAaRVQrrLBCevnll9Pw4cNneU4cGzZsWD4XAAAAAAAAAACgooqodt111/T999+n/fffPz3yyCPpxx9/rD0WX8drcSy+3mWXXerqxwIAAAAAAAAAAPwmjVMd6d69e9ppp53S4MGD02GHHZa37GvXrl0+NmbMmDRp0qRUU1OTdthhh7TpppvW1Y8FAAAAoEKdddZZaemll0677bZbsZsCAAAAQIWrsyKqcOaZZ6blllsuXXPNNWnUqFHpvffeqz3Wvn37tM8+++QVqwAAAADg59xzzz05U1JEBQAAAEBZFVGF2KovHmPHjs2P0Lp169S2bdu6/lEAAAAAVLDvv/++dqVzAAAAACirIqqCNm3a5AcAAAAAzI7NN988Pfjgg+ndd99NHTt2LHZzAAAAAKhg9VZEBQAAAAC/xTbbbJNeffXV1LNnz7Tuuuumzp07p5YtW6Y55phjpufvscceDd5GAAAAACqDIioAAAAAStK+++6bGjVqlGpqatITTzyRnnzyyZmeF8fjPEVUAAAAAMwuRVQAAAAAlKTtttsuF0cBAAAAQH1TRAUAAABASTrvvPOK3QQAAAAAqsQcxW4AAAAAAAAAAABARRRRnXXWWemmm26qq7cDAAAAgOyTTz5JF110Udp1113TRhttlM4444z8ev/+/dP9999f7OYBAAAAUAHqbDu/e+65J7Vv3z7ttttuqSF8+eWXacCAAemxxx5LH330UVpwwQVTt27d0sEHH5xatWrVIG0AAAAAoH498cQT6Zhjjklff/11qqmpSY0aNUrffPNNPha50JVXXpmGDRuWTjnllDr/2UceeWR+7yeffPIXf89OO+2UXn311ZkeiwKwyLMAAAAAqOAiqu+//z61a9cuNYQJEybkYq333nsvrbPOOrl4asSIEemGG25IDz74YBo8eHBaZJFFGqQtAAAAANSPyH4OP/zw9MMPP6RddtklFyEdeOCBtcd32GGHdMkll6RBgwalddddN22yySZ19rMvvfTSNGTIkNSmTZtf/D0//vhjevvtt9Niiy2WtttuuxmOL7HEEnXWPgAAAABKtIhq8803zwVM7777burYsWOqTxFiRYh22GGHpUMPPbT29RtvvDFvK3jxxRenc889t17bAAAAAED9+tvf/pamTJmSt/LbbLPNZji+5557phVWWCHtvvvuuZCqLoqoJk+enPOl22677Vd/7/vvv5++/fbbtN566+XcCgAAAIAqLKLaZptt8lLlPXv2zDP/OnfunFq2bJnmmGOOmZ6/xx57zPbP+vDDD9NCCy2U9t1332le33bbbXPI9fLLL8/2ewMAAABQGoYOHZozppkVUBWsvvrqaeWVV84T+36r2B6wb9++afTo0alr1655K8Ff46233srPnTp1+s1tAQAAAKBMi6iioKlRo0appqYmB0xPPvnkTM+L43Hebymiuuyyy2b6eqxOFRZeeOHZfm8AAAAASsP48ePTaqut9rPnRRb0xhtv/Oafd/vtt6evv/46nX766WnXXXdNyy677K/6/jfffDM//9rvAwAAAKCCiqi22267XBxVrEAtZiaed955qXHjxunggw8uSjsAAAAAqDsLLLBAGjly5M+eN2LEiNSqVavf/PNie8B+/fql5s2bz9b3F4qo/vvf/6bzzz8/vfPOO6lJkyZ51fbDDz88Lbnkkr+5jQAAAACUeBFVFDAVw80335zOOOOM/PWcc86ZLrjggrTOOusUpS0AAAAA1J211lor3XvvvenRRx9N3bp1m+k5Dz74YF6dfOutt66Tn/dbDB8+PD/3798/b0EYWw2+/vrr6f7778+rtl933XVppZVW+s3tBAAAAKCEi6iKJWYZ7r///umTTz5JDz30UDr22GPTRx99lPbbb79iNw0AAIAqMvbAr4vdBMpAmwHzFrsJZeWAAw5IDzzwQDrqqKPSvvvuWztx7rvvvksffPBBLq66+OKL88rke++9d1Hb+s0336TWrVunBRdcMP3tb39L7dq1qz12yy235C0CjzvuuFxQFRMBAQAAACgtjWpqamrq8g2jmOmmm27K2+tFMdNGG22UV4qKGXidOnVKW265ZaovH374Ydp5553Tp59+mm6//fa04oor1tvPAgAoN2vdMajYTaBMPLd972I3AcqSIip+CUVUv96QIUPSiSeemKZMmTLT41GQFAVKO+64Y53/7Miy2rRpk1eR+q122WWX9PLLL+eCqlVXXTVVu0lH9yt2EygTTS88vthNAKAByK34JWRWMPvkVvwSbeRWaY66fLMnnngi9ejRI11xxRU5FBo7dmyehRcee+yxdMwxx6S+ffum+rLYYovVrkAVMxEBAAAAKG+RNd1zzz25CGmJJZZIc889d5prrrnySk/bbbddnkhXHwVUda2wjV+soAUAAABABW/n995776XDDz88/fDDDznUihWoDjzwwNrjO+ywQ7rkkkvSoEGD0rrrrps22WST2fo5MevwhRdeyD9nww03nOF4+/bt8/Pnn3/+G34bAAAAAEpFhw4d8mpTpeyLL75II0aMSK1atUpLLrnkDMe//fbb/Ny0adMitA4AAACABiui+tvf/pYLnC666KK02WabzXB8zz33TCussELafffdcyHVbymi2n///VOzZs3Sv//979SkSZNpjr/xxhv5eWZhFQAAAADla+LEiWncuHF5JarWrVvnValKxbPPPpuOOuqoPLFwwIAB0xz78ccf07Bhw1KjRo3SiiuuWLQ2AgAAANAA2/kNHTo0de7ceaYFVAWrr756WnnlldO777472z+nefPmqVu3bmnChAnp0ksvnebY66+/nq6//vpcYLX11lvP9s8AAAAAoHTccccdafvtt09dunRJW221Vc6fImeKyXr/+te/UimIFdNbtGiRnnzyyfTMM89Mc+yyyy7Ledimm26atyEEAAAAoIJXoho/fnxabbXVfva8hRdeuHa1qNl18skn54KpmNX34osv5sKsMWPGpEcffTTP6Ovfv3/+OQAAAACUr1jB6eijj04PPvhgqqmpSXPOOWfeLi98/vnnORd66aWX8qrlcV5DefPNN9MjjzySFl100VzcVZj4d+aZZ6Zjjz02tycKphZZZJH08ssvp1deeSUttdRS6YwzzmiwNgIAAABQpCKqBRZYII0cOfJnzxsxYkRt2DW72rZtm/7xj3+kyy+/PBdOvfrqq2m++eZL3bt3TwcddFBadtllf9P7AwAAAFB8t99+e3rggQdSmzZtUp8+fdLGG29cu4Xft99+m4/169cvXXXVVWmllVbK2VBDFVHFCumxMlahiCpsueWWeaWpK664Im/v98033+R/H3DAAenAAw/MhVYAAAAAVHgR1VprrZXuvffeXNQU2+3NTMwafO+99+pkq70oxDrllFPyAwAAAIDKM3jw4NS0adM0cODA1KFDh2mOzTPPPKlnz56pc+fOaYcddkjXXXddnRdRvfXWWzN9PQqnpi6emtoqq6ySi6gAAAAAKC9z1NUbxYy6xo0bp6OOOipddNFF6fnnn8+vf/fdd+mDDz7IQdaJJ56Yz9l7773r6scCAAAAUKHefffdPHFv+gKqqcWK5HHOf//73wZtGwAAAACVpc6KqJZZZpm8fHqjRo3ybLs999wzfx3Lqm+++eb5WBRUnX766Wn55Zevqx8LAAAAQIVq1qxZzpd+TmzxN9dcczVImwAAAACoTHW2nV/o0aNHWm655dL111+fhg4dmj766KP0448/poUXXjh16dIlF1bF7EAAAAAA+Dldu3ZNQ4YMSR9++GFabLHFZnrO559/nldE32CDDRq8fQAAAABUjjotogqxvHqsNgUAAAAAv8Wxxx6bXnjhhbTXXnulPn36pG7duk1z/J133kknnHBCmnfeedPxxx9ftHYCAAAAUP7qvIiqYOLEiWncuHF5KfXWrVvnZdUBAAAAYFZiJfPpTZkyJU2ePDkdeuihuVgqVqSKnGns2LH5Edq1a5cOP/zwdNtttxWh1QAAAABUgjovorrjjjvSjTfemIYPH55qamrya3POOWdaZZVV0r777ps23njjuv6RAAAAAFSAr7766mcn7UXmNL3Ro0enMWPG1GPLAAAAAKh0dVZE9eOPP6ajjz46Pfjgg7l4KgqnWrVqlY99/vnn6cUXX0wvvfRS2n///fN5AAAAADC1Rx99tNhNAAAAAKBK1VkR1e23354eeOCB1KZNm9SnT5+84lRhC79vv/02H+vXr1+66qqr0korrZS6d+9eVz8aAAAAgAqw6KKLFrsJAAAAAFSpOerqjQYPHpyaNm2aBg4cmLbYYovaAqowzzzzpJ49e6brrrsur1AVzwAAAAAAAAAAABW1EtW7776b1lprrdShQ4dZnrPsssvmc4YNG1ZXPxYAAACACvbUU0+lm2++OY0cOTJNnjx5luc1atQoPfLIIw3aNgAAAAAqR50VUTVr1iyHVT8nVqiaa6656urHAgAAAFChnnjiiXTQQQelmpqanz33l+RSAAAAAFDvRVRdu3ZNQ4YMSR9++GFabLHFZnrO559/np5//vm0wQYb1NWPBQAAAKBCXX755bmAascdd0xbbbVVmn/++RVLAQAAAFDaRVTHHntseuGFF9Jee+2V+vTpk7p16zbN8XfeeSedcMIJad55503HH398Xf1YAAAAACrUu+++m5Zbbrl01llnFbspAAAAAFS42S6i6tKlywyvTZkyJU2ePDkdeuihuVgqVqSK7fvGjh2bH6Fdu3bp8MMPT7fddttvazkAAAAAFa1JkyZpkUUWKXYzAAAAAKgCs11E9dVXX/3k8YkTJ6bhw4fP8Pro0aPTmDFjZvfHAgAAAFAl1l133bzyeUzai4l6AAAAAFByRVSPPvpo3bYEAAAAAKZy9NFHp169eqXjjjsunX766WnBBRcsdpMAAAAAqFCzXUS16KKL1m1LAAAAAGC6/OmYY45Jp556anrkkUdS69at0wILLDDTcxs1apTuuOOOBm8jAAAAAFVeRAUAAAAA9emJJ55IZ5xxRv76xx9/TB9//HF+zKqICgAAAABKoojqqaeeSjfffHMaOXJkmjx58izPi1ArZg8CAAAAwKxcdtll6YcffkjdunVLW2+9dWrVqpViKQAAAABKu4gqZgYedNBBqaam5mfPFXYBAAAA8HPeeeed1KlTp1xMBQAAAABlUUR1+eWX5wKqHXfcMW211VZp/vnnVywFAAAAwGxr2rRpWnzxxYvdDAAAAACqQJ0VUb377rtpueWWS2eddVZdvSUAAAAAVWzddddNzz33XJoyZUpq0qRJsZsDAAAAQAWbo67eKIKsRRZZpK7eDgAAAIAqd+SRR+YCqiOOOCJ99NFHxW4OAAAAABWscV3ODHzhhRfS5MmT09xzz11XbwsAAABAlbrmmmtSp06d0uOPP54fCy20UGrZsmVq3HjGSKtRo0bpjjvuKEo7AQAAACh/dVZEdfTRR6devXql4447Lp1++ulpwQUXrKu3BgAAAKAK3XLLLdP8+5NPPsmPmYkiKgAAAAAoehHVoosumo455ph06qmnpkceeSS1bt06LbDAAjM918xAAAAAAH7OwIEDi90EAAAAAKpEnRVRPfHEE+mMM87IX//444/p448/zo+ZMTMQAAAAgJ/TpUuXYjcBAAAAgCpRZ0VUl112Wfrhhx9St27d0tZbb51atWqlWAoAAAAAAAAAAKieIqp33nknderUKRdTAQAAAMBv1adPn198bkzmO+ecc+q1PQAAAABUrjoromratGlafPHF6+rtoE59/fXXacCAAemhhx5Ko0ePTnPNNVdabrnl0p577pk23XTTYjcPAAAAmIk777zzJ48XVkGvqalRRAUAAABAaRRRrbvuuum5555LU6ZMSU2aNKmrt4XfbOLEiWm33XZLb731Vlp++eXz1xMmTMgFVYceemg6+uij04EHHljsZgIAAAC/cCWqH3/8MY0fPz699NJL6YUXXkjbb7992nnnnRu8fQAAAABUjjorojryyCNTr1690hFHHJFOO+20tMgii9TVW8NvctVVV+UCql122SWdccYZtbNUo69Gn73ooovSFltskTp06FDspgIAAABTiRWkf86gQYNS375901ZbbdUgbQIAAACgMtVZEdU111yTOnXqlB5//PH8WGihhVLLli1T48Yz/ogoYrnjjjvq6kfDTxoyZEjuc8ccc0xtAVVo06ZN2nXXXdPFF1+cnnjiibTHHnsUtZ0AAADAr9e7d+9cSDVgwIC03nrrFbs5AAAAAFR7EdUtt9wyzb8/+eST/JiZqQtZoCFmrcb2ffPNN98MxwpbT3799ddFaBkAAABQFzp27JieeeaZYjcDAAAAgDJWZ0VUAwcOrKu3gjqfkTozNTU16aGHHspfxypqAAAAQHl67733it0EAAAAAMpcnRVRdenSpa7eChrETTfdlF577bXUvn37tMEGGxS7OQAAAMB0Jk6cOMtj33//fV4F/frrr08jRoxIa6+9doO2DQAAAIDKUmdFVFBO7r///nT22Wenxo0bp/POOy/NNddcxW4SAAAAMJ0111zzZ8+JlabnnHPOdMABBzRImwAAAACoTHVWRNWnT59ffG6jRo3SOeecU1c/Gn71ClRnnXVW7ofnn39+WmONNYrdJAAAAGAWBVKzEuP6Zs2apWWXXTbtv//+aZ111mnQtgEAAABQWeqsiOrOO+/8yeMRbBXCL0VUFMOPP/6Y+vXrl6677rrUpEmT9Je//CVtttlmxW4WAAAAMAvDhw8vdhMAAAAAqBL1vhJVFK6MHz8+vfTSS+mFF15I22+/fdp5553r6sfCLzJlypR0zDHHpIceeii1bNkyXXbZZVagAgAAAAAAAACgbouo9txzz589Z9CgQalv375pq622qqsfCz/rhx9+SEcccUR67LHH0mKLLZauuuqqtNRSSxW7WQAAAAAAAAAAVFoR1S/Ru3fvXEg1YMCAtN566zXkj6aKXXnllbmAql27dummm25Kbdq0KXaTAAAAgF+x0vkv0ahRo3TOOefUaXsAAAAAqB4NWkQVOnbsmJ555pmG/rFUqS+//DIXUYXOnTunwYMHz/S82NpvnXXWaeDWAQAAAFO78847f3Xh1NQUUQEAAABQNkVU7733XkP/SKrYiy++mL755pv89aOPPpofM3PQQQcpogIAAIAyWonq+++/TwMHDkzjxo1LNTU1qX379vXaNgAAAAAqW50VUU2cOPEnQ61PPvkkXX/99WnEiBFp7bXXrqsfCz+pe/fu6a233ip2MwAAAIBfYM899/xF57399tvpxBNPrC2g2nHHHfO/AQAAAKDoRVRrrrnmz54Todacc86ZDjjggLr6sQAAAABUkauvvjpdfPHFacqUKWnhhRdOffv2TV27di12swAAAAAoc3VWRBUFUrPSqFGj1KxZs7Tsssum/fff37ZpAAAAAPwqo0aNyqtNDRs2LOdQPXr0SGeccUaaf/75i900AAAAACpAnRVRDR8+vK7eCgAAAABq3XLLLalfv37pm2++yUVTp59+etpyyy2L3SwAAAAAKkidFVEBAAAAQF0aN25cOumkk9IzzzyTV5/acMMN09lnn5238QMAAACAuqSICgAAAICS889//jP17ds3jR8/PjVr1ixv5bfTTjsVu1kAAAAAVKjZLqLq06fPbP/QRo0apXPOOWe2vx8AAACAyvTll1+m0047LT388MN59ak11lgjnXvuual9+/bFbhoAAAAAFWy2i6juvPPOX104NTVFVAAAAABM7bHHHssFVJ999llq0qRJOuqoo9Jee+1V7GYBAAAAUAUaZCWq77//Pg0cODCNGzcuzyA0cxAAAACA6R188MG1E/GaN2+e7r777vz4JeL77rjjjnpuIQAAAACVaraLqPbcc89fdN7bb7+dTjzxxNoCqh133DH/GwAAAACmF/lRiNWo4jG7q6ADAAAAQIMUUf0SV199dbr44ovTlClT0sILL5z69u2bunbtWp8/EgAAAIAyFSuZAwAAAEDFFFGNGjUqrzY1bNiwPHuwR48e6Ywzzkjzzz9/ffw4AAAAACpAly5dit0EAAAAAKpUnRdR3XLLLalfv37pm2++yUVTp59+etpyyy3r+scAAAAAAAAAAACUVhHVuHHj0kknnZSeeeaZvPrUhhtumM4+++y8jR8AAAAAAAAAAEBFF1H985//TH379k3jx49PzZo1y1v57bTTTnXx1gAAAAAAAAAAAKVbRPXll1+m0047LT388MN59ak11lgjnXvuual9+/Z110IAAAAAAAAAAIBSLKJ67LHHcgHVZ599lpo0aZKOOuqotNdee9Vt6wAAAAAAAAAAAEq1iOrggw9OjRo1yl83b9483X333fnxS8T33XHHHbP7owEAAAAAAAAAAEpjO7/Ywi/EalTx+KUKxVcAAAAAAAAAAABlW0Q1cODAum0JAAAAAAAAAABAORVRdenSpW5bAgAAAAAAAAAAUARzFOOHAgAAAAAAAAAAlApFVAAAAAAAAAAAQFVTRAUAAAAAAAAAAFQ1RVQAAAAAAAAAAEBVU0QFAAAAAAAAAABUNUVUAAAAAAAAAABAVVNEBQAAAAAAAAAAVDVFVAAAAAAAAAAAQFVTRAUAAAAAAAAAAFQ1RVQAAAAAAAAAAEBVU0QFAAAAAAAAAABUNUVUAAAAAAAAAABAVVNEBQAAAAAAAAAAVDVFVAAAAAAAAAAAQFVTRAUAAAAAAAAAAFQ1RVQAAAAAAAAAAEBVU0QFAAAAAAAAAABUNUVUAAAAAAAAAABAVVNEBQAAAAAAAAAAVDVFVAAAAAAAAAAAQFVTRAUAAAAAAAAAAFQ1RVQAAAAAAAAAAEBVU0QFAAAAAAAAAABUNUVUAAAAAAAAAABAVVNEBQAAAAAAAAAAVDVFVAAAAAAAAAAAQFVTRAUAAAAAAAAAAFQ1RVQAAAAAAAAAAEBVU0QFAAAAAAAAAABUNUVUAAAAAAAAAABAVVNEBQAAAAAAAAAAVDVFVAAAAAAAAAAAQFVTRAUAAAAAAAAAAFS1si2i+vrrr9OFF16Ytthii7Tiiium1VZbLe2+++7p4YcfLnbTAAAAAKgARx55ZNpwww1/1fd88cUXqW/fvqlbt25ppZVWytnVVVddlb7//vt6aycAAAAAVVpENXHixLTrrrumAQMGpGbNmqXddtstB1LDhw9Phx56aH4dAAAAAGbXpZdemoYMGfKrvuerr75Kf/jDH9KNN96Yll9++bTHHnukeeaZJ/35z39ORx99dL21FQAAAIDfrnEqQzF776233kq77LJLOuOMM1KjRo3y60cccUTq1atXuuiii3JRVYcOHYrdVAAAAADKyOTJk9NZZ52Vbrvttl/9vZdddll655130umnn54n/YWjjjoqr2j14IMPpoceeihtttlm9dBqAAAAAKpyJaqYBRiFU8ccc0xtAVVo06ZNXqHqhx9+SE888URR2wgAAABAeXnsscdSjx49cgFV165df9X3Tpo0KQ0ePDgtssgieeJfwZxzzpmOP/74/PUtt9xS520GAAAAoIpXotpzzz3ThAkT0nzzzTfDsSZNmuTnr7/+uggtAwAAAKBc3X777TlTipWkYqLesssu+4u/97XXXkvffPNN2nTTTdMcc0w7b7F9+/ZpscUWSy+88EKe/BeFVQAAAACUlrIsourdu/dMX6+pqcnLoodOnTo1cKsAAAAAKGcxca9fv36pefPmv/p7R44cmZ8XX3zxmR6PQqoPP/wwPzp06PCb2woAAABA3SrLIqpZuemmm/KsvwilNthgg2I3BwAAAIAystZaa83293755Zf5uWXLljM93qJFi/z81VdfzfbPAAAAAKD+VEwR1f3335/OPvvs1Lhx43Teeeelueaaq9hNKgmTju5X7CZQBppeeHyxmwAAAABlbcqUKfm5SZMmMz1eeH3y5MkN2i4AAAAAfpk5UoWsQHXMMcfkr88///y0xhprFLtJAAAAAFSRpk2b5ufvvvvuJ4us5p133gZtFwAAAABVsBLVjz/+mPr165euu+66PJvvL3/5S9pss82K3SwAAAAAqsz888//k9v1TZgwIT83b968QdsFAAAAQIUXUcXsvVh96qGHHkotW7ZMl112mRWoAAAAACiKpZZaKj9/8MEHMz0erzdr1iy1a9eugVsGAAAAQMVu5/fDDz+kI444IhdQLbbYYunmm29WQAUAAABA0aywwgp5q77nn38+r54+tVGjRqXRo0enVVZZJc0555xFayMAAAAAFVZEdeWVV6bHHnssz9y76aabamf6AQAAAEAxzD333GnrrbdOH374YRo4cOA0kwH79euXv+7du3cRWwgAAABARW3n9+WXX+YiqtC5c+c0ePDgmZ4XK1Ots846Ddw6AAAAACrdm2++mR555JG06KKLpu2337729SOPPDI9/fTT6dxzz01Dhw5NHTt2TP/+97/TG2+8kXr06JG6detW1HYDAAAAUEFFVC+++GL65ptv8tePPvpofszMQQcdpIgKAAAAgHoporr00ktTly5dpimiatWqVbrlllvSRRddlB5//PFcQLXYYoul4447Lu2xxx6pUaNGRW03AAAAABVURNW9e/f01ltvFbsZAAAAAFS4WWVQUTg1dfHU1Fq3bp3OPvvsem4ZAAAAAHVtjjp/RwAAAAAAAAAAgDKiiAoAAAAAAAAAAKhqiqgAAAAAAAAAAICqpogKAAAAAAAAAACoaoqoAAAAAAAAAACAqqaICgAAAAAAAAAAqGqKqAAAAAAAAAAAgKqmiAoAAAAAAAAAAKhqiqgAAAAAAAAAAICqpogKAAAAAAAAAACoaoqoAAAAAAAAAACAqqaICgAAAAAAAAAAqGqKqAAAAAAAAAAAgKqmiAoAAAAAAAAAAKhqiqgAAAAAAAAAAICqpogKAAAAAAAAAACoaoqoAAAAAAAAAACAqqaICgAAAAAAAAAAqGqKqAAAAAAAAAAAgKqmiAoAAAAAAAAAAKhqiqgAAAAAAAAAAICqpogKAAAAAAAAAACoaoqoAAAAAAAAAACAqqaICgAAAAAAAAAAqGqKqAAAAAAAAAAAgKqmiAoAAAAAAAAAAKhqiqgAAAAAAAAAAICqpogKAAAAAAAAAACoaoqoAAAAAAAAAACAqqaICgAAAAAAAAAAqGqKqAAAAAAAAAAAgKqmiAoAAAAAAAAAAKhqiqgAAAAAAAAAAICqpogKAAAAAAAAAACoaoqoAAAAAAAAAACAqqaICgAAAAAAAAAAqGqKqAAAAAAAAAAAgKqmiAoAAAAAAAAAAKhqiqgAAAAAAAAAAICqpogKAAAAAAAAAACoaoqoAAAAAAAAAACAqqaICgAAAAAAAAAAqGqKqAAAAAAAAAAAgKqmiAoAAAAAAAAAAKhqiqgAAAAAAAAAAICqpogKAAAAAAAAAACoaoqoAAAAAAAAAACAqqaICgAAAAAAAAAAqGqKqAAAAAAAAAAAgKqmiAoAAAAAAAAAAKhqiqgAAAAAAAAAAICqpogKAAAAAAAAAACoaoqoAAAAAAAAAACAqqaICgAAAAAAAAAAqGqKqAAAAAAAAAAAgKqmiAoAAAAAAAAAAKhqiqgAAAAAAAAAAICqpogKAAAAAAAAAACoaoqoAAAAAAAAAACAqqaICgAAAAAAAAAAqGqKqAAAAAAAAAAAgKqmiAoAAAAAAAAAAKhqiqgAAAAAAAAAAICqpogKAAAAAAAAAACoaoqoAAAAAAAAAACAqqaICgAAAAAAAAAAqGqKqAAAAAAAAAAAgKqmiAoAAAAAAAAAAKhqiqgAAAAAAAAAAICqpogKAAAAAAAAAACoaoqoAAAAAAAAAACAqqaICgAAAAAAAAAAqGqKqAAAAAAAAAAAgKqmiAoAAAAAAAAAAKhqiqgAAAAAAAAAAICqpogKAAAAAAAAAACoaoqoAAAAAAAAAACAqqaICgAAAAAAAAAAqGqKqAAAAAAAAAAAgKqmiAoAAAAAAAAAAKhqiqgAAAAAAAAAAICqpogKAAAAAAAAAACoaoqoAAAAAAAAAACAqqaICgAAAAAAAAAAqGqKqAAAAAAAAAAAgKqmiAoAAAAAAAAAAKhqiqgAAAAAAAAAAICqpogKAAAAAAAAAACoaoqoAAAAAAAAAACAqqaICgAAAAAAAAAAqGqKqAAAAAAAAAAAgKqmiAoAAAAAAAAAAKhqiqgAAAAAAAAAAICqpogKAAAAAAAAAACoaoqoAAAAAAAAAACAqqaICgAAAAAAAAAAqGqKqAAAAAAAAAAAgKqmiAoAAAAAAAAAAKhqiqgAAAAAAAAAAICq1jhViCOPPDINGzYsPfnkk8VuCgAAAABl6q677koDBw5M77//fmratGlab7310lFHHZUWXXTRX/T9cf6nn34602O9e/dOp512Wh23GAAAAIC6UBFFVJdeemkaMmRIatOmTbGbAgAAAECZ6t+/f7riiitSx44d02677ZY++uijdP/996enn3463Xbbbal9+/Y/+f2ffPJJLqBabrnl0iabbDLD8ZVWWqkeWw8AAABA1RZRTZ48OZ111lk5xAIAAACA2TV8+PBcQLX66qun66+/PjVp0iS/3qNHj3TooYems88+Ox//KW+++WZ+3mKLLdKBBx7YIO0GAAAAoG7MkcrUY489lkOsKKDq2rVrsZsDAAAAQBmLLfzCIYccUltAFTbddNO05pprpscffzyNHTv2ZwuxwrLLLlvPrQUAAACgrpVtEdXtt9+evv7663T66aenAQMGFLs5AAAAAJSxoUOHpsaNG+eCqemtvfbaqaamJp/zUxRRAQAAAJSvst3Ob88990z9+vVLzZs3L3ZTAAAAAChjU6ZMSWPGjEmLLrroNKtQFbRv3z4/jxgx4me382vWrFl68MEH0z/+8Y/0v//9L2dXG220UTr88MNT69at6+13AAAAAKBKV6Jaa621FFABAAAA8JuNHz8+rzQ1//zzz/R4ixYt8vOECRNm+R6TJk3KRVPffPNNuvzyy9PKK6+cdtppp9SmTZt02223pV69eqUPP/yw3n4HAAAAAKp0JSoAAAAAqAvfffddfp7ZKlRTvz558uRZvscnn3ySOnbsmOabb7506aWXppYtW+bXozirf//+acCAAemUU05J119/fb38DgAAAAD8NoqoAAAAAKhqTZs2naaYambb/YXYqm9WYsu/e+65Z4bXGzVqlLfy++c//5meffbZNG7cONv6AQAAAJSgst3ODwAAAADqQvPmzdMcc8wxy+36Cq8XtvX7tRo3bpyWW265/PUHH3zwG1oKAAAAQH1RRAUAAABAVYvt+mIlqTFjxsx0NapRo0bl59iub1bGjh2bXnjhhfTRRx/N9Pi33347zapXAAAAAJQWRVQAAAAAVL0uXbrkAqphw4bNcCy24Ytt+VZbbbVZfn9s5bf77runq666aoZjX3/9dXrjjTfSPPPMk5ZZZpk6bzsAAAAAv50iKgAAAACqXq9evfJz//7906RJk2pff/jhh9OLL76YNtlkk9S2bdtZfv/mm2+et+2744470ltvvVX7+vfff5/OOeec9OWXX6ZddtklzT333PX8mwAAAAAwOxrP1ncBAAAAQAVZddVVU+/evdOgQYPStttum7p165a36BsyZEhaaKGFUp8+fWrPfe6559Lzzz+fOnfunLp3755fW3zxxdMxxxyTzj///LTTTjulLbbYIs0333xp6NCh6e23306rr756OuKII4r4GwIAAADwUxRRAQAAAEBK6dRTT01LLbVUuvXWW9MNN9yQWrZsmbbccstc/NS+ffva86KA6tJLL009e/asLaIK++yzT1p66aXTtddem1ewiu0BO3TokIur9tprr9SkSZMi/WYAAAAAVE0R1dTLpAMAAADAr9WoUaO0++6758dPOeyww/JjZrp27ZofAAAAAJSXOYrdAAAAAAAAAAAAgGJSRAUAAAAAAAAAAFQ1RVQAAAAAAAAAAEBVU0QFAAAAAAAAAABUNUVUAAAAAAAAAABAVVNEBQAAAAAAAAAAVDVFVAAAAAAAAAAAQFVTRAUAAAAAAAAAAFQ1RVQAAAAAAAAAAEBVU0QFAAAAAAAAAABUNUVUAAAAAAAAAABAVVNEBQAAAAAAAAAAVDVFVAAAAAAAAAAAQFVTRAUAAAAAAAAAAFQ1RVQAAAAAAAAAAEBVU0QFAAAAAAAAAABUNUVUAAAAAAAAAABAVVNEBQAAAAAAAAAAVDVFVAAAAAAAAAAAQFVTRAUAAAAAAAAAAFQ1RVQAAAAAAAAAAEBVU0QFAAAAAAAAAABUNUVUAAAAAAAAAABAVVNEBQAAAAAAAAAAVDVFVAAAAAAAAAAAQFVTRAUAAAAAAAAAAFQ1RVQAAAAAAAAAAEBVU0QFAAAAAAAAAABUNUVUAAAAAAAAAABAVVNEBVCi7rrrrrT99tunVVddNa2zzjrp2GOPTaNHjy52s2CW9FmA+uMaCwAAAAAA9UsRFUAJ6t+/fzrhhBPS5MmT02677ZY/LL3//vtTr1690qhRo4rdPJiBPgtQf1xjAQAAAACg/jVugJ8BwK8wfPjwdMUVV6TVV189XX/99alJkyb59R49eqRDDz00nX322fk4lAp9FqD+uMYCAAAAAEDDsBIVQIkZOHBgfj7kkENqPygNm266aVpzzTXT448/nsaOHVvEFsK09FmA+uMaCwAAAAAADUMRFUCJGTp0aGrcuHH+YHR6a6+9dqqpqcnnQKnQZwHqj2ssAAAAAAA0DEVUACVkypQpacyYMalt27bTrDZR0L59+/w8YsSIIrQOZqTPAtQf11gAAAAAAGg4iqgASsj48ePzihLzzz//TI+3aNEiP0+YMKGBWwYzp88C1B/XWAAAAAAAaDiKqABKyHfffZefZ7baxNSvT548uUHbBbOizwLUH9dYAAAAAABoOIqoAEpI06ZNp/nQdGbb+oRmzZo1aLtgVvRZgPrjGgsAAAAAAA1HERVACWnevHmaY445ZrktT+H1wvY9UGz6LED9cY0FAAAAAICGo4gKoITEtjzt27dPY8aMmemqE6NGjcrPHTt2LELrYEb6LED9cY0FAAAAAICGo4gKoMR06dIlf1A6bNiwGY49++yzqVGjRmm11VYrSttgZvRZgPrjGgsAAAAAAA1DERVAienVq1d+7t+/f5o0aVLt6w8//HB68cUX0yabbJLatm1bxBbCtPRZgPrjGgsAAAAAAA2jcQP9HAB+oVVXXTX17t07DRo0KG277bapW7duaezYsWnIkCFpoYUWSn369Cl2E2Ea+ixA/XGNBQAAAACAhqGICqAEnXrqqWmppZZKt956a7rhhhtSy5Yt05ZbbpmOOOKI1L59+2I3D2agzwLUH9dYAAAAAACof4qoAEpQo0aN0u67754fUA70WYD64xoLAAAAAAD1b44G+BkAAAAAAAAAAAAlSxEVAAAAAAAAAABQ1RRRAQAAAAAAAAAAVU0RFQAAAAAAAAAAUNUUUQEAAAAAAAAAAFVNERUAAAAAAAAAAFDVFFEBAAAAAAAAAABVTREVAAAAAAAAAABQ1RRRAQAAAAAAAAAAVU0RFQAAAAAAAAAAUNUUUQEAAAAAAAAAAFVNERUAAAAAAAAAAFDVFFEBAAAAAAAAAABVTREVAAAAAAAAAABQ1RRRAQAAAAAAAAAAVU0RFQAAAAAAAAAAUNUUUQEAAAAAAAAAAFVNERUAAAAAAAAAAFDVFFEBAAAAAAAAAABVTREVAAAAAADwi9x1111p++23T6uuumpaZ5110rHHHptGjx5d7GbBLOmzAPXLdRaoJIqoAAAAAACAn9W/f/90wgknpMmTJ6fddtstf1B6//33p169eqVRo0YVu3kwA30WoH65zgKVpnGxGwAAAAAAAJS24cOHpyuuuCKtvvrq6frrr09NmjTJr/fo0SMdeuih6eyzz87HoVToswD1y3UWqERWogIAAAAAAH7SwIED8/MhhxxS+yFp2HTTTdOaa66ZHn/88TR27NgithCmpc8C1C/XWaASKaICAAAAAAB+0tChQ1Pjxo3zh6LTW3vttVNNTU0+B0qFPgtQv1xngUqkiAoAAAAAAJilKVOmpDFjxqS2bdtOs9JEQfv27fPziBEjitA6mJE+C1C/XGeBSqWICgAAAAAAmKXx48fn1STmn3/+mR5v0aJFfp4wYUIDtwxmTp8FqF+us0ClUkQFAAAAAADM0nfffZefZ7bSxNSvT548uUHbBbOizwLUL9dZoFIpogIAAAAAAGapadOm03xgOrMtfUKzZs0atF0wK/osQP1ynQUqlSIqAAAAAABglpo3b57mmGOOWW7JU3i9sHUPFJs+C1C/XGeBSqWICgAAAAAAmKXYkqd9+/ZpzJgxM11xYtSoUfm5Y8eORWgdzEifBahfrrNApVJEBQAAAAAA/KQuXbrkD0mHDRs2w7Fnn302NWrUKK222mpFaRvMjD4LUL9cZ4FKpIgKAAAAAAD4Sb169crP/fv3T5MmTap9/eGHH04vvvhi2mSTTVLbtm2L2EKYlj4LUL9cZ4FK1LjYDQAAAAAAAErbqquumnr37p0GDRqUtt1229StW7c0duzYNGTIkLTQQgulPn36FLuJMA19FqB+uc4ClUgRFQAAAAAA8LNOPfXUtNRSS6Vbb7013XDDDally5Zpyy23TEcccURq3759sZsHM9BnAeqX6yxQaRRRAQAAAAAAP6tRo0Zp9913zw8oB/osQP1ynQUqzRzFbgAAAAAAAAAAAEAxKaICAAAAAAAAAACqmiIqAAAAAAAAAACgqimiAgAAAAAAAAAAqpoiKgAAAAAAAAAAoKopogIAAAAAAAAAAKqaIioAAAAAAAAAAKCqKaICAAAAAAAAAACqmiIqAAAAAAAAAACgqimiAgAAAAAAAAAAqpoiKgAAAAAAAAAAoKopogIAAAAAAAAAAKqaIioAAAAAAAAAAKCqKaICAAAAAAAAAACqmiIqAAAAAAAAAACgqimiAgAAAAAAAAAAqpoiKgAAAAAAAAAAoKopogIAAAAAAAAAAKpaWRdR3XXXXWn77bdPq666alpnnXXSsccem0aPHl3sZgEAAABQpXnTmDFj0oknnpi6du2aVl555bTtttumwYMH12ubAQAAAKjiIqr+/funE044IU2ePDnttttuOdS6//77U69evdKoUaOK3TwAAAAAqixvimKrnXfeOd17771prbXWSr17907ffvttOvXUU9N5553XIL8DAAAAALOncSpDw4cPT1dccUVaffXV0/XXX5+aNGmSX+/Ro0c69NBD09lnn52PAwAAAEBD5U3nnntuGjduXLryyivzSlTh8MMPT3vuuWd+z6233jqtsMIKDfL7AAAAAFAFK1ENHDgwPx9yyCG1gVbYdNNN05prrpkef/zxNHbs2CK2EAAAAIBqyptiFapHHnkkbwNYKKAKTZs2TUcddVSqqalJt956az3/FgAAAABUVRHV0KFDU+PGjXOANb211147h1JxDgAAAAA0RN70/PPP53NiC8DpxepWc801l7wKAAAAoISVXRHVlClT0pgxY1Lbtm2nmRVY0L59+/w8YsSIIrQOAAAAgGrMm0aOHJmfO3ToMMOxKKBaZJFF0ocffph/FgAAAAClp3EqM+PHj8+z+uaff/6ZHm/RokV+njBhQgO3rDQ1OXiXYjcBACgRl2/QvdhNAKhoCxzdtNhNAIqYN33xxRf5+afe48cff0wTJ05MrVq1StVOZgUATE1uBVC/5FZQoUVU3333XX6e2azAqV+fPHlyg7arVM3RcfFiNwEAKBGrL9ym2E0AqGhNOs1Z7CYARcybful7WInq/8isAICpya0A6pfcCip0O7+mTZtOE0xNrxBENWvWrEHbBQAAAEB5qou8SWYFAAAAUN7KroiqefPmaY455pjl8umF1wvLrAMAAABAfedNhW38vvrqq1m+R6NGjfLPAgAAAKD0lF0RVSx93r59+zRmzJiZzuwbNWpUfu7YsWMRWgcAAABANeZNSy21VH7+4IMPZjgW7/nRRx+lJZdcMhdrAQAAAFB6yjK16dKlSw6fhg0bNsOxZ599Ns/qW2211YrSNgAAAACqL2+K749znnvuuRmOvfjii/m9V1999TpvNwAAAABVXETVq1ev/Ny/f/80adKk2tcffvjhHEptsskmqW3btkVsIQAAAADVlDfFsfXWWy89//zz6ZFHHql9Pd7rr3/9a/66d+/e9fo7AAAAADD7GtXU1NSkMnTmmWemQYMGpSWWWCJ169YtjR07Ng0ZMiQtsMAC6ZZbbslLsAMAAABAXedNsdpUFEt17tw5de/evfb733///bTLLrukCRMmpB49eqQ2bdqkRx99NI0cOTLtu+++6fjjjy/ibwcAAABARRZRRbMj1Lr11ltzENWyZcu01lprpSOOOEIBFQAAAAD1ljddcskl6dJLL009e/ZM55133jTvEd8XK0/FFoCTJ0/OBVmxAtUOO+yQt/sDAAAAoDSVbREVAAAAAAAAAABAXZijTt4FAAAAAAAAAACgTCmiAgAAAAAAAAAAqpoiKgAAAAAAAAAAoKopogIAAAAAAAAAAKqaIioAAAAAAAAAAKCqKaICAAAAAAAAAACqmiIqAAAAAAAAAACgqimiAigTH3zwQXr99deL3QwAAAAAmIbcCgAAqASKqOAXqKmpKXYTqHKvvfZa6t27d3ryySfTN998U+zmAAAVaOjQocVuAgAwG+RWFJvcCgCoTzIroCEpooJZmDhxYnr55Zfz140aNRJIUTSjRo1Khx9+eJpzzjnTCiuskJo1a1bsJgEAFWaHHXZI++23X15BAAAofXIrSoXcCgCoTzIroKEpooJZ+OGHH9JJJ52UbrnlltpA6tNPPy12s6hCo0ePTl988UVab7310oYbbphf+/zzz/OzkJRKCf+hUk19nXbNppT16tUrnXDCCWmBBRYodlMAgF9AbkWpkFtR6eRWVDK5FeVAZgU0NEVUMJXCTWIEUe+//35+nHHGGemRRx5J1157bTrzzDPTuHHjit1MqsRbb72V3nvvvTyDb/Lkyen+++/PffLSSy9Nf/jDH9Jnn32WQ1IoZ6+++mr64x//mGeuQiX58ccf8/N3332XH1OmTMnPUKr3v7vuumvaZZddUosWLfK1+eGHHy5202C2CP6BSia3opTIragGcisqldyKciCzohLJrcqDIiqYyvjx4/NzLD+9yiqrpHPOOSf/+9BDD039+vVLSy65ZJprrrmK3EqqwWuvvZa22267dPHFF6eVVlopHXDAAenbb7/Ny5ZGGLX++uun77//vtjNhN8sBjwvvPBCGjt27DQDeChn0Y/nmGOO9M4776RTTz01/f73v0/du3fPH2p9/PHHxW4eTGPqD7YaN26cP+yKcOqwww5LDz30UFHbBrNz/Y0+Hdfap59+Ot1www35PqMwzgMod3IrSoXcimoht6ISya0oFzIrKo3cqnwoooL/X1ykNt544zR06NDa17bffvu0zjrr5HAqRJVzYblIAybqS8waPf7449Piiy+eA6lw9NFHpxVXXDEHUvPMM09aeeWVU5s2bXLFsqplytlmm22W5p133nTRRRelSZMm5QE8lLO4Jkc//s9//pP23HPP9O9//zvNN998qV27dnmgH9dxKFUxiF9wwQXTUUcdlf99+OGHpwceeKDYzYJf9UFAXH/jg9xDDjkknX322fm+Ou4xAMqd3IpSIbeimsitqDRyK8qVzIpyJ7cqL42L3QAoFW+88UZq3br1NEujv/3222nEiBE5BHjllVfSn//859SqVascUsWFrnDBg7r00Ucf5SWiV1tttRyGhmuuuSb/Yf3d736X++W5556b++saa6xR7ObCbxIzVrt06ZIH7K+//nru066tlPuAPq7jJ510Ur5nOOaYY/KHXXF/ETNMFllkkWI3EaYRfbMws69w/d1///1TkyZN8v3GkUcemf7617+mLbbYothNhZ/9IGD48OFp3333zR/aRj9u27ZtWnTRRfO/p+ZeAyhHcitKhdyKaiK3otLIrSgnMisqhdyq/DSqMRUEao0ePTpfrML//ve/1KFDh7y/bufOndOQIUPSCSeckI/FcukRSAUXMupaDGL222+/vHxj375907PPPpsGDx6c9tlnn/SHP/whB1NXXXVVWmihhVL//v3TmmuuOcMNJZSD7777Lm81EdsA7L777nkGaywbDeXukUceybOiYmnpmFUyM3FtD4UPHaAYCvexn3/+eb4mT5kyJbVv3772+N///vccSgWhFKXuyy+/zNfdCRMm5Gtw165da4/FB71PPfVU7uNx3e3UqZNxHFCW5FaUArkV1UJuRaWSW1EOZFZUGrlVefG/PFUtBkCDBg2q/XchiIqZe5tvvnm+mYzlp6Oqedttt01nnXVWPh5V+nfccUf+ujCzD+pKy5Yt88A8gqVjjz023wxuueWWaaeddsrHYnbI3nvvnT799NP8hzaW9A9xvrpYSllU2Ud/jaWhQwRRIZaLXnXVVdPdd9+dXnzxxSK3En67l156KQ/u11577fzv+Log7hliUBTX8QsuuCB9/fXX7iMoisJA/M0338yhaa9evdLWW2+dBgwYkD+UDbG0f58+ffLXMbvPMumUsq+++iqvgBFhUyGIilVbrr/++rTDDjvkD7zOO++8tOuuu+bXBVFAOZBbUYrkVlQquRXVQm5FqZNZUYnkVuXF//pUrZgtdcQRR+SA6YYbbpjmWLNmzfJzBAEPPvhg7es77rjjNIHUPffck7+OpXzffffdBm0/lWueeebJfyQ7duyY98GN/hhfL7zwwrXnxOxSgRTl5MMPP8wz9mJWalTb33bbbenbb7/NW1DE7NTo85MnT64NowzOKSfTX3cLy+++//770wSvIQY/MWtqo402qg1mDYgohuh3b731Vr6fiIB0ySWXTE2bNs2rBcTKAbENy8xCqYceeqjILYeZmzhxYr53nnvuudOYMWPSrbfemu+ZI4CK++jo6zvvvHP65ptv0i233JLvQQBKmdyKUiW3ohLJrahkcivKjcyKSiS3Ki+Ni90AKJb5558/D4himcezzz47D3ziD244+OCDcwAQF66YPRVihl8hkAqnnnpqOv7449MTTzyR/vvf/+a9oi+//PJ88bM0NbOjsKx5PA8dOjQvmbvKKqvkyvqBAwemBRZYIHXv3j01b948n19Ypv+6667LgVT05TXWWEP/oyQttthi6eSTT87BfdwcDhs2LAf6MeMprr0xMN94443T1VdfnZfeXWKJJYrdZPjF1+3pr7vR30OsGhBL7y677LL53zHwiXMjCIgZ2rGEbwyK5p133qK0n+oVfXHOOedM//znP1Pr1q3z/W7MgIp7j5j9dPvtt+d747322iv97ne/q71HjmXSDz/88DwbdZtttin2rwHTaNu2berSpUsOVKPYIGZMh0MPPTTfW8SHu+HRRx/N2xABlDq5FaVGbkUlk1tRieRWlCOZFZVKblVeFFFR1UtBbr/99rnK/pxzzsl/YOOmMv7whniOf59//vkzDaTij3jM6rvvvvtySHDxxRfnSmj4LQOaELOaYjnHCDdjueiXX345XXrppbnKPmy66aa1A5epA6nosxFarbbaakX8TWDWYjZf4VoaN4IxMyRmo8aAqHfv3nmWUyxn+thjj+Wq+/jvwkwnSv1eImaNxHU6nqPP7rbbbvmDg5ilevPNN+frcmFQH/cOIULZWJK3c+fO+d5h6r8B0BD9ttAXX3311bTiiivWLiEd9x/xwWoobAE0dSgV3x/3xp988kkRfwuqXaEfTz2jOq6hrVq1ysv8/+tf/8r3F+utt15af/3183NBrBwQIdXyyy9f+98BQCmSW1Fq5FZUA7kVlURuRbmRWVEp5FaVQREVVSkuXrHPcwRRUZEcF6IIpGIGX3y9++675wtaDIbCzAKpCLJiCcnYwzT+SMeMPphdhUHIRRddlJ5++um8t/Mmm2xSOzNkypQpuTp5VoFUzAiJWVIRjEKpiGX7Y7ndcePGpfnmmy8HpTHQWXfdddPqq6+eDjrooDyDL2aRxMzqCKPie+Imcp999jE4p+QHQhGexhYqMfO6ID5QiPuHuJcYPXp0uvPOO/PMkRjMx38D8T2DBw9O77zzTu73LVq0KOrvQvX125EjR9Yubx73sYUZ1LFVRWzNEv30wAMPnCaUij69zDLL5OeYiR1BKhSzH48YMSLdf//9+Zoa9xbRP+ODrQif4hH3xoWtrgrig4DYliXuL3x4C5Q6uRWlRm5FJZJbUankVpQbmRWVQm5VORrV2IScKq8CfeSRR/LNYgz0YxAUTjnllHwTWRCzpSKQaty4cfrLX/5SG0hBXZowYULaf//90yuvvJI22GCDHI4uuOCC+VhUHscypVdeeWXuh7EM+tSBVIg9ygvnQ7HFzWFcS2PAHdfcECHUZpttlvd1LgRN33//fR68xx7PTz75ZJ5hEvtCx9YTcVMJpeq9997LAVN8GNWzZ8+01lpr5Zl9MUMqlkIPb775Zl5m+u67767dkiUGSHEdj61ZInQNZvRR3wp97LXXXssznmJJ/oKYyRf3uiE+/GrSpEn+OraviA/HnnnmmbTVVlvl2X1TB1FT309DQ/fj2Mbq888/z/fCcV2N5f5XWGGFtMcee+R75AhXY4wX987xYVfcb8QHvi+99FI67rjjaq+/AKVKbkUpkltRSeRWVDq5FeVCZkWlkFtVFkVUVLVYdvqSSy7J1cxxkYoZfrFUb2GWVGFG39SBVFzYzjrrrLT11lsXseVUqg8//DD17ds3Pf7443kJx379+tUGTBMnTkz/+Mc/agOpmGUas/6aN29e7GbDDBXzESS1bNky99GYlRrLk8ZNYNwMxqDmyCOPnGEQPnbs2Dwz6o9//GOeNXLZZZcV+TeBmYtBe3xgEDOeYkWALbfcMr8e/Tuuz4V+HX06Zuw98MADeXAf1/g11lgjrbLKKnnGSTCop6HEh65x/Y3AKQbrcX8RH7KOHz8+7bTTTunMM8+cIZQqbM0SodS1116bP1SAYihcV7/44ou8/UTc/0bxwMYbb5zvHeJD2yFDhuRw6ogjjki///3v0/Dhw/M2VvEcYjWWCKFii6vg+guUA7kVpUZuRSWQW1Hp5FaUG5kV5U5uVYGiiAqq0WOPPVaz0kor1Rx99NE17777bu3rQ4YMqenZs2dNp06daq699tppvue6667Lr6+77ro1EyZMqPnxxx+L0HIqwQ8//DDL10aNGlWz33775b62zz771Hz66ae150S/u/7662s23HDDmpVXXrnmvvvu0w8pOVdddVXN+uuvX/PEE0/Uvvbll1/WPPDAAzXrrLNOzYorrlhz8803z9D3C335z3/+c+7/L7zwQhFaDz9v0qRJNdtvv32+X5jVdf25556r2WijjWreeeedWZ4zs78FUJcKfeybb76pef755/P9w/333197/M0336xZc8018zX3T3/6U+3rkydPrv06vu+RRx5p4JbDjP34k08+qfnss8/ytfWmm26a5py4X77lllvyfUZcm8eNG5df/89//lPz73//O99TjBw5cob3BChlciuKSW5FJZNbUenkVpQDmRWVQm5VmZSvUbXeeOONXBkaFZ1LL710XkovbLHFFnmf6GWXXTbP4LvxxhvzeSEqoWOp3qhqjipSS5gyO6I/FaqHY3ZHzAAJ8VpUFsfsp9NPPz0vjR5V9Mcff3xe8jxEv9thhx3ybKm2bdum5ZZbTj+kZMSS5v37909jxoxJHTt2TBtuuGFtn4/loGNLiZil2rRp03TfffflvcxD4b+HwvLpsax0GDVqVNF+F/gpcU2O2XrRZ2O29dTX9RD3FLEc70cffZT3Pi+YfuaImSTUt+hjsT3Fdtttl7efiPuIHj161M7ei/vduNedb7750k033VQ7sy9m9cXxsOaaa6Zu3bpNc52Ghu7HsVpAzN6Lpf1jJmphVnRhDBezVGMcFzNU//vf/+YtKUIslR7L/8ds6g4dOuTXpr9mA5QquRXFIreiUsmtqBZyK8qBzIpKIbeqTP4foOoUgqXY93zOOefMy6FPfyyWfYwLXYglquMPdUGEAIU9o+HXihu5Qnh0ww035BvEoUOHzjKQ6tKlSw6kTj755NpAKpZ7jH5466235iX9oRR89913OaiPvchvvvnmPJAp3CBOHZjGwKZnz555mfQXX3xxmveIa3J47rnnat8TSlG7du3yhwEROMUj+nihv8e9RPTlGDTFEukxaIJiL4ke/TM+BBg5cmR6/fXX8+uxHVDcf/zud7+bJpSKe99CKDV9AGUAT0Mq9L+4rs4999x5u5URI0bk/vzee+/VHiuID7622Wab/ByB1Kz4IBcodXIrikluRaWSW1FN5FaUC5kV5UxuVdlcUag6hYvPyiuvnGeTFAZDhUFQ4YIW+0THoGmeeeZJZ5999jSBFMyOqfevve2223Lfi5vB6F8x+J5ZIBV7lscf1McffzydcMIJ+aayEEjF61AKYubdN998kw499NA8WySumx9//HF66623Zjg3biZXX331/PXnn38+w/FHHnkkDRo0KLVq1aq2Wh9KSeE+IcKmCRMm5Jn+cT8R9xFTf+AQs0/iut66desit5hqFzOZzjjjjPwBVwzi48OwmHkdfTX67dSh1AILLJCf+/Tpk79XAEUxRf+LVVguuuiiXEBw9dVX5w8DJk+enP7xj3/kcyL0j35dCK5ipZY2bdrkD3ELM1MByo3cimKRW1Gp5FZUE7kV5URmRTmTW1U2Vxgq2k8t3xiV+OHyyy+vDaTiD3MhEIibzVjOdPnll0/rrbdeWnvttRuo1VSqwk3dpZdemgcvMXiPmU2xNHosRTp9IBV/QCOQisrkWMbx6aefzjP7LEtKqQVRW221VXrooYfSMsssk/bZZ58cIsUsp7///e/TnFvou7GMdGEJ0+nFtTaWTo9AKm44odQUwqbo95tuuml67bXX0t57750++OCD2lmob775Zp7ZGrOiVlpppSK3mGoW97Pxwddaa62V9t9//7ztRCzVH7P3Ymn/6UOpwlLSheWjoZjiXviKK67Ij/fffz+vqhLbr8T9xsMPP5y3sArRhwv32a+88kr+QCw++IprMECpk1tRSuRWVCK5FdVGbkW5kFlR7uRWla1xsRsADTF7Km4Uv/jii1ztucoqq+SZIhtttFH+w3zVVVflKtGYiRJ/rOOPdnjggQfSpEmT0n777ZcHR7EXOvzWvhgzmAYPHpwHMdHnllxyyVyJHIP2CKROO+203A/jtcIf0JgVFcuf9+rVK+/vrMKeUhKD75ild88996Ttt98+D3YOPvjg3O/vvvvuPLvvqKOOykvuRt+N/hzL8y688MJpkUUWmeH9Yu/z3//+90X5XeCXiv4dffpPf/pTvld46qmn0l577ZU/6IpZUbHdRQS1xx13XN7THIodnsb9baEvxmA+ZvaFP/zhD3n2UyGUisF+9N9YfroQaFlCmmKJe+G4943g6eKLL87X3Aii/vrXv6YjjjgiXXfddenrr7/O9xmx0kVsexV9Oz7wjWICgFInt6JUyK2oZHIrqpHcinIgs6Lcya0qW6OaqTdjhAox9R/PWD4vAqfC3s5xQdt5553ThhtumC9esex0LKsXF7CoyF988cXT8OHD05AhQ/IypxEcmFVCXbjssstyGBU3eoXQKXz11Ve5n0Yg1bZt2zxrLwLQ+AMcS0TH7KYjjzwyL9UPpVhtH0voRsB04YUX1vbTt99+Owf9jz76aO7rMchp0aJFeuKJJ/Le5jGrtXfv3sVuPsy2+IArBvFxfxHX7yeffDIv3xv9PAZLO+ywQ561Pf2HElBMETrFfUiEUrF0fwRShVBq6mFh3EfrtzS0WQWgUUDw6quvpgEDBqRVV101v/bee+/l++N33nknr4AR3xsfkMV99eGHH55XGAAoZXIrSpHcikokt6Jaya0oNzIrSp3cqroooqKiXXPNNemCCy7IS5vH0nhR5Rmz+1ZYYYU846Rr1675ohXnxcUt9imNP74xAyVmUEUIEDeU8FvFH8ZddtkljRgxIv+7b9++eaBS+KMby0RHaBoDmghGowo5Zkk9/vjjuU/GXs+xpy6U0o1iYbASN4QR8scS0eeee27tuRFIXXLJJTmAitAqgv1YIjo+FIjl/qd/Pyg3hf8GIpiKe4gY4MeMvnnnnTevHjD1OVCKoVQsNR3X7z322GOms6yhoRSulbFdUNwbRH+MFS4KW03sueee+cPamNlXEPfVMbMvAqlYESA+FIvvK4zfXH+BciC3olTIragUciv4f+RWlBuZFaVKblV9FFFRUaa+4HzyySfpsMMOyzP0DjnkkLxPbvzRvfPOO9O1116bll122bwsdSyPHiKoiqr8uKjFsaWXXnqm+57D7Ip9x2M5x3//+9+5351wwgk59CyIQCqWcoyZUTGgiT/AEUDFH12hKKVi+vAoBjYxCI9ZfQ899FC+vq677rq1x2OG9OWXX56D1Xg9+n1sBzD1jCioVMJWSlVcu5977rl0/vnn5w8OBg0alD+4hWKKe4btttsub7ESH3BFWBof0k6YMCEXCdx2223pz3/+c9p6661rr6/xgVgEUnHvHK/H8RAfghW2GAIoJXIrSpncikogt4JfTm5FKZJZUarkVtVFERUVKZbhjb2eY9ATe49279699tjHH3+cbrrppjxg6ty5czrooIPy7BJoCLHXePTLYcOGpd122y398Y9/TAsvvHDt8RjURygagVVUJC+11FLTHIdievHFF/NNXixP+rvf/W6aWaYRRMUypFFxH8FUDHYKlfhxcxnbAsTe0BtvvHE6/vjjcxBrkA5QPHGdfvrpp/M2QVtttVWxmwP5PmP33XfPXy+00EJ5hnR8kLvaaqvlooJevXrlWX1/+ctfUtOmTfOHWnGvMfUS6VtssUUe/wUfegGlTG5FqZJbUc7kVgCVQWZFKZJbVRdFVFScwiC/bdu2eXZfVH7GzLxY/nyuueaaIZBabrnl8oy/WCIdGiqQOu6449Irr7yS/+AeeOCBAidKfrZ03C5EeP/UU0/la2mESbEnecxObd26dT4vwtW4Bt9xxx1p0UUXnWaWdWGJ9AikNttss1x9HzOnoZK3DDCjj1I39XXawJ1iKlwvYyWLWAlgrbXWyh/QRgjVs2fPfM8R986nnHJK/oBrk002yd8TfTj67dRLpK+//vrp6quvLvavBDBLcitKndyKciO3gp8nt6LcyKwoJXKr6mOjRSpOLIN+1FFH5UrlMWPG5NApLlQxeIo/tCGCqgis9t1333zBOuecc/IACxpCzIK64IIL0iqrrJJuvPHGNGDAgLyMP5SquIbGjV7c/N188835pjCq50877bQ8uy9m+X355Zf5xjCC/4EDB+bnqfdzjhmAsVVFVNrH7L8rrrginwPFNLO5BLMzv2Dq0CkC2ejjsbKAIIpyC6PMr6GhFMZl0z/HFipRLBBjt4MPPjhtu+226ZZbbslh1AsvvJA/ALv00kvT6NGj8zU2+m305VgFI4KsOB6zVaP4AKBUya0odXIryo3cikolt6JayawoNrkV/7deKZSpmVXKxxJ6sSdpLJEXg5277ror72MeSz7GxarwB7cQSH3zzTfpvvvuy7NToKEDqZjZF4FU9Ml99tkntWnTpthNg2lE6BQ3gd9++20O+w844IC06qqr5v2bY/nS6L9RNf/EE0+kzTffPDVr1iy9+uqreU/nuJGc+jodgVTMYI29nuN9CrOsoZiD8bFjx+al+2N56GWWWSY/fo2p+3gMgOIDrvjvIJbujWV7ob7vfWdn5mh8TyGMigB13LhxeYa2PktDiXvf//znP2nw4MH5nqCw1coaa6yRunTpkm699da8DPqZZ56ZP8CNVVruv//+fH8R2wjFPUi7du1y34++HNf0GPPFB2Lx7xjrAZQCuRXlSm5FuZBbUankVpQbmRWVRG6F7fyoiErkmA01YcKENM8886RFFlkkvxY3l/fcc09eVi+W542K0B49euQL1tRLP8Z5MSBq1apVUX8fqneJ9D59+uQ/qDEzKvbFtSwppeK1117LS6F//vnnta+tt956qV+/fnm7iRAV8//85z/TAw88kJc+jw8CIrg6/vjjc8A6M3EjGYEUFPseIgZCJ554Yg5dQ/TL888/P98v/BJTBwHPPPNM3u88lvAdNGhQnpEC5RSgxgcLLVu2rKfWw7QiUNpvv/3yLL3od7FNVSyFHh9che233z7P/I/xXPTXuMeID7v69++f70viXuT3v//9LMeHAKVAbkUlkFtRyuRWVCq5FeVGZkWlkVuhiIqyNPWFJpbojQrP//73v6lTp055yd3Y3zzEH+y77747/e1vf/vJQAqK6X//+1+uVo5QqmPHjsVuDmSxzHlsHRFh/Y477pivrzFoidkfcbMYN4GFGaiFa3JU0b/++uv5xjGq72NW9fzzz29paEpSDGximd0WLVqkddZZJ98X3HHHHbkv9+3bNw+Efk0QFdsDxPU8tmNZdtllG+i3oFoIUKlE8eHVDTfckFdXeeutt1Lnzp3TTjvtlHbdddc8e+/000/PgdOpp55a+z2xHHrca8QqAgClTG5FJZFbUYrkVlQ6uRXlQmZFpZJbVTdFVJSdqf+QXnLJJXmv89hDNJbFiz+oX331VZ4ZdfTRR880kIpq0QisDI4oJVGxbIloSsmHH36YbwhjZl5sNVGYgXr22Wenxx9/PA/ezzvvvBxITf0BQczWixvLWPb/mmuuyTMAoVRM3VcjcHryySfTaaedltZff/38WgzKY7ZIzJaK47Ek78wIoigGASqVej0eOXJkevjhh/NKLBFQxXZWG2ywQV4x4LPPPksnnHBC7vPff/99XjlgZu8BUErkVlQiuRWlRm5FJZJbUa5kVlQauRX/7/9JKBOFP6RxwzhgwID8xzf+OEcFaAyQDj300PyHNUQgFQOlbbfdNv87lnyMgVRcxDbddNOi/h4wNUEUpeKLL77I20y88847ebuI7t2714ZMse9zoao+rrcxsyRmk8QHAoWBTvTlmPEXz/fee29ac80189c+AKAUxKDljTfeSJ9++mn+8Cr6ZyGICr17986z/WOgfsopp+TXpg+kDOppSFMPtgcPHpxnSU8doC6//PI5QD355JNz3xSgUi6iXxf65RJLLJGLCeL+YciQIen2229PL7/8cpp77rlzsUF8cBBh1NRBVOE9AEqR3IpKJLeiVMitqGRyK8qJzIpKJrdCERVlKWaVxFLoccGKZXuXXnrpfDF75ZVX8n7ncYN55ZVX5ovbUUcdVRtITZo0Kf3jH//whxdgJmKZ0RjUxCAlqubjEXuYr7HGGjlQihkkMTN66kAqlvOP5dLjOlvYbmKFFVZICyywQBo/fnxethdKRfTJI444Is9YnWeeedIBBxyQX497iBj4R//dZZdd8muFQCoGOz179qw9z6CehiRApZIV+mWhj6600kq5wGC33XbL9xYffPBBPn7dddelnXfeOXXo0MGHW0DZkFsB1D25FZVObkU5kVlR6eRW1U0JHGVp3Lhxef/R2Eu3EEQNHTo0PfbYY2njjTfOM0zmm2++vCRvLNsbYqC0++67p7vuuivPSgFg2iV3I9yP5Ud/97vf5WtriC0lopo+bv5iYDR1INWtW7c8uImZ1LGMaQyKQlyD4zodg/2YCWjnYEpFzIj64x//mJZaaqncZyNsnThxYu7f0X+jf4cIpI499th8fgSuN998c369MAh66qmn0l/+8heDehosQD3wwAPzstGLLbZYfj2uq9P313nnnTeHUnfeeWft9wujKAdTB0xxLY6x2l//+te8Ncvvf//7dPjhh+dZf4IooJzIrQDqltyKaiC3opzIrKgWcqvqpIiKshLV9iEqm+MP7CeffJL/HYOeWCL9888/TwcddFDabLPN8oUrZqPceuutedn02LM0lviNWSYATCuWMI/lzS+44IJ044035rBpvfXWywOYSy+9NFfVTx9IxSA9ZphsvvnmOXgKEVyNHTs2z66OkCpm9Ll5pBTuHeKeoDDjKWbyLbLIIunBBx+s3UolTB9IHXbYYfnrCFUL3nzzzXTJJZfkrQMM6qlvAlSqTdxnxHU7lkTv2rVr6tevXzr44IOnuZ4DlDK5FUD9kFtRqeRWlCuZFdVIblU9bOdH2eypGwpfx166MQDq2LFj/vf111+f9x+NGXxt27bNry2++OL5uUWLFnm5dHuPAszotddeSyNGjMgh/4orrpj3bg6rrrpqOvHEE9O5556b7rvvvvxazCyJa2shkIrZJTHjr3nz5rXvt+SSS+YgKz4wiA8AoNj3ENFX4zmWlY57gljif7vttssD9QhfL7zwwrxf+T777JO/rzDIj+dYdjruN2KWa0G83q5du3TWWWelTp06FfE3pNL7bgSo0TcjQI1+d9FFF+UANe6DC0v6T91fI5SKr6NvzipAjW2FhFE0hKlnlP5aMxu3xfsZzwGlSG4FUL/kVlQquRXlSGZFpZBb8XMa1VirlBJS+MM7/dcxWIp9oGPGXizVu/rqq+fK5lj6PJbyjb1GYw/SqGYuXKSOOeaYNGrUqDwTJV5baKGFivq7AZSaGLDEAPzFF1/M19tdd901nXzyydOcEwOYCKT+/e9/p6222qo2kJr+JvO33HRCfQ3o33vvvTyD6Y033khjxozJ4VHcQ8Ts/8JM1tg+JcLYWH63EEiFwiB/+vcMkyZNSk2bNi3Cb0YlK/Sx7777Loemcd9bCFDD3XffnQPUn+uvcW88dYAa/7788svz7EABKvXh9ddfz9uqFD7MijHab703cF8BlCq5FUDDkVtRqeRWlBuZFeVMbsXssBIVJeM///lPuv/++9Nee+2V2rRpUxtEXXnllemqq65KEyZMqD13/fXXz8uexyMufHFTuPDCC9feJMb+u/F+ccMZS/NOfTMJwP+JJcv79u2bZ4A899xzOfiP8GmZZZapPSe+Pumkk9I555yTZ/bFoCcCqZi5NzU3jJTaoD7684EHHpjvHyJAbdasWXr66afzEtExyylCqK233jr36T//+c956d34vrgPCdPfO0w9k0QQRTEC1G233Tb3y+i70V/DzGaiFsKownvGv+N79FvqQxQAxBYqX375Zf53rAwQs6G7d+9eJ0FUzMaOcEs4BZQCuRVAw5JbUYnkVpQbmRXlTG7F7FJERcnMKokq5eeffz7/8dxvv/1yuHTrrbfm5Upjf/O4YYzzYonze+65J99kTp48OS/jG8HVsGHD0hJLLJH3zf3HP/6R/yjHPqSCKIBZi+vm6aefngOnmNl34403pkMOOSS1bt269pzYgiKO/+lPf0oPPPBAXqZ3+jAKimX6AUoMwONe4LDDDssfbp1yyil5Nmp8cDV8+PA8azWWl47vu/jii/MgP74n7jdi0B4rBsTsJ2goAlTK1d57753HZhtssEFabbXV0gsvvJBXAIjraxQPzE6/m/qaHn0/tr+Ka/Iaa6xRD78BwC8ntwIoDrkV5U5uRTmTWVHO5Fb8JrGdH5SCkSNH1vTu3bumU6dONWeeeWbNmDFjag488MCavffeu+b999+vPW/ixIk1t912W03nzp1rNtxww5pbbrml5sgjj6xZfvnl8/fGo3v37jVvv/12UX8fgHLywQcf1Oyyyy75GnrWWWfVjBs3boZz3nzzzZqHH364KO2Dn/LDDz9M83zllVfmvnzrrbfWnjNlypT8/O6779bsvPPO+Xj//v1rj99zzz01K620Us21117b4O2nuvz4448zvQ+O+9ptt9225t57782vffvttzUvv/xyzZZbbpn762GHHTZNf91oo43y65dffnmDth9CXCuXXXbZmgEDBtRMmDAhv/bxxx/XnHjiiblfvvLKK9OcX7g+/9L/Np5++umanj171qy44oo177zzTj38BgC/ntwKoHjkVpQzuRXlQmZFpZBb8Vv9v1JPKLIOHTrk/ctXWWWVNGjQoPS3v/0t74fbtWvXPOMkKpjDvPPOm3bYYYd07LHH5v11R44cmZfji2V9d9ppp3TiiSfmys+pl/UF4Ke1b98+zxCJa3DM6hswYED65JNPpjln2WWXzcucFmahQDHFUtFxr1CYvVSYGRVia5QWLVqk7bbbLv87js0111x5psjSSy+dzjjjjLwawL/+9a/afr7NNtuku+66K89QgfoUs5UK19DC80MPPZTGjh2bdttttzwDtTBLL67JMfM0nuOcv/71r7X99eijj05zzz23GXsUxeuvv577XvTF5s2b57FazKJeaqml8rZUcezdd9/NM6zjWOE6/Utm8sUy6zFzNcZ5gwcPzisLAJQCuRVA8citKDdyK8qRzIpKIbfit1JERckNhmJ59Pije/vtt+d9dT///POZLve42Wab5T13b7jhhnxD2bNnz3TmmWfm5SEXXXTRIv0GAJVxDY5A6uqrr07jxo2b6blTL7kLDe25555Ljz/+eLrqqqvSwIEDa/vkd999l77//vu8x3lspRL3EVMPcOI5jkewGkv2fvDBB+nrr7+ufd/Ccv/CVuqDAJVKEdfauM5Gnyz04ULhQCztH4899tgj7bjjjrmI4IADDsj3E3Fu4byfC6IixLrpppvy9RqglMitAIpHbkW5kFtRbmRWVBK5FXXBnSQlO6ukS5cuOYCK/XSnn1USFltssbTyyivnm8qvvvqqKG0FqNRAKvZw/vvf/55nk3z77bfFbhZMY6211koXXnhhvgfo379/7qshBvAxOIr+O3ny5PT888/nAU48YrATjzge4rV55pknz0SZnrCVuiZApZLEtbZdu3Y5dIpxW/TfL774Iv3jH/9IV155ZVpggQXSpptumnr16pVn+UXAFIHUxIkT8/gu+niBIAooR3IrgOKRW1EO5FaUE5kVlUZuRV3wl5aStPjii+fZeTGr5Mknn0y33nrrTM+Li17Lli3T/PPP3+BtBKjkQCq2qYjtJeIRA3YoNVtuuWU6++yz82A9gqnrrruu9lh8WBWh02mnnZYee+yx2tcLA5433ngjP1ZaaaW8dK/BPPVNgEqlKARJhx9+eL5HuO+++9KGG26Y9txzz3TyySenddddN/fxvn37plNOOSUvax5bqgwfPrx2af/CtVgQBZQzuRVA8citKAdyK8qFzIpKIreirrhyUdKB1HnnnZcDqUsvvTQvJRnhU0EsDRl/tDt37jzTP8wA/LZA6uabb843l2Hq6nsotkJ4tPXWW6fzzz8/D/KvvfbadM011+TXu3btmo488sj89cEHH5wHQ4Ul/ocNG5bPjW1XCnuiG8zTEASoVILok9H/Fl544TxDdaeddkrbb799Wm211fLxnXfeufbrmKnarFmz3K+jgGDUqFEzvFcQRAHlSm4FUDxyK0qZ3IpyI7OiUsitqCuNatxdUuLionXcccelV155JVdEd+zYMYdSr732Wl6KLy5Yse8uAPVj6op7KLYYBEV4FNumxDLTH3/8cQ6YQosWLdIf//jHtM8+++R/x/K8MfAPMXCKFQA+/PDDPEA65phj0r777puP6eM0VL+NvjZkyJB8b9uqVau011571fbDq6++Og/IQ6xsEaFqLCkd/XvQoEHpwQcfzOHrVlttVeTfBlL64Ycfapc4j+vnFVdckfvwo48+mq+1hT4fz3HNjUA2ZqXeddddOXwtXHNjy4DYgiWCqOjngiigHMmtAIrLmJ5SIrei3MisqERyK36r/1tnD8pgn/MTTzwxvfTSS3l/3h49eqRNNtkk7bbbbmmJJZYodhMBKppBOqUkBjexvO4ee+yRFlpoobwE7xZbbJHef//9dPvtt9cuuxuBVOxl3qFDhzxb5MUXX8yvx7mxRG88QmHABA0ZoMZA/pNPPskD+LjGRn/db7/98rkRoMYMqJkFqIUwSoBKQ5u+z0UQFaIvR7g0ceLE/PjPf/6T1l9//drrajz/97//zcUEMX6L7QAK87ji/AceeCAfj5BKEAWUK7kVQHEZG1FK5FaUE5kVlUJuRV2zEhVl44MPPkh/+tOf8g1lPMeSewBAdfn222/TUUcdlWf2xzLTG2+8ce2xZ599Nh144IF5oBPnFGb2fffdd2ny5Ml5UBQDoXgEQRQNJQLUP/zhD7UBaoSkhQA1BvixjH+hv8bsvUKAGv1zhRVWEKBSVIU+F9tJxGPEiBF5BnUs1T/vvPPmcx555JF06KGH5tD0pJNOSgsssED+nrfeeisHrzHTL2bubbTRRrXvG9fq119/Pc0333z5vwmAcie3AgDkVpQbmRXlTm5FfVBERVkZOXJkXiqyT58+aZlllil2cwCABhYDoW233TYtv/zyeYBTGCiFGPjE7P+99947zzA5+OCD80ypwjmFJXoN5mlIAlTKWaHPRWgU47CYfff999/nYxEgxVYUMYMvxMzTWH1lzTXXzNfo5s2b55AqAtnjjz++tn8DVDK5FQBUN7kV5URmRbmTW1FfFFFRduIPdOGPMgBQXUaPHp222WabtM4666TLLrtspoOm6667LvXr1y+1bds27brrrnl5dCgWASrlvhR6BFAxK3WRRRbJgeraa6+dHnvssXTfffflwDVWWolZfHHe1VdfnWeljh8/PvfppZZaKn/vjjvumN9TfwaqgdwKAKqX3IpyIrOinMmtqE+N6/XdoR4IogCgevczn3/++VOrVq3yDKmXX345rbrqqrXHCufF4Cf2Pf/oo4/ShRdemDbYYIPUuXPnorQfYrD+9ddf5z5ZUBiMx8B89dVXzzP6IkAdNGhQfi0C1MI5Bu4US1xTI1Q677zz8rL+xx13XOratWs+tuCCC6b//Oc/+VrcpUuX/Npyyy2XTj/99PTFF1/k5dAXXXTRfL1u165dPi6IAqqF3AoAqofcinIms6Kcya2oT3oCAAAlpzDraeogKsQyu/vuu2+eKXXzzTenMWPG1B4rLLAag/9Yrvf8889Pp556qiCKBjX9Qr/TB6hTm1WA+uabbzZom2FWJk6cmEOn9dZbrzaIKszciz597rnnpu7du+d/v/vuu7m/L7HEEmnzzTdPK6ywQm0QFf9dCKIAAIBKIbeiHMmsqDRyK+qLlagAACgphVkfH3zwQbr77rvT2LFj8wDnyCOPzDP7Y0nejTbaKN1zzz15EL/bbrulFVdcMX/P22+/nV//4Ycf0mabbZbmmWeead4T6kuhj80qQO3bt28OUNu0aTPNAD3OLwSoMZsvBv8CVErFyJEj88zUNdZYozaIuuaaa/KS6Keddlrq2bNnevjhh9Of//znfG7085mZ/r8LAACAciW3otzIrKhUcivqiyIqAABKblAfM0UifJp6xt7w4cPz8rxLLrlkHuBH4HTXXXelYcOGpVVWWSUHVkOHDs2B1Mknn1wbRAVBFPVJgEoliD4Y/XPChAmpRYsW+bXC8zPPPJOvvdddd10OomL581133TUf69SpU37WXwEAgEont6LcyKyoFHIrGpIiKgAASkJh2dyYMbLPPvukRRZZJB199NFpnXXWSX/961/zYOiEE07Iy52vttpqeZ/ztdZaK1177bU5BAgxG+qss85KO+64Y+17mklCfRKgUs6mDj4jiHr11VfTX/7yl3TZZZflIGq55ZZLyy67bA6gop/GEulnnnlm2mmnnWrfI14PSy+9dNF+DwAAgPomt6LcyKwod3IriqVRzfQboAIAQJF8+umn6bDDDkuTJ0/Og/sNN9wwv3799den/v3759cjgLrgggtS69at87Hx48enL7/8Mn8933zzpQUWWCB/bVYU9a0QdkaAuscee+QAdZtttpkmQF133XVzgLrwwgun9957Lz355JM5QP3kk09qA9SY5SdApSE9//zzac0118x9rRAJxEy+XXbZJYdS//znP9OUKVNSkyZN0v3335/OOeecfH2OfhqBf8G7776bLr744vTCCy+kSy65pHb5dAAAgEokt6JcyKwoZ3Irik0RFQAARTV1aBSzSfbaa6900EEHpQMPPDC/FoP9mGESvvvuuzyIWn/99fOsknbt2s30PQ3qaSgCVMpNXF/jWnvqqaemHj161F4ro/9ttdVWqU2bNrn/Fnz++efppptuSjfeeGOe5de1a9e81P/o0aPTvffem4OomJX6hz/8oYi/FQAAQP2QW1GuZFaUI7kVpcB2fgAAFE1hAB6znSZNmpQHN99++21ae+21awdBseR5LCV91VVXpd/97ndp2223TU8//XTe23z//ffPr7Vs2XKa9xVEUZ+mDo6iz8YS6DHAL4RREaA+9dRTeXZTBKjPPfdcOumkk2oD1FgSPR4z2xYA6tNXX32VOnXqlAOkv/3tb/m1QiAV1+Do29FnQzzPNddcqVWrVnmm30ILLZSuu+66HErFI0R/jlCrd+/e+d9CVQAAoJLIrSg3MivKmdyKUqGICgCAoolBy2uvvZYHMiuttFLtgOaNN95IK6+8ch7UDxw4MB1zzDG1y+3GwCmWlo5j8YhBkaV4aSgCVMpZzCKNZfznnXfeHEZdfvnl+fVNN900NWvWLDVu3Dg1bdo0vxZB1A8//JCXSY8gaocddsjX34cffjh9/fXXaYkllsjbAUR/DoIoAACg0sitKCcyK8qd3IpSoYgKAIAGVxjgxN7lsWd5DGoiiIpZURdeeGFaffXV07hx49K5556bB0n77LNP7ffGgD9mmBxyyCF5UC+IoiEJUCl3Cy64YOrVq1f+OgKpeEQgutlmm+Vlz//3v/+l22+/PXXu3DmHV+3bt89BUwRVMRs1QqnpmZUKAABUErkV5UhmRSWQW1EKFFEBANDgIoiKQf0rr7ySZ5F07949bbnllvlYDIhi0PPggw+miRMnpo033rh2kPP666+nF198MZ+z00475RknwUwS6psAlUoOpC655JI0efLkPFP1ww8/TKeccko+1rx587TqqqvmGX0bbLBBDqei7y+22GLTvJ9ZqQAAQCWRW1FOZFZUGrkVxaaICgCABheD+gsuuCDvbx4Ky0qHGPSHjz76KH3//fdpzJgx+d/Dhw9PN998c/rmm2/S+uuvXxtEBUEU9U2ASiUGUj179sxfx/Lo8fjiiy/SKquskjbZZJN8DX7mmWdyn58wYUK6884787kDBgyYIYwCAACoJHIryonMikokt6KYFFEBANDgmjRpks4666z8GDp0aF4uOgY/HTt2rJ0ZErNHCjNNnnzyyTwwillTJ554Yg4DoCEJUClnhQA0Zu1FX47rbMzWW3jhhdN2222X/3311Vfn0Klt27bpgAMOyN/31Vdf5Vl+Eaq+9957eVZq165di/3rAAAA1Cu5FeVEZkW5k1tRahrVxCaQAABQBB988EHq06dPeumll9Iuu+ySDj744NS6det8LG5TH3/88bzUdAyQFl100bT77rvngVMwK4qGNnLkyNoAdbXVVkunn356DlALYrC+2267pfHjx6eVV155mgB1r732KmrbqV6Fa+U777yTA6dXX301tWnTJodKhSX8P/7443TfffelK6+8Mp978sknpy222CLPVv2p9wQAAKhkcivKhcyKciW3ohQpogIAoKhGjRqVjj/++PTyyy/nsClmkhQCqcKMkm+//TYPfGL2STAQolgEqJSTQp+LZf3j2hrX0/nnnz/P0otHvHbUUUflc8eOHZvuueeevDx6LHv+xz/+MfXo0SPP9tN3AQCAaiW3olzIrCg3citKlSIqAABKIpA67rjj8h7mMwukQty2xqCo8AzFIkClnLz11ltpzz33TIssskh+3nDDDdO7776bDjzwwDxjL4LVY445pjaQuvvuu9NVV12VWrVqlQOpQqAKAABQreRWlAuZFeVGbkUpckUEAKDo2rdvny644IK0yiqrpBtvvDFdc801eUnpqRUCKEEUpdBf+/XrV9tfYynpqfvrfPPNl5edXmihhfK/I0AVRlEMX3/9dbriiitSixYt0hFHHJGDpQiZIjRt1qxZmjx5cl4qvX///vn86Lfbbrtt2nfffdP//ve/YjcfAACgJMitKBcyK8qJ3IpS5aoIAEBJBVJrrLFG+vvf/54uvvjiPDMKSpEAlVJyxhlnpPfee2+G1ydOnJhnSq+55pppo402yq+NHDkyL3/eqVOndNJJJ+UANWbwnX/++bWBVK9evdJtt91mNh8AAMD/T25FuZBZUWrkVpQbRVQAAJTUIP/cc89NyyyzTH7MM888xW4SzJIAlVJwwgknpFtuuSUHS9PPwvvss8/SRx99VBuKTpo0KS97/tBDD6WePXvmJdFjefQwePDgdOSRR+b3iCX9V1xxxdpl/QEAAJBbUT5kVpQKuRXlSBEVAAAlN8i/+eab8x7ohWWloVQJUCmmvffeOz311FNp6aWXTq+++mo6+uijpwmk2rZtm5ZccskcLoXnnnsuL+V/8MEHp2222Sa/1qFDhxw4RWD1wAMP5BmAU7OsPwAAwP8jt6JcyKwoNrkV5apRjb/uAACUqLhVtaw05SCWn27evHn+Wr+lIZxzzjlp4MCB6eSTT04bbLBBGjBgQLrzzjvTsssum/7617+mJZZYIp83evToNPfcc+f+udNOO6X5558/XX755fnf0U9jJt9f/vKXPCs1rLXWWkX+zQAAAMqD8T/lQGZFMcitKGdK8wAAKFkG9ZQLYRQNKWbgRcg011xz5dmkETz16tUrh1LDhw+fZmZfu3bt0kILLZSXRx8xYkRafPHFU4sWLXI/feutt9K9996bX1t++eVrgyhLoQMAAPw843/KgcyKhia3otwpogIAAKgjwigaQixVvuCCC6bvvvsuXX/99emf//xn6tOnT16qf4sttkj//e9/01FHHZUDqUKfnHPOOfP3jRs3Lh9/9tln8xLp//nPf1Lv3r1rQ9XC+wMAAACVQ2ZFQ5FbUe4aF7sBAAAAwC9TmDl63HHHpS+//DI99NBD6cknn0xLLrlk2meffVKzZs1y8HTfffflQKp///6pQ4cOqVWrVmnzzTdP999/fxo6dGgOnH744Yd07LHHpu22226a9wYAAACAX0tuRSVQRAUAAABlIsKiCI1iafPtt98+h1GxjPk888yTnyN0OvHEE/O5hUDqwgsvzEun77fffqlTp07p0UcfzeFVLKPeo0ePfG58r5l8AAAAAMwuuRWVoFFN9GIAAACgbHz77bdphx12SE2bNs0hUixvHuFSBFFLL710+uyzz9I555yTA6nllluuNpAKU6ZMSXPNNVft7D1BFAAAAAB1RW5FOVNEBQAAAGXogw8+SOPHj0+LLbZYDqGeeOKJtP7666eTTjopLbXUUtMEUiuuuGLq169fnskHAAAAAPVJbkW5UkQFAAAAZe6TTz7JIdRTTz01QyB1/vnnp3vuuSd16NAh3X777XlJdQAAAABoCHIryokiKgAAAKgAETz16dMnPfnkk9MEUp9++mk69dRT05prrpn22WefYjcTAAAAgCojt6JcKKICAACACgykunbtmo4//vi09NJLp0mTJqWmTZvmcyIGaNSoUbGbCgAAAEAVkVtRDhRRAQAAQIUFUieffHJ6/PHH06qrrpoGDBiQmjdvnuaYYw5BFAAAAABFI7ei1M1R7AYAAAAAdWfBBRdMffv2Tauttlrq1q1bmm+++XIQFQRRAAAAABSL3IpSZyUqAAAAqECWQgcAAACgFMmtKFWKqAAAAKCCCaIAAAAAKEVyK0qNIioAAAAAAAAAAKCq/d/mkgAAAAAAAAAAAFVKERUAAAAAAAAAAFDVFFEBAAAAAAD8f+zdB5icdbU/8LO7SQgl9C4d6U2aICJSrYCKBSs2roq9XdS/99rLVbwqwkWvBRBQKVKlF+k9oYcQegolkN6zuzPzf86Ls3eTbJLdZDfv7s7n8zzz7O7slPPOzGrew/d3fgAAQEMTogIAAAAAAAAAABqaEBUAAAAAAAAAANDQhKgAAAAAAAAAAICGJkQFAAAAAAAAAAA0NCEqAAAAAAAAAACgoQlRAQAAAAAAAAAADU2ICgAAAAAAAAAAaGhCVAAAAAAAAAAAQEMTogIAAAAAAAAAABqaEBUAAAAAAAAAANDQhKgAAAAAAAAAAICGJkQFAAAAAAAAAAA0NCEqAAAAAAAAAACgoQlRAQAAAAAAAAAADU2ICgAAAAAAAAAAaGhCVAAAAAAAAAAAQEMTogIAAAAAAAAAABqaEBUAAAAAAAAAANDQhKgAAAAAAAAAAICGJkQFAAAAAAAAAAA0NCEqAFiJvvnNb8YOO+wQH/nIR8oupd+48cYb42tf+1ocdthhsccee8See+4Zhx9+eHHdtddeG4PV3XffXXwW8tLe3r7Y71988cWYPXt2n9Zw6KGHdtTQ+bLTTjvFa17zmnjjG98Yn/jEJ+Lcc8+N+fPnL/Fx6ve74447eqWuJ554osf3OeWUU4oaPvCBD3R5jBdccEGsLLVaLZ566qmFrps4cWLH6zRu3LiVVgsAAACD00UXXdTlOf2yLv29J/X444/HrrvuGl//+teXedtLLrkkjj322KKXlJdjjjkm/vKXv0S1Wu21HsmSLmPGjFlqX6T+/hx00EExWC3rGLM3kj2SzvLzl/f51a9+1Wt11HtC9cvo0aO7db8jjzyy4z69Wc/yWJ4+YP0zm8cPAPSeIb34WAAA3ZahnC9+8Ytx8803Fz9vsMEGsd122xXNlQycXH755cVl7733jt/+9rex1lprRSNobW0tjvf000+Pyy67LNZYY40+f85NNtmkuNTlezB37tx44YUX4vbbby8uZ5xxRpx88smx44479lkdL730UvzsZz+LkSNHdnwuBpqHHnoofvjDH8aWW24Zv/jFL8ouBwAAgEFqvfXWi7322mux6/NcPi/Dhg0rwkiL2n777aO/mjZtWnz1q1+Ntra2Zd42z73POeec4vttttkmWlpaivBMXv75z3/G7373uxg6dOgK90iWZLXVVuvxYzeKDAP98pe/jPPOOy8efPDBGDJk5f6nyKuvvjp22WWXZS7gW55FfIOhDwgALJ0QFQBQiu9+97tFUCYbXT//+c9jt912WyjEc9tttxWTu0aNGhWf+9znOhpjg8Xuu+8eV155ZfF952ZSBolOO+20lVrLu9/97vjCF76w2PX5Ptx1113xve99L5599tk4/vjj429/+1tsvvnmC92ufhybbrrpCtWR73kG5zbaaKMe3/dDH/pQvO1tb4tVV101yvTXv/61CFJliKqzPKbeep0AAAAgp0fnZVE5lebUU08tFqvlOfxA8fzzz8cJJ5zQrWBLTkDKPtGIESOKsNQ+++xTXP/II4/EZz7zmaK/8D//8z/x5S9/udd6JEvTqOf7RxxxRDFVftGwWgbZciLYypb9tZz2niGqnHDfnfesbGX0AQGApbOdHwCw0j333HPF6qqUjb3OAarU1NQUb3jDGzpGad97771x5513xmCSYZ9tt922uPRX+T687nWvKxpfG2+8cbz88svxgx/8YLHb1Y+jzADTuuuuW9TQXxuW2VCsv07LsxIWAAAABqsMtLzrXe+Kxx57bJm3rVQqxeSelFv+1QNUKSdvnXTSScX3f/7zn2PWrFmxMvSHvkgZMsSWx73FFltEf7DTTjvFmmuuGePHj49HH310mZ+57M/058lsAEA5hKgAgJUuGxnVarUYUb20ENFrX/va2GqrrYrvc/w35Vh//fWLqWDplltuKSYtAQAAAKyo97///fGVr3wlpk+fHm9+85uLy9KMHDmyCMlkAOYd73jHYr/PxWA5HXru3Llxww039GHl9Df5mTj88MOL73Ma1ZKMGTOmmLien5W11157JVYIAAwEQlQA0E9MmjQpfvSjHxXNolw5t+eeexbbk+V1EydO7PI+ufXZxz/+8SJslPfJk/9PfvKTxZSnDCktOup8hx12iIMOOqjLx8rnyN/npavnmzBhQrGtW47qzslRudLvgx/8YFxwwQXFKsCeqE/imT17dtH8Wprf//73cc0118RHPvKRLn9//fXXx6c+9ani2PM1yAlWObI7R4cvWv+OO+5YHN/SVqPl65+3yeNakePP0FE+To7OP++88+Lggw8u7vemN70p7r777uJSf71z1HjKYzzssMM6HiNvm7/P2371q18tvs+x9EuS73ve5q1vfWv0tnxd1llnnY7XvLP6cdxxxx3L/ZnO+3/rW9/quF/9MesOPfTQ4udclZr333fffYvHO+aYY4pGa25XkL//wAc+sMRjuPXWW+PDH/5wcb98/4477rgljm9f0jHV5XuVv8/nTfX38+KLLy5+/sc//lH8XP/cdv77Gjdu3GKP98wzzxRbXObnK1+rvffeO973vvfFmWeeGfPnz1/q5ysfO1+7/NvO++bXb3/720v83w0AAADIXsvxxx8f+++/f3EueeCBBxbb2C1pEnj9nHbmzJlxySWXFJOjciu3vF/2Ku65557lquP++++PTTbZJP77v/87fvOb38Rqq6221Ns/8MADxdedd955iZOf9tprr+Lr8tbUU8vqIXQlp65/8YtfLF6/fP0POOCA+OxnP7vUSew96QMuLbSWtdaneXU2atSojmO58cYbF/v9WWedVfzu05/+9BJ7jdm/yX5L3S677LLEXuPjjz9e9Lte//rXFz2zvO/3v//9YhL68nrLW96yzBBVvRf09re/famPlf2+7Ptlbyf7UPmaZ3/v3//93xfrO9ZlDyd7mdmvyv5THtchhxxS9Crz9e1saX3AFZWLUXM7y+yT5nuQ9WefKWvLfuyK1N25L5XT4LpS/2zke9qfPv8A0B1CVADQD+QKumw+nX322fHSSy/F1ltvHZtttlkR3MnrcmXdosGfn/70p8WJbDZocqJTnpgOGTIkbrvttuJkvj45qDdce+21ceSRRxaBjaxvm222KbZPy5Po//iP/yhOWOfMmVLQwhwAAPcPSURBVNPtx8tmVr0plgGo3LbvySef7PK2uXowp1GtvvrqC12fwaM8Uf/c5z4XN998c7H1XL4Gra2txUn1e9/73jjnnHM6br/55psXJ9mpvpVgV424XImWTbjOQaQVOf58ru985ztRq9WK48hGUI4X70qOEM8mQF02OfK1yvHo7373u4vr8v2dOnVql/fPJmbKhkdva25ujte85jXdbkL29DOdx1mfOpYhu/y53vTsLJtpef8NN9ywCHUNGzasW6sG87XJ5nBO0cpa8vOXTalc7VoPb62IfI+y3vXWW6/4OT8f+XN3xsLnZ+Too4+Oc889t3it8j45/SsbXvl3np/lF198scv75muYr2UeX35u8+8lQ2h///vfi/u98MILK3xsAAAADB5tbW3x+c9/vggw5GKj7CXlorPss2T/42Mf+1hxLrokGXT6xje+UfRPXv3qVxf3y8BNBmf+9Kc/9biePM/PQFf2XbqjvjAp+zxL8qpXvar4mjX2R7/4xS+KRV553NnHyj5A9l1ycla+/vn7RfVWH7Aearn99tsX+13nENhdd9212O9vuumm4mt92lNXsq/VuRdS7++sssoqiz1X9rryNcgeykYbbRTPP/98/PWvfy36SZMnT47lkWGc7BPl5yQnTnXlqquuKupZ2nFk0OhDH/pQ0ffLPlj2ffI1zy0is4/znve8p1j41lm+l/n+ZSAwFwFuvPHGsd122xWPlb3KfLzOizaX1gdcEfl3nAs/8zjz7z3rztc4e2JZWwbpOgepelr3QP78A0B3CFEBQD+QIaIpU6YUE3vy5C+n2OQlm1C5+idPWvNEtu6pp54qTtTzhD9Xgf3zn/+MCy+8sGh+/exnPytOPC+99NKO1XkrIk+e8yR1wYIFccIJJxTBk3zsPCHPqTsZfMlVQjmlqbvWXHPNjuBKho9+97vfFau/cuVaPleGlZbV6Dr55JOL1yhP7P/4xz8WJ9H5GuTXbHBkqConFnVuCtXDRVdccUWXK5TyuOorv/KEvDeO/7777isaA/keZb3ZEMjj78p//ud/FsfV+XORr0WurszVVZtuumnR/OhqelIGZ7KOlpaWLsfZ94YMQaVsavX2ZzqPs76SMRs7+XNeuno987HzPczX9LTTTutW7TnxLFcLZuAuV8PltoQ//vGPi4ZL/pyhoxWR71HWW199maso8+d8T5cmg1L5t5BNo1wRmJ/XrCcbSRmMys9XrszM1Xj1iWWdnX/++UXTOj8TeZ98XTKMlaHDDNudfvrpK3RcAAAADC7/9V//Fdddd12xuCh7EHnOnufEeT6ai8DyPDl7TosGROpyYdNRRx1V9KCyD5P3ywlWuXjspJNOKs7beyIDHYsGbJamvrAsewdLUl9sNW3atOhv8pz9D3/4Q9EbytcrAzrZB8jXM/sd+b7k7zuHVnqzD1iffJS3XXQiUece2qIhquzfZa35XEuaLlQP2WVfrvPnJfsjG2ywwUK3y0BPTgmv98ty6vkZZ5xRLJbLBYj5/fLIhXn1Y+xqGlU+by7we+Mb39jR++tKLtzMKWlZd+fXPHtv2aPJvmIGe7I/WJe/z/tkLyePJ0NM+d7m31gGkfJvJN+v7DEuqw+4vLKuH/zgB0UPKcNFnftMWV/+3TzxxBNFWG156x7In38A6A4hKgDoBzKok3IaTeeJSzmNJrflytHLGZSoGzt2bPE1J+rst99+Cz3WO9/5zmJLs1zBl8GMFZXbleXjZBAox0APHz6843d5Up/NkQzuZMNjSdOkupKBkRwdXl8dWA8C5QqnDCRl+Ca3fssT6TxZ7yxXo9WbeRmiydenLmvJcdi5cinv9+tf/7rjd/mY+frmtJ9Fm0Gdw0mdJzmt6PHnCX6GsPI2y2ryLU02BHIlXuewV2d5XTZK8rXIKU19of7ZzO3zevsz3V3ZYMvPRV13X88tttiieK/qWxKmXDX4b//2b8X3ObK8DFlTNrZyfPkPf/jDhRp4ObEsA4L5mcsx8RmQ6qo5eOqppxb/W1BX3+Yw9bR5DQAAwOCVU44zxJDyHLS+9VnKvkUGJr70pS8VP+e5ZldTt3Obrwwu1M9f83452Sr7UNmH+Z//+Z8+PYZ58+YVX5cWvKr3bnKLsp7K465vadfVZWkBomXJ/lL2mdJPfvKTomdSl4sBs9+RwZeUt6svpurNPuC2225bTLHOPljnbeNywlIGjPL32WvJ5+wcQstFi3mfnFJen8K9IrI/k8eYE6jqcgFhHk/qagu57qpPl+8qRFXv/XXuLS0qwzj17Qyzb9P5Nc+QV/6NHHvsscXPnacm1XthucAuF0LW5Wc1JyVl7+eII47oVl9teWXIsL4dYvZe6/3I+qSrnMieE7g6T3VfWXX3h88/AHSHEBUA9APZvKifeOeKn85NnmxOZZCi85Zj9dvnSW42rhad2pQrB3PKT337uuWVJ585sSd1PrHtLBtIOfY9G2X1BkN3ZeMpVz/mtJwMPi0aqsmVRnncOQGq84lw1pQ/5+2zAdCV+jSmbADlRKSU253VmyQZeuosJxRlMyBDXfUT8t44/gxa1bcuXFEZjMmmQh7T008/vdK28qvLZlnKGnr7M91de++9dyyPDEx11WDNhlLKMe+LvqZ9be7cuR0Ny9z2oCu5PUF9vHxOMVtUjn1fdDVnyi0n601QAAAASNnjyGBCnkcuKUSSi8hywU6eT+aUmEXl+WvnYEbniVIpz3O7Cl/1lq6ee0m6079Y1CabbNKxBV1Xl87br/VUTvvJhYG52Kw+LWlR2X/KhXS50PDRRx/tkz5gV1v65ftWqVSK7fAyKJV9rs7vf30rvyXV3VP5PF1Ngso+W+eJY8sjw1gZEsrXqR4QSnlMOWUp+3SHHHLIEu9f7+/tvvvuxXvelU984hMd/aScIJ5yklPKyW456anzMWT4Kre7zOlVnYNjvS3DaWuttdZC07Q6T+PPPlgGHev9sJVZd3/5/APAsgxZ5i0AgD6XK5iyWfHMM8/E5z73ueIENafJ5JZgOV46QzqdZXAoR6dnECgDSHnJ8E82CXJ1UE75WdpI6u7Kk9J6eOn73/9+UVdX6tu7LU8IJZtfeZx5SXminq9FNmdydVg+fzYvcgVSTnRKOXa6voIyVxt1pfP0qqyrvkru3e9+dzESOsdtf/e73+1YnVif7pTTnupNtt44/q4CLiuynV4GvHKKVtabq8dShqoycJYNoqU1gVZUfcz7krYjXJHPdHct7+u5pFHoucJuxIgRRXM43796+GhlyPHx9WDa0pqw+buc0Jav5aKW1MCqf6672gIQAACAxlTvW+Tk4wwqdCUDJjnxJYMheR66aJ8hgyVdqYdf8jx34sSJHT/3tvpCtaVtLVZfyNV5mnh3Zd8otyfsC/V+Vr5GOfVrab2yDL7k+5Wvd2/3ATNEldvl5XZtdfXv999//yIYlFumZf8pp7pnjy0XH6b6Qq8VtaR+Rv39XZ4pYnW5JeWb3vSmOP/884vQVL0HldO6s5eYU4uW9tmo/50saeFmPXiUr3n2yvLvZPvtt4/3vve9RRApJ9VnHzG31cu/tXyf8j3ad999i9r6Un52MjyVWwXme5aXDFVlPzF7cgcffHBsvPHGC91nZdXdXz7/ALAsQlQA0A/kielll10W//u//1tMZsqJSBlAycsvf/nL4kQ8Az+5lVld7hufjY0MBD344IPx3HPPFSe8ecmJO7mi6MQTT1xi8Kc7Ok+xeeSRR3p0++WVI8Nz7HZecvu8T33qU0XjLldCffWrXy0CTvXnyUZFd7YrmzlzZsf3GeTJZmA2OLIhlCsvZ8yYUYS28rHrY8N76/iXNl5+eWQzL5tY2TjI1ydrrk+hyobCirzfy5JBrZSj3fviM90dy9MATZ23FOzqd/ne1bcEWFnqobSUQa4lqTeCulrJm6uDAQAAoCfnoUs7B13WeWh9ys2iOk/h7supyDlpJy1ta7H6NnS9se1cb6q/Lrlgr6f9rN7sA+aU71yIl2GpDLzlor3cri/DKxm2qW/plv2nek8st4jLifD1qUUrqi/7Vyn7ihmiyi396osQM1CVMkTVG38n2U/K29b/TvLv5rzzzitCPrkYLl/fnKaUl5zmlJ/H7OV1ngLVF/Lxc3pTBuXyfc2+Zy4mzUv2EXNxY4al6mGqlVV3f/n8A8CyCFEBQD+R23b96Ec/Klb7ZHMiR2bfeeedRegkQ0THH398cbKfY8VTnvTmFmV5qU9vyvvkCqM8kTz77LOL2/3Hf/zHEic0ddZVgKRzAyxPbpcWROmuHA2eI95zfPN//dd/LbaXfWd5rN/4xjfik5/8ZNGUyIbNhhtuWGzLl3I13G9+85se15Bb3uWY5wwiZYgqX9c8gc+xz/k+9OXxr6hcSZefkXyPR40aVYxYv+KKKzoCVn0lV3jWx2gvaZT5in6m+3rrvGU1cbqasLWkv5elPV53df48ZQ1Lau5ms2vR2wMAAEBP1c8rlxVyqocXujoPzf5RPcjUWefHzAVyfaW+sCv7IktS/11vBX56S72flZN1Lrrooh7dd3n7gF3JsFQGaXLKeU6gymk+GZzJqT8ZHMqFcfke5ySgl156qWMKVW9t5bcyZL8xP4f1Lf1yMV8GqjIEmMfbG38n9d93/jvJQNIXv/jF4pKvaX1BYW6lOWXKlGJCVAbYsr/X18efl5zoNXLkyLj33nvj1ltvjdGjRxcLST/96U8XizLr0/iXt+6e9Jn7y+cfAJal63mtAMBKkyebueorVwalHKeeTYsMmORqnwz65IlsnnzmiqGUgaIMpdTHS9enN+VknxtuuKFji7v6FnX1Bkmqb0+3qGyKdBWCqd8vRzovSW4nN3bs2C5XKC4qHy8DVLkFXp60d3f7tnxd8mQ95SSpzmOgu5KvV55M55ZpGdzqLKdNZR3ZKMrXMl/jrkJIfXH8KyonMb397W8vvs8JT9kEydWX2eDKS1/JlWj14FD9+XvzM93XlrTVZDaG6u9b560Glufvpae22GKLjnHoS5t0Vv9driIEAACA5VXfwn7MmDHFdlldyT5JBk+WdB66pF5MBlXqC9Jyq62+Ut9OMBd6Lemc/f777++YRt6f1PtZ+fq2t7cvsaeSE6DyNvXjW54+YHe29EvZG8tASsrt0eqBlZz6k/J3N954Y69u5bcyZF/niCOOKL7P8FT2z3JxZl63rKne9b+TDBwtbVp7vU9W/zvJsFEGljLkU78+JyTlQs7sge666649fp96Kj8zWVtOa6r3ETM0ltO4MriU0+Hrf6/Zy1zeuut9s9yar7t9s/70+QeApRGiAoCSZQAmJyp9/OMfj4cffrjLE8z6GO16gyunL2Xg52c/+9lit89GR73p0Tk8VF8lmFNt8uR4URnIWVQGXXI6UzrrrLO6rD9DSh/84Afj6KOPLpoS3ZG3Teeee27HCfuS1KcsHXDAAR0jmXO1XJ6s58nz7bff3uX9zjzzzPjIRz4S73jHOxZb/ZTTrN7whjcUJ+MXXnhhMdEpV43l+7Ayjn9pMnC0rNVcueqq/p5ls6A+Xauv5OflV7/6VfF9rjhb1nZ+y/OZ7nzsSzruFZGr6xYN06X6SrWdd965Y4x557+XrsJXGZpbUoiqvoKvO8eQjeV6U3Jpn6/cdjIddNBBy3xMAAAAWJI8r8zFPBkmufLKK7u8zTnnnFMEHHJqTL0n0llun9WVv/3tb8XXQw45pNheq69kMCrP37PX01VoIhd05YKp7OnUQzT9xb777ltMesrFXEuaxJMLzz760Y8WIZEXX3xxufuAy5LBmgwTZWClvgiu/jj1Ply9ngwTZS9tt91267Xe1sqQr2HKBXz1nt2yFgbWP8P1/s+Stp3LvmPKz2J9UV5O0v/Qhz4UF1988WK3z75jTpNf9H3q7dcqJ0fl1P1PfepTXYYM6+9r5zqWp+6l9c3ydvVeVn/9/APA0ghRAUDJ8qQzAz3p//2//1esFqrLgMlf/vKXYuuzPKmu3y4DO3mSmKuB/vjHPy606icnPP3ud7/rCBvV7bHHHkVzJE/If/KTnxTjnFPe989//nOcf/75Xdb3hS98oQgs5SSin/70pwtNW8q68qQ8HyNXGR511FHdOuYM1+RI9VyxlUGnDLLUtyyry9VPueLp97//fbFq6qtf/WrH7/K53vve9xbf5/WdT8zzNbvgggvi1FNPLX7OJkA2zhZVDx2dfPLJxWvylre8pWOsdF8f/9J03kIw38uuZNMqGzQ5rjpDYPm+9sZzLyqbpvkZyxVd9a0UuzMWe3k+052PPT8LucqsN2XD79vf/nbHKsGsIxte2RxOX/7ylxe6/d577118PeOMMxaqP0NhnT+Li6qPcF/Se7eoz3/+80UDO1d+5mj0zsedqwL/7d/+rdhKcccddywmqAEAAMDy2mSTTYoJMynPQTsvBsvz5L/+9a9xyimnFD9/9rOfLQIPi8pASvZS6pNksieSC6+uueaaYvFbnuf2peyHfe5znyu+zz5Nnk93Pvf/xje+UXyf/aau6i9T9j2yj5R+/OMfFz2dzovLrr/++mK6TsoQSU6wXt4+4LJkryy3e8st6fK9y+DbXnvt1fH7ejAlt0vLvllOrqovHOvOcXaurywZAlx//fWLvk4G7vL7PObuBPXqr2Vub1ef1JUymJShnnof9cQTT+x4XXIhZ8qeZIaZOstJT/XQX+f3qbdfqwxKZl8uFzjm30J+rcueUz2IlP9bsN122y133fW+WU6my4WB9QBY9vSyF5h9v/78+QeApXll/xAAoFQ/+MEP4thjjy1OMI888sjYbLPNikZPnghOmzatuE2OXX71q19dfJ9jlDP0kU2qk046Kf73f/+3uE+uwsvJNdnIyhPNb37zmx3PsdZaaxUri/LEMgNBt956a3GfDOLkCXUGZTKMNGnSpIVqy5PiH/7wh8VJbIZOcnpUTiLKMFGu7MuT5GxC5DZt9UlRy5Lb8mU4JY/pgQceiB/96EfxX//1X0U9a665ZsycObPjsddbb73id7vssstCj5En5FlrjhQ/4YQTioDPRhttVBxPffx0TkNaNBzTeVVZ1lFvJixpklNfHP+yXpsMZOVxZFMwR4h/6UtfWmwKUdabzcIMBeVx1leALY9sWtRXHaZsYOTx5WepHrbLOv7nf/6neI374jOdMhiWwaoMDWWoLd/TfF1X5Njq8jXKFXXZ7M1JWLmaLbeVzCbMv//7vy/WaMnPVP6NZHgsA2pZZ9aV48Rzm8dcAZev26LqWyrmSsU8hrxfPdC3pMZcNo4ynJYNuMsuu6z4fOX7+swzzxS32X777YvH6I3PFwAAAI3tW9/6VtFPycnW2W/Ic++cppM9gPr5+oc//OFiUU9X8hz1tNNOKwJXeX6c98veSi6Ayz5FfSu0vpQL6+65555iak32unKhXp4zZ6Aj+zTZQ+nrMNfyytc1X7PsAWRvK/t62TPJ96Q+9Tp7UdkrqFuePmB3ZDAqQ2gZSsnQVOcJYvne5nNMnDixx1v55fuRgZnsbWRoLx8njycXiJWxpV9OScs+Vy5Oq29Dtyw///nP4zOf+UyxNeRxxx1X9OpyG7ns1WQYKR8n35POk63ydtlfyyBSvs/5t5WX/LvKPl/9Na8vDO1JH7C78u8gQ475d5HT5vLvPD8b2W/Lz0q+J7mINHut9T7T8tSdfbR99tmnCFnle3v66acX/bucTJWfp1yUWg9k9tfPPwAsiRAVAPQDeWKa49AzMJLBjTwBfOGFF4oAUZ6MZ/Oq82qwlCfyGdDIk85caZdhlWxYZYgjGwS54q7zaqbOoZVsHowZM6Y48c/gSn07uq5GLacMjOTo5pxYlSfV2ZTK8EmGPQ4++OD4xCc+UdTaE7mdWwaS8mQ+LxmmyvBTNmcy8JXhkjxBz2ZL/ryobOz89re/jauuuqoYAf3II48Ux5STgHJVWYaM8pg6j8XuLBsFGY7JKVhbbrllceK/JH1x/EuTzY5sFuTxZGhn/Pjxi90mjy0bOjmqekW38svPWl46y4ZKhsOywZWfp/wc5sSrvvxM5/uQDdd8X7NJk8eWX3sjRJXvUYaasp4nn3yyeP/zvcvmTVfvff4dZf1ZS462zyZQNpXzcXI1bq5860o25PK2uUovP8vZOOq8qm5J98npYhnSq3++8m83X58MoOX2jX25FQIAAACNI8+Hc5FU9lNycVC9n7LBBhsUW33lgqilTevJ6Ta5qCx7S2PHji3O87N/c/zxxxd9kpUhezIZpsh6sy+WdWSQIifr5FSd3A4spz73R1l7LtbLxV7ZF8t+WL7+ed6fvafsA+R7sOhCquXpAy7LYYcdViyCW3Qrv7r661ufWtVd2ZvL3lZOmM8eSfZH8rKyQ1Qpt7arbzWZ33dXhpuyZ5gL8nLBW37GcqFdLi7M/lJOvt95550Xuk8Gq/JvK58v/75yAlZOGc8Fo7l9Yn42sxe56ESv7vQBeyLfq5zSnwtYR40aVTxm/j1kXyvryN5W9mVXpO7st2aPLZ/jiiuuKP43IUNN+TnKhYn5+nUVoupPn38AWJKmWpkbEgMAsFyyeZNBqmxy5mj17q6kAwAAAOipXISXMjSR4RoAABiMuh7NAABAv5YryupTsgSoAAAAAAAAYMX0z3mmAAAs5tFHHy22NrzpppuKEds52jq3YgQAAAAAAABWjBAVAMAA8ZWvfCWeffbZhX7eaKONSq0JAAAAAAAABgMhKgCAAWKvvfaK559/PtZdd9340Ic+FJ/61KfKLgkAAAAAAAAGhaZarVYruwgAAAAAAAAAAICyNJf2zAAAAAAAAAAAAP2AEBUAAAAAAAAAANDQhKgAAAAAAAAAAICGJkQFAAAAAAAAAAA0NCEqAAAAAAAAAACgoQlRAQAAAAAAAAAADU2ICgAAAAAAAAAAaGhCVAAAAAAAAAAAQEMTogIAAAAAAAAAABqaEBUAAAAAAAAAANDQhKgAAAAAAAAAAICGJkQFAAAAAAAAAAA0NCEqAAAAAAAAAACgoQlRAQAAAAAAAAAADU2ICgAAAAAAAAAAaGhCVAAAAAAAAAAAQEMTogIAAAAAAAAAABqaEBUAAAAAAAAAANDQhKgAAAAAAAAAAICGJkQFAAAAAAAAAAA0NCEqAAAAAAAAAACgoQlRAQAAAAAAAAAADU2ICgAAAAAAAAAAaGhCVAAAAAAAAAAAQEMTogIAAAAAAAAAABqaEBUAAAAAAAAAANDQhKgAAAAAAAAAAICGJkQFAAAAAAAAAAA0NCEqAAAAAAAAAACgoQlRAQAAAAAAAAAADU2ICgAAAAAAAAAAaGhCVAAAAAAAAAAAQEMTogIAAAAAAAAAABqaEBUAAAAAAAAAANDQhKgAAAAAAAAAAICGJkQFAAAAAAAAAAA0NCEqAAAAAAAAAACgoQlRAQAAAAAAAAAADU2ICgAAAAAAAAAAaGhDyi4AAAAAAOi+6pPjo/W0c8suA6AhDP/liWWXAAAArCQmUQEAAAAAAAAAAA1NiAoAAAAAAAAAAGhoQlQAAAAAAAAAAEBDE6ICAAAAAAAAAAAa2pCyCwAAWFGnnHJKnHrqqYtdv8oqq8T6668f+++/f5xwwgmx+eabl1IfAAAAAAAA0L8JUQEAg8ZrX/va4pJqtVrMmzcvnnnmmbjkkkvi2muvjfPOOy+23XbbsssEAAAAAAAA+hkhKgBg0MgA1Re+8IXFrr/88svja1/7Wpx00knxu9/9rpTaAAAAAAAAgP6ruewCAAD62tvf/vZYY4014u677y67FAAAAAAAAKAfMokKABj0mpqaoqWlJYYM8U8fAAAAAAAAYHEmUQEAg97VV18dM2bMKCZSAQAAAAAAACzKOAYAYNC455574pRTTun4ecGCBfH000/HTTfdFPvvv398/etfL7U+AAAAAAAAoH8SogIABlWIKi9dWWeddWLKlCmx2mqrrfS6AAAAAAAAgP5NiAoAGDQ+//nPxxe+8IWFJlG99NJLccUVV8TJJ58cI0eOjIsvvjg22GCDUusEAAAAAAAA+pfmsgsAAOgrq6yySmy++ebxmc98Jo477rh4+eWX4+yzzy67LAAAAAAAAKCfEaICABrCAQccUHx97LHHyi4FAAAAAAAA6GeEqACAhjBt2rTi64gRI8ouBQAAAAAAAOhnhKgAgEFv7ty5cdZZZxXfH3HEEWWXAwAAAAAAAPQzQ8ouAACgt9xzzz1xyimndPxcq9Vi8uTJcd1118XUqVPjsMMOize/+c2l1ggAAAAAAAD0P0JUAMCgClHlpa6lpaXYvm/77bePI488Mt7znvdEU1NTqTUCAAAAAAAA/U9TLUc0AAAAAAADQvXJ8dF62rlllwHQEIb/8sSySwAAAFaS5pX1RAAAAAAAAAAAAP2REBUAAAAAAAAAANDQhKgAAAAAAAAAAICGJkQFAAAAAAAAAAA0NCEqAAAAAAAAAACgoQlRAQAAAAAAAAAADU2ICgAAAAAAAAAAaGhCVAAAAAAAAAAAQEMTogIAAAAAAAAAABqaEBUAAAAAAAAAANDQhKgAAAAAAAAAAICGJkQFAAAAAAAAAAA0NCEqAAAAAAAAAACgoQlRAQAAAAAAAAAADU2ICgAAAAAAAAAAaGhCVAAAAAAAAAAAQEMTogIAAAAAAAAAABqaEBUAAAAAAAAAANDQhpRdAADAYFOrVCJmzY3a7DlRm7sgoq0toq29uNQW+v6Vr13+rrU9or09oqkpoqUlmppf+RotzRHNzQt9bcrr67/v9LumVYZGrLZqNK02/JWvq//r62rDo2n4KmW/TAAAAAAAANBvCFEBAHRDrbUtarPnRsyaU3ytzZrzSlCq+HlO1GbNjahfP29+RK2Xn793H+6VsFWGqeoBq/y6+r8CVvn9GqtF0zprRdO6a0bTumtF0xD/bAQAAAAAAGDw8l/DAADqIakp0//vMjm/zoja1OlRmzE7YkFrDCrV6iuhrwyGLSuk1RQRa6weTeut9a9gVadwVT1oJWQFAAAAAADAAOa/dgEADaNWqb4Sinppasel+vLUqL08rZgwxRJkwionbuXl2ee7DlmNWOP/wlXrrR3NG60XTZtuGE0brhtNOfUKABi0vvnNb8bFF18cZ5xxRhxwwAEL/e4DH/hA3HfffXHDDTfEZpttFlOnTo1TTjkl7rzzznj++edj1VVXjd122y0+8YlPLHbfarUaf/vb3+LCCy+Mp59+Opqbm2PnnXeOj33sY3H44YcvdNtDDz00VltttfjKV74SP/7xj+Pll1+OXXfdNf7617/GvHnz4re//W3cdNNNMWHChBgyZEjstNNORW1ve9vblnl8We+pp55aPNZdd90VF1xwQUybNi222mqr+OAHPxjHHntsx22PP/74uPXWW+Occ86Jfffdd6HHmT17dhx44IHF/S655JLlfLUBAAAA6CtCVADAoFSbOTuqEydFbcKLUX3upai9NKWYMBWVatmlDc6Q1czZxWtee/a54qpK/XdDWqLpX4Gq5k02iKZNN4jmDFetsVqZFQMAJWhtbY2PfOQj8cwzz8Rhhx0WRxxxREyePDmuvvrquP322+N3v/tdvPGNb+wIUH3hC1+I66+/PrbZZpt4z3veU1x33XXXxec+97nid5///OcXevxJkybFV7/61SJgtfbaa8daa60VTU1N8dnPfrYIbWWA6aCDDirCTNdcc00RuJo1a9ZCIail+elPfxpjx46NI488MoYPH14Ew77zne/EY489Ft/97neL27z73e8uQlQZklo0RHXVVVcVga5jjjmm115TAAAAAHqPEBUAMDgCUxNejNrESVGd+GJUJ0wqQj30A+2VqGWI7bmXYqH42ojVo3nTDaJpk3+FqjJglWGrIS3l1QoA9Kk77rgjnnzyyTjhhBPiy1/+csf1GTz60Ic+FH/+8587QlR/+ctfigDVUUcdVYSXhg4dWlyfwacPf/jDxWSoDETtvvvuHY8zc+bM+NSnPhVf+9rXOq574oknigDV0UcfHSeddNJCE6Pe+ta3xumnn97tEFWGpXIaVf05M8iVded1b3/722OfffYpwmEZ4MqQVgasVllllY7757SuPI48JgAAAAD6HyEqAGBAqc2YVUyY6hyaipm24htwZs2J6tg5EWOf/b+pVS3N0bThetG8xSbRvM1m0bTNZtG83trl1gkA9JqcJJXGjBkTc+fOLbbfSxk+uvbaa2OTTTbpuO25555bbN+XQaR6gCqNGDEivvjFLxbTpf7+978vFKJKi27PV3/O3A4wtxJcd911i58333zzYjLUBhts0O363/Wudy30fPlYGaTKYFdOnsrjGDZsWBGSOvvss4tJVfV6xo8fH6NGjYo3v/nNsc466/TodQMAAABg5RCiAgD6rVq1GrUJk6L65PioPjPhlQlTswSmBq1KNWovvByVvNz90CvXrblGNG/zqmjeerNXglWbbBhNzU1lVwoALIcDDjggttpqq7jpppvi9a9/fbz2ta8trsuJUltvvXXH7TJglROrMmSV06kWlROn0ujRoxf7XYajOtthhx2KcNPIkSOL59l7772L537DG94QO+20U4/qf93rXrfYda95zWuKr48++mjHdbn1YIaoLr300o4QVU6hSrbyAwAAAOi/hKgAgH6jVqtF7fmXovrE+FeCU09PiJjfWnZZlCm3anxgbHEpDB8WzVv9K1S19auiactNo2mof9ICwEAwfPjwOO+88+L3v/99XH311UWYKi8/+clPYpdddonvfe97xaSnWbNmdYSpctu+JZkxY0aXz7GoP/7xj3HGGWfE5ZdfHnfddVdx+e///u8i0PX//t//69hCcFk23njjxa6rT7KqB7vSjjvuWBzPbbfdFlOmTCkmVmWgKm+b4S0AAAAA+if/xQkAKFX1xcn/Ck2Ni+pTEyLmzi+7JPqz+a1RfeyZ4lJoaYmmzTfqmFTVvO3m0TR8lbKrBICG0tTUtNDWeZ3NmzdvoZ/XXnvtOPHEE4vLuHHj4o477ohrrrkm7rzzzjj++OPjn//8Z6y++urFbbfZZptiy70Vteqqqxbb/+XlxRdfLEJU119/fVx33XXxuc99rgh0bbbZZst8nPnzF/93aj3wVd8msO7d7353/OAHPygeO0NVzz33XHF8LS0tK3w8AAAAAPQNISoAYKWqvjz1/yZNZWjK9nysiEolas8+H5W83HhPREtzNG31qmjZcZto3mnraN50w7IrBIBBb+jQocXXOXMW/nddpVKJCRMmdPx86623xs033xwf+chHYsstt+y4fOADH4jjjjsu7r777nj88cdjr732Krbly/tOnTp1sYDSE088ERdddFHsscce8Za3vGWptT3wwANFkClvl1vv5TSpd77zncXlW9/6VvE4999/f7dCVA8++GCx/WBno0aNKr5mLZ0deeSR8bOf/awIiGWAKtnKDwAAAKB/ay67AABgcKtVKlF57Jlou+CamP+D30brT/8Y7X+/NqoPPCZARe+rVKP21IRov+LmaP3FmTH/e6dF27lXReXBsVGbt6Ds6gBgUMqJUenGG29c6PozzzwzZs+e3fHz888/H2effXb84Q9/WOh2CxYsiJdffjmam5vjVa96VXHde97znmhrayu2+GttbV1oGtR3v/vdOP3002Py5MnLrC2fP7fyO+WUUxaalJXbSNfDTRnY6o6zzjornn322Y6f8/l//etfF9OlcvJUZ2uttVYcfvjhMXLkyLjyyiuLkNW2227brecBAAAAoBwmUQEAva42f0FUxzwdlUeeiOqYZyLmC69Qkpmzo3LPw8Ulp1QVW/7t/Opo3vXV0bze2mVXBwCDwjve8Y4ipHTxxRcXwaLcvm706NFFgCinP+U0qHT00UfHeeedFxdccEGMHTs29tlnnyIodcsttxRb+33iE5+IjTbaqLjtJz/5yWLbvZzkNGbMmHj9618fQ4YMKbb7y/DTQQcdFO973/uWWVtOjjr44IPjpptuiqOOOqr4OUNP+dj5uG9+85uLGjsHv3KLvne9612LTafKWjMs9aY3vamYvpW1ZPjrq1/9anHMi8rbXnHFFfHCCy/EZz7zmV54pQEAAADoS021XHoHALCCarPmvBKaeviJYru+3GYN+rOmjdeP5l1eHS27bBtNW2waTc1NZZcEAAPWY489Fr/61a/i3nvvLaY87bnnnvHlL385/vGPfxQTnG644YYilDR9+vRiMtT1119fTKZKO+ywQxx77LHFFntNTU0LhZb+8pe/xGWXXRZPPfVUEaLK7f8y4JS3HzZsWMdtDz300CJcleGtvF1n8+bNi3POOaeoJZ+zvb09tt566yL89aEPfahjO8LOj5M177fffsV1GRA79dRT4z//8z+L+1966aUxd+7cIjiVYa+cONWVnHx14IEHFtsc3nbbbTFixIhee71za+zW087ttccDYMmG//LEsksAAABWEiEqAGC5VV+eWoSmMjxVG/dC7otSdkmwfEasHi27bx8te+8czVu9so0QAEDnENWPfvSjeO9739vt+2Xg6rDDDosjjzwyTjrppF6tSYgKYOURogIAgMZhOz8AoEeqE1+MyoOPRzWDU5OmlF0O9I6cpHb7/cWlad21onmvnaJlr52jeeP1y64MABiAcs1ihq9yGtUHP/jBsssBAAAAoBuEqACAZarNnB2VkaOjcu8jglMMerWpM6Jy/V3FpWnTDaMlA1V77hRN66xZdmkAQD83efLk+PjHP15sIThhwoQ45JBDiq0NAQAAAOj/hKgAgC7V2tqLaVMZnKo+/mxE1VZ9NJ7a8y9Fe16uuDmatt6smE7VsscO0bT6qmWXBgD0Q+uuu24sWLCgCFO9+c1vLrYABAAAAGBgaKrlfHEAgH+pPvtcEZyqPPBYxLwFZZcD/U9LczTvuPUr2/3t8upoGja07IoAgAZTfXJ8tJ52btllADSE4b88sewSAACAlcQkKgAgatNnRWXkI69s1/fytLLLgf6tUo3q6KeKS6wyNFp23yFaDtgzmrfcpOzKAAAAAAAAWE5CVADQoGqtbVF9+PFXtut7YnyE4ZTQcwvaXpncdu8j0bT5xtFywGuiZc+dTKcCAAAAAAAYYISoAKDBVF+eGpVb7ysmT8X81rLLgUGjNuHFaD/v6mi/7KZoee2uRaCqeYN1yy4LAAAAAACAbhCiAoAGURn7bFRuHRnVMU9HGDoFfWfe/KjcPDIqt4yM5u22ipbX7xnNu2wbTc3NZVcGAAAAAADAEghRAcAg37KvMmp0MXmq9uLkssuBxlKLqD7+bHGJtUfEkNftES377xFNI1YvuzIAAAAAAAAWIUQFAINQbfqsaL/tvqjc/VDEnHlllwPk3+RVt0X7tXdG8+7bxZCcTrXN5mVXBQAAAAAAwL8IUQHAIFJ99rlov2VUVB96PKJaLbscYFGVSlTvfyxa738smjbZIIYcul8077mjrf4AAAAAAABKJkQFAANcLUMZD4yN9ltHRW38C2WXA3RT7YWXo+0vl0fT1bdFy6H7Rcu+u0bTkJayywIAAAAAAGhIQlQAMEDVWtuicsf90X7TyIiZs8suB1hOtSnTo/2Ca6L9ujtiyBv3jZbX7RFNw4aWXRYAAAAAAEBDEaICgIEanrrx3ohZc8ouB+gt02dF+6X/jPYb7oohb9g7Wg7cK5pWXaXsqgAAAAAAABqCEBUADBDCU9AgZs+N9qtujfYb74mW1+8ZQ964TzStsVrZVQEAAAAAAAxqQlQA0M8JT0GDmr8gKjfcFZVbR0XLfrvHkENeG01rjyi7KgAAAAAAgEFJiAoA+nV46oFiGo3wFDSw/N+CW0cV/3vQss/O0XLY/tG8/jplVwUAAAAAADCoCFEBQD8jPAV0qVKJyt0PR+Xe0dHyuj1iyJsOiKYRq5ddFQAAAAAAwKAgRAUA/YTwFNAt1WpUbr8/KiNHx5CD942Wg/eNplWGlV0VAAAAAADAgCZEBQAlq1VrUbn7wWi/+nbhKaD7FrRG+zW3R/udD8SQN78+WvbbPZqam8uuCgAAAAAAYEASogKAElWeGBftl94YtedfKrsUYKCaOSfaL7g2KreMiiFvPyhadt2u7IoAAAAAAAAGHCEqAChB9eVp0X7ZjVEd/WTZpQCDRG3SlGg7/eJo32azGHrUwdG85aZllwQAAAAAADBgCFEBwEpUmzc/2q+9Iyq33R9RqZRdDjAI1Z6eGK0nnxPNe+wQQ952UDRvsE7ZJQEAAAAAAPR7QlQAsBLUqtWo3PlgtF99W8SceWWXAzSA6oNjo/WRJ6Jl/z1iyJtfH01rrFZ2SQAAAAAAAP2WEBUA9LHK2Gei/dIbo/bi5LJLARpNpRqV2++PysjRMeTNB0TLG/aJppbmsqsCAAAAAADod4SoAKCPVF+aUoSnqmOeLrsUoNEtaI32y26KyshHY+h73hTNW21adkUAAAAAAAD9ihAVAPSy2tz50X7N7cX0l6hWyy4HoEPt+Zei9ZRzomW/PWLIkW+MptWGl10SAAAAAABAvyBEBQC9qDJqdLRdemPE7LlllwLQtVpE5a4Ho/LIEzH06EOiZZ9dyq4IAAAAAACgdEJUANALqlOmR/vfr43q2GfLLgWge2bPjba/XhGVex6OIe85Ipo3XK/sigAAAAAAAEojRAUAK6BWqUblpnuj/drbI9rayy4HoMeqT46P1pPOjJZDXxtDDn9dNA11igAAAAAAADQe/4UEAJZTddzz0Xb+NVF74eWySwFYMZVKVK67M6r3jSmmUrXssHXZFQEAAAAAAKxUQlQA0EO11rZov/KWqNx6X0StVnY5AL2mNmV6tP3vBVF5zQ4x9J2HRdOaa5RdEgAAAAAAwEohRAUAPVB5cny0n3d1ETQAGKyqD4yNBY89E0OOPiSG7L9H2eUAAAAAAAD0OSEqAOiG2vwF0f6Pm6Jy14MRhk8BjWB+a7Sff01URz8ZQ9/3lmgasXrZFQEAAAAAAPSZ5r57aAAYHCpjno4FPz89KncKUAGNpzr6qVhw0hlRefiJsksBAAAAAADoMyZRAcAS1Ba0RvslN0Tl7ofLLgWgXLPnRtsZF0f1tbvFkHceGk3DVym7IgAAAAAAgF7VVKvVzNQAgEVUJ06KtrMvi9rL08ouBaBfaVp3rRj6wbdF8zabl10KAAAAAABArxGiAoBO8v8WKzffG+1X3BpRqZRdDkD/1NQULQfvG0Pe+oZoGtJSdjUAAAAAAAArTIgKAP6lNmtOtP31yqiOfabsUgAGhKZNN4yhH3x7NG+6QdmlAAAAAAAArBAhKgCIiMqjT0XbuVdFzJ5bdikAA8uQlmIiVcsb942m5qayqwEAAAAAAFguQlQANLRae3u0/+PmqNw2KsL/IwIst6ZtN49hH3hbNK27VtmlAAAAAAAA9JgQFQANqzppSrSd/Y+oPf9S2aUADA7Dh8XQ978tWnbfvuxKAAAAAAAAekSICoCG1H7nA9F+6Y0RrW1llwIw6LQc8toY8vaDoqm5uexSAAAAAAAAukWICoCGUps7P9rOvzqqDz1edikAg1rztpvH0OOOjqYRq5ddCgAAAAAAwDIJUQHQMKrjX4jWMy+JmD6r7FIAGsOaa8Swj74jmrd+VdmVAAAAAAAALJUQFQANoXLvI9F2wTUR7ZWySwFoLC3NMeSoQ2LIQXuXXQkAAAAAAMASCVEBMKjVKtVov+zGqNw6quxSABpa8547xtD3vSWaVhlWdikAAAAAAACLEaICYNCqzZ4bbWddFtUnx5ddCgB58rHRejH04++M5g3XK7sUAAAAAACAhQhRATAoVZ+bFG1nXBK1qTPKLgWAzlYZFkPf/9Zo2WOHsisBAAAAAADoIEQFwKBTuX9MtJ13dURrW9mlALAELQfvG0Pe/sZoamkuuxQAAAAAAAAhKgAGj1q1Fu1X3ByVG+8puxQAuqFpm81i2EffEU0jVi+7FAAAAAAAoMEJUQEwKNTmzY+2s/4R1bHPlF0KAD3QtO5aMfT4d0fzxuuXXQoAAAAAANDAhKgAGPCqL06OttMvitrk6WWXAsDyGL5KDP3o0dGyw9ZlVwIAAAAAADQoISoABrTKw09E218vj1jQVnYpAKyI5uYYcsxhMeSAPcuuBAAAAAAAaEBCVAAMWO033Rvt/7gxwv+TAQwaLW/cJ4YcdUg0NTeVXQoAAAAAANBAhKgAGHDy/7raL7sxKjePLLsUAPpA8y6vjqEfPjKaVhlWdikAAAAAAECDEKICYECpVSrR9rcro3rfmLJLAaAPNW2+cQw7/t3RNGL1sksBAAAAAAAagBAVAANGbf6CaDvz0qg+/mzZpQCwEjStt3YM/dR7onmDdcsuBQAAAAAAGOSEqAAYEGqz5kTrH/4etYmTyi4FgJVp9VVj2CePieatXlV2JQAAAAAAwCAmRAVAv1d9eVq0/f6CqE2ZXnYpAJRh6JAY+uGjomW37cquBAD6heqT46P1tHPLLgOgIQz/5YlllwAAAKwkzSvriQBgeVQnvBCtp/xFgAqgkbW1R9uZl0T7rfeVXQkAAAAAADBIDSm7AABYkspjzxT/0Txa28ouBYCy1WrRfvH1EQsWxJDDX1d2NQAAAAAAwCAjRAVAv1QZOTrazrsqolItuxQA+pH2K2+NWmt7DH3bG8ouBQAAAAAAGESEqADod9pvuDvar7w5olZ2JQD0R5Xr74xob4+hRx9SdikAAAAAAMAgIUQFQL/S9o+bonLjPWWXAUA/V7np3oi29hhyzOHR1NRUdjkAAAAAAMAA11x2AQBQ13bZjQJUAHRb5fb7o/38q6NWNboQAAAAAABYMUJUAPSfAFVOFQGAHqjc/XC0/fWKqFWrZZcCAAAAAAAMYEJUAJROgAqAFVG979FoO+uyqFUqZZcCAAAAAAAMUEJUAJRKgAqA3lB96PFoO+OSqLW3l10KAAAAAAAwAAlRAVAaASoAelP10aei7U8XRa21rexSAAAAAACAAUaICoBSCFAB0BeqY5+N1j/8PWoLWssuBQAAAAAAGECEqABY6QSoAOhLtacmROv/ni9IBQAAAAAAdJsQFQArlQAVACtD7dnno+30i6LW3l52KQAAAAAAwAAgRAXASiNABcDKVH1ifLSd9Y+oVatllwIAAAAAAPRzQlQArBQCVACUofrIE9F23tVRq9XKLgUAAAAAAOjHhKgA6HNtV90qQAVAaar3PhLtl/yz7DIAAAAAAIB+TIgKgD7Vfvv9UbnuzrLLAKDBVW4dFe3X3F52GQAAAAAAQD8lRAVAn6k8ODbaL7q+7DIAoJAhqvZbR5VdBgAAAAAA0A8JUQHQJ6pPTYi2v1weUauVXQoAdGi/5IaojBxddhkAAAAAAEA/I0QFQK+rvvBytJ5+UUR7pexSAGBhtYi2c6+KyiNPlF0JAAAAAADQjwhRAdCratNmRuvvL4iYt6DsUgCga9VqtJ31j6g8Ob7sSgAAAAAAgH5CiAqAXlObM++VANWM2WWXAgBL194ebX+6KKoTXiy7EgAAAAAAoB8QogKgV9Ra26L1TxdFbdKUsksBgO5Z0FqEf6v+vwsAAAAAABqeEBUAK6yW2yKd84+oPftc2aUAQM/MmRdtf7wwarPnll0JAAAAAABQIiEqAFZY+9+vi+ojT5ZdBgAsl9qU6dF65iVRa6+UXQoAAAAAAFASISoAVkjb1bdF5a4Hyy4DAFZI7emJ0f73a8suAwAAAAAAKIkQFQDLrf2uB6Ny7R1llwEAvaJyz8PRfuM9ZZcBAAAAAACUQIgKgOVSfXpCtF94XdllAECvar/85qiMtkUtAAAAAAA0GiEqAHqsNn1WtJ55aUSlWnYpANC7arVoO+fyqD7/ctmVAAAAAAAAK5EQFQA9Umtrj9bTL4qYPbfsUgCgbyxojdY/XRg1/18HAAAAAAANQ4gKgB5pu+CaqE2cVHYZANC3ps2M1jMujlp7pexKAAAAAACAlUCICoBua7/53qiOHF12GQCwUtSeea4IDwMAAAAAAIOfEBUA3VJ5fFy0/+OmsssAgJWqeu8j0X7D3WWXAQAAAAAA9LEhff0EAAx81SnTo+3syyKqtbJLgR45f9yY+PEjdyzx9zcd8aFYZ9jwLn/3nw/eEpdNfCL+uP/bYt/1NunW893+0sT47L1Lnlrz19cfHbusvUHxfbVWi5MfuzcumfB45F/W/utvGt/Y5XWx3iqrLnSfBZX2eMfNf48D1t8svrP7gd2qA+hd7VfeEk0brRstu25XdikAAAAAAEAfEaICYKlqC1qj7fSLI+bMK7sU6LGxM6cWXz+89S6xxpBhi/1+eEvX/xS68cVxRYCqpx6bOaX4+o7NtotNVl1jsd9vMHy1ju/PGzcmznz64Xjd+q+KLVZfswhTTZo/J/58wFEL3edvzz4a01sXxAnb79XjeoBeUqtF2zmXR9MXPxTNm25YdjUAAAAAAEAfEKICYKnazr0qai+8XHYZsFzGzpwSw5tb4ms77RfNTU3dus+01vnxg4dvW+7nS1/YYZ+FAlNd+fv4x2KbNdaO3772zdHU1BQbDV89fjN2ZIyZMTl2Wmv94jYz2xbEn556MD6y9a7LfDygj7W2RdufL41hX/1oNK2yeCgTAAAAAAAY2JrLLgCA/qv9+rui+uDYssuA5ZLb5T0xa1psO2Kdbgeo0g8fvj3aqtXYZ92Ne/ycj8+cWmwP2J3A08Q5M2O7EesUAaq045rrvXL93Fkdt/nDEw/EkKbm+Ni2u/W4FqD31V6eFm0XLHnLTgAAAAAAYOASogKgS5VHn4r2q24tuwxYbuPnzIj5lfbYYc11u32fyyc+GTe8+Gx8bef9YsPhq/fo+fK5xs+d2e3nW2vY8Jhbae/4eXZ7a/F1zaGrFF+fnzsrzh03Jj693Z6xehdbEQLlqN43JtrvfLDsMgCIiJtvvjmOOuqo2G233WK//faLW2+9NQ499NDYYYcdor39//6dBQAAAADdYTs/ABZTzUkb51weUauVXQost8dmTi2+NkVTnHjfP+O+qZOK7fFePWKdYnu8t75q24VuP2nenPiv0XfGGzbYLN61+fZxz+TnezyFqlKrxWotQ+P7D90ad05+LqYumB9brL5mvHuLHeP9W+7UMXUq7bHOhnHzpPHxwNRJseUaa8X548YU962HsE59fFRsvOrq8Z4tduyV1wPoPe0X3xDNW24SzZtuWHYpAA1r+vTp8aUvfSna2triXe96V6y55pqx/fbbx3HHHRezZs2K5mbrBgEAAADoGSEqABZSa69E29mXRcxfUHYpsEIy1JQunDA29l1vk3j7q7aNl+bPjZsmjY9vPnBTsdXfF3fcp7hNrVaL7zx0S/H9d3Y/cPmeb9Yrz/fPSeNil7XWjzdtsk1Ma50ft740oQhnPTTtpfjJa97YEaT6/A57x/1TJ8VH77y8+HlIU1P8x24HxtrDhsdjM6bElc89Fb/Y69AY8q//AJjbE/ZkW0KgD7W3R9tZl8WwrxwXTauYFAdQhieffDLmzZsXBx98cPzoRz/quP5jH/tYqXUBAAAAMHAJUQGwkPYrb4naxElllwErrBa12HTVNeKE7feKozfbruP6iXNnxcfuuDz+9NSDceCGm8Ve625cTIG6a/Lz8aM9DurxNn51rZVKbLbaiHjHZtvFp7bbs+P6qQvmxafuviqufP6peP0Gm8WRm726uH7L1deKCw86Jm6aNC5mt7fFfutvWkzJSr967J7Yfe0N4/BNto4X582O7z50a9w75YViUtUxW+wQX9xhn45wFVCO2ktTo+2Ca2PYh48suxSAhtTa+spWyOus88q/nwAAAABgRfmvbwB0qIx9Nio331t2GdArvrTjvnHVoccuFKBKGXQ6YftXQk6XP/dkjJ8zM3712L1x8EZbxFGL3LYnPrj1LnHFIe9bKECV1l1l1fjaTvt1PF9naw1bJd6x+fbxoa136QhQ3fHyxCLQ9eWd9i1+/vYDN8dTs6bHz/c8tAiE/eWZR+LPTz+83HUCvad636PRfteDZZcBUIrcRu+Pf/xjvOMd74jXvOY1ceCBB8anP/3peOihhxa63f333x+f/exnY7/99otdd901Dj/88PjZz34W06ZNW+h2p5xySuywww7x4IMPxumnnx5vfetbY7fddise9zvf+U5MnfrK1M906KGHxsc//vHi+4svvri43ze/+c2O3+XP7e3tHbevVqvx5z//OY488sjYY489iulVv/71r+POO+8sbpvPvSz5uG95y1viueeeK45nr732Ko7phBNOiEcffbTjdpMmTYqdd965OM6uXHDBBcVzZj0AAAAA9C9CVAAUarPnRttfr8jxPTDo7br2BsXXDFD954M3x7DmlvjPXV/f5883ce7Mpd4utxX89WP3xiEbbVFMyHpq1rQYOfXF+Pi2u8Xhm2xVhK3esOEWcc4zj/RZrUDPtF98Q1Sff7nsMgBW+hSo4447Lk466aRYsGBBvPvd7443vvGNcffdd8cHP/jBuOuuu4rbXXjhhcXPt9xyS+y///7xoQ99qJgclSGpvM8LL7yw2GP/8Ic/jJNPPrkIUH3kIx+JESNGxHnnnRfHH398EYZK+dwZ3ko77rhjfP7zn19iaCn9+7//e/zkJz8pan3ve99b1PKnP/2pCGf1xOzZs4tjeOKJJ+LYY48tQlQ333xzcYz33HNPcZuNNtqoCH5NmDAhRo4cudhjZOhr6NChcdRRR/XouQEAAADoe7bzA6DQdu6VEbPmlF0G9IpqrRaPzZwSc9vbYp/1Nlns9/P+NZlg1ZYhxTZ56bAb/tblYx1/15XF1z/u/7bYt4vHqnt85tSYsmBe7L/+ptHU1LTw81Xaiq+rtCz9n145qSqDUz/b85Di52dmz+jY+q9uqzXWihsnjYtZba0xYuiwpT4esBK0tUfbWZfGsK8cF02r+JsEGsMZZ5wR9913XzHZ6ac//WkMG/bK//69//3vL8JFed1vf/vb+N73vleEoM4888xiOlNHaPzXv47f/e538e1vf7sIVHU2fvz4uOyyy2LLLbcsfv7Sl74URx99dIwePbqYarX33nvHxz72sbjjjjvi0ksvjZ122im+8IUvLLHWG264IS6//PJiclROzlp99Ve2bv7ABz5QXHri5ZdfLqZu5RSp4cOHF9fdeOON8ZnPfCb+8z//M6666qpobm4uAmIZrsrj2GeffRY6tlGjRsWb3vSmWHfddXv03AAAAAD0PZOoAIj2W0ZF9dGnyy4DetUn77yyCEBlsGlRo6a+2DEh6jPb7dnlZbt/ba+X2wHmz5uuusZSn+8b998Yn7nn6nh0xuQlP99ar0yk6kprpRKnPX5fvHPzHWLrNdYurqvUXpm20F6rLXS71LxwTgsoUe2lqdF24XVllwGw0lxyySUxZMiQIgRVD1ClnB514oknxjHHHBMXXXRRMbHqk5/8ZEeAKmXYPENPGZK6/fbbi4lNnWUwqx6gSqusskq84Q1vKL6fOHFij2vNaVj1aVT1AFXKbf3q06x64hvf+EZHgCodcsghcdBBB8Wzzz5bhLzqW//lxK0MVeVr0HkKVcrXBwAAAID+R4gKoMFVn38p2i+/qewyoFc1NzXFEZtsVexOmdvj5WSqurEzp8TpTz0Yq7UMjXdtvn2csP1eXV62G7FuR4gqf37VaiOW+pxv3nSb4uvJj42MtuorQaf0/NxZ8ZvHRkZLU1O8f6udlnj/vz37aExrnR8nbLdnx3Xb/CtMdf+/QljpgWmTYsPhq8XqQ0y8gf6kOnJ0tN/1UNllAPS53BLv6aefLoJOXU1TyilRH/3oR+Pxxx8vfs4t7xaVAaw993zl3zxjxoxZ6HfbbPPKv6k6W3PNNYuvnQNJ3fXQQw9FS0tL7L777ov9rvOUqO7I8FROtFpUBrLSo48+WnzN7fpyetbMmTPjn//8Z8cErpyctcEGG3SEwgAAAADoX2znB9DAaq1t0Xb2PyLa/y/wAYPFl3bcN+6fOikum/hEsdVebsX30vw5ceOk8VGtVeNnex4aGw7/v2kEPXHOM48U2+llwKoervroNrvFbS9NiLunPB/vvuXieMOGm8WM1gVx06TxMau9NU7cef/Yaa31u3y8mW0L4o9PPRDHbbNbrD98tY7rt1tz3XjNOhvF2f96vknz58ToGZPjxJ0X/4+RQPnaL74+mrfcJJo3WfLUOYCBbvr06cXX3KZvaWbNmrXU22200UbF17lz5y50fU6eWtSiWyX3tN6cCpXBrSXV0F0bb7xxl9dvuOGGxdcMTdXlln657V9O7XrLW94Sd999dzz33HPFZK6uagEAAACgfCZRATSw9kv/GbVJU8ouA/rEequsGn858Oj4yNa7FgGknPR09+Tn48ANNouzX390HL7JVsv92H95ZnT87on74/l5szuuW7VlSPxp/7cVU6vyH1jnjRtTBKhyy8Df7/fW+NDWuyzx8f705IMxpKk5PrbNbov97pd7HxYHb7RlXPHck8VWgbm14Ae2WvJjASVqa4+2cy6P2r+23QQYjFZbbbWFQlKLmjdvXjF1aY01XtkKedKkSV3ebsaMGcXXDDj1pdzCb86cOUVNi8rreyKPrSv18FTnyVw77LBD7LrrrnHbbbcVx3r55Zd3hKsAAAAA6J8sfQNoUJWHHo/KnQ+WXQb0qTWHrhJf33m/4tJTP93z4OLSlasOPbbL61dpGVKEnPLSE1/Z6bXFZUlhsAxSAQND7YWXo/3aO2LoW23VBAxOOVnqVa96VYwbN66Y8rT22q9sP1z3jW98I2688cb49Kc/Hddee23cc889ccABByz2OHl92m677fq03nqQ6bHHHouddlp4a+UHHnigR4+VgbAXX3xxsYlUo0aNKr6+5jWvWej6DEx9//vfjxtuuKF4TXJLwW233Xa5jwUAAACAvmUSFUADqk2fFW3nX112GQAwKFVuuDuqE18suwyAPvPOd74z2tvb42c/+1nxtW706NFFWGizzTaLd73rXTF06NBiS7tHH310ofufdtpp8fTTT8f+++8fm266aZ/W+t73vrf4+otf/GKhSVIZqjr//PN7/Hg//elPo62trePnDEjddNNNRVhr0ZDWkUceWWxPeOqpp8bkyZPjmGOOWaFjAQAAAKBvmUQF0GBq1Vq0/eXyiLnzyy4FAAanajXa/nZVDPvKcdE0pKXsagB6XU6ZyulOF110URGc2m+//Yrt/a688spoamqKn//858W0qu9+97vxne98J973vvfFYYcdVkxwyulPecnf/+QnP+nzWt/ylrfEm970pmIq1jve8Y446KCDigla1113XcfWhM3N/7fGcOLEiXHxxRcXE7c+9rGPLfZ4t99+exGGet3rXhfPPfdc/POf/4y11lqry2NZc80144gjjii28ssw1dvf/vY+PloAAAAAVoRJVAANpnLTPVF9akLZZQDA4N/W77o7yi4DoE9kIOiss86KL37xi8VUpr/97W9x/fXXF9v25fe77bZbxxSos88+Ow488MC48847469//WsRYMoQVgaVMki1Mvzyl7+Mr3zlK0XA69xzzy223/vUpz5V1JHqYaqUwaicHJXH15VzzjknNtxww2KKVYbBMph1wQUXxA477NDl7Y866qjia4apMlQFAAAAQP/VVKvVamUXAcDKUX1parT+4syITltuAAB9pLk5hn3pw9G8+cZlVwLQsF588cUiJNVVgOlXv/pV/O53v4tf//rX8da3vnWpj3PooYcWAaucvDVkSPcHu+fWhSeffHKceeaZxfSq3lJ9cny0nnZurz0eAEs2/Jcnll0CAACwkphEBdBI2/idd5UAFQCs1G39roxae6XsSgAa1umnnx777rtvXHPNNQtdP3ny5GIa1tChQ4vf94VJkyYVk7m23nrr2H///fvkOQAAAADoPd1fOgfAgFa5/b6oPfNc2WUAQEOpvTg52q+9PYa+7aCySwFoSO95z3vivPPOi69//etx1VVXxRZbbBFTpkwpth/MrQW/9a1vxfrrr9+rz/mXv/wlLrroonj22Wdj9uzZ8Zvf/KbYShAAAACA/k2ICqABVKfOiPYrbim7DABoSJV/3h0tu20XzZtvUnYpAA1n++23jwsvvDD++Mc/xj333BM33HBDrLHGGrHrrrvGcccdF2984xt7/Tk32WSTmDBhQqy66qrxla98Jd785jf3+nMAAAAA0PuaarVarQ8eF4B+pPW350X1iXFllwEADatp4/Vj2FePi6Yh1rEAsOKqT46P1tPOLbsMgIYw/Jcnll0CAACwkjSvrCcCoBztdz0oQAUA/WFbv2vuKLsMAAAAAABgCYSoAAax2szZ0f6Pm8ouAwDIbf1uvDuq418ouwwAAAAAAKALQlQAg1jbJf+MmLeg7DIAgFStRdvfroxae3vZlQAAAAAAAIsQogIYpCpjno7qA4+VXQYA0Elt0pSo3HRv2WUAAAAAAACLEKICGIRqC1qj/cLryi4DAOhC+/V3RW3azLLLAAAAAAAAOhGiAhiE2q+5PWpTZ5RdBgDQlda2aLvsxrKrAAAAAAAAOhGiAhhkqhMnReWWkWWXAQAsRfXBsVF5YlzZZQAAAAAAAP8iRAUwiNRqtWj7+7UR1VrZpQAAy9B+0fVRq1TLLgMAAAAAABCiAhhcqqMejdr4F8ouAwDohtqkKVG5dVTZZQAAAAAAAEJUAINHrbUt2q68pewyAIAeaL/29qjNnF12GQAAAAAA0PCEqAAGifZ/3h0xfVbZZQAAPTG/Ndouv7nsKgAAAAAAoOEJUQEMArXps6Jy071llwEALIfqqNFRfWZi2WUAAAAAAEBDE6ICGATarrg5orWt7DIAgOVRi2i76PqoVWtlVwIAAAAAAA1LiApggKuOeyGq9z1adhkAwAqoPfdSVO58oOwyAAAAAACgYQlRAQxwbZfeUEywAAAGtvYrb43a7LlllwEAAAAAAA1JiApgAKvcPyZqzz5fdhkAQG+YNz/ar7yl7CoAAAAAAKAhCVEBDFC1tvZou/zmsssAAHpR5e6Ho/rCy2WXAQAAAAAADUeICmCAqtx0T8S0mWWXAQD0plot2q+6tewqAAAAAACg4QhRAQxAtZmzo/2Gu8suAwDoA9VHnozquBfKLgMAAAAAABqKEBXAANR+xS0RrW1llwEA9JH2K28puwQAAAAAAGgoQlQAA0x14otRGflI2WUAAH2o+sS4qDwxruwyAAAAAACgYQhRAQww7VfdFlEruwoAoK+1X3lr2SUAAAAAAEDDEKICGECq41+I6pinyy4DAFgJauOej8ojT5RdBgAAAAAANAQhKoABpP2a28suAQBYyRMoazUjKAEAAAAAoK8JUQEMEKZQAUDjqb3wclTvG1N2GQAAAAAAMOgJUQEMEKZQAUBjar/mtqhVqmWXAQAAAAAAg5oQFcAAYAoVADSu2uTpUbnnobLLAAAAAACAQU2ICmAAMIUKABpb+3V3Rq2tvewyAAAAAABg0BKiAujnquNMoQKAhjd9VlRuv7/sKgAAAAAAYNASogLo50yhAgBS+w13RW1Ba9llAAAAAADAoCREBdDfp1A9ZgoVABARc+ZF5Y4Hyq4CAAAAAAAGJSEqgH7MFCoAoLP2m0dGrb1SdhkAAAAAADDoNNVqtVrZRQDQ9RSq1pPPLrsMAKCfGfK+t8SQ/XcvuwwAAAAAABhUTKIC6KdMoQIAulK56Z6oVa2FAQAAAACA3iREBdAPVSe8ENXHni67DACgH6q9NDWqDz9edhkAAAAAADCoCFEB9EPtN48suwQAoB9r/+fdZZcAAAAAAACDihAVQD9TmzErqg+OLbsMAKAfq014MSpPjCu7DAAAAAAAGDSEqAD6mfbbH4ioVMsuAwDo5yo33lt2CQAAAAAAMGgIUQH0I7W29qjc+UDZZQAAA0B17NNRnTSl7DIAAAAAAGBQEKIC6Ecqox6NmDOv7DIAgIGgFlG52TQqAAAAAADoDUJUAP1I5dZRZZcAAAwglZGPRm323LLLAAAAAACAAU+ICqCfqDwxLmovvFx2GQDAQNLeHpXb7y+7CgAAAAAAGPCEqAD6icotplABAD3Xfvv9UWtvL7sMAAAAAAAY0ISoAPqB6uRpUX30qbLLAAAGotlzi239AAAAAACA5SdEBdAPVG69L6JWK7sMAGCAqtxhSz8AAAAAAFgRQlQAJavNXxCVex4uuwwAYACrTZwU1YmTyi4DAAAAAAAGLCEqgJIVAaoFrWWXAQAMcJW7Hiy7BAAAAAAAGLCEqABKVKvWXtnKDwBgBVXuGxO11rayywAAAAAAgAFJiAqgRNUxT0VtyvSyywAABoP5C6L64NiyqwAAAAAAgAFJiAqgRJW7Hy67BABgEGm3pR8AAAAAACwXISqAktRmzy0mUQEA9JbaM89FddKUsssAAAAAAIABR4gKoCSV+8ZEVKpllwEADDIV06gAAAAAAKDHhKgASlK511Z+AEDvq4wcHbX2StllAAAAAADAgCJEBVCC6vMvR+25l8ouAwAYjObMi+rDj5ddBQAAAAAADChCVAAlMIUKAOhLlbsfKrsEAAAAAAAYUIaUXQBAo6lVqlG5b0zZZQAAg1j1iXFRnTI9mtdbu+xSAOgD1SfHR+tp55ZdBgAA9Lrhvzyx7BIAaGAmUQGsZNXHno6YNafsMgCAwaxmGhUAAAAAAPSEEBXASlYZObrsEgCABlC555GoVatllwEAAAAAAAOCEBXASlSbMy+qo58suwwAoBHMnB3Vx54puwoAAAAAABgQhKgAVqLKA49FtFfKLgMAaBDVB8eWXQIAAAAAAAwIQlQAK1Hl3kfKLgEAaCCVR56ImgA3AAAAAAAskxAVwEpSnTQlauNfKLsMAKCRzFsQ1cefLbsKAAAAAADo94SoAFYSU6gAgDLY0g8AAAAAAJZNiApgJancP6bsEgCABlR55MmoVWzpBwAAAAAASyNEBbASVCe+GDFtZtllAACNaN78qD4+ruwqAAAAAACgXxOiAlgJKg8/UXYJAEADs6UfAAAAAAAsnRAVwEpQfeTJsksAABo80G1LPwAAAAAAWDIhKoA+Vp0yPWovvFx2GQBAI7OlHwAAAAAALJUQFUAfq9rKDwDoB2zpBwAAAAAASyZEBdDHKo8IUQEA5bOlHwAAAAAALJkQFUAfqs2eG7Vnniu7DAAAW/oBAAAAAMBSCFEB9KHKI09G1GpllwEAULClHwAAAAAAdE2ICqAPVW3lBwD0s22GbekHAAAAAACLE6IC6CO1Ba22zAEA+pe58201DAAAAAAAXRCiAugj1ceeiWhvL7sMAICFVB5/tuwSAAAAAACg3xGiAujD7XIAAPqb6lghKgAAAAAAWJQQFUAfqFWqUX306bLLAABYTG3ipKjNnlt2GQAAAAAA0K8IUQH0gepTEyLmzS+7DACAxdVqUX1iXNlVAAAAAABAvyJEBdAHqmOfKbsEAIAlsqUfAAAAAAAsTIgKoA9UnxxfdgkAAEtUEfgGAAAAAICFCFEB9LLavAVRe25S2WUAACzZjNlRfXFy2VUAAAAAAEC/IUQF0MuqT0+IqNbKLgMAYKlsPwwAAAAAAP9HiAqgl9nKDwAYCKpjny27BAAAAAAA6DeEqAB6WfUJISoAoP+rPj0xau3tZZcBAAAAAAD9ghAVQC+qzZkXtRdeKrsMAIBla22L6tPPlV0FAAAAAAD0C0JUAL29lV+t7CoAALqnOvaZsksAAAAAAIB+QYgKoLdDVAAAA0R17LNllwAAAAAAAP2CEBVALxKiAgAGktyGuDZrTtllAAAAAABA6YSoAHpJ/gfI2qQpZZcBANB9tYjqM8+VXQUAAAAAAJROiAqgl5hCBQAMRNVxz5ddAgAAAAAAlE6ICqCXVJ8YV3YJAAA9JkQFAAAAAABCVAC9xiQqAGAgqk2cFLVqtewyAAAAAACgVEJUAL2gNn1W1CZPL7sMAICea22L2vMvl10FAAAAAACUSogKoBfYBgcAGMiq4/1bBvqLCRMmxMUXX7xSnmvMmDFx3XXXrZTnAgAAAID+TogKoBdUJ04quwQAgOVWHfdC2SUAEfHYY4/F2972trj99tv7/LluvvnmOOaYY+KRRx7p8+cCAAAAgIFAiAqgF9Qmvlh2CQAAy61mqib0CzNmzIjW1taV8lxTpkyJarW6Up4LAAAAAAYCISqAXmASFQAwkNVenhq1ufPLLgMAAAAAAEojRAWwgmpTZ0TMmVd2GQAAy68WUR1vSz8o0ze/+c047rjjiu//8Y9/xA477BAXXXRR8fOkSZPie9/7XhxyyCGx6667xoEHHhjf+ta3YuLEiYs9zpgxY+Lzn/98x20POuig+MY3vhHPPvtsx20+8pGPFPdPv/vd74rnuvvuu3tcc9aX9/3Vr3612O/yus7HkNrb2+P3v/99vOtd74o999wz9tprr3jve98bf/3rX6NWqy32GLmt4Sc+8YnYd999Y/fdd4+jjjoq/vSnP0VbW9tir10+16hRo+I973lPcdyHHnpoTJgwofj9eeedF8cee2zxOK95zWvi6KOPjv/93//t1tSvfF3ysbPuq666qqgha8nH/+///u+YM2dOx23zNnnbU089tcvH+sAHPlDUNnXq1GU+LwAAAAArnxAVwAoyhQoAGAxs6QflOvzww4twUdp+++2LINROO+0UTz31VBxzzDFx7rnnFtd/9KMfjb333jsuvfTSePe7312EpuqefvrpIqhz1113xete97r4+Mc/XoR2LrvssiJE9NJLLxW3y+c57LDDiu/32Wef4rle9apX9fkxfuc73ymCR8OHD4/3v//9xXFNnjw5vv/97y8WxDr99NOLANWjjz4aRxxxRHz4wx+O5ubm+PnPfx6f+cxnikDWor74xS8Wj50hsTzuzTffPP7nf/6neN65c+cWz5fPW6lU4pe//GVHkKw7rr322vjyl78cm2yySXzwgx+MNddcswhN5XMtWLCguM073/nOaGlpKV7vRY0bNy7uu+++OPjgg2PdddddrtcPAAAAgL41pI8fH2DQE6ICAAaDqhAVlB6iGjFiRFx88cXFNKMvfOELxfUZ/MnJRTkxKgM4dRmUypDUiSeeWIR2mpqa4oILLoh58+bFmWeeWYSo6k477bQ4+eSTi6lQGUDKx0w33HBDEaKqP1dfmj17dlxyySXF8/3lL3/puD4DXG9961vj7LPPLuoYOnRoPPbYY3HSSSfFq1/96uL6eugop1V9+9vfjgsvvLA4xuOPP36h58jQ1FlnnVWErery/nl9Hns+dvrqV79aBMkuv/zy4vXbaKONlln/ww8/XISuPvaxjxU/Z4jr3//93+PKK68sAl8nnHBCbLjhhsXkrxtvvDHuv//+YtpWXb6vqf7aAwAAAND/mEQFsIJqE18suwQAgBVmOz/ofx566KEYPXp0MTWqc4Aq7b///sX1jz/+eDzwwAPFdfUt8XJbu87b42Xw56abbopPfepTUZasp1qtxgsvvLDQNoRrr712EYq69dZbO0JOuf1e3jbDTp2nNmVQLLcmzJBUBsYW9Za3vGWhAFX9eadNm1ZM9KobNmxYEXy69957uxWgSttss03HdotpyJAhxTaC+bUekEo5HSxlYKxzDRl0W3/99YuQFQAAAAD9k0lUACvIJCoAYFCYOz+qL02N5g1tMwX9RU4/SjmJ6pRTTlns9zNmzCi+5pZ3OfWovu1f3vZvf/tbHHDAAfH617++CO7kNnRlyilbRx99dLEN4Zve9KbYfffdi9oOPPDA2GOPPRYKP9WP+4477iiObVGrr756PPvsszFnzpzi+7qcOLWo3HovJ3HlVnu5PWK+JvmcORGrHtrqjte+9rWLBbQygLXxxhsXW/XlpK011lijCLutt956cfXVVxdTszKwlVPDnnvuuWJ7wgxdAQAAANA/6dwArIDatJkRs+eWXQYAQK+o5ZZ+QlTQb8ycObNjslRelmT69OnF1+23376Y0PSHP/yhmDyV04/y0tLSEoceemh873vfK6YhleUnP/lJEZ7KrfVyelZueXfqqacWYaScOpVBp87Hfc455yz18fJ2nUNUq6666mK3+dKXvhRbbbVVnH/++cXzZSjrj3/8YzEB69/+7d8W2xJwSZYUQttggw2KyVqzZs0qQlQZzMqw2BlnnFG8BxkYq0+lqk+pAgAAAKB/EqICWAGmUAEAg0n1hZejpewigA71gNDXvva1bm/Ft91228XPf/7zqFQqxVaAOc0ppz9dd911xeSmDPf0ltxeL3XeOrBu3rx5i12XU5g+/OEPF5ecrpUTmjJodOWVVxbb9G222WbFhKj6cd9+++29Evp6xzveUVwy6JRb+N18881FuOykk06KDTfcsAg9LUtXx5PyMdM666zTcV2GpfJ1vvzyy4vJVNdee20RHnv1q1+9wscCAAAAQN9ZeA45AD1Snfhi2SUAAPSa2otTyi4BGlo9lFS38847F18feuihLm+fU6d+85vfxNNPP138nFv5/fCHPyxCTTl9KoM7n/nMZ+LCCy+M1VZbrQgQLem5lkd9O7wMZy0qt7jr7Kmnnor//u//jhtvvLH4ed111423ve1tReAra0wjR44svua2e+nBBx9c7HEXLFhQTLTKkFJX4a3OJk2aFCeffHIx+aq+pWBO5Pr+978f3/3ud4vrOr8mS9PVe5BBsNxWcMcdd4zhw4cvFGTL1/7WW28tjnfu3Lnxrne9q1vPAwAAAEB5hKgAVkBtgklUAMDgUXtJiArKlJOaUltbW/F1r732im222aaYInX11VcvdNuHH364CEzVt6arB4JyC7x//OMfC9128uTJRfgoJz0t6bmWx7bbbtsxMaq1tbXj+tyq77bbblvots3NzfH73/8+fvWrX8X8+fMX+l1uh5c233zz4ut73vOe4msGrF566aWFbvvrX/86/vznPxdb8y0rCJYTrf70pz8Vz5mBp84mTJiw0HMuy5133lm8D3X5uv34xz+O9vb2eN/73rfY7XMaVYanfvazn8Uqq6wSRx55ZLeeBwAAAIDy2M4PYAWYRAUADCa1aTOi1toWTcNemS4DrFybbLJJ8fWWW24pwjeHHXZYseXcxz/+8fjSl74Ur3/962OHHXYogkW5RVwGeX76058WU53S5z73ueK+uTXeVVddVYScpk+fHtdcc00xtenrX//6Ys+V29plGCm3u9t+++17VG9OjNpzzz2LQFOGhg466KB48cUXi9oyAHbPPfd03HbrrbeOD3zgA/G3v/0t3vrWt8YhhxxSTG/KaVM5gSof501velNx27zvZz/72TjttNPi7W9/ezE9ar311otRo0YVAa1XvepV8a1vfWuZ9a2xxhrxhS98IX7xi18Uj3PEEUfEmmuuGWPHji2mRG255ZZx7LHHdtz++uuvjzFjxsRrX/va2G+//bp8rHxP8vkzVPX444/HG9/4xuK4FpWhqXxvnnvuueK583kBAAAA6N9MogJYTrXpsyJmzy27DACA3lMzjQrKlMGmr33ta7HqqqsWE6XuuOOO2HXXXePiiy8uph3ltn1nn312EU7KQFXepvM2cTm1Krf0O/roo4uAT05syulJe++9d3Hbww8/vOO2++yzT3z0ox8tJlTl77raOq87MuiUQaSc9HTWWWcVNeaEpnzsRf3Hf/xHsZVeBqKuuOKK4nmnTZtWhJNOP/30ju0BU4bGfvvb3xbHf8MNNxS3nTFjRnziE5+I888/vyMEtiz/9m//VkyiytcmQ1JnnnlmPPPMM0V95513Xqy11lodt83fn3rqqQuFv+oOPvjgYvJXbkuYr3GlUokTTzyxOP6csrWoDF1lwCodc8wx3X49AQAAAChPUy2XIgLQY5UxT0fbH/5edhkAAL1q6AffHi377FJ2GQD9wt133x3HHXdcHHXUUcVEq57IyVq53V+Gs7oKWq2I6pPjo/W0c3v1MQEAoD8Y/ssTyy4BgAZmEhXAcqq9PLXsEgAAel3VJCqAFZbTw8aNG1dM6ertABUAAAAAfWNIHz0uwKBXe0mICgAYfGovClFBI8ppSWPGjOn27V/72tfGfvvt16c1DUSf/OQnY/LkyTF27NjYaKON4oMf/GDZJQEAAADQTUJUAMtJiAoAGIxqJlFBw4aocnpSd33+858XourC+uuvHyNHjozddtstfvSjH8WIESPKLgkAAACAbmqq1Wq17t4YgP8z/3unRcycXXYZAAC9q7k5Vvmvr0TTkJayKwFgCapPjo/W084tuwwAAOh1w395YtklANDAmssuAGAgqs1fIEAFAAxO1WrUJk8ruwoAAAAAAFiphKgAlkPtZf9hEQAYvGovTi67BAAAAAAAWKmEqACWQ+2lqWWXAADQZ2qTppRdAgAAAAAArFRCVADLoTZletklAAD0maoQFQAAAAAADUaICmA5VIWoAIBBzCQqAAAAAAAajRAVwHKoTRaiAgAGL1M3AQAAAABoNEJUAMvBf1gEAAa11raozZ1fdhUAAAAAALDSCFEB9FCttS1i1uyyywAA6FO1GbPKLgEAAAAAAFYaISqAHqpNnRFRK7sKAIC+VZsuRAUAAAAAQOMQogLoIVv5AQCNoDbD5E0AAAAAABqHEBVAD9WmzSy7BACAvmc7PwAAAAAAGogQFUAP1WbNKbsEAIA+VxOiAgAAAACggQhRAfSUEBUA0ABq023nBwAAAABA4xCiAuih2qy5ZZcAANDnTKICAAAAAKCRCFEB9FBtthAVADD4CVEBAAAAANBIhKgAesp2fgBAI5g7P2qtbWVXAQAAAAAAK4UQFUAPmUQFADSK2ozZZZcAAAAAAAArhRAVQA/UFrRGmMgAADQIW/oBAAAAANAohKgAeqBmKz8AoJEIUQEAAAAA0CCEqAB6Ypat/ACAxlGbbjs/AAAAAAAagxAVQA+YRAUANJLaTCEqAAAAAAAagxAVQA/UZptEBQA0kPkLyq4AAAAAAABWCiEqgJ4wiQoAaCC1+a1llwAAAAAAACuFEBVAD5hEBQA0lAUmUQEAAAAA0BiEqAB6oGYSFQDQQEyiAgAAAACgUQhRAfSASVQAQENZIEQFAAAAAEBjEKIC6An/IREAaCC1+bbzAwAAAACgMQhRAfREW3vZFQAArDy28wMAAAAAoEEIUQH0QE2ICgBoJK2tUavVyq4CAAAAAAD6nBAVQE8IUQEAjSTzU7YzBgAAAACgAQhRAfSEEBUA0Ghs6QcAAAAAQAMQogLoCSEqAKDB1EyiAgAAAACgAQwpuwCAgaJWqUZUq2WXAQCwcplEBdDvNL96ixj+yxPLLgMAAABgUDGJCqC72trKrgAAYKWrLVhQdgkAAAAAANDnhKgAustWfgBAIzKJCgAAAACABiBEBdBdQlQAQCNaIEQFAAAAAMDgJ0QF0E01ISoAoAHV2v0bCAAAAACAwU+ICqC72trKrgAAYOWr1cquAAAAAAAA+pwQFUB3mUQFADQiGSoAAAAAABqAEBVAN9nODwBoSNVq2RUAAAAAAECfE6IC6C4hKgCgEdnODwAAAACABiBEBdBdVf8BEQBoQEJUAAAAAAA0ACEqgO5qbiq7AgCAlU+QHAAAAACABjCk7AIABoyWlrIrABpQrSli9lYRozdqj3nNlbLLARrQ9uvOiW3LLgIAAAAAAPqYEBVAd7UY3gesHO2rNcX0bdti2hovxNQ5o6NtwYx4fIO94rpZo8ouDWhAH1t9KyEqAAAAAAAGPSEqgG5qahaiAvrO3E2bYtqms2JqyzMxc8bYqLVWIqb+3++3mfh0DFtnWLRWW8ssE2hAzU3+DQQAAAAAwOAnRAXQXSZRAb2oOrQpZm5bianrTI6p8x+N+XMnRcxa8u2HzJ0e+27+mrh95v0rs0yAaG6ypTEAAAAAAIOfEBVAd5lEBaygBes2xfSt5sfUYeNj2qxHo9o+f6FpU8uy46SX4s5Vm6Ma1b4sE2AhJlEBAAAAANAIhKgAusskKqCHas21mLVVU0zfYFpMqTwec2Y9GzEnXrksh+HTn4/dN9olHpj5SG+XCrBEQlQAAAAAADQCISqA7mqxlQ2wbG1rNMWMbVpj2uovxJTZo6O9dWbE9N57/N2nL4gH5BmAlch2fgAAAAAANAIhKoDuam4quwKgn5r7qqaYtunMmNr8TMyc8XjUFlQiFvTNc42Y9GS8ertXx5Ozn+ybJwBYhElUAAAAAAA0AiEqgO4yiQr4l8qwiJnbVmPa2i/F1PmPxfy5kyJmrrzn33v+8BChAlYWk6gAAAAAAGgEQlQA3dTUbAoDNLL56zXF9C3nxdRh42P6zEejWlkQMbWcWtab+GhsvPWm8eK858spAGgoJlEBAAAAANAIhKgAuqvFf0CERlJrjpi1dcS0DabG1PbHY86scRFz4pVLyZpqtdg/NopLQogK6HstJlEBAAAAANAAhKgAusskKhj02kY0xfStW2Pa6s/H1Nmjo711VsS06Jc2GfdorLXZ2jGjdXrZpQCD3Cotq5ZdAgAAAAAA9DkhKoDuMokKBqU5mzXFtE1nxtSmp2PmjMcjFlQjFkS/11xpjdcN2zWubh1VdinAIDdi2FpllwDAIqpPjo/W084tuwwAAOh1w395YtklANDAhKgAuqvFVjYwGFRWaYqZ21Ri6tovxdR5j8aCeS9HzIgBaasJT8Tw9VeN+ZV5ZZcCDGJrDF2z7BIAAAAAAKDPCVEBdFPTsKERQ1oi2itllwL00IL1m2LalnNj6tDxMX3mo1GttEZMjQGvZf6s2Hf1PePWmfeVXQowiI0YtnbZJQAAAAAAQJ8TogLoiVWHR8yaU3YVwDLUmiNmbVOLaetPjSntj8fcWeMjZsegtMMLz8fta7REtSbgCfS+pmiKNYaZRAUAAAAAwOAnRAXQA02rrxo1ISrol9rWbI7pWy+Iaas9F1NnjY72ttkR02LQW2XmpNhzk91i1MyHyi4FGIRWHbJ6tDTZ0hgAAAAAgMFPiAqgJ1YbXnYFwL/Ummoxd/PmmLbxjJgaT8fMmU9EzK9GzI+Gs9vU2THKv+qAPjBi2FpllwAAAAAAACuF/9wG0ANNqw2PWtlFQAOrDI+YsU01pq01KabOezQWzJscMaPsqsq3+svPxA7bbx9jZz1edinAILPGUFv5AQAAAADQGISoAHqgabVVyy4BGs78DZpi2hZzY+rQcTF9xqNRq7RFTC27qv5nr7lDYmzZRQCDzhomUQEAAAAA0CCEqAB6wnZ+0OeqLRGztqnFtPWmxtS2x2Lu7IkRs8uuqv9bZ+KYeNW2m8dzcyeUXQowiNjODwAAAACARiFEBdADJlFB32hdqzlmbDU/pq72XEydNToqbXMippVd1cDSFBH7VdeLi0KICug9tvMDAAAAAKBRCFEB9IRJVNArak21mLNFc0zbaHpMjadi1ownI+bXIuaXXdnAttG40bHOFuvFtAVTyi4FGCRGDFu77BIAAAAAAGClEKIC6IGm1U2iguXVPrwpZm7bHlPXnBRT546O1vlTI2aUXdXg0lxtj9cN2SquFKICeskIk6gAAAAAAGgQQlQAPWESFfTIvI2aYvrmc2LqkHExfcaYqLW3RUwtu6rBbYsJY2PVDVaLeZW5ZZcCDAJrDFur7BIAAAAAAGClEKIC6IEmISpYqmpLxKxtazFt3Skxpe2xmDf7uYhZZVfVWFoWzIn9Vtszbpp1X9mlAIPACCEqAAAAAAAahBAVQA80rWY7P1hU69pNMX2r+TF11edi2qzRUWmbGzGt7Koa23YvTIhbR7REpVYpuxRggFvDdn4AAAAAADQIISqAnjCJCqLWVIs5WzTHtI2mx9TakzFr5lMR82oR88qujLphsybH3pvuHvfMfLDsUoABziQqAAAAAAAahRAVQA80rTIsYkhLRLvpLjSW9lUjZmxbiakjXoipcx+NtvnTImaUXRVLs8vk6XHPsLKrAAa6EUOFqAAAAAAAaAxCVAA91LTmGlGbKj3C4Ddv46aYttnsmNrybMyY+VjU2tojppZdFd212pTxscv2O8XoWWPKLgUYoJqiKVYfZjs/AAAAgP/P3n2A2VWX+QN/752e3nsPSSAJhARIQu8iVZQigiKooKKsndVd//a1sWtZyiq6LnYsC9hAQRFwlaZ0CL0koSQhmfQy9f/8TpyYTsrMnJm5n8/z3OfO3Hvuue+ZXA5n5nzP+wYAJUGICmAnFfr1FqKiS2oqj1g+vjlq+74SS+oeizWrXoxYkXdV7I59V0Y8kncRQKdVU949ygpleZcBAAAAAADtQogKYBdCVNBVrOtTiGVj18aS6vlRu/yRaGxYE1Gbd1W0lj4vPhaj9xgTz696Lu9SgE6od1XfvEsAAAAAAIB2I0QFsJOEqOjMmgsRK0cXYung2ljc9FSsXP50xOpYf6NLOqChdzyfdxFApzS42/C8SwAAAAAAgHYjRAWwk4So6GwauhVi6bj6qO35cixZ9UjUr1sasTTvqmgvg+Y+HANGDYxX1i3KuxSgkxnafVTeJQAAAAAAQLsRogLYSYV+vfIuAV7V6qGFWDpiZSwpPhvLlj0WzfWNEUvyroo8FJqaYnb5qPi1EBWwk4b2EKICAAAAAKB0CFEB7KRCX52o6HiaKgqxfFxTLOm7KJasmxNrV78csTzvqugoRjw/J7oP6RGrGlbmXQrQiQzTiQoAAAAAgBIiRAWws3r3jCgrRjQ25V0JJW5dv2IsHb06llTPj9rlj0RTw9qI2ryroiMqq18Ts2tmxB9W/C3vUoBOxDg/AAAAAABKiRAVwE4qFAtR6NMrmhcvzbsUSkxzIWLlmELUDloSSxqfjJUrno1YnWb35V0ZncH4F56N2/pURENTfd6lAJ1AWaE8BncblncZAAAAAADQboSoAHZBoV9vISraRUO3QiwdXx+1PV6KJaseifp1yyJ89NgFFatq44AR0+KO5ffnXQrQCQzqNjTKin5dBAAAAACgdPirOMAuKPTrlXcJdGGrhxWidviKWFJ8NpYvezya6xojluRdFV3B5IWvxJ3VhWiO5rxLATo4o/wAAAAAACg1QlQAu9iJClpLY2XE8nFNUdt3USxZOyfWrl4QsTzvquiKqmtfiL0nTY4Hlz+SdylABydEBQAAAABAqRGiAtgFhb5CVOyetf2LsWz06lhSNS9qlz0STY3rdJuiXUxbXh8P5l0E0OEN6zEy7xIAAAAAAKBdCVEB7AKdqNhZzcXmWDGmELUDl8SSxidj1YrnIlbF+hu0o14vPRnj9hgXz6x6Ju9SgA5MJyoAAAAAAEqNEBXALhCiYkfU9yzE0rH1Udv9xViy8pFoqFsesTTvqiBi//ruIUIFbM+Q7jpRAQAAAABQWoSoAHZF7x4RlRURdfV5V0IHs3p4IWqHrYglxWdi+bInonldY8S6vKuCTQ2Y+0gMHjMkFqx9Oe9SgA6ovFAeg7oNy7sMAAAAAABoV0JUALugUChEYciAaJ77Ut6lkLPGqkIsH9cYS/osjCVr58S61QsjluddFWxfobk5ZhWGxS9DiArY0qBuw6OsUJZ3GQAAAAAA0K6EqAB2UXHYwGgUoipJ6wYUo3bU6lhSOTeWLn80mhrXRSzJuyrYOcPnPhI9h/WOFfXL8i4F6GCG9jDKDwAAAACA0iNEBbCLCkMH5V0C7aS5GLF8bHMsHbgkljQ8EatWzI1YFetv0EkVG+riwKqpcVP93/IuBehghnUflXcJAAAAAADQ7oSoAHajExVdV33PQiwdVxe13V6MJSsfiYa6FRG1eVcFrWvs/Keisl9V1DWty7sUoAMZKkQFAAAAAEAJEqIC2EUFIaouZ9XIQtQOWR5LCk/H8uVPRqxtilibd1XQdsrXLI+ZPfaN/1t+X96lAB2IEBUAAAAAAKWomHcBAJ1VoaY6ok/PvMtgNzRWFWLJ5MZ4+sCX4p59/xD3dbsmnlt+Qyxf9nhEc1Pe5UG7mPTyy1F0SAhsZFgPISpgU0cddVRMmjQpGhoasu/vuuuu7PsPf/jD7VZDXV1dXHXVVdHY2Ljhscsuuyyr42c/+9k2awUAAACAHaUTFcBujvRrWroi7zLYCWsHFmPpqFWxpGJuLF3+aDQ11kUsybsqyE/1spdj2pCpcd/yh/IuBegAKoqVMaBmSN5lAB3MueeeGytWrIhiMb/g9Zvf/OZ44IEH4m1ve9uGx2bOnBnvfe97Y/LkybnVBQAAAEDXIUQFsBsKQwdFPPpM3mWwHU1lESvHRiwZsDiW1D8eq1fOi1iZd1XQsexTuzruK8u7CqAjGN1rjygWdKcDNnXeeeflXUK88sorWzw2a9as7AYAAAAArUGICmA3O1H9Y5gEHUVdr0IsHVsXtd1eiNoVj0RD/cqI2ryrgo6rx8JnYsKECfHkyifzLgXI2YQ+U/MuAQAAAAAAcuESY4DdUBg2KO8SiIjmQnOsHFWIeTOXx4Mz74u7h/4knlh7bSxactf6ABXwqvZbW5V3CUAHMLHv3nmXACVr3bp18c1vfjNOOumk2GeffeKAAw6Id7zjHXHPPfdsstykSZPioosuisceeywuuOCCmDFjRrbsP/3TP8XChQuz9XzlK1+JI444Ivbdd9943eteFzfccMMW75eW/eIXvxgnnHBCttzee+8dxx57bHzuc5+LpUuXbrLsUUcdlb1vQ0NDq23vttaZvk+Pp+eTu+66K/v+hRdeyL6fMmVKvOUtb8m+vuyyy7Lnfvazn233vebNmxeXXHJJHHPMMTF16tQ4+OCD4+KLL46HH354h2pN75d+PrW1tfHRj340GyO4//77x1vf+ta48847NyyXfvbpuenTp8eaNWu2WM9f/vKXrN7Pf/7zO/S+AAAAALQvnagAdkNhYN+I8vL0l/68Syk5jdURy8Y3xpJeC2LJmkejbs3iiGV5VwWdV795j8SwccPjxTXrT1ACpWmSEBXkIgVu0si8+++/PwsJvelNb4rVq1fH7373uzj33HPj3/7t3+INb3jDhuWfeeaZOOuss2LatGnZ/d13350t++KLL0aPHj3i2WefjaOPPjrq6uriF7/4RXzgAx+IQYMGZcGfZMGCBXHaaadloaAjjzwyCyytWLEibr311vj+97+f1fHzn/88OoLhw4fHe9/73vjud7+b1ZgCZCNHjtzh1y9ZsiT7GaXXvuY1r4lhw4Zlgaz087rtttvipz/9aey5556vup7m5uY4//zzs7GCKZi2bNmybB1ve9vb4tJLL40TTzwxqqqqsvsf/ehHcdNNN2XLbey6667L7jf+twQAAACg4xCiAtgNhWIxCkP6R/P8BXmXUhLWDipE7chVsaTi+Vi6bE40N9RHLMm7KugaChExMwbF9SFEBaWqV2WfGNpjVN5lQEn6+te/ngWXUmepD33oQ1EopP8zRxYeOvPMM+OTn/xkHHTQQTFkyJDs8RSSSoGe1BUpqa+vz7osPfTQQzF69Oj4zW9+k4WpktRB6ROf+ERcf/31G0JUV111VSxatCjriJTCVC3Wrl2bdaZK63nqqadijz32iLyNGDEi6xqVAkgpCPWe97wnytOFLDvoxhtvzIJPqcPWGWecseHxww47LOtO9cMf/jA++9nPvup60s945cqV8ctf/jL69euXPZYCbinw9pnPfCYOP/zw7Geefp4pRJWW2zhElV578803ZyG5HQltAQAAAND+jPMD2E3FoQPzLqHLaiqLWDYh4rnZr8S9+/05/tr3mnh65a+itvbBaG6qz7s86HKGPf9I9Klcf1IQKD0T+k7NuwQoSY2Njdk4uhTMSR2jWgJUyeDBg+Ptb3/7ho5SG0uBqxYVFRVZV6rknHPO2RCgSvbbb7/sfv78+RseS92SPv3pT8epp566yTqrq6uz0X7J4sWLoytoamrK7h944IEsCNUihcV+//vfZwG1HfW+971vQ4AqSaMBU2gqjT+85ZZbNjyWRvbdcccd2cjEFr/97W+zjmO6UAEAAAB0XDpRAeymwjAhqtZU17sYy8aujSU1L8SSFY9EY/2qiNq8q4LSUGisj9mVY+O3dVq8QSma2McoP8hD6iqVuhSlLlNXXnnlFs+n0XPJI488suGxnj17Rv/+/TdZrlu3btn9qFGjtghGJevWrdvw2IwZM7Jbet/HH3885s6dm93mzJkTd9111ybho87uta99bfZzTUG1NGJv9uzZcfDBB2edqHZmLGBy4IEHbvFYCp39+Mc/jkcffTROOeWU7LEUrEpdvn71q19lIbgkddKqrKyMk046qZW2DAAAAIDWJkQFsJuKwwfnXUKn1lxojlWjClE7eFksiadjxbKnItY0R6zJuzIoTaPnPRnVA2pibaP/CKHUTOwrRAV5WLZsWXb/8ssvx+WXX/6qy20cmNqaqqqqV33PFJ669NJLsxF/aYRf0qdPnywQlEJYjz32WDQ3N0dXMHDgwLj22mvjm9/8ZtZ56ne/+112S1Kg6lOf+lSMHTv2VdeTun0NGDBgq+tPli9fvuGxFKZKP9/UPSyFqObNmxd/+9vf4rjjjst+zgAAAAB0TEJUALupMGpoRFkxorFrXKndHhqqC7FsfEPU9loQS1Y/EnVrl0T845wQkKPytStiZvfpcfvye/MuBWhHxSjGROP8IBfdu3fP7g899ND49re/3S7veckll8Qf/vCHrEvTWWedFRMnTtzQ2SqNFEwhqvayecerNPKutQ0dOjQLS6XRfU888UQ2au/Xv/513HnnnfGud70rG7W38RjFrWloaMjGAaYw1cZawlMbj/nr27dvHHXUUVlY68knn8zCWymUZpQfAAAAQMdWzLsAgM6uUFkRBd2oXtWawYV4cf9V8fDsR+OusT+POQ0/j5eX/Gl9gAroUCa+9EIUC2V5lwG0o+E9x0S3ih55lwElady4cdnIvRRcqqur2+L5e+65J/793/89/vKXv7TK+6XQzy233BJjxoyJr3/969mIuo1HAz711FPZfVt3omoJI61atWqTx5977rlWfZ8bbrghC0+tWLEiC0pNmjQpzjvvvPjJT36S/QzS+y1cuPBV15N+Hg8++OAWj6cOU0nq4rWxNNIvSUGqFFgbNGhQHHLIIa22XQAAAAC0PiEqgFZQHDci7xI6nKayiGUTm+PZ2YvibzP+L/7W55p4ZsWvY2ntQ9Hc1JB3ecB2VC1fGDN6Tsm7DKAdTeijCxXkpbKyMhv/tmjRomwE3MadmWpra+P//b//F9/61rdi3bp1rRZeKhaLWZgqjfXb2FVXXZV1amrpvNSWxo8fn93/8Y9/3PBYes9vfOMb26w7Sd2gdkYKp11zzTXxgx/8YJPH0/YvXbo06wSWOkftiK985Sub/MxSqOrnP/951ukqdRLbWPp+8ODB2SjBhx9+OF73utdFWZmQOgAAAEBHZpwfQCuFqBpvvSdKXV2fQiwdszaWVM+P2hWPRmPD6ojavKsCdsXUxcvjr5tOqwG6sEl99867BChpH/nIR+L++++P733ve3HXXXfFzJkzs0DRTTfdFIsXL47TTz89jjjiiFZ5r5qamjj++OOzcXZpvNyRRx6ZPX733XfHo48+GgMGDIhXXnklC3C1pbPPPjvr0JS6RKX3TkGm22+/PdauXRvDhg3bYvkUVEpdoz784Q9nP5+3vvWtO/Q+abm0rV/72teyn+3kyZOzkYE333xzFqJKIbUUZGsJVn33u9/Nvr744ou3WNfjjz+ehaHSzyz9fNK/TwpGfeELX4iqqqpNlk1Btde//vUbQmHpawAAAAA6Np2oAFpBceyIiEKUnOZCxIrREfNmLYsHDvhr3D34J/HEmuvjldq/rg9QAZ1W91eejz17Tsq7DKCdTBSiglz16tUr65aUgjuNjY3ZqLkbb7wxRo0aFV/60pfis5/9bDaKrrWk9b3rXe/KRtT9+Mc/zt6rR48eWSesNOIvufXWW6MtpdF2l112WTZeL43cu+6662LvvffOfg7p57G5FJ5Ky952221bdJXanjSq8Ec/+lGcc8458dJLL8UPf/jDLFS1xx57xH/913/Fm9/85g3LphDV5Zdfnt225oorroipU6dm3aX+7//+Lwu2pXrTSMStOemkk7L76dOnb+i8BQAAAEDHVWhOfzEDYLet+9J/R/OCxdHVNdQUYtn4hqjt+XIsXv1I1K/Vagq6qtrhe8WPmh7NuwygjVWXdYsfnnB7FAuusQHYmre85S1Zt6zUeWr06NE7/Lpf/OIXcckll8TnPve5OOOMM1q1pqan5kbdlde06joBAKAjqP7KJXmXAEAJM84PoBW7UTV20RDVmiGFqB2xMpaUPRfLls2J5vrGiCV5VwW0tb4vzImR40fFvNVz8y4FaEN79JksQAXQylauXBn//d//Hb17997QkQoAAACAjk2ICqCVFMeNiMY7H4iuoKk8Yvn45qjt90osXjcn1q56KWJF3lUBeZjZ1C/mhRAVdGVG+QG7I43A++53v7tTr0ljC7uq3//+93HllVdmowOXLFkS//zP/xw1NTV5lwUAAADADhCiAmglhbHDozNb17cQS8esidrq+VG7/NFobFij2xQQg55/OPqNGhBL1r2SdylAGxGiAnY3RHX55Zfv1Gu6cohqyJAh8fLLL0dTU1O8+93vjvPPPz/vkgAAAADYQUJUAK2k2L9PRO8eEctWRmfQXIhYOSaidtDSWNL0ZKxc/kzE6lh/A/i7YlNjHFg+On4jRAVd1iQhKmA3jBgxIh5//PHoyr7//e/v8LJTp06Nv/zlL21aDwAAAABtQ4gKoBUVx46Ipvsfi46qoVshlo6rj9qeL8WSVY9E/bplEUvzrgro6EbMeyxqBnWPNQ2r8i4FaGUDa4ZGn+r+eZcBAAAAAAC5E6ICaEXFcR0vRLV6aCFqh6+I2rLnYtmyx6K5vtGYPmCnlK9bHbNrZsQfV/wt71KAVqYLFQAAAAAArCdEBdDKnajy1lRRiOXjmmJJv0WxZO2cWLv65YgVeVcFdHZ7vPh8/KlXeTQ0N+RdCtCK9h44M+8SAAAAAACgQxCiAmhFhaEDI6qrItaua9f3XdevEEvHrI0llXOjdsWj0dSwVrcpoFVVrlwc+w2fFnctvz/vUoBWtN+gQ/IuAQAAAAAAOgQhKoBWVCgWojhueDQ9+kybvk9zsTlWjCnE0oG1saTpyVi5/NmIVbH+BtBGpryyJO6qzLsKoLWM7TUp+tcMyrsMAAAAAADoEISoAFpZcdK4NglRNXQrxNLxdVHb46VYvPKRaKhbHrG01d8GYJtqFs+LqRMnx8MrHs27FKAV7DdYFyoAAAAAAGghRAXQyop7jY24rnXWtXp4IWqHrYglxWdj+bLHo7mu0Zg+IFfTVjTFw3kXAbQKISoAAAAAAPgHISqAVlYc0DcKA/pE8ys73yaqsTJi+fimqO2zMJasfSzWrl4QsbxNygTYJX1eejxG7zEmnl/1XN6lALuhV2WfmNh377zLAAAAAACADkOICqANFPccF43/d+8OLbu2fyGWjl4TSyrnxtLlj0ZT4zrdpoAObWZ973g+7yKA3TJj0MFRLBTzLgMAAAAAADoMISqANlDca9shquZic6wYW4jaAbWxpPGJWLXiuYhVsf4G0AkMnPtwDBwzOBatXZB3KcAuMsoPAAAAAAA2JUQF0AaK40dGlJdHNDRk39f3LMTSsXVR2/3FWLLykWioWxGx89P+ADqEQnNTzC4Oj1+FEBV0RmWF8pg+6KC8ywAAAAAAgA5FiAqgDRQqK2Ld/sNiUdMjUVt4JpYteyJiXVPEurwrA2gdI56fEz2G9YqV9cvzLgXYSZP67RPdK3rmXQYAAAAAAHQoxbwLAOiqlk8uxHPLbohlSx+LaG7KuxyAVlVsWBuzqyfkXQawC/YfZJQfAAAAAABsTogKoI0MHH1Y3iUAtKlx85+NimJl3mUAO2m/wYfmXQIAAAAAAHQ4QlQAbaS659Do0U+XFqDrqlhdGwf0mJx3GcBOGNRtWIzqNT7vMgAAAAAAoMMpz7sAgK5s4JjDYuWSJ/MuA6DN7LlwUdxRXYjmaM67lC5h/g/WxurnmmLix7tt8VzDyuZY9Lu6WDGnMfu6vHshekwqi4HHVURF7x27NqK5uTmW3t0QtXc1xLqXmyL9s1UOKETv/cqj/6EVUSgrbLL84tvqY/Ht9dFU1xzdxpTFkNdVRuWALd/rmf9cE2XVEaMvrNmNrac97GeUHwAAAAAAbJVOVABtaMDow/MuAaBN1dS+GPv0mpJ3GV3CopvrYvkDjVt9rnF1czx72ZqovbMhKvoVov8hFVE1pBhL72mIZ/9zbdQva9qh93jxp3Xx0s/romF5c/TZrzz6zCqP5oaIhb+pj3lXr4vmpn+E4VY82hALfl0XFX0K0eeA8lj9fGM8/6210dSwaWBu+QMNsXZ+Uww+0WjHzsAoPwAAAAAA2DqdqADaUK+Bk6Oy24CoW/1K3qUAtJlpy9bFA5s2MGInNNU3x8vX12UdorYldYSqX9IcfQ8uj6GnVm14fNFNdbHo5vpYdFN9DDvjH49vzconGmPZXxuiekQxRr+zOsqq1/+jpVDUvO+sjZWPNcayvzVEnwMqssdTYKtYEzH6XdVRrChEzaiyeOGH62LlnMbotff6XyOaG5tj4W/rovf08qgeXtZKPxHaSlVZdew9YP+8ywAAAAAAgA5JJyqANlQoFGLgKB0fgK6t58tPxfge4/Muo1NK3Z6evnRNFqDqsee2Q0hr5q7vUNV35vqAU4u+B63/fvVzW+9gtXnHqGTgMRUbAlRJsbwQA45Z30VqxaP/WE/d4qaoGljMAlRJ9bD1vzrULf5HJ6oUtKpf2hyDXrtpXXRMew84ICrLth+2AwAAAACAUiVEBdDGBo49Ku8SANrcfuu65V1Cp5TCU03rmmPI6ytj5Nu2HW4p674+yFRfu+nYvobl678v7/HqrcB6Ti6LAcdWRM3ILX8FKP69P22qZeP33Pj7prXrvy77+z9149rmbARhv4MroqKvXys6A6P8AAAAAABg25ztAGhj/UbMjIrqvnmXAdCmBsx7JIbUDMu7jE6n36EVscfHukW/gyqy7oXb0nd2RXbk/vIv62LV043RVNcca+Y3xos/qYsoRPQ/7NU7QfWcUh6DXlMZ5b22/BVg+YPrO1BVDf3Hc91GlcW6Bc2x/KGGLDC1+E/1WQ3dRq/vmLX41vpobooYcJQuVJ3F/oMPybsEAAAAAADosP5+zTkAbaVYLI/B446J+Y/+LO9SANpMobk5ZhUGxy/ixbxL6VS6jy/bseX2KIvRF1THC9esi+e/sXbD48WqiFFvq4oee+76Yf2aFxpjyZ/XB6T6zvpHIKr/kRXZuMH531u34bGBr6mIqsHFqF/eFItvr49Bx1VGWbf14a/m5ubtBsHI15heE2NAzZC8ywAAAAAAgA5LiAqgHQyZcLwQFdDlDXvu0eg1vE8sr1+adyldTv3Splh4Y100LGuOHnuWZUGmdYuaYuWcxnjpf+tixHmFqBm+Y4Gsja1b0BRzv70umhsiBh1fEVWD/tGJqrx7Ica9vyZWPNIYDSuao9uYYtSMWv8ei26qz0YI9j24PBrXNMeLP18XKx9pzIJYvaaVx9BTK6NYJVDVkRw24vi8SwAAAAAAgA5NiAqgHfQZMi1qeg6PNSteyLsUgDZTbKyL2VVT46b6v+VdSpeSOjzN/c66WPdSU4w4typ67f2PQ/iVTzTG3P9emwWhJnysJoqVOx5cWv1cY8z7n7XRuDqi74HlMeCoyi2WSevrPb18i+DV0nsaYtiZVVEsL8QLP18Xq55ojKGnr3/9y9fXRaEsYtjpVbu13bSeYqEsDh9xQt5lAAAAAABAh/aPS80BaFODx78m7xIA2tzY+U9GVVl13mV0KWueb8oCVN0nlW0SoEp6TCyLPvuVR+PK5qxj1I5adn9DPP/N9QGq/odXxNA37HjgacENdVE9tBi9Z5RlXaiW3dcQfQ4ojz77V6y/zSzPQlZN65p3ajtpO9MGzop+1QPzLgMAAAAAADo0ISqAdhzpB9DVla9ZEQd0n5x3GV1K/dL1YaSqwVvvMlU1dP0hfX1t0w6t75Vb6+KFH62L5saIIadWxuCTtuxAtS2rnmmMlY82xqATKqNQKETd4qaIpojKAf/4taJyYDF7LHuODuGokSfnXQIAAAAAAHR4QlQA7aRHv/HRo9+EvMsAaHN7vvxSFB1mtprynuvDU3WLtt7ZqW7R+rBSea9XH+W3+Lb6WPib+iiUR4w8tyr6HVyxU7Us/E1ddJ9YlnXAyrTkpDbKSzU3/P2Lwo6PFqTtdK/oGTOHHJF3GQAAAAAA0OE5uwXQjoZMeG3eJQC0uaplL8e+vabkXUaX0W1MMSr6FGLlY42x4tGWhNJ6a+Y2ZqPzitURPSdvOupva12kFvymLqIsYtTbqqPn1O0vv7nlDzbEmnlNMfjEik27ThUjVj/3j1GC2ddlEZX9hag6goOHvSYqy3Z8XCMAAAAAAJSqnTtzAsBuGTL+uHjqrstTn468SwFoU3vXrop7/96siN1TKCvE8LOr4vlvr415V6+LHns2RNWQYjYub8XDjRGFiOFnVkVZt3+ElpbeUx91tc3Ra0pZVA9f/w+x8Ia67H8/VYOKWaAq3TaXwlp9Z27Znaq5sTkW3lgXvWeUR/Wwf/zDltUUote0slh+X2PML6zNHlvxYGP0O7Q8ipVCVB3BkSNPyrsEAAAAAADoFISoANpRdc+h0WfIvrH05fvyLgWgTfVY+GxMnDAxnlj5RN6ldAndxpbFuPfXxCt/qI9VTzbGyscbo6wmoueUshhwVEXUjNg0sbb0rw2x+pmmqOxbyEJUjWuaY83z62furXupKbttTc2Y4lZDVLV3NUT90uYY/c4tnxt2elUUy+uyTlWpK1Xfg8pj0AmVrbbt7Lph3UfHnv2m5V0GAAAAAAB0CkJUADmM9BOiAkrBfmsqQoRq50y+tPs2n6saWIzhZ+3YWLYx767Z5PvUMWp76341/Q6qyG5bkzpODTuzKrvRsehCBQAAAAAAO664E8sC0AoGjTsmCkUZVqDr6zv/0RhWMyLvMqAkFaMYR4w8Me8yAAAAAACg03AWH6CdVVb3if4jDoxX5v4p71IA2lQhImY1D4zrYn7epUDJ2XvAATGgZkjeZQDQRop7jIrqr1ySdxkAAAAAXYpOVAA5GDLh+LxLAGgXQ55/OPpW9su7DCg5RxjlBwAAAAAAO0WICiAHg8YeGRXVvfMuA6DNFZsaYnbl2LzLgJJSU949Dhx6VN5lAAAAAABApyJEBZCDYlllDJv0urzLAGgXo+c+EdVlNXmXASXjoGHHRFW5/+YAAAAAAGBnCFEB5GT45NMiCnbDQNdXtm5lzOo+Oe8yoGQcaZQfAAAAAADsNGfvAXLSrdeI6D/iwLzLAGgXE1+cF2WFsrzLgC5vcLcRMbnfjLzLAAAAAACATkeICiBHI6acnncJAO2icsWimNFzat5lQJd35MgTo1Ao5F0GAAAAAAB0OkJUADkaMOqQqO45LO8yANrFlMXL8i4BurRCFOLIkSfnXQYAAAAAAHRKQlQAOSoUijFirzfkXQZAu+j+yvOxV8898y4DuqzJ/WfEoG7C2QAAAAAAsCuEqAByNmzPU6NYVpl3GQDtYvoqY8agrZww9o15lwAAAAAAAJ2WEBVAzipr+sagccfkXQZAu+j7wmMxqvvovMuALmdItxExe+hReZcBAAAAAACdlhAVQAcwYvIZeZcA0G4OaOiTdwnQ5Zwy/s1RLPj1DgAAAAAAdpW/sgN0AH2G7BM9B0zKuwyAdjF47sPRv2pg3mVAl9Grsk8cNeqUvMsAAAAAAIBOTYgKoIMYMfn0vEsAaBeFpqaYXT4y7zKgy3jtmDOiqqw67zIAAAAAAKBTE6IC6CCG7HF8lFf2yLsMgHYxcu7j0a3cPg92V2VZdZww9qy8ywAAAAAAgE5PiAqggyirqImhE0/KuwyAdlFWtzpmdzPGFHbXkSNOit5VffMuAwAAAAAAOj0hKoAOZOTUs6JQKMu7DIB2MX7+s1FerMi7DOi0ilGM141/c95lAAAAAABAlyBEBdCBdOs9MgaPPzbvMgDaReWq2ti/x5S8y4BOa+bQI2Joj1F5lwEAAAAAAF2CEBVABzNm+vkRUci7DIB2MXnR4ijY58EuOXX8uXmXAAAAAAAAXYYQFUAH06PfHjFwzGF5lwHQLmqWzI+pvfbKuwzodPbst29M6rdP3mUAAAAAAECXIUQF0AGNmf62vEsAaDfTljfkXQJ0OrpQAQAAAABA6xKiAuiAeg+aGv2Gz8q7DIB20fulJ2Ns97F5lwGdxvAeY2LmkMPzLgMAAAAAALoUISqADmrM9PPzLgGg3RxQ1zPvEqDTOGX8m6NQKORdBgAAAAAAdCnleRcAwNb1G35A9B68Tyxb8GDepQC0uQHzHomBYwbHorUL8i4FOrQ+Vf3jyBEn5V0GADlrempu1F15Td5lAABAq6v+yiV5lwBACdOJCqAD040KKBWF5qaYXRyedxnQ4Z0w9o1RUVaZdxkAAAAAANDlCFEBdGADRx8WPfpPzLsMgHYx/PlHo2dFr7zLgA6ruqwmXjvmjLzLAAAAAACALkmICqCDG7OvblRAaShrWBezqyfkXQZ0WEePel30rOyddxkAAAAAANAlCVEBdHCDxx8T3XqPzrsMgHYxbv4zUVk0qgw2V1Yoj5PHnZN3GQAAAAAA0GUJUQF0cIVCMUbv+9a8ywBoF+Wrl8YBPabkXQZ0OMeOfn0M7j487zIAAAAAAKDLEqIC6ASGTjghqnsMybsMgHax54KFUXSYChvUlHePN056Z95lAAAAAABAl+bsFEAnUCyriLEz3pF3GQDtonrpi7FPr8l5lwEdxqnjz40+Vf3yLgMAAAAAALo0ISqATmLYpFOie99xeZcB0C72Wbou7xKgQ+hbNSBOGf/mvMsAAAAAAIAuT4gKoJMoFMtij5kX510GQLvoueCp2KPHHnmXAbk7a9I7o7q8Ju8yAAAAAACgyxOiAuhEBo45LPoMnZF3GQDtYr+11XmXALka0WNsHD361LzLAAAAAACAkiBEBdDJTJj9vrxLAGgX/ec/GkNqhuVdBuTmzXtdHGWFsrzLAAAAAACAkiBEBdDJ9B40NQaNOybvMgDaXKG5OWbH4LzLgFxM7jc9Zg09Iu8yAAAAAACgZAhRAXRCe8x8bxSK5XmXAdDmhj7/aPSu7JN3GdDuzp2s8yQAAAAAALQnISqATqhb75ExYvJpeZcB0OaKjXVxYOX4vMuAdnXg0KNjUr998i4DAAAAAABKihAVQCc1dsYFUVbZPe8yANrcmHlPRnVZTd5lQLsoL5THm/e6OO8yAAAAAACg5AhRAXRSlTV9Y8y0t+ZdBkCbK1u7ImZ23yvvMqBdHDv6DTGsx6i8ywAAAAAAgJIjRAXQiY3a55yo6j4o7zIA2tzEl16MYqEs7zKgTdWUd48zJ12YdxkAAAAAAFCShKgAOrGy8uoYt/878y4DoM1VLV8Q03tOybsMaFOnjj83+lT1y7sMAAAAAAAoSUJUAJ3csIknR/d+4/MuA6DN7b1kZd4lQJvpWzUgThn/5rzLAAAAAACAkiVEBdDJFYplMWHW+/IuA6DNdV/0bEzqOTHvMqBNnDXpnVFdXpN3GQAAAAAAULKEqAC6gAGjDo6BY47MuwyANjdjdXneJUCrG9FjbBw9+tS8ywAAAAAAgJImRAXQRUw6+CNRVtEt7zIA2lTf+XNieLeReZcBreotk/8pygpleZcBAAAAAAAlTYgKoIuo7jE4xu3/zrzLAGhThYiY1dQ/7zKg1ew/+NCYOeTwvMsAAAAAAICSZx4KQBcyauqb4qUnboiVix/PuxS6iLV1zfG7u+vigScbYvHy5igvixgxsBhHzqiMfSesP4y445H6+MHv1r3qut53RnVMHLn9Q4+6+ua45d76+OtjDfHKsqboVlWIvcaUxfGzK2NA702z303NzfGLP9XFHQ/XZ9/vObo8Tj+iMnp133S5+obm+PT/rI7JY8ri7GOrd+GnQEcz+PlHou+o/lG7bnHepcBuqS6riQv3/mjeZQAAAAAAAEJUAF1LoVgWex36sbjnF2+LaG7Kuxy6QIDqK9esiRdeaYqRg4px2LTyWLOuOe5/qiG+9au1ccohlXHczMosVHXC7IqtrmPRsua4Z05D9O5eiCH9tt8As7GxOa68bk08Ob8pRg9J71cRS1c2x92PNsT9TzbE+8+siZGD/jHu6vb76+P3f62PvUaXxcA+xSxMVbuiKT501qZjLW+9rz5WrW2OEw+sbKWfDHkrNjXEgeVj4gYhKjq5sya9KwZ2G5p3GQAAAAAAgBAVQNfTe/DeMXzP18cLc/4371Lo5G6+py4LUB2yT3mcdXRVFAppkFrESQc1xZd/tCZ+/ee6mD6hPAs2bRxuatHQ2Bz/cc2aKBYi3nZS9RYdojZ3+wP1WYBq9pTyeMtx/+gY9dBeDfGN69fG/95alwWpWvz5wYYY0q8Q73lDdVZb356F+MX/1cW8hY0b6lm9tjluursujp5REb17mGLclYya93jUDOwWaxpX510K7JJxvfeMk8afnXcZAAAAAADA3zmbCNAF7THr4qis6Zd3GXRyf3u8IVJs6nWH/CNAlfTpWYxDp1VEU3PEI882bPP1N95ZF3MXNMUx+1fEHsO3DFltbmFtc3Svjjh+1qYdo/YeVx7dqiKefalxk8cXLWuK4QPLNtQ2fOD6w5pFS5s3LPPbu+qirKwQxxygC1VXU7ZuVczuvlfeZcAuKUYx3j3t41FWePV9IwAAAAAA0D6EqAC6oIqqnjFh9gfyLoNO7sgZFXHSwZXRrfofAaoW5X8/77+ufuuvfWVZUzZqr1+vQpywg2P03nh0VXz5oh4xoM+mhyfLVjbFmnWRjQTcWPfqQqyra95k/GDS7e9NrBYvb4rb7q+P42dXRHXllttA57fHC3OjvKCxKp3P8WPPjD36TM67DAAAAAAAYCNCVABd1NCJJ0TfYQfkXQad2OH7VsZrN+sKlTQ3N8d9T67vQDV8wNYPJX7xp7poaIw45eDKqCjftQBTCkXNea4hrrh2baR41OZhrLHDyuLxuY3xzIuNsXJNc/zpgfqoqogYMXB9wutXf66Lfj0Lccg+Fbv0/nR8lStfiRk9p+RdBuyU/tWD45y93pN3GQAAAAAAwGZcug/Qhe156Mfirp+fFU2NdXmXQhfypwca4vmXm2JA70JMHrPlKKpXljZlIatBfQqx36RdO9RIYwKvvG7thu9PPbQyZk/ZNAyVAlrPvNAY/3HNmuz7YjHiTcdURY+aQsxb2Bh/ndMQbz+pOsqK60NcTc3NUdxoLCFdw5RXlsbdpjXSibxj749ETXn3vMsAAAAAAAA2I0QF0IV17zM6Rk87N56999t5l0IX8bfH6+Nnf1yXBZbe8trqKCvbMpT0x/vqo7k54tiZlVH8e4BpZ1WWF+KY/Sti9drmeOiZxrj+T3VRu6I5zjiyMgp/D0IN6luMfz23Wzz4TEOsXdcck0aVxbAB60NdafkxQ4sxfWJ51K5oih/ctC6emNsYVZURB02tiNcdWrkhXEXn1m3x3Jgyca94ZMWcvEuBVzVzyBExe+hReZcBAAAAAABshRAVQBc3Zvrb4uWnfhdrls/LuxQ6udsfqI+f3rIuUvTora+tij2Gb9mFqrGpOe6ZUx81VREH7LnrhxkTRpZltySN6vvqT9fEbffXx4QRZVkwqkX3mkIcuFmHqjQC8LHnG+MDb6zJvv/ujWtjYW1z1pUqBaquvb0ue91xM7Uv6ir2XRnxSN5FwKvoUdEr3rnPx/IuAwAAAAAA2Ibitp4AoGsoK6/KxvrBrkpj8P73tnXxkz+si7JiZGGk/ffcNLjU4qn5jbFqbcS0Pcqjorx1Oj2l8XwnH7Q+8PTA0w3bXba5uTnrQrXP+LIs5PXS4qZ4cn5THHtARew7oTyOnFEZe48tiz/eW98qtdEx9HnxsRjdfUzeZcB2nT/lQ9GvemDeZQAAAAAAANsgRAVQAvqPmBXDJ5+Wdxl0Qg2NzfHfv1obt/ytPrpXR1x8ek0WRtqWNHov2W/SznWhSuGnJ+Y2xP1Pbj0k1b/3+kDWytXN213P3XMa4sXFTfG6Q6uy7xcsadow+q/FoH7FWLG6Odas2/666FwOaOiddwmwTfsNOiSOGnVy3mUAAAAAAADbIUQFUCImzv5AdOs9Ku8y6ESamprj279eG/c/1ZiFmD50VretjvDb2DMvNkahEDH+VZbbXKFQiP/+zbrs/ZatWh982ti8hVuGoTZX39Acv/5LXRw0tTyG9CtuGC+4flv+sVzD33NaqU66jkFzH44BVbr80PF0K+8R75r2r3mXAQAAAAAAvAohKoASUVZRE1OO/EwUCjsXbqF03XRPfTz0dGP07VmID55ZE4P/HkzalsbG5nhxUVMM7luIqoqdTyjNnFwezc0R191Wl40QbPHK0qb49Z/rstDTQXtvu8PVbffXx8o1zXHCgetH/yUtYaqnX1jfIasl6NWnRyGqK6WoupJCU1PMLhcUpeM5b8oHYkDN4LzLAAAAAAAAXsXOzdoBoFPrPXjvGDP9/Hj23m/nXQod3Ko1zfG7u+uyr0cOKsafH6rf6nJ7jCiLSaPWH07UrmyO+saIPj1ePaN9y711sWZtc8yeUhH9e69f/oTZlfHE3Ma457GGeGlxU0wcVZaN3XvgqYaob4g488iqGDFw6yHA1Wub43d31cXR+1VE7+7/eP/hA8ti3LBi/OFv9bF6XXPUrmiO5xc0xelH/CNoRdcx4vk50X1Ij1jVsDLvUiAzbeDsOHb06/MuAwAAAAAA2AE6UQGUmLH7XRC9Bk7Ouww6uKdeaIy6v+emHny6MW64s36rtyfm/aPD08rV67tH1VS9+vr/eO/61y9e/o85ezVVhfjgWTXx2lkVsa6+OW67rz4efqYhJowoi/edUROH7VuxzfWlwFdZWSGO2X/LcNSFp1THPuPL4u45DdlYwBNmV8Th07e9Ljqvsvo1MbtmUt5lQKa6rFtcNO3jubz3ZZddFpMmTcrud1Rzc3PccMMN8e53vzsOOeSQmDp1ahx22GHxlre8JX7+85/H2rVrt3jN0Ucfnb3Pc889t9V1XnTRRdnz06dPj7q69cHczR1++OGx5557xuLFi3diC4Gu6sMf/nC237jrrrt26fXpden1aT0AAAAAsLN0ogIoMcVieUw56rNx1/+eHU0N6/Iuhw5q2h7lccUHe+zUa8YMLdvh13z2Hd23+ngaA3jywVXZbWe8/rCq7LY1PbsV44JTanZqfXRe4194Nm7vUxn1TVsPbEB7OXfyP8WgbsOiM0gBposvvjj+9re/Rd++fePQQw+NIUOGxCuvvJIFEv71X/81rrrqqg3hrBYHHnhg/OxnP4t77703xowZs8k66+vr484774xisRirV6+Ov/71r3HQQQdtssy8efPi5Zdfjr322iv69+/fbtsLAAAAAABboxMVQAnq3mdM7DHrn/IuA6DVVayqjf176LZHvqYPOiheO+aM6AzWrFkT5513XhagSvd//OMf49JLL40PfehD8YUvfCFuvvnmLEQ1f/78eNOb3pQFn1q0hKJSiGpz6bFVq1bF8ccfn33/pz/9aYtl7rnnnuz+4IMPbsMtBAAAAACAHSNEBVCiRk55Y/QbMTvvMgBa3eSFr0QhCnmXQYnqXz0o3j/9s1EodI7PYOou9cQTT8Q555wTH/vYx6KmZtPOfWVlZXHuuedmQaoUikrLtJg9e3a2nSmAtbmW0NSFF14YPXv23G6IKo0PBAAAAACAvAlRAZSodNJzyhGfivKqXnmXAtCqqmtfiL176UZF+ysWyuKD+30+elX1jc5g7dq1cc0110R1dXX80z9tv0Nl6kI1bty4LPj02GOPZY/169cvG+/37LPPRm1t7SbL/9///V8MHjw49txzzyxs9eSTT2aj+zaWRvyl0NZ+++3XBlsH7KiPfvSj2X/LCxYsiC9/+ctx2GGHxT777BOnnnpq3HLLLdky6f6MM86IadOmxZFHHhmf+9znsmDlxu6777646KKLYtasWTF16tQ45phj4ktf+tIW+4ckvfbf//3f4+ijj87e65RTTokbb7xxmzWm2j71qU9l753WncKXKdSZuuTtiN/97nfxlre8JRtDmt7vta99bfzHf/xHrFix4lVfm94j/Xw+8YlPZGNKW34Ohx9+eFZTGona4oYbbsiW3ThwurEPf/jD2fMt+1EAAAAAOhYhKoASVtV9YOx5yNb/wA/QmU1bXp93CZSgN016V0zuPyM6ixR4SEGG6dOnR58+fba7bLFYjOOOOy77+qabbtpkpF9zc3O2rhaLFi3KAgItHaZa7jfuRpUCEXPnzo39998/KisrW33bgJ337ne/OwsBpYBRuj3++OPx3ve+NxvxefHFF8fw4cOzrnUVFRXx/e9/Pz7/+c9veO3//u//xtlnnx233357FpxMy/Xt2ze+853vxGmnnRYvvfTShmXXrVuXBZq+9a1vZfueFNIcOHBgvP/9789CSpt7+umn4w1veEMW+pw4cWK89a1vzcKXv/jFL7J1z5kzZ7vbdf3112dB0VTDiSeeGG9+85ujV69ecdVVV8UFF1yQ7cN2xIMPPhjveMc7sn1W2r708/jxj38cb3zjG+OVV17JlknBsbRNKbSVgqobW7lyZfz+97+PyZMnZwFTAAAAADqe8rwLACBfQ/Z4TSx6/tZY8NTv8i4FoNX0eunJGLfHuHhm1TN5l0KJmD7wwDhtwtuiM3nmmfX/fYwfP36Hlp8wYUJ2P2/evA2Ppa4uKSSRRvodddRRG7pQpVBCS3jq4IMP3hCiSh1cEqP8oONJXZl++ctfZgGjZNCgQVnQ6dvf/nYWOEqdl1rGdKaOUCnE9NnPfjbrMpc6MqXRnVdffXUWEkrSfuBrX/tafOMb38hGgqZ9RZLuH3nkkSx8lF6XQppJCiSl7zf3kY98JJYsWZKt54gjjtjweApcnX/++XHJJZdkdW9rjGoKfHXr1i0LU/Xo0WNDbW9729viL3/5SxYCnTHj1QOwKazVMt60Req0lbYnbWfqzpUCVieddFL84Ac/yAJT6esWqdPWmjVrskAYAAAAAB2TTlQAZN2oqroPzrsMgFa1f333vEugRPSrHhjvm/G5bZ7A76haxli1hApeTUu3qhRmaHHAAQdkXWnuvffeDY+lsFQKRaQuVcnIkSNjzJgxWVihsbFxkxBVS8AKyN+ZZ565IUCVtIza3GuvvTYEqFr2BSl8WV9fHwsXLswCTHV1dfH2t799Q4AqSfvE1MFq9OjR8ec//3lDADOFr9J+I422awlQJakj1cavb+n+lAJXaezfxgGqJHW8So8/8cQTcf/9929zu1JgKnWFeuihhzapLY3zu+OOO3YoQNWy3e973/s2eSx1uEqP/+Y3v8l+BknqjpWk0NbG0vdpuzcOVgEAAADQsQhRARAVVT1jypGfjkKhLO9SAFrNgLmPxODqIXmXQRdXLJTFB/f7fPSu6hudTe/evbP7zUdObUsa/ZekEV0tampqYt99942HH344CxA0NTVlYYm99957kxGBqeNUCm2lMETy17/+Nety09LdCsjf2LFjN/k+dW9KRo0atcWy6b/9ltF8jz76aPb1rFmztliuvLw8Gxna0skp7W+effbZLFi1cWBr8+BWi5bgUwpvXnbZZVvcli1blj3fUsPWpDGDad903nnnxfHHH591jLr11luz7evXr1/sqLRf2zx0mn4OkyZNitWrV2fblaQgWAqepeBoGm+apABZS8e+jfehAAAAAHQsxvkBkOk3/IAYf8C746m7L8+7FIBWUWhujlmFYfHLeDnvUujCzpr0zpjSf9OT/p1FSzCiZazfq3nyySez+xEjRmzyeBrplzpLpbBD6rKydOnSOOecczZZJnWcSuOt7rrrruz1Tz/9dJx66qmtti3A7msJTW0ujajbka52aZzf1gwevL7jbQoatYSettUBryXc2WL58uXZfQogpdu2pP3Otpx++ukxYMCAbKxf2gel+5YRf2eddVZ86EMfysJer2bo0KFbfXzgwIGb/BxaulGlsNavf/3rbOTgddddl3XEaulSBQAAAEDHJEQFwAaj9z0vli18KBY9d1vepQC0iuFzH4mew3rHivr1J22hNe07cHacNuFt0VnNnDkz6xZ19913R21t7at2R7npppuy++OOO26Tx9PYvv/8z//Mxm61dLVKnac2ljrUpIBVCkGkDjQpTGCUH3QNLYGoBQsWZGP+NtcSnEr7mJYOdS3hqM2loNXGundfP5o3BZ0uvPDCXa4xjQJMtzVr1mTjR9PY0TRe7zvf+U7WEevd7373q64jvXZrWsJTG+9DTz755Pjyl7+8IUSV7lPYavN9IwAAAAAdi3F+AGxQKBRiyhGfjppeI/MuBaBVFBvq4sCqPfIugy6oX/XAeP+Mf4tiofP+SpVCTWnMVQo+/fu///t2l/35z38ejz32WDaWK42p2tg+++yThSjSSL80pi8FEqZNm7ZFECK9Nq0jBanSMYcQFXQNaXxdkgKZW9PyeBrfWVVVFRMnToznn38+XnnllS2WTWHMra1788db/OxnP8tCnNvqqLdy5cq44oor4n/+5382jN9L+56PfvSj2TjAJHXS2xFbq6G+vj57PIXDUkC0Rfr+6KOPzvaLt912W7a9r3vd66KszPh0AAAAgI6s8/7FH4A2UV7VM6a95tIollfnXQpAqxg7/6moLFblXQZdSLFQFh+Y8fnoXbX9zk2dQeq+kkIKKST1mc98ZotOK6lj1E9+8pP41Kc+lY2++tKXvrTFOlIo4IADDogHHngg6/CSxvttLSiQOrC89NJLWQeYFMTq169fm24b0D5OOeWULJT53e9+Nx599NFNnrvyyiuzgNPs2bNj2LBh2WNnnnlmNDY2ZuPuUgipxY033pgFMTc2Y8aMGDduXNx8883x29/+dpPn0gjRz372s/Htb397Q4erzaX9VtqHpaDVs88+u8lz8+bN2+qI0m1JQairr756k/3jV7/61ayT3xve8IYtRgK2jO779Kc/nd2nZQAAAADo2IzzA2ALPfpPiL0O/Zd45I+fyLsUgN1WvmZ5zOyxb/zf8vvyLoUu4qxJ74ypA/aLju66667bZmeYUaNGxb/9279FZWVlFgpIo7J++MMfxg033BCHH354DBkyJJYuXRp33nlnPPfcc1mHla985SubdFrZfKTfH//4x+zrbY2rSo+ndTz99NNxwQUXtOKWAnkaPnx4fPKTn4xPfOITWUAqdWBK+5D7778/u6XnP//5z29YPnXAS/uLFJpK+4MUvJw/f37ccsst2T4mhZVaFIvFuPTSS7OReO973/uyLlKTJk2KhQsXZiNGUwjrC1/4wjZDmen1//zP/xwf/OAHsxBTGkeaxuql9/jDH/6QvW7j/dFdd92V7TdT0POYY47ZZF2p494Xv/jFrLNUquG+++7Ltm/KlClx8cUXb/HeqdahQ4fGCy+8EPvuu+9WRx0CAAAA0LEIUQGwVUMnnhjLFjwY8x/9ed6lAOy2SS+/HH/pVoymaMq7FDq5aQNnx2kT3hadQTpxn25bs3z58g1f9+7dO771rW/F7bffno3GSuP2FixYkD2eOsC8/e1vj5NOOinr6LItKUTVYltj+lLHqxRYWLJkiVF+0MWcccYZMXbs2Kwr1B133JF1tUudp975zndm+5C0P2mROtV985vfzJa9/vrr48c//nG2bOoqlcJU3/jGNzZZ99SpU7NQaHpN6mSXQk59+/bN9iPveMc7Yv/9999ubSeeeGLWqeo73/lO/PnPf846R/Xv3z9e//rXx0UXXbShQ1aS1n355Zdnz20eokpjCNP7pTGAKXQ6ePDgrJvfhRdeuNX9YwpwHX/88dn76kIFAAAA0DkUmlP/cQDYiqbG+vjrL98Ryxc+nHcpALvtL5Omxn3LH8q7DDqxvlUD4itHXBN9qoyhAygVKdiVumul0YIp8LUzzjvvvGzUaQp/pU5WranpqblRd+U1rbpOAADoCKq/ckneJQBQwop5FwBAx1Usq4h9jv1SVFT3ybsUgN22T+3qvEugEysWyuKD+31egAqAHZLGoabbySef3OoBKgAAAADahhAVANtV3WNITD368xEF/8sAOrceC5+JCT0m5F0GndSZEy+IqQO2PzIKAD72sY9l4/vSGMOamppspCEAAAAAnYMz4gC8qv4jZsX4/d+VdxkAu22/tVV5l0AnNG3g7Dhj4jvyLgOATmDQoEHxzDPPxNixY+Mb3/hGDB8+PO+SAAAAANhBhebm5uYdXRiA0pX+d/HA7z4Yrzx/e96lAOyydOB7/bhh8eKaF/IuhU5iZM/x8YVDvhPdK3rmXQoAbND01Nyou/KavMsAAIBWV/2VS/IuAYASphMVADukUCjElCM/E916j8q7FIBdVoiImTEo7zLoJPpWDYiPz/q6ABUAAAAAAJQAISoAdlhFVc+Y9tqvRXlVr7xLAdhlw55/JPpU9su7DDq4qrLq+JdZX4tB3YblXQoAAAAAANAOhKgA2Cnd+4yOfV5zaRSK5XmXArBLCo31MbtybN5l0IEVoxgf3O8LsUefyXmXAgAAAAAAtBMhKgB2Wr9h+8deh/1r3mUA7LLR856M6rKavMugg3rb1A/HzCGH510GAAAAAADQjoSoANglwyadEmP2PS/vMgB2SfnaFTGr+155l0EHdNK4N8WJ487KuwwAAAAAAKCdCVEBsMvGz3xvDBp3dN5lAOySiS/Oj7JCWd5l0IHMGnJknD/lQ3mXAQAAAAAA5ECICoBdVigUYsqRn4leg6bmXQrATqtcsSim95ySdxl0EBP6TI0PzPhcFAt+RQIAAAAAgFLkDAEAu6WsvDr2fe3XoqbXyLxLAdhpUxcvz7sEOoDB3YbHv8z6WlSV1+RdCgAAAAAAkBMhKgB2W2VN35h+wmVRUd0371IAdkr3V56PPXtOyrsMctSjold8fNZ/Rp+qfnmXAgAAAAAA5EiICoBW0a33yNj3+K9Fsbw671IAdsqMVWV5l0BOyosV8c8H/HuM6Dk271IAAAAAAICcCVEB0Gp6D5oaex/9hSgUBBKAzqPvC3NiZLdReZdBDt4z7RMxdcD+eZcBAAAAAAB0AEJUALSqgWMOi0mHXJJ3GQA7ZWaTUW6l5qxJ74ojRp6YdxkAAAAAAEAHIUQFQKsbMfn0GDvjgrzLANhhg55/OPpVDci7DNrJUSNPjjdOujDvMgAAAAAAgA5EiAqANjH+gHfF6H3ekncZADuk2NQYB5aPzrsM2sE+A2bGu6d9PO8yAAAAAACADkaICoA2M+HA98eIKW/MuwyAHTJi3mNRU9497zJoQ3v0mRKXHHBplBcr8i4FAAAAAADoYISoAGhTkw7+SAzb89S8ywB4VeXrVsfsmj3zLoM2DFB96sAro3tFz7xLAQAAAAAAOiAhKgDaVKFQiL0O+9cYssfxeZcC8Kr2ePH5KC+U510GrUyACgAAAAAAeDVCVAC0uUKhGFOO/HQMGnd03qUAbFflysWxX88peZdBKxKgAgAAAAAAdoQQFQDtolAsi6lH/VsMGH1Y3qUAbNeUV2rzLoFWIkAFAAAAAADsKCEqANpNsawi9jn2S9FvxOy8SwHYpprF82Jqz8l5l8FuEqACAAAAAAB2hhAVAO2qWFYZ0477j+g7bL+8SwHYpmkrmvIugd0gQAUAAAAAAOwsISoA2l1ZeXVMe+3XovfgaXmXArBVfV56PEZ3H5N3GeyCCX2mClABAAAAAAA7TYgKgFyUV3SL6cd/PXoO2CvvUgC2amZ977xLYBcCVJ888AoBKgAAAAAAYKcJUQGQm/KqnjHjxCsEqYAOaeDch2Ng9eC8y2AHCVABAAAAAAC7Q4gKgFxVVPeO/U7+ZvQZul/epQBsotDcFLOLw/Mugx0gQAUAAAAAAOwuISoAclde2T2mn3BZDBh9WN6lAGxixPNzokdFr7zLYDsEqAAAAAAAgNYgRAVAh1BWXhX7vObSGDLhhLxLAdig2LA2ZldPyLsMtkGACgAAAAAAaC1CVAB0GMVieUw58jMxYsob8y4FYINx85+NimJl3mWwGQEqAAAAAACgNQlRAdChFAqF2POQS2LsjHfkXQpApmJ1bRzQY0reZbCRiX0FqAAAAAAAgNYlRAVAhzT+gHfHxAM/lGJVeZcCEHstXBgF+6MOYdaQI+MzB35TgAoAAAAAAGhVQlQAdFij9jk7Jh/xiSgUyvIuBShx1bUvxj69dKPK20nj3hSXHHBpVJXX5F0KAAAAAADQxQhRAdChDZt0Sux97JeiWFaZdylAiZu2bF3eJZSsYhTj7VM/kt2KBb/CAAAAAAAAra/Q3Nzc3AbrBYBWteSFu+OB330oGutX510KUMJ+O2FcPL3y6bzLKClVZdXxwf2+EDOHHJ53KQAAAAAAQBfmMm4AOoV+w2fGjJP+Kyqqe+ddClDC9lvXLe8SSkrfqgHxuYO/LUAFAAAAAAC0OSEqADqN3oOmxgGnfje69RmddylAiRow75EYUjMs7zJKwsie4+KLh14de/SZnHcpAAAAAABACRCiAqBT6dZ7ZBak6jdiVt6lACWo0NwcswqD8y6jy9t7wAHxhUP+JwZ1E1gDAAAAAADaR6G5ubm5nd4LAFpNU1NDPPGX/4j5j/w071KAEtNUVhk/HF4Ty+uX5l1Kl3TkyJPjomkfj/JiRd6lAAAAAAAAJUQnKgA6pWKxPPY85J9j0iH/HIViWd7lACWk2FgXs6vG511Gl3TWpHfFP03/tAAVAAAAAADQ7nSiAqDTWzz/rnjo5n+OhroVeZcClIiGmp5xdf+6WNe4Nu9SuoQUmnrPtP8XR4w8Ke9SAAAAAACAEqUTFQCdXv8Rs+KA118d3XqPyrsUoESUr1kRM7tPzruMLqFHRa/45OwrBagAAAAAAIBcCVEB0CV07zMmDnj9d6PvsAPyLgUoEZNefjGKBeNEd8fgbsPjC4f8T0wdsF/epQAAAAAAACVOiAqALqOiqldMP/HyGL7XaXmXApSAqmULYt+eulHtqgl9psYXD/1ujOg5Nu9SAAAAAAAAhKgA6FqKxfLY67B/iYkHfyQKOsQAbWzv2lV5l9ApHTXy5PjswVdFn6p+eZcCAAAAAACQKTQ3Nzev/xIAupbF8/4SD/3+X6KhbkXepQBd2M0TJsQTK5/Iu4xOobqsJi7c52Nx5MiT8i4FAAAAAABgEzpRAdBl9R95UMw67YfRa+CUvEsBurD91lTkXUKnMLLn+PjyYd8XoAIAAAAAADoknagA6PKaGuvjyTu/FvMevibvUoAuKB1MXz9ueLy4Zn7epXRYR408JS7c+5+jqrwm71IAAAAAAAC2SogKgJKx8Nlb4tFbP2O8H9DqXhy7b1y39r68y+hwjO8DAAAAAAA6CyEqAErKmhUvxkM3fzSWL3ok71KALqSpWB7XjOwZtXVL8i6lwxjVc4/48P5fjJE9x+VdCgAAAAAAwKsqvvoiANB11PQcFvu/7r9j5N5n510K0IUUmxpiduXYvMvoMI4e9br48mHfE6ACAAAAAAA6DZ2oAChZC5+7NR699dPRsG553qUAXUBjVY+4emBDrG1cE6U8vu+d+/xLHDHyxLxLAQAAAAAA2ClCVACUtDUrXoqHfv/RWL7w4bxLAbqAhyfNiNuW/y1K0ehsfN+XYkRPHbkAAAAAAIDOR4gKgJLX1FgfT911Wcx96Id5lwJ0cnU9B8Z3ei6OxubGKCXHjDo13rH3JVFVVp13KQAAAAAAALtEiAoA/m7Rc7fFI7d+yng/YLfcPWnvuGf5g1EKqsu6xbum/UscPuKEvEsBAAAAAADYLUJUALCRtSsXxJzbPxeL5/0l71KATmrVgNFxdcVzUQrj+z5ywJdjeI8xeZcCAAAAAACw24SoAGArXnjsF/HkHV+JhrqVeZcCdEK3TJwUc1Y8Fl1RIQpx3JjT47wpHzC+DwAAAAAA6DKEqABge12pbvtsLJ5/R96lAJ1M7fA940dNc6KrSV2nLpr28Zjcf0bepQBASWt6am7UXXlN3mUAAAAAnVz1Vy7Ju4QOpZh3AQDQUVX3GBzTT7w89jr8/0VZZfe8ywE6kb4vPBajuo+OrqK8UB6nT3h7fPXwawSoAAAAAACALkmICgBexfA9T40Dz/hp9BsxO+9SgE7kgIY+0RXs0WdyXHrYD+Kcvd4TFWWVeZcDAAAAAADQJoSoAGAHVPcYEjNOvCL2Ouxfo6xCVyrg1Q2e+3D0rxoYnVVVWXWcN+WD8cVDvxtjek/MuxwAAAAAAIA2JUQFADth+F5viAPP+En0GzEr71KADq7Q1BSzy0dGZzRtwKz42hE/jdeNf3OUFcryLgcAAAAAAKDNlbf9WwBA11Ldc2jMOPHKmP/otfHknV+LxvpVeZcEdFAj5z4e3Qb3iNUNK6Mz6FHRK86f8sE4atQpeZcCAAAAAADQrnSiAoBdNGLy+q5U/UcelHcpQAdVVrc6ZnebFJ3BQcOOjcuO/F8BKgAAAAAAoCTpRAUAu9mVavoJl8XCZ/8YT9zxlVi74sW8SwI6mPHzn43b+1REQ1N9dET9qwfFhft8LGYOOTzvUgAAAAAAAHKjExUAtIJBY4+MA8/8WYzd78IollXlXQ7QgVSuqo39e0yJjqYQhXjN6NPiP4/8uQAVAAAAAABQ8nSiAoBWUlZeHeP3f2cMm3hSPHHHf8Si527LuySgg5i8aHHcVVWI5miOjmBY99Fx0b4fjyn998u7FAAAAAAAgA5BJyoAaGU1vYbHtOO+Evsef1l06z0673KADqBmyfyY2muvvMuIymJVnDbhbfHVI64RoAIAAAAAANiITlQA0EYGjDoo+g3/Scx98Afx7L3/HY0Na/IuCcjRtOUN8VBO712MYhw24oQ4Z6+LYkDNkJyqAAAAAAAA6LiEqACgDRXLKmLM9PNjyIQT4sk7vxYLnr4p75KAnPR+6ckYu8fYeHbVs+36vvsOnB3nTn5/jO09sV3fFwAAAAAAoDMRogKAdlDdY3DsfcwXYvjk0+LxP385Vi15Ou+SgBwcUNcz2itCNbbXpDh38vti30Gz2+kdAQAAAAAAOi8hKgBoR/2G7R+zTvtRzH/kZ9mIv/q1tXmXBLSjAfMeiYFjBseitQva7D0G1gyJs/e8KA4fcWIUCoU2ex8AAAAAAICuRIgKANpZsVgeo/Z+Uwzb83Ux98EfxtwHfxANdSvzLgtoB4XmpphdHB6/itYPUfWo6BWnTXhbnDj2rKgoq2z19QMAAAAAAHRlQlQAkJPyim4xbr8LYuSUM+O5+78b8x75STQ1rM27LKCNDX/+0eg5rFesqF/eKuurKFbGCWPfGKdPeHv0qOzVKusEAAAAAAAoNUJUAJCziureMWH2P2XdqdKIvxceuy6amxryLgtoI2UN62J29ZS4uf5vu7WeQhTi0OGvjXP2ek8M6jas1eoDAAAAAAAoRUJUANBBVHUfGHse+tEYPe0t8czfroqXn7wxmpsb8y4LaAPj5j8TlX0ro66pbpdev8+AmfHWKe+Pcb33bPXaAAAAAAAASpEQFQB0MDW9hseUIz8dY/Y9L56+579i4bO3RERz3mUBrah89dI4YOS+8efl9+3U68b0mhDnTn5fTB90UJvVBgAAAAAAUIqEqACgg+red2zs85ovx/JFc+Lpu6+IxfPvyLskoBXttWBB3FFTjKZoetVlh3YfFadPeHscMfLEKBaK7VIfAAAAAABAKRGiAoAOrtfAvWL6iZdH7Yv3xtN//UYsfelveZcEtIKqpS/FPoOnxP3LH97mMmlc3xsmnB8HDj1aeAoAAAAAAKANCVEBQCfRd9iM2P+Uq2LZgofiufv/JxY9d7sxf9DJ7bN0Xdy/lWzU1P77x2kTzo99Bx2YR1kAAAAAAAAlR4gKADqZ3oP3jmnHfSVW1T4bz93/3Xj5qRujuakh77KAXdBzwVOxx4Q94qmVT0UhCnHAkMPjDXucF5P67ZN3aQAAAAAAACVFiAoAOqnufcfGlCM/FeMPeFfMffBH8cKca6OxYU3eZQE76YB13WLEiJPiDRPOi5E9x+VdDgAAAAAAQEkSogKATq66x5CYeNAHY+x+78iCVPMe/kmsW7Uw77KAV1Fe2TOG7/X6OGTqWVHdY3De5QAAAAAAAJQ0ISoA6CIqqnrFmH3Pi1F7nxMLnr455j70g1jxyuN5lwVspqbn8Bi595ti2J6vi/KKbnmXAwAAAAAAgBAVAHQ9xbKKGDrxhOy25MW/xtwHfxivPP+niGjOuzQoab0HT4tR+5wTg8YeGYVCMe9yAAAAAAAA2IgQFQB0Yf2G7Z/dVi+bFy8+dn28+MSvom714rzLgpJRVtk9huzx2hi+5+uj18C98i4HAAAAAACAbRCiAoAS0K33yNhj1sUx7oB3xyvP3x4vPHZ9LJ53R0RzU96lQZftOjV8z1Nj8Phjo6yiJu9yAAAAAAAAeBVCVABQQorF8hg09qjstnbly/HiY7+MFx//RfY1sHsqqnvHkAknZuGpHv3G510OAAAAAAAAO0GICgBKVHWPITFu/wtj7H7viMXz7owXHrsu61LV3NSQd2nQiRSi77D9Y/her49BY4+MYlll3gUBAAAAAACwC4SoAKDEFQrFGDDqoOy2bvXieOmJX8eLj10fq5fNzbs06LAqu/WPYRNPiWF7vi4blwkAAAAAAEDnJkQFAGxQ1a1/jNn3rdltyYt/jRfnXB+Lnrs1GhvW5F0a5K5QLI/+Iw7MglMDRh+ajccEAAAAAACga3DmBwDYqn7D9s9ujQ1rY/Hcv8SCZ34fr8z9UzTWr867NGjX4FS/EbNi8LhjYuCYI6KiqlfeJQEAAAAAANAGhKgAgO0qK6+OQeOOym4CVZRWcOrYvweneuZdEgAAAAAAAG1MiAoA2MVA1bpYPO/P6wNVzwtU0bkVihXRf8SsGLSh45TgFAAAAAAAQCkRogIAdklZeVUMGntUdlsfqEodqm4WqKLzBafGHxsDRx8uOAUAAAAAAFDChKgAgFYKVB2Z3VoCVQuf/WMsmX9H1K1Zknd5sEFZZffoN+yAGJg+r6MPj3LBKQA6qHnz5sVf//rXeP3rX9/m7zVnzpyYP39+HHvssbv0+muvvTY+9rGPxbve9a74wAc+0GrrBQAAAID2JEQFALRZoKq5uTlWLn4iFs+/MxbPuyOWLXggmhrr8i6RElIolEXPgXtF/xGzo//IA6PXoKlRLDoEBqBje+yxx+KMM86I4447rs1DVLfddlsWfrrwwgt3Oey01157xXvf+97Yf//9W3W9AAAAANCenEECANpMoVCIngMmZbcx+741GuvXRO1L92ahqiXz74xVtc/kXSJdUHWPIdHv76GpfsNnRkVVr7xLAoCdsmzZsqira5/g+eLFi6OpqWm31pFCVOnW2usFAAAAgPYkRAUAtJuyipoYMOrg7JasXblgQ6BqyQt3Rf3aZXmXSCdUVl4TfYftH/1Gzs46TnXvMybvkgAAAAAAAOhkCs1pzg4A8Krmz58fRx99dMyYMSN+/OMf511Ol9Pc3BTLF835e6Dqnli+6NForF+Vd1l0QMWyyug5YM/oO3S/LDjVZ/C0KJZV5F0WALSKj370o3Hddddt8tgXvvCFeMMb3hALFiyI//qv/8pG5S1atCj69OkThx56aLznPe+JESNGbPKaOXPmxBVXXBGPPPJItmy/fv3iwAMPjHe/+90xZsz6wPFb3vKWuPvuuzd53fe+972YNWvWTtV87bXXxsc+9rFsfN8HPvCBV13vs88+G1deeWXccccdsXTp0hg0aFAcddRRcdFFF2V1br7eyy+/POts9f3vfz/mzp0bAwcOjLPOOisuuOCCePrpp+Pf//3f45577omKiorsWD29ZuTIkRvWs3r16uznduutt8a8efOivLw865z1pje9KU444YRX3b7LLrssq+FHP/pR3HnnnfGzn/0samtrs5/j2WefHW984xs3LPuOd7wj/vSnP8UPfvCDOOCAAzZZz8qVK+OQQw7JXnf99dfH7mh6am7UXXnNbq0DAAAAoPorl+RdQoeiExUA7KBevXrFe9/73hg6dGjepXRJhUIxeg+akt3Gznh7FqpateTpWLbwoVi28OFYtuDhWLX02YhmY2FKTU2v4dF70N7Ra9DU6D147+jZf5LQFABd1jHHHJPdpyDVxIkT4zWveU0W+ElhoXPPPTcLEx1++OFZ+CeF/H/xi1/ELbfcEldfffWGkXrPPPNMFhBKYaH0+v79+2ev/+Uvf5kFiX71q19lwaXXv/710bNnz/jDH/4Q+++/f8yePTuGDx++29uwvfWmsNOFF16YjStMFyiMGjUqHn/88SwglZZPFysMGTJkk/WlAFQKXh1//PFZECxtx3/8x3/Eyy+/nIWRpkyZkgWZHnrooWwdzz33XPZzSaGqJIWzUmArBZgOO+ywLMz0u9/9Lgt8rVixYpMQ1PakMFuq9aSTTorq6ursvT7xiU/EY489Fp/85CezZU477bQsRJXq2jxEdeONN8aaNWuyQBwAAAAAHY8QFQDsRIjq4osvzruMkgpV9eg/IbsN32v9iaaGupWxfOGj64NVC9aHq+rX1uZdKq2orLJ79B44JXoN2jt6D56ahacqa/rmXRYAtGuIKgWQUohq0qRJG44/U/BmyZIl8Y1vfCOOOOKIDcunzkjnn39+XHLJJVm4qFAoZJ2SUlgnBatS6KhF6v709a9/PevwlLpGtYR5WsJOrXWsu631puDUBz/4wWhqaoqf/OQnMXXq1A2vSdubunClUNJVV121yfpScClt0+TJk7PvUxAqdaH64Q9/GG9/+9uzbU9Ss/UUHrvvvvviwQcfjP322y+efPLJLEB1yimnxKWXXrpJx6gUyvrOd76zwyGqFJZK3aj22Wef7Pu0Xeecc0722IknnphtawqGpQ5hKaSVtqWqqmqTbUzBrpNPPnk3froAAAAAtBUhKgCg0yiv7BH9RszMbi1WL58fy7NA1fpQ1YpXnojmpvpc62QHpaBc33EbOkylwFT3vmOzAB0A8A8pEJTG8h177LGbBKiS1OUpBXduvvnmuP/++2P69OlZmCj529/+lj2fglXJeeedl3WJGjx4cC7bkUJVCxcuzOrYOECVpLrSyL80qjCNLdy4xoMOOmhDgCpJ4agWaTxhi7SdaZxfClGlLl1puRTYaunOlUJoLeMC07i/1BkqjQbcUanGlgBVktaVglSpo1XqPJVCVJWVlVlIqqWzVsu4wDSGMP17HHfccdG3r4A4AAAAQEckRAVALs4444xs3Mb//d//xYABAzY8/pWvfCW++c1vxumnnx7/9m//tuHxVatWxaxZs7KTQumERDr5kq4av/322+PFF1+MxsbGbOxHGm2SRu6lq79bHHXUUdGtW7fs5EZa56JFi7KTNumK8XTCKT337W9/OxsJkupJ4z3Gjh0bZ599dpx11lkb1pNOxKTl04mZNGYkueyyy+Lyyy+Pn/70p9lJkXSFfFqud+/e2fu+//3v33CipsVTTz0V//mf/xl//etfY/Xq1dmJmA996EPx1a9+NbtKPl1pz47r1mtEdhsy4fjs+6amhlizbF6sqn02G/+3qvaZ9fdLn4umhnV5l1uSCsXy6NZ7VBaQ6t5nbHTvOy77ulvv0VFW/o/uDADA1qXj5iSFgNLx5+aWLVuW3T/66KPZ8XLqBHXNNddky6bj1hRCOvjgg7MOTnmOpm7Zjueff36r29ESeJozZ84mIaoxY8Zsslz37t2z+3TMn7p2baympmZD16skdfNK4aZ07J22PwWr0s/i0EMP3TD+cEdt3NWrxb777rvhZ98i/S6TfmdJIwVbQlSpC1VilB8AAABAxyVEBUAujjzyyOyK+j//+c/xute9bsPj6fvkrrvu2mT5FC6qr6/PQkzpyvTTTjstamtrs/WksNKKFSvi1ltvzU5WpCvwf/7zn2/y+vSaNDokjUdJJ1tSyKnlivx00imN8Kiurs7GcKxduzZ+85vfxCc/+clYt25dvPWtb33V7fnsZz+bjQpJV5anmv74xz9mI0oefvjhrJZicX1nnfR9Wl8KT6VtGTVqVBbcestb3pLVxO4rFsvXh3X6jt3k8ebmpli74qUNoaqVtc/G6r8HrdKYQHZfsbwquvcZE937rA9JtYSmanqPzP5dAIBds3z58uw+hfbTbVuWLl2a3U+cODEL93/rW9/KjpHTmL90Kysry46dP/WpT21yIUN7b0c6Vk63V9uOFumih63ZeFTe9qQLJv7nf/4nfv3rX2fjD9MtXUCRwln/8i//kl2IsSPSRRuba+lk1bJtyZ577hlTpkzJjvMXL16cXVSRAlVp2RTeAgAAAKBjcjYLgFykkzdf//rXNwlRpZMl6QrudGX5vHnzsg5Tw4YNy55LYz1aXnfVVVdl3aQ+//nPZ2GqFin8lK70Tle4p25Pe+yxx4bn0kmNCy+8MOv4tLnU1eo1r3lN1gWroqIie+ykk07Kwk4//OEPdyhElcZzpBNTo0ePzr5/3/veF6eccko2diWNE2kZOfKJT3wi63R1xRVXZIGuJNWUxoCkcR+0nTQirqbX8Ow2YPSmJ6/WrVoUK2ufidVLn4u1KxfEulULYu2qhbEuuy2KpkYdrFo6SlV1GxBV3QdHVfeBUZ3uewyK7r1HZ92lqnsO2xBOBABaT0vnpXTcmI5pd8SECRPiy1/+ctaxNR2T/uUvf8mCPGnsX+rymkJFeW1H6sDa0qGpPaTuVBdddFF2e/nll7MQ1e9///vsZ/Ge97wnfvvb38aIESNedT3p943NpYs5ks27z6bfUz7zmc9k606hqhdeeCHe8Y53ZEE2AAAAADomISoAcpFOJKSAVDqZ0yKdzEgjPNIYvXTVfPq+ZdxFGtuXTgSlzk2pW1T6+tRTT91knamTVBqnkU5QpCu+Nw5RJds7UZNORrUEqJLZs2dno0HSaL4dkUJXLQGqlqvi01Xmzz33XLaOFKJKY0nSCaw0PqQlQJWkEykf+9jHsqvxW0aY0L5SICjd+o+YtdXn69Yu/XugamGsXZnuU9BqUaz9+336vrN3syorr4mq7oM23Kpbvu6Rvl4fmqqs6S8kBQDtYPP/306ePDm7T51ctyZ1nXrppZeyY9Jx48Zlo/xSl9SPf/zj2bFmGh+dbueee252LHrPPfds873aahuSlvF5DzzwwFaPzVPHqNQJNo3+HjRoUKvUkbrUpiDTa1/72ux3hdRNKv0ekW7pGPzaa6/NLnrYkRBVqjuNRtxYS2ewadOmbfJ4+rf40pe+FL/73e+y308So/wAAAAAOjYhKgByc8QRR8SPfvSjeOyxx7JQVQpUpVEdqfNTOoGSRvqlEw3p+XTFeEvHqhkzZmS31NHp8ccfz7pApVsKKbWMAdxaGGnkyJHbrCWdbNpcClGlK8vT1fuvdsX41l7fq1ev7L6urm6Tk17p5M3WaksndFL3LTqeyuo+2a1n/4nbXKahfnXUr10WjfWroqFu/a2xfmX2ePZ1eqx+ZTTWrY6Gvy+zYdn69PWaiOambOxgumVfR1M0Z5/lls9zMeuolW6R3ReiUChLZymjrLw6yiq7R3nF+lvL1xseq+weZX+/L9/suYqqXlFe1bPdfp4AwPaVl6//c00aZ52kY990vJk6J7UEglqkLqxptHTy5je/ObtPIak0ui4Fe1J31BavvPJKFlJKFyZs673aahuSltHa6XeANAY7bVeLW265JS699NJs5N0FF1zQanWk3xlS160UKksXarSM2W5ubt4Qbtre7wkb+973vhfHH398Ngaw5ef5ta99LftdYeMOuUka1Z22N/17pd9V0r/F+PHjW227AAAAAGh9QlQA5ObII4/MTqCkkX4pRHXHHXdkHZvSiZP0fUsgqmWU39FHH73hREg6wXL99ddvGKmRTsakcFI6IZRCV+mkyOZSp6ptSZ2jtnX1/NbWtTOvb1FbW5vdp+3bmsGDBwtRdWLlFd2yGwDA7ho6dOiGbqypm1E6Dk7Hv+eff342Njp1k5o0aVI2lvqmm27Kgkpf+MIXNoyUSyPq0mv/+Z//OW688cYsvJNGZ6euSOnY9sMf/vAW75VGU6fj13ThwsSJE1ttGzZfbxoxmEZZp8BXuqhi7NixWffW1JW1srIy295031pS56j0PrfeemucfPLJ2fcp9JS63qaLMFKYa+OLHK6++ursQorXv/71W3SnSj/nFJZKo8BTF9sU/Epjxj/4wQ9mv79sLi37m9/8JusS9q53vavVtgkAAACAtrH+8jsAyEEamZc6T6UQVRp5l67QTo8lBx54YHay4fnnn89CVCl4lEaQJJdcckk2oiSdDEknOVIHqxS4+uY3v7nVjlAdRffu3bP7dFJma1atWtXOFQEA0BGlANKHPvShqKmpiR/84AfZ8e7UqVPjuuuuizPPPDOeeeaZ+P73vx933313FqhKy6TQT4uWkX6pC9UTTzwR3/3ud7MuVumChbTsxqOl999//6wTbOpQlZ5LI+taw7bWe/jhh2fjB1NHp9SpNdX26KOPZt210uNpe1pT6jyVukWl4FgKT6WfYfrZpGBXGuf3H//xH1t0m7r88ss3dKna2Pvf//544xvfmAXUfvWrX2UdrK644op45zvfudX3Tr/T9O/fP7uYI40kBwAAAKBj04kKgNykK8zTSZJ0EiLdkpYQVbr/zne+k10tf//992dXcacTHcuXL8+u+E4jNL7+9a9vsc6nnnpqh7tHtbe99947u0/bs7lly5bFs88+m0NVAAB0RBdeeGF221jqjNQyuu/VpO5TqavTjviXf/mX7Lar0gjudNvR9aYuWpuHl3ZmvUka6701qctVum0shdHSiMAdGROYftfYXvfZdEFHuu2INJI8daM96aSTslHhAAAAAHRsOlEBkPtIv3R1+re//e3o3bt3TJ48ecOV62lExre+9a1obGyMo446Kns8PZauJk9hqjTWb2NXXXVVdqV90tDQEB1NGhOSRpikUSItobEkbV86wZXGgwAAAJ1fuqjjsssui6ampjj77LPzLgcAAACAHaATFQC5SiP5UigqjctIY0XS1y2j71LnpnvvvTcb+XfQQQdtuIo8jf749a9/nV2VnkJYSRplksaADBgwIF555ZXsiu+O6HOf+1yce+652ciPtL3Dhg3LRhGmsYXpynZBKgAA8vT73/8+5syZs8PLz5w5M2bNmtWmNXUm6XeR888/P9asWRPz5s3Lfl+ZPn163mUBAAAAsAOEqADIVf/+/WOfffbJRty1jPJrceCBB2YhqhSgSgGjFmmESRplcsMNN8SPf/zj6NOnT4wePTouvfTSLJR0zjnnZN2eTj311Ohopk2bltWcRhHecccdWWhqv/32iy9+8Yvx1re+NcrL/a8ZAIB8Q1TXXXfdDi//3ve+V4hqI/369cs67aYw1XHHHZddRAEAAABA51BoTv3FAYA2V1dXFwsWLMiCXmVlZZs8t3bt2pgxY0aMHTs2fvOb3+RWIwAA0PE1PTU36q68Ju8yAAAAgE6u+iuX5F1Ch7J+ZhIA0ObSSI/XvOY1cfrpp0dDQ8Mmz33nO9+JxsbGrPsWAAAAAAAAAO3LzCAAaCe9e/eOk08+OX7xi1/EKaecEoccckjWkerhhx+Ou+++OxtRmMahAAAAAAAAANC+hKgAoB19/vOfj+nTp8e1116bhanSGL8hQ4bE29/+9njnO9+ZBa0AAAAAAAAAaF+F5ubm5nZ+TwAAAABgFzU9NTfqrrwm7zIAAACATq76K5fkXUKHUsy7AAAAAAAAAAAAgDwJUQEAAAAAAAAAACVNiAoAAAAAAAAAAChpQlQAAAAAAAAAAEBJE6ICAAAAAAAAAABKmhAVAAAAAAAAAABQ0oSoAAAAAAAAAACAkiZEBQAAAAAAAAAAlDQhKgAAAAAAAAAAoKQJUQEAAAAAAAAAACVNiAoAAAAAAAAAAChpQlQAAAAAAAAAAEBJE6ICAAAAAAAAAABKmhAVAAAAAAAAAABQ0oSoAAAAAAAAAACAkiZEBQAAAAAAAAAAlDQhKgAAAAAAAAAAoKQJUQEAAAAAAAAAACVNiAoAAAAAAAAAAChpQlQAAAAAAAAAAEBJE6ICAAAAAAAAAABKmhAVAAAAAAAAAABQ0oSoAAAAAAAAAACAkiZEBQAAAAAAAAAAlDQhKgAAAAAAAAAAoKQJUQEAAAAAAAAAACVNiAoAAAAAAAAAAChpQlQAAAAAAAAAAEBJKzQ3NzfnXQQAAAAAAAAAAEBedKICAAAAAAAAAABKmhAVAAAAAAAAAABQ0oSoAAAAAAAAAACAkiZEBQAAAAAAAAAAlDQhKgAAAAAAAAAAoKQJUQEAAAAAAAAAACVNiAoAAAAAAAAAAChpQlQAAAAAAAAAAEBJE6ICAAAAAAAAAABKmhAVAAAAAAAAAABQ0oSoAAAAAAAAAACAkiZEBQAAAAAAAAAAlDQhKgAAAAAAAAAAoKQJUQEAAAAAAAAAACVNiAoAAAAAAAAAAChpQlQAAAAAAAAAAEBJE6ICAAAAAAAAAABKmhAVAAAAAAAAAABQ0oSoAAAAAAAAAACAkiZEBQAAAAAAAAAAlDQhKgAAAAAAAAAAoKQJUQEAAAAAAAAAACVNiAoAAAAAAAAAAChpQlQAAAAAAAAAAEBJE6ICAAAAAAAAAABKmhAVAAAAAAAAAABQ0oSoAAAAAAAAAACAkiZEBQAAAAAAAAAAlDQhKgAAAAAAAAAAoKQJUQEAAAAAAAAAACVNiAoAAAAAAAAAAChpQlQAAAAAAAAAAEBJE6ICAAAAAAAAAABKmhAVAAAAAAAAAABQ0oSoAAAAAAAAAACAkiZEBQAAAAAAAAAAlDQhKgAAAAAAAAAAoKQJUQEAAAAAAAAAACVNiAoAAAAAAAAAAChpQlQAAAAAAAAAAEBJE6ICAAAAAAAAAABKmhAVAAAAAAAAAABQ0oSoAAAAAAAAAACAkiZEBQAAAAAAAAAAlDQhKgAAAAAAAAAAoKQJUQEAAAAAAAAAACVNiAoAAAAAAAAAAChp5XkXAAAAAACl7Prrr4/vfe978eyzz0Z1dXUcfPDB8YEPfCCGDx++Q69/8cUX4z//8z/jjjvuiKVLl8aYMWPinHPOiTPPPLPNa4fd/fym5V955ZWtPpc+x5/4xCdauWLY1Pvf//6499574/bbb9/h19TW1sYVV1wRf/zjH2PRokUxbNiwOO200+L888+P8nKnXei4n910bPDAAw9s9bkjjjgivvnNb7ZihbDeqlWrss/WTTfdFC+88EJUVFTE5MmT461vfWsce+yxO7QOx7t01s+uY13ykvaV6fN7yy23xEsvvRT9+/ePo48+Oi666KLo16/fDq3jxRLd9xaam5ub8y4CAAAAAErRV7/61fjGN74Re+yxR3byMv1x87e//W306tUrfvazn8XIkSO3+/r0x/yzzjorO6F/wgknxIABA+L3v/99PP/889nJ/I9+9KPtti2Unt39/KbwySGHHJKdjDrqqKO2eH6fffaJww8/vA23gFJ3+eWXx2WXXRaDBw/e4SDK8uXL4+yzz46nnnoqXvOa18SoUaPiz3/+czz66KNx3HHHZSeaoCN+dpuammLGjBnZSdRTTz11i+fTidGTTz65DaqllK1cuTLbZz7++OMxZcqUOOCAA2LFihVZKCXdf/CDH4x3vvOd212H410662fXsS55SZ/RN77xjfH000/HgQcemH0Gn3nmmewCgEGDBsVPf/rTGDp06HbX8UIJ73uFqAAAAAAgB4899li87nWvi/322y+uvvrqqKyszB6/+eab473vfW8ceeSRWUBle9Jyafmrrrpqwx/g165dm10dnTpN/PznP4+pU6e2y/ZQWlrj85tO/F9wwQU7dBIKWtO6devis5/9bBb2S3YmiPKFL3wh+8x/8pOfzE6uJo2NjVlXoHRiNQVbUrgKOtpnN51ITSdB00nVz3zmM21cKWwauE4n4j/1qU9FoVDIHl+wYEHWwW/JkiVx4403xujRo7e5Dse7dNbPrmNd8tJyvHrxxRdn+9AWP/jBD7LjiDe84Q3ZMtvz3hLe9xbzLgAAAAAASlEagZa85z3v2RBASdJoiHSl86233pr9kX57V4amK0GnT5++yRXMaaRaGqeWrp38yU9+0sZbQana3c9vSxAr2XPPPdu4WviHNNLk+OOPz0IoO9v9IZ04arlyP51UbVFWVhaXXHJJ9vU111zT6jXD7n52k9RNJZk0aVIbVAdbl0ImKXzyoQ99aEMIpSUA+KY3vSkLod52223bfL3jXTrrZzdxrEte5s+fn3WOevvb377J4+kimOS+++7b7utfKPF9rxAVAAAAAOTgzjvvjPLy8ixwsrnZs2dnf5hMy2zL3XffnS2T2vNvLnUHqqio2O7rIc/Pb+LEEnlIV82vWrUq6yT1zW9+c6de++CDD8bq1atj5syZUSxuenolja8cMWJE3HPPPdmJVehIn91kzpw52b19Lu0pdSxJnfrSqN/NtYSw0+d6Wxzv0lk/u4ljXfJyxRVXZOOma2pqtuhKmQwcOHC7r7+7xPe95XkXAAAAAAClpq6uLl588cUYPnz4Jl18Nj4ZnzzzzDPbXMdzzz2X3W9thET6o2bqlJKuQE3vtbX3gDw/vy0n9Lt16xa/+93v4n//93/j+eefjx49esQRRxwR//RP/xSDBg1qs22gtE+KfvnLX84+azurZb87atSorT6fPvtpv5tu2xvvA+392d04RPXoo4/Gl770pXjyySezffhBBx2U7XPHjh3byhVDxDnnnLPVx9PJ+TQC9dW6oznepbN+dhPHunQUy5Yty0JPX/ziF7MLYS666KLtLv9cie97daICAAAAgBz+iJn+AN+7d++tPt+zZ8/sfsWKFdtcR21tbXa/vXU0NTXFypUrW6VmaM3PbxqLlk4kpa4+V155ZUybNi3OPPPMbERKGlV12mmnZX+Yh9Y2a9asXQ6hLF26NLvv06fPdj/7y5cv340KofU/uxt3RPnqV78a48aNy0ZSTpw4MW644YY4/fTTs05r0F5+9KMfZZ+5FD499NBDt7mc410662fXsS4dxY9//OOsi2oK7qVx6ymQvbUOUxurLfF9r05UAAAAANDO6uvrs/ttXbXZ8vi6det2ex3p6lDoaJ/fRYsWxR577JGNSLn88ss3hFJSOCud4E+jqj7+8Y/H1Vdf3SbbALuiZX+6O599yEM6iZ86nvTv3z/+67/+K4YNG7bhuWuuuSYbEfiRj3wkC1SVlZXlWitdX/qc/du//VvWDSV1RUldTbbF8S6d9bPrWJeOol+/fnHBBRdkn8nURe3DH/5wvPTSS/GOd7xjm6+pL/F9rxAVAAAAALSz6urqTf44ubmWP0am8Q9tuQ7YFa3x2UtX7//yl7/c4vFCoZBdJf2rX/0q7rjjjli4cKFRJ3S6z3737t3btS54NWl/fO211271udSR6vrrr4/77rsv664yffr0dq+P0uri89nPfjb7/30aK7n//vtvd3nHu3TWz65jXTqK4447LrslF198cbzxjW+MSy+9NOtwuffee2/1NdUlvu81zg8AAAAA2lkax1MsFrc57qzl8ZbRUFvT0lp/W2Oj0jrSH+l3Z/QPtNXnd3vS1f2TJ0/Ovp47d+5uVAqta0f2u4n9Lp3NPvvsk93b59JW0tin1Lnn05/+dPb/+a997Wtx0kknverrHO/SWT+72+NYl7yMGDFiQweqP/zhD9tcrneJ73t1ogIAAACAdpba36erk1988cXs6s7NR0HMmzcvu08jILZl3Lhx2/zDe1pnatE/duzYLOwCHe3zu2DBguyzm/6QP3To0C2eX7NmzSZXQUNHsL39bsvj6Yr8jUelQUdQW1sbzzzzTDbSJx0bbM4+l7aUOpZ86EMfysZIpZFmV1xxxat28WnheJfO+tl1rEuen9t77rknGhsb47DDDtvi+fR7XLJkyZJtrmNcie97u+ZWAQAAAEAHN3PmzOwPkPfee+8Wz6XRDunKzhkzZmz39WmZu+66a4vn/vrXv2br3m+//Vq9bmiNz28ab/LmN785vvWtb23x3KpVq+KRRx6JmpqamDBhQqvXDrtq6tSp2ai+u+++O+tMsXl48IUXXoh99903ysrKcqsRtibtl88+++ysm8rm0mc57cvTfntbY31gV6WT+O973/uyEEoKk/z4xz/e4RBK4niXzvrZdaxLniGqCy64ID74wQ9uGLu3sfTZS7YWqm4xs8T3vUJUAAAAAJCD0047Lbv/6le/GmvXrt3w+M0335z9YfKoo46KIUOGbPP16bmDDz44O5n/+9//fsPjaV1pzERyzjnntOk2ULp29/N73HHHZaNMrr322nj88cc3PN7Q0BCf//znY+nSpXHWWWdFVVVVG28J7Lj0eUwjfObPnx/f+973NjnR+uUvfzn72n6Xjih1okgjVm+//fb485//vMlzqbPKU089Fccee6wuarS6q666Km655Zbss/WjH/1oQ3eTHeV4l8762XWsS17SiL2jjz46G7l3+eWXb/Lcww8/HFdffXXWOXV7YymHlPi+t9Dc3NycdxEAAAAAUIo+85nPxA9/+MMYM2ZM9ofONPbhxhtvjL59+8Y111yzodV+ugI0/QFzr732imOOOWbD65999tnsj+/pD6THH398DB48OP7whz/Ec889F29/+9vjkksuyXHr6Op29/P7ne98J770pS9lY0xe+9rXRq9eveLOO++MJ554Iruy+b//+7+zK/ShLU2aNCnbd6ZwycbmzJmTnTQaPnx4vOENb9jweBp9cvrpp2ddp4488shsbOVf/vKX7Kr+tB9OwcJ05T50tM/uDTfcEB/+8Iezr1NgKo2Xuu++++L+++/PwgE/+MEPon///u2+HXRdKSSS9pOrV6/OjhPSccDWpO4+Bx54oONdutxn17EueXn55ZfjTW96UzZ+PX3Wpk2bln2d9p3pODUdr7Z8Vu17tyREBQAAAAA5SX+aSyGUn/zkJ9kfI/v06ROzZs3KRke0BFCSyy67LLuK9PWvf/0Wo3jS69LVoGlUz7p167JAS7oqNJ3kdyKfjv75ve2227ITTA899FA2FmL06NFxyimnxHnnnReVlZU5bBWlZltBlNQ54mMf+1g2zuT73//+Js8tXLgwvv71r8ett96anVhKY35SWOXcc8/1uaVDf3ZTYOob3/hGNr4vhQNSh5XULeWd73xn1rkCWlMK873nPe951eXe9a53xQc+8AHHu3TJz65jXfKSgv9XXnllFnxKx64pxJd+V0uf2z333HPDcva9WxKiAgAAAAAAAAAASlox7wIAAAAAAAAAAADyJEQFAAAAAAAAAACUNCEqAAAAAAAAAACgpAlRAQAAAAAAAAAAJU2ICgAAAAAAAAAAKGlCVAAAAAAAAAAAQEkTogIAAAAAAAAAAEqaEBUAAAAAAAAAAFDShKgAAAAAAAAAAICSJkQFAAAAAAAAAACUNCEqAAAAAAAAAACgpAlRAQAAAAAA0CXdddddMWnSpOz2+9//frvLXn311dlyH/3oR6OjmD9/flbT/vvvH13JvffeG2effXZMnz499t1333jjG9+4Q/+ORx11VLvVCACUnvK8CwAAAAAAAIC29olPfCJmzJgR/fr1y7uUkrZy5cq48MILY8WKFTFx4sQYP358jBo1Ku+yAACEqAAAAAAAAOj6Fi9eHJ/85Cfjsssuy7uUkvbUU09lAar+/fvHtddeGxUVFXmXBACQMc4PAAAAAACALi11n6qsrIybbropfvGLX+RdTklbt25ddj9w4EABKgCgQxGiAgAAAAAA4P+3d+9BNtZxHMe/KzOi3IZJjdoKyS0y7t3kXmK3SKRxCYWUolGYmqhsBplNyaXMoIs1hholTGRFq1wjRZRuFJIpXQi1zec785w55+zZza4920zP+zXzzJ59znPO83ue5/z5mc/3f+2CCy6wESNG+Ounn37aDh06dMafvfLKK307duxYnvfmzp3r740ePTqy76OPPvJ9Gh/43Xff2cMPP2wtW7a0q6++2nr06GHZ2dl+3IEDByLvaczgHXfcEXkvkSNHjtiYMWOsVatW1qhRI+vevbstXLjQ/vrrr4TH79mzx0aNGmXXX3+9NWjQwK677jo/n5qg4mn9WvP69ev9tdbatGlTGz9+/Bndo1WrVtnAgQOtefPmfq62bdt669f+/fvz3Mu+ffv66927d0fubfxxhbF8+XLr37+/X5/OfeONN/p179q1K8+x33zzjV9fp06drGHDhr7ePn362OLFiy03NzfmWF2D1pboe3S9ek+fjXf06FGbNGmSn+Oqq66yZs2a2YABA2zt2rUJ179z504bPny4tW/f3tev38OgQYP8HAAAoGQRogIAAAAAAAAAAMD/noI2CgYpDDV27Nikn2/fvn3WrVs3+/DDD61JkyZ2ySWX2I4dO2zo0KG2aNEif0+Bq8aNG1tqaqpt377dBg8enDBsc/LkSevZs6ctW7bMgzkK/+zdu9eDWgqHxQeAFCzS9y9dutQqVapkbdq08eant99+2/evWbMm4ZoVMFuxYoVdc801dvHFF1utWrX+9Tq1hmHDhtmGDRvsiiuu8PDROeecY1lZWZaenu7XGOjatat/t1SsWNH/11auXLki3GGz2bNn20MPPWSbN2+2mjVr+rnPO+88v26F0rZs2RI59quvvvLg2RtvvOGtZApb1atXz7Zu3eq/h6eeesrOlgJqt956q82ZM8dOnDjhwa66devaxo0b7d5777XMzMyY4zdt2mS9evWylStX+v3Q+mvUqOFhNt1TfQ8AACg5pUvwXAAAAAAAAAAAAMB/olSpUjZx4kRLS0vzkMrrr79uvXv3Ttr5FJBRUGfatGlWpkwZDzopGLN69Wp77LHHvHloypQpVrZsWT9e+xSuWrBggbVu3TrPCDx9XiEoBa6CUFC/fv08gKMmpdtvv933f/311/boo4/66xdeeME6dOgQ+R4FpNRGpU1Bq2rVqsWcR41Q+i61LMnff/9d4DUqKKU2rKpVq3qgqX79+pHPvfTSSzZ16lR74IEH/LwaqajrVagqJyfHLrroIv+/qBQsmzFjhpUuXdrefPPNmMCXzjtr1ix//+WXX/Z9CiT9+uuvHlQbOXJk5Fg1TSnIpPs+ZMgQby0ritOnT/u1quVM51C7lNYmCrypqUvrUQOWwlLy4osv2qlTp+zJJ5/0kFxg3bp13kY1ffp0b+5i7CEAACWDJioAAAAAAAAAAACEgtqggtF7kydPtm+//Tap53v88cc9QCUpKSnWpUuXyOtx48ZFAlRyyy23REJQiWiUXxCgkssvv9z3yWuvvRbZP2/ePA9dKbQTHaCSm266yUcK/v777x4ii6dRgUGAKgieFSRoSlIbVRCgCj6nIJEasH755RcPWxU3BaL++OMPb5WKDz6p9UntUgqZBYIRjvoNRFNTVEZGho/g03cV1bvvvuvtYxrNqJBWEKASNXQFvzuFy+LXFP1cRSMY1YylZrD8xjUCAIDiR4gKAAAAAAAAAAAAoaHGnxtuuMEDOGps+re2paLS+DyNxIumNiZR6EfvR9M4t6BhKZ5G1MUHokQhJY3OU5uSQkWisXpBICoRfUaix+wFNN7uTB08eNBDaAqCtWvXLuExGtUnGmlY3KpUqeLhJD3H2267zZ577jnbtm2bh47OP/98D1ApjBRo0aKF/1Xrk8JnasdSwCsIsGmtGn1YVP9239UupnCZxjYeP348Zk3333+/rys7O9uvRzSOsHPnznbuuecWeU0AAKBwGOcHAAAAAAAAAACAUJkwYYKHZrZu3erj3tRcVNyCUFQ0NVBJ5cqV830vkfgwVkABGwWzfvzxRzt8+LCVL1/efvjhB38vuoUpke+//z7PvsKEiHQ+0Vi+6NalaEHrU3BsccvMzPQRemqA0mg8bboHCk+lp6f7OMVA//797csvv7QlS5ZENoWaGjVqZB07dvTQksJXRRXcd43g01YQ3Y9LL73UxyrqOSg8pTYxbRrd17RpU7v55ps9HHY27VgAAKBwCFEBAAAAAAAAAAAgVNQEpRF0Grs2bdo0bwkqioJarPILFhVFMBIwkdzc3JjzBWvS6D4FcvJTrly5QgW58jtvQYJRdMkKAtWqVcuWLVvmrVpr1qzxxqs9e/bYO++845uCclOmTIncn2eeecaGDh3qo/dycnI8RKf2Km1z5861BQsWWPXq1c/4uqIF971Zs2Z24YUXFvj54LkotDVr1izbvXu3rV692tus1FSlv9peffVVD1ZVqFChiHcIAAAUBiEqAAAAAAAAAAAAhI5GuClMs3z5ch/r16VLl4THKVikwNDp06fzvBeMg0u2Q4cOJdyv0W9Hjx71gJCCYaIxgQcOHLARI0bYZZddlrQ1BedTA5PuTaLQmMb9SdWqVZO2DrVJaYReMEZP92Pp0qUennrrrbesT58+3jYVSE1NtYEDB/p26tQp27hxo2VkZNgXX3xhs2fPtvHjx8cEyhI992PHjuV7P9LS0rzVqjDq1Knj27Bhw+zEiRO2bt06H++nQFhWVlZSmtIAAEBepRLsAwAAAAAAAAAAAP73xo0b56GjXbt22fz58wtsbNLIvHhqMiqpENXnn3+eZ//KlSu9Aalhw4ZWtmxZ39eiRQv/q2ajRObNm+eBsalTp57VmjTGT+P6jh8/bu+9917CY9QSJS1btrTitmPHDr+OwYMHx+zXeEON7mvcuHHM2EIFkXRvDh48GNMIde2113qgKnokX1Gee/PmzQu875988ol16NDBhgwZ4sEshaV69uzpowdPnjwZM6JRxwVBrOg1AQCA5CJEBQAAAAAAAAAAgFCqVKmSTZgwocC2JzUEica9RY+w05g1tRiVlNGjR9tPP/0U+V8j4CZNmuSvgxCQ9OvXz1uhnn/+eVuxYkXMd2zZssXHF+7du9dq16591msaMGCA/1VrkoJoAd0njalbu3atVaxY0dLT0y0Zo/zUuPX+++97mCyaru/TTz/1lqoGDRr4vipVqtjPP/9sEydOjAkt6bXayERhtPjnrpF60W1Uq1at8qareJ07d/ZgWXZ2tmVmZnrLVeDw4cM2duxYb+ZSY5Wej8JSGnOo95599tmYEYG//fZbJIwVvSYAAJBcjPMDAAAAAAAAAABAaLVu3dp69OhhixYtSvj+PffcY9u2bbMlS5bY9u3bPbyjkM6+ffusW7duvj/ZqlevbkeOHLGOHTt649Gff/7pAS4FdQYNGmTt27ePCf888cQT3rL14IMPWs2aNa1GjRr++Y8//tgDTr179853fGFh3HnnnbZz505bvHixde/e3Zo0aeJNUJ999pkHhsqXL++NV9WqVbPipqYojd4bNWqUDR8+3OrVq+fNWApKKSym4NN9993n+2TkyJG2YcMGD0xt3rw5Eq7S+tU2pVCZAmgBtVkpnPXBBx/4fdfx+/fv93BWoudepkwZD6jp9zJjxgy/J1qT1rFp0yZ/Zhor+Mgjj0Q+o+fUq1cvD+hptGTdunU91KXnpJGBavAqjucEAADODCEqAAAAAAAAAAAAhJpanhSwUUgmXps2bWzOnDnerKQRchqvVr9+fRszZoxVqFChREJUasxSs5SapxTqUTBHoZ67777bOnXqlOd4jYJTIEfhHIWt1I5UuXJla9Wqld11113Wrl27YllXSkqKZWRkeBAtKyvLA0kaU6dGpr59+3oQSQGwZElLS/N788orr/i4PI08VHBL16mgWNu2bSPHamzjwoULbebMmbZ+/Xrf1AiVmprqYTDdy2CEn+gZq21s+vTpHspSq5YCdJMnT/bvT/Tc1Rqllir9XnR8Tk6Of6cCWlqrnosaqAL6Pq1Jvy0FrfQZtVMp+Na1a1dfl0YOAgCAkpGSG907CgAAAAAAAAAAAAAAAAAhU+q/XgAAAAAAAAAAAAAAAAAA/JcIUQEAAAAAAAAAAAAAAAAINUJUAAAAAAAAAAAAAAAAAEKNEBUAAAAAAAAAAAAAAACAUCNEBQAAAAAAAAAAAAAAACDUCFEBAAAAAAAAAAAAAAAACDVCVAAAAAAAAAAAAAAAAABCjRAVAAAAAAAAAAAAAAAAgFAjRAUAAAAAAAAAAAAAAAAg1AhRAQAAAAAAAAAAAAAAAAg1QlQAAAAAAAAAAAAAAAAAQo0QFQAAAAAAAAAAAAAAAIBQI0QFAAAAAAAAAAAAAAAAINQIUQEAAAAAAAAAAAAAAAAINUJUAAAAAAAAAAAAAAAAAEKNEBUAAAAAAAAAAAAAAACAUCNEBQAAAAAAAAAAAAAAACDUCFEBAAAAAAAAAAAAAAAAsDD7Bw34y1E5+xKUAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -750,13 +765,13 @@ }, { "cell_type": "code", - "execution_count": 52, + "execution_count": 37, "id": "f8c74802", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACn0AAAbHCAYAAAC1rjGIAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAXEgAAFxIBZ5/SUgABAABJREFUeJzs3QeUZFW5NuDdM0MQARFFQEBRMSsoKKioKGIWIyYwYEKvCTF7DRh/lWuGq+K9oiIqiiIgChIURHKUrOQw5JxnprvqX+/BM7emprqnu6e7T1f386zVa2Y6VO86darm7Nrv/r6BdrvdLgAAAAAAAAAAAABMa3OaHgAAAAAAAAAAAAAAyyb0CQAAAAAAAAAAANAHhD4BAAAAAAAAAAAA+oDQJwAAAAAAAAAAAEAfEPoEAAAAAAAAAAAA6ANCnwAAAAAAAAAAAAB9QOgTAAAAAAAAAAAAoA8IfQIAAAAAAAAAAAD0AaFPAAAAAAAAAAAAgD4g9AkAAAAAAAAAAADQB4Q+AQAAAAAAAAAAAPqA0CcAAAAAAAAAAABAHxD6BAAAAAAAAAAAAOgDQp8AAAAAAAAAAAAAfUDoE2AcrrzyyvLoRz+658djHvOYssUWW5RXvvKV5Vvf+la56aabSj/45Cc/WY3/ox/96BKf33rrravP77fffkv9zODgYLnkkkvG9Ht233336vZyu4xNfY4dd9xxZTr461//Wj7ykY+U5z3veWWTTTYpT37yk8s222xTfe6www4rM9WJJ564+LHIc6DbNddcU+64445GxgYAAAAAAAAAzGzzmh4AQL971KMeVVZdddXF/x4aGiq33nprueCCC8p5551XfvOb35Sf/exnVUBsJvn73/9evvzlL5cXvvCFZZdddml6OEyhe+65p3zwgx8sRx99dPXvtdZaqzzykY8s7Xa7CkQffPDB1cdmm21WfvCDH5T73e9+ZTZYuHBhdX/32muvctBBBy3xugAALN+Gi7e85S0TdnuvetWryte+9rUJu73ZJtd72fQz0fbee+9q8xyjk0108+fPX+b3zZkzp6y44opltdVWKw960IOq+eszn/nMarPWyiuvPKrf9eY3v7mcdNJJS3zuq1/9ann1q19dplo2VX7zm98sX/nKV6bktWa99dYrf/nLX5b63l7z+yOPPLKsv/76pZ8cfvjh5bbbbiuvec1ren59//33L5/61KeW+Nzmm29efv7zn5fZZqY85p0bcvfYY48Jvc3hni/9shH697///RKfe//7318+8IEPNDYmAAAAgJEIfQIsp8985jM9Fydvvvnm6k3jo446qgrIHXLIIdWCW7/56U9/WhYtWlQtEHbac889x1zlk5lh1113rQKfD3/4w8tuu+1WnvjEJy7+WoKfCQTn3D/11FPL+973vrLPPvuUmWTjjTcuf/rTn6q/z5v3f5dS1113Xfn+97/f4MgAAGBJrVar2rSVj+uvv76cc845VbDpgQ98YPnQhz5UXvva15Z+kAr7v/jFL6qg2u233z4poc/Z5KKLLqqO4bHHHlsF2wAAAACA/tJ/6SOAPnH/+9+/qiCUqiqXXnppFYTrRw95yEPKIx7xiKoyDKSaUKpYRqqCdAY+Y2BgoDzrWc8q3/72t6t/n3zyyeX4448vM8l97nOf6jmRDwAA6Ec33HBDtYHxE5/4RBWonM4yn3jlK19Z/t//+39V4JPxu+OOO6r3KV7xildUgU8AAAAAoD8JfQJMcvAzba8j7d6h35177rlVtaC0Lh8p9JiWfxtuuGH193/84x9TOEIAAGC0DjjggKp6/3R19dVXlx133NF8eoIkOPuTn/yk6uYBAAAAAPQv7d0BJlldNeW+971vz68dfPDB5dBDD63a7N1yyy1Vu+i0Uk/L+Le97W3lYQ972BI/8+Y3v7mcdNJJ5X/+53+q7/vBD35QVVO87bbbytprr12e97znlfe85z1lzTXXXOr3LViwoOy7777Vwl6qj6YK6TOe8Yyy8847Dzv+rbfeuqru+OUvf7lq/bf//vuXT33qU4u//sMf/rD6eNWrXlVVDFket956a9lrr73KX/7yl3LZZZdVVSNzHxMgfMtb3lIe/ehHL/UzxxxzTNXmL8HCHIOEER/1qEeVF73oRdV4cx9rJ554YnU7kePd2Zq7Vv+Ovffeu3oMuqvhZHxHHXVUdUzmzJlTtTh/6UtfWnbYYYey0kor9Wyb97//+7/V707773zPBhtsULbaaqtqLA94wAPGdaxSbfNnP/tZufDCC8vKK69cnvSkJ1W3t+WWWy7+nosvvri8+MUvrv6ex+3xj398z9t64QtfWJ0Pqc75kpe8ZMTfu8IKKyyuEHPKKaeUpzzlKcN+749+9KOq3ftaa63V8+tHHHFE+c1vflPOOuusqmJPQtJ5rN/+9rcvMdYrrriiPP/5z69uK60oH/e4x414P+pztfPnf/zjH1eVbK655prqMcg5knP21a9+dZk7d+4St5PW9Pk9n//856vHOM+xG2+8say77rrlS1/6UvU93edR/bysveAFL1h8Hv36178uf/zjH8tzn/vc6rky3OP5sY99rDqfDjnkkGGPKQDwf1J1fLjrjJH0uk5m9HJ9nuub4aSFeK920Z/73OeGvR6NjTbaaMLGOFttt912i6+Ds1FraGioaut+8803l/PPP7+6zrzqqquW+rnMK3Idvs022/S83V133bW6/u/uCDEVch+mSs7P7nO7cz45E+S8GIvnPOc5Sx2TzLnpf3mtSJeO4ey3337lt7/97RKfy/+5+b93ODPt+QIAAAAwnQl9Akyiyy+/vKpIkuBY95vpWXzbaaedqjBgrLfeelUQLeGyBNfy8Yc//KEKNPYKuf3tb3+rApwJwqWiYkKl+X1ZsEsoMSG/zsWYBCLz+04//fTFi6oZVwKnRx999OKqjMuSkOKmm25a/vWvf1ULfwnC5WO0Pz+cBF5f97rXVWHPLBRkETEBw/w7Cw0HHnhg+f73v1+e/exnL/6ZBOq+8pWvLF58fsxjHlMtaCZ8l4/ct5/+9KdLhfrG49RTTy3vfe97q3FmXLm/OfYJ/Z199tnV+BLu7Awe5FgnwHjXXXeV1Vdfvar6muBtjt15551XBQuzgJbjNxY5Dgn65jHP45iF2zzm+fjABz6weJE9AcInP/nJ1Tgyvl6L7Keddlp1rt3vfvcbdpG3Ux77VVZZpbpPOZ8Sdtx22217LtI/9KEP7XkbCTsnWJnzuz6nEra98sorqxB0FqP/8z//s7zpTW+qvp6QbBah81xJOLLX8+GMM86o7kdar9dB1zjssMOqMGWebwnH5pjcfffd1eOZj4Qx//u//7tnKDu/K8dnnXXWqR7vjO+xj31s9dh1y3M3xyTnQuRYJ1y62mqrlde85jXV7/n73/9ebrrppp5BkwSxIyFUAGB08v/y+uuv3/QwZp1cq2fD0XByzdRLrhdH+jmWX65bhzvGL3/5y8tHPvKR8r3vfa/nRqRsnErAr9fGuNkSyM382Tm6pMxdBOVn7utFPoaTDbZjff0HAAAAYOpo7w4wCZVIEjxMtcp3vetdVSWNhOMS6uyUSp0JsaW6YSoo5Pt/97vfVcG9/DvhwYTIhqsM+POf/7yq6vjXv/61CpQdfvjhVRgwAcc6KNkpLfsS/sub+gkb5mcSuvvTn/5UHvzgB1fhxdFIhcpf/epXi4N3r3jFK6p/p7ro8khgMuNOqDAh1IwvQbiEW1M1Me3n0oquM8T6jW98o/r7t771rWpBIscvxzFVHRPwq4Ofy+vaa69dHPhMMPW4446rwokZY0KFm2yySVU550Mf+tASP/fVr361egwTjEyVyRz3HO8///nPVYgwt5sqkmOVwGeq+CREmPucP+vfvfvuu5fjjz9+8fcmcBgZa68qOXXYMNVKR1OVI+HVutLrnXfeWZ2f+dmEcbOInHMh4cuRfPe7363OvZyLedxzPHM/8udnPvOZqsJrFp1zzGp1GDL3o1d1moRaI+dKHXbOY5IxJWj7H//xH9XzLd+XxyyPRR6DHKtU9Owlgc8ET3NOZbxHHnlkdf97+exnP1vdr1qqptbPk6c//enVcyzncB7/bjkPMo48d/N8AgCAyZDrzV122aWan/Rqo67iPAAAAABAf1DpE2A51W2eh5PgZ3cYMBJwS6XNVGXceOONl/ha/v3GN76xqsKSqpC9pDpivt7ZUjyt3RO+SxA0gbUdd9xxcYvFhOriv/7rv5aolJj28QmLpq13QmlNSUCvbtHdWUkklRITBExV0VRyqis2XnLJJVWYLxUqu1uSP/OZz6yCtv/85z8XtyNfHgmRJvCZVvd1e+9aKpLm+GXcaXeewGqCsZ33KcHLzkBlKld+4hOfqFqbd4eBR2OzzTarQpEJR9aLtwk1pp17qlPuueeeVdAwcmwSlk1r+oRD67FFjl+9sDuWCpMJvj7wgQ+sxpA293VwMUHYfMQjHvGI8s53vrNqoV6PMzKOVF+NHLfO6qO5H1mATgv2hEG/853vLG5Xn+P7xS9+sVx33XXlhBNOKM94xjMW/1xnmLLzfiQAu3Dhwuo2u5+DeQ7k+ZPxJdD57ne/e6kKRnluJTRaV4odb4WbPM/ze1JRNKHTuoJpLZ9LkDWVlVKxFgCYerlu6G5Z+5Of/KRsscUWZZ999qk2VGWDUq4P8v91rseycST/z+casb4mirXXXrvauJRrmtxmNnXlWjLXrbn2fsMb3lBe9rKX9RxHrv2zySWbVXK9m2vgVFnPtX/mCLnWzyaXZW3WSdX/eqNOLdduaeebTT/pJlB3JMhms2xiyiaWXHtPtSOOOKK8733vW+rzuU5NlfbhZF6Qa95ssuqUY/785z9/2OOQxy1zrVTtz7V7Ku9n3pA50xprrFFVkM01dKrZj6VjQOYCeeyy8SzXxrkOzfVjqt/nmjabe3JuTAcf/vCHq/Pg9ttvX+LzOS9yv7vlejr3q3uD23BziDw22ZSYcz9zohzbbBhLFdFs0MocKudzjnPOvdE+JzulU0Atc+p0PKgrzWZe3Cn3KRsGswkym+7yZ+ZCeXzSLSI/m3lJnnfd8/vM17IJbCzyWvHLX/6yOr/yOpDnazaBpftH5lKZD46k+zWl7nKR16Neep3n6ZSQjaK9jle3HOfOY53nw1huezhXXHFFNT/Mex+Zq956663VscjrWZ5nOR45B3p1Xeg00mMaOVZ5jc75lr/nuZfn2tOe9rTqNe8JT3hCmWzjeczTBSKv6d3vw3zhC1+o/p8YSc7TumtM5/M0751MN9l8mudQXuvPOuusKmCe+5zX22wEzeOU/9e63xcbjfo9jTz25557bvV+QTqL5Lmd94/yvkE6geT9CQAAAICZRugTYDmlrXNnG/WEt7KglTf9s9iQgFvaSadddeeiYaoA5o3uzkBcp7SprhfMeskCZ2fgs5Y3sxP67FzAy8JDxpUFqyzQdMuiW94Mz/c1JVUXU60zYb+8Qf/c5z538aJzFmyy6N4pb+Bn0TALR2kV/ra3va1asKv1WjgeryxO1C0Re0kAMgu5qeCZY18HK7PAm4X7XXfdtaqo85SnPGVxCDULefkYj+23377neZPFpIQ+Uwk0i98JCGQB7UUvelG1WJdwYWfoM5UrUzE15/ATn/jEMY0hY89tJYCZ+5xKlRdeeOHir1900UXV4mCqaiZcWQcTEoDI8yIBy17t5iML4jkPzjzzzHLjjTdWi4J5PmRBMFVwE9LsDH3mvE2QIud3vRCa35HfNdLjloXPnDOpcpv70B36TDA0x3AiZEE8Idfcpyx4dgYYtHYHgOkp18/ZANJZ/TABk1w/5fovgcnhZC6www47VGG3zs0v+UjF9m4JwSSUWV93dsrvy0dCoLmeyzXPxz72sSrIMlZf//rXy1577bXE5zJ3yX1tIvAZ2fiS671c93XKcR/pmj7Xet2Bz4SIOq93h5PHIccwYbROCQzlI9eXmcelenuCuiNJcCtBq1xb93pc85Fr5mwAypwlAcOxhEknQ65xc82dQHOnf/zjH9V1dY7jeCWIlnlAd2gxEsbK/DbHP5sUc4wT0P3a1762xJx6MiSEmjlZZ8Auj00Cep/73Ocm7PfkmGajZec8Pu8HZN563nnnVfc55/XydsqYznIO5Riku0J3t4kc/7zmXH755dX8OV07EtrN6+V4JGiZ17Xu903SfSIfCXVn092nP/3pYd97aeoxz/seef3Ludn92jdS6DOvOQmZd3vlK19ZppuEPb/yla9Uwd1u+f8xHwmCphNO3gPK47SsUHQtG5u/+c1vLvV/RyR4n49TTz21eu1NSDjvG413IycAAADAdCT0CbCcssDXq+JGQmdZ5EhlyCwCZLGju410AoBZCDjjjDOqBYlUwsifWRjIQlj0amUdw1WJSRXMekGtlgXiSLhvOKm00WTo8x3veEfVij1v+mcBNoHOBBET7kv1i1SA6VykycJwKkmmvXhCc/lIlaJUiUilz/zMRLyhnwWpesEyob1UWOml/p4E+mq5H6nAmcXTVF3N4upTn/rU6j5lcSdB1/HorNTaqa7eksc+QYM8pnWl0YQ+sxCdalH1guryhg2zWJ2wa12NM4tPWeRNlY1U3sxzIGHKVOlJYCJSUSqyuJoKS72k6lItxzOPdX0/EvpMkDRB2vpcr1u7d1YVzfMov7+ulDJcNayrrrpq8e/plvNpoiSknNeJLPhnvFlwjoRAE5DNwnoWuQCA6SMVAXsFa2K4Sp2Ra5BcA3YGPmu5ftlmm22W+FyqDiYMlKDUaOS6M1XME5TJ9eZog0y59hvu/rz0pS8tTcl1fzbpdG/yytxgpNBnAmPdEoRdVhXUbI5LCKyeIw0nc7JstvrZz3427DwqQaa3v/3t1bX3siQQlnMqlS87N0U1JfOm7tBn5p6plte5wWoscn5ljlZfh49GAm8JZ6XK6GQdk1zr57nSq7PFpptuWlVknAg/+tGPqpDhSHJsEiZO4DTzlJkmz6ucA71Cfr1kDpmODnkdTIeKsZwDeR4l0DeSzC1TlTSVlutqsBNpeR/zzMW7Q5/ZxFlvfuwl398dps3m36moaDoWuc95v2a08t5BzoO8f9Brs3It9z2bquv3M5Ylr2uZg+f1KeMZ6X0xAAAAgH4yfFkKAJZLFite//rXL67mkFbeeZO/lvBdKqAkMJdW5FngyGJEQmEJiKUN2EjG0rY8lYFipKqFq6++emnSuuuuW70R/9a3vrUKtCa4mDf8s4iT45h2bt2VjxKcSxu6LFhmsTgL66kCmdbpOX5Z2OtuWThWeZxqqdqZijS9PrJQGZ2/L8HTtJnLInoqbqYSUYK1aYWYduVZRO6sjjlaw7W/6/x8KovUUmE0AdMsNNeL4zlWafdeL7JPhIRss9CeSisJZtaLKam+Ugc56+OT4zrcsczj3n3uxpOf/OSq0lJ+tm6xmNB0QqYJO3RWNul8HM4+++xhf9fNN9+81PfXelXSXR4JrUbO0fp41AtVqTzS9MI/APSbhPKyeWosH6kuN1rDBSRzHZ5rueHk+iKbOnrJxp/OioYJSGUuMNrAZ6cf//jHVThmee/PskKsU6HXJqRcew93HOvNRd1SvXJZErxcVuCzM5C28847L3Ft3TmGD37wg6MKfHbKuFPdsGmdlec79doMNRq5vk2VvrEEPmvZCJUNdpMllf17PYYTHXheVviv07777jvq0Fq/yPMlmzlHG/jslDnSWCquptPEsgKf3eHMzB0n2vI+5nnPIJWju0ONvULttV5fG81r31RK546xBD5r+b/w3e9+d/nnP/857PekKvZ4njvZMJGQfv3eDQAAAEC/U+kTYJIlrJjF2Lxxn6opCTfGe9/73qoqYqr9pNJMKlk+8pGPrFqCZyE5IdG0O58IdXu+zgBjt+HayE+lVLJIxYZ85E3+k046qQrBJpyYN+izqJqFko033njxz6QdYD5y3/L9+UiwMouVaXWeMF+vxYbOapK17vaQkbbinQtRY60KkWqbWdRNVZlU/MxjnjaSCRym1VgqgCYgOZY24r3G2R1cTCWT7oX0jCP3IeHDP/7xj9U5mfNzuAoi3fL9aTOXKrRpwdirwm0t53nCt1n0y2OTkOmDHvSgxcczQYlUZhmr3I+0cMv9SLv3tL7LwnIqgXS2ges8njnWwwVlp9ILXvCCqopNzuU89k960pOqx6EzEAoAjF5aAo9VKoPnOmYsEtR87WtfW7VzT0vxhDpHs2Eq1/mpeJcNOKlynnBQNnp0Xo9mE1jnJpdarjlz3bXRRhtV1365Hs78oDtQl6BcKsk//elPH/X9yUaabLTK9VGuTXOtlN/TpNzfVKnLZp1Oudbr9ThnnpSK/J0yj8p9G+21dK5Lswkrxy4boXJ9ljbM3ZuBMq/I51O9tdNee+1VhQm75fo6j3M2RCUQmvlL9/fl9hLSqivzN2G4OUDa249Hgpuptt/9HMgx3myzzao5aY59gryp6pkuF53SUSFhr3q+kOdcNvJlHtHrHOgM262zzjqjGmPmKNmUmXMl882MI5vWJlrOgQSp0zkg9zNjTei82ze+8Y1qTjMVm7/q45XXjO4OH9ttt111vJdX2njXHTA6rbfeetV7Hjnfs7kzlSxz7Lvfn0inlLxeZjzLUndGSfeJPIapoJxzrG4V3v26mtfOvH53vgZPh8e83oSZ15Pu1748d3qFIvO63SkbICdqI+dESHeP73znO0t9PuNMyDrz4rw+JhycjiR5D6dTXifynM9cufu5kf8Ls6m0W95Dy5x6q622qjZW5HU7r73ZHNIprycf/vCHq/MPAAAAoN8JfQJMss52i3XQMG/+12/U77nnnlWlym5ZGJ4oqY4YaSWYMfRqATmeipMTKdUWUnEnQbgsDqZVeT7e/OY3Vws6r3vd66oFpIMPPrgKfSakWi8qPuYxj6ne2N96662rj09+8pNVJY+EA1NJJwu3q622WrUg1Lno010ttdcCZxb0U3kjY8gxGi70mUXDtA1La8AELhOQzCJGbjML8fldWcDKR9pUZnE9izhZdEgItLvN50iygFE/pp0SKo4cv4c85CFLfC1VML/73e9WC2xZKKpbyI2ltXuOX45DWqKnuuZIoc/O9ugJSNTB43rcdZv3XlKFJ4t1WZTN8ex83HI/soCUxZ4sEib82Ss0mQBofi6PQx63hKqHW5xORc9U153sYGgelyxyZfEpxz9B4DwWWfxscsEfABheqvJnA1F9/ZxrzVzzjUY2e3RWX0vgtPNncz3VWeG8lp9JF4CEgWrPfe5zq+udt73tbUtUBc21fUJEv/vd70Y1pmwyS+Aw1yV1lbnR3p/JluvS0YY+e1W6G0voKdemCRlmvlFL+DO3UV+jd0rI6F3vetfixyRziXRp6PbRj360+r5arpcTYPvsZz9bdQDofNwSOkrFuqYMt+msVwh5NHpVd8xGxwQ5O+Wcy2Od8znhuMyTMkdI8DhzpwQy6yBnPoarGpl541jknP/JT36yeD6Sx/stb3lLNVeZSNnAmFB1LXPBPPdTBbX7eZrzLBsAp6LSbn28ErbrluM81uPZqzJv5uq9XkPTnaPzfEuYN/P7bIDsDv9mY2CCmaPpupBzJ3PcBC5reVzzvEu3kO6NnsNVDm76Mc9zoTv0mcrM+d56Tl1L95MEZztlA2S9uXg6yKbnzHW7H6t8Pv+XdR+nVGzt3hCaqtwJzub9oO6W8b3es0nl687NwTkmCTLvuuuuZb/99lvq2KZzSP4/BwAAAOhn2rsDTLK6ikYWilO9JjoXrurPdYfe6gqACa0tr7yZnTfZE6w88sgjl/p6FhOy6DwWvYKj45VFi4T5slDSaxwJXdZhy3pROgsAWRBPC/deVTuf8YxnLP57fQzvf//7j9i2sA5C9qruFPvss0/PRfGESrNgmPvws5/9bHGoMRUscp+6F40jVYjqkOFYF9qHW9SvF56ziNYdaF177bWrz+dYp5pGAgap7lPft9GqF9MTXByp5VrU53Aei7pCRypvJIyZ43/sscf2/LkEEbK4k8e3uw1jqoXmfmShPcchFZlyHLtbrCYEnIWeyIJ+L1lgzKJ+7tOhhx5allfngnGvczLqqjU51+rn4liCtwDA1EqAr/u6dzQhsVS26xVC7PzZVO7sFcpMELAz8Fl73OMeVwVJuyUomY0so5GQVR347DWmJiUE1V3VLZt3EiabqNbutVSk7wx81rJx6jOf+cxSn08YMRvoarkGrSsN1jbccMOqsmu3HN9UdO2+b7n+HO6acSp0zxdq42nPHtlk1y0btXptrMsmuWzSS6g33RCykSthrjrwORkyX+jeODfR534Cjp3hv1peQ9K6vDvAV7cpnwl6vZ5lvpkNe70Cxtl01yvAl/csEsgbjYQlOwOftWz4y2bLbp2B+en0mCfw3BlYrN8j6BVun+6t3W+66aYqmNot4f3OwGenbIrt9bW859C9ybV7Y0DkOHcfv8j7Dp///Od7brDsvm0AAACAfjQ93tkHmIGygJcKDnVr8Swy1W3nHv7why/+vlQ16KyCkIXNLC7XVSy7Q2/jkUo2b3/726u/p9pE5yJDqjamAstwLcOHUy/c9GrfNlZZ1E4FxLolXPeidY5jFgzryjCRFm5ZqMwicCohdY4/Cw31AlIWfDqrTNZtDHfbbbfFVWzyWGWhMY9FLzvttFN1f7O4m5Bpbr+W+5+vZwEpC5077LDD4uqjCaomcJr2YZ2VW7OQmvGlUmVut9eC1EgSFkyr9npBNn9+/etfrxbHckyyaNJLXQ0zFTYyrgQRegUKRpLqUlnQzvFOMDNB01tvvXWJ78nxSZXVLOQmVJD73xmAqFsH5vOdC3pZ2EoVjlSCiRzLhDe71SHJVHXJY/eiF71ocRvITh/4wAeqhZ5UnPnqV7+6RAvQnDd53PLcy5gmos1f52Jmnle9PPGJT6wCBjlvElrN4zVZLQYBgOWT64tlVTYfTjapjLRJKhtxUu29W65/Rmr1nE1FCUv1anc+GmPd8DOVEgTsVf0+wcBOmct0V6PcdNNNq0rvo31cR6qs+PznP78aS7fOVs2ZF3TLGIZ7zHNNm2BX98axdDpoSnclvmVVAF2W3P/ua/K0bc45l/M6c610u6jnt5kT56Ozqv9kmopzP5sAh5N5UeYt3UYb2J7u0jq917wtVRiHk7lRvVFvPK9naZM+nF6dMRYsWFCm62PeayNg92tfXve6A6P5Hd0bIJuU9226Ny5nzvumN71pme8zdMt7Y1dfffVSG6q7N4XW7yX1kvc7skG3W16bxhtwBwAAAJgutHcHWE6pxNMdTMsibkJdN954Y/Xvxz/+8VWFgc4qPQkt5k38tPFK5cUs3iY4WFcBTcWIVEJMUC3hwF7ht7FIZYUsKiZAmQo/Ce5lQS/ht1Q4SQXGXm+iDyf3IRV2EpZMxccEF9M6a7x22WWXavE01RsSCkwQL5U5Uxmmrg7zxje+cXHoM2/uJ+yZEGYqOaZdYirzZIEhrcCyoJOfT4i0lvv5oQ99qGqvmDf5c5+zGJTbTzXOVJdIYDHVZjql4kwqlGSMCRCmukYWbbNQmnBuHu8cy4Qc61BpJNj5hje8ofpdWcDOY5yF0DzGWbDJAmeqNfVqsTeSLOrsueeeVbXT3GYqViZ4mcWUhBuHaxWe+5ffVYdWx1NhMgHatEXMscjCd87/r33ta9U4sqCX+3XZZZdVYcwci3wt5393+7tUcMn58x//8R/VY5lKpHnO1GPLfcxjNdz9yDjqSi3D3Y/NNtusfOlLX6rOy1QPTTWPRzziEdVzqh5jqsimFdxI4YqxHJuct7kfCd5mEXvnnXdefM7WMt48TgnO5n52VqAFAMa2EaZXAHKiJEQ43kqAudYeSa5F7rnnnqU+3ysA1Smhwlx3d7e8Hk3b4lRHz7XPdJbrpD/96U9LVcTMNdVIle5GCl71qqY60rVfrtGzSSfX8J1y/dr5+HXLnC4fY5F5VOeGwKk03Ka/kUJ6I8l8NZsJs/mrU+ZnaaecjzqElW4XCVRnjpTg30R2kRjOZFYRrQ03Dxvp6/V7BsujyYqxkdeyzMG7pX33suR7up9ro23DPtJj2us8nozjNFGPeYKLmSN2BlNPO+206nUnc+XIhsnusHaeQ8v7XtFE6q7MXB+DZY0xnVDyfkb3/Uvws25d3+u2M+df1v/Tvc7DhM/z/2hTr78AAAAAE0GlT4DllDee82Z850cW77KQmHBa3rhPq7PuYFcWwxJIyyJXFh/yM6k0kJ9JoC9h0Ac/+MHV9462vdlIMp5URsx48oZ62hEmLPj0pz+9/OpXvypPetKTxnR7qUaacGaCbgk+LqvV92gWoVM18oMf/GAVEkygLy0Uc2zSsi3HpDM4G6lUmZ9JcC6LOlkcSuAuiz/vfve7qwXjLOp2et3rXlf+53/+pwrVZkE3P5PF77Rx/P73vz9spZkERNOuPIHZhEsToM1ib0J+aRF+0EEHVdVtOiUY+vvf/74Kq+b7Uv0xixYZa6puHnjggeOq8pix1q3icv5lzKlykuDrSLeXRZS6qlEWWlOJdDxyXiZAmWo9WZjP8cjjlcBuKhbl/ProRz9ahZq7A4+x0korlR/84AdVKDZVsLKwc95551ULwln8TdXShGyHeyxyLtf3M4/1SJVS6+P8+te/vjpeF1xwQVUtJOHPtN/M49arCsx45TmW+5+qpXle9Fr8zHlb3zet3QFg+hrrxpxOy9rUMVyb4WyGWZZe7YJHExxbnvszVXKNXndHqF188cWLW6tns1XCvt3XhtlQN1qjCTX2Olad1e27K92P12S0mx6tzu4FExH6rOeICeiOVL0zj2E2j2V+l/lk5jEHHHBAmWxTcf4v69j1el3orlo7nJECi92VFadang+9xleHFSfj9Sx6VeTtnPtOhYl6zHM7qTI8Uov3XoH3zC2nk16vaaP5fy2v470ez85zYby3Pdz3DPcaCAAAANAvVPoEGIdUFFrekGMWwhJAzMdwUgmxW0KOI0lL63z0kgoICZn1CpolBJjKLN2GC5ymYmWqPOZjLEYaX6o/pELicO3Je0k1pGVVROqWIGKvMGIkADucVJj41Kc+VX2MpUJUd1h1vDrPubRIrFvJj0XdZn55w4apxpOqIr1acI7257PAO1JLvmUFX/MxGgl4pqLqaKU6aT6Gk2DqcM//hLgTiB1JqspmYTYLnAm9AgDTUzYljdeyqpql2uF49QpXjaYi6fLcn6mS+5GqnT/84Q+X+Hw2Ez3mMY+p2oN3B3+yaW4sQcXRtPTtdYw7g4wJLk6EbJhqSq9qpTHejWH1NX7mlAnhpitBHrd6/jGchHo/8YlPVPPOb33rW8v13Gj6/F/WudUrDDvacOJIoc9eVYOn0kgh38l6PYtlVeydChP5mGeOns4inbKRNe3J0/0lnWA6ZfPqM5/5zDKdTOa5MN7bHu65MxUVhgEAAAAmk9AnAMwSCRsmSJzA7nSrCDKb7LfffourkE7VYiQAMHa5ZhqvlVdeeVyVQK+77rqy2mqrjfiz+Z7xVDFcnvszlV71qlctFfpMi/dddtllQird9Tp+3W6++ealPtdZha5XqDfBrE9/+tOlX6TaZrdcm26yySbLfduppP/JT36y+khF/+OOO65q4X366acPWyU1j+0+++xTdVaYDMt6Tk6EnFvZ9DeW82q0geXOtt/dEghsUu5DwnmpTNl9PBLWnozXs5gOc6mJfMzThSUbTdOZovN5muD0KaecstQ5kJbw0+EYLOv/trwPMZrwbK/Xhgc84AHLfdvDveZ33jYAAABAP9LeHQBmsGuvvbaq4pPF1lRYTSv1hA2XFSZgYp177rll/vz55Re/+EVVTTZVabbffvumhwUAjGC01eZ6WVYQZ7311isrrbTSUp8/+eSTl1mx7NRTT13q849+9KMn9f5MpQ033LBsttlmS3zu0ksvLWeddVY54ogjlvj8GmusUbbaaqsx3X6ujUdqH53g2r/+9a+ej1ln54dul19+eeknhx122FKf23jjjSe8IuZjH/vY8o53vKNq555Kran++bnPfa56nLv97ne/K5NlKsJxZ5555ohfP//880c8r0aqQDhSsHNZ1VQnW+Y2vYKPy3o9i16vZ8tTbXaqTdRj3lnpuPs1P6H3XoH37u+dDh7+8Icv9bm8F7GsYHIC4b0qKD/ykY8c8bZz/nSHjbslMNstr3PDPQ4AAAAA/aI/3vEHAMYlC20veMELqgWhLKSkpfj73//+poc166Qy1dZbb121mc9i1vve976y9tprNz0sAGCSQmLLCljmtp/ylKcs9flsEMkmneEcfvjh1UaSbs961rOWOabpVhFuJGlz3O0rX/nKUmHNVLobbXvszhBVNuEM55hjjlmqhXw86UlPWvz3XtUwTzjhhGHDpAmspg3z2972tvLlL3+5an2eINJIj/VkSoAsbdV7VVkdj6Ghoer+pKL91772tbLTTjuVbbbZZqmwVcKMCW7tsMMO5Zvf/OaoWs4P91zK7xyLqTj/c/97BdfqSoYJvHbrdS71qkp65ZVX9rzdnEN///vfRz3GXoHSsR7LXrbYYoulPrf//vuX22+/fdifOfvss6sKsN2e/exnl34xUY9552tf92N0wAEHVK9L3WHIxz3ucWW66XUe5Djk/7aR/OQnP1nqc6kS+6AHPWjE284m1z/96U/D3m7O7Z///OdLff5pT3vamP/vAAAAAJhuhD4BYAbLomralmXhMO3i9t5772HbiTJ5Nt1006oCzjrrrFM+8pGPlPe85z1NDwkAaNi222671OdSYTJVEHuFsFIxbtddd+15nZFqijPJi1/84rLKKqss8blsYOr2ile8Yly3n6qTxx9/fM82wF/60peW+nyqGG600UaL/50AZ/f47rnnnvKpT32qCjh1ymP5ne98p2pDnDbnCSDlMc6moF4BvMl27LHHls9+9rNLfT7hqvFWDkww88Mf/nD5zGc+U4W3jj766HLFFVeUb3zjG+Xuu+/u+TMXXnjhUp/rPqYxb968nj9/1113lenmoosuKp///OeXev4maJywb6+KnM95znOW+twDH/jAngHKO++8c6nb/frXv94zCD6cXkG3iTiWvV7Pbrjhhuo873UOXHXVVdU50y3VF/sp9DlRj3ntIQ95SHnqU5+6VKXM7mP48pe/vExH2di4+eabL/X5PfbYo3pd6OWHP/xh+etf/7rU5xMO7w7e96oom42VCdZ3SwXQfC1dN5Z12wAAAAD9qPc7pwDAjJDqH1lcpllf/epXqw8AYOIkCJNQ0XikHfp97nOf0qRUqUzYJa3Lu8Nd55xzTnnjG99YHvGIR1SBrFTy+81vflMWLFiwVNguG0pmmrTefdGLXlQdi+GkPfhIFfNGkmDmO9/5zvKa17ymqsaecyGhoQQWe51Tb3rTm5YIaGZ8+dnuCnIJNaVSX74/m69yW6kq2qua4Zvf/OZhA43jlYDZGWecscTnUoUwrZXTfv6II46oxpJAWrdPfOITZaWVVhrX782xed3rXld23333pYK6CZLmawnNZiNajkmCpwcffHDPAPNogqCRa+sE3xK6y6a2l7zkJWW6VH5MQPsNb3hDFeBL2HfffffteQ6kjXmv6oX5fCrHdldB3X777atqseuuu24V9MxrQq8w9Eh6Hc8DDzywCurl9SRh6JwLYz038/P56L6fqVD5spe9rHpOJJye8zHdKFL5sVcV0IREs1mun0zEY94pryG9fraWx2m6hj4jXS26x5/X3Gx8zP976USS52zO4bzGn3jiiUvdRv7v6674nPv93ve+twrXd7r11lur/y9f+9rXVoHhvD5fcsklVUXl/F/abcstt6w+AAAAAPqd0CcAAADQd97//veP+2fTLrfp6pgJNqUV9lve8palqkP+85//rKrHLUsCUr3axM8ECfyMFPocb5XPWsJnCQXlYyQ5TxK26/aBD3ygHHrooVXAq9MFF1zQsyJrd6Bpxx13LBPtt7/9bfUxVtttt10VzFseb3/726vwYMKlnRJq3m233Zb58wl0veMd71jq86uuumpZc801y0033bTE53/3u99VH/W50nToM2HKumJmAsS9Kg92399UfO1lm222qTo0dEuwMIHMbg9+8IOrypmj0atS4i233FIF9WoJluY2xyqVLRPwze11t6bPa92yvP71r+9ZMXS6msjHvNMLX/jCqkLlcBVYExpNB4npKq3TE2rvDsWn8uYf/vCH6mMkq622WhUg7xU8znM94fUjjzxyic8vWrSo/PKXv6w+RpLA9H/913+N6f4AAAAATFfauwMAAAA04MlPfnLV9jaVycYqVdN22mmnMlMlzJqqecNVlhxvpbtUwl9Wpb3Oludpzd6r8uD97ne/8uMf/7isscYaY/r9a621Vvn+978/baoZpjrhF77whQkJwP3gBz+o7t94pGLtZptt1vNrz3zmM0f82WuvvbY07TGPeUwVBB6tj33sY0u18a7l/Ezwb7TH/b//+79H/XtT4bCzam0vvVqSj8ZDH/rQ8j//8z/jOgcS5vvsZz9b+slEPubdj+mLX/ziSQu8T4X//M//rALAY/WABzyg/OhHP6qC8cP51re+VZ773OeO6/zMa3Z+BwAAAMBMIPQJAAAA0JCtttqq/P73vx91iCWV+hLySpXPmSzBtFe96lU9v5Zw4Prrrz+u202L8YSKllUZcuONN65as6eN/HAe/ehHV22cn/GMZ4zqdyfwlcqiI93mVHnkIx9ZVdNL4HOi2synhXsqjY4lkJUqnt/85jfLO9/5zhGr+j7wgQ8c9utXX311mQ4yzgQXc44NJ5VL05o+lVFH8pWvfGWZxzHnX1qLp2X4aOXcSyXPyQh91s+bvJ698pWvLHPnzl3m9+dx/dKXvlQdkxVWWKH0m4l8zDt1tzav3ec+96nao093qWqax/Xb3/52WW+99Ub1M8973vOq149NN910xO/LsU5wPlVTRxPgzHmY45nnykhhUgAAAIB+o707AH0ni4I//elPy8EHH1xVa8hi13ikJdh4F4uzEJbFm3wsr7Q+O+mkk6pqTRO1eJ+Wej/72c/KX/7yl6rFYtpXpgVcKrukbWJ3W7/LLrusvPSlL60Woj784Q9PyBgAABidXNP+8Ic/LBdddFF1jZtrw4svvrjcdtttVcAlwaiEqZ7znOdUgZ9+DEeNR0Jv3/3udye80l2OacJIuZ3f/OY35cwzz6yun+9///uXxz/+8VWL6YRCl1URMR72sIeVn/zkJ+Xkk0+u2g7nz+uuu666vTxOa6+9dnnSk55UtU/vVbFyWXOZBDJTCTbzlmc961nVtfzqq68+6vua+5BxpDJpWnbn/uUcevrTn159vd1uV3OrhFHnz59fVRlMe/GEDnMOphXyqaeeOurfl2DVX//612WOKY/Bwx/+8KqteMJey3p+pHV8qvQdddRR1ThzXPK8eOxjH7tEVcztt9++NGFoaKjss88+1fwrwbwFCxYs/lrGmqq1qd6YyqqjqYSZFtepnJo5a9rYp7X7DTfcUIXcEthNqPL5z39+9XtzPMYiLeITnE5gOS3J77zzzqpibVpfZ764ySablOWR+/f1r3+97LzzztXr2fHHH18uuOCCxc+J3IdU3H32s59dPc9yzvWSUHIqIeecnc7e9KY3Va9VeS3J45929gkaZs699dZbj/ox7650nOd5/g/olOfKeCpDNyWPb56fRx99dPX6mPMtx2fhwoXVa1LOubwW5bkxlsc5odIddtihvPa1ry2HHXZY9ZpzzjnnVO/T5L2PnM85/jmfM4a81gAAjFauVzrnKFm/+cxnPrPMn8t8Zbfddqv+nnng3/72t+UaR64lh7vWzxwj845cT6VTwFvf+tal1nwm2oknnlje8pa3LPfa2mw0GWuAyyPzy2y4ylwtnTMyf82GzMw1877TdtttN+LGtn5WvweT93G6N/Defffd5cYbb3RuA31loJ13dwGgT5xyyinVBCnVST7+8Y9Xn3vjG9+41PdlEeHss8+u/p7KJ73Cmd/73vfGvPiS283i21577VUOOuigagFyuk34EhbI8clkLQuqqayRCVqCnYsWLaoWibJ41j2hyYJu7lcWK4drrQgAAFMlraK/8Y1vLPG5tEU/9thjRxV83H///cunPvWpJT6XKnKp4DndFhxSgTGLLL3mH1dccUW59dZbF7ecT7gsi3sTIdf/CehF5g0JSyVMmMW8F73oRVWANXOJVMjLAkgWhkYKndVBvTxOT3jCE5b6et6GTPgvc5NWq1V97j/+4z/Khz70oQm5P/XC6Je//OUqEDYVEjjLeXbzzTdX/84xTMA2j1lCaAlmJuyYqpCZ802UP/zhD9UcLi3Gp+q+TqX6XJpuz9mpkCB6r8c0r4kJywIAMHWhz8zBEuBc1qbA17zmNYvXpCYy9Jm5X/f8L3OM22+/fXHBj8y/smEyPzNZhD5nRugz66JZ48x8POum2aCY+er1119frrrqqup7cr6lw8x034A3kaHPmT6/BmYulT4B6BuZvH7+85+vFng7F8t6LQB1TsyzCzO7HSdCFj3TSmw6H6NMShL4fOITn1hNUlJ9KLJDLa3nMiH/4Ac/WP785z8v0Q4ti61ZxN11112rlnyzpYIUAADTTyrcpXJ9t1TUG0uly37x7ne/e9iWzlmMyQLEpz/96Wo+koBhqnNOhEMOOaT6M1X/v/Wtby3+fCrz5XdlYTPh2bG2Rc7mupGCeglDpuLkCSecUC04pQpqqhv2m87QbKoVpnJpqqPUcgxz/375y19W1WXvueeeCQu45vYy75upUskxVRpTwWi2SeC113MqlSsBAJg6qaiZa/p0PxhpvpKNenXgc6IlTJo1n+F+bzaXpXJj5ldZ8+m1mRAiXSQS5ky3ha9+9avVhs90KegsKPOf//mf5Ywzzqi6jPzpT3+acedT7lNko+Zsml8DM9ecpgcAAGNpFZi2cNlNOBMXeidC2h1mYpZJWxaK6sBnJOCZiUuqk2YXaFo4dsquvhzbHOMcawAAaCrwmar+qTTRa8Frtkkr47Sif9e73lX9Oy3YLr300gm57bo65eabb97z82mhPtbA52iss8465Tvf+U7V4jn6sZJjulDUlWgT9sz96Qx81lWBsqnuve99b/XvPffcc9IWg2eaLC7m3OtejJvJUrEp8/heVaHyGtC5IAsAwOR72tOeVv156KGHjipI9rjHPa5MpbR0r+ckmUcfcMABU/r76S8//OEPqz/zfks6e3TPLzL/yqbFrCXmPYG99967zDS5j/mYjZsLgZlJ6BOAvpC25JlsZBKy3XbbNT2caSuVciIt8Hq1fFxppZWqKjpx1llnLfX1tC3I7tVM/nLMAQBgsqUqSSr6ZQPSG9/4xqp9cVpmd8sb87O5tXGqnNayUWsi1C3W0w5wNJ+fSPe///3Lk570pAm9P1Mlbeo/97nPVSG93Id0UhhJuipkfpbjmjZyUHvZy15W3vSmN1Wvf8961rOqlvbd0oUj3wMAwNRKMC4OO+ywag4wUugzm/VS/X+qZePZhhtuWP09FRqhl1tvvbVcfvnl1d832WSTETffbbPNNtXfzzzzzCkbHwDjI/QJQF/IpDql9Z/+9KeXtddee8Ju95JLLqkqr6SNwROe8ISy2Wablde97nVVu8S03uv05je/eXHL+HjBC15QHv3oR5cTTzxxifbq2U2Z9vNZsEmL9Sc/+cnlhS98YbUomN83WqnwkdvPx2hl7NnZmdYLw6nfnKgXcrsr0eQY51gffvjho/69AAAwXqkikWr1ua4+7bTTyt13393z+z760Y9W7cZnqywi1joXHHPc6nlD5iO91F+v5y6Z2+Tf8+fPr/6dlvH599Zbb139mX9Hvl7/bNq8T9Z96l5ArceXTgUjzZXyfaN1xx13VK3sXvnKV1ZztIQ1t9122/K9732vqoozFmnvmHM26gqsI0l49v/9v/9XBT6/9KUvLfX18847r3z2s5+tFomzgS9z02c84xnVbXdXFarve/3YfeYzn6n+3d0S/IYbbii77bZbFajOol7ucyrlpiX9ggULhh3rcccdV3baaadqs+DGG29cVZj8xS9+Uc0fR5qfpgJt2k7m5zL+VEV65zvfWc3le6nPtYS+v/zlL5enPvWp1Rhf/epXl1tuuWXx/UwQvJcjjjiiGmfmr/l9mX9/5CMfKeecc07P709A95e//GV1e5n352cy1lRp7RUynyp5zp588snVc/PGG2/s+T0JfPba1AkAwORKS/e11lqrWi/JXLWXiy++uLqmTfeEdEro9uEPf7i6rs2a0XAOOuig6nvGGxpdbbXVqj/vvPPO6s9vfvOb1e1lvjPSnCbfk+vwkeYHozGea+3MpzLvzLygXpvLXC1zwF7XxfVcJPOVXuo5ZPe8KBYuXFh+9rOflde//vXV78k8J2t2aXF+3XXXDRuSzFhyDPP9mVNlHfHTn/50+ec//1nGK0HKzJMyjsx/sqa37777VsewlrlXNrzm/oy0abCeC2aNc1lS7KW2rPlP5nV//OMfq/Ool5zvn/jEJ8pznvOc6rHbYostqjXJP//5z0t8X+b5WVPNGLPmuqz78bGPfWy55vB5zyK3s8suu1Tnd+ay9blY//7u82ik+XUel/w992+4IjlXX311eexjH1tV+dUeHmiC0CcAfaFuj7HVVltN2G1mIv3yl7+8unDPxO5Rj3pUNSn/xz/+UU32UvXymmuuWfz9+XomCLXHP/7x1YJcPaFOSPTtb397NdnJpCnVOPIzaVmY9otpp54FrHPPPbdMlvy+THqyQNhLJrd/+ctfqr9vtNFGPb8ni2WRSR0AAEy2XIPn2nkkqYKXxaDZrJ4TJSiZRaflnTdkLlNX8kxlmPz7oQ99aPVnXSkmX8+/85Fw7kS66aabFodQs4AzmbKgmLlfFof+9a9/VZvdcl+zQFsvItUhztGoF4jSiaJu+bgsmaPlY5VVVlni81kczTzxN7/5TbW4mXGlTePtt99etfneeeedlwi/JvzX+djVj1lnKDALXC996UvLj3/846qaS24vbdITiPz6179eLSxef/31S40xx+Jtb3tbOfroo6sFulQNuvLKK8sXv/jFahzDSZB1xx13rAKeWQx7zGMeUz2njznmmGrB8EMf+tCwi2Rf+MIXys9//vPqMUn119yvNdZYY8SQZALgWUDOOBMEz0Jc5roHH3xwNY/fZ599lviZ3Jcs/OV3ZbE+53J+JgurCY9mAf673/1uacI666wz4tezsJmxAwAw9TL3SjhwpBbv9Twt19+9ZONV/P3vf6/mQL3UbdkzLxirXOvWFRzrOUH9OzP3SUBvpN+ZcadD3HiN51r79NNPrzr6JaSXeU/mHSn2kvGmC92rXvWqKkw3EbL2l/lPNuFl7S/rdVkby+0nCJj1tMyfOmUTWuYVGUvW9jKfetjDHlZtrPvtb39bHd/M1cbTqW/77bevNsw95CEPqY5VxpTQZja0ZU5Tn3c5BnHggQf2vK2sRx5yyCFLPN4jue9971vNGyOBxk9+8pPV5rPOsGktQecco8zPumVDYM7TnD8Jxuaxyxw353c6YGQjXn2bmavV9yPrsb0kcFw/tzrP/+WZw+d7EqxNkDPjS0B0uPXQkebX6cqw8sorV+dD5p695PFJSHfLLbec0IJFAKMl9AnAtJcJQr0YmN1vEyETqewizCQqE75jjz22mmBmJ1omK1nkzETive997+JqOam80jk5zcLbr371q2oHV/zP//xPNc5MhPbbb78qXPm73/2uHHXUUdW/M1G66667qoniaOywww7VGwb1mwYTIZOhBFkz2cqEqZf6GOe+9JrwAQDARMq1ad7A7yXX0KmYn2oas1UWQfbee+/FlSmyoLOsoNiyZG6TuUyOb7z73e+u/p0qIvkz/458Pf/Ox0RuwEs79yz+ZX50n/vcpwoaTpb8jrRXz4JPqoxkg17mfVmcyVwt1Unytcz9urs9DCeLSLHeeuuVVVddddxjywJiFh+zSJRgZOalv//976vFuwQm60o/CW9mQS2yONr52KUaaP6dz0eqi+S+ZGEqc90EVBOGzKa+hDJToSYLv/l9nbJIlwW1LDCmukl+f+azGVMqTQ5XsTOVQxOyTOWYPFezgJmF0Pz8d77znWoBMPcnYdNesjCcuXXGlzn097///RGPWebkf/jDH6rnwP/+7/9W9y/jzJ8Zd15PUjk0465lLHnM06owi425L/mZ3OdUXoo999xziU2fU2W453IWF1OtKM/75VmEBwBg+dTX5MO1eM+1bjY8pTNcL6lMnw1Y2QTVa60n1++5hs6GslQmHKusa9VzhcxtIutb9TpPr9Bg5ph1YHA8QdNO47nWTtGVzNNyvVvPgXJscjsZe47JD37wg7K88ngliJjOCjke+R2Zc+SY5fdmbp15UzaUdW6Kyzzjsssuq8J/CftlrpJ1wwQ98zjnscw8bqzOOOOMqipkjlHuc0KxOTYJZOZ4dd7n+nHJ2LNW2S0/m0qYCTOOdlNo3gfI/CzHJb8/87xUqE3g9Ec/+lG1btqrQ2AtxyIb/jJnzHs0p5xySnU7mWNn3pIQa+aendVWE/rMHC0bEHuFNPN4JPibuXW9oXJ55/CZ72aja34u48u4E8rsZaT5deb69fN6uNBqbn8inkcA4/V/dZwBYJpKZcxc9GciMdxurLHKYlbCnCnr391eL5OuTOqyiysTkUzoRjPZziJTxvj+979/qUlW/p3WFvWutNHIJDkfEyWT0kwgI20shmvLl2OcNxhyzHP/l7eKEAAALEuuk7OYcfPNN1eLDKm+kTfpU+Uu16bjkTfd++WN91ynZ6NYpyzEZBEni011xY+06k6wbbrLglmvttxZXEx1lLrtWTbMpWVcqqZMlhzXHMN0asjiU+f5lIWdhAhzXBPAzOJfKq8sS72ourzztSw0Zjw517Oo1SnVLtNFIouxWVS85JJLqufDsiQgmoXLVMbtnuummkxClalWlAW6LH7VYd56g2MqdmbxtTN8mMXBVA/qrmaTx7NemMxiajYudi+Q5/mcxd5UNM1tr7/++ku1zMzxr410THPu1OHn3I88prUcx4w7i8mZzydwWi/s1dWNUlG2cx6cn0nAOe85JFiZx3V5A9VjlQXmVIDNcybHMwu+eT5kUTp/BwCgWbkuyybFXGemQmVdLTHS5vvCCy+srqmHq1ZfV21MQY6E1hK061UpMEG24TZDdsv8IONJeHCPPfZYfK2bgFwtgcZUsMyGqVTK75wHJTBYV9hc3vWf8Vxr1z+TMdYVFiMVNTMHSheEhACX15FHHlk9ZjmumSN0dl1IB7+vfOUr1eOXsGPmGXV78Xp8mTd1zk/yM5mPZ56eeU0Ch5kvjdbqq69ezf07bzOPewrU5HbTASGhw4wzFSef+tSnVtU4c450tz4fT9gwBWwyP85mvbq6ae5L5oV1JcsEN1PlNJs0s0GzUzbr5X2KnE/pxtIdbk6YNwHSbCZ961vfWs336zBngs0JTnZ3MahDyancmXDoRM3hs8mx7tLYq2LpaOUczbgTIE3F0DyGnSHejCHP/c7nHsBUUukTgGkv7eQipfEnosJFdonVlUO7Jyadk8ttttlm8cRwNLL768wzzyxveMMben69niCNtnrMREqllf/8z/+sJmRPfOITq78PJ5PUevJ9xRVXTOEoAQCYrZ7whCdUCwtZIMjiQgKDWVwbb+Cz32ShIBUPOz+yOJWKmKkKkzDbvvvuWy2yjGVRqSkJqXbfn3xkU1lamGdBJAtNWWwcruLGRMnviCwK9Tqfcjzrlo1ZyBmNem43XMvy0UpIMguMCUT20vlY33333WO6v8N1dnjgAx+4+JjX9zch3LPOOqv6+3Ch1yzadUtwNAtfqfLZHfis5bhnLp8uEqnK0m0s3TwSOs25lY2KnYHPTvWGzczNc65FqgVFFjKzyNrdKjKLhrvtttuwGyMnU957yGP1jne8o6pUk+P87Gc/W+ATAGCaSBDtRS96Uc8W73Xlzs5NTL0kmJfbyTVq3TVgtK3dE+rMdWrnR+bPWb/KNWzWuxK4zEbKOjRXb8BKeDCbi1KwZLKqE47nWjuBxkhb84QBO+dV2byWbnl194nlUc+Ncqw6A5+1zo54nXPB+j4lKJrAXwKytcxtEmrMBruxzs3zmPTa5JY5TG4rv6ez1Xzdtj3B3c4KnGlZn+OWedhYq8NmLpX5Z867FLDJuZNKtbXMoXL8c1w6q7NmnTYbdUeaayb8nIBl1kAzvlp9nqUKaKebbrqpqnDa2QZ+IubwCVrnfk2ELbbYopqzZR7aXam3fh6lgFBneBlgKqn0CcC0lwv/qHdlLa8EGetJZCbHw8nXMglJRZXRyuQoOxbrHV75Xfkzk6FUJYmR2iNMhuwgzYS/3smXNvTLCs9mt1raI9SLZAAAwORJRYx6ISTzhVyLZ4EpQc8s6GTRaaIWLaZCqnmkTVstiz5ZBEyL79y3uhLl8rRGH62600KqhQy3oa+eq3UvwA6nbv2W+zERMo/MAnDGmjlkqmrm753j6dVKstudd95ZHd+6Eubee+/d8/vq76lvP+Hi3H4WQrOg1UuvuXP981m0He6xzAJe5qEJlvaaW9fHcjQyzsjiY69Kst3HKeNLpZqca2lbeNJJJ5Vvfetb1cfDH/7wqsLms571rKoqjRbqAACMFNbLtXVaTKcqYx2uTFX+XEfWBUSGk6qQCY+dcMIJVWXDutph5gBpeZ1Kgc997nN7/uy6665bfXTPH7JeVl/T5nq2W67tM+60Ws/vzHVv1CHQBAaHC++NxXiutVO1Mp0OsgEu3QAy1lS1zM+k8mUdupyouWCCgXX1zm7ZxBZZx8tcIo9tNmQl4JtjlbHmWKWYSsaXDVqbbLLJEgHb0cq8qJcEBnOfM8acD/VjlbBxwqWZS+Xcye+PBFGzqS7nTDb1jUc6HubjAx/4QLXBMJs0E8DMuZJ1wcxJd9555/LrX/96iblY3a1gOOleEJ1z2bRI/+IXv1gFRxNqrTf+pcti1mpz/nTOQ5d3Dp/1zYnaLFsHUrPGmmNTF/1JCDTP/+iXDjPAzCT0CcC0V7fO624lMF5pV1AbKUhaL1pl4Wy0t5t2ENl117kzMRPwVCHJBOqYY44pUyWTjrSEqNsjZOKUhb/RhGfrY11PeAEAgKmRqhRZ8PjCF75QLeCksksWerJ4ksWnflRX4kh78lR0zUJPui6kwshYQn/LM//LIl4+RtJZwWUkdTv6hA/zM6OZY2UzY6rwdLc3T3WQtLjPgmKnfN92221XtTYcz1y3Xigbzf29+eabqz9Hqi7ZK9RZ/75l3f+R5tZjWYyrx5vfm0XJZanns1mkTdv7X/ziF1X7vzpQm4999tmnGt873/nOqsrweBZvAQCY2bIBL8HLVLFMwY/8O10M0oI685zRbGZL1cYE97J+lNbTue6sq3xuu+22w1YKzM8lmDce+dmEPlM5Mdfiud6vA4MJa443MNhpPNfaCU6mO10KlKQbQMZWtxjPhsiEAhMSTFXK5VHPV/K4dVcg7ZZjknFkvHmss66WyqUJfyZ0mU4c+UiRlWxyTDe9ZYV9u40036q/1tkpMOt0qXaZ8GPGU4c+6/OmrgS6vPJ70g0iHwl65r4lkJlzPed51jc758qjmYt1fn/mfLkfCZDm/K9Dn/XaZXdocnnn8BO9oS/jy/syud/ZpJn3a7LJNWvXqWA7XBcKgKkg9AnAtFdfoE9UALFzYpUJQSp/jBQ2HW1btbRiS9v4TGDe9KY3Vbv9HvnIR1ZVTxL8zGLdVIU+c6yy2y67K+v2Apksj7bFQH2sVTsBAIDmpN1aFpaOPfbY8o1vfKOqDNKristI1SATNJwu0govAccEPlM55CMf+Uj56U9/WgVdx2Is9ykLWJn3pUXdcNVzxirt6TO/ysJgFm6f//znL/NnslCXqjep4JKFrszNEvj85Cc/WX091VxyO5lDPuIRjyj3u9/9qs2EYwl9dm6UzO941KMeNaaf6wyNdusV2KznyssKy9bzy+VtWV6PMwvrdTeL0crxftvb3lZ9JKybxy3z97SMT5WY73znO9VcPl8HAIBOCSvmGjRzl4QAE/ocbWv37mqHqbqfTXDZEJdg3USG97olXJcNa6m4n+BnWoHXQbuJ/J3judZOkZTMjzLnScXPfH8qkCZYl+OTCqCHHXbYUm3Zh+uA0GuOWM8fPvvZz1ZrdmORdcOEH/Pxz3/+s1pry/1KNcw8hh/84Aerzhwbb7zxhMxj6zlVqlR2yuOUuWSORTaGJkybqptpo56qqKP1uc99rhp/qlamyupw8jjlPM3vy2OTcyehxvpxSFXaPFZjlfuR0GeqY37605+uwpNnnXVWdbt1q/bJnMMvj4SAE7jNY595dtaChwusAky1sb2jCgANqHcb1tVHltdDHvKQavdhnH322cN+X/21hDaXJTve6olOdv9l4S6tM7ITMYHPyGR3KmShLjsn68BndlBmYXW0gc/OYz0ROz0BAIDxLy4mXJhKimn7/olPfGKpYN7cuXOXqPbfLe3hp5O07csCXmQOlYXTbvV96nV/xnqf6qqcne3ouqV6SBacUo1zNFLZI5v8IlVtltV6PfejDm+m1WE9N8vcMV75yleW//3f/y2vf/3ry6abbloFPsczh8wCYT2Hu/DCC4f9vixannfeeYs3OqY6SaStX8K4vfRqh5j7EqlwNFxgNOftueeeO+q59fI+lrkPmQtnETGh3Mj9zJy9ru6zzjrrVMc8z61UFqoXEuuFOwAA6Jb1nkgYLtf/Ca9lU9Nog3cJ0730pS+t/n744YeXk08+udxyyy2L22xPljqUlt+Za+TMBdZcc82y1VZbTcjtj/VaO9fomT/k/kfWz57ylKdURUxSLTQfmQfXbeiXZ444mvlDXb011TxrdTv1uupm5ktvfvObqyqfaTeeSp+5HwcffPCYjlWvVuR1GDThyujeuJeAcTYF5nuyGTSPY7z85S9fvPY4GukckuOe8O+ypNppvWEv50rnscw5292lotMpp5xStajvrFgamT9nvTQ/n/lawpN1C/vuYO9kzOGXVx2SzvGvH4sc/zwOAE0S+gRg2qsv8FMdJAs4yysTiKc97WnV3/fee++e35PJb8rz160map0VaDoX9q688srFf3/CE56w1O1l3PWuzXrhabJ89KMfrXZGZmKcHYy77LLLmH4+k7FMvDoX8QAAgOaqYybsWS8+7bbbbkt8PRU+RlpEqheFppO0M6wDgKnYmPlXr/vU6/6k4uTxxx8/6t9VLzKmfWD3wlMMDg5WlTrSSv3rX//6qG83FV8y50ol1h/84Acjfm+qtGbOmPlkflf3PHK4dnAZc+c4O9WtEbsDp/Wic1opJnDZLRVTUmk1C7E/+9nPFodYH/OYxyz1OzulKkuvykEJqGZsWZztJfPgLApmvKlmujyyMJ3F3pwXWWTrJSHiLMimilH9/kEeqwRq0z6yWxbqNt988ymZqwMA0L9SmfPBD35wueqqq6pr31R7TIv0hDlHK3OOeo6W8OBUVApMZccUQUmVwjqkONbA4EjGeq2dIF+qnr71rW/tGR5MyLEOHHbOZ0aaI5555pk9Q5/1XDBVWW+88cYRx58uFJG5TeZKGV9Cq92yya4OZvaab40kQeFeHRSyQTBVNddaa62elUPrwGECm+M9b+pwYord7L///iN+b86VrBGmqme92THB03oOn7lmL6nQusMOO1TVbxOkHSmAnIq5nfdtKubwIxlufl3bZpttquORDY15vBKizdy7DsUCNEXoE4BpL7scE9TMBKrXRGG8bRLriW6CkZ1VSVLB5F3veld10Z6Fr0zwap07zjK5r3WGI7PbLxO0Wiqs5Pay8yxGG1zNDrXsiMvHaB1wwAHlr3/9a/X3d7/73WNuWREJjGYCnhYKk7nDFAAAGJ0sZqRCZmSBIdUzOjfJpfVcJBBat9LOYkWqZ2R+Mt2stNJKVWu6en6UVnPdYcI45phjqko6tSzkpY3ecAt2vWTRKYtnqWqSNnad87jMuRJAzZwrC5Jvf/vbx7TomzlXfPe7360WCbsrkSTUmU15dbgy1Wue+MQnLjWPTKCys7JM5qe77757+dGPfrT4c92LXfXcNIvNnXbaaafqa1lw+9jHPrZE5ZN8b76eBbxUj82xqX3gAx9YXLk051i92JW5bcZSb2LslDljbq8O72bxu3Ph889//vPix/Z1r3vd4g2d45WKOq997Wurv3/4wx9evFEz8nvT9nCPPfao/p37lgo1kQBofZwzZ+5cyMtj9vOf/7z6+0RVOwIAYGZKVcJIW/KoK3eOVuYCqRqZ6/Lf/e531Rxk2223LZMpc6Fsvsq8q55fTGTQdKzX2llzS2gya1C5pu/sbpAqnt/+9rer+VDmNKkA2j1H/MlPfrLEmlmqPeZ2ekn4ML8rc+R3vOMdS8zX8js+//nPV9VEE/ir5zVZN6wf16985StVoLRT5qdZV+wuGDMamfNlPts5R0sQN536IkHGXh37cowzrgQlU6k1mwbrTXujteWWWy5uo/6Zz3ymum+dxWwia6I5LzNHjvxZB3Bj5513rv7MeZSQb2fV1bxHUX89c+W68E6v+3HQQQdV4d10Zex8jCd7Dj+S4ebXtTwu9XM18//Q2h2YDu7tbQsA01gu3DNByIJOFq6e/vSnL/dtZrdgJjWZ3GRBK5OMukVCZxuFLBh1TrKykysLTbnwz4JdFukykcnkLu09slNvr732qnbKrb/++tViWj1xyqQq1Uiyky8TynoBajhZMKsXrDKRG420BKylVeIb3/jGYb/3cY97XBV47ZZjHDnOY2kJDwAATI4sQn3xi1+sFkmysJJ5TOYwuV5P9cgseuTaPm3SspiWcF0CkqmckioZWRjJ5q7pJPONVJ35/e9/Xy20ZXGprvKRz6d6SOZmCSNmMSiLMFnYSaXH97znPeWHP/zhqH5PKlGmEmcWi/J7nve851Vt5XJMc/s5nll4ysJt3eZ8tNJVIXPE//qv/6oW6/KRxam0NMzCYhap6jlt5o3ZDNj981nYy0bBjKsORebnsuCWCpwZZ1qud7d6z3zuX//6VzUHPProo6tqObmtVF/5zne+U912xpPgZe5vwpvZiJiqKDmWWairw8J15ZJ3vvOd1e3lXEqIc911163GkpaNqfCSc6huq1jL4mnmvL/61a+qczQB0Yw7462r7WRx8dOf/nSZCKnEk8XSbHbMY/qgBz2oqoabOXq9eJrfVy9URo5NQqeZ+6dqbqrB5L5lXp5jm4XpVNTJeQUAAMPJGlDWf7LGk3nGM5/5zDHfRoJiaX2etahct3Z2bpjMTYS5fs7vTGBwrPOekYznWjvBzje84Q3V/DXzkKylZUNZ5hWZR2XOkblFZxXFXPtnU2DmuAnfZY6TOVPmOJl/ZC6ZOWWnzMO+//3vV/Oc8847r7zsZS+r5lz5Xfm5HI/41Kc+tUSAM3OprJOlqmM2nWVNMI9T5jf1HCdrb2MNfebxTmg0FSIz/sxf0l4+UsBl++237/lzqS6aef7yVodNB4rMBRPOTRfEfKR6beaF9bHM/DjHLZsau9cXE4bN92TOl9vac889y4YbbljdjzosmeObYz7c/UgAuS5ck3n/VM/hhzPc/LpTzrGEmHPe5L6M9fEHmAwqfQLQF+rdgpnUTZRU8DzwwAOrCWku0LPL7+abby6bbrppVY0krQMyWeyWXVwJjaaSSCY4mbhGduN96UtfqnZrZiKboGYmH1lkzeQnbwZkAhWdFUkmSsbeuVMxbQZPO+20YT8ygenlb3/72xLHHAAAaF42nNULZVno6KzgmTlNKm1ko1kWyBKOzBwn4dAsuHQH9aaLLArWC3mpUnrDDTdUf081kVSKyeJcQoxZCMvXskiWkOgWW2wxpt+TOVqqnmbjXhaFspiYyiI5RpkXZnEwizrj8ba3va1qF5jwY35PFsuyOJjxpnNCKo/k692Bz8hcMfPOLHQmLJox5b5mA2IW2TJfrauJ1AtjnccuxyMLljkfOqvdZEEwlTl33HHHKjCbrye8mcXKLCQmMJx5b7dUBs15lUBu7ke6YORnMs/N74vu9pVZeEuFnMx3cz9yrmVBtb5/ub0ESFPddSLkdrIAmIXiLBgmzJrfl0pBOS+yyJzQa/c5n8qyWVzP92Qun/l6NmmmYlDm/7/85S+XuTETAIDZLeHFBBTj+c9//rhapKfNdn2tOlWVAhMyrMOlvdppL6+xXmsnwJd5XUKFmW+kkmM2wq2++urV+DrnQbXMrTJ3yuczh8zcKXOAzLdyW5lP9ZI1vnz94x//eLWRLaHRrI1lzpn5VDYbppV7p3wt4b5U5UxINvclc6Os+yWAmPW+zIHGKr8vlUpzHmWOloBrjlnmTL0KtHSqz5Vs/Ex4dTzys1/72teqDgk5brlvWcPMfcumvQQ2M6/NfLGufNotc+rM1fM45DHNz2ZtMqHJbHTM3Lpzc2G3+vzL5tXOLotTOYfvZaT5dec5WFdYzfM4wVOApg20O2tsA8A0lclbdlFmoSrVSh75yEc2PaQZKRPr7NbLwmqqlk7XxWEAAACmzlFHHVW1s08ll1QPBQAAxi6ByATGElJMRcGpWINJKC8bprJhK63JU0mR/pIQ6pe//OXyohe9aHF7caZWumZkg2U2eGaTZcLLAE1T6ROAvlC38Iu0iWByZIdepG2CwCcAAMDskGoxr3/968s555zT8+tZkI5UcAEAAMYnVRbriodTtQaTdt6pkJ/KiAKf/X3epMsHzUgHxwQ+0wlS4BOYLoQ+Aegb2f2Ylob7779/uemmm5oezoyTY5o2FznG3a0zAAAAmLlSwfOMM86o2v1dd911S1QzyebAfKQyUFowAgAAo3fuueeW+fPnl1/84hflV7/6VdVme/vtt5/U35kW5mmb/qc//al873vfqz634447TurvZOLcddddVVXYdD/83Oc+V/39UY96VNlyyy2bHtqskpbyee6mQu4XvvCF6nNve9vbmh4WwGLz/u+vADC9zZs3r1qAyiLTf//3f5fPfvazTQ9pRskxzUQyxzjHGgAAgNnhIx/5SDn11FPLSSedVLbeeuvykIc8pKy88srVAtctt9xS5syZUz7+8Y+XzTffvOmhAgBAX9lll13KpZdeusS/11577Un9nV//+teroFotFSKf+MQnTurvZOLccccdVSGcWuZju+66a6Njmo1++tOfLu6QGM985jPLC1/4wkbHBNBJpU8A+somm2xS3vWud1UX2Z2TZJZPjmWO6U477VQdYwAAAGaPhz3sYVUVoJ133rmqIHPjjTeWCy+8sKy66qrlla98Zdl3333L29/+9qaHCQAAfWfTTTetqnuus8461War97znPZP+OzfeeONqE9eaa65ZXcenWiT9Y6211qq6MaywwgrV/Oz73/9+ecpTntL0sGadxz/+8WWVVVYpq6++enn1q19dvvvd7zY9JIAlDLTb7faSnwIAAIBmfOhDHyqnnXZa+dvf/jbqn7n55puritV//etfy/XXX18e/OAHl9e85jVVux3VqwEAAKYX8z4AAIDlo9InAAAA08Iee+xRDjnkkDH9zG233Vbe/OY3l3322afaff2Wt7yl3Oc+9ynf+MY3yoc//OFJGysAAABjZ94HAACw/Gx9AwAAoFELFiwoX/rSl8p+++035p9NpZcLLrig7LrrrmX77bevPrfLLrtUlWP+/Oc/l8MOO6y84AUvmIRRAwAAMFrmfQAAABNHpU8AAAAa85e//KW8+MUvrhb+ttpqqzH97D333FN+85vflHXXXbe84Q1vWPz5uXPnlo9//OPV3/fdd98JHzMAAACjZ94HAAAwsYQ+AQAAaMxvf/vbcuedd1YVW/bcc88x/eyZZ55Z7rrrrrL55puXOXOWnN5usMEGZf311y8nn3xyGRoamuBRAwAAMFrmfQAAABNL6BMAAIDGvPWtby1HHnlk1aJvYGBgTD976aWXVn8+5CEP6fn1LAAuXLiwXHnllRMyVgAAAMbOvA8AAGBizZvg2wMAAIBR22KLLcb9s7fcckv15xprrNHz66uttlr152233Tbu3wEAAMDyMe8DAACYWCp9AgAA0JdSzSVWXHHFnl+vP79gwYIpHRcAAAATw7wPAABgaUKfAAAA9KWVV165+nPRokUjLg7e9773ndJxAQAAMDHM+wAAAJYm9AkAAEBfut/97jdiG7/bb7+9+nPVVVed0nEBAAAwMcz7AAAAlib0CQAAQF96+MMfXv15+eWX9/x6Pr/KKquUBz/4wVM8MgAAACaCeR8AAMDShD4BAADoS094whOqFn4nnXRSabVaS3ztiiuuKPPnzy9PetKTyty5cxsbIwAAAONn3gcAALA0oU8AAAD60korrVRe9rKXlSuvvLLsvffeiz8/NDRUdtttt+rvO+ywQ4MjBAAAYHmY9wEAACxtXo/PAQAAwLRy3nnnlSOOOKKst9565dWvfvXiz3/oQx8qf//738tXv/rVcsIJJ5SNNtqoHHfcceWcc84pL37xi8vznve8RscNAADA6Jj3AQAAjI5KnwAAAPTF4t8ee+xRfv/73y/x+TXXXLPsu+++ZbvttitnnXVWVfnlnnvuKR/72Meqqi8DAwONjRkAAIDRM+8DAAAYnYF2u90e5fcCAAAAAAAAAAAA0BCVPgEAAAAAAAAAAAD6gNAnAAAAAAAAAAAAQB8Q+gQAAAAAAAAAAADoA0KfAAAAAAAAAAAAAH1A6BMAAAAAAAAAAACgDwh9AgAAAAAAAAAAAPQBoU8AAAAAAAAAAACAPiD0CQAAAAAAAAAAANAHhD4BAAAAAAAAAAAA+oDQJwAAAAAAAAAAAEAfEPoEAAAAAAAAAAAA6ANCnwAAAAAAAAAAAAB9QOgTAAAAAAAAAAAAoA8IfQIAAAAAAAAAAAD0AaFPAAAAAAAAAAAAgD4g9AkAAAAAAAAAAADQB4Q+AQAAAAAAAAAAAPqA0CcAAAAAAAAAAABAHxD6BAAAAAAAAAAAAOgDQp8AAAAAAAAAAAAAfUDoEwAAAAAAAAAAAKAPCH0CAAAAAAAAAAAA9AGhTwAAAAAAAAAAAIA+IPQJAAAAAAAAAAAA0AeEPgEAAAAAAAAAAAD6gNAnAAAAAAAAAAAAQB8Q+gQAAAAAAAAAAADoA0KfAAAAAAAAAAAAAH1A6BMAAAAAAAAAAACgDwh9AgAAAAAAAAAAAPQBoU8AAAAAAAAAAACAPiD0CQAAAAAAAAAAANAHhD4BAAAAAAAAAAAA+oDQJwAAAAAAAAAAAEAfEPoEAAAAAAAAAAAA6ANCnwAAAAAAAAAAAAB9QOgTAAAAAAAAAAAAoA8IfQIAAAAAAAAAAAD0AaFPAAAAAAAAAAAAgD4g9AkAAAAAAAAAAADQB4Q+AQAAAAAAAAAAAPqA0CcAAAAAAAAAAABAHxD6BAAAAAAAAAAAAOgDQp8AAAAAAAAAAAAAfUDoEwAAAAAAAAAAAKAPCH0CAAAAAAAAAAAA9AGhTwAAAAAAAAAAAIA+IPQJAAAAAAAAAAAA0AeEPgEAAAAAAAAAAAD6gNAnAAAAAAAAAAAAQB8Q+gQAAAAAAAAAAADoA0KfAAAAAAAAAAAAAH1A6BMAAAAAAAAAAACgDwh9AgAAAAAAAAAAAPQBoU8AAAAAAAAAAACAPiD0CQAAAAAAAAAAANAHhD4BAAAAAAAAAAAA+oDQJwAAAAAAAAAAAEAfEPoEAAAAAAAAAAAA6ANCnwAAAAAAAAAAAAB9QOgTAAAAAAAAAAAAoA8IfQIAAAAAAAAAAAD0AaFPAAAAAAAAAAAAgD4g9AkAAAAAAAAAAADQB+Y1PQAAmA7ad95d2nfcVco9C0p7waJSFiysPtpdf97790VLfm7holKGWqXdbpeSj9a//6w/YmDg/z7m3PvnQP4+b24pK61YBlZcoZSVV/z331es/j6wUv69wr2fq/7+76/nz5VXKgOrrVIGVl6p6UMHAAAAAAAAAMAUEfoEYMZqJ3x5512lfdsdpX3rHaV9252l3H7vn/f++47Svv3OUvL5oaGpH98wfx+TFVcoA6vft5TVVy0D1cd9//3nqv/+3L//vcrKEzNoAAAAAAAAAAAaM9CuypIBQH9Kdc729TeV1vU3l/Z1N5X2DTeX9s23VaHOksqdrVbTQ5we5s27Nxx6v1XLwJr3K3PWWrMMrHX/MlD/meqhAAAAAAAAAABMa0KfAEx7aaPeTqjz+puqP1v//jMf5e57mh7ezLD6qmVOHQJ9UEcY9AFrlIG5c5seHQAAAAAAAAAAQp8ATCftoVZpX3NDaV15TWlfee29f0+w87Y7mh7a7DVnThlYc/Uy8KA1y8A6a5U5669dBjZYp8x5wBpNjwwAAAAAAAAAYNYR+gSgEe2hodK+OgHPa0v7ymvu/fOq60sZHGx6aIzGfVa+NwC6/tr//nOdMvDANcrAwEDTIwMAAAAAAAAAmLGEPgGYdO3BodK+5vrSuqIj4Hl1Ap5DTQ+NiXSflcqc9f4dBN1gnerPgQfeXxAUAAAAAAAAAGCCCH0CMOHa9yworYuvLK2Lrqg+2vOvK2VIwHNWWnmlMueh65Y5j9igzHnEQ8rAQ9YpA3PnNj0qAAAAAAAAAIC+JPQJwMSGPC+8vLTnX1tKy38v9LDiCmXOhuuVORsJgQIAAAAAAAAAjJXQJwBjJuTJhIZAH7ZeFQBNEHRgg3XLwNw5TY8KAAAAAAAAAGBaEvoEYJnag0P3Bjz/dem97dqvTMiz1fSwmOkh0MdsWOasv07TIwIAAAAAAAAAmDaEPgHoqX3n3aV13sVl6JwLS+v8S0pZsLDpITEbrbFamfu4R5Q5j9+ozHnkQ8rAvHlNjwgAAAAAAAAAoDFCnwAs1rruptI658Iq6Nm+dL6W7UwvK61Q5jxqwyoAmiDowKqrND0iAAAAAAAAAIApJfQJMIu1W63SvmT+vdU8E/S8/uamhwSjMzBQBh764DL38f+uArrOA5seEQAAAAAAAADApBP6BJhl2gsW3tu2/dyLqj/LnXc3PSRYbgMPWKPMSQD0CY8scx6+QRmYM9D0kAAAAAAAAAAAJpzQJ8As0B5qlda/Li1Dp55TWmdfWMrCRU0PCSbP6quWuU9+TJm72ePKnPXXaXo0AAAAAAAAAAATRugTYAZrXXZ1FfQcOuP8Uu64q+nhwJQbWPsBZe6mjytzEgBd835NDwcAAAAAAAAAYLkIfQLMMK3rby6t084tQ6edW9rX39z0cGB6GChlYMP1y9zNHlvmbvKYMnDf+zQ9IgAAAAAAAACAMRP6BJgB2nfcVYZOP7+q6tm+/OqmhwPT29y5Zc5jHnZv+/fHb1QGVpjX9IgAAAAAAAAAAEZF6BOgT7UHB0vrrAvK0CnnlNY/Ly2l1Wp6SNB/Vl6xzN340WXuUx5f5mz0kKZHAwAAAAAAAAAwIqFPgD7Tuv6mMnT8P8rQyWeXcufdTQ8HZoyBB61Z5j59kzL3KU/Q/h0AAAAAAAAAmJaEPgH6QHto6N6qnsf/o7QuvKwUr9wweebNK3Oe9Ogy7+lPKnMetl7TowEAAAAAAAAAWEzoE2Aaa99yexk8/owydMKZpdx+Z9PDgVlnYN21ytwtn1Tmbvb4MrDSik0PBwAAAAAAAACY5YQ+Aaah1oWXl8FjT6+qe5ZWq+nhACuvVOY+9Qll7jOfXOastWbTowEAAAAAAAAAZimhT4Bpor1wURk69Zwy9PfTS/vq65seDtDLQClzHv2wMveZm5Y5j314GRgYaHpEAAAAAAAAAMAsIvQJ0LD2HXeVwb+dUoaOPaOUu+9pejjAKA08cI0y9zmbl7mbP6EMzJvX9HAAAAAAAAAAgFlA6BOgIe2bbi2DR51chk48s5RFg00PBxiv1e9b5m311DL3GU8qAyut2PRoAAAAAAAAAIAZTOgTYIq1rr2xDB55Qmmddl4prVbTwwEmyn1WLnOf+eQy79lPKQP3vU/TowEAAAAAAAAAZiChT4Ap0rr86nvDnmdfUIpXXpi5VlyhzH3axmXeczYvA2us1vRoAAAAAAAAAIAZROgTYJIN/euyMpSw5wWXNT0UYCrNnVvmbva4MnfrLcqcB63Z9GgAAAAAAAAAgBlA6BNgEuSltXXWBWXwLyeW9uVXNz0coEkDA2XOxo8q8563RZmz/jpNjwYAAAAAAAAA6GNCnwATHfb8xz/L4J+PLe1rb2x6OMA0M+fRDyvzXvKsMmcD4U8AAAAAAAAAYOyEPgEmsI374B+PLu0rrml6KMB0NlDKnI0ffW/4cy1t3wEAAAAAAACA0RP6BFhOrSuuqcKerX9d1vRQgH4yZ06Zu8UTy7wXblkGVl+16dEAAAAAAAAAAH1A6BNgnFrX31QGDzmmaudevJIC47XiCmXuszYr87beogzcZ6WmRwMAAAAAAAAATGNCnwBj1L7tjjJ42HFl6IQzS2m1mh4OMFOssnIV/EwAdGCFeU2PBgAAAAAAAACYhoQ+AUapffeCMviXE8vQMaeWsnBR08MBZqo1VivzXrBlmbv5E8rAnDlNjwYAAAAAAAAAmEaEPgGWob1osAz9/bQyeOQJpdx1T9PDAWaJgbUfUOa9+Fll7saPanooAAAAAAAAAMA0IfQJMIKhf/yzLDror6XcfFvTQwFmqYGHrVdWePU2Zc56azc9FAAAAAAAAACgYUKfAD20rruxDO5/ZGn969KmhwJQypyBMvcZTy7zXvzMMnCflZseDQAAAAAAAADQEKFPgA7tBQvL4OHHl6GjTyllaKjp4QAsadVVyryXbVXmPvUJZWBgoOnRAAAAAAAAAABTTOgToLOV+4F/KeWW25seCsCIBjZcr6zwGi3fAQAAAAAAAGC2EfoEZj2t3IG+bfn+9CeVeS95lpbvAAAAAAAAADBLCH0Cs5ZW7sCMoOU7AAAAAAAAAMwaQp/ArDR0xvll0UF/1codmDEGNnxwWeHVzy9z1tfyHQAAAAAAAABmKqFPYFZp3XhLGdzvMK3cgZnb8v0ZTy7zXvrsMrDSik2PBgAAAAAAAACYYEKfwKyQl7qhv59eBv94dCkLFzU9HIBJNbDm/cq817+ozH3kQ5seCgAAAAAAAAAwgYQ+gdlR3XPfQ0rroiuaHgrA1BkoZe7Tn1TmbfscVT8BAAAAAAAAYIYQ+gRmdnXPY08vgwer7gnMXqp+AgAAAAAAAMDMIfQJzNzqnr8+tLQuvLzpoQBMj6qfz3hymfeyrVT9BAAAAAAAAIA+JvQJzLzqnsedUQYPPqqUBap7AnQaeMAaZYXXv6jM2eghTQ8FAAAAAAAAABgHoU9gxmjddGsZ/PUhpXWB6p4AI1b93HLTMu+lz1b1EwAAAAAAAAD6jNAnMDOqex5/Rhn8g+qeAGOq+vmGF5c5j9ig6aEAAAAAAAAAAKMk9An0tfYtt5dFv/pTaV1wWdNDAejPqp/P3KzM23arMjBvXtOjAQAAAAAAAACWQegT6FtD515UBT7LnXc3PRSAvjaw3oPKCm95eZmz1ppNDwUAAAAAAAAAGIHQJ9B32kNDZfCPfytDR59cilcwgImx0gplhe1eWOZu9rimRwIAAAAAAAAADEPoE+grrZtuLYv2Pqi0L7+66aEAzEhzN39imffqbcrAiis0PRQAAAAAAAAAoIvQJ9A3hs78V1n060NKuXtB00MBmNEG1n5AWeGtryhz1nlg00MBAAAAAAAAADoIfQLTXntwsAwe+NcydOzpTQ8FYPZYYV6Z96rnlXlP26TpkQAAAAAAAAAA/yb0CUxrretvured+/zrmh4KwKw058mPLSu89gVlYOWVmh4KAAAAAAAAAMx6Qp/AtDV06rll0W//XMqCRU0PBWBWG3jgGmWFt7yizFl/7aaHAgAAAAAAAACzmtAnMO20Fy4qg/sfUYZOOqvpoQBQmze3zNv2OWXeszZreiQAAAAAAAAAMGsJfQLTSvumW8vCH+9f2ldf3/RQAOhhzpMfU1Z4/YvLwIorND0UAAAAAAAAAJh1hD6BaaN10RVl4c8OLOWOu5oeCgAjGFh/7bLi219dBtZYremhAAAAAAAAAMCsIvQJTAuDx59RtXQvQ62mhwLAaKx237Li215V5mz44KZHAgAAAAAAAACzhtAn0Kj2UKsMHnBkGTr29KaHAsBYzZtbVnjtC8vcpz6h6ZEAAAAAAAAAwKwg9Ak0pn3n3WXRzw4srQsvb3ooACyHuVs9pczb9jllYM6cpocC9LEDDjig7L333uWSSy4pK6+8ctlyyy3LLrvsUtZbb71R/fx5551Xdt9993LqqaeWO++8s/q5bbfdtuy0005lxRVXnPTxAwAAMDxzPgAAgIkj9Ak0onXNDWXRj/cv7RtvaXooAEyAOY9+WFnhLduWgfus3PRQgD707W9/u/zwhz8sG220UXnOc55Trr766nLooYeW1Vdfvey3335lgw02GPHnzzjjjPKWt7ylLFq0qLzgBS8o6667bjn22GPLv/71r/K0pz2t7LXXXmXu3LlTdn8AAAD4P+Z8AAAAE0voE5hyQ2dfUBb94o+lLFjY9FAAmEADa92/rPCOV5c5D3pA00MB+sj5559fXvGKV5TNNtus/PSnP11coeXwww8v73//+8tzn/vcanFwJG94wxvK6aefXr73ve+VF77whdXnBgcHq4ovWQjcbbfdqt8BAADA1DLnAwAAmHh6cAJTavDw48uin/xe4BNgBmpff3NZ+N19ytB5Fzc9FKCPpL1fvO9971uiJd/zn//88tSnPrUcddRR5dprrx3xNs4666xyv/vdb/HiX8ybN6+89rWvrf6exUEAAACmnjkfAADAxBP6BKZEe+GisvDnB5XBQ44pRX1hgJnr7gVl0Y9/VwaPOqnpkQB94oQTTqgW67LY1y1t+tKcIt8zkjXWWKPccccd5dZbb13i89ddd13155prrjnBowYAAGA0zPkAAAAmntAnMOnad9xVFv73r0rr9PObHgoAU6HVLoMHHVUW/frQ0m61mh4NMI0tXLiwXHXVVWWdddZZouJLbYMNNqj+vPjikSsIb7/99mVoaKjssssu5aKLLip33XVXOeKII8p///d/V4uD22233aTdBwAAAHoz5wMAAJgc8ybpdgEqrZtuLYv2/E3V8heA2WXoxDNL+867ygpv2rYMrLhC08MBpqFUaUlVl7Tp62W11Var/rz99ttHvJ20CcxtfO1rXysveclLFn9+o402Kt///vfLgx/84AkeOQAAAMtizgcAADA5VPoEJk3rquvKwu/tI/AJMIu1zr6wLNxzv9K++56mhwJMQ4sWLar+7FXxpfPzCxYsGPF20grwRz/6UdUycNttty077rhj2WSTTcqFF15YPv3pT5dbbrllEkYPAADASMz5AAAAJodKn8CkaF14eVm41+9LuWfkN2sAmPnal1xZFu7+y7LiTq8tA2vcW8EBIFZeeeUlFgJ7tQKMVVZZZdjbuOaaa8q73/3u6rYOOOCAsuGGGy7+2u6771722GOP8olPfKLsueeeEz5+AAAAhmfOBwAAMDlU+gQm3NCZ/yoLf7SfwCcAi7WvuaEs2P0XpXXtjU0PBZhGVl111TJnzpxhW/nVn69b/vVy4IEHlnvuuae84x3vWGLxL97//veXhz70oeWoo44q11133QSPHgAAgJGY8wEAAEwOoU9gQg0ed0ZZ9LMDSxkcanooAEw3N99WFu7xy9K67KqmRwJME2nlt8EGG5SrrrqqZ+WXK664ovpzo402GvY25s+fP+z3DAwMLP58fgcAAABTx5wPAABgcgh9AhNm0aF/L4O/PayUdrvpoQAwXd15d1n4g1+XofMubnokwDSx+eabV4t/p5122lJfO/7446tFvE033XTYn19rrbWqPy+55JKeX7/sssuW+D4AAACmjjkfAADAxBP6BJZbu9Uui357WBk67LimhwJAP1i4qCz68f5l6JRzmh4JMA285jWvqf789re/XbXsqx1++OHllFNOKVtvvXVZZ511hv35F7/4xVW7wL322mtxlZja3nvvXS688MKy2WablfXWW28S7wUAAAC9mPMBAABMvIF2W0k+YPzag4Nl0T4Hl9aZ/2p6KAD0m4FS5r10qzJv6y2aHgnQsC9+8YvlF7/4Rdlwww3L8573vHLttdeWQw45pNz//vcv++67b9UOME488cRy0kknlcc+9rFlm222WfzzP/nJT8rXvva1ssoqq5QXvOAFZc011yxnn3129b2p9rLPPvtUtw0AAMDUM+cDAACYWEKfwLi171lQFv54/9K+aMndtQAwFnO3ekqZ9/LnVu28gNkp09IsAP76178ul156aVljjTXKFltsUXbeeefFi3+x++67lz322KO86lWvqhb8Oh177LFV5Zczzzyz3H333eVBD3pQee5zn1ve8573aPMHAADQIHM+AACAiSX0CYxL++57ysIf/qa0r7im6aEAMAPMffomZd52LxD8BAAAAAAAAIARCH0CY9a+8+6ycM/flPaV1zY9FABmkLlbPLHMe+2LysAcwU8AAAAAAAAA6EXoExiT9h133Rv4nH9d00MBYAaa89QnlBVe/2LBTwAAAAAAAADoQegTGFvg8we/Lu2rr296KADMYHM2fVxZYfuXlIE5c5oeCgAAAAAAAABMK0KfwKi0b7/z3sDnNTc0PRQAZoE5T35MWWGHlwl+AgAAAAAAAEAHq+jA6Cp8fn9fgU8Apkzr9PPLol/8sbRbraaHAgAAAAAAAADThtAnMLqW7tfe2PRQAJhlWqefVxb96k+l3VKYHgAAAAAAAABC6BMYVvvOu8vCH/6mtK++vumhADBLtU49tyz69SGCnwAAAAAAAAAg9AkMp33XPWXhD39d2ldd1/RQAJjlWiefXQb3O7S024KfAAAAAAAAAMxuQp/AUtp3LygL9/xNac8X+ARgehg68awyuN9hgp8AAAAAAAAAzGpCn8AS2gsXlYX/+9vSvuKapocCAEsYOuEfZfCgvzY9DAAAAAAAAABojNAnsFi71SqLfn5QaV8yv+mhAEBPQ0efUgb/elLTwwAAAAAAAACARgh9AosN7vfn0jrnoqaHAQAjGjz4qDJ0yjlNDwMAAAAAAAAAppzQJ1BZ9Ke/laETz2p6GACwbO1SFu17SBk67+KmRwIAAAAAAAAAU0roEyiDx5xaho44oelhAMDotVpl0c8OLK3Lrmp6JAAAAAAAAAAwZYQ+YZYbOv28MnjAX5oeBgCM3cJFZeH//q60rr2x6ZEAAAAAAAAAwJQQ+oRZbOhfl5VFv/xTKe1200MBgPG58+6y8Ef7lfYttzc9EgAAAAAAAACYdEKfMEu1rrymLPrJ70sZGmp6KACwfG6+7d7g5933ND0SAAAAAAAAAJhUQp8wC7Wuv7ks/NFvS1mwsOmhAMCEaF9zQ1n4v/uX9qLBpocCAAAAAAAAAJNG6BNmmfbtd5ZFP9qvlDvuanooADCh2pdcWRb9/KDSbrWaHgoAAAAAAAAATAqhT5hF2vcsuLf97Y23ND0UAJgUrbMvLIP7Hdb0MAAAAAAAAABgUgh9wizRbrXLol8cXNrzr2t6KAAwqYZOPLMMHnVS08MAAAAAAAAAgAkn9AmzxOAhx5TWORc1PQwAmBKDBx9dhs67uOlhAAAAAAAAAMCEEvqEWWDo9PPK0JEnND0MAJg6qXD98z+U1nU3Nj0SAAAAAAAAAJgwQp8ww7WuuKYs2veQpocBAFPvngVl0Y/3L+2772l6JAAAAAAAAAAwIYQ+YQZr33ZHWfiT35eyaLDpoQBAI9rX31xV/Gy3Wk0PBQAAAAAAAACWm9AnzFDtwcGy8CcHlHLL7U0PBQAa1Tr/kjL4h6OaHgYAAAAAAAAALDehT5ihBvc7rLQvu6rpYQDAtDB09Cll6OSzmx4GAAAAAAAAACwXoU+YgQaPOlmwBQC6LNrvz6V1qQ0RAAAAAAAAAPQvoU+YYYbSwvZgLWwBYCmDQ2XhT35f2rfc3vRIAAAAAAAAAGBchD5hBmldd1NZ9PODSmm1mx4KAExPt995b/Bz4aKmRwIAAAAAAAAAYyb0CTNE++4FZdFe+5dy94KmhwIA01r7imvKol8f2vQwAAAAAAAAAGDMhD5hhlj060NK+7qbmh4GAPSF1unnlcG/n9b0MAAAAAAAAABgTIQ+YQYYPPb00jrzX00PAwD6yuBBfy2t+dc2PQwAAAAAAAAAGDWhT+hzrfnXlcED/9L0MACg/wwOlUV7H1TaCxY2PRIAAAAAAAAAGBWhT+hjCaks2vvAKrQCAIxd+/qby6L9/tz0MAAAAAAAAABgVIQ+oY8t2u+wKqwCAIxf67TzyuAJZzY9DAAAAAAAAABYJqFP6FODJ51VWqed2/QwAGBGGDzgyNK65oamhwEAAAAAAAAAIxL6hD7UuvbGMrj/EU0PAwBmjoWLyqK9DyrthYuaHgkAAAAAAAAADEvoE/pMwiiLfnZgFU4BACZO+5obyuDvbaoAAAAAAAAAYPoS+oQ+M/j7I6tQCgAw8YZOPKsMnXpu08MAAAAAAAAAgJ6EPqGPDJ12bhk68cymhwEAM9qi3x5WWtff1PQwAAAAAAAAAGApQp/QJ1rX31wW7XdY08MAgJlvwcKyaO+DSntwsOmRAAAAAAAAAMAShD6hD7SHWmXRPn+oQigAwORrz7+uDB58dNPDAAAAAAAAAIAlCH1CHxg68oTSvuKapocBALPK0DGnltZFVzQ9DAAAAAAAAABYTOgTprnWVdeVwcOPa3oYADD7tEtZtO8hpb1wUdMjAQAAAAAAAICK0CdM97buv/pTKUOtpocCALNS+8ZbtHkHAAAAAAAAYNoQ+oRpbOiI40t7/nVNDwMAZrWhY08rrQsvb3oYAAAAAAAAACD0CdNVa/51ZfCI45seBgCQNu+/PrS0FyxseiQAAAAAAAAAzHJCnzANtYeGyqJ9tXUHgGnV5v2Pf2t6GAAAAAAAAADMckKfMA0NHXGCtu4AMA3bvA9p8w4AAAAAAABAg4Q+YZppzb9WW3cAmI7apQzue4g27wAAAAAAAAA0RugTpltb918doq07AExT7ZtuLYMHH930MAAAAAAAAACYpYQ+YRoZPPz40r5KW3cAmM6Gjju9DF1wWdPDAAAAAAAAAGAWEvqEadTWfejIE5oeBgAwmjbvvz5Um3cAAAAAAAAAppzQJ0wD7VarLNpXW3cA6Ks27386pulhAAAAAAAAADDLCH3CNDB07OmlPV9bdwDoJ0PHnlZa/v8GAAAAAAAAYAoJfULD2rffWQYP+XvTwwAAxqrVLov2P7y02+2mRwIAAAAAAADALCH0CQ1bdPDRpdyzoOlhAADj0L5kfmmdck7TwwAAAAAAAABglhD6hAa1qqDI2U0PAwBYDov+cFRp320DBwAAAAAAAACTT+gTGtJutaqWsEVHWADob3fcVQYPOabpUQAAAAAAAAAwCwh9QkOGjj2jtOdf1/QwAIAJMHTc6aXl/3UAAAAAAAAAJpnQJzSgffudZfBQFcEAYMZotcui/Y8o7bYS3gAAAAAAAABMHqFPaMDgwUeXcveCpocBAEyg9iVXltYp5zQ9DAAAAAAAAABmMKFPmGKtS+aXoVPObnoYAMAkWHTw0aVtYwcAAAAAAAAAk0ToE6ZQu9Uqi/Y/vBSdXwFgZrr9zjJ46N+bHgUAAAAAAAAAM5TQJ0yhoWPPKO351zU9DABgEg0de1ppXeX/ewAAAAAAAAAmntAnTJH2HXeVwUOPaXoYAMBka7XLot8d0fQoAAAAAAAAAJiBhD5higwefnwpdy9oehgAwBRoX3JlGTr7gqaHAQAAAAAAAMAMI/QJU6B1061l6Lgzmh4GADCFBv/4t9JutZoeBgAAAAAAAAAziNAnTIHBQ/9eytBQ08MAAKZQ+9oby9Ap5zQ9DAAAAAAAAABmEKFPmGStq64vrVPPbXoYAEBDGz/aiwabHgYAAAAAAAAAM4TQJ0yywT8dXUq73fQwAIAm3HJ7GTr2tKZHAQAAAAAAAMAMIfQJk6h18ZWlde7FTQ8DAGjQ4JEnlvbdC5oeBgAAAAAAAAAzgNAnTKJFBx/d9BAAgKbdeXcZ/OtJTY8CAAAAAAAAgBlA6BMmydDZF5T2pfObHgYAMA0M/e2U0r7tjqaHAQAAAAAAAECfE/qESdButcvgn45pehgAwHSxcFEZPOy4pkcBAAAAAAAAQJ8T+oRJMHTK2aV9zQ1NDwMAmEaGTjiztK6/uelhAAAAAAAAANDHhD5hgrUHB8vgn49tehgAwHTTapXBQ1QCBwAAAAAAAGD8hD5hgg0de3opN9/W9DAAgGmo9Y/zS+vKa5oeBgAAAAAAAAB9SugTJlB7wcIyeMQJTQ8DAJiu2qUM/unvTY8CAAAAAAAAgD4l9AkTaOiEM0u58+6mhwEATGOt8y8urfnXNj0MAAAAAAAAAPqQ0CdMkPbgUBk8+uSmhwEA9IHBI1UGBwAAAAAAAGDshD5hggydck4pt9ze9DAAgD7Q+se/Suv6m5oeBgAAAAAAAAB9RugTJkC71S5Dfz2x6WEAAP2i3S5Dfzmp6VEAAAAAAAAA0GeEPmECtM78Z2lff3PTwwAA+qxKeFuVcAAAAAAAAADGQOgTJsDgkSc0PQQAoN8MDZXBo09uehQAAAAAAAAA9BGhT1hOQ+dfUtrzr2t6GABAHxo64R+lfefdTQ8DAAAAAAAAgD4h9AnLafCI45seAgDQrxYsKoPHnNr0KAAAAAAAAADoE0KfsBxal8wv7YuvbHoYAEAfG/r7aaW9YGHTwwAAAAAAAACgDwh9wnIYPPKEpocAAPS7u+4pQ8f/o+lRAAAAAAAAANAHhD5hnFpXXV9a513U9DAAgBlg8OiTS3twqOlhAAAAAAAAADDNCX3COA3+5YRS2k2PAgCYEW69owydcnbTowAAAAAAAABgmhP6hHFo33RraZ1xftPDAABmkKG/nlTabTtKAAAAAAAAABie0CeMw+Cxp5fSEsoAACZO+/qbS+v8S5oeBgAAAAAAAADTmNAnjFF70WAZOumspocBAMxAQ8ee1vQQAAAAAAAAAJjGhD5hjIZOO7eUO+9uehgAwAzUOu+S0rrh5qaHAQAAAAAAAMA0JfQJYzT0dxW4AIBJ0m6XoWNPb3oUAAAAAAAAAExTQp8wBq1Lrizt+dc1PQwAYAYbOums0l64qOlhAAAAAAAAADANCX3CGAz+XeUtAGCS3b2gDJ16TtOjAAAAAAAAAGAaEvqEUWrffmdpnfnPpocBAMwCQ8ed0fQQAAAAAAAAAJiGhD5hlIZOPKuUoVbTwwAAZoH2/OtK69Krmh4GAAAAAAAAANOM0CeMQrvdLkMn/KPpYQAAs8jQ8ap9AgAAAAAAALAkoU8Yhdb5l5T2Tbc2PQwAYBYZOuP80r77nqaHAQAAAAAAAMA0IvQJozB0vCqfAMAUWzRYhk4+p+lRAAAAAAAAADCNCH3CMrRvub20zr2o6WEAALOQFu8AAAAAAAAAdBL6hGUYOumsUlqtpocBAMxC7WtvLK2Lr2h6GAAAAAAAAABME0KfsAxDJ5/d9BAAgFlMi3cAAAAAAAAAakKfMILWpVeV9o23ND0MAGAWGzrzn6U9ONj0MAAAAAAAAACYBoQ+YQRDp53b9BAAgNnu7gWlde7FTY8CAAAAAAAAgGlA6BOG0R5qlaEzzm96GAAAZehULd4BAAAAAAAAEPqEYbX+eUkpd9zV9DAAAErrvItL++57mh4GAAAAAAAAAA0T+oRhDJ2qtTsAME0MDpWhM/7Z9CgAAAAAAAAAaJjQJ/TQXrCwtM65sOlhAAAsNnSaDSkAAAAAAAAAs53QJ/TQOuuCUhYuanoYAACLtS++orRvvq3pYQAAAAAAAADQIKFP6EFrdwBg2mmn2ud5TY8CAAAAAAAAgAYJfUKX9u13ltYFlzY9DACApQydek7TQwAAAAAAAACgQUKf0GXo9PNKabWbHgYAwFLa19xQWldd1/QwAAAAAAAAAGiI0Cd00dodAJjOXKsAAAAAAAAAzF5Cn9Chdd1NpX3FNU0PAwBgxKrkbVXJAQAAAAAAAGYloU/o0Drj/KaHAAAwsltuL+1Lr2x6FAAAAAAAAAA0QOgTOgydfUHTQwAAWKahsy9seggAAAAAAAAANEDoE/6tnapZ869tehgAAMvUOkfoEwAAAAAAAGA2EvqEfxs696JS2k2PAgBg2drX31xa193U9DAAAAAAAAAAmGJCn/BvKmYBAP3EtQsAAAAAAADA7CP0CamWtWBhaV1wedPDAAAYtSGhTwAAAAAAAIBZR+gTUinrX5eVMjjY9DAAAEatfen80r7z7qaHAQAAAAAAAMAUEvoE7VEBgH7UapfWeRc3PQoAAAAAAAAAppDQJ7Neu9UuQ+de1PQwAADGTIt3AAAAAAAAgNlF6JNZr33ZVaXccVfTwwAAGLPW+ZeU9uBQ08MAAAAAAAAAYIoIfTLrqZAFAPStBQtL66LLmx4FAAAAAAAAAFNE6JNZryX0CQD0sdbZrmUAAAAAAAAAZot5TQ8AmtS64ebSvvbGpocBADBuQ+deVFZ4zfObHgYstwMOOKDsvffe5ZJLLikrr7xy2XLLLcsuu+xS1ltvvVH9/K233lp++MMflsMOO6xcd9115UEPelB1G+9///urvwMAANAccz4AAICJM9But9sTeHvQVwaPPqUMHviXpocBALBcVvzIjmXOehY46F/f/va3q8W7jTbaqDznOc8pV199dTn00EPL6quvXvbbb7+ywQYbjPjzN9xwQ9lhhx3KpZdeWp75zGeWRz/60eXcc88txx9/fLWA+Lvf/a7c//73n7L7AwAAwP8x5wMAAJhYQp/Magt/tF9pnX9J08MAAFgu8162VZm39RZNDwPG5fzzzy+veMUrymabbVZ++tOflhVXXLH6/OGHH15VbHnuc59bLQ6O5EMf+lA55JBDymc/+9nypje9afHn99hjj7L77ruXd77zneVjH/vYpN8XAAAAlmTOBwAAMPG0d2fWag+1SuuS+U0PAwBgubUuvKIUoU/6VNr7xfve977Fi3/x/Oc/vzz1qU8tRx11VLn22mvL2muv3fPnr7nmmqpCzBZbbLHE4l+89a1vLZdffnlZa621JvleAAAA0Is5HwAAwMSbMwm3CX2hfeU1pSxY2PQwAACWW+uSK0u71Wp6GDAuJ5xwQpk3b1612NftaU97WklzinzPcI4++ujqe17ykpcs9bXVVlut7LbbbmXHHXec8HEDAACwbOZ8AAAAE0/ok9ldEQsAYCZYsLC0r7i26VHAmC1cuLBcddVVZZ111lmi4kttgw02qP68+OKLR2wVGI985CPLQQcdVLbbbruyySablC233LLsuuuu5aabbprEewAAAMBwzPkAAAAmh9Ans1brosubHgIAwIRxbUM/uvXWW6uKLfe73/16fj1VW+L2228f9jauu+666s+99tqrfOITn6haAr7hDW8o6667btl3333LG9/4xnLLLbdM0j0AAABgOOZ8AAAAk2PeJN0uTGvtoVZpXTK/6WEAAExsFfOtt2h6GDAmixYtqv7sVfGl8/MLFiwY9jbuuuuu6s8jjzyy7LnnnmWrrbaq/p2FxVR9+fWvf12++c1vli996UuTcA8AAAAYjjkfAADA5FDpk1mpfeU1VRtUAICZonXJldXGFugnK6+88hILgb1aAcYqq6wy7G3MmXPvtPaFL3zh4sW/GBgYKB//+MfLSiutVA455JDSanl+AAAATCVzPgAAgMkh9Mms1LpQ+1MAYIZZsPDejS3QR1ZdddVqAW+4Vn715+uWf73UX3viE5/Y8/Yf+tCHVrdz0003Tdi4AQAAWDZzPgAAgMkh9MnsbX8KADDDuMah36SV3wYbbFCuuuqqnpVfrrji3nN6o402GvY2Hvawh42qckxdYQYAAICpYc4HAAAwOYQ+mXXS9rR16ZVNDwMAYMK1LlLNnP6z+eabV4t3p5122lJfO/7446uWfZtuuumIPx/HHXfcUl9LpZf58+eX9ddfv6oAAwAAwNQy5wMAAJh4Qp/MOu0rrillQe8doQAA/ax1yfxqgwv0k9e85jXVn9/+9rfLPffcs/jzhx9+eDnllFPK1ltvXdZZZ51hf36LLbaoqsKcdNJJ5YADDlj8+VarVb7+9a9Xi4uve93rJvleAAAA0Is5HwAAwMQbaLfb7Um4XZi2Bo88oQz+8W9NDwMAYFKsuPObypyHPrjpYcCYfPGLXyy/+MUvyoYbblie97znlWuvvbYccsgh5f73v3/Zd999q3aAceKJJ1YLfY997GPLNttss/jnzz333LLjjjuW2267rWy11Vbl4Q9/ePW955xzTnnyk59cfv7zn5cVVlihwXsIAAAwe5nzAQAATCyhT2adhXvuV1r/vKTpYQAATIp5L92qzHveFk0PA8Yk09IsAP76178ul156aVljjTWqai4777zz4sW/2H333csee+xRXvWqV5Wvfe1rS9xGWvrla8ccc0y59dZby7rrrlu23XbbstNOO5WVVlqpgXsFAABAmPMBAABMLKFPZpW0O13w/9m7EzC5yjJv3M+pqu7sCSEJSUgCIQmEQFiSQBZB9h3ZF0EUdHDQERx1xkHR+TvzjaOfyzjBkWFQ50NEcUTEQWcEFFDQYVhEEJBF1kBCQthDWLJ11/96T+imk3QgS3efrqr7vq6+KjlVdeqpTqX7vOf9nef9269b3h0AqFulHbeL5rNOKroMAAAAAAAAALpBqTt2Cr1V9elnBT4BgLrW+sSioksAAAAAAAAAoJsIfdJQWucvLroEAIDu9fqyaH3+paKrAAAAAAAAAKAbCH3SUKoLni66BACAbled75gHAAAAAAAAoB4JfdJQWhfo9AkA1D/HPAAAAAAAAAD1SeiThlFtaY3qwmeLLgMAoNtVhT4BAAAAAAAA6pLQJw2juvi5iFWrii4DAKDbtS6wvDsAAAAAAABAPRL6pGFY5hQAaBivLYvWF5YUXQUAAAAAAAAAXUzok4ZRna/jFQDQOBz7AAAAAAAAANQfoU8ahk6fAEAjcewDAAAAAAAAUH+EPmkI1dbWqC58pugyAAB6THWBTp8AAAAAAAAA9Ubok4ZQffr5iJWrii4DAKDH6PQJAAAAAAAAUH+EPmkIrTpdAQCN5tXXo/rCkqKrAAAAAAAAAKALCX3SEKo6XQEADUi3TwAAAAAAAID6IvRJQ9DpEwBoRI6BAAAAAAAAAOqL0CcNofr0c0WXAADQ46qLHAMBAAAAAAAA1BOhT+pe9eVXIpatKLoMAIAeV332haJLAAAAAAAAAKALCX1S96rPvlh0CQAAhag+vySqra1FlwEAAAAAAABAFxH6pO616nAFADSqlpaovrCk6CoAAAAAAAAA6CJCn9Q9nT4BgEbmWAgAAAAAAACgfgh9UveqOn0CAA3MsRAAAAAAAABA/RD6pO7pbgUANDLHQgAAAAAAAAD1Q+iTulZtrUb1uZeKLgMAoDA6fQIAAAAAAADUD6FP6lr1xSURLS1FlwEAUJhWnT4BAAAAAAAA6obQJ3Wt+ozOVgBAg3vp5aiuXFV0FQAAAAAAAAB0AaFP6lpVZysAoNFVHRMBAAAAAAAA1AuhT+pa9VmdPgEAHBMBAAAAAAAA1AehT+qarlYAAI6JAAAAAAAAAOqF0Cd1rVVXKwAAnT4BAAAAAAAA6oTQJ3Wr2tIa8dLSossAAChc6/MvFV0CAAAAAAAAAF1A6JP6tfTViGq16CoAAIr38itFVwAAAAAAAABAFxD6pG5VhRsAAHLVl18tugQAAAAAAAAAuoDQJ3VL6BMA4A0rVkZ12fKiqwAAAAAAAABgMwl9Urd0tAIAeJNjIwAAAAAAAIDaJ/RJ3dLpEwDgTY6NAAAAAAAAAGqf0Cf1S7ABAOBNjo0AAAAAAAAAap7QJ3XLEqYAAG9ybAQAAAAAAABQ+4Q+qVuWMAUAeJNjIwAAAAAAAIDaJ/RJ3dLNCgDgTY6NAAAAAAAAAGqf0Cd1qdpajXhFsAEAoJ1OnwAAAAAAAAA1T+iT+pQCnyn4CQBAzvLuAAAAAAAAALVP6JO6ZPlSAIA1OT4CAAAAAAAAqH1Cn9QlnawAANaybHlUV6wsugoAAAAAAAAANoPQJ3WpulQnKwCAtTlGAgAAAAAAAKhtQp/Up2XLi64AAKD3cYwEAAAAAAAAUNOEPqlPyy1dCgCwDsdIAAAAAAAAADVN6JO6VF2+ougSAAB6HcdIAAAAAAAAALVN6JP6JNAAALAux0gAAAAAAAAANU3ok7qkixUAwLocIwEAAAAAAADUNqFP6pNAAwDAuhwjAQAAAAAAANQ0oU/qk0ADAMC6HCMBAAAAAAAA1DShT+pSdfnKoksAAOh1HCMBAAAAAAAA1DahT+qTLlYAAOtyjAQAAAAAAABQ04Q+qUtVgQYAgHU4RgIAAAAAAACobUKf1CeBBgCAdTlGAgAAAAAAAKhpQp/Up+Uri64AAKD3EfoEAAAAAAAAqGlCnzXkG9/4RkyePDm/3VDVajWuvvrq+Iu/+IvYe++9Y+rUqbHPPvvE+973vvjxj38cy5YtW+c5Bx54YP468+bN63SfH/nIR/L7p02bFitWdB4c2HfffWPHHXeM559/PnpadeWqiNbWHn/dRvI3d/4qDr7hPzq977VVK+PCh+6Mo268ImZec0kc/qvL4+sP/i5eb1nV6eMfWfpifOKO6+OA638Qs6/9brzv5p/F9Ys6/+ytz6rW1rjs8T/G8TddGbOuuSQOuv4/4gv33hwvrVj38/3iimXxV7+/IWZd+9049IYfxjcevCNWtras87iHl74Q035+cVz91KMbVQsA9GZVF8YAAF3oJz/5SX6OKJ1zWrJkydue07riiiu6vIYDDjgg33dnX+nc1UEHHRTnnXdePPnkk5v9Wulc2RlnnJHvd/r06e3n6L71rW/Ffvvtl593S9+LpUuXvuX3a+7cuZtdCwAAQL2M6zqO45566qm3fOwXvvCF9sfedtttm/16Hb/axnQpD7Gp+16fBQsW5K9x6qmndul+AWhclaILoPukwOVHP/rR+P3vfx9Dhw6Nd77znTFq1Kh47rnn8oOUz372s/lJ6bYDtDZz5szJD9buvPPOGD9+/Br7XLlyZdx6661RKpXitddeizvuuCPe8Y53rPGY+fPnx9NPPx1TpkyJYcOGRY/TwapbXfTwXfHLRY/HVn37r3NfCk/+5R3Xxe+eXxRzho+Jg0aNj3tefCYufvSe+P3zT8e/zz4imsvl9sc/sOS5OPPWq6NajTh8zIToV67ELxY+Hn995w3xqZ1mx3u223mDgs2fu+c38fOnHo1dtxiRPycFSX/05INx63ML4/t7HR1Dmvu0P/4f7705blz8RLxrzKQ8oPrvj94d1Yj4yx33WGO/X3/gd7HjkGFx+NYTNvt7BgC9huMkAKAbPPvss/GP//iP8dWvfrWwGk4//fQYPHjwGtvSObDf/e53+STmDTfcEFdeeWWMGzduk1/j3HPPjbvvvju/2DmdS5s5c2b85je/ia997Wv5ubd0kXVzc3MMGjSo0+enc2XnnHNO7LHHmucgAAAAitYbxnXJtddeG2eeeWan97W2tsY111zTZa+VxmdrZyFSOPOXv/xl/OpXv4ovf/nLccwxx3TJa6Xxanq90aNHd8n+AEDos069/vrr8f73vz8eeuih/PbjH/949OvXr/3+lpaWuOyyy+JLX/pSfjXJT3/60/aT3inE2Rb6PP7449fYb9r26quvxpFHHhk///nP47e//e06oc90Mj3Za6+9ohCr1u3ayOZb3rIqvnTfLfGT+Q+t9zE/euLBPPD5/gm7xCemzGzf/pX7bo3L5t0XP3zi/jh9wi7t2//PPf8Ty1ta4gd7Hx2TB68OCH9w0u55t8/zH/xdHDh6fIzsO+At67rpmSfzwOeho7eLL0/bP7Isy7d///E/xlfvvy3+7eE749M7z8m3vbD89bjh6Xlx4jY7xt/usvrz+Re3Xxs/euKBNUKf6T389tkF8a1Zh7fvDwDqwqrOO28DAGyun/3sZ3HYYYflK8gUIXXgHDt27Drb0zmw1Okznfv6l3/5l82awPzjH/+YBzr/7d/+LcpvXNT6r//6r/ntn//5n693YrJj6DN9AQAA9EZFjutSKHL58uV5qHN9Y6vbb789D6cOGDAgzyxsrtRAqzO33HJLnrFIIdhDDz00+vbt2yXvb32vBwCbwvLudSp170yBz9NOOy0/sd0x8JmkE9OpA0Lq9pkOiNJj2syePTsPuqUOoWtLIc/krLPOyk9yt/29s9Bnan1eiNQ2ki514+In49ibrswDn+8cse4ESpsfzLsvmkvlOGv73dfYfs7kGdG3XIkrnnywfdudLzwdD7z8fBwyerv2wGcytLlvHvxc3toS/7Xg4bet7bLH78tvz548Y42A5nvG7xxb9xsYP1vwcB5YTZ56/ZW8q+cOg7dsf1x67aWrVuTLvrd1Dp37wO2x94ixMWv41hv4HQKAGuEwCQDoBjvvvHqljr/7u7+Ll156KXqTdA6sbWLt5ptv3uT9rFq1Kg+Qpom6tsBnsmLF6k7qqdMnAABArSp6XJfyDPvss0/ce++9ebfNzlx99dXRv3//dZpSdbW0Muruu+8eL7/8cqeZCQDoDYQ+69CyZcvihz/8YX7FyV/+5V++5WNTl88JEybkQc0HH1wdyNtyyy3zJaoef/zxePHFF9d4/P/8z//EyJEjY8cdd8zDoQ8//HC+lHtHacn3dFA2Y8aMKEIK7dG1rpr/p3wp9M9OfUd8Y89DOn3MwteWxoLXlsbULYbHgErzGvf1rzTFLluMiCdffTkWv776qqvbn1uY387sJFjZFra8/blFb1nXytbWuOvFxTGq74DYdsCQNe4rZVnsOWx0vLpqZdy35Ll82xZNq5d5f71Dl7NXV66IcpbFwEpT/vdrFz0WDyx5Pj6+454b8J0BgBrjOAkA6AbvfOc749hjj21fDnBDpRDl9773vTjuuONit912i2nTpsUpp5wSV111VZfWN2zY6otNly5d2r4tTSKm81/p3Nja/vd//ze/79Of/nT+93TbNgH61FNP5fcdcMAB+e1FF12Ub08XVKe/p6Xk1yfdlx4zd+7cNcKk3/rWt/LvQXr/06dPj5NOOil+8IMfrHOO64EHHsiXA9x///1j6tSp+YTopz71qZg3b94aj0vLzKfXeeKJJ9apIT0n3be2e+65J84+++z8fF/ad+pmc/7553faPecXv/hF/hppInTXXXfNOwGlJe47fn8BAIDa0hvGdUcccUR+29kS7mnslMYiaSy2dufNFFRN45zOXjMtCZ/GUGn8kpZv31Bty7CnvMTdd9+d7z811epMGuOl+6+//vr17m99Y9ANHV+98MIL8X/+z//J70+PmzVrVnzwgx/Mx69rNwdLr5NWdl3bJz/5yfy+2267bY3tixcvjr//+79vH2um5l5pjNtZ+HZDx6UAdD+hzzp011135Sdk0wHVFlts8ZaPLZVK+Unc5Je//GX79nR1TDqxnPbVJh3gpWBoWwfPttuO3T7TAcGTTz4Ze+yxRzQ3rxn86zHCDF3utO2mxtUHnBwnbztlvcudP/Hqy/ntuP6DO71/bP9B+e3jr760xuO3eWN7R2lJ90pWan/s+ix8fWke/Bw34K1fc94rS/Lb0f0Gxog+/eOqBQ/F06+/Eo8ufTGuf3peTB0yIppK5VjZ2hIX/On38a6xk2L7Dt1AAaBeuDgGAOgun/nMZ2LEiBHxX//1X3HDDTe87eNTh8y0kkyaTFyyZEk+uXj44YfH/Pnz8wmjtL+u0nbualOXVj/ooIPiIx/5SP7ntPJNmuBKk33pNp0DS9Lyh+nvG/san/vc5/IJvTRpmSZGjz/++HjuuefyybyO4dDHHnssnxy89dZb88nAD3zgA/kEW1p+8d3vfnc888wzsalSt5y07zRZmCZ60zKGKSiblrF/z3veE6+88kr7Y9MkarrIfNGiRXHkkUfGe9/73rz7aQqupiXuHW8CAEDtKnpct99+++XNpToLfaaVG1IH0jQOWdsJJ5yQ33YW+kwBx4ULF8bRRx8dTU2rmwBtiLYQ46hRo/Iw6/bbb58vL5/GQh2lMVAal6UxVKp/Y2zo+Cp9n1Mw9PLLL8/rOOOMM/Lwa+pCeuaZZ8ZNN90Um+rRRx/Nx6GpqdgOO+yQ7zs19/rpT3+af19TyLMnxqUAbLzKJjyHXi79sk0mTpy4QY9PBwZJOvhqk35JX3zxxfmBQjpgaOvymQ4s2sKee+21V/uJ89SBoFcs7Z60Ornc1VLHzLfz0srVy6MPeaOb5toGvtH9c+nKFWs8fnDzuo9PXToHVJraH7s+S1Ys36jXrJRK8emdZ8d5f7gpDv3V5e3LyZ83dU7+5x898UA8t+y1OGeHN7vUtlareT0AUBdMwgMA3WTIkCHx+c9/Pj784Q/nXVbSJNFbXYx8ySWX5Oea0qRYCjemJfraupekiaMrr7wyPz911FFHbVI9qdtMmhBMr/HFL34x39YW3NyU0Geq88ILL8wn4NqWi2/rNpNWvUmPSRNlGyOFKdMkXwqOXnbZZe3bU3g0TZSmbjnptdLEZOrS8vrrr+fft/R9aZNq+vrXv553EU3f+42VAqZpIjb9W6VJvnHjxrXfd8EFF+RdYlIoNf2bJqmm9G+V6h44cGC+LZ0v/LM/+7M8NJouIE/dSgEAgNpT9LguPX/fffeNa6+9Ns8udByfpIvVUn0ph5D+3FHqfJkCiyngmZpUpZVL27StxrAx47W0/xR2bAt8tj3/y1/+ch5w/NCHPtT+2BSATKHS9H4rlY2L32zo+Cr9+ZFHHom/+Iu/iI9//OPtz0+hzNNOOy2++93v5t+3TfE3f/M3+b9XWsWiY2g1va/0ns4999z8PafGUN01LgVg0+j0WYfaWn23HRi8nbYDtfTLvM2ee+6Zn1C+884727elcGfqDJq6gCbpIGv8+PH5QUY6kd4x9NkWCC2EMEMhVrW25rfNpXKn97dtX/7GZ2XlBjx+Revqx65P6sz5lvsov/GarW8u537Q6O3iinceF+ftPCf+bpe948p9jo8pQ4bHKytXxLcfuTves93OMbLfgLjj+UVx3E1XxvSrL47DfvXD+NmCh9/2ewAAvZ6LYwCAbpSWd9vQ5QDT5F86z/QP//AP7RODyZZbbhmf/exn8z+nLiYbKnXaTMvUtX3ttNNO+TmsNEHVp0+ffAJyY7uudLc0mZeWGkxdXToum5fO1aXvTzoX19aJpq3DS7pAu2M3zdSV88Ybb8y762yKNLmYJu3SpGXHCdUkTdalf4/0mLZlENNrL1u2LO699972x6XJvxQMveWWWwQ+AQCgxhU5rlvfEu/Lly/Pl04/+OCD17vaaApApvFV6lDZ8UK76667Lnbeeed8nLi2dJFbx6+vfvWreeDyr//6r/OxWArAto3JjjnmmPzPHfef/Od//md+u7EXAW7M+Cq9ryQFUV977bX2x6YLCNNqrimwuSnuueeeuO+++/Lx9Nrj5dmzZ+fbH3roofjDH/7QXm93jEsB2DQ6fdahdIVLkg4QNkRaCj4ZOnRo+7bUNn333XePu+++O28Xnq5KSS3Td9lllzWu5klX0nz/+9/PDwbSFTSps8FWW23V3j20EEKfhehTXv3jZGV19UHn2toCnP3fuMKp7xtBzbbwZ2eP719u2rDXXE84dMUbAdP+lTX3M37gkPyro4sfvWf1lVMTd8s7g378jutjh8FbxidnHhq/evqJ+P/u/k1sO2Bw7Db0zSvDAKDmOE4CALpZmthLFwin5QAPO+ywvANmZ+ei0lJ522233RodWNqkia1yuRz333//Br9uWm49deFMY/sUokydYdK5sbPPPjvvhpL219ukpeLTEoNp0vCQQw7Jz62lC6nT+bbUTSZNnrZpW24vTUT+x3/8Rx5oTY/dZ599YvTot1+hZX3aJhfTbdr32tI5wnShePr3Suf70nLv6d84TepNmDChvd40IZiWqAcAAGpfUeO6JHWsTAHSNKZrCxGm5ctTgPNd73rXep+Xxlb/9E//lHelbHte2ke6yK1t+fe1pdUNOkpjmrS8fdpXGvNMmTKl/b60fHuqLYVP0/gp5SbS9yCFStMS56nT6Mba0PFVGv+lZlwpWJkeM3PmzHxbGg+m7//mjgfTmK+z8eCSJUvy2/RvOG3atG4blwKwaYQ+69A222yzxjLvb+fhh1d3MBw7duwa21NL7tS5M/2yT1etpCWxUnvwjtIv8RT6TK3S0/MfffTR/MofGk/bEutLV65ecn1tr6xascaS623Lune2hHtaUv3VVStjRN9+G/aab+z77V5zfRYvezUue/yP8dEd94hBTc1x+bz7831+aufZMXnwsJg1bOu44el58f3H7xP6BAAAgLeQgpepy0vqEvn3f//3eeeRtaXJurbQY2fSxcepM8zzzz+/wa97xhlnrHFuKy3lnibQ0mRUqimFQnujtPR8CnumZfBS95S0fF+aeEyTpn/1V3/Vfp4tTSCmpfS+/e1v5xN9aSIzfaVJ1AMOOCD/Xg8fPnyjX//ll1/Ob9O+3krbZN+JJ56Yv05ahjCdD0y3bUsSnnLKKXlHnI1d0hAAAOhdihrXJSnsmMY4//3f/x1PPvlknn34+c9/no9DUthxfdJrpS6lqfNlaliVunumVQtSZ9D1hUX/9Kc/bVRtKTyaQp/pwr0U+kyh0tR5c1O6fG7M+Cp9T1LH1G9961v5a6YxYfpK48n0PtO/URpXbup4MHXuTF/rk3Ii3TkuBWDTOANXh9LBTurGefvtt8eLL764RgfPzqQDn+TQQw9dY3u6MuNf/uVf8rbebV1D05UlHc2aNSsPhKaDgG233TbvplDo0u5JVuzLN6q2zpnzX1va6f3zX129feKg1Z/H7Qas7hi74LWXY9qWawYpn379lVhVbY0JA9/6s7t1/4HRp1Ru3/c6r/lGLRMGvtmdtjMX/unOGN63f7x729VXaz3+6uqJjG0HrH5PlVIpxvYfFE+8sR0AapbjJACgB5cDTBNsaTnAdM6oowEDBuS3ixcv7vT5aem6NIHYcbWZjZWWKk/ntd773vfmE2Gpa0rH81ppybyk45J0bToul9fd0gReqjF9pe4qt956az55dvXVV8enPvWpPMjaNsGaOm1+5StfiZaWlnwSM3XeSZONqbNM6jDzne98Z419ty0B2FHqctPZv8WPfvSjvLvohkjL/qWvtK8777wzX4Y+/VtffPHF+eRw6qwKAADUtiLHdYcffnge+kwBxzRWSp0+U0Dy7VZwSKHMlH1Iz02dOdMqpalTadtKqZsrdbRMnUDTeO0zn/lM/jpvFSrtyvFV+j6ee+65+dcTTzyRjwd/8Ytf5MvAf/CDH4xf/epXMXDgwPax7saMB1O4dEOXZt/YcSkA3efNNYKoGymEmToZpKBmamH+Vn784x/Hgw8+mLfj7tiePElXg6QDgz/+8Y/5AVE6qFj75G86EEjPTftIwc90EFF86NPHuggj+w6IbfoPjntfejZeW7VyjfvS3/+45Nn8/mF9Vnfv3GPY6hbvtz+/aJ193fbGtmlv01WznJXywOhTry+NBWuFTVO30DueXxT9ypWYMmTYevfxyNIX47+eejjOmTwjmt5Ycr7ljYPglg5L1afl5kuSMgDUug5LhAIAdKe0RN1WW22VLweYQowdpfNNacLwmWeeyZcDXFu6ADlNRm3K8ngdpXNWaeIqBTs//elPt3cxaTt/lqRJqbWlCbSekFbM+drXvha//vWv2zvTHHHEEfkEWuqok6RzcklaQu/zn/98/l7SRGc6b5cec+WVV+ZdYNJqPW3SpGNn7y2FSpcuXfP8Sdv5wLvvvrvTGv/5n/85vvnNb+ZB2DRh+6//+q/tk3hp6fd0HjB9b9uWAuxYBwAAUNuKGtelcGXafwo1ptdN+znyyCPf9nnvfOc783pTAPGGG27Ix0/HHXdcdOVFe8ccc0zevTTVlcY/Bx544CaFSjdmfJWCoCl42zZWTd/3U089NS655JK8SVdameGhhx7a6LHuTjvt1P5v1ZnU1TNdTNm2wuzGjEsB6H5mfetUuuIj/ZJOoc7Uen3tqzbSL+LUAjy12E6/gL/85S+vs4/0i3rPPffMT/qmq0rScu+dXT2TuiQsWrQoP9hIJ4rTCepClQTzinLsuB1iWcuq+NeH1mz/fsGffp9vf/f4N4PFuw/dKrYbMCSuWfhoHhRt8+KKZfH/HvlD3sHzuHE7bNBrJv/8wO1rhDR/MO++WPj6K3H8uMntYc7OnP/g72LHwcPisNET2rdt90Zn0LteWH1l2ksrlsW8V5a0bweAmvXGVb4AAD21HGCSLijurANLOj+VHtOxs2ZateYLX/hC/ueumJxL58hSJ5Jnn312jfNfqetL6pSSgpcdJ75SMPIHP/hB9IRSqZQvzzd37tz2VXbaLFiwoL1jaZImz77//e/nk60dPffcc7F8+fI1lrZPXU2TtjBpmzShuHZn0zRhmSYF031tE3lt0uulwGeaaE3nD9NXOp+YJv0ef/zxNR47f/78/LZjHQAAQG0ralyXLmQ76KCD8te89NJLY8yYMflFfW8nZRlSd9I0Pvl//+//5QHQtVcy3VzpPScphLly5cpNXtp9Y8ZXCxcuzJd9T8uqd5TGgmmsm8aW6XuUTJw4Mb9NodSO47/UNfXhhx9e4/nTp0/Px48pJJvu7+jee+/NA57//u//3t6tdWPGpQB0P8u716D//M//zJdu78w222yTH0ClA6F0ZUdqxX3ZZZflLcb33XffGDVqVLz00kv5UlHpipt0FUi6Yn/tduwdl3hvO0G8vgOitD3tI50k//M///MonDBDYd633dS4/ul58f3H74sHl7wQuw4dEfe8+Ezc8cLTMX3LkXHyNm+GPlNX2M/tund8+LZr44O3/DwOHzMxBlSa4hcLH49nl78Wn9l5Tr7kepuXVy6Pyx6/L//zX+wwvX374VtPjKufejRueHpenPY/P4vZI8bEY0tfipueeTIPlX5o+/UPAFIn0N8+Mz++Pevw9lb3yaFbT4gLH7oz/vbu38SRYybGbc8tjJWtrXH6hKnd8F0DgJ7T8fcdAEBPLAeYJvjSuay1/dmf/Vm+DN3NN9+cL4WXOrmsWrUqn5hKk1Zp4ixN1m2udI4snSs75ZRT8oujjzrqqJg9e3Y+GZi2XXTRRXmHlNRhM71+CjhOmjSpPXTZnbbbbrv8tf/jP/4jX74wfb/69u2bX4CdOnymSc1DDjkkf+zZZ58dv/nNb/Il36+55pp8Ii+d40v1pom8T37yk+37ffe7353v88ILL4xHHnkkn3hLk3Mp3Jq67LR1gEnSfX/3d38Xn/vc5/Lvd5pYHT16dDzwwAP5v03qWPPFL34xf2yaSEyv/1d/9Vf5v8+hhx6aL22Y9pu66KQLwXvFuUEAAKDmx3VpjJaWOb/rrrs2apyRQpnp4rqnnnoqX/nh7ZaE31gpJJnGaqmukSNHbvIqqBszvjr66KPzgGjqvPmnP/0p9thjjzxwmsaI6fHp3yHVkqRMSAqA3nbbbfnqsDNmzMgv8Lvpppvyhl8du3GmGr761a/GBz7wgfjYxz6Wv5fJkyfn3Vt/+ctf5q/xf//v/21v+rUx41IAup/QZw1KByjpqzMdl6lKJ2XT1R7pF286AEjLry9evDjfng5GzjzzzPzgK11Fsj4p9NlmfQcsqaNo+kWfOiEUvrS7MEOhmsvlPEB50cN3xXWLHo97XnomRvUdEB+cuFv82aRd8/s7mr7lqPjOnCPzgGV6fDJx4NA4b+qcOHDU+DUeu3Tliny/a4c+k69NPzC+89g98d8LHonvP/7HGNGnf7x72yl54HNIc5/11jv3wd/FO0eMjZnDt15je1qC/qJZh8X/ve+WuPyJB2LrfoPiq9P3jylDhm/29wgACuU4CQDoYZ/5zGfyCcA0adRR6i6Zzluli5XTRF6aQEzbdtxxx3w5u3TOqqvstttu8b73vS+++93v5uHGn/3sZ3m48i//8i/z82JpKbq0TF3qApMmxdJXx3Ni3elv//Zv8/ecAqk///nP89V6UhDzox/9aD5x17Y0XzqXl2pMk5cpEPo///M/ee1pAi9NBKbbNim0evHFF+dLAqaJvbSPtORfWjY+fXUMfSYnnXRSHkBNnXDSv1Xq0JMuHD/55JPzSdK2bqNJWlIxdXlJ+0+PTR18UtfUNAn8kY98JLbees1zLAAAQO0rYlyXxmQp15CWLt+Qpd3bjB8/PqZOnZp3Ce3Kpd07ShcTptBnCrRuTqh0Q8dXaen39Ji0FPz111+fjw2TFNBMq1t0DNam73/qjpqadqVx4/3335+v1poueExNvNZegj19r9K/W1rlIa3smpqPDR06NM99fPCDH8wDpm02ZlwKQPfLqmuv6QM1rvrS0lj+D/9WdBkAAL1ONnyL6POZs4ouAwAAAAAAuly6kC6tVJoCkT/4wQ+65TU++9nP5hcPpg6X61tRFQC6W6nbXwF6WtnHGgCgU128lA0AAAAAAPQWaQWDV155JV/BoTs88sgj+SoNqROmwCcARbK8O/WnefWyVwAArMVxEgAAAAAAdSQtbpuWOF+5cmW+hHlazvzwww/v0teYO3duvpx5Cn2m1/nYxz7WpfsHgI2lJSL1GWbIsqKrAADodbI+zUWXAAAAAAAAXSbLshg8eHA89dRTMWfOnPi3f/u3KHfxqlejRo2Kxx9/PIYPHx5f+9rXYtddd+3S/QPAxsqq6bIHqDPLzjs/YvmKossAAOhVSjtPiuYzjy+6DAAAAAAAAAA2kU6f1CddrAAA1uUYCQAAAAAAAKCmCX1Sl7I+TUWXAADQ6zhGAgAAAAAAAKhtQp/UJ12sAADW5RgJAAAAAAAAoKYJfVKXMoEGAIB1OEYCAAAAAAAAqG1Cn9QngQYAgHU5RgIAAAAAAACoaUKf1CeBBgCAdTlGAgAAAAAAAKhpQp/UJUuXAgCsK+vrGAkAAAAAAACglgl9Up/6NBVdAQBA79PsGAkAAAAAAACglgl9Up90+gQAWIdu6AAAAAAAAAC1TeiTumTpUgCATjhGAgAAAAAAAKhpQp/UJ12sAADW5RgJAAAAAAAAoKYJfVKXsoEDii4BAKDXcYwEAAAAAAAAUNuEPqlL2WCBBgCANTRVIuvXp+gqAAAAAAAAANgMQp/UpWzwwKJLAADoVRwfAQAAAAAAANQ+oU/qU+r0mRVdBABALyL0CQAAAAAAAFDzhD6pS1m5HNG/X9FlAAD0Glm6KAYAAAAAAACAmib0Sd2yhCkAwJscGwEAAAAAAADUPqFP6pZuVgAAb3JsBAAAAAAAAFD7hD6pX7pZAQC00+kTAAAAAAAAoPYJfVK3BBsAADpwbAQAAAAAAABQ84Q+qVuWMAUAeJNjIwAAAAAAAIDaJ/RJ3dLpEwDgTY6NAAAAAAAAAGqf0Cd1SzcrAIA3lMuRDehXdBUAAAAAAAAAbCahT+qXblYAAKu5GAYAAAAAAACgLgh9UrcsYQoAsJrjIgAAAAAAAID6IPRJ3cqaKhGDdLUCAMiGDi66BAAAAAAAAAC6gNAndS0bPrToEgAACpeNcEwEAAAAAAAAUA+EPqlrJQEHAIAojdiy6BIAAAAAAAAA6AJCn9S1TMABAMAxEQAAAAAAAECdEPqkrlnKFAAgItvKMREAAAAAAABAPRD6pK5lW+lqBQA0uIH9I+vXt+gqAAAAAAAAAOgCQp/UtWz4FhFZVnQZAACF0fkcAAAAAAAAoH4IfVLXskolsqGDiy4DAKAwpRE6nwMAAAAAAADUC6FP6p7uVgBAI3MsBAAAAAAAAFA/hD6pe5nuVgBAA3MsBAAAAAAAAFA/hD6pe7pbAQCNzLEQAAAAAAAAQP0Q+qTu6W4FADSsLItsuNAnAAAAAAAAQL0Q+qTu6W4FADSsLQZF1lQpugoAAAAAAAAAuojQJ3UvGzokolIuugwAgB5X0vEcAAAAAAAAoK4IfVL3slIW2VbDii4DAKDHZSMdAwEAAAAAAADUE6FPGkJp7MiiSwAA6HGlcaOKLgEAAAAAAACALiT0SUPIhD4BgAbkGAgAAAAAAACgvgh90hBKY3W5AgAaTHNTZFtZ3h0AAAAAAACgngh90hCyrUdElLKiywAA6DHZ1ltF5vgHAAAAAAAAoK4IfdIQMp2uAIAGU7K0OwAAAAAAAEDdEfqkYWTjLPEOADSOkmMfAAAAAAAAgLoj9EnD0O0KAGgkmWMfAAAAAAAAgLoj9EnDKI3V7QoAaBDNTZGNHFZ0FQAAAAAAAAB0MaFPGkY2ZquIUlZ0GQAA3S7bekRkJYf6AAAAAAAAAPXGTDANI0sdr7bS8QoAqH86nAMAAAAAAADUJ6FPGko2dmTRJQAAdDvHPAAAAAAAAAD1SeiThqLrFQDQCBzzAAAAAAAAANQnoU8aSmmcrlcAQJ1rqkQ2aljRVQAAAAAAAADQDYQ+aSjZmJERZR97AKC+l3bPSo53AAAAAAAAAOqR2WAaStbcFNk4y50CAPWrNHFc0SUAAAAAAAAA0E2EPmk4pYnbFF0CAEC3caxDrbrqqqvi+OOPj2nTpsWcOXPik5/8ZDz11FObtK9qtRqnn356TJ48ORYsWNDltQIAALBxjPkAAAC6jtAnDac0SfcrAKBOlUtR2m5M0VXARps7d2586lOfiuXLl8d73vOefALw6quvjhNOOCHmz5+/0fu79NJL47bbbuuWWgEAANg4xnwAAABdq9LF+4NerzR+TB6IiJbWoksBAOhS2bjRkTU3FV0GbJQHH3wwLrroopgxY0Zccskl0dzcnG8//PDD45xzzokvfOEL+f0b6rHHHot//ud/7saKAQAA2FDGfAAAAF1Pp08aTtanObJxo4ouAwCgy+loTi1KHVqSs88+u33yLzn44INjzz33jBtvvDEWL168QftqaWnJu8cMGzYsX+YPAACAYhnzAQAAdD2hTxpSaeI2RZcAANDlHONQi2699daoVCr5ZN/aZs+eHdVqNX/MhvjmN78Z9957b94pZsCAAd1QLQAAABvDmA8AAKDrCX3SkHTBAgDqTrkUpe3GFF0FbJQVK1bEwoULY9SoUWt0fGkzbty49uX73s79998fF154YZxyyikxZ86cbqkXAACADWfMBwAA0D2EPmlIpfFj8mAEAEC9yMaNjqy5qegyYKMsWbIk7+oyZMiQTu8fNGhQfrt06dK3nUhMS/yNHDky/uZv/qZbagUAAGDjGPMBAAB0j0o37Rd6taxPc2TjRkV13sKiSwEA6BI6mVOLVq5cmd921vGl4/bly5e/5X7OP//8ePjhh+PSSy+1xB8AAEAvYcwHAADQPbQ6pGGVJm5TdAkAAF3GsQ21qG/fvmtMBHbWzSXp37//evdxxx13xHe+851473vfGzNnzuymSgEAANhYxnwAAADdQ+iThlWaJBgBANSJcjlK240pugrYaAMHDoxSqbTepfzatrct+be21157Lc4777wYN25c/PVf/3W31goAAMDGMeYDAADoHpZ3p2HlwYhyKaKltehSAAA2S7bNqMiam4ouAzZaWsovTd4tXLgw7/zS1LTm53j+/Pn57aRJkzp9/r333htPPvlk/ufdd9+908cceOCB+e0NN9wQY8eO7eJ3AAAAwPoY8wEAAHQPoU8aVgpGZONGR3XeU0WXAgCwWSztTi1Ly/NdccUVceedd8asWbPWuO+WW26JLMti+vTpnT53zJgxcc4553R635VXXhmLFi2K008/PQYPHpx/AQAA0LOM+QAAALpeVq1Wq92wX6gJK6/9n2j55f8WXQYAwGZp+sgpUZ4k+Eltuuuuu+KUU06JadOmxSWXXBJ9+/bNt1933XX55F7q2nLhhRdu9H5PPfXUfFJRtxcAAIDiGPMBAAB0PZ0+aWjlnScKfQIAta1f3yhtZ3KD2pUm/k477bS47LLL4phjjskn/BYvXhzXXHNNDB8+PM4777z2x952221x++23x5QpU+Kggw4qtG4AAADenjEfAABA1yt1wz6hZmRjR0UMHlh0GQAAm6w0ZbvIyg7rqW3/3//3/+Vfzc3N8b3vfS+f5DviiCPihz/8YYwbN679cWn7BRdcENdff32h9QIAALDhjPkAAAC6luXdaXgrf/SLaLn17qLLAADYJE3vOyrK06YUXQYAAAAAAAAAPUBLIBpeaeqkoksAANg05VKUdpxQdBUAAAAAAAAA9BChTxpeafttI5qbii4DAGCjlSaMi6xfn6LLAAAAAAAAAKCHCH3S8LKmSpR22LboMgAANlpp54lFlwAAAAAAAABADxL6hDwwYYl3AKD2OIYBAAAAAAAAaCxCnxAR5Z0mRmRZ0WUAAGywbNTwKA3bougyAAAAAAAAAOhBQp+QQhODBkS2zeiiywAA2GC6fAIAAAAAAAA0HqFPeENZcAIAqCGOXQAAAAAAAAAaj9AnvKE0VXACAKgRqUv5trqUAwAAAAAAADQaoU94Q2nU8MiGbVF0GQAAb6u804TIsqzoMgAAAAAAAADoYUKf0EFpp4lFlwAA8LZKlnYHAAAAAAAAaEhCn9BBeffJRZcAAPDW+jZHafJ2RVcBAAAAAAAAQAGEPqGDbPyYyLYcUnQZAADrVd5lh8iaKkWXAQAAAAAAAEABhD6hgyzLojR9p6LLAABYr9KMnYsuAQAAAAAAAICCCH3CWsozhD4BgF5q8MAoTdqm6CoAAAAAAAAAKIjQJ6ylNHJYZGNHFl0GAMA6ytOnRFbKii4DAAAAAAAAgIIIfUInypZ4BwB6IccoAAAAAAAAAI1N6BPW00UrMl20AIDeIxs5LEq6kQMAAAAAAAA0NKFP6EQ2eGCUtt+m6DIAANqVZ+jyCQAAAAAAANDohD5hPcozdi66BACA1TJLuwMAAAAAAAAg9AnrVdpl+4imStFlAABEtt3YyLYcUnQZAAAAAAAAABRM6BPWI+vbJ0o7Tyq6DAAAXT4BAAAAAAAAyAl9wlsozxCwAAAKVi5Hefcdi64CAAAAAAAAgF5A6BPeQmnH7SIG9Cu6DACggZWmbBdZ/75FlwEAAAAAAABALyD0CW8h01kLAChYecbORZcAAAAAAAAAQC8h9Alvozxnt6JLAAAa1aABUZo6qegqAAAAAAAAAOglhD7hbZS23iqybbcuugwAoAGVZ+6Sdx4HAAAAAAAAgEToEzZA5R27F10CANBoskzHcQAAAAAAAADWIPQJG6C02+SIfn2LLgMAaCClyeOjtOWQossAAAAAAAAAoBcR+oQNkDU3RXmPnYsuAwBoIGWdxgEAAAAAAABYi9AnbCDBCwCgx2wxKEo7TSy6CgAAAAAAAAB6GaFP2EClkcOiNHFc0WUAAA2gMmvXyEoO1QEAAAAAAABYk5lk2AjlvacXXQIAUO/KpSjP2a3oKgAAAAAAAADohYQ+YSOUdtk+X24VAKC7lHadHNnggUWXAQAAAAAAAEAvJPQJGyEts1p5x+5FlwEA1LHKO3UWBwAAAAAAAKBzQp+wkcqzd4uolIsuAwCoQ9nYkVEaP6boMgAAAAAAAADopYQ+YSNlA/tHafcdiy4DAKhD5b11+QQAAAAAAABg/YQ+YRNYdhUA6HID+kV52pSiqwAAAAAAAACgFxP6hE1QGjc6sgljiy4DAKgj5b2mRdZUKboMAAAAAAAAAHoxoU/YRJUDZxddAgBQL/o0ReWdM4quAgAAAAAAAIBeTugTNlF5yoTIxo4sugwAoA6UZ+8W2YB+RZcBAAAAAAAAQC8n9AmboXLArKJLAABqXbkclX33LLoKAAAAAAAAAGqA0CdshtKukyMbMbToMgCAGlbeY+fIthhUdBkAAAAAAAAA1AChT9gMWSmL8v66fQIAmyjLonzAzKKrAAAAAAAAAKBGCH1CF3TniiEDiy4DAKhBpd12iNKILYsuAwAAAAAAAIAaIfQJmymrlKOy355FlwEA1KDKgbOLLgEAAAAAAACAGiL0CV2gPHu3iAH9ii4DAKghpR0nRGnMyKLLAAAAAAAAAKCGCH1CF8j6NEdl7+lFlwEA1JDKQbOKLgEAAAAAAACAGiP0CV2k/M4ZEX2aii4DAKgB2XZjojRhXNFlAAAAAAAAAFBjhD6hi2T9+0Z5zu5FlwEA1IDKgbOLLgEAAAAAAACAGiT0CV2osu8eEZVy0WUAAL1YNnpElHeaWHQZAAAAAAAAANQgoU/oQtmQQbp9AgBvqXL43kWXAAAAAAAAAECNEvqELlY5eE5En+aiywAAeqFs/NZRnrp90WUAAAAAAAAAUKOEPqGLZQP7R2W/PYsuAwDohZqO3LfoEgAAAAAAAACoYUKf0A3KKfQ5sH/RZQAAvUhpyoQoTRxXdBkAAAAAAAAA1DChT+gGWZ/m1cu8AwAkWRaVI/cpugoAAAAAAAAAapzQJ3ST8pzdI9tySNFlAAC9QGn6lChtvVXRZQAAAAAAAABQ44Q+oZtklXJUDt+76DIAgKKV0zHBO4uuAgAAAAAAAIA6IPQJ3ag0fafIdPUCgIZWnrNblHT/BgAAAAAAAKALCH1CN8qyLCpH6OwFAA2rT1NUDp5TdBUAAAAAAAAA1AmhT+hm5Z0mRjZhbNFlAAAFKO+7Z2SDBhRdBgAAAAAAAAB1QugTekDTu/YrugQAoKcN7B+V/fYsugoAAAAAAAAA6ojQJ/SA0vitozR1+6LLAAB6UOWgOZH17VN0GQAAAAAAAADUEaFP6CGVI/eJKPkvBwCNINtySJTfsXvRZQAAAAAAAABQZyTQoIeURg6L8t7Tii4DAOgBlWMPiKxSLroMAAAAAAAAAOqM0Cf0oMphe0cMGlB0GQBANyrtNCHKU7cvugwAAAAAAAAA6pDQJ/SgrG+faDpqv6LLAAC6S6USleMOKroKAAAAAAAAAOqU0Cf0sPIeO0c2YWzRZQAA3aB8wMwoDdui6DIAAAAAAAAAqFNCn1CApuMPjij57wcA9STbckhUDphVdBkAAAAAAAAA1DGpMyhAaesRUd57WtFlAABdqHLsAZE1NxVdBgAAAAAAAAB1TOgTClI5bO+IQQOKLgMA6AKlnSZEeer2RZcBAAAAAAAAQJ0T+oSCZH37RNNR+xVdBgCwuSrlqBx7YNFVAAAAAAAAANAAhD6hQOU9do5swtiiywAANkN5/5lRGj606DIAAAAAAAAAaABCn1CwpuMPjij5rwgAtSjbckhUDpxddBkAAAAAAAAANAhJMyhYaesRUd5rWtFlAACboHLsAZE1NxVdBgAAAAAAAAANQugTeoHK4XtHDBpQdBkAwEYoTZkQ5anbF10GAAAAAAAAAA1E6BN6gaxvn2g64eCiywAANlSf5mg68ZCiqwAAAAAAAACgwQh9Qi9R3nWHKE3bsegyAIANUDl6v8iGDi66DAAAAAAAAAAajNAn9CJNxx9smXcA6OVKO4yPypzdiy4DAAAAAAAAgAYk9Am9SDagn2XeAaA369scTe8+rOgqAAAAAAAAAGhQQp/QK5d5n1J0GQBAJypH7W9ZdwAAAAAAAAAKI/QJvVDT8QdZ5h0AepnS5LSs+25FlwEAAAAAAABAAxP6hN66zPuJhxRdBgDQcVn3ky3rDgAAAAAAAECxhD6hlyrvsn2UplvmHQB6g8rRlnUHAAAAAAAAoHhCn9CLNR1nmXcAKFppx+2iMtuy7gAAAAAAAAAUT+gTevsy7ydZ5h0ACtO3j2XdAQAAAAAAAOg1hD6hlytP3T5KM3YqugwAaEiVY/aPbItBRZcBAAAAAAAAADmhT6iVZd4HW+YdAHpSaccJUZm1a9FlAAAAAAAAAEA7oU+oAVn/vtH0nndFZFnRpQBAYxg0IJpOPbzoKgAAAAAAAABgDUKfUCPKO2wb5QNnF10GANS/LIum046MbJAu2wAAAAAAAAD0LkKfUEMqh+0V2YSxRZcBAHWtfOCsKO8wvugyAAAAAAAAAGAdQp9QQ7JSKZrfe1TEgH5FlwIAdSnbbmxUDtu76DIAAAAAAAAAoFNCn1Bjsi0GRdOpR0RkRVcCAHVmQL9oft9R+UUWAAAAAAAAANAbmdGGGlTeaWKU992z6DIAoK40nXJ4fnEFAAAAAAAAAPRWQp9QoypH7hPZNqOLLgMA6kJ53z2ivPOkossAAAAAAAAAgLck9Ak1KiuXo+n0oyP69Sm6FACoadm4UVF5175FlwEAAAAAAAAAb0voE2pYacsh0XTyYUWXAQC1q2+f/CKKdDEFAAAAAAAAAPR2Qp9Q48q7TY7yXtOKLgMAalLTuw+L0rAtii4DAAAAAAAAADaI0CfUgcox+0c2ZquiywCAmlJ+x+75xRMAAAAAAAAAUCuEPqEOZJVKvjRtWqIWAHh72diRUTnmgKLLAAAAAAAAAICNIvQJdaI0Ystoet9REaWs6FIAoHcbNCCa/+z4yJoqRVcCAAAAAAAAABtF6BPqSHnKhKi8a9+iywCA3qtSjuYPHBfZFoOKrgQAAAAAAAAANprQJ9SZyn4zo7Tn1KLLAIBeqXLiIVEav3XRZQAAAAAAAADAJhH6hDrUdNIhkW0r0AIAHZX33SMqM3cpugwAAAAAAAAA2GRCn1CHskolmj9wbMSQgUWXAgC9QmnydlE5ar+iywAAAAAAAACAzSL0CXUqGzwwmv/suIimStGlAEChshFDo+n0oyIrOfQFAAAAAAAAoLaZ+YY6Vho3OprefVjRZQBAcfr2iaYzj4+sX9+iKwEAAAAAAACAzSb0CXWuPH2nKB8wq+gyAKDnZVk0ve+oKG01rOhKAAAAAAAAAKBLCH1CA6gcsU+Udp5YdBkA0KMq79o3ylMmFF0GAAAAAAAAAHQZoU9oAFkpi6bT3hXZSJ3OAGgMpT12jsr+M4suAwAAAAAAAAC6lNAnNIisb59oOvP4iIH9iy4FALpVNn5MNJ18aNFlAAAAAAAAAECXE/qEBlIaPjSaP3hCRJ+moksBgG6Rulo3n3l8ZJVK0aUAAAAAAAAAQJcT+oQGU9pmdDS9/9iIsv/+ANSZLQZF81knRTagX9GVAAAAAAAAAEC3kPqCBlSevF00nXJERFZ0JQDQRfr3XR34HDq46EoAAAAAAAAAoNsIfUKDKs/YKSpHH1B0GQCw+ZqbovmDJ0Rp1PCiKwEAAAAAAACAbiX0CQ2ssu8eUd5/ZtFlAMCmK5Wi6X1HRWn8mKIrAQAAAAAAAIBuJ/QJDa7pqP2ivOfUossAgE1SOfnQKO88qegyAAAAAAAAAKBHCH0CUTn5sCjtNKHoMgBgo1SO3CcqM3cpugwAAAAAAAAA6DFCn0Bk5VI0nX5MZOO3LroUANgg5X1mROXA2UWXAQAAAAAAAAA9SugTyGXNTdF85gmRjRxWdCkA8JZK06dE5ZgDii4DAAAAAAAAAHqc0CfQLhvQL5rPOilii0FFlwIAnSrtMD6aTj0isiwruhQAAAAAAAAA6HFCn8AasqGDo/lDJ0cM7F90KQCwhmz8mGj6wLGRlctFlwIAAAAAAAAAhRD6BNZRGjksmj9yiuAnAL1Gtu3W0XzWiZH1aS66FAAAAAAAAAAojNAn0KnSqOHR/OGTIwb0K7oUABpcNm5UNJ91UmR9+xRdCgAAAAAAAAAUSugTWK/S1lutXuq9X9+iSwGgQWVjR+a/i7J+Ap8AAAAAAAAAIPQJvKVSCtukjp/CNgD0sOyNiw+y/i4+AAAAAAAAAIBE6BN4W6V8Wd2TIyyrC0APyUaPyC86yAb0K7oUAAAAAAAAAOg1smq1Wi26CKA2tM5fFCsuuiLi9WVFlwJAHcvGbBXNH363wCcAAAAAAAAArEXoE9gorQsWx4pv/iji1deLLgWAOpSl7tKWdAcAAAAAAACATgl9AhutdeEzseLfLhf8BKBLZduMXh347Nen6FIAAAAAAAAAoFcS+gQ2SeuiZ1cHP195rehSAKgD2fito/mskyLrK/AJAAAAAAAAAOsj9AlsstbFz69e6v2lpUWXAkANK00cF01nHi/wCQAAAAAAAABvQ+gT2CzVF1+OFd+6IqqLny+6FABqUGm3ydF02pGRVSpFlwIU7KqrropLL700Hn/88ejbt2/stdde8YlPfCLGjBmzQc+/9dZb49///d/jnnvuiddeey222mqr2H///ePss8+OLbfcstvrBwAAYP2M+QAAALqO0Cew2aqvvh4r/v3KqD6xsOhSAKgh5XfsHpXjD46slBVdClCwuXPnxkUXXRSTJk2K/fbbLxYtWhTXXnttDB48OK644ooYN27cWz7/Jz/5SXzmM5/JJw4PPvjgGD58ePzhD3+IO++8M59AvPzyy2PEiBE99n4AAAB4kzEfAABA1xL6BLpEdcXKWHnpT6P1/seKLgWAGlA5dK/8C+DBBx+MY445JmbMmBGXXHJJNDc359uvu+66OOecc/LOLWlycH2WLFmSPyb58Y9/HBMmTGi/7+tf/3pceOGFceyxx8aXv/zlHng3AAAAdGTMBwAA0PVK3bBPoAFlzU3R9IHjo7Tn1KJLAaA3K2VROekQgU+gXVreL0lL8rVN/iWpe8uee+4ZN954YyxevHi9z7/pppvi1VdfjZNOOmmNyb/kIx/5SL7PX//61934DgAAAFgfYz4AAICuJ/QJdJmsXIrmU4+I8v4ziy4FgN6oUomm04+Jypzdi64E6EVuvfXWqFQq+WTf2mbPnh1pcYr0mPWZOHFifOITn4hDDz10nfvK5XK+79dee63L6wYAAODtGfMBAAB0vUo37BNocE1H7RfZ4IGx6me/iqgWXQ0AvULfPtF85vFRmjiu6EqAXmTFihWxcOHCGDNmzBodX9qMG7f6Z8Zjjz223n3svPPO+Vdnfvvb3+aTf+u7HwAAgO5jzAcAANA9hD6BblHZd4/IBvaPlT+8OqKltehyACjS4AHRfNbJUdp6RNGVAL3MkiVL8q4uQ4YM6fT+QYMG5bdLly7d6H2n53zxi1/M/3zqqaduZqUAAABsLGM+AACA7iH0CXSb8oydIgb2i5WXXBWxfGXR5QBQgGzE0Gj60MlR2rLzk/tAY1u5cvUxYmcdXzpuX758+Ubt95VXXomzzjor5s2bF/vss0+ceOKJXVAtAAAAG8OYDwAAoHuUumm/ALny5O2i+S9OiRjYv+hSAOhh2bhR0fzR0wQ+gfXq27fvGhOBnS0FmPTvv+HHks8++2ycfvrpceedd8Zuu+0Wc+fOjSzLuqhiAAAANpQxHwAAQPcQ+gS6XWmb0dH8sfdGNmp40aUA0ENKu02O5o+cEpnQP/AWBg4cGKVSab1L+bVtb1vy7+386U9/ipNOOinuu+++mD17dlx88cX5awAAANDzjPkAAAC6h9An0CNKw7aI5r88LUo7Tyy6FAC6UxZROXSvaDr96Mj6dL50F0DHpfzGjRsXCxcu7LTzy/z58/PbSZMmve2+brnllnjPe94TixYtiqOPPjq+/e1vm/wDAAAokDEfAABA9xD6BHpM1rdPNH3g+CgfOLvoUgDoDs1N0XTGsXno07JawIaaOXNmPvmXlubrbFIv/TyZPn36W+7jjjvuiA9/+MPxyiuv5Ldf/epX88lFAAAAimXMBwAA0PWEPoEelZWyaDpyn2h631ERTZWiywGgqwwdnHd0Lu+6Q9GVADXmhBNOyG/nzp0by5Yta99+3XXX5RN7BxxwQIwaNWq9z3/xxRfj4x//eP7cj33sY/GJT3yiR+oGAADg7RnzAQAAdD2JK6AQ5WlTIhs+NFZ85z8jXlpadDkAbIZswthofv+xkQ3sX3QpQA2aNm1anHbaaXHZZZfFMcccEwceeGAsXrw4rrnmmhg+fHicd9557Y+97bbb4vbbb48pU6bEQQcdlG/7zne+E88++2wMHjw4Wlpa4hvf+Eanr3P22WdHqeS6RwAAgJ5kzAcAAND1smq1Wu2G/QJskOrLr8SK71wV1ScWFl0KAJugPHu3qJxwUGTlctGlADUsDUvTBODll18e8+bNiy222CJmzZqVd3EZN25c++PS5N4FF1wQxx13XHzpS1/Ktx177LHxwAMPvO1r3HfffVGpuO4RAACgpxnzAQAAdC2hT6Bw1VWrYuUVv4zW3/2x6FIA2FClUlSOPSAqe08vuhIAAAAAAAAAaBhCn0CvserG38Wq/74xotWPJYBebUC/aDr96Chvv23RlQAAAAAAAABAQxH6BHqVlgcfj5Xf+1nE68uLLgWATmSjhkfTmcdHadgWRZcCAAAAAAAAAA1H6BPodVqffSFWXvqzqD71TNGlANBBadqUaDrpkMj69im6FAAAAAAAAABoSEKfQK9UXbUqVv3019Fy811FlwJAUyUqxx0Yldm7FV0JAAAAAAAAADQ0oU+gV2u556FYefk1lnsHKEg2clg0nXFMlEYNL7oUAAAAAAAAAGh4Qp9Ar9f6wpLVy70/uajoUgAaSnnmLlE5/qDImpuKLgUAAAAAAAAAEPoEakW1pSVW/fw30XLT7yL81ALoXn2aounEQ6I8Y+eiKwEAAAAAAAAAOhD6BGpKy/2Pxsr/uDri1deLLgWgLmVjtoqm04+O0ogtiy4FAAAAAAAAAFiL0CdQc6ovLY0V3/+vqD62oOhSAOpKea9pUTlm/8gqlaJLAQAAAAAAAAA6IfQJ1KRqa2us+sXN0XL9rRF+jAFsnn59oundh0d51x2KrgQAAAAAAAAAeAtCn0BNa3n4iVh52c8jXn6l6FIAalK27dbR9L6jorTlkKJLAQAAAAAAAADehtAnUPOqry2LlVfdEK133Fd0KQC1o1KOymF7R3m/PSMrlYquBgAAAAAAAADYAEKfQN1oue+RWHnFLyJefrXoUgB6tWyb0dF06hFRGjms6FIAAAAAAAAAgI0g9AnUX9fP/7w+Wn9/f9GlAPTO7p6H7h3l/XX3BAAAAAAAAIBaJPQJ1KWWPz4cK6/4ZcRSXT8BkmzcqNXdPUcNL7oUAAAAAAAAAGATCX0Cdav66uux8j9viNY7df0EGlg5dffcK8oHzNTdEwAAAAAAAABqnNAnUPd0/QQale6eAAAAAAAAAFBfhD6BBur6eX203vlA0aUA9FB3z3dEef9ZkZV19wQAAAAAAACAeiH0CTSUlnseipU/uS7iZV0/gTru7nnK4VEaPaLoUgAAAAAAAACALib0CTSc6rLlseoXN0fLb++MaG0tuhyArtG/b1SO2CfKs3eLrJQVXQ0AAAAAAAAA0A2EPoGG1bro2Vj5k+uj+uj8oksB2HRZFuVZu0TlyH0jG9Cv6GoAAAAAAAAAgG4k9Ak0vJbf3x8r/+vXlnwHanMp9xMOjtI2o4suBQAAAAAAAADoAUKfAJZ8B2rNgH5ROeKdUZ5lKXcAAAAAAAAAaCRCnwAdtD79XKy88jpLvgO9eCn3XaNy5D6WcgcAAAAAAACABiT0CdAJS74DvY2l3AEAAAAAAAAAoU+A9bDkO9ArWModAAAAAAAAAHiD0CfA22hd/Hysuvq30XrvQ0WXAjSSSiXKe0+LyoGzLeUOAAAAAAAAAOSEPgE2UOsTC2PVf98UrY/OL7oUoJ6VsijvOTUqh+4d2RaDiq4GAAAAAAAAAOhFhD4BNlLLA4/Fqqt/E9Wnnim6FKDOlHbZPipH7BOlkcOKLgUAAAAAAAAA6IWEPgE2QfrR2XrXA7Hqmv+J6vMvFV0OUONKE8dF5V37RmnbrYsuBQAAAAAAAADoxYQ+ATZDtaUlWm65O1Zdd0vE0leLLgeoMdmYrfLOnuUpE4ouBQAAAAAAAACoAUKfAF2gunxFtNx0R6y68faIZSuKLgfo5bJhW0TlsL2jNH1KZFlWdDkAAAAAAAAAQI0Q+gToQtVXXotVN9waLTffFbGqpehygN5m0ICoHDQnyu/YLbJyuehqAAAAAAAAAIAaI/QJ0A2qL78Sq266I1r+9w8Ry3X+hIY3dHBU9p8Z5Zm7RNbcVHQ1AAAAAAAAAECNEvoE6EbV15ZFy813xqrf/D7i1deLLgfoYdnIYVE5cHaUpk2JrFwquhwAAAAAAAAAoMYJfQL0gOqKldFy6z2x6sbbI15aWnQ5QDfLthm9Ouw5dVJkWVZ0OQAAAAAAAABAnRD6BOhB1ZaWaPn9/dHyq9ui+swLRZcDdLHSDttG+cDZUd5+26JLAQAAAAAAAADqkNAnQAGqrdVovfehWHXDrVFdsLjocoDNkUWUpu4QlYNmRWnc6KKrAQAAAAAAAADqmNAnQMFa/jQvWm64NVofebLoUoCNUS5FefpOUT5gVpRGDiu6GgAAAAAAAACgAQh9AvQSrQuejpbf3hktdz0YsWpV0eUA6zOwf5Rn7xaVd+we2RaDiq4GAAAAAAAAAGggQp8AvUz1ldei5bZ7YtX//iHixZeLLgd4Q7bN6KjsPT1Ku+8YWaVcdDkAAAAAAAAAQAMS+gTopaqtrdH6x0ei5eY7o/VhS79DISrlPOSZhz23GV10NQAAAAAAAABAgxP6BKgBrc88Hy233B0tv/tjxGvLii4H6l42YmiU5+wW5T13iWxAv6LLAQAAAAAAAADICX0C1JDqylXRevefYtUtf4jq408VXQ7Ul3IpSlO3j/I7do/SpG0iy7KiKwIAAAAAAAAAWIPQJ0CNal30bLTcek+03PVAxCuvFV0O1Kxsqy2jvMfUKM/aJbJBA4ouBwAAAAAAAABgvYQ+AWpctaU1Wv/0eLTceX+0/vGRiBUriy4Jer/BA6I8bUqUZ+wUpbGjiq4GAAAAAAAAAGCDCH0C1JHq8hXReu/D0fL7+6P14XkRrX7EQ7s+zVHaZfsoz9g5SttvE1mpVHRFAAAAAAAAAAAbRegToE5Vl76aL/2eAqDV+U8XXQ4Uo1yK0uTtVnf03HlSZM1NRVcEAAAAAAAAALDJhD4BGkDrMy+sXv49BUCff6nocqDbZeO3zjt6lnebHNnA/kWXAwAAAAAAAADQJYQ+ARpM67yF0XL3g9F63yNRfU4AlDqRZZFtMzrKO0+K0rQdozRsi6IrAgAAAAAAAADockKfAA2sdfHzefizJQVA5y2M8CuBWtLcFKUdts2XbS/vNDGyQQOKrggAAAAAAAAAoFsJfQKQq77yWrQ+8Fi0/PGRaH3o8YjlK4suCdY1eGAe8CxNnRSl7beNrKlSdEUAAAAAAAAAAD1G6BOAdVRXrYrWh59c3QX0/kcjXlpadEk0sGzrraK088R86fZs3KjIsqzokgAAAAAAAAAACiH0CcDbal2weHUA9OEnovrEooiWlqJLop716xOlCWOjNHm71UHPoYOLrggAAAAAAAAAoFcQ+gRgo1RXrIzWeQuj9dEno/WR+VF9UgiULgp5TtwmSpPGRbb1yMhKunkCAAAAAAAAAKxN6BOAzSIEykbr+0bIc9K4POiZjRHyBAAAAAAAAADYEEKfAHQpIVDWIeQJAAAAAAAAANAlhD4B6PYQaHXhs9G64OmoLlgcrfOfjuri5yNaW4suje7Q3BTZmK2iNHZUlMaOjGzcqMi2GibkCQAAAAAAAADQBYQ+Aehx1ZWrorrwmWhdsDiqC55effv0cxEtgqA1pU8KeI7Mw50p5JmlkKeAJwAAAAAAAABAtxH6BKBXqK5a9WZH0PmLV98+80LEylVFl0bSr29ko4dHadwbHTxTyHPElgKeAAAAAAAAAAA9SOgTgF4r/xX10tJoffaFqD77Yh4CzW/T319cEtHqV1iXaqpENnxoZCPS15b5bemN22xg/6KrAwAAAAAAAABoeEKfANSkaktLVJ97aXUA9I0gaOsbt7H01Qi/3TpXKkU2dHB7qDPb6s1wZ2wxKLJM504AAAAAAAAAgN5K6BOAulNd1ZIHP6svvxLVl9tuX4lY4++vRrzyWmonGnWhXI4YPCCyQQMiGzwwsiEDIxs8IGLQ6tu2bTGgvyXZAQAAAAAAAABqlNAnAA2r2tr6Rjj0jSDo0tcilq+IWLEiqsvS7cqopr+/8dXZtmhp7ZpiKpWIvs2RNTdF9Gl+48/Na27r0xxZ223f5jdCnm+EOwf006UTAAAAAAAAAKDOCX0CwGaorloVsXxlRAqQpl+prdX8Nv/1mv89hUKziNRdM8tWBzOzN/8elXJEc3Nk5VLRbwUAAAAAAAAAgF5O6BMAAAAAAAAAAACgBmgrBgAAAAAAAAAAAFADhD4BAAAAAAAAAAAAaoDQJwAAAAAAAAAAAEANEPoEAAAAAAAAAAAAqAFCnwAAAAAAAAAAAAA1QOgTAAAAAAAAAAAAoAYIfQIAAAAAAAAAAADUAKFPAAAAAAAAAAAAgBog9AkAAAAAAAAAAABQA4Q+AQAAAAAAAAAAAGqA0CcAAAAAAAAAAABADRD6BAAAAAAAAAAAAKgBQp8AAAAAAAAAAAAANUDoEwAAAAAAAAAAAKAGCH0CAAAAAAAAAAAA1AChTwAAAAAAAAAAAIAaIPQJAAAAAAAAAAAAUAOEPgEAAAAAAAAAAABqgNAnAAAAAAAAAAAAQA0Q+gQAAAAAAAAAAACoAUKfAAAAAAAAAAAAADVA6BMAAAAAAAAAAACgBgh9AgAAAAAAAAAAANQAoU8AAAAAAAAAAACAGiD0CQAAAAAAAAAAAFADhD4BAAAAAAAAAAAAaoDQJwAAAAAAAAAAAEANEPoEAAAAAAAAAAAAqAFCnwAAAAAAAAAAAAA1QOgTAAAAAAAAAAAAoAYIfQIAAAAAAAAAAADUAKFPAAAAAAAAAAAAgBog9AkAAAAAAAAAAABQA4Q+AQAAAAAAAAAAAGqA0CcAAAAAAAAAAABADRD6BAAAAAAAAAAAAKgBQp8AAAAAAAAAAAAANUDoEwAAAAAAAAAAAKAGCH0CAAAAAAAAAAAA1AChTwAAAAAAAAAAAIAaIPQJAAAAAAAAAAAAUAOEPgEAAAAAAAAAAABqgNAnAAAAAAAAAAAAQA0Q+gQAAAAAAAAAAACoAUKfAAAAAAAAAAAAADVA6BMAAAAAAAAAAACgBgh9AgAAAAAAAAAAANQAoU8AAAAAAAAAAACAGiD0CQAAAAAAAAAAAFADhD4BAAAAAAAAAAAAaoDQJwAAAAAAAAAAAEANEPoEAAAAAAAAAAAAqAFCnwAAAAAAAAAAAAA1QOgTAAAAAAAAAAAAoAYIfQIAAAAAAAAAAADUAKFPAAAAAAAAAAAAgBog9AkAAAAAAAAAAABQA4Q+AQAAAAAAAAAAAGqA0CcAAAAAAAAAAABADRD6BAAAAAAAAAAAAKgBQp8AAAAAAAAAAAAANUDoEwAAAAAAAAAAAKAGCH0CAAAAAAAAAAAA1AChTwAAAAAAAAAAAIAaIPQJAABA4a666qo4/vjjY9q0aTFnzpz45Cc/GU899dQGP3/hwoXx6U9/Ovbdd9/Ybbfd4phjjokf/ehH3VozAAAAG8aYDwAAoOtk1Wq12oX7AwAAgI0yd+7cuOiii2LSpEmx3377xaJFi+Laa6+NwYMHxxVXXBHjxo17y+enicJTTjklXnzxxTjiiCNi+PDhcf3118cTTzwRH/jAB/KJQQAAAIphzAcAANC1hD4BAAAozIMPPph3aJkxY0Zccskl0dzcnG+/7rrr4pxzzon9998/nxx8K+lx6fHf+ta38q4vybJly+KMM86Iu+++O3784x/H1KlTe+T9AAAA8CZjPgAAgK5neXcAAAAKc+mll+a3Z599dvvkX3LwwQfHnnvuGTfeeGMsXrz4LTu+pA4vaYnAtsm/pG/fvvGJT3wi0nWOl19+eTe/CwAAADpjzAcAAND1hD4BAAAozK233hqVSiWf7Fvb7Nmz8wm89Jj1uf322/PHzJkzZ537UieZpqamt3w+AAAA3ceYDwAAoOsJfQIAAFCIFStWxMKFC2PUqFFrdHxpM27cuPz2scceW+8+5s2bl99uu+2269yXJv9Gjx4dCxYsyF8LAACAnmPMBwAA0D2EPgEAACjEkiVL8o4tQ4YM6fT+QYMG5bdLly5d7z5efPHF/Pat9tHa2hqvvPJKl9QMAADAhjHmAwAA6B5CnwAAABRi5cqV+W1nHV86bl++fPlm70PXFwAAgJ5lzAcAANA9hD4BAAAoRN++fdeYxFtb26Rd//79u3UfAAAAdD1jPgAAgO4h9AkAAEAhBg4cGKVSab1L+bVtb1vyrzNtS/y9/PLL691HlmX5awEAANBzjPkAAAC6h9AnAAAAhUjL8I0bNy4WLlzYadeW+fPn57eTJk1a7z4mTJiQ3z755JPr3Jf2uWjRothuu+3yiUYAAAB6jjEfAABA9zACAgAAoDAzZ87MJ+ruvPPOde675ZZb8o4t06dPf8vnp8fcdttt69x3xx135PueMWNGl9cNAADA2zPmAwAA6HpCnwAAABTmhBNOyG/nzp0by5Yta99+3XXX5RN4BxxwQIwaNWq9z0/37bXXXnH77bfH9ddf37497ev888/P/3zaaad163sAAACgc8Z8AAAAXS+rVqvVbtgvAAAAbJB/+Id/iMsuuyzGjx8fBx54YCxevDiuueaaGDp0aPzwhz/MlwNMUmeXNNE3ZcqUOOigg9qf//jjj8cpp5wSS5cujcMPPzxGjhwZN9xwQ8ybNy/OPPPMOPfccwt8dwAAAI3NmA8AAKBrCX0CAABQqDQsTROAl19+eT5pt8UWW8SsWbPiYx/7WPvkX/KNb3wjLrjggjjuuOPiS1/60hr7SM9LXV7S8oDLly/PJxNTt5cTTzwxXwoQAACAYhjzAQAAdC2hTwAAAAAAAAAAAIAaUCq6AAAAAAAAAAAAAADentAnAAAAAAAAAAAAQA0Q+gQAAAAAAAAAAACoAUKfAAAAAAAAAAAAADVA6BMAAAAAAAAAAACgBgh9AgAAAAAAAAAAANQAoU8AAAAa0lVXXRXHH398TJs2LebMmROf/OQn46mnntrg5y9cuDA+/elPx7777hu77bZbHHPMMfGjH/2oW2umsT9zt956a3zwgx+MmTNnxtSpU+OAAw6Iz3/+8/HCCy90a9009ueuo2q1GqeffnpMnjw5FixY0OW1Uh829zO3ZMmS+PKXvxwHHnhg7LLLLvnt5z73uXjmmWe6tW4a+3P3wAMPxEc+8pGYNWtW/jv20EMPjQsuuCBWrFjRrXVTHz7+8Y/HPvvss1HPefHFF+Mf//Ef859xu+66axx22GHx7W9/O1atWtVtdTYq4z56mnEfPc2YjyIY99HTjPko0sd76Zgvq6bf3AAAANBA5s6dGxdddFFMmjQp9ttvv1i0aFFce+21MXjw4Ljiiiti3Lhxb/n8dELplFNOyQfuRxxxRAwfPjyuv/76eOKJJ+IDH/hAPikIXfmZ+8lPfhKf+cxnom/fvnHwwQfnn7k//OEPceedd8aYMWPi8ssvjxEjRvTY+6ExPndr++53vxtf/OIX8z/fcMMNMXbs2G6qnEb9zD333HNx2mmnxbx582LvvffOJ5vvv//+uOWWW/KfdVdeeWUMHTq0x94PjfG5S79PU7hh5cqVccghh8To0aPj5ptvjoceeihmz54dF198cZTL5R57P9SWNFH8jW98I0aOHBm/+c1vNug5L7/8crznPe+JRx55JP/MbbPNNvlnLv28S5PP//Iv/9LtdTcK4z56mnEfPc2YjyIY99HTjPko0gW9ecyXQp8AAADQKB544IHqDjvsUD311FOry5cvb9/+y1/+Mt/+oQ996G33cfbZZ+ePvfHGG9u3vf7669WTTz65Onny5Oq9997bbfXTeJ+5l156qTpt2rT869FHH13jvvPPPz/fx7nnnttt9dO4P+s6Sp+9XXfdNX9u+po/f343VE2jf+Y+9rGP5Y/93ve+t8b2b3zjG/n2r3zlK91SO439uXv3u9+dP/baa69t37Zy5crqBz7wgXz7VVdd1W31U7uWLVtW/exnP9v+e/Gd73znBj/3i1/8Yv6cyy67rH3bqlWrquecc06+/Re/+EU3Vd1YjPvoacZ99DRjPopg3EdPM+ajKMtqYMxneXcAAAAayqWXXprfnn322dHc3Ny+PXXR2HPPPePGG2+MxYsXv2W3l9TdJS0lk5b4a5M6cXziE5/Il8JK3Tegqz5zN910U7z66qtx0kknxYQJE9a4Ly1LlPb561//uhvfAY34ueuopaUlPvWpT8WwYcPyDhzQHZ+5p59+Ou/UkZZae+9737vGfWeccUa+nK7OVnTHz7p77703hgwZknfbaFOpVPLfu8ldd93VbfVTm371q1/F4YcfnncV6jge2BDLli3LlwZP3YVSB8k2qbPQueeem//5hz/8YZfX3IiM++hpxn30NGM+imDcR08z5qMIv6qRMZ/QJwAAAA3l1ltvzU/qpJNCa0vLuaTJu/SY9bn99tvzx8yZM2ed+2bMmBFNTU1v+Xwaz+Z+5iZOnJhPLHc8MdnxZFHa92uvvdblddPYn7uOvvnNb+YnyL/whS/EgAEDuqFa6sHmfuZS0CE9Ji2fu7ZBgwbFV77ylXj/+9/f5XVT27riZ90WW2wRr7zySixZsmSN7c8880x+u+WWW3Zx1dS6H//4x3kw6+/+7u/y35Eb45577smP22bOnBml0ppTdGlZyrSM7u9+97s8fMPmMe6jpxn30dOM+SiCcR89zZiPIvy4RsZ8Qp8AAAA0jBUrVsTChQtj1KhRa1wZ3HHQnTz22GPr3ce8efPy22233Xad+9LEX7qCc8GCBflrQVd85nbeeef48Ic/HNOnT1/nvt/+9rf5SaQddtihiyun0T93be6///648MIL8yvTOws9QFd95h588MH8dvvtt4+f/exnceKJJ8Zuu+0We+21V36S/YUXXujGd0Aj/6x7z3vek0+2pKDNo48+mv9eTd39/vVf/zWfHEyfRVi7C9UNN9yQf3ayLNuo57aNJbbZZptO70+f2/TZTuMJNp1xHz3NuI+eZsxHEYz76GnGfBTljBoZ81U2ew8AAABQI9LVvOnq37ScS2fSFeXJ0qVL17uPF198Mb99q320trbmVw+7Spiu+MytT3rOF7/4xfzPp5566mZWSj3pqs9dOgGZlvgbOXJk/M3f/E231Ep96IrPXFuHjYsvvjhfRuuAAw7IO6n9/ve/z5e9Sp070jK6aUIGuvJnXVomMO3jS1/60hodhyZNmpQHILbeeusurpxal5Yj3VQvvfRSfru+n2Vtn9uXX355k18D4z56nnEfPc2YjyIY99HTjPkoyqwaGfMJfQIAANAwVq5cmd92dmVwx+3Lly/f7H3o+EJXfeY6kyaXzzrrrPzK4X322ccV6XTL5+7888+Phx9+OC699FJL/NHtn7m25UpTJ4W0dNa+++6b/z1N8KSOL2ni72tf+1p8/vOf74Z3QCP/rEsTy9/61rfyJQMPO+ywGDZsWNx1111x9913x2c/+9m44IILTDrTZdrGCF19bMiajPvoacZ99DRjPopg3EdPM+ajFq3owTGf5d0BAABoGH379l3jhNH6BuT9+/fv1n3QOLrj8/Lss8/G6aefHnfeeWe+BNbcuXM3epkZ6ltXfO7uuOOO+M53vhPvfe97Y+bMmd1UKfWiKz5zpdLqU9WHHnpo+8Rfkn6+nXvuudGnT5+45ppr8q5q0FWfu6effjo+9KEP5ZMtV111VfzTP/1TnHfeefGjH/0ozjnnnPjd736Xd7+Cnv7cCt5sHuM+eppxHz3NmI8iGPfR04z5qEV9e3DMJ/QJAABAwxg4cGB+cnF9S760bW9bYqMzbcvJrG/5jbSPdKIyvRZ0xWeuoz/96U9x0kknxX333RezZ8/Ol8PyWaOrP3ep80Y6AT5u3Lj467/+626tlfrQFT/r2u7bZZddOt3/tttum+/nhRde6LK6qW1d8bn76U9/GsuWLYszzzwzxo8fv8Z9aQIwfe5uvPHG9mUoYXNtyFgicXy3eYz76GnGffQ0Yz6KYNxHTzPmoxYN6cExn+XdAQAAaBhp6Yx0QnvhwoX5lZZNTU1r3D9//vz8dtKkSevdx4QJE/LbJ598cp370j4XLVoU2223XfuV6zS2rvjMtbnlllvyk5Fpib+jjz46vvCFL6x3mRga2+Z+7u699972n3G77757p4858MAD25dkGzt2bBe/AxrxZ1363bkhnRDaOiZAV3zunnrqqfU+JoW50vYnnngif42tttqqy98DjeetxhJt21Onoq233rqHK6svxn30NOM+epoxH0Uw7qOnGfNRiyb04JjPSAQAAICGkpasSieJ0hJpnU2upJM906dPf8vnp8fcdtttnS6NlfY9Y8aMLq+bxv3MtX22PvzhD+cTf+n2q1/9qok/uu1zN2bMmHyiubOv0aNH549JS02mvw8ePLjb3wuN8/s1+d///d917ktdXtJETZps1uWKrvzcjRgxIr99/PHHO70/Tf51fBxsrqlTp+bL+N1+++3rLFuaJq3Tz7oUvimXy4XVWC+M++hpxn30NGM+imDcR08z5qPWTO3BMZ/QJwAAAA3lhBNOyG/nzp2bL+3S5rrrrssnWA444IAYNWrUep+f7ttrr73yQfv111/fvj3t6/zzz8//fNppp3Xre6CxPnMvvvhifPzjH8+f+7GPfSw+8YlP9EjdNO7nLk2wfPSjH+30q20C8Iwzzsj/bgKQrvpZN2vWrLzDRvr9etVVV7VvTyfIv/zlL+eTPCeffHI3vwsa7XN3+OGH51360rK5bV1i2lx66aXxyCOP5KGuFIyArtCnT59417veFQsWLMg/Y21aWlriK1/5Sv5nY4muYdxHTzPuo6cZ81EE4z56mjEftaZPD475smq1Wu2SPQEAAECN+Id/+Ie47LLLYvz48flyVYsXL45rrrkmhg4dGj/84Q/zZWOS1NUlnYScMmVKHHTQQe3PT1cGn3LKKbF06dL8xNHIkSPz5a7mzZsXZ555Zpx77rkFvjvq7TP3z//8z/HNb34zn2hJnTbW5+yzz7a8JF36s64zp556at5dwRJ/dMdn7v7774/3v//98fLLL8e+++6bL4mVHnvffffFtGnT4nvf+946y7nB5n7uvvOd78SXvvSlfHm1Qw45JLbccsv44x//mD82dXv5/ve/n+8b1mfy5Mn5eOA3v/nNGtsfeOCBPCyYJpCPP/74NbpYnXjiiXmHl/333z8PPqRuV+lnXRpbpAnt1LGIzWfcR08z7qOnGfNRBOM+epoxH0Wb3EvHfEKfAAAANJw0FE4nii6//PJ8wm6LLbbIrzRP3TTaThIl3/jGN+KCCy6I4447Lj8x1FF6XurwkpaRWb58eX5iKF2hmQbzJmnpys/csccem59AejvppFGlUunW90Hj/axbmwlAuvszl06Ip/t++9vfxpIlS/JOQ0cddVScddZZebcE6I7P3c0335x3frnnnnvi9ddfj6222iqfmElL61rmj02dAPzJT34S5513Xr4kZQovdPTMM8/E17/+9bjxxhvzQGH6nZomCVPQy1LOXce4j55m3EdPM+ajCMZ99DRjPoo2uZeO+YQ+AQAAAAAAAAAAAGqA3u8AAAAAAAAAAAAANUDoEwAAAAAAAAAAAKAGCH0CAAAAAAAAAAAA1AChTwAAAAAAAAAAAIAaIPQJAAAAAAAAAAAAUAOEPgEAAAAAAAAAAABqgNAnAAAAAAAAAAAAQA0Q+gQAAAAAAAAAAACoAUKfAAAAAAAAAAAAADVA6BMAAAAAAAAAAACgBgh9AgAAAAAAAAAAANQAoU8AAAAAAAAAAACAGiD0CQAAAAAAAAAAAFADhD4BAAAAAAAAAAAAaoDQJwAAAAAAAAAAAEANEPoEAAAAAAAAAAAAqAFCnwAAAAAAAAAAAPz/7P0HlGRV1T/uH2DI8SVLFlCiiEQRFUVAkvgimSEIGFCyGDCCIpIkJxEEFCSDCUFGoi8ZE0lADIggSBaGLPBfn/P93f7X9FSnme7prunnWatX9VS8detWz9l377MP0AEUfQIAAAAAAAAAAAB0AEWfAAAAAAAAAAAAAB1A0ScAAAAAAAAAAABAB1D0CQAAAAAAAAAAANABFH0CAAAAAAAAAAAAdABFnwAAAAAAAAAAAAAdQNEnAAAAAAAAAAAAQAdQ9AkAAAAAAAAAAADQARR9AgAAAAAAAAAAAHQARZ/AsBg/fnw555xzyq677lrWXnvtssIKK5R3vetdZbPNNiuHHnpo+fvf/z5s23brrbeWZZZZpv7897//LVOjBx54YKLrmvd80003TbHt+MMf/lAOPPDAsummm9bPf8UVVyzvfe97y6c//eny05/+tLz++utlavTwww937e9//OMfI+71n3322fLEE08M6TbsuOOOXdvQ+rPsssuWd77znfU4GDt2bDnzzDPLc8891+PzrLvuuvVxF1100aBs11//+tfy5ptvDugxl156ad2G97///W3f4zHHHFNG4/cbAGCgY9P8fPvb3+7X437wgx90Pab7OGxSDcX4LTHlYMW3PY07p7RJGVv2FIOccMIJ9brtttuu3+P8wdynvWm2N/t9SjjggAPq633+858vI03reZLuP4njV1111bLxxhuXL3/5y+X222+fYsfwpB4L7Y6v4ToX1C7+7ul7AQDA4OlpfNvTT5OnGOz8zpSOA1566aVy8sknl4985CM1F7PyyiuXzTffvJx22mnl1Vdf7ffzJJeb7f7whz/c6/122223rv2VvHBP7rvvvq773X///ROMi9v9LLfccnX7M7bfa6+9ylVXXdXrdjz11FPlxBNPLFtvvXV597vfXeOY5Ke32Wabcvzxx5d///vfZVL0ddwk/73GGmuUj33sY/VcQ2/5rk46R/Doo4+Wk046qeywww7lPe95T1dcuOGGG5avfOUr5f/+7/+m+DYBjEZjhnsDgNHn2muvrYmAZ555pv57rrnmKm9/+9vLf/7zn/KXv/ylDuZ//OMflz333LPsvvvuw725U5UkQ5JEffHFF8t55503bNvx/PPPl2984xvl8ssvr/+efvrpy1ve8pYy66yzln/+85/luuuuqz9nnHFGDeoWX3zxYdvW0eass86qAf+xxx5b5ptvviF/vXnmmWeCzzcFly+//HJ57LHHym9/+9v6k4T+d7/73RqID2Uh+tFHH10uuOCCcscdd5QxYzpviDRSvt8AAJPjyiuvLF/96lfLNNNM0+v9mlhiJLvhhhvq+CxJsP3222+4N2eqYJ8OvyTzZphhhq5/Z7Jmzuck4Z1JdEk8fvSjH62fU+v9BtvUcCxM6fgbAICJLbHEEmXuuefu837TTTdd6XQpOMxkxxRYJuZObiY5mXvvvbf86U9/qvF4xqizzTZbn8+11lpr1fs++OCD5emnn267D5PraZ0UlkLAFAm2c9ttt9XLjItTyNgqcUXikFZNLilFuOPGjas/KWQ98sgjJzqfcM0115QvfvGLNTeZfGQ+87z37I+77rqr/PGPf6z5yOQtU5w5mMdRCmmT97znnnvqT+KlCy+8sOZEO9Frr71Wi1d/+MMfdk2Wm3/++WueP7flvV5yySX1J8WuiXWSBwRgaHReRQPQ0TJoPvzww+vvG220Udljjz3K2972tq7bH3/88XLKKaeUc889tw4aM2Dfd999h3GLpy6XXXZZTYysssoqPSZNF1pooSHdhsymy8y5DPwTvOUY2GKLLbqSQQnUMiPviCOOqAXA6fZ48cUXlwUXXHBIt2s0WWCBBXr8vDM7c0rKDMTDDjus7W0Jtr/1rW+VO++8s3zmM58pP/rRj8o73vGOCe6TkwoJJBNUTo4E2yk2nxTrr79+nVGakwWj/fsNADA5MvEmMeHvfve7stpqq/V4v8QSd99996C/fmLVdD35n//5n0F5vlNPPXVQO1KOlHHnYMcg7fQ0zh/sfcrAHXfccWWRRRaZ6PoXXnihxlTpkvOzn/2sJgCPOuqoCRKug3kMT86xMFhx5OTqKf7OeZB0Tp155pmn+DYBAIw2WXluUgv9Ok1yMSn4zDg4k4+afMvvf//7mqtLTib36c8KHKuvvnod12dcnVX9PvShD7Ut5HzllVfK0ksvXZv+5N8pgmw3OSwNQCLdN7tLLrGnRhd5vhQWpnnIL37xi1pomG6ejUxMS54525GOoLvsskttQNNIwWriluQhMwE1uch0rhzM4+iNN96o25bnzzmPNEZKTNJpEuMlV5fi3WmnnbZsv/325eMf//gEjV2yn1M8nEYu+bxTZPyTn/ykzDjjjMO67QBTK8u7A1NMBuwZ5EWChwzCWws+I4FGlvv+7Gc/23USfyiSeUxsqaWWqj9DmVRIQeeXvvSlmqRdeOGFa5CW5cpaA7wkhJIISrIos7+yzNk3v/nNIdum0SiBePN5j+SEcU44ZLZglulI98oEwgmOWy222GL1fcw+++zDtp157WxDtmU0f78BACZX09n9V7/6Va/3a4oHl19++UF9/RQjZszUny4vw6ETxp2DFYOMhHE+A5PE6ac+9anyne98p/77l7/8ZbniiitG5DE80o+v/A3K9pm0BwDAYElxZMboka6XrQ020kiiWV4+xYn9WeY94//WotF20qQishJAxuDJ8zTFnQMp+uxN8ot5PyuttFL999lnnz1RM6IUImZSVVaYbC34bMbeBx98cO1cmvxTloAfbCmQzD745Cc/Wf9988031w6pnSYT/FLwma63+T35/O4rNaa4c7PNNqv530yoTdHtaaedNmzbDDC1U/QJTBEp9ktb/Cz7tfLKK5e999671/tnplBa22eAfeaZZ06x7WRoJeGTgCAOOuigsuiii/Z43xQAZ9Zds/RCJwZATL5ZZpmldvuMBx54oM8CAAAAOteGG25YL7MsW2LI3oo+kzTJ6hHAyJIE3zrrrFN/H4qEKQAAMHDPPvtsXV0xll122Ylubwo4c590v+yPpiNmT0WfTT4wBZXve9/7JriuVQoDs0pgmsIMtOizsd5669XLP//5z7W4tJHupZEVB3qS8wtbbrll1/27Nx8ZLB/84Ae7fk++q5M8+uijtYA2PvGJT9TmPb1J45+mwdNFF100ZPsUYLRT9AlMEVmeL4P2aGYy9TUzK90hUvCZGVZNILDMMsuUFVZYoQ7+20kwsuqqq9b73XHHHRPNEtt///3roHrFFVesXWR23333OqNqIDLg/8IXvlA+8IEP1OfJUgFpT5/W/ylq7S63ZXtuuummrmWq11xzzVr8uvnmm5ef/vSn9X5Jambgm/b/uS3vY9dddy1//OMf227Hc889V77//e/XZb/yfNkvWQIxjz/hhBPKf/7zn677Pvzww3UbmoRLArD8e9111+26T/7dbGd36baZJdw+8pGPlHe9611d23766af3a8Zf44ILLugKKLOsd3+SRYccckgt9FtiiSUmuj2fXQpD3/ve93Z9pgk2kiRuJ+837/Ef//hHnWGYZQeyzzKLcdttty3XXXdd1xIFeW+bbrppnR2Y/ZsZgM0x3KrZb/k88llmvyR4zDbl+MryBQOVTqgpik3QlEA725hlEnJ8dD/G8prNNmQJve5uueWW2ikzt2eGZuvx0OyLOOCAA+q/G1niIv++9NJL69IW+T2ff2/f8dwnS3pk1uRgymvL2HMAAQAASURBVGfQdHG6+uqr236m2Tetcvwfc8wxdZvz+Hwm2Z9ZPuP++++f6Dl22mmnrn/nu5TnzH5q/Q5ff/315aSTTqonMvJ8OT5yTGQf5fbejul893Ns5nud71CWFzn//PPb/s3o6T01ms8ql4Px/f73v/9dlzLNTNe8r2xfZp3m+XJcd5e/L3mudG7OyZ8s9ZLXyncw+2a//fabaB8DAPRHxr1Zti3jk56SRn/729/qcnSJw+add94enytj+oyVMyZPcinj6oxzPvzhD9cJie2WhW7GfRlHNpqxVhJPTcy21VZb1efKzzbbbFMuueSSCYpUm/FhEwt873vfm2D81rj33nvL17/+9Vq8mpikGU8lZm432amncWez3b/5zW/qvtlnn33q8+T5ssReYuueknYDiSvb+fnPf1622GKLOo7M47Ok3Y033jjR/drFIL3pPibubZ9O7rmCgZqc/Z1YKasZJG7M8ZN9lvFzfyY5XnXVVbWTZhKmea0c1znHcc8990xwvxyLO++8c9dxm+Rud1lFIbfnOfqb0B2IfC8i8VLrd6232CmfY76veX/5LLNvsq+zCkjreYe+vl+33npr/Xdirrx+VhfJ9z/Pm7inPzFXXi/x0AYbbFAfm+3NPmv3d6OveLD12G9izN7i79aYK9veTpZLTHyZcyA5FnL+IedGejq/1bx+jr9f//rXdb/me57v7f/+7/92LXcPAMDkyVg8OYw0vkkuMrmJ/GT8mbxiU4DYH8kdZLyfcVzGbt1zhRmzJrbI2DuxTl4n8e6hhx5alxDvLivrNUts/+lPf5ro9uacfu7TW6zdKmPsyIqN3XOFjzzySI3f0+0x4/umQLRd0eftt99eL/Nes52TYrbZZuv6/YUXXuj6vVlpIvm/3iaX5jNKji3j5RSBDoXW523dliaGyU/OZbTT3J779lf2a47FJoeazyCFmAPNi8eFF15YY4bk7/uT54/kmXJ85rxHu3MmiYWTW8z9mrimddn7fAcSsyV+Se4x90luPt+l7nFwf887NLFgE3u17v9sR47jrFSa2D6xYO7/ta99rcfny/mr5Mjy3cv2Jc5Pri3XNfEfwFBS9AlMEU2hUVq+N0v29SWDz/yk018kWZHunxnwXnbZZW0fk8H4+PHj6zJYrbO2jj766LLDDjvUx2WGVwZvGVxfe+21tfCvKUbsS1rQJ3GQxNbzzz9fnyeBRJINKSbLc+X6dpK0ywn7FOFlia4ETgmsstz5ueeeWwepGTg+9thj5a1vfWs9GZ9kWQazSSS1SkIoBZEpxkugl+UHsi3ZvxnoJjmRgXQT2OS1kkTM/otsc5NU7Esz4D755JNrgJbunAsuuGBNUB555JFlt91261fhZ+6T54omuOtLllnI7Lrsj+5SDJz9nQLPBBopJE3wloAxyY599923x6RFAuFsd/ZV0230D3/4Q00w5RhKsW3eWxKgee1c5voUXmYA306WMshnmc9m6aWXrsdpjq8UE/7gBz8o/ZX3k2LCLH2QwHzJJZesn2/2XY6PbHdrwJoETYKJSHLxySef7Lotyb1sU2bQJWnbW9FmimpzTDTe/va3138nwE4St5kh2f1YbDTFy5tssknXiYPBlJMW0Z+ANu87ifgk//J55DPO55h9k+LsvJ8kaBv5HuT9NvK+89P9feT58jnnuMx3IH9r2hUjd5fvfI6dBNJZwiT7NInmLH2RpO1ACqfbmZzvd7Ypn1lmaD700EN1P2UGZj7rJBrzd6anAs5//etf9fg755xz6r/zd/eZZ56pnbfy96dd0A0A0JvEaM3YtqcO783S7hnD9CQFfhnTZyycMXnihIz35pxzzjo+TPyX8XG7RFdPkqDI82VMnufIuGnMmDE1HvvKV75SY7NGxnsZjzVJp4zT8u/WsWNiwGxDEicpVMySaBm3Jp7MWDWFhK3Fp/2RxyV+SnFgEmt53SQZEv9kklvGr5MTV3aXGDFxbArhEgPl80siLft+sDs89rZPJ+dcweQY6P5OXJlizMRtOfZyXiArXORYz7GQMXg7eV9ZanGPPfaoE9HS/SafU+KIvN/EPs2YPHJ7ihtzvCcGSrKp+3coCa58Xol787kPVfwW/ZkI+aMf/agWMeb7mu9V4vvEXXlsVn5IHNxMmOvP9ytSzJr9nXMXOT5zjqU/8VskTks8lPNH+duRzy77LOdG2iWpB6q3+Ls3OceRCalJ3GY7mn2VYyTnEnKOJEn+niR5mccnKb/IIovUfZz9k8dkSUwAACZdYsaM21NUl0k6Gb++7W1vqxMb0yUxecXECRnT9yU5nUw6ynh/rrnmqoVwacbSSO4oucrEFsk1ZOyfMW9eJ/dNLqjJxzUS5zWTsxIDtp6/T3yS2CCSS804sz8SWyWHm9gkY8xWzbg58Vpij+SGE5unw2XyoO2KPie1y2c0RXkzzTRTjc8aKSRsciHJt+azae0E2sj7yNg6uZ+h0pzPyP5olqMfKmnakc8y7zefT2KOvG6KkhM35PaBaJrmZALu7LPP3q/H5LhMPJcurDn+ukvOOXFgCoTzXUncleM4Ek9ncmrOwSQuzGsmDs45k3yXEou3FogOhsRViQVPOeWUGj9mm3K+pmnYlFxfq+TUMqHz7LPPrt/JnCdKnJXGPrku8eNAzjsBTApFn8AUkYFbpJiodbbVQGQwmgKjaNfRsLXwLIOvxi9/+cty6qmn1scnGZcC1HRiScCRwsD45je/2baLY6sMjDMITrDVzITK82Tp8SR1MvMtA8+eTpQnsZiZQUkM/eQnP6mXTbCRAsacoD/iiCPq9uX2vF6SF81svVaZFZXgLUFekiJZNj0JiAw4k9zJe03irdkfCSpTRNgU72Vwn3+ngK036eqSZGMGtelakUF9BtNJSmWQm+RQ3nO6H/Ylg9ymCLPd0hEDkQK1JLUSeKZLTz6LFPPlM00SI8FZ9knTxaO7dApJcJf7Z1/nfSVYSFCe5EmK3NLpM59RjrXcJ8mQFBP21AkkA/gE0nnOHBcp2E3xaZ4zwXJPnYpapaAyMzcTTKQjbAoc8/o5NrINSQzlvaYLaKsETQsssEDdvmYp9OY4SfCcx+X33qTgNcdEIycU8u8sy5fHN0m7dt+9bG/2d/fv3mBKoNR0ne1ppmMjn10C/CTNcgIlfwPyXcjnmU4tOQ5zMqSR70ECx9bPMu8935tW+Qxz0iYJ43w/851rF6h2lwR6uq02n2OSwvmblGMqHWcTQE6OSf1+J5DO37IEyZmtmO9B9lNOJGVbMyMxf2dybLQrZs9+zXct34n8HcyxketyUuSll17q198FAIDumiXbe1riPePOJIoyruttsl7G0kn0NGOVjNEz3sm/M35KkieTevorMVHGSZnsl7grY8GM5VI0GVmloumYmDF0xmNNt/qc6M+/M65qii0zHk1smZg0sUPGiXlviSeafZDJY3112myVcWySZIkRMy7LuDWFmRmzZnycmGly4srukphLoiX7Ifs3l02MnYK5Seke0pPe9umkniuYXAPd34n3M9kw4+V83nlMVmNI4i8FoD1NmsqqG7lfHpdYpzmnkcvEMSnyTGFna4fV3LeJG/PYJkGXzzuTzyLJrP5Oyh2oJKabcz+ZLNabJPaahGMm7DYxdb63+Q4kaZvzDk0heF/fr9ZzEDPPPHON3bK/87zNcdKXxH4519BsSxNLJvZNTDi53VF7i797c9hhh9XjLHFYjot853Kc5bPP9uYcSRKfPSU/cy4l3XjzHc93Iu8vx0HkOEwBKAAAkyZjzsSMGb9mNYWMITOWTJFdrk8BWXIbfZ23TxycuDOxTWLa5AdbGzw0eayM3ZK3yTguY+fEchkXJk+QXFEmjSWf0ioTGVNIl/g2sVwmXW644Yb1MYk9M07NeLe/EpunC2l0z4FlrBpNHjTxQTMBr/tEqqzU2Hrfgcr4vIkFE6O1Fq2mqLApJGw6X6ZwMU16Uvyazyn5jKGUOCIT3Zpxevb3UBaXZpW5nBeZY445an4y8VSOj+z3TC5NPJHbe8p3dpecWrMc/WAWqyYnmnxWYup8f5LPawp/cxwmfs75m+y75rxOzjMkr5XzKZm81tPKj5PiL3/5S42VEp/luMg+y2Vy+ylC/dznPjdBriz7Mt+lfI9yvCf2zk/eT/JreUzrBGGAoaDoE5gimkTV5HaQyEA4CY0kQ7oXaaYDY5IeSbDkpH+j6TCS5bLS5aEp0splCusygMyMu54SWY2my0pmwqUQMi3sG0mUNK+TgWcToHRPeuQEfTMDKt35sk2RwWkCj9btToFsgq5oTf6kU0czuE6xaDqDNLJvksRIwBKTu8RyClUTFGZbkrRrLYJLW/sU0UYG43kPvWldUm5yjoMER02RXIKzBKitSyIkQdp0Mkn3nHbt8xPgZdsTfEcCnzxP5H2kcDfL3DVSpNp0HOopEZf9kcRok9jK8ZUOGunamSC8PwVw2ccp8s3suyRLm+2LJLRyMiDPm6AhwUf3YyuffxJaSQIl+Emwk+O0KYSdHE1BYV67+5LkKWJMoJOTFkM1OzEFko12yxO2arqR5jNrPdby3UtSNJ1msxREOkANRL4H+Z4O9DjO8ZUizzy+kSUoEjg2yeJ2M0uHWrap6VyThGHrki3pMpXb851Pkjbb2E4C1hz7jXSmzSzR6E+hMwBAd0laJcbJ5KWc4G+V+Cbj4IznMgbuSeLCxAgZj3cfn+bfzZLJPXVW7Em6t6eTfxNTJqZLXJFxeJJ3d955Z7+eJ4m4PEeWuEtM2iw3F3lfScQ1iZV2y0n3JF0CEzO0xohJTjTLTreOzwYjrsxnldiriTWaGLsphM14ckqZlHMFk2sg+ztxdWK0SNKtKViMdANJsWjrcdD6OTWJwdynNU7N+8lkxoy/E3Mm7muVJeWazyKFnonZEuumyDIJqExSHEpNDNdX/JZjPHF+usBkm1sl6ZuixMR27fZPX1LgmAmSzfb0d1WKLFeYcwQ5ppqYLrFPVm7I+0kSdUrL38TmdfOdTXK+9VjI9uZcVeT8VLsOvVliNInKZj/kcTn3kH0fYjgAYDTKefpmSeh2Pxlz9zfOS7Fh4sbuk3my4kCTW+gtDs24PpN5UmyW8/U5L9+9iUqKSBMrJw7JpLCck2/NgRxyyCG1uDKrcrWbDJT757HJhWVCYsbj+T3j5eS3uud/+tKs7Nc6lkx83EwCbO3e2fzeWvSZyVoZ6yYf1hSQ9kf2Vd5jcrJZbSLj9OTDkjdslX3SrLTRxPKJtbO9Kc7N2D853qxi0deEtd4k/s25htafdHZNjjDvK59L9m1intYmJIMtOcbkGiOTTZuYMBLf5PXzXiP366vJSmTfNk19WvNIgyHxSJM3T5FztjGNVFI4GYm511xzza775zNO3NN0rR1ox9K+JL7OT5N3TqyU+oA0pkmBZ+vkvSYXmX3cmsPMPkrhduL3puAYYKgo+gSmiHRXiJ6W2+6vFCKlWCu6F2lmFlcCkyRYmuLEdNdouoxmcN1OBtopWttvv/16fN0m8IkUjraTpEl+mqCruwxKuxfetRaBtevo0CSPWpeFy2AxM42yZEPrktSNBA1N4eFAi9q6awbVSYy1FiA2knjJ55BCw9bCy3Za33t/goiepKA2SaoEz02hZncJWpLYyb5oOpq0yjHSfXsn5bNo1Zr8bdUcd+k01NOyiE0g1iw53hqEtcoJhgT4CWabz6Y1sM42NAmgHNfNbLh0mZxcKabNZ5hkZRKmrVL0O5RdPqN1CfQm8daTZsm+nPBIZ9rWmXc5LtKFKfuo3THdm3y/+3rtnvZduwLR5nuV7eu+1MqU0Hw3cvKhtYi9kWC2KfbN38h234kUKnTXnGRq1x0UAKAvGW81xUzdl3hvlkLrXhjWXU7CpwCzpxiwiU8HGi+lYKq7JCWasV7ilP5IHJN4LomndlrHqQPpOLLWWmu1LWpLgrH7+Gww4sokM9uNj7PMYNNFZUpNbhrouYLBMJD9nY4l2YbEnU0xbasUEzbJ0laJERMLJVHUbuwdTSFrjvkkoVql2DOvmSRqPpd0eGkKGPu7ZOOkas7/9BVDJXmWbclk4QMOOKArcdZIh6Ik+nrr7tufZeYHot25hsRMzb7uz5Kcgy3HQs6l5Bju6W9gJpCmODbHXj7r7rLCQ3c5j7H44osP6G8YAMDUJPmErBrW00+7eKmdjLEzJu8p19jEoRnf99REJasSXnjhhXUyYLobptFGd825+iyZ3a7ZR8bfTY6pNY+UsWTG1smNZAyYSWUpHk1uIkVtGUemgC6TwwZS+Jm4KFonbeb35NKS02qdJNd08kws2uyDZmn3FEa2y1M0q5Z1L8ZNrizFmpl4mK6nKRzM+2i30mByHekKmf2RgsvkAFtXpUzMm1xSxtnd81/9lTxyCklbf7IfMtkyKzukeDiTuLKNA81NDUReM5MHU4SYSYnt5PhIjjQTJPuz/HhfTX8iMWdvxdPtuopmG5q8eqvmuM2k3XwH20mhb1MHMNAJvb1pmjW1StyfZdy75/+bOCrfm3wvW8+dpFlKcpRN8xeAoTK0Z/cA/j9NYqWvDg/9kSKknLxOx8F0KGgSCE3r/tbCswz2IoFPkkDtZAn1vjSFownKmgROO1liIQPqdt1Y2rXqb+1U0a4orLckTIKCBDp33XVXeeihh+psuHQ0SXDTJNb6MxDvTZ63t+XYE4D1t6CwNbmW2XeTqvksMphuDcpa5ZhI55QELFPis4ieOlwmmGkSXuk62vy7XUDYFDYmsO8puG1mGjb7oVUKPDN7sglwkpTuqUh5oPIdSvFiutPku9Z0mGmKQLN/eipWHQytxbbNrL+e7LbbbrVAINuWGYvZtgRYSaIm0ZtZrpNSvDmpCeLWLj6t8hnnhFKSmvnutnbtGWrZn/l+ROvSMN01ieV236OmY053zQmLySnuBgBGt4w7k+DK5LKcIG/Gbll+PCfbk9zqS8b3KSJLh4iMtRMv5TLxUhIgkxIv9TX+GWhHlGxjkoIZv2f7En/l99axfrsl7id1+9qNzyYnruxpnNvEPHm9xOSDMQltsM8VDIaB7O9mPN1bwjj7qXsxYdONNQm0pkNtd63HSI6ddCBtJGbOsvJJMDbHVZK8rZMeh0pT9Np0kexJtjddj773ve/Vgt38JPZKAjdJ4cRwk7payKTEcHlMa2K6VXNupHs32Smh+fxynPQ06TZxezrH5u9IjrnuheqD/TcMAGBqkO7wgxUrpJgyXexTSJnxWxOHJgfw6KOPdt0vMVb3MV1WcGuKxtJApKcmOk3+J4Vx3SdMNZrJPHntxAuJjdK8I40gMmZMY4zWnGmKHZNDyYoPed7EUP3dJ4n/MqbPBLSMQTMebTp5dl+uPbmIFLQmV5xtT0zZFH22dgRtl0vpnsfI/kthY8a4yflk8mhPOcNG7pvYKD8Z+6bgMfmtyy67rO7XTLpMYWwK+wYag6SotNln+XwTZ6foL4Wejz/+eM0FtStwHGxNDJnjp6fGOc2xmu3McdrXCn75zLK/c//mfEq7z6hdgebdd989QVOXVpmQ2K4Atol9epr4GNmf+byT68px19/i7N4kDuwpZmpiwXynGuk4moY/ef0cN9kH+YxzLKewuKfcOsBgUvQJTBEZ5DeJipz476toK55++umaZErXh1YZuCdJkQApg6kkApKgyjJ/6bLSelK7KTJtbas+OQVnfQUMzeu06+jYzOLryUCK0DLgTceO7p0bsn2ZDZcAoqdgbyCa/Te5S4NHAqQmmGuCjv5IoJUCz6aDSvNZ9HUMNZ9Vu8+ir/fTV9fSdnpKZLW+Vm+dD1tvSxDUl3bPlYAiQXQT9PdUYDo5SdQUfWbGWvZrjvfMfkxwnI4hg72sQ6smqZYOOD0VxLYWcuekRJbTSPFnihtTjJ2fk046qSY4swxnf4oFWvV3KcDuevv709w2uV15B6r1e9Hb37Xmtvwtbk4ONSZleUUAgP7ISfKM6RLzpWgz/86y3SkgzGoDfcVliRnS+T7Ff62JsoxfkjRI0VTrcnL91df4ZyAFmkm4pRNMJiq1Svy75ZZb1u4ug719gx1X9jTObb1+IJ1KJ9dAzhUMhoHs7ybp2lssmoRXT3Ffjun+LL3drlNjkqNJXGW/ZJt7m8g6WJLcbr57rctN9iTdkLKd55xzTl3dI9+LfH/zk0l8SUJnmcv+nEtqNSkddEZi/DZY50IG828YAAATyvg3XRx//OMfTzBeTHFdCtJSWJeJjT3JY9KwJF0hM/b/0pe+VC6++OKJxnDNuDDj+9ZC0naSu8m4MGPEZiWNdK9v1yQn16VoMRMwUwTZ36LP5AwSe/3yl7+s25188A033NC26DO5t3QGzYTOxGwp+sz4v6+iz0zMal1WezDkc0mha34+9alP1fed5dCTC0l+qV3Hx/7K+8z+TIOX5M1OPPHEGqumIDhNS4ZSE0Om0HJSY8h2ubHkaVPcmPi6pxxwu88oucMUwPb0vJMT+yQ+y317W2VxIJLD7kkTy7fmZnNuKTnS5CJTtJ38d47r/Bx99NH1e59zLjm/AjBUFH0CU0RayGeWUwKMtO1ff/31+3xMWr1nUJTZOjnR3xR65aT9JptsUi644IJ6fYKJpnPHRz7ykQkCoGYQNrkDvubEfk9Le3cfHE9ukWlvMlsuS3blMsFflmhLYJREShKECbD233//QSn6TKFqBrCDMWBOkPOBD3ygdu248cYb+/WYBCVZkjHBcor00tmk2bd9LR09JT6LVklmJpHYXet29jYzsDX5l0BsUrY7CfEf/vCHXYV5p512Wt3ngzV7MEvjJWBPYJfCz5wcaL57zTLgQ6VZGqSnpRy6y8zSHDP5uf/++2siO397crIhAebee+9dZ1j2NYNxMPS2pGVzfLRL8PaUcBuMJTJbj6/e/q6lO1ZzfE5Kd1QAgEmRcUeKO88666yamMp4tr9Lu8dnP/vZepI9sWNip3T9yLJ4SVIkXkxB5aQUfQ6WFHxmGetIt/fEx9m+FONlMlnin0kp+pzScWVP49LWGKivLo+DaSDnCqa0JnnU29i7XSFhM3k034cscT4pDj/88JoMTkyeYyurIeT46msy3eRIZ6NGf2O4fA/yk32U+C0/6Xya4uQk0nJcpRvoUOvt/MekxG+DVfg8Us+FAADw/2SS0qWXXlqLCbfZZpuy+uqr1zgvOc7EKsmL9Vb0mbgshYeJxRK/JBbL+DfLrbeLEb7+9a/XmK6/mlXkepuUtfTSS9fLrFo3ECnkTNHnHXfcUYv80kEz29mu2C3FnSn6TLFn4resOJGizsFuYhKJe3JeIQWYKczrSfZ5Vs3LdvW0muOk2nPPPetz5vPPMuCJu7O/etIurhhITqg5PjLhNcfjYEnnyuyXnEvJ9gxGs6DJjX2a29vFPpOSX+tPLq97njfH1re//e3yrW99qzb0SRybFRlzTioNerKqRY6r/qw6CjApBt7KDGASZNCTRFv84Ac/6LN7QIr9miRXApDuyYimwCwt9lNImsvW6xsJppqBWk9BSh6bVv5Z8qwnTRCUk/W9LePVdGhMMnGopNNiEnNJGuX3z3zmM3WwnX3cFGU1yzZPrmb/9dSZMwmjFGKmgC6dPPqSAC5ShNefJGsSdEm45Hhojp/ms0iXn54SZlliIEHlUH8WrXraR02SNAFQb0vo5fPLyYDoaaZcZPnH7L/uiaj8O8m7fB/ymSRpm9+/+MUvDtost2hmd2bWWj7zbEuCnByDQyXFmgn8W4+h3uT4z2OapGlOFuQ7ni6f+b7nc8i+yWzVKaF1ec5W+bvUbpnH5jjoacmLdFyaXJnZ2yx12Ftn2ea25m8BAMCUXOI9xo0bV+PHnCTPifxMauprIlROrkeSOimuzHMledUU/WUFiuHUJJuydF6We0tCMIVxTYHklNi+wYgrexrnNrFYEpvp1D8l9fdcwXCtfpL4sKfzIe3iwOZxva2WkfMUSSwlPuu+PHeKJs8999xa8JmEcWKAe++9txx33HFlKKUjUSSOb9dFqFXituyXJnZOrJJEcb67+d6n+DiyzGRfSb/BkOUKe+p2k47DwxG/tZ4LyeeXcx7t5BxJs9zglDoXAgDA/4udMrkv0tExBWAp3Mzyzk33+b7ivDTdyNg5k/D23Xffrtix+0S8/sQIzaoZrTFd0xG++2oTrRIjtt63v5oixqy0kAlgiXlS9NpuolnT/TPj2mayWG9dPidHxurJ6aYI75lnnunz/k3OpF2Dl0mV+DpNkdK1MuP4dHDtnttsYoqe4oqBxBTN8ZG44L///W/b++TzSQ4t9+kpjukuecdsZ+LP73//+2UoNbFPE3+1k8+1KdJsYp+sEtFo974Se/YWU+Z701PeOcdra2F09mHqDm666ab678TcaTKTIs/UQWQiar5H2V85rwUwVBR9AlNMOu5lcJsZTaecckqv981spwyWMkhKl5bumk4tGaSfffbZdYZaZkclgGqVTilNoV0SWe0kEEuCJMvJ9zZIbgbK6aTYTrozpiAv3v/+95eh0hSvZtZfu86RSRQlmIvuCZ8medffJbuaQr4MTtsNkH/zm9/U950CznRW7Ev2SzrZRJY16KmlfyRhleMgsgxfPt8m8E0yNMFKlsloJzMKE7jm/TavN9SapFZ3zXIGeQ+9LQ+ewf8aa6xRf89szp72yfbbb18222yzrqU4Gll2IoWROd4///nP12LPzBzLdbmtv/o6RjbffPMaOKVjZlM0me0Zqq45CcKyNGdkub++Ps8cF0meZ1bmddddN9HtWUqjSdC1Jsryt2aolrRLorJd4W0K21M4nRMJrR1HmxMK7ZLoOTHUU5HmQL/fSaQ2x2i773e6fKYz71D/TQMAaGfllVeuMU9ivYz7Eztk/NLXcs2tk/0yfuwuJ9wTL7SLlwZbT53Sm21M542+YouekjTDGVc2eoqxE6NHxu6DHSf01X2+v+cKprQcu9kXSbo2haitEr+2i18SkyexltigpxUz0rkmk9yyEkNrV8mc4/jqV79af//4xz9en+uggw6q/z7jjDPK7bffXoZCYojmuXffffc+75/OrNn2TGJsF8u85z3v6fq99VgcqpUIsg3tOuIk+dck8ptYqjV+S/zUJMlbZcJkTwYSwyUmSyyeY6XpfNzdOeecU/9mpLtPc34BAIChl7ijGdO1i/OSi2gdY/YVi2Z8n5g4+YMUCeaykVxTZEzYbvzZ5GMzubCZQBVZCaHJ97XraJgcQW5rvW9/pVA1BaspRG3ilu5LuzeSt0ruNjF+0xymdcw/2KtQpiFLllXvrfFPZF+mODT6mmw6UAsssED9HCMxYfdtaS0ybZcX6i2m6C7FtikwTU6qp06f+ZyTQ8sE2f5OOk1jkMSVTTFyTzFJqxRE9pZ770lzjCfn3tMS9YmDY8EFF+zqEptJrU2M1W4/XnPNNb2eY8n3son5WiXOblYR2XDDDetllnLPihy77LJLLXbuLjUFOd8SPU3aAxgMij6BKSYByqc//en6e7pKJNjoPhMtiacUrDWFlXvssUd5xzve0fb5mk4dTYeKpgNhqwzumqLRLHWdJeObwCuDt8xGymA5J86bwWpP9tlnn66ERJZVay2SSieZdLtsEltDFaC0znDK7L7WpSDyvlKEmVlETQDYfRmxpsV9ZoX1J3mYAsMMktNVM59LBrGNDLYPPPDArhle/W3ln8ckwEkBY4LOJDQTcDWyXUnCZln3vN78889fZ0Y2krz41Kc+VX/P55AEcOuAOfsky2hEul02xbpDLTO1ciw2+zWfwTHHHFO3J7MZs4RDX7JMRxJ6KabMzL/WQsEsA5D3nedNYWdmiTay1Hr2Y473FEjmc04RaWaTRm7Lffqj+RybpT66S4FijvHW2XztvnuTK59pEoVjx46t7z3vKcWrfSX28l1uuoFmXzSF2K2fUwpWuxcyth6/Pb33SZUgPn8fWoPbfMZHHXVU/T1/o1pnvKawORJcti6LmFmXuW/rCZ7J+X5/8pOfrI/J/s3ft9YTRPl+5u91utzk+5oTAAAAU1pzMv3oo4/ud9f31qXq0um9deyUQsaMgZpOeIO17HJPmjFm98luzTYmtmztvJKishNOOGGCrhntlvwe7riykeLFfDZNbJzLLCWeREoKHBPPT6l9OtBzBVNa4updd921/p5CzCaZ2MQfGee3S7wm9ttqq63q75/73Ofqvm2NmXKO48QTT6z/TuzU2pEncXEKBBMTN52C1ltvvfo96qnDzORIoW2+c1/72te6Jgy2Fkf2JInGHC+JSxLzte6HxFCJq5uC3uzHgRwLkyrHdetEy8RKidfzfU0ye8stt+y6LduV7c93J9vffGfz/cm5rWYVm0mJv7snx3OOo1nKs3X78nmmo2v+fkSOpyR6AQCYMtJpsOnWmFxkawyVsV7Ov2c580ZfsWiaVGTJ6Iwzm2XeGxtvvHFtbJHu9LvtttsEedaM7zPRK8V2yaU0ubTYaaedakOVdDPMeLF1DJrxbnIYKZTLffrKl7aTvGjGwE1xXE9Fn62dPdMwI9s5VJ0+Ez8kjooUQCbO7Z4zylg68Vn2T7pAZv++613vGvRtSQyRgsxIjNB6PCRmaxrrpCC0WXkgMUYKNBNn9VdijOZzT44skzVbc6jJFTa53cRiA1mdI/ty/fXXr8+333771eYz3fdnclPZnznGUhCZYz2Td1MY3F/Z/01TohyXzWouzXmH5IabOCvb0OQN8zpNA6HERq3nW5IXbHKmvUnerrXINjFptiHfl3xOzfmFFOo2TWpSZN26Smj2T3LXiXHzXZ5SzYmA0en/3+MYYArIIDCD7COPPLIWPeUnRWSZiZNBbIoLI4FMgqAk5HqSThAZfCUhkPtvuummPQ6kk9w788wza/Lh2GOPra+XAtMUFSYQSxDUV+ePDH7TNTEJhwywc/I+A7wM+JokQzop5L0NVceJ5v3kZH72VQaaSQJlcJlALYFZ9kW2I91Luy/Ht9xyy9XLbO8GG2xQCyrT5a+n7U2QkQRSBudJBGY5tXRNyWeV/ZeAI4FbUxDbH0mQJLmZgrIsDZ6EVwbaGfBnQJ4EbFPsmBmRSdQ1Syo0Esjm9bPteWwG73nezEhrljnIDKumq8mUkCD75JNPrp9NtiVFczm+8p5SwNmafO5Jiv1S4JqAK7PUzj///DrjMfsjn3f2dzpVZmmApkgwRXlJ+ESKaJtlNJqixgQgCWZznxRe5/G9SUCUYsvs1+zfFP62JrQi/86xkO9ePqNmFt2kSEI5RcONvMe83wRQTQIyx2mCuP6+Tv7OpFgyy0omQdp8R3JsNMdHXrO16DOzFBMM5z0lkZbjMQHxYHQEyrGYYtPMDs3SD/mbke9r7LDDDnUft0qB5c9//vP62ea2ZrmInHCZY4456gmXZhbj5Hy/c5xmv+b7m+Rxgui8Vgri8zczgWlmIuZvQLvuTwAAQy0xWDoSZnyYxFNvSaPW8Wwel+RRHpuxcMZ2GZs33S2TUEr3kTxvxpwDXbquv7ItGTcnSZPYZ7XVVqtj/YxXE2NlzJXOI81EtYz5MyGuWWI98edQLfU+OXFl6zg3HT4S32UfJwZKt8M8NjFQMz6dEvt0Us4VTGmZCPj3v/+9xgYZ0zcxSJMIyng8y7F3lwRSPoO878985jN1nJ+JWRn3NxPL8lk0hZ2RYtAkqvK8+SxaV53IeZEk4fL4xH19dbzpLvFD66S1JN3y/crzNZNsE1M1kzH7kveTYsl0+syqF5m0mMRj4pJ8B/KdyLHZrAAxkGNhUuS7kPgn7zPxUF47ifS8z5ybyPmg1kmD+duUcxRJxOccV7oV5fuQ/ZH9ktgz8Va771F/4u9WX/7yl7u6xWb7su9yfivfvWa5ysSYvZ1LAwBg8GX8mAK3008/vY4J08U/haCtuZ0111yz5i1SFJc4r3VCUzvJxSWPlvPzibsygSsxVmKc5KJSwJglpxPvJKZMw5Tk15pJVBk7tuZAMpbN4zI5L/FAYtHkn9JII7FpCjazTRnvZpw5UOkOmtgw7znj6Dx3TxLbZ+yfbU0Opq+81eRI19TEFskNZ6yen4zxM6kqMm5PHNtMPD3ssMOGZDsS42fcn3g1sUXisuSBElslbks8lzxeYvDEhvlMk8/KRL50vkzsd8cdd/TrtRIPJEZIYWTiyeStE6MklmhyZMlHdo+x+pJjJTmlFDZnRc8U+OYnx03ikuSUsj+bHG/un1g1TaCaVTn7K3FqVo7I6qEpyG3itMTUOY+T3H72WffJwbkucXOO6XxnkvPK55vtSpOpVVZZpe3qG42cj0nsntfL+2piwRzTee+tsXA+z+RlE9Pne5h9nMl3yW828VnO/zQ5PoChoNMnMMUl8Enb95wUzwArJ/BTnJUCpwQs6X6R2/s6SZ3BXROwpHtEa/v77g444IBa9JkgJsFVZsZlQJgBfIKQpnNGXxJgZZCcwVsSg3medHFIoV06mqQQtLftGAx53SRBMlMrQV8G+hl05vp0NMmsrWY572xf62y9BF2Z9ZTBagb2SXpmv/cmM88SpKYQLYPaDJSTBMxy1BnQZnDf27Ll7SSYSvI1g/bMCktAl21pOjomgEmSLomqDLDbBUcp1E0SN4P2fJYJbiOPTVCawfdAt2typEtKkloJnJNwSoDdFFxmZmB/5TNMkJRAIc+VzzaJ1wTICeITBLZ2L03AlmMgn2k+2+4S2CdAz31y377k2EkSPMFYgqemC1KrFC82x3nTRWdS5VjK8gzNTwK4nARJYJTvd5J2SYoOZGZljqEs5ZjkdYpSk2jLdyHf/fwNyAmSZlnD1sekwDgnGHKiIcdj69KgkyNBbf7+5DuTfZqi6ZzgyXHaFOy2SnCc73G63ea7kv2RGaZJ/uXz7ylAnJTvd06upLNuks4JSLN9Od7ytziBeI7FnpYdBQAYahk/Nd0gEjf0d6nwxBKZTJV4M2PAjM9zkj6xQsaCiSOaZbZaOycOtsS0iTWTKMi4OtsR2Y7EdIllMubP5J6MwTKRrBmDNZ39U9Q20uLKRpJUTQyUWC5xWWKfPG/rygRTYp9O6rmCKSnJocQcKcJMfJOxehJxOZ+Qgr9M0msncW0SapmAmg4hScYm/k3iMnFFzkUkgdl0FkqhZPPZJY7vHktl/zQFmTnWUiA9EHffffcEMVy2JTFOYql0G83nn+9ff7+vsdlmm9UYLrFTJrqlS0qSckmU5zxMzhHlOB3osTCpn1PO7eTcVP5+5NjOMd5Mzms3GTGJvO9+97s1cZrPJ3FV4vYkV7vHngONv7tvW+LIHAuJ5fJ3Lfs/5x+S7EziPDHmUE5EBgCgvUxiyng/Y8KM2zI+zXn9jPczLswYsxmb9zfOy1g44+CMMZPnbFZjSN4sK4UlH5DO8ykMbPJrGVOfc845bVfvykSpTJrKWDfj1cQjGYdm0lWuy225z6TI+2zGoX117swEw6Z4bqi6fLZK/iOd8lMQmNdOjJU4POPvxBPJ5aXRRj6/ocwrpjlMChkj+721g2cmziXfmv2R2C4xUXKnibtTrNvEe/2RzyExWRrI5FxK4o3EDSnGTNyZ58z7TRwxUClQzXGZwubkHBOjZp9lexOLZlJccog5NnO+JasoDLTgM/K5JEbM+0ieOt+lfKcS3ydX1pzP6C7nAjLBNedbMlkvOe1sX/KFub6vVSvzmqljaJqjZNtTRJpcb87ZtEruNduReofk7ZrvYV4v8Vni/HbbCDCYpnmzmYIN0IEyEL/nnnvq8ndNq3eYkpqET4r6snzFaJAZagnkEjhmSYQEcQAAACOFcwUAAABAX7J8fLqJRs4jpEgWoFPo9Al0rAy88pNOeP1Z5g8YHD/96U/rjNIsIa7gEwAAGEmcKwAAAAAApnbK1IGOkqUGIsugZSmDyOybgbS1BwYuSxJkqcc//vGP5fjjj+9aEgMAAGC4OVcAAAAAAIwmij6BjnL55ZeXo48+uuvfb3/728sOO+wwrNsEo8Hhhx9el3JvbL311uUd73jHsG4TAABAOFcAAAAAAIwmlncHOsoyyyxTl5OeZZZZynrrrVfOOOOMMsMMMwz3ZsFUb6WVViozzTRTmXvuucuuu+5avvGNbwz3JgEAAFTOFQAAAAAAo8k0b7755pvDvREAAAAAAAAAAAAA9E6nTwAAAAAAAAAAAIAOoOgTAAAAAAAAAAAAoAMo+gQAAAAAAAAAAADoAIo+Aehy1FFHlXe84x3lH//4R9d1BxxwQFlmmWX6/XPWWWeVTvPss8+WJ554YoLrTjjhhPp+tttuuzJavfHGG/X9Zz/897//7fW+r776ajnjjDPKlltuWVZdddWy0korlU033bScfPLJ5eWXX+7xcTfccEP57Gc/W9773veWFVdcsayxxhplxx13LD/96U/Lm2++OdH9v/KVr5Q111yzPP7444PyHgEAgKknBk0skeuOOeaYrusefvjhrvu2vk4n23PPPev7Sdzamz/96U/l85//fFlnnXVqvPXud7+77LHHHuWPf/zjRPfNvsl9jj766CHccgAAgPbx4EDiwNafxHyT6rHHHivjx48flPfTLh6dXMmFffvb3y7rr79+V0y36667liuuuKLt/W+//fa6DRdccMGgbQMAI9eY4d4AAEaG3/72t+X0008vu+yyS1l88cUnun222WYrb3/72/t8ngUWWKB0kiQIU5h47LHHlvnmm2+4N2dESbLv97//fZ/3e/LJJ2uQef/995fpppuuLLnkkuXFF18sDzzwQDnuuOPKVVddVX74wx+W2WeffYLHHXbYYeXMM8+sv88666xl6aWXLv/+97/LbbfdVn+uvPLKcvzxx5fpp5++6zGf+9znyq9+9avy5S9/ufzgBz8YgncNAABMCaM1Bp1cmSD361//us/7nXPOOeWQQw6pk/n+53/+p8ZbSaYmPrvmmmvKd77znbL55pt33T+fwc4771xOO+20WiSayXwAAABTKh5cZZVV2jYcufvuu+vviQ8TJ3Y344wzDvj187ynnHJKbWby85//vO3zDrdM4sv+SeOa5Mne+ta3lhdeeKHceOON9WfcuHG1cHbaaf//fd5WX331stFGG5VDDz20Foi2i7UBmHoo+gSgdnE86KCDyhxzzFF23333tvdZfvnly9lnn12mNgl82hk7dmzZeOONy8wzz1xGm9dff71897vfrcFuX9KNc999960Fn0kinnjiiTXwbGYU7rPPPuWee+6pBaQHHnhg1+MSRKfgM0WiX/ziF8tOO+3UFZimqDMdPZOITNHn/vvv3/W4eeedt3zyk5+sRbqXXXZZ7SYKAAB0lqGKQQ8//PDy0ksv1SLHqVEmyaWQsy8333xzOfjgg+vviacySW/MmDF13+T6Sy65pMZnSQK+5S1v6XrcZz7zmXLxxRfX237yk59MMAEPAABgKOPB8847b6L7povnhz70ofr71772tboS3GB10ExDmJEqRal77713LfjMe07Obv755++K97KCw+WXX147pSbea5UYMJP9vvWtb2meAjCVs7w7AOWiiy6qXRlTeJcgi1LmnnvustRSS5WFFlqojCYPPvhg+fjHP96vgs+mQDPFnZkFma6pTcFnM6OwKdhMN5rXXnut67Ym0Nx+++3r67XORNxwww1rJ8+mO02C2+5LZKRraILc7rcBAACjNwZN/JY4LvHc1CiT45577rk+Jydm+b/4xCc+UT71qU/Vgs/I45L4W3TRRcsrr7xSJ+O1SlyXzySfTT4jAACAwSYn2bes7vDPf/6zzDLLLHVFvabgM9Zaa62uYtnzzz9/oscm3ttss83KDTfcUK6//voput0ATFmKPgFGuRTiZQmDdFzccssth3tzGEY//vGPa+fMLK2ebi9f+MIX+nxMur9EZhLON998E93+4Q9/uOy1117l85//fFeBZmYm3nffffX3TTbZpO3zNjM3s0z8X/7yl4kSkR/5yEfKo48+WrvQAAAAnUMMOmmSzEvSbr311qvdXHpy55131hgqE+XSubO7FIAecMABdcWFdssnbrXVVvU+3/ve9yaYuAcAADC5xIP9M+ecc5b//d//Ldtuu23blSyWWWaZevmvf/2r7ePzuMjqfABMvRR9Aoxy48aNq0vEZWbYAgssMKjPnY6MCTyOOeaYtrefcMIJ9fbcr9W6665br//rX/9aCxDTmSTLFySxtdFGG9Ulv1944YUelxv/2c9+VnbZZZey9tprlxVXXLF88IMfrJ0j08WykSRXExRF7p9/X3rppRNs23bbbdf2da688sraNSXL4eU13vve99bixiyr0E6eKz/pppIZennPq622WnnnO99ZA7d0yWyXUHv55ZfL97///fKxj32svOtd76r7IO8nHTR/97vf9fpaeQ8Dcdddd9XLbFuWTu8tkdgsA3/LLbfU3zfYYIO290mB5p577lnGjh1bZp111nrdjDPOWBOIWb7jbW97W5/bldfpLvus6QQKAAB0juGMQdtJ95TEJuuvv36NgRKnZUWCdJ9pF4vEHXfcUfbdd9/yvve9r6ywwgp1lYOtt966xm7jx4+f6P5NfNkagw5EtjFL188111zlm9/8Zq/3vemmm+rle97znhqPtZPC0d12261ud3fpIJPPJp9RYlcAAICRHg/+/e9/LwceeGCN65KzW3XVVWuMltxb8mzd48am8UiT30qsduutt06wBH1WsEtHzcR9iRWTo0ujk2984xv19fprUuLB5BwTA37pS19qe/vdd99dLxdffPG2t6+00kplySWXrJMCE78CMHX6f2v7ADBqXX755fVynXXWKSNNkmwJyGaYYYayxBJLlP/85z/lb3/7WznppJNqIuvcc8+dYFnwFILuvffetftJs7Tf29/+9hp8pZgzS5GnSDBJuTxfupr8/ve/r/fN/ZIQm2eeeXrdphRm7rfffl3Jr3S3XHbZZcvDDz9cg9X8ZLnyZnny7o499ti6dHqWZEgw9vjjj5d77723/iTwak1OpjNmnusPf/hDnfWY+2c5viT8UpT5y1/+shx88MG1E8tgSGC7xx571KUf+iNFtClizbYleHz66adr58/s03TozPamOHPllVee4HF5Dylc7c0VV1xRL6effvr6WXWXADsJzxQGp2toPgMAAGDkG0kxaOK3rHCQJOBMM81U45qXXnqpTrDLT2KuxJ/NBLbmMYkJkwRMx5Uk7hKLNsm0LJmerpw9FVwOVCY2Zln3xFiHHHJImXfeeXu9//33318vmwl2iZ0TCzdLA66xxho1hszvPUlS8//+7//q+994440H5X0AAAAMRTyYGOyrX/1qzaklrku+LzFa4rP8XHLJJeW0004rCy64YL1/bk981RROJmeYZiVZLSESH6YZTVMEuvDCC9fHPPXUUzUvlp9f/OIXdfW85ZdfvkxJiVfzfk499dT672aZ957iuuRUE9elAQ0AUx9FnwCjWLqWNEFLZr2NNGeeeWbtcJkEV4KtJLtS6Pmtb32rFkJec801tUNJI7PeUvCZxNvRRx9dO5vE888/Xzt7XnXVVbWo8eqrr66BUH6amXUp0mzu35vDDjusFnwmQXbooYeWDTfcsGtfJrH3ne98pxaqZnn0FGx2l4LPT3/603U7EkTmcSkETUeYBLsJJJdbbrl63wRueZ8pesy+SBFrpNAy7zUBZS4322yz+lzdg+Z2Sz70Jh1WB6JZNmKOOeaoHT8/97nP1aXbG0kunnfeeXU/ZP9PM800/XreFMI2XUqzTU2g3SrFvplVee2115Ybb7xR0ScAAHSAkRSDZvJYVlDIxL4sg574MAnC+NOf/lQLO7OSQ7qAHnnkkfX6N954o8ajKfhMsWhWjMgkuLjnnnvqahAPPPBAjVsT2zWy8sGkFk/+8Ic/rCtgpKNMf56jidMSR2VSZFapaJW4ODFrVl/oqdNM89nks8pn1rxHAACAkRQPpqgz+b3EaOnsmc6YzQS8NFvJCg1//vOfy2c/+9ly4YUXljFjxpSvf/3rtZFL0+0zzVhaO2amQDTbmRxbcnfpmtnIZL881xNPPFFjqqxM2JfJiQcbmZSYWPShhx6qBatpipLOph/5yEd6fEz2ceLJZjUIAKY+lncHGMWSyEpBZAroll566V7vmyRTs/xATz8JkgZTCvlSRNkU/aVoMMFRZtRF6/LmKRRMwBYphGwt4Mzjk6RLceKjjz46yQHOY489Vgs7Ix02m4LPSBIs27bPPvvUf5944oltl6BPh8sURzZFmnlcgs4555yz/rvpPNokIeP9739/V8Fn5LEposzyDlmqorXQMpZaaqn6M/fcc5eh1Ly/zCzMEu5ZiiPJwwS96QqT5e5zbOW6BMn9keMxydZnnnmmFtYmCduT5jholpgHAABGtpEUg2aiWTrB7LDDDjUmawo+I91akrxLvJYOLn/5y1/q9VndIMm9SEKxtRgy3WFSKJqJiUnAtUps1sRpA5GuLElA5vEpPh1InJbOL5mwmAmHv/nNb8pdd91Vzj777BpnpzD0k5/8ZI272slnk/eWzyrFrAAAAFMyHuyvxG0p+Ey+LHm71hUX0mDl9NNPr7Fe4pp0vOyP5BCzjcl7tRZ8Rv693Xbb1d9TTNofkxoPdl/RITnDFHxGLrOdyY32lUPLxMQnn3xykl8bgJFLp0+AUaxJkKVYr7VTZDsJlJoAoSd9PcdAfeADH2jbHTKBUYKpBIeN66+/vnYCTXFku2UhUkCYgs0UfmZJ9kmRRFmCxzy+p1l5SRgmyMy2JUnZfRnzdt00m6XbUyz53HPPdV3fLGt+8cUXl7e+9a21yLQp5MyS9z/4wQ/KcMoSF81llrc455xz6v6N+eefvwbE6YST5RBPOeWUss0223QVt7aTBGoSjwm+87mnk2rr7Mrusk8iyxQCAAAj30iJQVPsmfgusnJCOykqTYFk4pOsMJCkZDq9JKb5z3/+Uz7/+c/XDqFZJi8JwaYQND+D1QUnXWoSb2ViY38n9TVxWuKrdLxpXYEiS7tnUl5iy3//+9/19xSqdpekaJY+fOSRR2q81T3RCQAAMJTxYH+k8LHpHLrTTju1vc+iiy5aJ+ZddtlldRXAj370o30+b1awy4oQPa1eN/PMM08Qe00JaQCTrp7JUf72t7+tqxLmPf3xj38sl156advcW/JriVWTp8u+n3feeafY9gIwZSj6BBjFkgSKdstnd5dOJ+kKMiWlcLCdpgNLkmCNf/zjH/Wyp+XpYnJm0TVdVprZgU1Sr11xaYoRU5T697//faKizwSz/X1PW221VS34TFeZb37zm3Xphrz2WmutVd73vveV1VdfvS5FMVyawLYJqJuCz1ZZ0jBdPhN8Z2nE1u6orfL55b4PPvhg3bd5rz3dt9Ect81xDAAAjGwjJQZN3JHCz0islUl1vS2V3sSCmbCXYs8sB5iJh/lJcm3NNdcsa6+9dp24mGLJwZBlBDMxcKONNuozNmoXp6XbaCYldpfC1axSkcl5SXq2K/qMxHcp+nzqqacm410AAAAMPB7sj0xQS3FmrLjiij3eL7elQDI5u/6afvrp62S/FFUmfsxr5TJLxjddM1NMOaW0NrNJAWiWbk8RaIo5f/SjH9WV97pLri2TKdNsRlwHMHVS9AkwiiVg6V68N5L0lHhrpLNno1niPEWXQ2X8+PH9Ckib5SPaLe+eQLG/7ynPc8EFF5QzzjijBqQpjMzyF/lJl8955pmnLkM4WJ1kBqq1yDPFqD0Vsy622GK1cLWnjpyZlZglB/MZZv8cccQRPXZSbdV81q3dUQEAgJFrpMSgratG3H333QO6f+KvdEw588wz63J6eU/jxo2rP+kEk5UnUkg6OcWfWbYvRZmJ+b7xjW8M6LFNvJouqT1NEnzb297W56oJzWck3gIAAEZiPNjk7PrK2/WWs+vpeQ855JDyi1/8oquoNJK/WmGFFWo+7P/+7//KcMpKEFtuuWX53ve+V1cd7En2dWI6cR3A1EnRJ8Ao1iyfMFyD/XR/HCxNkNjfoG1SzDrrrBMl/Npp9mdz/8mRYHTvvfeuPyn6zFIV+clShJmZlw4z6eCywQYblCltySWX7Pq96ZLTTrrh9FTEe/nll9clC/P4vI8TTzyxdjAdyAmCwVgGBAAAmPpj0EbrZMHf//73A47d0tkzP1nOL5PYbr/99pr0y1Lw1113Xfn0pz9dfvrTn/a4HGBffv3rX9fkYmK+rPTQk8RP+Vl44YXLNddc07XCxe9+97teY7SmGLS3iZbNZyTeAgAARmI82BrHJW+XSXO95ZL6G/d99rOfrXm4NDXJ6gnvfOc768S5TP5L4eeFF1445EWfKTxNF8/kzXqaULjQQgvVyyeeeKLH5xHXAUzd2q9NC8CoMO+889bLZ555Zkievyn26ynZ9Pjjjw/aay2xxBL18oEHHujxPscff3zZbbfdyk9+8pPJKnLM8g09LduQQCxLPEQCwMmRBF8SiM2SF3m+dJU56qijaiKxWa7iZz/7WRkOWar+LW95S/39jjvuaHufLFf/0EMP1d/T8bPVL3/5y7L//vvX42ORRRYp5513Xr8LPluP254CeQAAYHTFoP216KKLdsWrWZWgJ1le/f777++aXJjY5a9//WtX/JMk4Hvf+966RPqll15ajj766K5OnXncpEqctcoqq/T403Sqae7XupRhEpLx5z//uRalttMsV5/90JPmM2o+MwAAgJEUDybn1Exo620Fh+a2/uTsspx7Cj7j1FNPLQcccEDZaKONytJLL921kt9jjz1WhlpWx/voRz9aO3n25F//+ldXrq6dxIMvvfRS/V1cBzB1UvQJMIq99a1v7Zrp1Qz8B9P//M//TJBQapWk2c033zxor/X+97+/TDvttOWRRx5p+7wJbi6++OJyww03TLCEetN5pfW63l4jAWRmzaVDZTvnnHNO+e9//1s7j66xxhqT9Z5SoDp27Ni2RaqZkbjyyit3FVYOl4985CP1MjMbW5fSaGR5+hxbWVrjPe95T9f1SZKmw2eKZ7Ps4Pnnnz9B59D++Pe//10vB/o4AABg6oxB+ytFk0289qMf/ajtfbL0+fbbb18222yz8qtf/apelxUXNt544/KpT32q7eTG1phncuK0LNOXSXE9/Sy//PL1fltssUX9dyY4NrIKRLq4ZGWNxFndvfLKKzVOiw033LDt6yd+fvbZZ+vv4i0AAGAkxoNZweHd7353n3FdsypCcnyN5BMbrfnBdNdstE6ua2S709BkqHNza6+9dr1MLrJdZ9Rcd8kll9TfP/jBD7Z9jtbiVHEdwNRJ0SfAKLbccsvVoCiFd5m9NthWXXXVepllDsaNGzdBh88sV55OloMlHUqaAsQvfvGL5Q9/+MMESzfkuhQJZtm7JOm6L+vXzIjrTbqopNNmZFn1JvEX2YfnnntuOeGEE7qWf0ih4+TILL7Icn1JLrZKB9Cmw+c666wzwW3pPJOfpkPoUEphamYIZt/uvvvu5dFHH+26LQW2TaebJEWb5SMSCOfzyHKF6dJ5+umnl/nmm2/Ar51lGFuPMwAAYHTHoAOx11571W6fl112WTn00EO7unk2XTITwyRmSQzZxJpJEmZyYwoiM4mtKYyMTII7/PDDu2LHLP/XSGzWxGlDbY455iif+cxn6u/f/e536+THZqWKbGM61WSy5Pzzz1+22Wabts+RSXqJ2zKZMZ8ZAADASIwH99xzz9qsJfmo5O1am5NkBYZPfvKTdeLbsssuW/73f/93otxg9/xga3HkSSedVGPCRlaJyPM1q/31t3B1UuLBbbfdtubekt9M18/EcI2srpftSIOarIKY+/aWQ0uHU50+AaZO/6/fNQCjUpYiyCy4zHL73e9+V9Zaa61Bff7NN9+8dr78+9//XhNqWWohgVQCmyTXUiTY29IEA/WNb3yjFh3edtttNchJIJPXy+unU8lcc81VO6BkCb5GOqTcfvvt5Vvf+lbtkJJOLumq0pMvf/nLtcDx6quvLvvss09NlC244IJ1tmCzJMUOO+xQA67JtdNOO5WbbrqpFnzm+fJa+cnrNAHeuuuuW7baaqsJHtcUtSbYzX4fStmnWeIi25f9uN5665Wlllqq7u9//OMf9T6bbrpp+cQnPtH1mF//+tddQXGC8X333bfX10ig3nSyaSTQzlKL7YpeAQCA0RmDDkQmjx188MHlwAMPLGeddVbtiplYJsWfiWXS7SWJsR/84AdlhhlmqI/J5XHHHVcnv6XjSuLCxLnpEpOYMN01Uyh52GGHdT0mfvzjH9fJfDE5y77316c//emauMyKDF/96lfLMcccU+PWrMKRbUwcd+yxx5Y555yz7ePz2UQ+n9b3AQAAMJLiwXe9613lkEMOKV/72tdq/PPzn/+8xnWJe5IbjKw2l3isNbZJTJQJfsm1pagyxZ7J+WWiX5Zzv+KKK8oZZ5xRLr300rLIIovUCX9NF9B04bzxxhtr7Jgi06wk0ZtJiQczme+UU06pkxGT88yKDinwzOqFybGmcDadU0877bQJcp7t4rrWDqcATF10+gQY5ZpukunGOdiyBHmWjUvBXwowU5D55JNPlg9/+MN1yfI111xzUF8vgdWZZ55ZE3dJ4GX2XGbeJVG344471mCv+3IM3/nOd2qAluLDBIBNMWJPEhRmdl+SZu9973vrkn733ntvTextsskmdQmJFCk2y8ZPjhTG5rW+8pWv1MA1hZSZmZjZg3ntI488spx88sl124dT9mkSngk+k/DMPszswyyXeNRRR9Wf1qUyUhzaSAFtZhv29vP8889P9JoJcrM/0j2ne0EoAAAwOmPQgcry6FlBIR0vs/rAAw88UOPWJAkTxyaGbJYgbCSOveiii+r7yGMS/6TTygILLFDjzsRGzRKDwyXxV+LiTNDLJLl07Uz30iY2Tjze24oJzUoTzWcFAAAwUuPBdPBMXJeV+hLzJK5L85RVVlmlNovJ6gdZLbC7TOhL7i0FlE1cF8lpJZ56xzveUScDplAzucAso54YK8WgCy20UL1vs3T8UFhppZXKL37xi7LrrrvWwtNsX4pUV1hhhfKFL3yhFqS2e1+R95TC1BDXAUy9pnkz/1MBMGol+ZNZa+lkkmXtWpegg5EqMy5/9atf1eUTW5fkAAAARjYx6MiWiZOZ0JiJm+luk8mIAAAAg0E8OGVcf/31tVFLJi2mWQ0AUyedPgFGuWaZ9cjSBzDSpYNrllFMEvIjH/nIcG8OAAAwAGLQkS2rdcRnPvMZBZ8AAMCgEg9O2bhuzz33HO5NAWAIKfoEoGy22WZlySWXrEsBpKAORrIf/vCH5bXXXqvBqiQkAAB0HjHoyJTPIku/57MxwQ4AABgK4sGh9de//rVcd9115T3veU9ZY401hntzABhCij4BKGPGjCmHHXZYeemll8pJJ5003JsDPXrsscfKWWedVT74wQ/WEwMAAEDnEYOOTPksXnzxxfrZ5DMCAAAYbOLBoXXkkUeWmWaaqRx88MHDvSkADDFFnwBU73znO8snP/nJ2vL/wQcfHO7NgbaOOeaYMvPMM5dvf/vbw70pAADAZBCDjiz5DPJZfOpTn6qfDQAAwFARDw6NW265pVx77bXly1/+cllkkUWGe3MAGGLTvPnmm28O9YsAAAAAAAAAAAAAMHl0+gQAAAAAAAAAAADoAIo+AQAAAAAAAAAAADqAok8AAAAAAAAAAACADqDoEwAAAAAAAAAAAKADKPoEAAAAAAAAAAAA6ACKPgEAAAAAAAAAAAA6gKJPAAAAAAAAAAAAgA4wZrg3AJgCXn21lJtumvC697ynlBlmGK4tAgAAAABGKucTAQAAAEasad588803h3sjgCH2xBOlzD//hNc9/ngp8803XFsEAAAAAIxUzicCAAAAjFg6fcJoMOecpVx77cTXAQAAAAB053wiAAAAwIil0ycAAAAAAAAAAABAB5h2uDcAAAAAAAAAAAAAgL4p+gQAAAAAAAAAAADoAIo+AQAAAAAAAAAAADqAok8AAAAAAAAAAACADjBmuDcAmALeeKOUp56a8Lp55illWnXfAAAAAEA3zicCAAAAjFiKPmE0yAna+eef8LrHHy9lvvmGa4sAAAAAgJHK+UQAAACAEcu0XAAAAAAAAAAAAIAOoOgTAAAAAAAAAAAAoAMo+gQAAAAAAAAAAADoAIo+AQAAAAAAAAAAADqAok8AAAAAAAAAAACADqDoEwAAAAAAAAAAAKADKPoEAAAAAAAAAAAA6ACKPgEAAAAAAAAAAAA6gKJPAACYCpxwwgllmWWWqT9f/vKXe73v008/XVZYYYV63x133LFMLV544YVy9NFHlw033LC84x3vKKusskrZYYcdyq9//esBPc8NN9xQdtppp7Lmmmt2Pce4ceOGbLthauZvUyn//e9/y/e///2y0UYblRVXXLGsvvrq5VOf+lS54447+nzsv//973r/Y445ZrK24amnniprrbVWWXfddSfreQAAAAAAgOGn6BMAAKYyV199dXnttdd6vP1Xv/pVLUKamowfP75st9125dRTTy2zzDJL2X777Wvx53333Vf23HPPen1/XHDBBWW33XYrf/7zn2uB1sc+9rHyz3/+s+y1117luOOOG/L3AVOz0fi3KfbZZ59y1FFHlddff73+bfrABz5QbrrppjJ27NhaZN6T5557rnzmM5+pl5PrG9/4Ri2qBQAAAAAAOp+iTwAAmIrMN9985T//+U8tKOrJ5ZdfXmadddYyNTnttNPK/fffX7bddttyySWX1I6C3/nOd8ovf/nLuk9SsPmPf/yj1+dIQdTBBx9c7/+LX/yiHHTQQeVrX/taueyyy8qiiy5avve979UCUGDgRuvfphtvvLFcddVVtcNn/q585StfKUceeWQ5/fTTaxHoN7/5zbaPS+H5NttsU+65557J3oaf/vSndRsAAAAAAICpg6JPAACYiqS7ZVxxxRU9LhX8u9/9rqy33nplapL3O80005T999+/XjYWWGCB2gE0xVXXX399r89x7733lgUXXLAWjqZArTH77LPXJZHfeOONcueddw7p+4Cp1Wj929Qs4f7Rj360zDjjjF3Xv/vd7y5LLrlkeeihh+rS6410Oj300EO7ugyvvfbak/X6jz32WPn2t79tWXcAAAAAAJiKjBnuDQAAgCHxxBOT/tjZZitl5pnb3/bkk6W8+eakPe8ss5QyxF3slllmmVpIlGWUX3311TLDDDNMcHsKrlK8uMkmm5Sf/exnPXam+8EPflDuuuuu8sorr5TFF1+8/O///m/ZaaedyvTTTz/BfdM9M/e9+eaba9FWCi4XXnjhssEGG5Tdd9+9zDTTTBNsW5Y1/sIXvlCOPvrocvvtt9dtzPVZUv3DH/7wBM+94447lttuu62rAKo3O++8c3n++efLHHPMMdFtzT544YUXen2OFFf11A3vr3/9a71sLQaFSTYK/z6N1r9N//M//1MvH3nkkQmuz/M/88wzdbtTWN548cUXy1lnnVXe9a53lQMPPLAWo+d9T4o333yzdj0eM2ZM7Vx8zTXXTNLzAAAAAAAAI4uiTwAApk7zzz/pjz3xxFL22KP9bcst9/8KqybFgQeWctBBZahttNFG5aSTTqqFQh/84AcnuC3Lna+wwgpliSWWaPvYM844oxx++OG1UGn99dcvc801V32eI444oi7LfOqpp9YCorjvvvvK2LFja2e6dOdbaKGF6hLpKZw85ZRTyt///ve6rHr3QqwsWZxirS222KI8+eSTtdhr7733rtvc2uVv8803L2ussUZZLvu8D9mOnoqexo0bV39PAddAvPbaa7UL3w9/+MNyww031M58q6+++oCeA9oapX+fRuPfpnQ4PeGEE8q5555bll122brtzz33XPnud79bO3zuuuuuExTAphtoilXf+9731n+n6HNS/fjHP6775phjjinzzDPPJD8PAAAAAAAwsij6hNEgHa8uvHDi6wCAqdLGG29ci5R+9atfTVBYlaWCszx5utm1k0KpI488siy99NLl7LPPLnPPPXdX4eRXv/rVcskll9QOdJ/4xCfq9ccee2wZP358LYpMQWTjc5/7XC1sSrFlbp8tnQn/Pym2Spe8PF+zDPtaa61VvvKVr9QCpdbCqr466PVHCq3ynhdddNHyvve9b0CPTee/FH7FyiuvXPdp69LxwMCMxr9NKVI9//zzywEHHND109hvv/3Kpz/96Qnun6LPpuBzcjz44IO1sDRFp9nvKYAFgAFxPhEAAABgxJp2uDcAmAJmnLGUrbaa8CfXAQBTpRRGvf3tb+9aRrm1k16KmbJ8cjsXXHBBXV45hVFNUVXkMV/60pfKtNNOWy666KKu61MgleWNW4uqIh3l3va2t9XnevbZZyd6nc9+9rMTFE82xVQPP/xwGUyXX355OeSQQ2r3v8MOO2yi5Z97k21PcVi68K200krlj3/8Y+0C+Oijjw7qNsJoMhr/NuV9nnzyyeUPf/hD7WS688471yXpZ5111tqd9Kc//WkZbK+//notLp1lllnqEvEAMEmcTwQAAAAYsTqu02d/lmTMUmtJ6jaeeeaZ2k3k2muvLU888URd2i3Lte2yyy5dy78BAMDUJMsoZ/niLEu+7rrrdhVWrbLKKuUtb3lLXcq4u7vuuqteZjngP/3pTxPdniKldI974YUX6u9rr712vT7FU+nEl259WQ79nnvuqT+R4qpWWZK5tWgr5vj/Oga1FoENRofPgw8+uBZwZUno1VZbbUCPTxHZQf/fUtfpJnjUUUeV0047rXzzm98s3/ve9wZtO2G0GW1/m/L35yc/+UnZaaedatfQpqh0n332Kdtvv3358pe/XJZaaqlaXD5YTj/99FpkmmXlu78nAAAYDhmbZ9LTNddcUydTZkLWhz70oTrxqr9j1n/961/l+OOPLzfffHN9viWWWKKMHTu2bL311kO+/QAAACNNx1U87rnnnm2vTyI2y7klydPazeO5556rXT7+8pe/lA022KAstthi5cYbb6zLnCVxlAARAICp0OOPT/pjW5b8nci992bwOWnPO8ssZUrJcr4prLriiitqYdVf//rX8uc//7l84xvf6PExGTvHOeec0+tz534prHr88cfrZKsrr7yya+ng+eabrxZvLbDAArU7Xsbp3Zcu7q4pgup+30mRQq4jjjiinHnmmWWGGWaoxZqJAyZHtm/fffctF154Ybn++utrAVieGybZKP77NJr+NuXvUTqQzj777HXp+tYuopmMmr8r6VR68cUXD1rRZ4pcU+y56aabTvbfPgAAGAzPP/98nfCUsf9aa61Viz3/9re/lbPPPruO2RNrZwJYbx555JGy7bbb1iYviSnmnXfectVVV5Wvf/3r9bnS6R4AAGA06biiz7322qvt9WeccUYt+MySi1kqrZEOnw888EBd0ixBZey33341uZJgcty4cRIhAABTo/nmG5rnnXfe0gnS8WK55ZarXTRSpJhOetNNN13ZcMMNe3xMiqUik6SSQOlNiqA+9alPlXvvvbdst9125SMf+UhdunnOOeest6fTxmAv196XvM/999+/jvHTtS+xwEA6fP7973+vBVOrrrpqmX/++Se4LSsEJAn1n//8p/6kgAwm2Sj++zSa/jY99dRT5ZVXXqmv365QvFnJJAnswfLrX/+6vPbaa+Wyyy6rP93ltfK6Cy+8cP0MAABgqJ144om14DP5vdbGLpnUlRU60pzl0EMP7fU5cnsmd33/+98v66yzTr1u7733LjvvvHNtCJNJTyuuuOKQvxcAAICRYtoyFUhR59FHH10WXXTRujRa4+WXX+6aIZgZgI0klL74xS/W388///xh2WYAABhq6X4xfvz4uiRyuuqlo0aWUOtJCrHijjvumOi2FC595zvfqR00U1R1//3316Kq9773vXUZ9BRKNkVVKTjKUsuD1b2zP15//fW6XHIKPhdZZJFy3nnnDXhJ93Tky+Swn/3sZxPdlglmWXY6yz1bLhkmz2j525TXTbFnikzbLRGfQvPoXmQ+OdZYY42aSO/+k2UzI11H8+8sNw8AAFNCxsOZvLXbbrtNcP1HP/rRevmHP/yh18dn4lK6er7rXe/qKviMmWaaqTZ5ydj+ggsuGKKtBwAAGJmmiqLPzPBL8ibLOMw888xd1995553lxRdfrEmPaaed8K2mQDTJ4Ntvv70miAEAYGqz0UYb1cvvfe97dbmzFFr1Zsstt6yXWR49HTRaHXvsseWHP/xhTcZkieJmKeTcr1k+OTK2zvg83TCj9bahlG4f6VqXJZPPPffcsuSSSw74OTbbbLMaN2QVgccee6zr+sQaKR576aWX6j7KJDJg0o2Wv00p+MzKInnNLGnf6umnn+66Ln97Bsuaa65ZOyh1/9ljjz3q7Slcz78//vGPD9prAgBAb7IKR7r2t+bvIt0/o6+VNG677bZa2JnJYt1lktf0009fbrnllkHeagAAgJGt45Z37+7666+vweLaa689wQy/aDp4LLbYYm0fm8LPzDDMz+KLLz5FtheGxRNPpH3MhNclWWpZUgCYqmW8+453vKMWQzXFR71ZZZVVaje4k08+uWyyySZl3XXXrd33fve735U//vGPdTngprN+lmjO/X//+9/XgqwkX1Ic+X//9391HJ7HZWnjZ599dpK3/9JLL60dPdZbb72uTn/t5DVS9Bm5X7r9t5POn02S6NZbb62Jo9w/zx/LLrtsLYw64YQT6tJwKUxLAVnijRSmZTJZOoECk2e0/G2KbNfdd99dTj/99JqIzt+RFIFeffXVdRt23XXXtsnrodgWABgQ5xOBIZLxcMbGhx12WBkzZkxXV/qeNLm+dnm8FHxmtb+mu37iCwAAgNGg44s+kziJdkFhk8SZa6652j42y5rFc889V6Ymb7zxRv0ZKdItqXunVQAApox00LvrrrvK+973vq7xb2+yRHqKsc4+++xalJSkSbpnpjApS7FlSbZIR7106zj++OPLb37zm3LOOefU25Zaaqnyla98pY7Fv/jFL5Zrr712wMusN37yk5/UwswUdPVWzPTb3/62dviPbHN+2tl99927iqvyvCeeeGLZfPPNu4o+I8sep/jzrLPOKpdddlntDpgisi996Utlxx13rAklYPKNhr9Nkde++OKLy6mnnlp+/etf1+1PInr55ZcvO+ywQ9lwww0naRsmZVsAADo1xzBQchIj13nnnVdX0oisonHkkUf2OQnqmWeeqZdzzjln29sTT+R4HT9+fJl77rmHYKsBAABGnmnezJoIHepPf/pTTdImUfPjH/94otuTxE2XnoMPPrhsvfXWE92+//7710RuHjupyZ6RJoHt2J13KY8+8WQZKd4y37zlxz8800mW4WRmPgAAAADQX84njlo1x7Dr2PLYE4+VTrXgfAuWH5/xYzmJEejKK6+sk7+eeOKJMm7cuPLyyy/XXN0nPvGJXrvnp8P9GWecUVf9627bbbetqwhkZcAFF1ywTC1e/twRw70JAAAwYs109BfLaNfRnT4T5MXYsWPb3j7TTDPVyyzl1k46g8Sss85apqYTMin4/NTRZ5Zpp5tuuDenvPH66+X7n9ulbpcTLAAAAAAAMHLlXH4KPvf80Z5l2uk675z+G6+/UU7c6UQ5iRHqwx/+cP2Jvfbaq2yzzTa12+eaa65ZO/tPTq5vlllmGbLtBgAAGGk6uugzS7oliPvgBz/Y9vZmqYeelm9//vnn6+Vss81WpjYp+JxuTEd/vAAAAAAAwDBIwed0Y4a/sQRTr0UWWaR2+DzssMNqvq+nos/+5PqmmWaaqTLXBwAA0JOOneZ43333lX/961+14HPmmWdue58ll1yyXj700ENtb8/1KRpdaKGFhnRbAQAAAAAAYDRJF84bb7yx/OY3v2l7+6KLLlovn3766R6fo7dcX7p/Pvroo+Wtb32rzq4AAMCo0rER0O9///t6udpqq/V4nxVXXLEu3X7bbbfVpTxa/fOf/yyPPPJIWXnllct0I2AZdAAAAAAAAJiaij4/+clPls997nNdy7C3uueee+plijZ7ssYaa9ROnrfeeutEt/32t7+thZ+rrrrqIG85AADAyNaxRZ933313V2FnT2acccay6aablocffrj86Ec/6rr+9ddfL0cccUT9fezYsVNgawEAAAAAAGD0yJLrH/rQh+oS7CeeeOJEeb6zzjqrrsiXXF5PFlxwwbL22mvXBi9XXXVV1/Uvv/xyOfbYY+vvcn0AAMBoM6Z0qGYZhwUWWKDX++27777lhhtuKIceemi55ZZbytJLL11uuummOntwo402qsEmAAAAAAAAMLi++tWv1gLPU089tXbmfOc731n+9a9/lauvvrp28DzmmGPKfPPNV++bbp4p7lxuueXKeuut1/UcX/va18q2225b9t5775rbS24wj3/wwQfLbrvtVu8PAAAwmnRs0efTTz9dL2efffZe7zf33HOX888/vxx33HHluuuuqwWfiyyySPnCF75QdtpppxpQAgAAAAAAAIMrnTovueSScvLJJ9dCzTvuuKPMMccctahz9913L8suu2zXfVPwmY6gm2+++QRFn1n+/YILLqidPdPo5ZVXXilLLLFE+fa3v1223HLLYXpnAAAAw6djiz4vv/zyft93/vnnL4cccsiQbg8AAAAAAAAwcYOWdOvMT2/22muv+tNOijyb5dwBAABGu2mHewMAAAAAAAAAAAAA6JuiTwAAAAAAAAAAAIAOoOgTAAAAAAAAAAAAoAMo+gQAAAAAAAAAAADoAGOGewOAKWC22Uo58cSJrwMAAAAA6M75RAAAAIARS9EnjAYzz1zKHnsM91YAAAAAAJ3A+UQAAACAEcvy7gAAAAAAAAAAAAAdQNEnAAAAAAAAAAAAQAdQ9AkAAAAAAAAAAADQARR9AgAAAAAAAAAAAHQARZ8AAAAAAAAAAAAAHWDMcG8AMAU8+WQpyy034XX33lvKvPMO1xYBAAAAACOV84kAAAAAI5aiTxgN3nzz/52o7X4dAAAAAEB3zicCAAAAjFiWdwcAAAAAAAAAAADoAIo+AQAAAAAAAAAAADqAok8AAAAAAAAAAACADqDoEwAAAAAAAAAAAKADKPoEAAAAAAAAAAAA6ABjhnsDAAAAmLq88MIL5dRTTy3jxo0rjzzySJl++unL8ssvX3beeeey/vrrT3DfZ555ppx00knl2muvLU888URZaKGFyhZbbFF22WWXMmZM/0PW6667rr7mn//85zLddNOVVVddteyzzz5l2WWXHYJ3CAAAAAAAAMNDp08AAAAGzfjx48t2221XCzBnmWWWsv3225cNN9yw3HfffWXPPfes1zeee+65suOOO5ZzzjmnrLDCCmWnnXYqM888c/nud79bPve5z/X7NS+88MLy6U9/uvz73/8uW2+9dVlvvfXKTTfdVLbZZpty5513DtE7BQAAAAAAgClPp08AAAAGzWmnnVbuv//+su2225aDDjqoTDPNNPX6dN1MB8/jjjuuFoEuvvjitcPnAw88UA488MBaHBr77bdf2XfffcuVV15ZO4VusMEGvb7ek08+Wb797W+XJZZYolx88cVl9tlnr9en4HPs2LHla1/7WvnZz37WtR0AAAAAAADQyXT6BAAAYNBcccUVtcBy//33n6DQcoEFFqgdQF9//fVy/fXXl5dffrl26HzLW95SC0QbWZr9i1/8Yv39/PPP7/P1LrjggvLKK6+U3XbbravgM975zneWTTbZpBag/uEPfxj09wkAAAAAAADDQdEnAAAAg2bnnXeunTrnmGOOiW6bYYYZ6uULL7xQl11/8cUXyxprrFGmnXbC0HTRRRctiyyySLn99ttrkWhvbrnllnq51lprTXRbc11zHwAAAAAAAOh0lncHAABg0GRJ9XbefPPNulx7LLPMMuXBBx+svy+22GJt75/Cz4cffrj+ZCn4nuR5xowZUxZaaKGJbkvhaPztb3+bpPcCAAAAAAAAI41OnwAAAAy5c889t3b3TDHn+973vvLss8/W6+eaa66292+Wan/uued6fd48z2yzzVaXhe/pOZ5//vlBeAcAAAAAAAAw/BR9AgAAMKQuv/zycsghh9SOnIcddliZfvrpy6uvvjrBku/dNde/8sorvT73a6+9NtnPAQAAAAAAAJ3C8u4wGswySykHHjjxdQAAMAU6fB588MFlmmmmKYcffnhZbbXV6vUzzTRTV9FmO01R6Kyzztrr8+d5+nqOWYx9AQAGxvlEAAAAgBFL0SeMBkmUH3TQcG8FAACjyBtvvFGOOOKIcuaZZ9aOm0cddVTZYIMNum6fc845e12+vVmSPUu39ybP89RTT5U333yzFpa2e45mmXcAAPrJ+UQAAACAEcvy7gAAAAyqdNjcZ599asHnXHPNVS9bCz5jySWXrJcPPfRQ2+fI9enQudBCC/X6WnmedPp89NFHJ7rtn//8Z71caqmlJuPdAAAAAAAAwMih6BMAAIBB8/rrr9eCz3HjxpVFFlmknHfeeV1LurdaccUV69Ltt912W+0K2r1Y85FHHikrr7xymW666Xp9vTXWWKNe3nLLLRPddvPNN9fLVVdddTLfFQAAAAAAAIwMij4BAAAYNN///vfLNddcUzt0nnvuuV0dPbubccYZy6abbloefvjh8qMf/WiCotEsCx9jx47t8/U222yzunz8KaecUp555pmu6++4445y+eWXl+WWW07RJwAAAAAAAFONMcO9AQAAAEwdnn322Vr0GSm2vPDCC9veL50/11prrbLvvvuWG264oRx66KG1U+fSSy9dbrrppnLPPfeUjTbaqHzoQx+a4HFnnXVWef7558vmm29eu4jGwgsvXJ8nhaIpAN14443L+PHjy2WXXVamn3768q1vfWsKvHMAAAAAAACYMhR9AgAAMCh++9vflhdffLH+fvXVV9efdnbfffda9Dn33HOX888/vxx33HHluuuuqwWfKeb8whe+UHbaaacyzTTTTPC4dATNsu9Z0r0p+ozddtutLLDAAuXMM8+sy8nPNtts5T3veU9dZn7ZZZcd4ncNAAAAAAAAU46iTxgNnn66lPe9b8Lr/u//Spl77uHaIgAApkLrrbdeuf/++wf0mPnnn78ccsgh/bpvlo3vSZaKzw8AAIPA+UQAAACAEUvRJ4wGr79eyp/+NPF1AAAAAADdOZ8IAAAAMGJNO9wbAAAAAAAAAAAAAEDfFH0CAAAAAAAAAAAAdABFnwAAAAAAAAAAAAAdQNEnAAAAAAAAAAAAQAdQ9AkAAAAAAAAAAADQARR9AgAAAAAAAAAAAHQARZ8AAAAAAAAAAAAAHUDRJwAAAAAAAAAAAEAHUPQJAAAAAAAAAAAA0AEUfQIAAAAAAAAAAAB0AEWfAAAAAAAAAAAAAB1A0ScAAAAAAAAAAABAB1D0CQAAAAAAAAAAANABxgz3BgBTwEwzlfLZz058HQAAAABAd84nAgAAAIxYij5hNJh99lJOOmm4twIAAAAA6ATOJwIAAACMWJZ3BwAAAAAAAAAAAOgAij4BAAAAAAAAAAAAOoCiTwAAAAAAAAAAAIAOoOgTAAAAAAAAAAAAoAMo+gQAAAAAAAAAAADoAGOGewOAKeDZZ0v53/+d8Lqf/rSUueYari0CAAAAAEYq5xMBAAAARixFnzAavPZaKddfP/F1AAAAAADdOZ8IAAAAMGJZ3h0AAAAAAAAAAACgAyj6BAAAAAAAAAAAAOgAij4BAAAAAAAAAAAAOoCiTwAAAAAAAAAAAIAOoOgTAAAAAAAAAAAAoAMo+gQAAAAAAAAAAADoAIo+AQAAAAAAAAAAADqAok8AAAAAAAAAAACADqDoEwAAAAAAAAAAAKADKPoEAAAAAAAAAAAA6ACKPgEAAAAAAAAAAAA6gKJPAAAAAAAAAAAAgA6g6BMAAAAAAAAAAACgA4wZ7g0ApoAZZihlyy0nvg4AAAAAoDvnEwEAAABGLEWfMBrMOWcpF1003FsBAAAAAHQC5xMBAAAARizLuwMAAAAAAAAAAAB0AEWfAAAAAAAAAAAAAB1A0ScAAAAAAAAAAABAB1D0CQAAAAAAAAAAANABFH0CAAAAAAAAAAAAdIAxw70BwBTwn/+U8olPTHjd6aeXMuecw7VFAAAAAMBI5XwiAAAAwIil6BNGg1dfLeXiiye87uSTh2trAAAAAICRzPlEAAAAgBHL8u4AAAAAAAAAAAAAHUDRJwAAAAAAAAAAAEAHUPQJAAAAAAAAAAAA0AEUfQIAAAAAAAAAAAB0AEWfAAAAAAAAAAAAAB1gTOlg119/fTnzzDPLXXfdVaaZZpqy1FJLlZ133rlsvPHGE9zvmWeeKSeddFK59tpryxNPPFEWWmihssUWW5RddtmljBnT0bsAAAAAAAAAAAAAGCU6tuLxrLPOKoceemiZZ555ykc/+tHyxhtvlCuvvLLst99+5bHHHiu77rprvd9zzz1Xdtxxx/KXv/ylbLDBBmWxxRYrN954Y/nud79bi0WPP/744X4rAAAAAAAAAAAAAFNn0ef9999fjjzyyNrZ8+yzz66Fn7HnnnvWAtCjjz66bLXVVmX22WevHT4feOCBcuCBB5btt9++3i+Fofvuu28tEh03blwtBgUAAAAAAAAAAAAYyaYtHSiFnv/973/LN7/5za6Cz5h33nlrQefHPvax8uSTT5aXX365XHjhheUtb3lL2XbbbbvuN91005UvfvGL9ffzzz9/WN4DAAAAAAAAAAAAwFTf6fO6664r8803X1l99dUnum3LLbesP3HbbbeVF198say//vpl2mknrG9ddNFFyyKLLFJuv/328vrrr9dCUAAAAAAAAAAAAICRquM6fT799NPliSeeKG9/+9vL448/Xr761a+Wtddeu6y00kq12POqq67quu+DDz5YLxdbbLG2z5XCz1dffbU8/PDDU2z7AQAAAAAAAAAAAEZF0WcKPWP8+PF1Gfdbb721bLjhhmWjjTYqf/3rX8see+xRl3+PZ599tl7ONddcbZ9r9tlnr5fPPffcFNt+AAAAAAAAAAAAgFGxvPsLL7xQL++4447y7ne/u5xyyilllllmqdd96lOfKltttVU5/PDDy7rrrlu7eMYMM8zQ9rma61955ZUptv0AAAAAAAAAAAAAo6Loc7rppuv6/etf/3pXwWcstdRSZccddyzf+973ypVXXllmmmmmev1rr73W9rmaotBZZ511yLcbhtX005eyzjoTXwcAAAAA0J3ziQAAAAAjVscVfTZLsqfYM0We3S2//PL18h//+EdZccUVe12+/fnnn6+Xs8022xBuMYwAc81VynXXDfdWAAAAAACdwPlEAAAAgBFr2tJhFl100TJmzJjy3//+t7z55psT3d509Zx55pnLkksuWX9/6KGH2j5Xrk/x6EILLTTEWw0AAAAAAAAAAAAwyoo+Z5hhhrLyyivXpdlvv/32iW6/66676uWyyy5bO31m6fbbbrutvPHGGxPc75///Gd55JFH6nO1LhkPAAAAAAAAAAAAMBJ1XNFnbL/99vXysMMO61qiPe67775y/vnnl7nmmqust956ZcYZZyybbrppefjhh8uPfvSjrvu9/vrr5Ygjjqi/jx07dhjeAQAAAAAAAAAAAMDAjCkdaJNNNik33HBDufTSS+vvG2ywQRk/fnz51a9+VQs6DznkkDLbbLPV++677771voceemi55ZZbytJLL11uuummcs8995SNNtqofOhDHxrutwMAAAAAAAAAAAAwdRZ9xne+852y2mqrlfPOO69cfPHFddn31VdfvXzmM58pq6yyStf95p577tr987jjjivXXXddLfhcZJFFyhe+8IWy0047lWmmmWZY3wcAAAAAAAAAAADAVF30mWLNLbbYov70Zf7556/dP2HUev75Ug44YMLrDjuslNlnH64tAgAAAABGKucTAQAAAEasji36BAbg5ZdLOfnkCa876CAnaQEAAACAiTmfCAAAADBiKfoEAABgSO27777l97//ffnNb37Tdd2tt95adtpppz4fe+ihh5aPfexjvd7nr3/9a9l44417vP24444rG2644QC3GgAAgMHwwgsvlFNPPbWMGzeuPPLII2X66acvyy+/fNl5553L+uuv36/nWHvttcuTTz7Z9raxY8eWb3zjG4O81QAAACOXok8AAACGzIknnliuuOKKssACC0xw/cILL1z23HPPto959tlnyznnnFNmmWWWstJKK/X5Gvfdd1+9TLJwmWWWmej2pZdeepK3HwAAgEk3fvz4sv3225f777+/rLDCCvX3559/vhaAJib83Oc+Vz796U/3+hxPPPFELfhMoei666470e39iRsBAACmJoo+AQAAGHSvvPJKOfjgg8tFF13U9vZFFlmk7LXXXm1v23333evlt7/97X4VbN577731crfddivvete7Jmu7AQAAGDynnXZaLfjcdttty0EHHVSmmWaaev0+++xTtthii66VGRZffPE+Y77cr68CUQAAgNFg2uHeAAAAAKYu11xzTdloo41qwec666wzoMfmMddee23ZZJNN6k9/pNNnEodvf/vbJ3GLAQAAGApZ+SHx2v77799V8BlZDWK77bYrr7/+ern++uv7tbrDsssuO+TbCwAA0Al0+gQAAGBQXXzxxeWFF14oBx54YE3i9TcxlyX+jj766DLbbLOVr3zlK/1+vSQAF1tssTLrrLNOxlYDAAAw2Hbeeeca680xxxwT3TbDDDPUy8SPvVH0CQAAMCFFnwAAAAx6Uu+II46oxZsD8b3vfa88/fTTZb/99ivzzjtvvx7z1FNPlSeeeKKsuuqq5bDDDitXX311eeyxx8pCCy1UNttss/LJT36yK5EIAADAlDV27Ni217/55ptl3Lhx9fdlllmm1+fI8u6zzDJLufLKK8sll1xS/vGPf9R48wMf+EDZe++9y/zzzz8k2w4AADBSWd4dAACAQbXmmmsOuOBz/Pjx5bzzzqvdX3bYYYd+Py7Jv/jd735XlwT80Ic+VDbffPPy6quvluOPP77stttu9XcAAABGjnPPPbfceeedZdFFFy3ve9/7erzfyy+/XIs8X3zxxXLyySeXd77znWXrrbeuy8NfdNFFZYsttigPP/zwFN12AACA4abTJwAAACNmSfjPfvazAyoYTbHoEkssUdZaa63y9a9/vUw33XT1+iQE99hjj3LTTTeV008/vT4vAAAAw+/yyy8vhxxySBkzZkxdsWH66afv8b5Z2WHppZeuEwRPPPHEMtdcc3V1Cj3mmGPKqaeeWr72ta+Vs846awq+AwAAgOGl0ycAAADDLkv0TTvttGXbbbcd0OM23HDDusTfQQcd1FXwGVn678ADD6y//+xnPxv07QUAAGDSOnzuv//+9ffDDz+8rLbaar3eP51Af/7zn5dzzjmnq+Azpplmmrq0+0ILLVRuvvnm8vjjjw/5tgMAAIwUij4BAAAYVv/85z/Ln//857L66qvXJfoGSzqAphtMnh8AAIDh88Ybb9Sunt/85jdrh89jjz22bLrpppP1nHme5Zdfvv7+0EMPDdKWAgAAjHyWdwcAAGBYXXPNNfVy4403HvBj//a3v5V///vf5Z3vfGft7tk9qfjKK6+UGWeccdC2FQAAgIF59dVXa3fPcePG1W6dJ510Up8dPhuJ91LQucgii5S3vOUtE93+0ksv1cuZZppp0LcbAABgpNLpEwAAgGH1hz/8oV6m0+dAHXrooeXjH/94+c1vfjPRbXfeeWct+lxppZUGZTsBAAAYmNdff73ss88+teAzhZvnnXdevws+I0u777DDDuW0006b6LYXXnih3HPPPWXmmWcub3vb2wZ5ywEAAEYuRZ8AAAAMq7vvvrt26XzrW9864Mdusskm9fKEE04o48eP77r+mWeeKd/61rfq7zvvvPMgbi0AAAD99f3vf7+u7rDQQguVc889tyy55JIDevyHP/zhuoz7pZdeWu6///6u6//73/+W73znO+XZZ58t2267rRUeAACAUcXy7jAaTDddKcsvP/F1AAAwArq+PPzww2WxxRYr007b+7zEJPkeeeSRst5665XllluuXrfZZpvVjjFXX3112Wijjcr6669flw687rrryhNPPFF22WWXsu66606hdwMAMJVwPhEYBCnITNFnJIa78MIL294vnT/XWmutcuutt5bbbrut3jdxXyRWzNLwhx9+eNl6663LhhtuWOaYY45yyy23lD//+c9l1VVXrZ1EAQAARhNFnzAazD13KffcM9xbAQAAbZOAb775Zpl99tn7vO9PfvKTmgBceOGFu4o+UyiaLp8//vGPa1HoRRddVLvA5PavfOUrZeONN54C7wIAYCrjfCIwCH7729+WF198sf6eiXr5aWf33XevRZ+J90488cSy+eabdxV9xq677lqWWmqpcsYZZ5Rf//rX5bXXXiuLL754LQb9+Mc/XmaYYYYp9p4AAABGAkWfAAAADKnWJfi6m2eeeXq9vdXZZ5/d9vrpppuu7LTTTvUHAACAkSGFm/2N92KvvfaqP+2ss8469QcAAIBSel87DwAAAAAAAAAAAIARQdEnAAAAAAAAAAAAQAdQ9AkAAAAAAAAAAADQARR9AgAAAAAAAAAAAHSAMcO9AcAU8MILpRx55ITXfeELpcw663BtEQAAAAAwUjmfCAAAADBiKfqE0eDFF0v55jcnvG6PPZykBQAAAAAm5nwiAAAAwIhleXcAAAAAAAAAAACADqDoEwAAAAAAAAAAAKADKPoEAAAAAAAAAAAA6ACKPgEAAAAAAAAAAAA6gKJPAAAAAAAAAAAAgA6g6BMAAAAAAAAAAACgAyj6BAAAAAAAAAAAAOgAij4BAAAAAAAAAAAAOoCiTwAAAAAAAAAAAIAOoOgTAAAAAAAAAAAAoAMo+gQAAAAAAAAAAADoAIo+AQAAAAAAAAAAADqAok8AAAAAAAAAAACADjBmuDcAmAKmmaaUeeed+DoAAAAAgO6cTwQAAAAYsRR9wmiQE7RPPDHcWwEAAAAAdALnEwEAAABGLMu7AwAAAAAAAAAAAHQARZ8AAAAAAAAAAAAAHUDRJwAAAAAAAAAAAEAHUPQJAAAAAAAAAAAA0AEUfQIAAAAAAAAAAAB0gDHDvQHAFPDSS6WcccaE1+26aykzzzxcWwQAAAAAjFTOJwIAAACMWIo+YTQYP76UPfec8Lqtt3aSFgAAAACYmPOJAAAAACOW5d0BAAAAAAAAAAAAOoCiTwAAAAAAAAAAAIAOoOgTAAAAAAAAAAAAoAMo+gQAAAAAAAAAAADoAIo+AQAAAAAAAAAAADqAok8AAAAAAAAAAACADqDoEwAAAAAAAAAAAKADKPoEAAAAAAAAAAAA6ACKPgEAAAAAAAAAAAA6gKJPAAAAAAAAAAAAgA6g6BMAAAAAAAAAAACgAyj6BAAAAAAAAAAAAOgAij4BAAAAAAAAAAAAOoCiTwAAAAAAAAAAAIAOMGa4NwCYAuabr5Q33xzurQAAAAAAOoHziQAAAAAjlk6fAAAAAAAAAAAAAB1A0ScAAAAAAAAAAABAB1D0CQAAAAAAAAAAANABFH0CAAAAAAAAAAAAdABFnwAAAAAAAAAAAAAdYMxwbwAwBbzySik///mE1222WSkzzjhcWwQAAAAAjFTOJwIAAACMWIo+YTR47rlStt56wusef7yU+eYbri0CAAAAAEYq5xMBAAAARizLuwMAAAAAAAAAAAB0AEWfAAAAAAAAAAAAAB1A0ScAAAAAAAAAAABAB1D0CQAAAAAAAAAAANABFH0CAAAAAAAAAAAAdABFnwAAAAAAAAAAAAAdQNEnAAAAAAAAAAAAQAdQ9AkAAAAAAAAAAADQARR9AgAAAAAAAAAAAHQARZ8AAAAAAAAAAAAAHUDRJwAAAAAAAAAAAEAHUPQJAAAAAAAAAAAA0AEUfQIAAAAAAAAAAAB0AEWfAAAAAAAAAAAAAB1gzHBvADAFzDNPKY8/PvF1AAAAAADdOZ8IAAAAMGIp+oTRYNppS5lvvuHeCgAAAACgEzifCAAAADBiWd4dAAAAAAAAAAAAoAN0bKfP8847rxx00EE93n7zzTeXueeeu/7+zDPPlJNOOqlce+215YknnigLLbRQ2WKLLcouu+xSxozp2F0AAADQEfbdd9/y+9//vvzmN7+Z6Lb99tuvXH755W0f97a3va1cdtll/XqNPP+JJ55Y7rnnnvLaa6+Vd7zjHWWPPfYoa6yxxmRvPwAAAAAAAIwUHVvxeO+999bLj3/842W22Wab6PaZZ565Xj733HNlxx13LH/5y1/KBhtsUBZbbLFy4403lu9+97vlrrvuKscff/wU33YAAIDRIoWYV1xxRVlggQV6jO3mnHPOGrd110zk68v1119fPvvZz5Y55pijfOQjHymvv/56LRbdeeedywknnFDWW2+9yX4fAAAAAAAAMBJ0bNHnfffdV2aaaabypS99qUw7bc+r1KfD5wMPPFAOPPDAsv3223d1kkmnmSuvvLKMGzeuFoMCAAAweF555ZVy8MEHl4suuqjH+7z00kvlH//4R3nPe95T9tprr0l6nVdffbV89atfrZMBL7300vKWt7ylXp+VHbbaaqu6QsTaa6/dNTEQAAAAAAAAOlnP1ZIj2BtvvFH+/Oc/16X+eiv4fPnll8uFF15Yk37bbrtt1/XTTTdd+eIXv1h/P//886fINsOwevXVUq67bsKfXAcAAEPgmmuuKRtttFEt+FxnnXV6vF/iusR3yyyzzCS/VpaGf+KJJ2rM1xR8RlZ5GDt2bL3tqquumuTnBwAYlZxPBAAAABixOrLo88EHH6wdYZZddtle73fnnXeWF198sayxxhoTFYcuuuiiZZFFFim33357XfoPpmr/+U8pH/zghD+5DgAAhsDFF19cXnjhhbriwqmnntrj/bK0e/QV2/Xm1ltvrZfvfve7J7ptrbXWqpe33HLLJD8/AMCo5HwiAAAAwIg1bacu7R7TTDNNXar9fe97X1lppZXKlltuWS677LIJikObDi/tpPAzSwE+/PDDU2jLAQAApn4777xzufrqq8v2229f47a+ij7/9a9/lR133LGsvvrqZbXVViuf/vSn6yS+/vj73/9eLxdffPG2MV/87W9/m8R3AgAAAAAAACNLRxd9Zun2p556qmy22WZl/fXXL3/961/L/vvvX44++uh6+7PPPlsv55prrrbPM/vss9fL5557boptOwAAwNRuzTXXLLPNNluf97v//vvr5UknnVTmmWeestVWW5VVVlmlXH/99bVg9Nprr+3zOZq4b84555zotmYbnn/++Ul4FwAAAAAAADDyjCkd6M033ywLL7xw2Wuvvcrmm2/edf0///nPst1229XlA9///vfXLp4xwwwztH2e5vpXXnllCm05AAAAjZlmmql26Dz++OMnWOI9RZ+77757OeCAA2rH0N4KSF977bUe4z4xHwAAAAAAAFObjuz0mW6e11xzzQQFn83SfXvvvXf9/ec//3lNILYmAbtrikJnnXXWId9mAAAAJnTWWWeVcePGTVDwGeuss07ZeOONaxfP6667rtfn6C3ua2K+WWaZZVC3GwAAAAAAAIZLRxZ99mallVaqlw899FDX8n49Ld/eLPHXn2UHAQAAGJ7YrjdN3NduCffx48fXy9lnn31IthEAAAAAAACmtI4r+nzjjTfK3XffXW677ba2t7/44otd3V6WXHLJXpOEuT4dXxZaaKEh3GIAAADaFWT+8Y9/LPfdd1/b21966aUJOnn2pLe4r7luqaWWGoQtBgAAAAAAgOHXcUWfseOOO5addtqpPPXUUxPd9tvf/rZevuMd7ygrrrhiXbo9BaIpFm31z3/+szzyyCNl5ZVXLtNNN90U23YAAABK+dvf/la22Wab8vnPf77t7bfffvsEHT97ssYaa9TLW265ZaLbbr755nq56qqrDsIWAwAAAAAAwPDruKLPaaedtmy44YblzTffLEceeeQExZzpEHPqqafW7p1bbrllmXHGGcumm25aHn744fKjH/2o636vv/56OeKII+rvY8eOHZb3AQAAMJplkt5iiy1WHnjggXLxxRdPcNull15abrjhhrLCCiv0WbD5oQ99qMw111zlnHPOqZP7Wrt8nnvuuWW++eYrH/7wh4fsfQAAAAAAAMCUNKZ0oHSC+d3vfld+8pOflPvvv7+sueaa5d///ne56qqrahHoMcccUxZYYIF633333bcmCw899NDa+WXppZcuN910U7nnnnvKRhttVBOEAAAATPkJfYnTPvGJT5SvfvWrZdy4cXUZ9kzmS8yWYs2jjjqqTDPNNBMUg2bFhvXWW68st9xy9bqs7nDggQeW/fffv2yxxRZlk002qdf/8pe/rEvIn3DCCXVCIAAAAAAAAEwNOrLoc5555ikXXXRROeWUU8qvf/3r2tElib511lmn7L777rVjTGPuuecu559/fjnuuOPKddddV5OHiyyySPnCF75Ql4hvTSACAAAw5ay22mrlkksuKSeddFKdpJd4bd555y3bbbdd2WOPPWrhZ6tM/LvtttvKwgsv3FX0GRtvvHGZc845a4z405/+tEw//fT19jxHs/w7AAAAAAAATA06sugzktA74IAD6k9f5p9//nLIIYdMke0CAABgQlmhoSfp7nn00Uf363nOPvvsHm9be+216w8AAAAAAABMzaYd7g0AAAAAAAAAAAAAoG+KPgEAAAAAAAAAAAA6gKJPAAAAAAAAAAAAgA4wZrg3AJgC/ud/Srn77omvAwAAAADozvlEAAAAgBFL0SeMBmPGlLLCCsO9FQAAAABAJ3A+EQAAAGDEsrw7AAAAAAAAAAAAQAdQ9AkAAAAAAAAAAADQARR9AgAAAAAAAAAAAHQARZ8AAAAAAAAAAAAAHWDMcG8AMAX897+l3H//hNcts0wpY/wJAAAAAAC6cT4RAAAAYMRyhgZGg2eeKWXFFSe87vHHS5lvvuHaIgAAAABgpHI+EQAAAGDEsrw7AAAAAAAAAAAAQAdQ9AkAAAAAAAAAAADQARR9AgAAAAAAAAAAAHQARZ8AAAAAAAAAAAAAHUDRJwAAAAAAAAAAAEAHUPQJAAAAAAAAAAAA0AHGDPcGAAAAAAAAAFOnF154oZx66qll3Lhx5ZFHHinTTz99WX755cvOO+9c1l9//X49x7/+9a9y/PHHl5tvvrk8++yzZYkllihjx44tW2+99ZBvPwAAwEij0ycAAAAAAAAw6MaPH1+22267WvQ5yyyzlO23375suOGG5b777it77rlnvb4vKRTdZpttymWXXVbWXHPNWuz50ksvla9//evlsMMOmyLvAwAAYCTR6RMAAAAAAAAYdKeddlq5//77y7bbblsOOuigMs0009Tr99lnn7LFFluU4447rhaBLr744j0+x6GHHloef/zx8v3vf7+ss8469bq99967dgo966yzyqabblpWXHHFKfaeAAAAhptOnwAAAAAAAMCgu+KKK2qh5/77799V8BkLLLBA7QD6+uuvl+uvv77XLp9XXXVVede73tVV8BkzzTRT2W+//cqbb75ZLrjggiF/HwAAACOJTp8AAAAAAADAoEs3zueff77MMcccE902wwwz1MsXXnihx8ffdttttbBzrbXWmui2VVddtUw//fTllltuGeStBgAAGNkUfQIAAAAAAACDbuzYsW2vTyHnuHHj6u/LLLNMj49/8MEH62W75d9T8PmWt7ylPPzww+XVV1/tKiIFAACY2lneHQAAAAAAAJhizj333HLnnXeWRRddtLzvfe/r8X7PPPNMvZxzzjnb3j777LOXN954o4wfP37IthUAAGCkUfQJAAAAAAAATBGXX355OeSQQ8qYMWPKYYcdVjt29uS1116rlz118WyuT6dPAACA0cLy7jAaZAbstddOfB0AAAAAQHfOJwJD2OHz4IMPLtNMM005/PDDy2qrrdbr/WeaaaYJij+7a4o9Z5llliHYWgAAgJFJ0SeMBpnp+oEPDPdWAAAAAACdwPlEYJBlCfYjjjiinHnmmbU751FHHVU22GCDPh/XLOv+3HPPtb39+eefrwWks80226BvMwAAwEil6BMAAAAAAAAYEunGuf/++5dx48aVueaaq5x00kl9dvhsLLnkkvXyoYcemui2dP989NFHy1vf+tYy7bTTDvp2AwAAjFQiIAAAAAAAAGDQvf7662WfffapBZ+LLLJIOe+88/pd8BlrrLFG7eR56623TnTbb3/721r4ueqqqw7yVgMAAIxsij4BAAAAAACAQff973+/XHPNNWWhhRYq5557blfnzv5acMEFy9prr11uu+22ctVVV3Vd//LLL5djjz22/j527NhB324AAICRzPLuAAAAAAAAwKB69tlna9FnLLfccuXCCy9se790/lxrrbVqN88Ud+a+6623XtftX/va18q2225b9t5777LRRhuVBRZYoFx99dXlwQcfLLvttlu9PwAAwGii6BNGgzfeKOWppya8bp55SplWs18AAAAAoBvnE4FBkOXXX3zxxfp7ijTz087uu+9eiz5T8HniiSeWzTfffIKiz7e+9a3lggsuqJ09b7jhhvLKK6+UJZZYonz7298uW2655RR7PwAAACOFok8YDXKCdv75J7zu8cdLmW++4doiAAAAAGCkcj4RGAQp3Lz//vv7ff+99tqr/rSTIs9mOXcAAIDRzrRcAAAAAAAAAAAAgA6g6BMAAAAAAAAAAACgA1jeHeD/x959QGlVnfvjf6Yw9BIEkWoUjGAMFhQLUYxYsMReUFTExHJVFOwpClGxJdaAEStiQzFYkquRCIoV0ZjEBthiqAIWpNeZ/zrn/uHnwAxFZ+Z935nPZ62zzsze57zneWcR793nfM/eAQAAAAAANcuqVavSraioKP194cKFMXLkyJg1a1Z07tw5Dj300CgoKMh0mQAAAKzFTJ8AAAAAAABQg9x7772x2267xbhx49Lfly9fHieccELceOON8dBDD8Vll10Wp59+ehoKBQAAILsIfQIAAAAAAEAN8fzzz8cNN9yQzuy5YMGCtO3JJ5+Mjz76KJo3bx7nnntubLvttvH666+nM38CAACQXYQ+AQAAAAAAoIZ49NFHIz8/P+6555449thj07Znn3028vLy4oorrkhDnw8++GA0bNgwnn766UyXCwAAwFqEPgEAAAAAAKCGeO+992LnnXeObt26pb8vWbIk3nzzzSgqKoq99947bWvQoEHsuOOO8cknn2S4WgAAANYm9AkAAAAAAAA1RLKse7Nmzdb8PnHixFi5cmV07tw5DX6ulvy8bNmyDFUJAABAeYQ+AQAAAAAAoIbYYostYsaMGWt+f+mll9Kl3ffcc881bcXFxTFp0qRo3rx5hqoEAACgPEKfAAAAAAAAUEN06tQpXeJ91KhRMWHChHjqqafS9h49eqT7FStWxO9///uYOXNmdO3aNcPVAgAAsLbCdVoAAAAAAACAaumMM86IF154Ia644or095KSkthnn33iRz/60Zrw59y5c6Nhw4bpsQAAAGQXM30CAAAAAABADbH99tvHvffeG7vvvntsvfXWceKJJ8aNN964pr9ly5ax6667xiOPPJL2AwAAkF3M9AkAAAAAAAA1SBLqvO+++8rsGzFiRNSuXbvKawIAAGDjCH0CAAAAAABADbVs2bKYM2dO1KpVK7bYYot0DwAAQPYS+oSaoFGjiMceW7cNAAAAAGBt7idCjfDiiy/GXXfdFf/+979j1apVcdhhh8X1118f55xzTrRo0SIuueSSqFevXqbLBAAAYC1Cn1ATJMuwHHtspqsAAAAAAHKB+4lQ7d12223xpz/9KUpKSiI/Pz/dJ1vi448/TgOhkydPTpd6LyoqynS5AAAAfEv+t38BAAAAAAAAqq/x48fH7bffHptvvnnccsst8eabb5bqv+mmm6JDhw7pDKCjRo3KWJ0AAACUTegTAAAAAAAAaohk9s5atWrFvffeGz179oz69euX6v/JT34S99xzTzrD51NPPZWxOgEAACib0CcAAAAAAADUEO+++2506dIl2rdvX+4xySygu+yyS0ydOrVKawMAAGDDhD4BAAAAAACghli6dOk6s3uWJZkNdMmSJVVSEwAAABtP6BMAAAAAAABqiFatWsUHH3wQxcXF5R6zcuXK9JiWLVtWaW0AAABsmNAn1ARz50bk5ZXekjYAAAAAgLW5nwjV2r777huff/553HbbbeUeM3To0Jg7d27ss88+VVobAAAAG1a4EccAAAAAAAAA1cAvf/nL+Otf/xrDhg2Lt956K3bfffe0fdasWTFq1KgYO3ZsjB8/Ppo0aRK/+MUvMl0uAAAAaxH6BAAAAAAAgBqiadOmce+990a/fv3S0Oc//vGPtD35OdlKSkrSZd2TmUCbN2+e6XIBAABYi9AnAAAAAAAA1CAdOnRIZ/v8+9//Hq+//no6y2dxcXEa8txtt93i4IMPjqKiokyXCQAAQBmEPgEAAAAAAKCGKSgoiJ49e6YbAAAAuSM/0wUAAAAAAAAAAAAAsGFm+gQAAAAAAIAa4pRTTtnoY/Py8uL++++v1HoAAADYNEKfAAAAAAAAUENMnDhxo8KeJSUl6R4AAIDsIvQJAAAAAAAANcSQIUPKbC8uLo5vvvkm3n777fjLX/4Shx9+eAwYMKDK6wMAAGD9hD4BAAAAAACghthvv/3W23/sscdGjx49ol+/frHnnnvGIYccUmW1AQAAsGH5G3EMAAAAAAAAUIOCoZ06dYrhw4dnuhQAAADWIvQJAAAAAAAAlNKmTZv4+OOPM10GAAAAaxH6BAAAAAAAANZYtWpVvP/++1FUVJTpUgAAAFhL4doNAAAAUJH69+8fb7/9drz00kvr9E2dOjVuv/32ePXVV+Orr76KRo0axa677hpnn312dOzYcaM+/5NPPomDDz643P5bb701evbs+b2+AwAAQHUxefLk9YY9586dGw888EDMnDkzfvazn1VpbQAAAGyY0CcAAACVZsiQIfHss89GixYtynzQeNJJJ8WCBQuie/fu0b59+5g2bVr8/e9/jxdeeCHuuuuu2H333Tf6geX+++8f22677Tr9HTp0qKBvAwAAkPuOOOKIyMvLW+8xJSUlUbt27TjnnHOqrC4AAAA2jtAn1AQNGiRP29dtAwCASrJs2bK46qqrYtSoUeUe87vf/S4NfN54441x6KGHrml/7bXX4he/+EX85je/SQOg+fn5673WpEmT0n1yzk477VSB3wIAoIZyPxGqtVatWpXbl4y/6tWrl668cOqpp8Z2221XpbUBAACwYUKfUBPUrRvhbVwAAKrIuHHj4uqrr44ZM2akM3iOHz9+nWNmz56dLvmePED8duAzseeee0bXrl1jwoQJ8eGHH25wmfdkps9klpof/ehHFf5dAABqJPcTodqP2QAAAMhdQp8AAABUqMcffzwWLVoUAwcOjBNOOKHM0GZBQUFccskl0bx58zI/o6ioKN0nn7MhSeizXbt2Ub9+/QqoHgAAAAAAAGpQ6LOkpCSdYQUAAIDsUlXjtT59+sQNN9wQDdazBGizZs3S5djL8sUXX8Rbb70VhYWF0b59+/Ve68svv4y5c+dGly5d4rrrrouxY8fG559/ni5XeNhhh8Xpp5++JkAKAABA6bFXMl5q1KhR+vusWbPizjvvTPedO3eOU045Zb3jOgAAADIjv6I/MFm675Zbbolp06ZV9EcDAACQA+O13Xbb7Xs9GEyWhl+8eHEcfPDB0aRJk/UeO2nSpHT/j3/8I11GvkePHnHkkUfG8uXL47bbbkuDpcnPAAAA/D9XXXVVOkZ8+eWX098XLlwYvXr1ipEjR8aLL74Yf/zjH6N3796xdOnSTJcKAABAZYc+k7cChw0bFgceeGD07ds3nnnmGQ/YAAAAskAujNeSwOezzz4bW2yxRfzqV7/a4PHJg8kf/vCH6TLyf/3rX+Oyyy6LK6+8Mv73f/839txzz5g4cWLcfffdVVI7AABALhg9enQ89NBDUatWrTWrQYwaNSpmz54dHTp0iGuvvTZ++tOfxocffhjDhw/PdLkAAABUdugzmVllwIAB0bZt23j99dfjwgsvjL322iuuueaamDJlSkVfDgAAgGowXluxYkUa2HzggQeiadOmcdddd6X7DenZs2c899xzMWjQoCgoKFjTXq9evRg4cGD681NPPVWptQMAAOSSJ554IgoLC9NZPZMVFhLJuCoJgP76179OV08YOnRobLbZZvG3v/0t0+UCAABQ2aHP5s2bxxlnnJEODh988ME4/PDD05ljRowYEUcccUQce+yx6duCixYtquhLA+X54ovkf5ylt6QNAIAaJVvHa/Pnz4/TTjstffDYsmXLtLYf/ehH3/tzkxlAGzVqVOnL2QMAVDvuJ0K1lszg2bVr1+jYseOaMdk777wTdevWTdsTRUVF8ZOf/CT++9//ZrhaAAAAKj30+W277LJLXHfddfHKK6/EVVddFXvssUdMmjQprrjiinQ2md/85jfx73//uzJLABIlJf93U/bbW9IGAECNlS3jtVmzZkWvXr3SZdg7deoUjz76aLRv336jz//000/TWUsXL168Tl9xcXEsW7YsateuXcFVAwBUc+4nQrW2dOnSaNiw4ZrfkzFVMn7aeeedS62gkFi1alUGKgQAACBjoc/V6tevn84Yc+mll6YP85LlIZIHcn/+85/T348//vh4++23q6IUAAAAsmS89sUXX0SfPn3ik08+iZ/+9Kfx0EMPRYsWLTbpM6699to49dRT46WXXlqnL5mpJgl9du7cuQKrBgAAyG3JCgv/+c9/1vz+4osvpmPBbt26rWlLVoV4991302MBAADILoWVfYE5c+bEk08+mW6rB5DJQ8VDDz00unTpEv/7v/8b48ePj5NPPjluvfXW2G+//Sq7JAAAALJgvHbxxRenSwXuvffecfvtt0etWrU2+TMOOeSQNPD5xz/+MQ2ONmjQIG3/+uuv48orr0x/ToKlAAAA/J8dd9wxnnrqqbjllluibdu26dgvsXrMN3v27Lj++uvjyy+/jAMPPDDD1QIAAFAloc/k7b/nn38+nnjiiXjttdfSJSFKSkpihx12iOOOOy4OPvjgqFu3bnrsz3/+83j66afjkksuiZtuuknoEwAAoBJly3gtWVY+uX5iyy23jDvuuKPM44444oj0IWRi9OjRMWPGjLSOZCn4xGGHHRZjxoyJsWPHxkEHHRT7779/+h2TmWrmzp0bffv2jX333bfC6gYAAMh1Z599djouHDZsWPp7MiY86qij1oy9Dj/88Jg3b160atUqzjzzzAxXCwAAQKWHPgcNGhTPPvtszJ8/Px0kNm7cOH1QmDw8/NGPflTmOclDussvvzymT59e0eUAAACQheO1by/H/sADD5R7XDLj6OoHj0lQdeLEidG6des1oc/8/Px0ls9kafgkFDpq1KgoLCxM+3/961+nIVYAAAD+n3bt2sXjjz8ed999d7oCxG677Rannnrqmv7OnTvHZpttFhdeeGE0a9Yso7UCAABQBaHPkSNHrnkwlzw47NmzZ9SuXXu95yxbtiy22GKL2HnnnSu6HAAAADI8XpsyZco6bUkgM9k2RXnh0IKCgjjllFPSDQAAgA374Q9/GFdffXWZfXfeeWeV1wMAAEAGQ5/J0nnHHHNMtG/ffqPPSR4yPvfcc9/ruhMmTEjfQkyW/rvuuutK9X399dcxdOjQeOGFF9Ll/ZLlKI4++ui01mQGGAAAgJogU+M1AAAAcsM777wTs2bNih//+MfRpk2bTJcDAABAGfKjgl166aXpA8QkXPnqq6+W6ps8eXLccsstMXXq1Aq95sKFC9MZYpLlCdeWLFt48sknx4MPPpgOUJOZX+rWrRt/+MMf4oILLqjQOgAAALJZJsZrAAAAZJ9//vOfccYZZ5QaG15yySVx/PHHR//+/ePAAw+MIUOGZLRGAAAAqij0mXj44YfjZz/7Wdx4442l2t9///2444474pBDDolHHnmkwq43ePDgmDFjRpl9yQyfH330UVxxxRVx2223xUUXXRSPP/54HHDAAelsNWPGjKmwOgAAALJdVY/XAAAAyC7JS399+vSJl19+OT799NO0bfz48fH0009HQUFB7LLLLlGnTp30GVvSDgAAQDUPfb7++utx5ZVXRn5+fjoo/LaddtopnWkzLy8vrrrqqpg4ceL3vt64ceNi9OjRse+++67Tt3Tp0njssceiZcuW0atXrzXtyYA1eVsxMXLkyO9dAwAAQC6o6vEaAAAA2efee++N5cuXpzN9HnXUUWnbU089lY4Hk+dnDzzwQPr8LHmelrw4CAAAQDUPfd59993pIPCee+5Jl1z/tq233jptSwaTyVLsybHfx1dffRWXX355dO3aNU466aR1+t95551YvHhx2p881Py2tm3bRps2beLNN9+MVatWfa86AAAAckFVjtcAAADITsmzsW222SYGDBgQ9evXj+Li4nTWzyT0+fOf/zw9Junv0qVL+qwNAACAah76/PDDD9NB4K677lruMcmMMjvvvHP861//+l7XGjRoUBrqvOaaa9KB6No+++yzdN+uXbsyz0+Cn8mbjNOnT/9edQAAAOSCqhyvAQAAkJ2++OKLaN++/Zrfk2DnggUL4kc/+lH84Ac/WNPepEmTtB0AAIBqHvpcuHBhOgjckGbNmqXLr39XTz/9dDz33HNx0UUXpeHNssybNy/dl1dPw4YN0/38+fO/cx0AAAC5oqrGawAAAGSvZFz4zTffrPn9pZdeSve77757qeOmTZsWjRo1qvL6AAAAqOLQZ+vWrdMZYVauXFnuMcly6u+++260bNnyO11j9uzZcdVVV8Uee+wRJ554YrnHJbN4JoqKisrsX92+bNmy71QHAABALqmK8RoAAADZLZnl86233opPP/00fTkwmWglWVFvn332WXPMmDFj4oMPPoif/OQnGa0VAACAdRVGBdtvv/3ijjvuiCuvvDIGDhwYBQUFpfpLSkriuuuui1mzZkWfPn2+0zV+/etfpw8iBw8eXOay7qvVqVMn3a9YsWK9odD69et/pzogZ9SrFzFw4LptAADUKFUxXgMAoBpwPxGqteOPPz4mTJgQhx12WNSuXTsWLVqUBkFXz/R51llnxcsvv5w+gzv55JMzXS4AAACVHfo89dRT46mnnopRo0bFq6++mr4VmMwQkwwMkweHySBx6tSp6XKBp59++iZ//iOPPBKvvPJK+pAymaVmfRo3brze5dsXLFiQ7hs0aLDJdUBOSYLNgwZlugoAADKsssdrAABUE+4nQrV20EEHpUu3/+lPf0oDn9tss03ccssta/qnT5+erpaXPIv76U9/mtFaAQAAqILQZ5MmTeKee+6JSy65JN5777146KGH1szGmcwak/jRj34UN998c2y22Wab/PnPPPNMur/iiivSbW1PPPFEuh155JFx7LHHpm3JQ8uyJO316tWLVq1abXIdAAAAuaayx2sAAADkhjPOOCN9MTBZ3r1p06al+q655po0CFq3bt2M1QcAAEAVhj4TW2+9dTz++OPx73//O954442YM2dOusR68+bNo0uXLrHHHnt8589Owpxdu3Zdpz15IzGZsaZjx47pkoWdOnWK7bffPl26feLEiVFcXBz5+fmljp8xY0bsueee6yxpCAAAUF1V5ngNAACA3JHM5rl24DPRuXPnjNQDAABABkOfq+2www7pVpGOOuqoMttfe+21NPSZhD379eu3pv3QQw+NRx99NEaMGJG+sZhYtWpV3HDDDenPvXv3rtD6AAAAckFljNcAAAAAAACAHA59ZoP+/fvHK6+8Etdee21MmDAhOnTokAZE33///TjooIOiR48emS4RAAAAAAAAKsX3eRaWl5cXzz//fIXWAwAAQBaGPt966624884746OPPorFixdHSUlJuQPFZDnBypQsSzFy5Mi49dZb48UXX0wDn23atImLL744TjnllLQGAACAmiKbxmsAAABUvhkzZnzncz1HAwAAqAGhz+QBYrKMerKEenkPDyvDnnvuGVOmTCmzb/PNN4/BgwdXWS2Qdb76KmKvvUq3vfxykorOVEUAAGRApsZrAADkGPcToVoZMWJEpksAAAAgm0Ofw4YNi5UrV8YBBxyQzqSZBC4LCgoq+jLApli1KuKDD9ZtAwCgRjFeAwBgo7ifCNVK165dM10CAAAA2Rz6/Ne//hXt2rVLl1O35AMAAED2MF4DAAAAAACA3JZf0R+YzBrTsWNHDxABAACyjPEaAAAAAAAA5LYKD322b98+pk2bVtEfCwAAwPdkvAYAAAAAAAC5rcJDnyeccEJMmjQpXnjhhYr+aAAAAL4H4zUAAAAAAADIbYUV/YE//elP48ADD4zzzz8/jjjiiNhxxx2jUaNG5S4f2KNHj4ouAQAAgDIYrwEAAAAAAEBuq/DQZ/fu3dMHhiUlJTFq1Kh0W59klhkAAAAqn/EaAAAAAAAA5LYKD33uuuuuFf2RAAAAVADjNQAAgJqnV69esdtuu8WAAQPS32fOnBn16tWLJk2aZLo0AAAAsiH0+cADD1T0RwIAAFABjNcAAABqnilTpkSrVq3W/N6jR4847LDD4vrrr89oXQAAAHw3+d/xPAAAAAAAACDL5eXlxccffxzFxcXp7yUlJekGAABAbqrwmT5XW758eTz99NMxYcKEmDVrVrqMYP/+/ePBBx+M7bffPnbcccfKujQAAADrYbwGAABQc3Ts2DH++c9/xt577x3NmzdP28aPHx9HHnnkRgVGR48eXQVVAgAAkNHQ57vvvhvnnXdefP755+mbgsmAsHXr1mnf448/HoMHD46LL744TjvttMq4PAAAAOUwXgMAAKhZLrroojjjjDPiiy++SLfEN998k24bkowZAQAAqOahz2SWmF/+8pfpQDF5Y3CfffaJK6+8ck3/HnvskS4h8fvf/z46d+4cu+yyS0WXAAAAQBmM1wAAAGqenXfeOV588cX45JNPYunSpdGnT5/o1q1bnHnmmZkuDQAAgGwIfd5xxx3pA8Tf/OY3cfLJJ6dt336IeOmll8ZOO+2Uzixz3333eYgIAABQRYzXAAAAaqYGDRrEDjvssOb3zTbbLLp27ZrRmgAAAMiS0OfLL78c7du3X/MAsSwHHHBAdOrUKSZNmlTRlwfKUqdOxNlnr9sGAECNYrwGAMBGcT8RqrXJkydnugQAAACyKfQ5d+7c2HfffTd4XNu2bdNlJIAq0LBhxNChma4CAIAMM14DAGCjuJ8INcLXX38djz76aEyYMCHmzJkTRUVF6Qyge+yxRxx++OHRvHnzTJcIAABAVYQ+GzVqFDNnztzgcdOnT4+GyY0jAAAAqoTxGgAAAImJEydGv379Yv78+VFSUlKq77XXXou77747br755jQACgAAQHbJr+gP3GmnneL999+Pf/7zn+sdSH7wwQex4447VvTlAQAAKIfxGgAAADNmzIizzz47vvnmm9hnn33ipptuisceeyxGjhwZN9xwQ+y1114xb9686N+/f8yaNSvT5QIAAFDZoc++ffumbwSeddZZ8fjjj6cDx9WWL18eY8aMiQsuuCDy8vLi5JNPrujLAwAAUA7jNQAAAO66665YuHBhOv7705/+FAcffHB07tw5ffnvsMMOizvvvDMGDBiQhkLvv//+TJcLAABAZYc+u3TpEpdeemm6HMTll18e++23X/rA8JlnnklnlTn//PPjiy++SN8g3H333Sv68gAAAJTDeA0AAICXX345ttxyyzjjjDPKPebMM8+Mdu3axQsvvFCltQEAAJCB0Gfi1FNPjREjRqTLP9SpUyedSWblypWRn58fu+66awwbNiz69etXGZcGAABgPYzXAAAAarY5c+ZEp06dNnjcdtttF59//nmV1AQAAMDGK4xKkjwsTLbi4uKYN29eum/SpEkUFlbaJYHyzJsXccQRpduefDKiSZNMVQQAQAYZrwEAsF7uJ0K1Vq9evfjyyy83eFxyTPKyIAAAANml0p/oJbPFNG3atLIvA6zPihUR48ev2wYAQI1mvAYAQJncT4Rqbfvtt4833ngjJk+eHB07dizzmKTv7bffjt13373K6wMAAKCKQ59PJm/7boIj1n5bGAAAgEphvAYAAMAJJ5wQr776apx++ukxcODA2HfffdOXAhPJShDjxo2L3/3ud+nPvXr1ynS5AAAAVHbo87LLLou8vLwNHldSUpIe5yEiAABA1TBeAwAAYL/99ovjjjsuHnvssejXr1+6hHurVq3SvpkzZ8bSpUvTceExxxwT+++/f6bLBQAAoLJDn8nbgGU9RFy1alXMnz8/Jk2aFEuWLImePXvGdtttV9GXBwAAoBzGawAAACSuvPLKdNx3zz33xLRp0+KTTz5Z09e2bds47bTT0hlBAQAAqAGhz9tvv329/cnbgZdffnm6NMSAAQMq+vIAAACUw3gNAACA1ZKl25Nt9uzZ6ZbYfPPNY4sttsh0aQAAAKxHflSxZImIwYMHR926dePWW2+t6ssDAABQDuM1AACAmqdFixbRuXPndBP4BAAAyH5VHvpMFBUVxU477RSvv/56Ji4PAABAOYzXAAAAAAAAIHtlJPSZ+Oqrr2Lx4sWZujwAAADlMF4DAAAAAACA7JSR0OeTTz4Z//jHP2LrrbfOxOUBAAAoh/EaAAAAAAAAZK/Civ7AI488sty+lStXxpdffhlff/115OXlxXHHHVfRlwcAAKAcxmsAAAAAAACQ2yo89Dlp0qQNHlNUVBQnn3xynHDCCRV9eQAAAMphvAYAAAAAAAC5rcJDnyNGjCi3Lz8/P+rVqxdbbbVV1K1bt6IvDQAAwHoYrwEAAHDVVVdF+/bt48QTT8x0KQAAAGRD6LNr164V/ZEAAABUAOM1AAAAnn766Wjbtm3GQp/9+/ePt99+O1566aWNPue4446Lf//732X27bPPPjFs2LAKrBAAAKCGhT4BAAAAAACA7LRy5cpo1apVRq49ZMiQePbZZ6NFixYbfU5xcXF8+OGH0aZNmzjiiCPW6f/hD39YwVUCAADUsNDntdde+53PzcvLi8suu6xC6wEioqgo4phj1m0DAKBGMV4DAGCjuJ8I1dqBBx4Yzz33XHz88cfRoUOHKrnmsmXL0mXlR40atcnn/uc//4klS5ZEt27dol+/fpVSHwAAQI0Ofd5///3pw8DVSkpKSvVvqM9DRKgEjRtHfIcbKQAAVC/GawAAbBT3E6Fa+/nPf54ulX7kkUfGnnvuGZ06dYomTZpEfn5+mcefcsop3+t648aNi6uvvjpmzJgR3bt3j/Hjx2/S+VOmTEn322677feqAwAAoLqo8NDnHXfcEU888UT6hmDyduAhhxySLqtQq1atmD17dowdOzZee+21aN26dTqYBAAAoGoYrwEAAPCLX/wifbEvedkvCWC+9NJLZR6X9CfHfd/Q5+OPPx6LFi2KgQMHxgknnBAdO3bcpPMnTZqU7jf1PAAAgOqqwkOfq1atijFjxsRJJ50Uv/71r9d5K7B3797p7DLXXXddtG3bNg4//PCKLgEAAIAyGK8BAABwxBFHlFrpobL16dMnbrjhhmjQoMF3On916PODDz6I66+/Pj766KMoKipKZyk977zzYquttqrgigEAAGpY6HPYsGHRpk2bMh8gfntwN3r06Bg+fLiHiAAAAFXEeA0AAIDkRb+qtNtuu32v8ydPnpzub7755jjggAOiS5cu8d5778UzzzyTzlJ63333RefOnSuoWgAAgBoY+vzwww9jn332KfcB4mrJW3cvvPBCRV8eAACAchivAQAAkEsWL14cm2++eWy22Wbxpz/9KVq1arWmb+TIkemS8RdffHEaAC0oKMhorQAAAFVl/U/6voOGDRvGp59+ut5jSkpK0qUYfvCDH1T05QEAACiH8RoAAACrzZ07N2699dY44YQT0hcEBw0atGZGzSREmQ3q1auXrkbx1FNPlQp8Jnr16hU77bRTfPbZZ/HOO+9krEYAAICcD3127do1Pvroo3QphfLcdNNNMXXq1Nh3330r+vJAWb75JuLYY0tvSRsAADWK8RoAABvF/USo9saPHx8HHXRQ3HHHHfHPf/4zZs+enc6qmRg3blxceOGFcfXVV0e2W72sezKOBQAAqCkqfHn3//mf/0kHgzfccEO6Tx4UtmzZMp0tZvr06fHcc8/F+++/H82aNYtzzjmnoi8PlGX58ojHHy/ddvvtmaoGAIAMMV4DAGCjuJ8I1donn3wS5513XqxatSqdLTOZ5fPMM89c03/MMcfEH//4x3jooYdizz33zOhLgV9//XW6YkXTpk1jq622Wqd/yZIl6b5OnToZqA4AAKCahD47dOgQQ4cOjUsvvTTefPPNeOutt0r1Jw8T27dvH7fddltsttlmFX15AAAAymG8BgAAwJ/+9KdYvnx5urT7AQccsE5/nz59Yvvtt4+TTjopDX5mMvT5+uuvx4ABA9Jg6rBhw0r1FRcXx9tvvx15eXnxk5/8JGM1AgAA5HzoM5G89fe3v/0tnn/++Zg4cWLMnTs3bW/VqlXa16NHjygoKKiMSwMAALAexmsAAAA124QJE6JTp05lBj5X69KlS+ywww7x8ccfRybtvffe0bBhw3jppZfi1VdfjW7duq3pS15qTOpLvkcypgUAAKgpKiX0mahfv34cfvjh6QYAAED2MF4DAACoub755pvYeeedN3hc8+bN4/3334+qMmnSpPQFxdatW8dRRx2VtjVo0CCuvPLKuOiii+L000+P/fffP1q2bBn//Oc/41//+ldsvfXWMWjQoCqrEQAAoFqHPhNTp06NN954I2bOnJkOun7+85+nywcmS0LUqVOnMi8NAADAehivAQAA1Ew/+MEP4rPPPtvgcZ9++mk0bdo0qjL0OWTIkOjateua0Gfi4IMPTmfyvOOOO9Ll3hcvXpz+fsYZZ8SZZ56ZBkMBAABqksLKekPw8ssvT9/GKykpSduSB4jJ9vvf/z59uPjHP/4xdtlll8q4PAAAAOUwXgMAAKjZdtttt/jrX/8aY8eOjR49epR5zHPPPReffPJJHHrooRV+/SlTppTZngQ9vx32/LYdd9wxDX0CAAAQkV/RH7hkyZLo06dPjBkzJpo0aRIHHnjgmgeJiaKiovj666/TJRiSh4kAAABUDeM1AAAAkhkyCwsLY8CAAXHrrbfGxIkT0/YVK1akY8H77rsvLrvssvSYvn37ZrpcAAAAKjv0mQwEJ0+eHIccckj6huAtt9xSqv+BBx6I0047LX3YeM8991T05QEAAMiy8Vr//v1j7733LrMvWZbvtttuSwOonTt3jn333TduvPHGtIZN8fbbb6e1JzPW7Lzzzmm4dfWDSwAAAP6fbbbZJm644YbIy8tLZ89Mxk/Jz3/729/SsVnSlwRABw4cGD/+8Y8zXS4AAACVHfp89tlno1mzZnHttddG3bp1yzzmoosuilatWnkABwAAUIUyMV4bMmRIet2yLF++PM4666wYOnRotGnTJn3Q2Lp167jzzjvT2WSS/o0xfvz4OPnkk2PSpEnpMvWHH354fPDBB+nnJcvYAwAAUNpBBx0UTz/9dPTq1St++MMfRu3ataNWrVrpePCII46Ixx9/PI499thMlwkAAEAZCqOCJcs+dO/ePV0WsDz5+fnpm4Evv/xyRV8eAACALBivLVu2LK666qoYNWpUuceMHDky3njjjfjlL38ZF1988Zr2wYMHx4gRI+Khhx7a4FKCSTD0N7/5TTRo0CBGjx4dLVu2TNuT85IHlIMGDYpu3bqVG3IFAACoqbbccst0Nk8AAABq+EyfyVuA8+bN2+BxX331VXosAAAAVaOqxmvjxo1LZ41JAp9JyLQ8SbAzCaD+z//8zzrLwSchzSQUuiHPPPNMzJ07N52dZnXgM9GuXbvo3bt32me2TwAAgPItXLgwPv3005g2bVr6Ah8AAAA1LPTZsWPHePfdd2P27NnlHjN9+vR47733Ytttt63oywMAAJDh8VqyDOCiRYvSGWOGDRtW5jEzZsxIHyh27tw5naXz2+rXr5+2f/bZZ/H555+v91rJTKGJ3XfffZ2+PfbYI91PmDDhO38XAACA6ipZLeGoo46Krl27xiGHHBIHHHBAdOnSJU466aR44YUXMl0eAAAAVRX6POaYY2LJkiVx7rnnpksHri2ZZeXCCy9Ml+A7/PDDK/ryAAAAZHi81qdPnxg7dmyceOKJkZeXV+YxSaBz9YycZWnbtm26T2abWZ///Oc/a5Yl/K6fAQAAUJMUFxenKyz85je/iQ8++CAdt2222WbplvS99dZbcfbZZ8dNN92U6VIBAAAoQ2FUsCOOOCJdym/MmDFx4IEHpsvrJYPFiRMnpg/8khljkgeI3bp1Sx84AgAAUDWqary22267bfCY1cvMN2nSpMz+hg0bpvv58+dv1Oc0btx4nb7VM4guWLBgI6oGAACoGZLVGf72t79FixYt4le/+lX87Gc/i9q1a6d9yYuCSd8NN9wQd911V7oKw3777ZfpkgEAAKjM0GfilltuiTvuuCPuv//+mDlzZtqWLMmXbHXr1o3TTjstfYOwvBlfgApWq1ZE9+7rtgEAUONky3htxYoV6b6oqKjM/tXty5Yt+86fs7GfAQDAWtxPhGrtscceizp16sSIESPWWTUhGRceeeSR0alTp/RlwPvuu0/oEwAAoCaEPvPz89NlH04//fR0WYjkQWJJSUk0b948fvKTn6QDSaAKJbMnvfhipqsAACALZMt4bfUsMsnMomVZ3V6/fv31fs7qepPwZ621ggirP6NevXoVUjMAQI3hfiJUax9//HG6QsPagc9v69ixY3rM22+/XaW1AQAAkIHQ5znnnBNbbbVVXHTRRekDtx122CHdAAAAyKxsGq+tXta9vKXXV7evXqK9PKuXdU+OXzvcuXDhwlJLxQMAAPB/L8ZtzOoOyct6a79cBwAAQOblV/QHvv766976AwAAyELZNF7beuut0/3UqVPL7F/d3qFDh+/8Oavb2rdv/73rBQAAqC66d+8eEyZMiOnTp5d7zFdffRUTJ06Mbt26VWltAAAAZCD0WVBQEI0aNarojwUAAKAajddatGiRLiX4zjvvxOLFi0v1LVq0KN599920v1mzZuv9nK5du6b75IFlWSHXRJcuXSq0dgAAgFyWrP6QjLVOPfXUGDt27Dr9H330Ufzyl7+M+vXrxyWXXJKRGgEAAKjC0OcxxxwTr776arz22msV/dEAAABUo/FaUs+SJUvilltuKdWe/J60n3jiiRv8jB49eqRLxT/44IMxbdq0UrN8Pvzww9G8efM48MADK6V+AACAXJC8LPft7aCDDoovvvgiZsyYEeeee27ssssuccQRR8Txxx8f++yzTxx22GExadKkKCwsjPPOOy/T5QMAALCWwor+wG233TbatGkTv/jFL9Il9Dp16pQ+gMvPXzdfmpeXF5dddllFlwAAAEAOjNeSWWX+9re/xf33358+UNxxxx3jX//6V7qEYPLQce3Q5+jRo9OHkvvtt19aeyKZeWbgwIFx4YUXxtFHHx2HHHJI2v6///u/sXDhwvjjH/8YtWvXrtTvAQAAkM3mz5+/3v5k7DR58uR12pPx18yZMyuxMgAAALIi9Jk8FEweDpaUlMTHH3+cbuUR+oQqsmBB8j/O0m3XXRfRsGGmKgIAIAOybbxWVFQUI0aMiCFDhqThzyTw2bJlyzjrrLPi9NNPT/u/7YknnkgDoa1bt14T+kwcfPDB0bhx4/jTn/4UTz75ZNSqVSvtP+ecc9Ys/w4AwCZwPxGqlbKWcAcAACB3VXjoM3moljwcBLLI0qURt99eum3QIDdpAQBqmEyN16ZMmVJuX4MGDdJw6cYETB944IFy+7p165ZuAABUAPcToVpJXpwDAACg+qjw0Ge/fv0q+iMBAACoAMZrAAAAAAAAUMNDn8lSeclSeoOSt3wBAADIGsZrAAAAlOXll1+ORx55JD777LNYtmxZucclq0U8//zzVVobAAAAlRz6nD9/fixevLjMvlNOOSVdXu/MM8/8vpcBAABgExmvAQAAsLbx48fHWWedFSUlJRs8Ngl9AgAAUM2Xd/+2iRMnxhZbbFGZlwCqseLi4nTLFvn5+ekGAFAdGK8BAADUTLfffnsa+Dz22GPjkEMOicaNGwt3AgAA5JBKDX0CfFdJ2LN3n74xa+4XkS1aNm8WD91/n+AnAAAAAAA56+OPP47tttsurrrqqkyXAgAAwHcg9AlkbegzCXyecdN9kV9QkOlyonjVqrjzgr5pXUKfAAAAAADkqqKiomjZsmWmywAAAOA7EvoEsloS+Cwo9J8qAAAAAACoCHvuuWe8+eabsWzZsqhdu3amywEAAGATma4OAAAAAAAAaogLLrggli9fHhdffHF8+eWXmS4HAACATWT6PAAAAAAAAKghWrduHRdeeGFcfvnl8fzzz8fmm28eP/jBD8o8Ni8vL0aPHl3lNQIAAFA+oU8AAAAAAACoIcaPHx+DBg1Kfy4uLo7PP/883coLfQIAAFANQ59/+ctf0q2sgWB5fav7P/jgg4ooAQAAgDIYrwEAAPBtQ4cOjVWrVkWPHj3i0EMPjaZNmwp3AgAA1LTQZ0lJSZWeBwAAwMYxXgMAAODbPvroo9h2223T8CcAAAA1MPQ5duzYiqkEAACACmW8BgAAwNrq1KkT7dq1y3QZAAAAZCr02bp16+/7EUBlKyiI2G67ddsAAKjWjNcAAPhO3E+Eam3PPfeMN954I5YvXx5FRUWZLgcAAIBNlL+pJwA5qGnTiPffL70lbQAAAAAAa3M/Eaq1/v37p4HP888/P2bNmpXpcgAAAKjqmT4BAAAAAACA3HDPPffEtttuGy+++GK6NWvWLJo0aRKFhes+NszLy4vRo0dnpE4AAADKJvQJAAAAAAAANcTIkSNL/T537tx0K0sS+gQAACC75Gzoc968eTFs2LAYN25cuvTEZpttFj169Iizzz47mq61zMzXX38dQ4cOjRdeeCEdtLZq1SqOPvro6Nu3b5lvLQIAAAAAAEB1NGLEiEyXAAAAwPeQk4nHBQsWxIknnhiffPJJ7LHHHmnY89NPP40HHnggnnvuuXjssceiZcuW6bHz58+Pk08+OT7++OM44IADol27dvHqq6/GH/7wh3j33Xfjtttuy/TXAQAAAAAAgCrRtWvXTJcAAABATQt9DhkyJA189uvXL84999w17Q8++GBcddVVaZDz2muvTduSGT4/+uijGDhwYBoUTQwYMCD69++fBkTHjBmThkEBAAAAAAAAAAAAsllOhj6nT58ezZo1i1/84hel2g8//PA09PnPf/4z/X3p0qVrZv3s1avXmuMKCgrikksuSQOfI0eOFPqk+lu0KOL3vy/ddvHFEfXrZ6oiAAAAACBbuZ8I1dqvfvWrjT42Ly8vrrnmmkqtBwAAgBoQ+kxm7yxLMvtnonnz5un+nXfeicWLF8f+++8f+fn5pY5t27ZttGnTJt58881YtWpVGgSFamvx4ojf/a502znnuEkLAAAAAKzL/USo1p544okNBj0TJSUlQp8AAABZKCdDn2v75ptvYsKECXHddddFYWFhnH322Wn7Z599lu7btWtX5nlJ8DOZNTTZttxyyyqtGQAAAAAAALJlps/i4uL0mds//vGPdNKUo446Ko4//vgqrw8AAIBqHvp85JFHYtCgQenPyWydv//972OPPfZIf583b166b9KkSZnnNmzYMN3Pnz+/yuoFAAAAAACATOnTp88Gj3nooYfi6quvjkMOOaRKagIAAGDjlV7zPAc1bdo0Tj/99DjiiCOidu3acdFFF8Xdd9+d9i1fvjzdFxUVlXnu6vZly5ZVYcUAAAAAAACQvXr37h1bbbVVDBs2LNOlAAAAUN1m+jzwwAPTLdGvX790mYlkts/ddtst6tSpk7avWLGizHNXh0Lr169fhRUDAAAAAABAduvQoUO8+uqrmS4DAACA6jbT57e1adMmfvnLX6Y/jx07Nho3brze5dsXLFiQ7hs0aFCFVQIAAAAAAEB2++STTzJdAgAAANVhps9kds4333wzVq1aFXvvvfc6/W3btk33X331Vey1117pz1OnTi3zs5L2evXqRatWrSq5agAAAAAAAMi8hQsXltu3cuXKmDt3bgwfPjw+/fTT2H333au0NgAAAKpp6PP0009Pw5qvvfZaFBUVlep///330/1WW20V22+/fbp0+8SJE6O4uDjy8//fxKbTpk2LGTNmxJ577hkFBQVV/j0AAAAAAACgqu26664bPKakpCR9fnbGGWdUSU0AAABU4+Xdk6XYe/TokS7NPmTIkFJ97733XvrmYRIIPfTQQ6N27drpfvr06TFixIg1xyWzhN5www3pz717967y7wAAAAAAAACZkAQ6y9sSyXO2Ll26xNChQ2OPPfbIdLkAAADk+kyfid/85jdpwHPYsGHx1ltvxQ477BAzZ86MsWPHRl5eXtx8883RvHnz9Nj+/fvHK6+8Etdee21MmDAhOnTokM4QmswIetBBB6UBUgAAAAAAAKgJJk+enOkSAAAAqGmhzy222CL+/Oc/x+23354GPf/9739Ho0aNYr/99ouzzjorOnbsuObYpk2bxsiRI+PWW2+NF198MQ18tmnTJi6++OI45ZRT0pAoAAAAAAAAAAAAQLbLydDn6jDnb3/723TbkM033zwGDx5cJXUBAAAAAAAAAAAAVIacDX0CAAAAAAAA6/erX/3qO5+brJh3zTXXVGg9AAAAfD9CnwAAAAAAAFBNPfHEE5sc9Pw2oU8AAIDsIvQJNUFyg6ZZs3XbAAAAAADW5n4i1NiZPleuXBkjRoyIOXPmRElJSbRt27ZSawMAAGDTCX1CTZDcoJ07N9NVAAAAAAC5wP1EqFb69OmzUcd9+OGHcdlll60JfB577LHp7wAAAGQXoU8AAAAAAACowe6+++647bbbYvny5dG8efO4+uqro3v37pkuCwAAgDIIfQIAAAAAAEANNG3atHQ2z7fffjud3fOggw6KQYMGRePGjTNdGgAAAOUQ+gQAAAAAAIAaZuTIkXHDDTfE4sWL05DnwIED4+CDD850WQAAAGyA0CcAAAAAAADUEHPmzIlf//rX8eqrr6aze+69994xePDgdFl3AAAAsp/QJwAAAAAAANQAf/nLX+Lqq6+Ob775JurVq5cu7X7cccdluiwAAAA2gdAn1ARLlkTce2/pttNOi6hbN1MVAQAAAADZyv1EqHbmzZsXV1xxRfz9739PZ/fcZZdd4tprr422bdtmujQAAAA2kdAn1AQLF0ace27ptuTNXTdpAQAAAIC1uZ8I1cq4cePSwOeXX34ZRUVFMWDAgDj11FMzXRYAAADfkdAnAAAAAAAAVFNnn3125OXlpT83aNAgnnrqqXTbGMl5o0ePruQKAQAA2BRCnwAAAAAAAFCNJUu6J5LZPpNtY60OiwIAAJA9hD4BAAAAAACgmhoxYkSmSwAAAKACCX0CAAAAAABANdW1a9dMlwAAAEAFyq/IDwMAAAAAAAAAAACgcgh9AgAAAAAAAAAAAOQAoU8AAAAAAAAAAACAHCD0CQAAAAAAAAAAAJADhD4BAAAAAAAAAAAAcoDQJwAAAAAAAAAAAEAOEPoEAAAAAAAAAAAAyAFCnwAAAAAAAAAAAAA5QOgTAAAAAAAAAAAAIAcIfQIAAAAAAAAAAADkgMJMFwBUgebNI0pKMl0FAAAAAJAL3E8EAAAAyFpm+gQAAAAAAAAAAADIAUKfAAAAAAAAAAAAADlA6BMAAAAAAAAAAAAgBwh9AgAAAAAAAAAAAOSAwkwXAFWtuLg43bJBfn5+ugEAAAAAAAAAAMCGCH1SoyRhz959+sasuV9ENmjZvFk8dP99lR/8XLYs4umnS7cddlhE7dqVe10AAAAAIPe4nwgAAACQtYQ+qXGhzyTwecZN90V+QUFma1m1Ku68oG9aU6WHPufPjzjuuNJtc+ZENG9eudcFAAAAAHKP+4kAAAAAWUvokxopCXwWFPrnDwAAAAAAAAAAQO6QegMAACAjtt122w0ec+SRR8Z11123weO6desWX3zxRZl9vXv3jiuuuOI71QgAAAAAAADZROgTAACAjDj33HPLbC8pKYnhw4fHokWLYvfdd9/g58ydOzcNfG633Xax7777rtPfuXPnCqkXAAAAAAAAMk3oEwAAgIzo169fme333ntvGvg8/vjj44gjjtjg50yaNCnd9+zZM84888wKrxMAAAAAAACyRX6mCwAAAIDVPvroo7jpppuibdu28atf/Wqjzpk8eXK679ixYyVXBwAAAAAAAJkl9AkAAEDWuPbaa2PFihVx+eWXR926dTfqHKFPAAAAAAAAagrLuwMAAJAVxo8fH6+++mp069YtunfvvtHnJcu716tXL5577rn485//HP/973+jQYMGsc8++8R5550Xm2++eaXWDQAAAAAAAFXFTJ8AAABkhbvvvjvdn3322Rt9ztKlS9OQ5+LFi+P222+PHXbYIY477rho0aJFjBo1Ko4++uiYPn16JVYNAAAAAAAAVcdMnwAAAGTcBx98EBMnToxddtkl3TbW3Llzo0OHDtGoUaMYMmRINGnSJG0vKSmJm2++OYYNGxa//e1vY/jw4ZVYPQAAAAAAAFQNoU8AAAAybvTo0em+d+/em3Re27Zt4+mnn16nPS8vL13a/S9/+Uu8/vrrMWfOHMu8AwAAAAAAkPMs7w4AAEDGjR07NurVqxc/+9nPKuwzCwsLY7vttkt/njp1aoV9LgAAAAAAAGSK0CcAAAAZNXny5Jg5c2Ya+Kxbt+4mnTt79ux48803Y9asWWX2L1myJN3XqVOnQmoFAAAAAACATBL6BAAAIKPefvvtdL/LLrts8rnJ0u4nnXRS3HXXXev0LVq0KN5///00SLrNNttUSK0AAAAAAACQSUKfAAAAZNR7772X7rfffvtNPvfAAw9Ml3EfPXp0TJkyZU37ypUr45prrol58+ZFr169onbt2hVaMwAAAAAAAGRCYUauClStzTaLmDNn3TYAAMgCU6dOTfctWrRY73FvvPFGTJw4MTp16hT77bdf2tauXbu48MIL4/rrr4/jjjsuevbsGY0aNYoJEybEhx9+GF26dInzzz+/Sr4HAEC14X4iAAAAQNYS+oSaID8/onnzTFcBAABl+uqrr9J9w4YN13tcEvgcMmRIHHnkkWtCn4nTTjst2rdvH/fee2/8/e9/jxUrVsSWW26ZhkFPPfXUKCoqqvTvAABQrbifCAAAAJC1hD4BAADIqGeeeWajjuvXr1+6laV79+7pBgAAAAAAANVZfqYLAAAAAAAAAAAAAGDDhD4BAAAAAACAKtG/f//Ye++9N+mcr7/+Oq6++uro0aNHdO7cOXr27Bl33XVXrFy5stLqBAAAyFZCnwAAAAAAAEClGzJkSDz77LObdM78+fPj5JNPjgcffDB+/OMfxymnnBJ169aNP/zhD3HBBRdUWq0AAADZqjDTBQBVYPnyiNdeK922554RRUWZqggAAAAAyFbuJwIVbNmyZXHVVVfFqFGjNvncoUOHxkcffRQDBw6ME088MW0bMGBAOmPoc889F2PGjIkDDjigEqoGAADITkKfUBN8803Ez35Wum3OnIjmzTNVEQAAAACQrdxPBCrQuHHj0qXZZ8yYEd27d4/x48dv9LlLly6Nxx57LFq2bBm9evVa015QUBCXXHJJGvgcOXKk0CcAAFCjWN4dAAAAAAAAqBSPP/54LFq0KJ2pc9iwYZt07jvvvBOLFy+Orl27Rn5+6ceabdu2jTZt2sSbb74Zq1atquCqAQAAspfQJwAAAAAAAFAp+vTpE2PHjk2XZs/Ly9ukcz/77LN0365duzL7k+Dn8uXLY/r06RVSKwAAQC6wvDsAAAAAAABQKXbbbbfvfO68efPSfZMmTcrsb9iwYbqfP3/+d74GAABArjHTJwAAAAAAAJB1klk8E0VFRWX2r25ftmxZldYFAACQSUKfAAAAAAAAQNapU6dOul+xYsV6Q6H169ev0roAAAAySegTAAAAAAAAyDqNGzde7/LtCxYsSPcNGjSo0roAAAAySegTAAAAAAAAyDpbb711up86dWqZ/Ul7vXr1olWrVlVcGQAAQOYIfQIAAAAAAABZZ/vtt0+Xbp84cWIUFxeX6ps2bVrMmDEjdtxxxygoKMhYjQAAAFVN6BMAAAAAAADIOrVr145DDz00pk+fHiNGjFjTvmrVqrjhhhvSn3v37p3BCgEAAKpeYQauCQAAAAAAALDGpEmT4vnnn4/WrVvHUUcdtaa9f//+8corr8S1114bEyZMiA4dOsRrr70W77//fhx00EHRo0ePjNYNAABQ1cz0CQAAAAAAAGQ89DlkyJB44oknSrU3bdo0Ro4cGcccc0y8++676YyfS5cujYsvvjid7TMvLy9jNQMAAGSCmT4BAAAAAACAKjFlypQy25PZPb89w+e3bb755jF48OBKrgwAACA3mOkTAAAAAAAAAAAAIAcIfQIAAAAAAAAAAADkAMu7Q03wgx9EvPfeum0AAAAAAGtzPxEAAAAgawl9Qk1QWBjx4x9nugoAAAAAIBe4nwgAAACQtSzvDgAAAAAAAAAAAJADhD4BAAAAAAAAAAAAcoDQJwAAAAAAAAAAAEAOEPoEAAAAAAAAAAAAyAGFmS4AqAIrV0ZMmVK6bdttIwr9JwAAAAAAWIv7iQAAAABZyx0aqAm+/jpi++1Lt82ZE9G8eaYqAgAAAACylfuJAAAAAFnL8u4AAAAAAAAAAAAAOUDoEwAAAAAAAAAAACAHCH0CAAAAAAAAAAAA5AChTwAAAAAAAAAAAIAcIPQJAAAAAAAAAAAAkAOEPgEAAAAAAAAAAABygNAnAAAAAAAAAAAAQA4ojBy1aNGiGDZsWIwZMyZmzJgRtWrViu222y769OkT+++/f6ljv/766xg6dGi88MILMXfu3GjVqlUcffTR0bdv3ygszNk/AQAAAAAAAAAAAFCD5ORMnwsXLowTTjghDX3Wq1cvTjzxxOjZs2dMnjw5zj333LR9tfnz58fJJ58cDz74YPz4xz+OU045JerWrRt/+MMf4oILLsjo9wAAAAAAAAAAAADYWDk5zeVdd90VU6ZMiV69esWgQYMiLy8vbT///PPTGTxvvfXWNAS65ZZbpjN8fvTRRzFw4MA0HJoYMGBA9O/fP5577rl0ptADDjggw98IAAAAAAAAAAAAoBrO9Pnss8+mQc8LL7xwTeAz0aJFi3QG0FWrVsX48eNj6dKl8dhjj0XLli3TgOhqBQUFcckll6Q/jxw5MiPfAQAAAAAAAAAAAKDaz/TZp0+fWLBgQTRq1GidvqKionS/aNGieOedd2Lx4sWx//77R35+6Xxr27Zto02bNvHmm2+mIdEkCAoAAAAAAAAAAACQrXIy9Nm7d+8y20tKStLl2hPbbrttfPbZZ+nP7dq1K/P4JPg5ffr0dEuWggcAAAAAAAAAAADIVjm5vHt5Hn744XR2zyTMuddee8W8efPS9iZNmpR5fMOGDdP9/Pnzq7ROAAAAAAAAAAAAgBox02dZnnnmmRg8eHAUFhbGddddF7Vq1Yrly5eXWvJ9bavbly1bVqW1QpVr3DjihRfWbQMAAAAAWJv7iQAAAABZq7C6zPB51VVXRV5eXlx//fWxyy67pO116tRJ9ytWrCjzvNWh0Pr161dhtZABScB5n30yXQUAAAAAkAvcTwQAAADIWjkd+iwuLo4bbrgh7rvvvnTWzhtvvDEOOOCANf2N//83j8tbvn3BggXpvkGDBlVUMQAAAAAAAAAAAEANC30ms3ReeOGFMWbMmGjSpEkMHTp0zQyfq2299dbpfurUqWV+RtJer169aNWqVZXUDAAAAAAAAAAAAPBd5UcOWrVqVZx//vlp4LNNmzbxyCOPrBP4TGy//fbp0u0TJ05MZwX9tmnTpsWMGTNixx13jIKCgiqsHgAAAAAAAAAAAKCGhD7vvPPOGDduXDpD58MPP7xmRs+11a5dOw499NCYPn16jBgxolRoNFkWPtG7d+8qqxsAAAAAAAAAAACgxizvPm/evDT0mejUqVM89thjZR6XzPy5xx57RP/+/eOVV16Ja6+9NiZMmBAdOnSI1157Ld5///046KCDokePHlX8DSADkpluv/yydNtmm0Xk52TuGwAAAACoTO4nAgAAAGStnAt9vvXWW7F48eL057Fjx6ZbWc4666w09Nm0adMYOXJk3HrrrfHiiy+mgc9kSfiLL744TjnllMjLy6vibwAZkNyg3Xzz0m1z5kQ0b56pigAAAACAbOV+IgAAAEDWyrnQ53777RdTpkzZpHM233zzGDx4cKXVBAAAAAAAAAAAAFDZci70CUD2KS4uTrdskZ+fn24AAAAAAAAAAFCdCH0C8L0kYc/effrGrLlfRLZo2bxZPHT/fYKfAAAAAAAAAABUK0KfAHzv0GcS+Dzjpvsiv6Ag0+VE8apVcecFfdO6hD4BAAAAAAAAAKhOhD4BqBBJ4LOg0P9ZAQAAAAAAAACAymIKNAAAAAAAAAAAAIAcIPQJAAAAAAAAAAAAkAOEPgEAAAAAAAAAAABygNAnAAAAAAAAAAAAQA4Q+gQAAAAAAAAAAADIAUKfAAAAAAAAAAAAADlA6BMAAAAAAAAAAAAgBwh9AgAAAAAAAAAAAOQAoU8AAAAAAAAAAACAHFCY6QKAKtCoUcRjj63bBgAAAACwNvcTAQAAALKW0CfUBLVrRxx7bKarAAAAAABygfuJAAAAAFnL8u4AAAAAAAAAAAAAOUDoEwAAAAAAAAAAACAHWN4dAACAjHrkkUdi0KBB5fa//vrr0bRp0/V+xsyZM+O2225Lj503b1788Ic/jN69e8dxxx1XCRUDAAAAAABAZgh9AgAAkFGTJk1K96eeemo0aNBgnf66deuu9/wZM2ZEr1694uuvv46DDz44mjVrFs8//3xcfvnl8emnn8Zll11WabUDAAAAAABAVRL6BAAAIKMmT54cderUiUsvvTTy8/M3+fxrr7025syZE3feeWd07949bTvvvPOiT58+MXz48Dj00ENj++23r4TKAQAAAAAAoGpt+tM0IPfMnRuRl1d6S9oAACDDiouL48MPP4xtttnmOwU+k1k+k1k9d9pppzWBz0QSIh0wYECUlJTEo48+WsFVAwBUc+4nAgAAAGQtoU8AAAAy5rPPPoslS5ZEx44dv9P5EydOTIOde+yxxzp9Xbp0iVq1asWECRMqoFIAAAAAAADIPKFPAAAAMrq0eyIvLy+dmXOvvfaKzp07xzHHHBN//etfNyo0mthyyy3X6UsCny1btozp06fH8uXLK6F6AAAAAAAAqFpCnwAAAGQ89PnYY4/Fl19+GYcddljsv//+8cknn8SFF14YN91003rP//rrr9N948aNy+xv2LBhuoT8woULK6F6AAAAAAAAqFqFVXw9AAAAWCNZmr1169bRr1+/OPLII9e0T5s2LU444YQYNmxY7L333rHLLruUef6KFSvSfVFRUZn9q9vN9AkAAAAAAEB1YKZPAAAAMiaZzXPcuHGlAp+Jtm3bxnnnnZf+/PTTT5d7fp06dUqFP9e2OuxZr169CqwaAAAAAAAAMkPoEwAAgKzUuXPndD916tRyj1m9rPv8+fPL7F+wYEHk5eVFgwYNKqlKAAAAAAAAqDpCnwAAAGREcXFxvPfeezFx4sQy+xcvXlxqNs+ybL311uUGQ5PZP2fNmhVbbbVV5Ocb/gIAAAAAAJD7PPUCAAAgY04++eQ45ZRT4ssvv1yn76233kr3P/nJT8o9v2vXrulMnm+88UaZ5yfBzy5dulRw1QAAAAAAAJAZQp8AAABkRDL7Zs+ePaOkpCR+//vfpzN/rjZ58uQYNmxY1KtXL4455phyP2OLLbaIbt26pbOFPv/882valy5dGrfcckv6c+/evSv5mwAAAAAAAEDVKKyi6wAAAMA6LrroovjHP/4RTzzxREyZMiV22223mD17dhrgTEKgN998c7Ro0SI9NpnNMwl3durUKfbbb781n/Hb3/42evXqFeedd14cdNBB6fFjx46Nzz77LH7xi1+kxwMAAAAAAEB1YKZPAAAAMmazzTaLUaNGRd++fWP+/Pnx4IMPxmuvvRbdu3ePRx99NA444IA1xyaBzyFDhpSa0TOx1VZbrTn2lVdeiYcffjjq1q0bV199dVx88cUZ+FYAAAAAAABQOcz0CQAAQEY1btw4LrvssnRbn379+qVbWX74wx+uWc4dAAAAAAAAqiszfQIAAAAAAAAAAADkAKFPAAAAAAAAAAAAgBxgeXeoCRo0iBgyZN02AAAAAIC1uZ8IAAAAkLWEPqEmqFs34pxzMl0FAAAAAJAL3E8EAAAAyFqWdwcAAAAAAAAAAADIAUKfAAAAAAAAAAAAADlA6BMAAAAAAAAAAAAgBwh9AgAAAAAAAAAAAOQAoU8AAAAAAAAAAACAHFCY6QKAKvDFFxGdOpVumzQpolmzTFUEAAAAAGQr9xMBAAAAspbQJ9QEJSX/d6N27TYAAAAAgLW5nwgAAACQtSzvDgAAAAAAAAAAAJADhD4BAAAAAAAAAAAAcoDQJwAAAAAAAAAAAEAOEPoEAAAAAAAAAAAAyAFCnwAAAAAAAAAAAAA5QOgTAAAAAAAAAAAAIAcIfQIAAAAAAAAAAADkAKFPAAAAAAAAAAAAgBwg9AkAAAAAAAAAAACQA4Q+AQAAAAAAAAAAAHKA0CcAAAAAAAAAAABADhD6BAAAAAAAAAAAAMgBQp8AAAAAAAAAAAAAOaAw0wUAVaBevYiBA9dtAwAAAABYm/uJAAAAAFlL6BNqgvr1IwYNynQVAAAAAEAucD8RAAAAIGtZ3h0AAAAAAAAAAAAgBwh9AgAAAAAAAAAAAOQAoU8AAAAAAAAAAACAHCD0CQAAAAAAAAAAAJADhD4BAAAAAAAAAAAAckBhpgsAqsBXX0XstVfptpdfjmjaNFMVAQAAAADZyv1EAAAAgKwl9Ak1wapVER98sG4bAAAAAMDa3E8EAAAAyFqWdwcAAAAAAAAAAADIAWb6BAAAAAAAACrNk08+GSNGjIj//Oc/UadOnejWrVsMGDAgWrduvVHnJ8d/8cUXZfb17t07rrjiigquGAAAIHsJfQIAAAAAAACV4uabb4477rgjOnToECeeeGLMmjUrnnnmmXjllVdi1KhR0bZt2/WeP3fu3DTwud1228W+++67Tn/nzp0rsXoAAIDsI/QJAAAAAAAAVLjJkyengc8uXbrE8OHDo6ioKG0/6KCD4txzz43Bgwen/eszadKkdN+zZ88488wzq6RuAACAbJaf6QIAAAAAAACA6idZ0j1xzjnnrAl8Jvbff//Ydddd48UXX4zZs2dvMDia6NixYyVXCwAAkBuEPgEAAAAAAIAKN2HChCgsLEwDnmvbfffdo6SkJD1mfYQ+AQAASrO8OwAAAAAAAFChli9fHjNnzozWrVuXmuVztbZt26b7Tz/9dIPLu9erVy+ee+65+POf/xz//e9/o0GDBrHPPvvEeeedF5tvvnmlfQcAAIBsZKZPAAAAAAAAoEJ988036UyejRs3LrO/YcOG6X7BggXlfsbSpUvTkOfixYvj9ttvjx122CGOO+64aNGiRYwaNSqOPvromD59eqV9BwAAgGxkpk8AAAAAAACgQq1YsSLdlzXL57fbly1bVu5nzJ07Nzp06BCNGjWKIUOGRJMmTdL2JEx68803x7Bhw+K3v/1tDB8+vFK+AwAAQDYS+gQAAAAAAAAqVJ06dUqFP8ta/j2RLN1enmQJ+Keffnqd9ry8vHRp97/85S/x+uuvx5w5cyzzDgAA1BiWdwcAAAAAAAAqVIMGDSI/P7/c5dtXt69e5n1TFRYWxnbbbZf+PHXq1O9RKQAAQG4R+gQAAAAAAAAqVLJ8ezJT58yZM8uc7XPatGnpPlm+vTyzZ8+ON998M2bNmlVm/5IlS0rNKgoAAFATCH0CAAAAAAAAFa5r165p4PPtt99epy9Zlj1Zpn3nnXcu9/xkafeTTjop7rrrrnX6Fi1aFO+//37UrVs3ttlmmwqvHQAAIFsVZroAoAokb7ieffa6bQAAAAAAa3M/EaggRx99dIwaNSpuvvnmGD58+JoZOf/+97/HW2+9FT169Igtttii3PMPPPDAuOWWW2L06NFx/PHHx7bbbpu2r1y5Mq655pqYN29e9O3bN2rXrl1l3wkAACDThD6hJmjYMGLo0ExXAQAAAADkAvcTgQqy0047Re/eveOhhx6Kww8/PA15Jku2P/vss9GsWbP41a9+tebYN954IyZOnBidOnWK/fbbL21r165dXHjhhXH99dfHcccdFz179oxGjRrFhAkT4sMPP4wuXbrE+eefn8FvCAAAUPWEPgEAAAAAAIBKcfnll8fWW28djz76aDzwwAPRpEmTOPjgg9OwZtu2bdcclwQ+hwwZEkceeeSa0GfitNNOi/bt28e9996bzhCaLBe/5ZZbpmHQU089NYqKijL0zQAAADJD6BMAAAAAAACoFHl5eXHSSSel2/r069cv3crSvXv3dAMAACAiP9MFAAAAAAAAAAAAAFCDQp/9+/ePvffeu8y+xYsXx2233RYHHnhgdO7cOfbdd9+48cYbY8mSJVVeJwAAAAAAAAAAAECNDX0OGTIknn322TL7li9fHmeddVYMHTo02rRpE3369InWrVvHnXfeGX379k37AQAAAAAAAAAAALJdYeSwZcuWxVVXXRWjRo0q95iRI0fGG2+8Eb/85S/j4osvXtM+ePDgGDFiRDz00ENp+BOqtXnzIo44onTbk09GNGmSqYoAAAAAgGzlfiIAAABA1srZ0Oe4cePi6quvjhkzZkT37t1j/PjxZR6XBDuLiorif/7nf9ZZDj4JiyahUKFPqr0VKyLW/t9I0gYAAAAAsDb3EwEAAACyVs4u7/7444/HokWLYuDAgTFs2LAyj0kCodOmTYvOnTtHgwYNSvXVr18/bf/ss8/i888/r6KqAQAAAAAAAAAAAGpY6LNPnz4xduzYOPHEEyMvL6/MY5JAZ6Jdu3Zl9rdt2zbdf/rpp5VYKQAAAAAAAAAAAEANXt59t9122+Ax8+bNS/dNmjQps79hw4bpfv78+RVcHQAAAED2KS4uTrdclJ+fn25khn87QFXL5f/u5LKVK1dmugQAAACguoY+N8aKFSvSfVFRUZn9q9uXLVtWpXUBAAAAVLUkONP7tN7x+dzPIxdt0XyLeOjeh4T3MsC/HaCq5fp/d0pKSmLG9BnRpm2byMW//dRpU9PvAAAAAGSnah36rF27drpfvnx5mf2r2+vXr1+ldQEAAABkIsSRhGfOHXFu5BfkVviteFVxDDllSPodBPeqnn87QFXL5f/uJFYsWxEXdL8gzhl+ThTUKohcrD1kPgEAACBrVevQ5+pl3RcsWFBm/+r2Bg0aVGldAAAAAJmShGcKCnMrgEJ28G8HqGq5+t+dVStX5Wz9q2sHAAAAslfuvSK7Cbbeeut0P3Xq1DL7V7d36NChSusCAAAAAAAAAAAA2FTVOvTZokWL2HLLLeOdd96JxYsXl+pbtGhRvPvuu2l/s2bNMlYjAAAAAAAAAAAAQNT00GfimGOOiSVLlsQtt9xSqj35PWk/8cQTM1YbAAAAAAAAAAAAwMYqjGru1FNPjb/97W9x//33x6RJk2LHHXeMf/3rXzFx4sTYZZddhD4BAAAAAAAAAACAnFDtZ/osKiqKESNGRN++fWPatGkxfPjwmD17dpx11lkxbNiwtB8AAAAAAAAAAAAg21WbmT6nTJlSbl+DBg3isssuSzcAqOmKi4vTLRvk5+enGwAAAAAAAAAANSj0CQBsWBL27N2nb8ya+0Vkg5bNm8VD998n+AlQwy1atChdiWHMmDExY8aMqFWrVmy33XbRp0+f2H///TfqM7p16xZffFH2/33r3bt3XHHFFRVcNQAAAAAAAFQ9oU+oCYqKIo45Zt02oEaGPpPA5xk33Rf5BQWZrWXVqrjzgr5pTUKfADXXwoUL48QTT0xXb/jxj3+c/rxgwYI0AHruuefGBRdcEGeeeeZ6P2Pu3Llp4DMJiu67777r9Hfu3LkSvwEAQDXkfiIAAABA1hL6hJqgceOIUaMyXQWQRZLAZ0Gh/zcAgMy766670sBnr169YtCgQZGXl5e2n3/++XH00UfHrbfeGj179owtt9yy3M+YNGlSuk+O21BAFACAjeB+IgAAAEDWMq0WAAAAGfPss8+mQc8LL7xwTeAz0aJFizjhhBNi1apVMX78+PV+xuTJk9N9x44dK71eAAAAAAAAyCRTfAEAAJAxffr0SZdzb9So0Tp9Rf//EqKLFi1a72cIfQIAAAAAAFBTCH0CAACQMb179y6zvaSkJMaMGZP+vO222673M5Ll3evVqxfPPfdc/PnPf47//ve/0aBBg9hnn33ivPPOi80337xSagcAAAAAAICqZnl3AAAAss7DDz8c77zzTrRt2zb22muvco9bunRpGvJcvHhx3H777bHDDjvEcccdly4PP2rUqDj66KNj+vTpVVo7AAAAAAAAVBYzfQIAAJBVnnnmmRg8eHAUFhbGddddF7Vq1Sr32Llz50aHDh3S5eGHDBkSTZo0WTNT6M033xzDhg2L3/72tzF8+PAq/AYAAAAAAABQOYQ+oSb45puIX/6ydNvdd0c0bpypigAAoNwZPq+66qrIy8uL66+/PnbZZZf1Hp/MBPr000+v056cnyzt/pe//CVef/31mDNnjmXeAQA2lvuJAAAAAFlL6BNqguXLIx5/vHTb7bdnqhoAAFhHcXFx3HDDDXHfffdFUVFR3HjjjXHAAQd8r89MZgrdbrvtYubMmTF16lShTwCAjeV+IgAAAEDWEvoEAAAgo5YvXx4XXnhhjBkzJl2efejQoRuc4XO12bNnp4HONm3aRMuWLdfpX7JkSbqvU6dOhdcNAAAAAAAAVS2/yq8IAAAA/79Vq1bF+eefnwY+k+DmI488stGBz0SytPtJJ50Ud9111zp9ixYtivfffz/q1q0b22yzTQVXDgAAAAAAAFVP6BMAAICMufPOO2PcuHHRqlWrePjhh2PrrbfepPMPPPDAdBn30aNHx5QpU9a0r1y5Mq655pqYN29e9OrVK2rXrl0J1QMAAAAAAEDVsrw7AAAAGZEEMpPQZ6JTp07x2GOPlXlcMvPnHnvsEW+88UZMnDgxPXa//fZL+9q1a5cuDX/99dfHcccdFz179oxGjRrFhAkT4sMPP4wuXbqkM4kCAAAAAABAdSD0CQAAQEa89dZbsXjx4vTnsWPHpltZzjrrrDT0mQQ+hwwZEkceeeSa0GfitNNOi/bt28e9994bf//732PFihWx5ZZbpmHQU089NYqKiqrsOwEAAAAAAEBlEvoEAAAgI5Lg5reXZN+Qfv36pVtZunfvnm4AAAAAAABQneVnugAAAAAAAAAAAAAANkzoEwAAAAAAAAAAACAHCH0CAAAAAAAAAAAA5AChTwAAAAAAAAAAAIAcIPQJAAAAAAAAAAAAkAOEPgEAAAAAAAAAAABygNAnAAAAAAAAAAAAQA4ozHQBQBWoVSuie/d12wAAAADIasXFxekGVSovLwr23rtU06q8vIiVK6vk8iur6DoAAAAAuUjoE2qCJk0iXnwx01UAAAAAsAmSsGfv03rH53M/j1xUUlISM6bPiDZt20QuyuX6K6T2BmstFNbn2KjKf/tTp01NvwcAAAAApQl9AgAAAABkoST4lgQ+zx1xbuQXrBXAywErlq2IC7pfEOcMPycKahVErsnl+nO59m/XHzKfAAAAAOsQ+gQAAAAAyGJJ4LOgMPeCe6tWrkr36q96uVz7t+sHAAAAYF2593o4AAAAAAAAAAAAQA0k9AkAAAAAAAAAAACQA4Q+AQAAAAAAAAAAAHJAYaYLAKrAggURl11Wuu266yIaNsxURQAAAABAlipYsDi2GziiVNsHvzslVjWsl7GaAAAAAPg/Qp9QEyxdGnH77aXbBg0S+gQAAAAA1lGwdEVsddezpdqm/OqEWOV2IgAAAEDGWd4dAAAAAAAAAAAAIAcIfQIAAAAAAAAAAADkAKFPAAAAAAAAAAAAgBwg9AkAAAAAAAAAAACQA4Q+AQAAAAAAAAAAAHKA0CcAAAAAAAAAAABADhD6BAAAAAAAAAAAAMgBQp8AAAAAAAAAAAAAOUDoEwAAAAAAAAAAACAHCH0CAAAAAAAAAAAA5AChTwAAAAAAAAAAAIAcIPQJAAAAAAAAAAAAkAOEPgEAAAAAAAAAAAByQGGmCwCqQEFBxHbbrdsGAAAAALCWkoL8mN+x7TptAAAAAGSe0CfUBE2bRrz/fqarAAAAAABywIqmDePFN4dkugwAAAAAyuDVXAAAAAAAAAAAAIAcIPQJAAAAAAAAAAAAkAMs7w4AkKWKi4vTLVvk5+enGwAAAAAAAACQGUKfAABZKAl79u7TN2bN/SKyRcvmzeKh++8T/AQAAAAAAACADBH6BADI0tBnEvg846b7Ir+gINPlRPGqVXHnBX3TuoQ+AQAAAAAAACAzhD6hJli0KOL3vy/ddvHFEfXrZ6oiADZSEvgsKPT/sgEAAFB1ChYtjQ63PlGq7ePzj4xV9etkrCYAAAAA/o8EAdQEixdH/O53pdvOOUfoEwAAAABYR8HiZbHttSNLtf3n9IOFPgEAAACygLU5AQAAAAAAAAAAAHKA0CcAAAAAAAAAAABADrC8OwAAAOSY4uLidMtF+fn56Zarcvlvv3LlyshlJSUlOf8dclWu/91z+d9OrtYNAAAAAFQeoU8AAADIIUngsPdpvePzuZ9HLtqi+Rbx0L0P5WTwM9f/9kn9U6dNTQNwuVj7p598Gj2P6hl5eXmRa5K/+YzpM6JN2zaRi/zbyZxc/tsDAAAAAJVD6BMAAAByLACUhA7PHXFu5BfkVnCyeFVxDDllSPodcjX0mat/+8SKZSvigu4XRORgdqykuCSK84rj3PvPjYJaBZGrf/tzhp+T0/X7t1P1cvlvDwAAAABUDqFPAAAAyEFJ6LCgMPcCTNVBrv7tV61cFbku1//2uV5/LvO3BwAAAACqi9yblgIAAAAAAAAAAACgBhL6BAAAAAAAAAAAAMgBQp8AAAAAAAAAAAAAOUDoEwAAAAAAAAAAACAHCH0CAAAAAAAAAAAA5AChTwAAAAAAAAAAAIAcIPQJAAAAAAAAAAAAkAMKM10AUAXy8iKaNVu3DQAAAABgbXl5sWyzRuu0AQAAAJB5Qp9QEySBz7lzM10FAAAAAJADljdrFM999kCmywAAAACgDJZ3BwAAAAAAAAAAAMgBQp8AAAAAAAAAAAAAOUDoEwAAAAAAAAAAACAHCH0CAAAAAAAAAAAA5AChTwAAAAAAAAAAAIAcUJjpAoAqsGRJxL33lm477bSIunUzVREAAAAAkKXylyyLdg88X6pt6sn7RXHd2hmrCQAAAID/I/QJNcHChRHnnlu67bjjhD4BAAAAgHUULlwanS+8s1TbzCN/GsuFPgEAAAAyzvLuAAAAAAAAAAAAADlA6BMAAAAAAAAAAAAgBwh9AgAAAAAAAAAAAOSAwkwXAAAAua64uDjdskV+fn66ZQt/HwAAAAAAAICKIfQJAADfQxJm7N2nb8ya+0Vki5bNm8VD99+XFcFGfx8AAAAAAACAiiP0CQAA3zPUmAQaz7jpvsgvKMh0OVG8alXceUHftK5sCDX6+wAAAAAAAABUHKFPAACoAEmgsaDQ/3tdHn8fAAAAAAAAgO+vRk1t8+STT8ZRRx0VO+20U+yxxx5x0UUXxYwZMzJdFgAAQI33fcdrM2fOjMsuuyy6d+8eO+ywQxx++OHx2GOPVWrNAAAAbBxjPgAAgIpTY0KfN998c1x66aWxbNmyOPHEE9MB5TPPPBNHH310TJs2LdPlAQAA1Fjfd7yWPCg8/vjj469//Wvstttu0bt371iyZElcfvnlcd1111XJdwAAAKBsxnwAAAAVq0asrzh58uS44447okuXLjF8+PAoKipK2w866KA499xzY/DgwWk/AAAAuTdeu/baa2POnDlx5513prO+JM4777zo06dP+pmHHnpobL/99lXyfQAAAPh/jPkAAAAqXo2Y6XPEiBHp/pxzzlkzmEzsv//+seuuu8aLL74Ys2fPzmCFAAAANdP3Ha8lM748//zz6RKBqx/+JerUqRMDBgyIkpKSePTRRyv5WwAAAFAWYz4AAICKVyNCnxMmTIjCwsJ08Li23XffPR0QJscAAACQW+O1iRMnpsckywOuLZlJplatWsZ7AAAAGWLMBwAAUPGqfehz+fLlMXPmzNhiiy1KvUG4Wtu2bdP9p59+moHqAAAAaq6KGK999tln6X7LLbdcpy95+NeyZcuYPn16ei0AAACqjjEfAPD/tXcn4DKX7x/Hb1QoS6gsSfatCJVEq6WiVVFCKVKE4vcrtEkrabGklGQrtGqVSkqilLVIWpRSlpBCoXD+1+f+/7/zn3POHEvmzPfMmffrulxzzMw5853nO2fOc89zP/cNAMgeB1gu98cff/gOwKJFi8a8vXDhwn65efNmyw3y5ctnQwYNsNJlC1uePHnCPhwf+2oPDLC8efP612HTcQx5IGeMT0LHpkgRy/PBB+kfv0gRHYTlVDnpXOXE13JOwrlKLjnpfHGukudcCecra5yr5Buf6oMG+LwZuSNe27hxo1/u7mfs2rXLtmzZYsWLF7fcQK/fwQMG25GHHGkW/q/VvkkzqzCgQo55j9pXOu6kHXsN/0Fp9uL4F61yocpJtw04mY9dOP7wJPOxC8cfrmQ+/v099ryldppl+DzxxFLVbdeBiZlHJ/PYJ/vxJ/OxR883iflyBmK+f++g69uEfQgAAAAAcrBcn/T5zz//+GWsHYTR12/fvt1yAy2k16ld23KSksfVzlnjk4OOJ2Fjkz+/2RlnpLsqp69P5rRzldNeyzkJ5yq55LTzxblKnnMlnK/YOFdJOD45bL6cyuIRr+3tz8hNVV/+N+6rY8nq8NqHW7JK9rGXI+ofYckqmY9dOP7wJPOxC8cfrmQ+/v06dq0cnFEq3VUlLLGSeeyT/fiT+diTfb6Z2xDz/Xt5K5cL+xAAAAAA5GDJuE9znxQoUCBdUJhREAQefPDBCT0uAAAAAEh18YjXiPkAAAAAIGci5gMAAACA7JHrkz4LFSrk7deyag0RXB+0kAAAAAAAJE+8FrT427RpU5Y/Q9UZ9VgAAAAAgMQh5gMAAACA7JHrkz7V1uGoo46yVatWxdwFuHLlSr+sXLlyCEcHAAAAAKkrHvFaxYoV/fKnn37KdJt+5urVq61ChQq+0AgAAAAASBxiPgAAAADIHikRAdWvX98DvwULFmS67ZNPPvEdgPXq1Qvl2AAAAAAgle1vvKbv130+/fTTTLfNmzfPf/bxxx8f9+MGAAAAAOwZMR8AAAAAxF9KJH1ecsklfjl48GDbtm1b5Ppp06Z5QNi4cWMrVapUiEcIAAAAAKlpf+M13daoUSP77LPP7L333otcr581ZMgQ/7pdu3bZ+hwAAAAAALER8wEAAABA/OVJS0tLsxRw991324QJE6x8+fLWpEkTW7t2rU2dOtWKFStmzz33nLeXAAAAAADk3HhNlV200FejRg1r2rRp5Pt/+OEHa9OmjW3evNmaN29uJUuWtOnTp9uKFSusU6dO1rt37xCfHQAAAACkNmI+AAAAAIivlEn61NNUQPn88897EHjooYfaSSedZDfeeCMJnwAAAACQBPHao48+asOHD7eWLVvawIED0/0MfZ+qvKg94Pbt230xUdVeWrVq5a0AAQAAAADhIOYDAAAAgPhKmaRPAAAAAAAAAAAAAAAAAACAZJY37AMAAAAAAAAAAAAAAAAAAADAnpH0CQAAAAAAAAAAAAAAAAAAkARI+gQAAAAAAAAAAAAAAAAAAEgCJH0CAAAAAAAAAAAAAAAAAAAkAZI+AQAAAAAAAAAAAAAAAAAAkgBJnwAAAAAAAAAAAAAAAAAAAEnggLAPANmjZ8+etmDBAps5c2bYh5LS/vzzT3vyySft3XfftV9++cUOPPBAq1mzpnXo0MGaNWsW9uGltN9//93Pzfvvv2+rV6+2EiVKWJMmTez666+34sWLh314MLM5c+bYVVddZRdddJENHDgw7MNJaZMmTbL+/ftnefsnn3zC701IPvzwQxszZowtXrzY8uTJY5UqVfK/MS1atAj70FJStWrV9nifli1b8p4Wkh07dtjo0aPtlVdesZUrV1rBggWtbt261q1bNzvuuOPCPjzksrn9xo0b7bHHHrMPPvjA1q1bZ2XKlLFLLrnErr76ajvgAMLw7JizM+aJnY8z3uHMtRn3xM6hGe/Ez40Z88TPexnz+Ni0aZONGDHC3nnnHR/HUqVK2VlnnWXXXHONFStWLN19V61aZcOGDfP3d811ypcvb+3atbNLL700tOPPDWsef/31l40aNcqmTJni88bDDjvMzj33XJ836ncgo2+//daGDh1qCxcu9O+tWrWqderUyc8bAAAAAADJgE9ucqHhw4fb1KlTrWTJkmEfSkrbsmWLtW3b1r7++ms75phj/OvNmzf7InH37t3tP//5j1133XVhH2ZK0nnQ+Vi+fLmdfPLJvnD8/fff2zPPPOMfzr7wwgtWunTpsA/TUv3359Zbb7W0tLSwDwVm9tVXX/mlFv0LFSqU6fZYH54j+40dO9YGDBjgCTAXXnih7dq1y9/DevXqZWvWrLGOHTuGfYgpR3/fY9F7mc6XEsYaNGiQ8OPC/7rxxhvtvffes6OPPtrnAVrg1pz5448/tieeeMJOOeWUsA8RuWRur0X/K664wr777jtfNC5XrpzNnj3bHnroIU8w0iI/4jtnZ8wTOx9nvMOZazPuiZ1DM96Jnxsz5omf9zLm8aHEzcsvv9znKRUqVLDLLrvMfvvtNxs3bpxNmzbNX+9KphVtHGrTpo2fEyWaKzFR5+qOO+7w7+/bt2/YTycp1zz+/vtv69Kli3366af++tbredGiRTZy5EibO3eujR8/3g466KDI/b/88kt/7ev96Pzzz7cCBQr4z+7Ro4fdfvvtfhsAAAAAADleGnKNbdu2pd12221pVatW9X+nnnpq2IeU0h555BE/D/369UvbtWtX5Po1a9akNWrUKK1GjRppK1asCPUYU9X999/v5+bRRx9Nd/0zzzzj1/ft2ze0Y8P/0jkI3sv69OkT9uGkvNatW6fVrl07befOnWEfCv7PsmXL0mrWrJnWvHnztPXr10euX7duXVrDhg3TjjnmmLRNmzaFeoz4f08//bS/n91xxx1hH0rKmjVrlp+Diy++2OfMgU8++SStevXqaU2bNg31+JC75vbBXHPChAmR++3YsSOte/fufv0777wTynPIzXN2xjyx83HGO5y5NuOe2Dk04534uTFjnvh5L2MeH8Hn8Rq37du3R66fP3++v+d07tw5cl23bt38vjNmzIhct3Xr1rRLL700rVq1ammLFy9O+PHnhjWPcePG+W2DBg1Kd/29997r148ePTrd9S1btvT3/K+++ipy3YYNG/z3o1atWj7HBwAA+LeiPzuM/hoAgHjLG3bSKeJD7e6aN29uL774op1++ulhHw7MfHew2oT997//9cuAdiNr9/fOnTu9pRgS7+eff/ad9GrZE01VPkRtfRDu+9nkyZOtcePGYR8KzLzyzTfffGNVqlSxvHmZNuQUqnKmln133XWXVykK6L1NVYouvvhiW79+fajHiP9vGffII4/YUUcdZbfcckvYh5OyPv/888jf+vz580euV3WpihUr2k8//WQbNmwI8QiRW+b227Zti1SgVBWnQL58+ax3797+9XPPPRfKc8itc3bGPLHzccY7nLk2457YOTTjnfi5MWOe+HkvYx4fmgO+9dZbduCBB/p7S3Q1yXr16tkFF1zgc0S916vKp6p61q1bN93n96oyqfcgVZ18/vnnQ3omyb3mEVTy7Nq1a6Z28KqYHf1anjdvnlf6PPvss6169eqR64sXL+7VQrdv326vvPJKNj0jAACQCqI/Oww6qCj+BwAg3mjvnku89NJL3hbpzjvv9EXH6A8sEI4OHTp4S8IiRYpkui34AFDnDIn32GOPxbxerSPl8MMPT/ARIaD2V2ppVb9+fWvfvr1/uItwrVixwrZu3crflRxmxowZ/l514oknZrqtVatW/g85g9qH/vPPP/7eFrRnReIVK1bML7XQmrENoForapG2cOHCIR0dctPc/osvvrC//vrLmjVrlimBSwkuZcuW9RaTShBQUgX2f87OmCd2Ps54hzPXZtwTO4f+7LPPGO8Ez415jSd+3qvW14z5/lMCreaAlStX9qTBjGrWrOkbKTSWBx98sC/6n3zyyZnud/zxx/u5mTNnToKOPPeseei1vnLlSjvhhBOsUKFC6W475JBDrHbt2t72fc2aNVaqVKnIGMc6D8F1uo8SQAEAAPaVPrfS5irNtzXPrlSpkm9orlChAnNrAEDcUbIrFy1CTp8+3dq2bZtu9wjC065du5gfDunDvXfffde/rlatWghHhoz++OMPe+edd3xX/QEHHGDXX3992IeUsvr37++LDvfffz/vZTnEsmXL/FLnQ78jp556qn9grgXRN998M+zDS9lkjHXr1lnVqlXt119/tdtuu80aNWoUOS+qHIKcQRVdZs+e7eeHSuzhOuecc7yi18SJE71qy5YtW2zVqlXWt29fX6i94oor0lXlAf7t3F4JXFKuXLmYP0dJFEq6UBVLxGfOzpgndj7OeIcz12bcEzuHZrwTPzdmzBM/72XM4yOIITRWsWjTkGgcgzE/+uijM91PCZ+quqr7ZfWzUtHerHnszWtZvv/+e7/84YcfsjwPSgrVuQjuCwAAsK9V9zXfnjRpksefa9eu9U0s2ryirgdK+AwqfwIAEA8kfeYSJ510UqadrMiZ9KGrKhjoAyct6CBcmniris0NN9zgk+9BgwbF3OmN7Pf666/7Qv5NN90U+UAWOWchWjsTtUCk1mSqBKLdimpxq9Z8SCwtUosW79SCUhUrtLCnlmc6L926dfPWlQjfqFGj/JLNBDmj4pFa+tWqVcsXvFVJ58wzz7QpU6Z4kk3QwhLY37n977//7tcfeuihMe8fVJTdtGlTQo8zN8/ZGfPEzscZ73Dm2ox7YufQjHfi58aMeeLnvYx5fGj8lDyoSpNLlixJd5taeCphMUj+VKVVKVq0aJZjru/R+xT2fs1jX1/Lwf1jnQdV41J10CBZFwAAYG8pruzatatvIlGHg7feess/Z2ndurXPP9TtQJsRKXgDAIgn2rsDCaQJ3n333eeVaQYOHOg7hxEutV7q3Lmz77hSlSYtcK5evdquueaasA8tpWjx/p577vHFe+3eR86hXYdHHnmk9ejRw1q2bBm5Xgsa2p345JNP2mmnneZttJAYam0W7Bpt0KCBjRgxwtvEybXXXusfIjzwwAPWuHFjP3cIx9KlS701qH43+P0In6rlPP7447Zw4UI75phj/JyoauC0adP8faxkyZLp3uOAfzu3DyozZVU5Nrh++/btCT3W3DxnZ8wTOx9nvMOZazPuiZ1DM96Jnxsz5omf9zLm8aP3EFUP1nu5FvO1UUWJ/MOHD49UjNT7/T///LNXY06lz32zt+MavJb3dH/N6Un6BAAA+0Ibd1TRU3OI22+/3Vq0aBG57e677/aEUP3TZ1n6jAsAgHih0ieQwCpAqtQhWkggASRnOPvss33RWOfkjTfe8Mn2gw8+aIsXLw770FLKrbfeajt37vTECXa55Sx633r//fczJUOp+pOqbYl2KyJx1AIkoAWlYLFaKlWq5O1DtIihSl0Iz+TJkyMtoRE+/Z1Xe8v27dvbyy+/7H93dJ1a56rCyy233OLVGoH9ndsXKFAg3WJyRsEivioIIT5zdsY8sfNxxjucuTbjntg5NOOd+LkxY574eS9jHj+tWrXyhE9toFB1J1VXPeuss3ye0r9/f79PwYIF93rMo9+fsGf58+ffbbJsxtfyns6DruccAACAfaHPUxYtWmRlypSJJHwqEVTXa/OPYk5txNJ9hBbvAIB4IekTyGaa1Knyz1133eVVgIYMGWLnnXde2IeFGMqWLRup8Bm0X0Ji2nXOmjXL+vTpQ1XCJFO7dm2//Omnn8I+lJQStCbTIoQ+LMioZs2afvnjjz8m/Njw//R3ROdIrRQR/lzsxRdf9N+dm2++OV0ykz6I69mzp3/Qpt3YwP7O7YM2kVm1Qg2qBu2pTSX2fs7OmCd2Ps54hzPXZtwTO4dmvBM/N2bMEz/vZczjq3v37p403q9fP0/of+KJJ3yjSvDec/jhh+/VmOucMeb7JmjrnlV1zoyv5d2dB/0OqTJ0cN4AAAD2hiqK658SO3/55Re/Lm/evL75UJdBvKkkUKH4DQAgXkj6BLKRdhLfeOONNmbMGP8ASpfa6Y1wz8ns2bNt5syZMW9XRRX57bffEnxkqd0aVfTBeLVq1SL/rr76ar9eFSr0/759+4Z8pKlHH3YvWbLE2/DF8tdff6WrkoDE0PuUEo127NgRc0doUK1ClUQQjmXLltmqVat8UZvzED61VtSHbuXKlYvZwk9/YyT4QA7Yn7l9xYoVd7shQtcr6UWJF4jPnJ0xT+x8nPEOZ67NuCd2Ds14J35uzJgnft7LmGfP+4yq2ardu17vahP++eef+21VqlTZ7ZjrPUjtPitUqOCJAdh7e/NalsqVK6e7/8qVKzPdV+dA5yLW5gAAAICsaHNJjRo17Pfff7dPP/00UwVyxf/Rcb5Q7RMAEA8HxOWnAMhEu3W0KKxWbapG89RTT0U+VEJ4NNHu3Lmzf3D98ccfZ/oQ/Msvv/RLfciKxFArw/r162e6Xh++vvbaa1a9enVr2rSpB0xIPLU53Lp1qydelChRIt1t8+bN88tatWqFdHSpSe9bderU8fGfO3eunXTSSeluVws50e8OwrFgwQK/DNo9I1yq5KLfm59//tnnARn/9v/www9+ecQRR4R0hMhNc/tjjz3WW0cqiUsf6EYv2mtuoySLhg0bpmszjP2bszPmiZ2PM97hzLUZ98TOoRnvxM+NGfPEz3sZ8/jp3bu3zZgxw9577z0rUqRI5HqN69tvv+3zGf2d3bJli1d1UiKAKoNG03uTkg3VGh77pmTJknb00UfbF1984YkU0a3ZVbVT7++6/bDDDvPrgjnPnDlz7KKLLkr3sz755BO/5DwAAIC9Fcyl9dmK5h7a6KYNh0Fip+Z/QeXxYM6tzYjBfTRlJUhDAAAi5UlEQVRHVNJoxjk5AAB7g78cQDYZOXKkLwprR/zEiRNJ+MwhNHFu0qSJT7CHDx+e7jZVWRk7dqx/OBjdphPZ6+KLL7YePXpk+hd88KrFZf1fC81ILAWY55xzjgemDz74YGQ3YlCt5cknn/Tfl1atWoV6nKmobdu2fqkWw9EtzHRennvuOa9Ax+9MePT3RLSQivBpsVvVGNVeZ+jQoeluU5XA4LoLLrggpCNEbprb58+f3+eRSrYYP358uqTRQYMG+deqAIX4zdkZ88TOxxnvcObajHti59CMd+Lnxox54ue9jHn8qIKkxvzZZ59Nd/3jjz9uK1as8AR/zW1KlSpljRo18kRbJYgGtm3bZkOGDPGvGfN/R38rtYkiGMeA/q/rg/d/qVevns/l33zzTU8Ujf4d0d9e/W7wORcAAMiK5haa+2mzyJo1a2zTpk1+fe3ata1Pnz7WrFmzSPJm0MY9iPeDogNBwqc2Dl1zzTX21VdfkfAJAPhXqPQJZAOVb9fCcLBA9sILL8S8n6ocnHzyyQk+Otx2222+6KAP8rST/rjjjvNWY9OnT/cJ+ODBg+3www8P+zCBHOGmm26y+fPne1vPr7/+2ivirF271hcoFKjq90VVFZBY5557rs2aNcsmT57sX2thTztCVUVEi3T33XefLyohHEH7OH43co5bbrnF//aPGjXKK7qouos+nNPffs3bOnbsyJwMcZvb9+zZ09+jBwwY4K83JQKoWqWqUzZv3tyTGRHfOTtjnliMdzhzbcY9sXNoxjvxc2PGPPHzXsY8PpTUqfdxJdWqqqQSCtXWXVWFNf5du3aN3Pf222+3Nm3a2A033OBjrN8LnRslh3bq1IkuN//SVVdd5e/l48aN86QJVXZetGiRJ9hqjh6d9Kl55D333OO/Czp3Sn7We/9bb71lv/76q/Xr14/PhQEAQEzLly/3+YbmGJq/ac6giuIPP/ywz+tKly6drsJnQPNxKVCgQOQ6zcO10Vlz9yAJFACAfZUnTX91kOtUq1bNJxczZ84M+1BSkhZounXrtsf7denSxXr16pWQY0J62r2tHff6YFUf6Kn9khbYdE5oiZwzaKHh6quv9pYIqsSC8CggHTFihE2bNs0XodUC7sQTT/TfFyoZhkdTOC1YT5o0yb777juv6qKEGC0oqXIFwtOiRQv/AGjhwoXpWsshXKropeQxvZepXaV+Z2rWrGnt27f3SmtAPOf2ml9q4V879vXaU0t4VVO88sorM7VaRXzm7Ix5YufjjHc4c23GPbFzaMY78XNjxjzx817GPD6CSqofffSRf61xvPDCCz2pMHpxX5QgoAqUqg61fft2K1++vFf4VHXJ6OQA7Nuah5L4lTih5M8NGzZ40oUSazt37hxzU6wSdIcNG2YLFizw/1epUsUTb1WdCwAAICNt6unevbvP32rVquWdIr755huP4VUpv1y5clnGoNrwOWXKFO9c06BBA/vwww99k6c2yCk21RwHAIB/g6RPAAAAAAAAAAAAAAAAIMqyZcusQ4cOdtRRR/kmEW0sEXXo+PHHHz3hM1++fJH7Z6z0qSrv7777rj377LP+PeoysXLlSps4cSKFiAAA+4Va0QAAAAAAAAAAAAAAAEBUdw5VaVf3GXUCOvPMM/36v//+2yvjV6hQwf//+++/e2eDrVu3WtGiRdP9jKDquKqVz5s3z37++WcSPgEAcUHSJwAAAAAAAAAAAAAAAPB/1q1bZ4sWLbKWLVtmSviU5cuX2/z5871N+86dO23btm3WsWNHv2/JkiX9PmoFLyNHjvR28BMmTCDhEwAQFyR9AgAAAAAAAAAAAAAAAP9HlTlVxbN+/fqR64KEz/Hjx9vbb79tCxYs8P+r0udff/1l99xzj61du9Z69OhhefPmtYYNG9ro0aO9AqgSPitXrhza8wEA5C4kfQIAAAAAAAAAAAAAAAD/p3z58p64qWqfqt65efNmr+6p5M033njDbytXrpydf/75dvrpp9s333xjL730ko0aNcqaN29uVatWtRo1aljTpk2tZ8+eJHwCAOKKpE8AAAAAAAAAAAAAAACkpLS0NMuTJ0/kUooXL25HHXWUPfnkk/b99997u/dff/3VVq1a5ffp0qWLnXLKKVavXj2/f+3atW3Hjh2eJKrkUCV9lihRwoYOHWr58uUL+RkCAHKbvGEfAAAAAAAAAAAAAAAAABCG7du32z///GOrV6+OXKekTbVpL126tM2YMcOTOXfu3Okt21Xt84YbbogkfG7dutUv69atm+7/QsInACA7UOkTAAAAAAAAAAAAAAAAKUdVOceMGWNLly61lStX2hlnnOGJnS1btrTzzjvPypYtaxs3brSffvrJr1f1TlUBDaqCKhG0YMGC/rNefvllK1y4sJ1wwglhPy0AQC5H0icAAAAAAAAAAAAAAABSyueff27dunWzzZs3W7ly5Sxv3rw2ZcoUr+ypdu7XXnut1alTJ+b3KuHz77//toMOOsj/P336dHv//fft+OOPt2LFiiX4mQAAUg3t3QEAAAAAAAAAAAAAAJAyFi5caFdeeaUdeeSRNmjQIHvjjTds4sSJ1rt3b9uxY4c9//zztmDBgsj9VdFT/vzzT6/6KUHCp7532LBhtm3bNuvTp49X+wQAIDtR6RMAAAAAAAAAAAAAAAAplfBZs2ZN69mzp5188sl+faVKleywww7zKp9PP/20ffHFF1avXj2/LV++fLZp0ybr0qWLJ36q/fsBBxxgc+bMsblz59rBBx9so0ePtgoVKoT87AAAqYBKnwAAAAAAAAAAAAAAAEiJlu4dOnSwY445xnr16hVJ+Ny1a5dfFi1a1Bo0aBBJDk1LS4tU+Vy/fr0nhX799dc2cOBAu/fee23RokV2yimn2Lhx46xq1aohPjMAQCqh0icAADmAAsY8efKEfRgAAAAAAAAAAABArrRs2TJr06aNlS1b1nr06BFJ7tQ6Xd68eT3xU5cFCxb065UYqvU7VfmUihUr2kMPPWQzZ860P/74w7Zs2eIJnyVLlrRChQqF+twAAKmFpE8AQIR2qc2aNctee+01W7p0qa1Zs8avP/LII61hw4Z2xRVXWLly5SzZTZ482W655RZr0qSJPf744wl73GrVqvmlWjwUKVLEv966dauNHDnSg8drr7022x57w4YN9swzz3gQunLlSn/cQw891KpXr25Nmza1iy++2A466KBse3wAAAAA2Fuffvqpt9kLvPnmm1alSpXdfk/Xrl3t/fff968HDBjgMU5Asexnn32W6fo9Uez07LPP2scff2yrVq2yf/75x4oVK2bHHnusNW/e3Fq0aOGLgQAAAACAnO/333+3CRMmeIKn1sR0mZFivLVr19rEiRN9LU/t3zPS92ptDQCAMPGpJAAgspjVtm1bTzycOnWqFShQwBo1amR169a1jRs32vjx431Ba8qUKWEfaq4ydOhQTzzdvn17ti6YNmvWzEaMGOG7Dk888URr3Lix72KcM2eO3XnnnXbBBRd4EAsAAAAAOc2e4lAt3H300UdxfUwlmiqxc+zYsb5BUu3+Tj/9dG/jp+TS//73vx5Dq6oLAAAAACBnW7x4sT322GPWrl073wy4fPlyGzJkiM2YMcP+/vvvSDc+tW+fNGmSvfPOO3bppZd6FU8AAHIiKn0CALyiZ+vWrT25U9Uve/fubeXLl4/crmBHSZ9qV3DzzTdb/vz52cH2L7z11lt+Gd3eQYuH2Wnz5s3enkKVPR944AG76KKL0t2uRE+dbyV/3njjjfbcc89l6/EAAAAAwN5SVZVNmzb5xsSePXtmeT8txqkKp6qtKH6Nx6bIvn37evu+J5980jdERvvhhx/shhtusIULF/omuocffni/HxMAAAAAkD3++usvGzx4sHdxOPXUU70boNq4v/rqqzZs2DC/zxlnnOEbCtU1T3Fgq1at7KabbvLbgpbvAADkJPxlAgB40KKEz7PPPtuGDx+eLuFTtHB2zTXXeLs8JSkqeXDHjh2hHW+yqlSpkv9LZGA4ffp0r+555plnZkr4lJIlS3q1USXyasHyq6++StixAQAAAMDulClTxo455hhbsWKFLVmyJMv7vfHGG3bwwQd7V4N4eO211zyJVFVdMiZ8SoUKFXzBMNjcp4VBAAAAAEDOpHhRSZxy3333eceGXr16+bqZ1sVUAfT111+3MWPGeMKnKoHee++9fn+ti5LwCQDIifjrBAAp7vPPP7e5c+d60t9tt92228ClU6dOVrNmTatXr56tW7cu3W1qd6BkUCWO1qpVy0444QRr376975JLS0vL1G68WrVq1q9fP6+gorZ4DRo0sDp16njFUbVSkF9++SVymx5TC27BbYGff/7Zf9bll19uGzZssD59+vj91ZZeQdkLL7yQ6fF3R4+pSi1qf37sscf6z7r++us9ITLasmXL/HY9tqrKRFMA2KZNG79NPyug/+ufKtUE/1cFVVGyrf7/6KOP+i5Cfa3xjkWVa0466SQf5z0tLuq8SNCWIpZDDz3UOnbs6AFvrPOv567g97TTTrPatWv7Ob7rrrtitoP/N68Dve50u3ZR6ntatGjh5zIwf/586969uzVs2NDHXAmseu2sWrVqt88dAAAAQPI7//zzd9viffXq1TZv3jxr1qyZFShQIC6PGcQju4ujKleu7HGfYtjt27dnun3mzJnWpUsXbwWoWPfcc8+1Rx55xDflZaS4WDFOEIcq3lM8qDbyGU2ePNnjqMcff9yeeuopbzt/3HHH+XEoUTXwwQcf+M8IYsezzjrLYzVt+AQAAACAVBGsTWnt6corr7Qff/zR3nzzTS+Kct1119mFF15oX375pQ0cONATPlu2bGn3339/ZL1PHSAAAMiJSPoEgBSniiiiiigKcHZHbclfeeUVXygqXbp0ugTI8847z0aPHu0tEoLkPSWUKglTbe9iVQb9/vvvPTFTrcWPP/54O+qoo+yLL77wiqIvvvii36bEQCVwlitXzn+eArAPP/wwZhvztm3bepUVLZIp2fDbb7+1O+64w1vS7w0lvyq4U4vzAw44wJ+Hqp5qoU0/+/nnn4/ct3r16t4OXe655550C3cjRozwRMkqVap4i4jdLV5WrFjRv65atar/X4t3F1xwgSfhqs1ErMTKadOmebKnFu2UsLk7StINKn6OHDnSxykWtUrU7kY9fjQloLZr187H9fDDD/cxUYA8ceJEPz9anNzf14EWaNU6sVSpUr5gWbRoUStRooTfNnbsWH/89957z19zWgTVQq7OhQJvvV4AAAAA5F5amNPmtLfffjvmhj4t1un6IDk0HoI4atKkSR6bbtu2Leb9tBnu7rvvzhRLP/jgg9a5c2ePXRXLqn2gYjEtICpRNHrz3uzZsz0GVIyjxUTFPEoo/eSTTzw2DqrLZKQqNGorrxhOMXPZsmXtwAMP9Nu0QKmEU8XTqkqqjXNKCFWsdskll9hPP/0Ut7ECAAAAgJxMm/mCWFLFT7QeN27cOFuzZo3HS4qdFJMpZipcuLDHTAESPgEAORlJnwCQ4pR4KVok+jdUdVKVMFUtRImRSi5UtUq1QFCioJIm3333Xa9kGSvJUhU8lVQZtE5o0qSJ7dq1y26//XZP3FSCo5IoVQlSlUuChbeMlOC5detWv9+oUaO84om+PuKIIzyxNUhuzYqSNpWUqIU4VVhR9U4dsxJAlfio1g9azFu6dGnke1Q1RceoqqfaAShKQtTxKmlTC3C7qzTz0EMPedUXUQKn/q9LJT2qUqbGQW0FM3rppZf8MmhFsTuqjqkFPgW0Oh4lVV5xxRXe0n3WrFmenJkVtbTQ81JQq4TRl19+2YYNG2ZTp071yqqq6qkx2d/XgVo1akFUY63HmTBhQuT1occvUqSIPfvss+ke/9Zbb/WF0h49emS5AAsAAAAg+SmhUnGXKv0vWLAgZtLnYYcd5rFPvGjBT23lFecoNlUHiGuuucaeeOIJj1N0fVZUYVMxqTboKZFTG+YUG2kjmxI6FYMPGTLE7/vbb795HKq47D//+Y/HoYp5FBMp2VTPS/Govs7ohx9+sP79+/tGOf1TvCeKIbWAqSRQVQVVnKWfqcdXhwd1t1Anh33piAEAAAAAyURrfdFxWxD/aIOdujBofUvrT4rFtH6lxE+tT+r7dL3WLaM7KQAAkBOR9AkAKS6oJKnFpH9DCXhaNFLlS1XVPOiggyK3qXJnsPCkRadYyXn6HiVIBrvtVCky+FoLWAULFozcV4FYkCSYVZWVSpUqRf6vr4NKm0EiYVa0iKYFNz2+KktGt/FTFVQFfKpSqcooAVWbUdXTQw45xBfTtLinqqK6nypbZqyauS8uu+wyv1Rl1Wgaa1VGVbUYLTzuDS3w6fg1lgpSP/vsM28FqKTV+vXr+6USQDNScq2ey9VXX22nn3565Holger5aQekfp4C5/19HXTo0CHyddBiXom7CsRvuukmX+TNeH+1m9dOzD0l9AIAAABIbkEVT20oi/bdd995xwFVA41nBRbFqIpdFJepC4Q2GH700Uc2ePBga9++vcdR3bt3j9l5QBvWREmctWvXjlyvGEmxkpIxg0qfSsjcsmWLb9RTV4sgFhIlnd55553+tTbHZaQ4NHojYPC9wX21QU8VbAIaH8Wrum7JkiVeSRQAAAAAcht14lOMqM126n4QHS/pUmtederU8c4MWi8TJX5269bNLrroIm/1rgIm6sZH4icAICcj6RMAUpwWsCRW2+29EQREQcu9jNRqXcmB2i23ePHidLepXbgWvKIVL17cL1WhU7dHUwVMiVVVRS0XohMTA6qkosUttRj/888/s3wewYJXVtVhtAgnSriMpuO/7bbb/Gst+ikhVY+pxNH9oSRHtX5XFRgFqAEll6oCqNpLRCem7o4WF1XJRYmdWqS89NJL/ZyIAlZdr8RPJdlGV3sJguGmTZtm+plKIFV7RVWU0c/fn9eBznXGpOOdO3dGfqaqk8ai9vGxzgkAAACA3EUdEdS6XJUwFQ8Fgg1g8WztHh1jKnFSyZ4DBgywCy+80I488ki/TUmg6kqh2Eot2wOKp4I4plmzZpl+ZpkyZbwrQlDpM7hvsPkxI1WaUdcJtWNXpdNoSt4M4vmAulAoEVbXa/NiRorV1GpeiKMAAAAA5DbaYKfNc4qN1HVBm/GUwKkudcH6l9a01NFBly+88EK6AiZK/FTsp054Kp6ixFASPwEAOVX6TwYBAClHiZWqjLJhw4Z/9f2//vprJBjKim5T67ngvhmTOKMFiYzFihXL8rZYVPkyVrKh2qsrkVQBnv6pGkosq1ev9ku1Dde/rOhnKMDTgmNACZiqOKPkSQWJ9913n8WDFhDVRkLVPuvWreuLm/paSawtW7bc559XqFAhT8rUP9E5105FBb5qk6jKnqom07p1a789OF9amMzO14HaHsYKzLWQmlXSabSMi58AAAAAchfFDKeccop3V9DmtGBjmFq7qyJLdEXNeFM8efHFF/u/IHZU7Dd+/Hj75ptv7JFHHvHH1zEpjtEmRVUKDTY07k8cpdivdOnStnz5cr9vdGwWK44K4lpt6qxVq9ZuH5s4CgAAAEBuo3VErXOps5+68SmOUtLnzJkzvZugCrZok5yKrii5U3GdOgUGhVyCxE+tN6oIi25XsZjoNUEAAHIKkj4BIMVpIUiVS6KrSe6O2s8paNKCm6qcRFeGzEpQiSW65bdkrEqyP3bXyi84xt3dJzhGtQyPlYwaTQto0QHe+vXrvd2DaIHv9ddft6uuusr2lwJOtUVXQql2Hc6bN89bqKvqaMmSJff4/TpOLUL+8ccfMatllihRwiviqKpM37597dVXX7XXXnstkvQZVH/dm4qi+/M6iJWsG9xXr5HmzZvv9ucG1XYAAAAA5F6KW5T0OWXKFI9vtHHt559/th49esT1cbZt2+bVMrdv327HH398ptuVhKmYSW3/Onfu7F0jFEvpmPYlhtrbOEpdEPY1jipSpEjMThgZuzEAAAAAQG6i9b327dt73KiNeNddd513nxs9erR3cNB6m6p/qtDKFVdc4R3ttO550kknWeXKlT1GU+Knvk+b+fSz1H0BAICciKRPAEhxapOnFgXz58/3HW9qtZ0VVV588MEHbcuWLXbXXXdZmzZtIvdfuXJllt+nVnRBkmF2WbNmTczr1U5cO/qUPLi7RElVPFUVSiVrNmrUaJ8eW+3d1RpCYzljxgyv9KKfUaVKFdsfCkjVElBBqBJz9bOlVatWe/X9WnBUNRoFqdrFmNXz14KkFi21UKnKNNFjoiRTVYuJde7UzlBVT7W4Ge/XgarWKLFWC5yqnKrgGgAAAEDqClqdKw7p37+/V/mUCy64IK6PoxhI3RwKFixoc+fOzbKii65XBwYlfQZxVBDHKHFUMWKsDhaKu/Q8tJFScdT333/vcdRxxx2X6b6Kt4LqnXsTRymGCzpePPTQQ/v83AEAAAAgmWk9TJU+tTlQRVVURKVTp05eXET/11rZ9ddf7+t53bt390RQ3a41OCV9aiOdNtgdffTRvvYXz+I1AADEW+Yt4QCAlFKjRg1fbFKFyvvvv3+3lUaGDBniCZ9KRlSVFalfv75fKjExqCoS7YsvvvBkv8KFC2drJRElrC5dujTT9e+++64fV4MGDTJVRommXXwyffr0mLfr55xzzjl2yy23pLv++eef92RM7fwbNGiQB4mqCHPzzTf7At2e7KkCjFq8y9SpU/3YtIh3xhln2N7QQp+CWxk7duxu76uEV1G7i0BQ1UbVdGIllPbr18969erllUTj/TrQQmnQ0j7W48sDDzwQab8BAAAAIHdTEmbjxo09wXL27NlekaVOnTpWrly5uD6OFvcUd2nT4wsvvLDb+yphMzqOUhwTtJqPFccoEfTWW2/1yjISxFFBAmtG7733nseXaj24N90e1AVB/xQfq5pNLHpsbQ5U7AYAAAAAyUxrmwGtJwVrboodVZhF60jffvutlSlTxguMBEVbXnnlFV/nXLFihd932LBh3vEhumMgCZ8AgJyOpE8AgFdJUTKeEgu1+00t8qKpSsngwYMjiYN33HGHFSpUyL9u0aKFB0vLli3zpNHoREdVK+ndu7d/fdlll+026TIetOtOVT0DX3/9tSdiSseOHfeYXHnIIYd4G4cJEyakS35dvny53XvvvZ4YWb58+cj1SmIcOHCgB5G6XYuQ2hGoRNqvvvrKg8S9ScwUJU7GomRVLTqqFcWGDRu8ksy+BJo33nij70pU6woFt5s3b850Hy1GqoKrfu7VV18duV6tLfS9Tz/9tH366aeR61V9U89bY61FSo1JdrwONJZy9913p3v8IAn3mWee8cejLSEAAACQGoLNh4ptFB+df/75cX8MxUVBy3jFNqNGjfKYOJoWEydPnuxxlqp2tm3bNnLblVde6ZeqIvPNN99Erlfy5p133unxlJ6Hvk/xkWJrxWRPPfVUujj0yy+/9DgziM32VhBH3XTTTR4vRXv22Wc9ttRxKWEWAAAAAJKVNrppXVDrRaL1LMVbUqlSJd/stnbtWt8wqJhO63Gnnnqqr92pm6Huo5hLP0exmLoibtq0aY/FWgAAyCnYngAA8CqVkyZNsuuuu85b5amiZM2aNb1CiNqjf/755x7oKCBSdUcl+AWUwPfoo49a586dPQlPwZUWj1QRVK3wtMtOu+R69uyZrc9Bx6HgTe3QVbVTAdxnn33myYdq1bCnlu1qq6cdfkqSVJKhFu9UrUVJkvPnz/dAUc8jSB7V/5XIqPHRQp2SM4MFQu0WVBKpFgdVlTOomBmLKraIKsiobd/pp58eqe4pCi7Vzl0LhsHX++K0007zoPWee+7x56RzVKtWLX++WnTUIqAeVwmrSpCNTqBUhRpVLNX1HTp08Mqbhx12mCe0KpFT1W/0XLPrdaCx07lToK2FU70my5Yt64+tYwgWMuvVq7dPYwIAAAAgOalLhVqoa2OeYq/o2DSeFONpk9vw4cN9g5wuFUepxfqff/7pCZlKOtWxDB061EqVKhX5XnWIUJKm4iJt2jvhhBM8sVPdD1SBUwuLwaY4xVdBHKp27C+++KJvItRjB3FomzZt0iWV7onuq0VLVa5Rm3rFUTo+VbfRRkYthGoTnzbtAQAAAEAy0pqT1s3mzJljH374oa8HKs6KLjqiIidq2/7SSy/5upvWOLVmqA4NivlOPPFELziiLodaU4zetAcAQDIg6RMA4NTm4PXXX/fg5/333/cFISUEKvhRUqiSDdu3b++JoBkpUfC1117zJEe1Otf3q2qmkvH0fdlRfSWj/Pnze6t1BXmzZs3yBEktrimoUyLl3iYZvvrqq17Z8uOPP7aZM2dakSJFPHmxdevW/jyCKpsjR460hQsXWunSpSMLdgG1VFdyqO7Tp08fHxuNRyyq8KLFP1Vb0ePpftFJnxIkjSoAVdXPfaWFPiW9qoqpAmBVKNUioAJcLfSde+65fm71XDLS89DzGTNmjD9fHasSRtu1a+cJmVqkzM7XgRY/VU1ULdwXLVrkr0slm5555pl+bpXgCwAAACA1KD49++yzPfZTjFO8ePFse6yuXbvaWWed5TGyFgLV6k8xkWIcxchKrlRcVKxYsUzfe/vtt3scoy4SShDVAqJiL220vPbaayOdM0TxquJQVfpUHKpNmEWLFvUNfJdffvlex7MBxcJK6lR8q82FS5Ys8dhe7eEVfwYxHgAAAAAkKyV3aoOeEj5VuERdDbR+ddVVV3mRFsWKqt6pmKpXr17exUEb9hRTanOd2rirKIv+nXzyyf79uq/WBAEASBZ50qL7BgEAkGTUir5Jkybenn7evHmWG6lKpwJOJbQG7QwBAAAAAAAAAACAVPbjjz/aY4895lU91eFOG+e0ia9q1arejU4d41QsRl0WtLEv2q5duyJt4ZUICgBAMskb9gEAAIDMVAlGVOlFlWVUlUUVbQAAAAAAAAAAAACYd8i74447vHBK3bp1berUqd6+XR0iVNlTt6ljwyuvvBL5nqAumhI+hYRPAEAyotInACCp5dZKn506dfLnEyR/PvTQQ/+qPToAAAAAAAAAAACQCsaOHWuTJ0+2b7/91ho1amRt2rSxtWvXeov3/v37W+vWrcM+RAAA4uKA+PwYAAAQT7Vq1bK5c+damTJlrHPnziR8AgAAAAAAAAAAADEErdqvuuoqT/acNm2at33/8ssvrUaNGlaxYkWbNGmS1a5d26pVqxb24QIAsN+o9AkAAAAAAAAAAAAAAICkpdSXPHnyRP6vjnoTJkywOXPm2MaNG/26fv362eWXX57ufgAAJCOSPgEAAAAAAAAAAAAAAJCrrF+/3pYuXWoPP/ywff311/b2229b+fLlwz4sAAD2G0mfAAAAAAAAAAAAAAAAyJV27tzpCaAlS5YM+1AAAIgLkj4BAAAAAAAAAAAAAACQKxM+8+XLF/ZhAAAQVyR9AgAAAAAAAAAAAAAAAAAAJIG8YR8AAAAAAAAAAAAAAAAAAAAA9oykTwAAAAAAAAAAAAAAAAAAgCRA0icAAAAAAAAAAAAAAAAAAEASIOkTAAAAAAAAAAAAAAAAAAAgCZD0CQAAAAAAAAAAAAAAAAAAkARI+gQAAAAAAAAAAAAAAAAAAEgCJH0CAAAAAAAAAAAAAAAAAAAkAZI+AQAAAAAAAAAAAAAAAAAAkgBJnwAAAAAAAAAAAAAAAAAAAEmApE8AAAAAAAAAAAAAAAAAAIAkQNInAAAAAAAAAAAAAAAAAABAEiDpEwAAAAAAAAAAAAAAAAAAIAmQ9AkAAAAAAAAAAAAAAAAAAJAESPoEAAAAAAAAAAAAAAAAAABIAiR9AgAAAAAAAAAAAAAAAAAAJAGSPgEAAAAAAAAAAAAAAAAAAJIASZ8AAAAAAAAAAAAAAAAAAACW8/0P7Hhyh3ObpagAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAACn0AAAcACAYAAAAfNBQwAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAXEgAAFxIBZ5/SUgABAABJREFUeJzs3Ql4XHW5P/A3acu+K/siuyAgCAoiKDuIiisq4oYbchVF9KJeN1yvylVRQRQXQBAB2Soi+77vIPtOoS1CgVK60TaZmf/zHjz5pyFJkzbJySSfz/PkJk0yM+85M/HOy+973l9Lo9FoBAAAAAAAAAAAAADDWmvVBQAAAAAAAAAAAACwYEKfAAAAAAAAAAAAAE1A6BMAAAAAAAAAAACgCQh9AgAAAAAAAAAAADQBoU8AAAAAAAAAAACAJiD0CQAAAAAAAAAAANAEhD4BAAAAAAAAAAAAmoDQJwAAAAAAAAAAAEATEPoEAAAAAAAAAAAAaAJCnwAAAAAAAAAAAABNQOgTAAAAAAAAAAAAoAkIfQIAAAAAAAAAAAA0AaFPAAAAAAAAAAAAgCYg9AkAAAAAAAAAAADQBIQ+ARbCpEmT4tWvfnW3H5tssklst9128e53vzt+8YtfxNSpU6MZfP3rXy/q/+///u/5vr/rrrsW3z/99NNfdpv29vZ47LHH+vU4Rx11VHF/eb/0T/kau+6662I4uPzyy+MrX/lK7LbbbrHlllvG6173uth9992L71100UUxUt14440dz0X+DXT11FNPxcyZMyupDQAAAAAAAAAY2YQ+ARbRxhtvHFtvvXXHx2tf+9pYYYUV4qGHHopjjz023va2t8UDDzwQI80111wT73jHO2L8+PFVl8IQmzNnThx44IFx0EEHxbnnnhtz586NjTbaKNZff/2YMWNG8b0vfOELsf/++8cLL7wQo8W8efPiV7/6Vey1117x3HPPVV0OAAAAAAAAADACja26AIBm961vfauY7NnV888/X0zPvOKKK+KLX/xinH/++dHa2nxZ+xNOOCHa2tpilVVWme/7GWjt75RPRobDDz88rrzyyiLkecQRR8QWW2zR8bNGo1EEgvO1f+utt8bnP//5+Mtf/hIjSQa7zzvvvOLrsWP//1upKVOmxDHHHFNhZQAAAAAAAADASNd86SOAJrHiiivGT37yk1hsscViwoQJRRCuGa2zzjqxwQYbxLLLLlt1KQwDkydPjnPOOaf4+uijj54v8JlaWlrizW9+cxx55JHFv2+++ea4/vrrYyRZcskli7+J/AAAAAAAAAAAGEpCnwCDHPzMba9TbvcOze7ee++Ner0eyyyzTK+hx2233TbWXXfd4ut//etfQ1ghAAAAAAAAAMDIJfQJMMja29uLz0svvXS3Pxs/fnwcdNBBxXTEnJr4ute9Lvbaa6/4zne+0+326R/96Efj1a9+dVx11VVx//33xyGHHBJvetObYvPNN4/ddtst/vd//zemTp3abS1z586NP//5z/Ge97yneJzclv7QQw8tJpH2ZNdddy0e7/TTTy/+fdZZZxX/vummm4p//+53vyv+ndt5L6oXXnihmBC5zz77FFtob7nllrHHHnvEN7/5zXjggQe6vc3VV19dnL/tt98+Nttss+KY8hydfPLJMW/evPl+98YbbyxqzY/yeemq/Hn+blfPPvtssZ352972tqK2PIfve9/74rjjjivObXceeeSR+J//+Z/iPOZztM0228S73/3u4jife+65WFg5bTMfO+vIY/7sZz8b11577Xy/8+ijj3Yczz333NPjfeXrLX+n3LK8N+PGjSs+z5w5M2655ZZef/f3v/99XHjhhcXz0Z1LLrkkDjzwwOK5y3OTfwNf+cpXXlbrxIkTY5NNNilqzNDpgo6jfK12vv13v/vd4rWUf2Ovf/3rY//99y9+r1arvex+8rWc93PKKafEaaedFjvvvHNxuz333LN4XXT3OspjzL+/Uv5u+Tr68pe/XHydr9Pens/8nb333ruXMwoAAAAAAAAAjHZjqy4AYCR74oknigmfra2tRaCtszlz5hSBtzJcuOaaa8bGG29cBAEzhJkf//jHP4rw4mte85qX3XeGPk899dRoNBrFRMUMlebjZajziiuuKMKZOY2xNH369OLxbr/99uLfG264YVHXBRdcEFdeeWXHVMYFecUrXhFbb711PPjgg0Xwb/XVVy8++nr7nkybNi0+8IEPxOOPPx6LLbZYsa18Bgzz32eccUb8/e9/j2OOOSbe8pa3dNzmxBNPjB/96EfF16usskoRDHz++eeLQGp+5LGdcMIJMWbMmFhUt956a3zuc58r6sy68njz3GdA8e677y7q++Mf/xgrr7xyx23yXH/yk5+M2bNnx3LLLVdMfc1waJ67++67L84+++wiVJjnrz/yPOS26fmc5/P45JNPFs95fnzhC1+Igw8+uPi99ddfvwimZh1ZX4Ziu7rtttuK19ryyy8fu++++wIfO5/7pZZaqjimfD1l2DFDullHV6961au6vY8MSmawMl/f5WsqA4+TJk2Kc889N84///z4xje+ER/5yEeKn6+99trF5ND8W8lwZHd/D3fccUdxHLn1eufg5EUXXRSHHXZY8fe2xBJLFOfkxRdfLJ7P/PjnP/8Zv/nNb7oNZedj5flZbbXViuc769t0002L566r/NvNc5KvhZTnevHFF49ll122COfm41xzzTVFIHullVZ62e0z/J3e+9739nr+AQAAAAAAAIDRzaRPgAGWkwMzeHjZZZfFZz7zmWIr7AzHZaizsz/84Q9FiC23gM+Jg/n7Z555ZhHcy39neDBDZDlJszsnnXRS7LDDDnH55ZcXgbKLL764CANmwLEMSnaWEyoz/JcBtgwb5m0ydJfTHddYY41eJ0F2ttNOOxUTEMvg3bve9a7i371NMeyLDExm3RkqzBBq1pdBuAy35tTEtra2Yopp5xDrz372s+LrX/ziF8XEzzx/eR7/9Kc/FQG/Mvi5qJ5++umOwGcGU6+77roinJg1Zqgwp23m1NUvfelL893uxz/+cfEcZjAyp3Dmec/zndMvM0SY9/vb3/623/Vk4HPfffctQoR5zPm5fOyjjjoqrr/++o7fzcBhylq7m2pZhg3f/va3F2HbBcnwak4uTbNmzSpen3nbDOPmlM58LfQ2OTb96le/Kl57+VrM5z3PZx5Hfv7Wt74VLS0t8cMf/nC+yaVlGDKPI/+muspQa8rXShl2zucka8qg7X/9138Vf2/5e/mc5XORz0Geq5wC2p0MfGbwNF9TWe+ll15aHH93vv3tbxfHVcpJruXfSU4yzb+xfA13N001XwdZR/7t5t8TAAAAAAAAAEBPhD4BFtHHPvaxjq2e8yNDXm984xuLkFmG3zL42TUMmDLglpM2cypjbmXeWf77Qx/6UPF1ToXsTk5H/PWvf11MuCzl9tLlJMwMrJWeeeaZIlSX/u///m++SYnrrbdeERYtt+2uSgb0yi26O09CzEmJGQTMLezf8IY3FBMb02OPPVaE+XJCZW633tmOO+5YBG3zvgbiuDJEmoHP3KL9Bz/4wXzBv5xImucvg4a53XkGVrseUwYvOwcqc3Ll1772tdhll11eFgbui9wiPkOROXEzZVgwX2/vfOc7i38fe+yxHb+b5yZ/L7emz3BoZ3n+cqpmfydMZvA1w6qda8/gYgZhM0CZ5z0fN6fN5jTUzrKOnL6a8rx1noCbx5EB2QMOOKC43S9/+cuOn+V95jTOKVOmxA033DDffXYOU3Y+jgzAzps3rwhu5t9gBoFL+TeQfz/5mBnofPjhh192nDmpM0Oj5aTY7iZ09kX+nb/nPe+ZL5zaWX4vg6x5Ljr/PQMAAAAAAAAAdCX0CbCIclvnnE5Zfmy11VbFNt5lyC8DbhnQ6zplMacA3nnnnbHffvt1e7+5TXUqQ45d5fTADKV1tcEGGxSfZ8yY0fG9DCJmqCxDerlNdlcZXMxQZZXK7eFz8mNuq925/lVXXTWOP/74InBZBvfWWmutGDt2bLzwwgvFVuFlwLL0+c9/vgj15eTHRXXJJZcUn8tQZVevfOUri6mrKSevdt3e/PDDDy8mOWY4sZQB0pyS+dnPfrbf9ey///7FNMzuwpjlJNCcMJoyKPnWt76128BhTq7Mian5Gt5iiy36VUPWn9NljzvuuCKo2XV790ceeaSYCJph1AxelnJya/47f7+77eZTOe0y/z6ee+65jr+HMtxbbgvf+fWdodx8fW+33XbF9/Ix8rF6e94ypL3JJpsUAdPOz1vnYGgZrF1UGUbN5yyP6dFHH53vZ7Z2BwAAAAAAAAD6amyffxOAbuUUyjJo1lmGznIL6Qwq/uUvfylCn123kc4plBlavOOOO4qpoBMnTiw+33fffcVExNTdVtZlELI7ZSiyvb2943s5FTNluK8nm2666XxTKofapz71qWIr9pxKethhhxWBzgwiZhg1p5fmFuqdg4456fTTn/50EZzM0Fx+rLzyysWU1Zz0mbdZ2MmMneUW5pMnT+6YTHniiSd2+3vl73QO9OVxZOjxX//6VzG9MgOEOa00j2nnnXfuCLr2V+dJrV1DjOVz//jjjxfPaTlpNKduZshz5syZHdufL2rYMCdgZti1DLxOnTq12EL9iiuuKCZv5t9Ahilz4mZOzEwPPfRQ8fmpp57qmGbbVefpoHk+87kuj+P0008vtmfPIG35Wi/DrDlNs3yN5N9RGTb93ve+1+PW9U8++WTH43SVr6eBkiHl/N+JnFKa9R566KHF9zMEmgHZFVZYoZj8CgAAAAAAAADQG6FPgEGSIbMPfvCDRYgxQ29/+9vfiqmOq6++evHzDN/96Ec/KqYWdp4AmUHQnICYgb2rr766x/vvz7blOc0x9Ta1sPOW5VXI85JhuNyaPMOfuV347bffXnz85je/KaY4fuMb34jdd9+94zYZnNt8882LUG1urZ7nOs9nfmRoNCdDfuc73ym2iF9Y+TyVHnzwwQX+fucJpRk8PeOMM+IPf/hDEYTMAGkGa/Pjxz/+cbFN+/e///2XTclckJzeuaDvv/jiix1fv/71ry8CphmEvPDCC4vwZJ6r3O49z1NPkzD7K0O2e++9d/GR26kfeOCBxTn761//Gl/+8peLQGZ5fvK83nbbbX1+7abXve51sd566xUh5ssuu6x4fjM0nec27/vd7353t8/D3XffvcDH6fz7pe4m6S6KPO8Z+szXZ56frLkM3u6zzz49BlMBAAAAAAAAAEpCnwCDbLfdditCnznp89577+0IfX7uc58rpiLmtMKPfOQjxSTL3BY+twTPQGeGRHsLffZHThHsGmDsqqdt5IdSTnTMYGd+PPDAA3HTTTcVIbkMJ+YkzS9+8Ytx6qmnxmtf+9qO2+yxxx7FRx5b/n5+ZKgyJzeW28TnNNDepkmWyi3RO8ttxUsZ1uttWmp3Mrz7i1/8ogj25sTPfM6vu+66IvB46623FhNAc3Jlf7YR767OrsHF5Zdffr6f5TTPrCOPIcOH//znP4vXZL4+y0maC5K/v99++xVTaH/yk590O+G2lK/zr33ta8UE13xuMmS6yiqrdJzPvfbaK37961/38YjnP46f//znxXFk6PP8888vJnpuu+22sfbaa3f8Xufzmee6p6DsUNpzzz2LkG++lvO532qrrYrnIeVzAgAAAAAAAACwIK0L/A0AFknnLcnLoGFu557hv5STLb/+9a8X0xFz4mM5wTO3vx4oOR0x3X///d2GHdPDDz8cVcrJnhnwLMOnuVX5Rz/60WLKZ25LnpM+M3R47rnnFj/P38vjyY+UW5bvuuuuxbnMIGC5nXhuL16GIXM78lK59XdnU6ZM6XYC6itf+coFnqMMqd53333F5MmUteYW6zfffHPx73xec+Lm5z//+Tj55JOLj3xtZBgyQ6D90d1W5ClDxSmDxOuss858P8spmHn8Wc+0adPi4osv7vfW7nn7DHzmlug5XXNByu3RW1tbO4LH5Wux3Oa9OzmlNMO7EydOLM5jd8eRQeAMk2b4s7vQZAZAy+e7t+ctt1fP5y6nsA62fF7e/va3F1/n+S+fiwwG5wcAAAAAAAAAwIIIfQIMspw6mTLgl1uRp0mTJnX8vPxe19BbOQGwa+htYWQYMkOHGazMAGVXGTzsS4ivpzDrompvby/CfB//+Me7rSNDl+WEzXq9Xnw+7bTT4l3velccdthh3QZZ3/SmN3V8XZ7DFVdcsdfgZBmE7GrnnXcuPuc28uXjd5ah0o997GPFMfz5z3/uCDXmZMc8pjy/XeVW5eX0ye7uszdnnnlmt98/6aSTis9vfvObO8LDpVVXXbX4fp7rs846K26//fZiwmd5bH1VbgWfE1czLNmb8jWcz0W5dflOO+1UhDHz/F977bXd3u6EE04oAr/5/Hbepj7ltNA8jgzt5nnIiZl5HnNyaGcZAs7pn+nEE0/s9nEyVLr//vsXx3TBBRfEospwa6mncPW+++7b8Vor/xb7E7wFAAAAAAAAAEY3oU+AQZKhr9y2u9xaPENpq622WvH1+uuv3/F7Ockyt/4u5VTCz3zmMzFhwoTi311Dbwsjpyx+8pOfLL7+5je/Gddff33Hz3JqY24139OW4T0pt8/OraoX1dixYzsmIP7oRz8qpi92lucxJzumt7zlLcXnnIyawcYHH3ww/vd//3e++qdOnRpHHnlk8fWWW24535TJcivzI444IqZPn97xXOXEyHwuunPggQcWx5sBwwyZ5v2X8vjz5zmxcdlll40Pf/jDxfc32WSTIqiagdMvf/nL801uzcBi1peTKvN+cwJof2RYMLdqL6eV5uef/vSncdlllxXnJKeJdqechnnUUUcVdWXYMc99f3ziE5+IddddtzjfGczMoGk53bSU5ye3YP/9739fTLfM4y/lxNb3v//9xdf5/ay5lOHX008/PY4++uji33kuM7zZVRmS/NWvflU8d29961s7to3v7Atf+EIRMM3psD/+8Y/nm+aZr5t83vJvL2vaZ599YlF13lI+/666s8UWWxRTbPN1k6HVfL4G4rEBAAAAAAAAgNGhf0kPAF7mhz/84cuCaTlNMUNdzz33XPHvzTbbLL773e92/Pw1r3lNEVrMbciPO+64YvLiWmutVQQHyymgO+ywQzEJMYNqGQ7sLvzWHwcffHA89thjRYDygAMOKIJ7GVLL8FtOKMwJjOVU0r7IY8it0zMsmRMfM7h4+OGHL3R9hx56aBGqzC3KMxSYQbyczJlbrpfbrn/oQx/qCH3mxMcMe2YIMyc5nnHGGcWW5hlmfOKJJ2Lu3LnF7TNEWsrj/NKXvhTf/va3i+3D85gzCJr3n9M4d9lllyKw+K9//Wu+2l71qlfFL3/5y6LGDBBeeOGFseGGGxaBwQzn5vOd5zJDjmWoNGWwc7/99isea/fddy+e4wwn5nOcgdMMJH7/+9+PlVZaqV/nKgPExx57bDHtNO8zJ1Zm8DIDhBlu7Gmr8Dy+fKwytLowEyYzQHv88ccX5+KOO+4oXv8/+clPijqWW2654rhyW/sMY+a5yJ/l67+zb3zjG8XU2Xz9/Nd//VfxXOYk0vybKWvLY8znqqfjyDry76W349hmm23iBz/4QfG6zOmhOZ10gw02KP6myhpziuyf/vSnjkmkiyJrytdtHkcGbzPcfcghh3S8ZktZbz5PGZzN4+w8gRYAAAAAAAAAoDdCnwCLKEOTXS2++OJFuC7DabnFd3cTFXMSYm57/be//a0IKWZwMsNfeZsMCua22/l1TgzMaYjlttoLK0NtORlx/PjxxWPm9uO5Rfv2229fhOuuuuqqfoU+cxpphiVzm+oMPuaUy0WRW3Tn1MjcHj0nWeZ9ZjAwz8luu+0WH/jAB162FXmek5yemtuuZ1DzkUceKYKPGdLMc5fh1q6ByryfvE2GAHOiaN4mg5+f/exni8mS5aTOrjIgmtuV5+2uvvrqIkCbAdMM+WVANyeprr322vPdJoOhZ599dhEqzOmq+Vxm0DBDjnvssUcxNXOjjTbq97n61re+Fdttt12ccsopxesvA8Fve9vbimPICaM9yXPzjne8owjJbr755sUk0oWxxhprFAHKfJ7yI8OfGdbMMOvyyy9fbF2/6667Fuc6/93d38dvf/vbIvScgee777477rvvvuI1kMeVoch8bjtvl971tZzTMfP1ks91b5NSc7rpVlttVbyurrvuuo7XfYY/8/WUz1vnoO6iyr+xDBrn8eRrOP+2u8pjy0mz+fqxtTsAAAAAAAAA0B8tjUyfAACjQm55ntNev/Od7/QYcGVwZcA7g58rr7xyEbTOia8AAAAAAAAAAH3R/QgtAGDEyS3sc0v13GJ+USfHsvBOP/30jimkAp8AAAAAAAAAQH/Y3h0ARrCnn3465syZE7Nnz47vfe970dbWFh/84Adj2WWXrbq0UeXee+8ttrq/4oor4pRTTim2qN9///2rLgsAAAAAAAAAaDJCnwAwgt18883xla98pePfuaX4wQcfXGlNo9Ghhx4aEyZMmO/fq666aqU1AQAAAAAAAADNx/buADCCrb/++vGKV7willhiidh+++3jxBNPjBVXXLHqskadrbfeupjuudpqqxUh3IMOOqjqkgAAAAAAAACAJtTSaDQaVRcBAAAAAAAAAAAAQO9M+gQAAAAAAAAAAABoAkKfAAAAAAAAAAAAAE1A6BMAAAAAAAAAAACgCYytugAA6K+f//znccIJJ8S5554br3rVq+LVr371Qt3PpZdeGmuttdZC3fapp56KZZZZpvhYVB/96EfjpptuioMOOigOPfTQGAjTpk2LP//5z3HZZZfFE088Ee3t7bHaaqvFDjvsEJ/61Kdi7bXXnu/3H3/88Xj7298en/zkJ+PLX/7ygNQAAAD0bkG9zNixY2PppZcu+pY3v/nNxXv55ZZbbsAev9FoFL3VaaedFpMnT46llloqdt999/jRj34Ujz76aPzf//1f3HbbbTF79ux4xSteEccee2yvNR911FFx9NFH9/jzlpaWWGyxxeKVr3xlbLrppvGhD30odtxxxwE7nl133bU4jh/+8Ifx/ve/P4bKzJkzY/z48UX/9cADDxT9WB5n9l3bb7997LfffrHeeusN+OO++OKL8dxzzy10Xzucla+lrbfeOk455ZSqywEAYJSYNGlS7LbbbvOt33zrW99a4O3+9Kc/xRFHHFF8veqqq8ZVV101IL1NT33ikksuGauvvnpst9128fGPf/xlaz4D7cYbb4yPfexji7y2NhoNxhrgorj//vvjjDPOiOuvvz6efvrpmDt3bqy00kqx0UYbxc477xz77rtvLLHEEjESlf894/jjj483velNo6a/BkYuoU8Amsott9wSf/zjH+MTn/hEEfhMuQjU1bx58+Luu+8uvt544427DWcuvvji/X78vN/f/va3cdxxx8U555wzIKHPgfbII48U5yebtVxUXXPNNYsGLYOduViWdefiWeeGJs9l/oeBP/zhD7HTTjvFNttsU+kxAADAaLLuuusWiyzd9R8TJ06Me+65p/g466yz4m9/+1uxuDcQcqHjpz/9afF19g0rrLBCscAxa9asoj+YMmVK0Uvk4k8ugPR18SMDj5tvvnm3IdMMRGZvkguYl1xySfzXf/1XfOlLX4pmdfnll8f//M//xPPPP1/8O89h9qAvvPBCPPzww0UI9OSTT46DDz64WOQbKP/4xz+KUO4XvvCFIQ24AgDAaHLhhRfGN7/5zWKtpTfnnXfeoDx+9n5d+79arRYzZswoLtR78MEHi4v4fvWrXxVBUejNr3/962KNs16vF+ub66yzTowbNy6eeeaZuPrqq4uPXIP9zW9+E5tttlmMFvproFkJfQLQNHJa5Xe/+91isk3nxbLupn50vhozr8LMqx0HQi56HnPMMTGcz1E2JRn43GKLLYompZwok1eoffvb3y6uwvziF79Y/MeKnNZTysXWvLrv8MMPj7PPPrto9AAAgMH32c9+Nt773vd2+7NcjMkFiFxozH4kA4Y5nXMgnH/++cXnnPr/i1/8ouP7V155ZfFYubCZQdMNNtigX/e78sor9zqdMXdO+NrXvhY33HBDseCU0z5f//rXR7PJiwHL0Ozee+8dn//854uAbCnPYR7fX//61zjyyCNjzpw5AxZwzfvLvm+k+vCHPxxve9vbiglGAABQhZyome/pb7311l77lbxQrxxCMtDe9773FWs+PT1uXlyWkxuzv8o1n+4uJoR05plnFmHO3OHjxz/+ceyxxx4xZsyY+QbKfOMb34g77rij2GUkg8wj7fVUhrPXWGONUdVfAyNXa9UFAEBfnX766fHQQw8VW0gM5JaGI8kVV1xRNGbZtOV2eJ23EMyAZzYuOdUzrwLNqz87y6v68tzmOc5zDQAAVK+1tTXe9a53xWc+85ni37kF24QJEwbkvsvplNtuu223389t2Psb+OyL1VZbLX75y1/G8ssvX/y7Gbfvzl0ofvaznxVfZ9gzj6dz4DOtssoqxUV1n/vc54p/H3vssYO2GDzS5OJivva6LsYBAMBQeeMb31h8vuCCC/oUJHvNa14TQym3dC97kunTp8f48eOH9PFpLr/73e+Kz1/96lfjrW9963yBz5T9V160mGuJ+d8ETjzxxBhp8hjzw8WFwEgh9AlAU2hrayuajWxC9t1336rLGbZyUk655X13Wz7mlvY5RSfdddddL/t5bluQV69m85fnHAAAGB522WWXjq/zQq2BkFNEy+3Y+/L9gbTiiivGVlttNaDHM1Rym/rvfOc7xbaKeQy5k0JvcleF7M/yvB5//PFDVicAALDwMhiXLrrooqIH6C30mRfr5fT/oZYXnq277rrF1zmhEbrzwgsvxBNPPFF8veWWW/Z68d3uu+9efH3nnXcOWX0ALByhTwCaQjbVOVp/++23j1VXXXXA7vexxx4rJq/kNgabb755bLPNNvGBD3yg2C4xt97r7KMf/WjHlvFpzz33jFe/+tVx4403zre9el5NmdvPv/nNby62WH/d614Xe+21V7EomI/XVzmpM+8/P/oqa88rO3PrhZ6U/3GiXMjtOokmz3Ge64svvrjPjwsAAAyuXEQsdV5wzH6k7BuyH+lO+fOyd8neJv89efLk4t+5ZXz+e9dddy0+579T/ry8bW7zPljH1HUBtawvdyrorVfK3+urmTNnFlvZvfvd7y56tAxr7rPPPvHrX/+6mIrTH7m9Y+6wkMoJrL3J8Oz//u//FoHPH/zgBy/7+X333Rff/va3i0XivIAve9M3velNxX13nSpUHnv53H3rW98q/p3f7+zZZ5+NI444otgiPRf18phza8jckn7u3Lk91nrdddfFgQceWFws+NrXvraYMnvyyScX/WNv/WlOoM1tJ/N2WX9ORfr0pz9d9PLdKV9ruRXlD3/4w3jDG95Q1Pje9743pk2b1nGcH/rQh7q9/SWXXFLUmf1rPl7231/5ylfinnvu6fb3M6D717/+tbi/7PvzNllrTmm9/PLLezwfAACMXrml+8orr1ysl9x2223d/s6jjz5avKfN3RNyp4SuvvzlLxfva3PNqCfnnHNO8TsLGxpddtlli8+zZs0qPv/85z8v7i/7nd56mvydfB/eW3/QFwvzXjv7qew7sy8o1+ayV8se8LnnnnvZ75e9SPYr3Sl7yK59UZo3b178+c9/jg9+8IPF42Sfk2t2ucX5lClTegxJZi15DvP3s6fKdcRvfvOb8cADD8TCyiBl9klZR/Y/uaZ36qmnFuewlL3XW97yluJ4ertosOwFc41zQXLYS2lB/U/2df/85z+L11F38vX+ta99LXbeeefiudtuu+2KNckLL7xwvt/LPj/XVLPGXHNd0HEcdthhi9TD53+zyPs59NBDi9d39rLla7F8/K6vo97663xe8us8vp6G5Pz73/+OTTfdtJjya3t4oApCnwA0hXJ7jJ122mnA7jMb6Xe+853FG/ds7DbeeOOiKf/Xv/5VNHs59fKpp57q+P38eTYIpc0226xYkCsb6gyJfvKTnyyanWyaxo0bV9wmtyzM7RdzO/VcwLr33ntjsOTjZdOTC4Tdyeb2sssuK77ecMMNu/2dXCxL2dQBAADDqyfKoGQuOi1q35C9TDnJMyfD5L9f9apXFZ/LSTH58/x3fuQWbwNp6tSpHSHUXMAZTLmgmL1fLg49+OCDxcVueay5QFsuIpUhzr4oF4hyJ4pyy8cFyR4tP5Zaaqn5vp+Lo9kn/u1vfysWN7Ou3KZxxowZcdVVV8UhhxwyX/g1J4Z2fu7K56zzTg+5wPX2t789/vSnPxXTXPL+cpv0DET+9Kc/LRYWn3nmmZfVmOfiE5/4RFx55ZXFAl1ODZo0aVJ8//vfL+roSQZZDzjggCLgmYthm2yySdEPX3311cWC4Ze+9KUeF8m+973vxUknnVQ8Jzn9NY9rhRVW6PGxMtj83//938UCctbZ0tJSLMRlr3vuuecWffxf/vKX+W6Tx5ILf/lYuVifr+W8TS6sZng0F+B/9atf9fiYAACMTtl7ZTiwty3eyz4t3393Jy+8Stdcc03RA3Wn3JY9+4L+yve65QTHsicoHzN7nwzo9faYWXfuELewFua99u23317s6Jchvex7su/IYS9Zb+5C9573vKcI0w2EXPvL/icvwsu1v1yvy7WxvP8MAuZ6WvZPneVFaNlXZC25tpf91HrrrVdcWHfGGWcU5zd7tYXZqW///fcvLphbZ511inOVNWVoMy9oy56mfN3lOUh///vfu72vXI88//zz53u+e7P00ksXfWPKQOPXv/71uPnmm+cLm5Yy6JznKPuzrvKCwHyd5usng7H53GWPm6/v3AEjL8Qr7zN7tfI4cj22Oxk4Lv+2Or/+F6WHz9/JYG0GObO+DIj2tB7aW3/9jne8I5ZYYoni9ZC9Z3fy+cmQ7g477DCgA4sA+kroE4BhLxuEcjEwr34bCNlI5VWE2URlw3fttdcWDWZeiZbNSi5yZiPxuc99rmNaTk5e6dyc5sLbKaecUlzBlf7whz8UdWYjdPrppxfhyjPPPDOuuOKK4t/ZKM2ePbtoFPviwx/+cPEfDMr/aDAQshnKIGs2W9kwdac8x3ks3TV8AADA0MlFkBNPPLFjMkUu6Ky22mqLdJ/Z22Qvkz1K+uxnP1v8O6eI5Of8d8qf57/zYyAvwMvt3HPxL/ujJZdcsggaDpZ8jNxePRd8cspIXqCXfV8uzmSvltNJ8mfZ+3Xd7aEnuYiU1lxzzVhmmWUWurZcQMzFx1wkymBk9qVnn312sXiXgcly0k+GN3NBLeXiaOfnLqeB5r/z+ymni+Sx5MJU9roZUM0wZF7Ul6HMnFCTC7/5eJ3lIl0uqOUCY043ycfPfjZr+shHPtLjxM6cHJohy5wck7tb5AJmLoTm7X/5y18WC4B5PBk27U4uDGdvnfVlD33MMcf0es6yJ//HP/5R/A388Y9/LI4v68zPWXf2ujk5NOsuZS35nOdWhbnYmMeSt8ljzslL6dhjj53vok8AAEjle/KetnjP97p5wVPuDNednEyfF2DlRVDdrfXk+/d8D50XlOVkwv7Kda2yV8jeJuX6VrnO011oMHvMMjC4MEHTzhbmvXYOXck+Ladzlj1Qnpu8n6w9z8lvf/vbWFT5fGUQMXdWyPORj5E9R56zfNzsrbNvygvKOl8Ul33G448/XoT/MuyXvUquG2bQM5/nfC6zj+uvO+64o5gKmecojzlDsXluMpCZ56vzMZfPS9aea5Vd5W1zEmaGGft6UWj+d4Dsz/K85ONnn5cTajNw+vvf/75YN+1uh8BSnou84C97xpx4essttxT3kz12/veKDLFm79l52mqGPrNHywsQuwtp5vORwd/srcsLKhe1h89+Ny90zdtlfVl3hjK701t/nb1++XfdU2g1738g/o4AFpbQJwDDXk7GzDf92Uj0dDVWf+ViVoY5c6x/NimdF+qy6cqmLq/gykakrxMvc5Epazz44INf1mTlv8tt6bpr0LqTTfIGG2xQfAyEbEqzgUy5jUVP2/LlOc7/wJDnvKet8QAAgIGT79OzX+j8sd9++xWTJXJLwR/96EfFBVm5VXcG24a7XDDrejz5kQshuU1dHlcuKOUFc3lhWk5NGSx5AV4u2OVODbn41Hn6Ri7sZIgwF5gygNnXLezLRdXs2RZFLjRm75W15aJWLhaXctpl7iKRclHxscce69N9ZkA0Fy5zm8TsdZdbbrmOn+U0mQxVZv+bC3Sdp5WUFzjmxM5cfM3eNmVfnIuD+bx1t1hcLkzmYmpeuFjerlwgzwBmOdE0p4Z2la/vfF2XejunOVmnDD/ncZS7VKQ8j1l31p+LmBk4LZXTjXKibOc+OG+TAee3vvWtxWuyfF4BAKCUYcGcMpihxZxQ2Vlu8/3www8XE/17mla/oKmN5aTAfG+bj9MX2R9MnDixeO9fvt/O97oZkCuV0x/zgqmuwz0yMFhO2FzUXSQW5r12eZussZywmHKiZvZAu+yyS9GjLapLL720eM7yvOaa3/rrr9/xs9zBL/vsvCju+eefn2/78bK+nPLauT/J22Q/ns/3G97whj5fNFjK3ix7/87HlgHGHFCTcgeEDDyWEyfzMXp63SxM2DAH2GR/3Hm4TgZHsy/MrdzzosFcM82L8l588cWX3T6/n71W7rzwsY99rHiOO4ebM8yb8mLSPKepc5izu+BkeWw5uTPDoQPVw+dFjuUujfnfHcr77q/y7ygDpF23lM8Qb9aQf/ud//YAhpLQJwDDXrkwlG/sF2WbiVI2TeXk0GxMupPN5e67797RGPZFXv115513Fouz3ckJNqm/jeBAyEkr3/jGN4qGbIsttii+7kku6pWTg/I/HAAAAIMrFwpy4mHnj1ycyomYORUmw2ynnnpqsciS79eHu9xRoevx5EdeVJZbmOeCSE6FzMXGniZuDJR8jJTBws6LUqU8n+WWjbmQ0xdlb9fTluV9lSHJDL9mILI7nZ/r7hbdejvennZ2eOUrX9lxzsvjzUk6d911V/F1bjfYnY9//OMv+14GR3PhK6d85rF0J8979vK50JxTWbrqz24eOVknX1t5oWIuAHannI6UvXm+1lJOC0q5mJmLrF23isxFwyOOOKLHCyMBABi9MiyWwcXutngvJ3d2voipOxnMy/vJ96jlrgF93dr96KOPLt6ndv7YfPPNi/WrfA+b610ZuMxBJ52DbXkBVk51zAvycmDJYE0nXJj32hloTLmteU457dxX5cVruVteufvEoih7ozxXeS666rwjXudesDymDIpmUDEDsqXsbTLUmBfY9bc3z+eku4vcsofJ+8rH6bzVfOfgbucJnLllfZ637MP6Ox02e6nsP/N1lwNs8rXT+eLD7KHy/Od56TydNddpc+pob71m7g6SActcA836SuXrLKeAdjZ16tRiwmnnbeAHoofPoHUe10DYbrvtivXi7EO7Tuot/44y1Nw5vAwwlMYO6aMBwELIN/6pvCprUWWQsWwisznuSf4sm5C+TlRJ2RzlFYvlFV75WPk5m6GcSpJ62x5hMOTknGz4yyv5chv6BYVn84rD3B6hXCQDAAAGT07EKBdCsl/I9+K5wJRBz1zQyUWngVq0GAo5dSO3aSvlok8uAuYW33ls5STKRdkava/KnRZyWkhPF/SVvVrXBdielFu/5XEMhOwjcwE4a80e8oknnii+7lxPd1tJdjVr1qzi/JaTME888cRuf6/8nfL+M1yc958Lobmg1Z3ueufy9rlo29NzmQt42YdmsLS73ro8l32RdaZcfCx30uiq83nK+nKLwXyt5baFN910U/ziF78oPnLKT07oyYlKOZVmIC4wBQBgZMqwXr63zi2mcypjGa7MLdLzfWQ5QKQna621VhEeu+GGG4rJhoceemjx/ewBcsvrnBSY0y27s/rqqxcfXfuHXC8r39Pm+9mu8r191p1bredjllPyyxBoBgZ7Cu/1x8K81z7ssMOKnQ7yAric1J+15lTLvE1OvixDlwPVC2YwsJze2VU5vTHX8bKXyOf2U5/6VBHwzXOVtea5ymEqWV/ugJDTQRdmcmT2Rd3JwGAec9aYr4fyucqwcYZLs5fK104+fsogal5Ul6+ZvKhvYeSOh/nxhS98objAMC/SzABmvlZyXTB70kMOOSROO+20+Xqx9PnPf77H+83dIFLnXja3SP/+979fBEcz1Fpe+Je7LOZabb5+Ovehi9rD5/rmQF0sWwZSc401z0059CdDoPn3n2ztDlRJ6BOAYa/c9qGcprKocruCUm9B0nLRKhfO+nq/uR1EXnXX+crEbMBzCkk2UFdffXUMlWw6cquJcnuEbJxy4a8v4dnyXHfdrgAAABhcOZUiFzy+973vFQs4OdklF3py8SQXn5pROYljq622ive///3FQk/uupATRvoT+luU/i8X8fKjN50nuPSm3I4+w4d5m770WHkxY07hyQXfrtNBciu9XFDsLH9v3333jb/97W+xML1uuVDWl+Mtt95beumle/zd7kKd5eMt6Ph76637sxhX1puPm4uSC1L2s7lIm1tfnnzyycX2f2WgNj/+8pe/FPV9+tOfjoMOOmiht/0DAGDkygvwMniZUyxz4Ef+O3cxyC2os8/py8VsObUxg3u5fpRbT+f7znLK5z777NPjpMC8XQbzFkbeNkOfOTkx34vn+/0yMJhhzYUNDHa2MO+1MziZu9PlgJLcDSBry4sE8yMviMxQYIYEcyrloij7lXzeuk4g7SrPSdaR9eZznetqObk0w58ZusydOPIjh6zkRY65m96Cwr5d9dZvlT/rvFNgrtPltMsMP2Y9ZeizfN2Uk0AXVT5O7gaRHxn0zGPLQGa+1vN1nuubnXvlvvRinX8/e748jgyQ5uu/DH2Wa5ddQ5OL2sMP9AV9WV/+d5k87rxIM/97TV7kmmvXOcG2p10oAIaC0CcAw175Bn2gAoidG6tsCHLyR29h094asc4+97nPFdvGZwPzkY98pLjab6ONNiqmnmTwMxfrhir0mecqr7bLqyvL7QWyWe7rFgPluTbtBAAAqpPbreXC0rXXXhs/+9nPiskg3U1x6W0aZAYNh4vcCi8Djhn4zMkhX/nKV+KEE04ogq790Z9jygWs7Ptyi7qepuf0V25Pn/1VLgzmwu0ee+yxwNvkQl1OvckJLrnQlb1ZBj6//vWvFz/PaS55P9lDbrDBBrH88ssXFxP2J/TZ+ULJfIyNN964X7frHBrtqrvAZtkrLygsW/aXfe2tF1RnLqyXu1n0VZ7vT3ziE8VHhnXzecv+PbeMzykxv/zlL4tePn8OAACdZVgx34Nm75IhwAx99nVr967TDnPqfl4ElxfEZbBuIMN7XWW4Li9Yy4n7GfzMrcDLoN1APubCvNfOISnZH2XPkxM/8/dzAmkG6/L85ATQiy666GXbsve0A0J3PWLZP3z7298u1uz6I9cNM/yYHw888ECx1pbHldMw8zn84he/WOzM8drXvnZA+tiyp8oplZ3l85S9ZJ6LvDA0w7Q5dTO3Uc+pqH31ne98p6g/p1bmlNWe5POUr9N8vHxu8rWTocbyeciptPlc9VceR4Y+czrmN7/5zSI8eddddxX3W27VPpg9/KLIEHAGbvO5zz4714J7CqwCDLX+/RdVAKhAebVhOX1kUa2zzjrF1Yfp7rvv7vH3yp9laHNB8oq3stHJq/9y4S63zsgrETPwmbLZHQq5UJdXTpaBz7yCMhdW+xr47HyuB+JKTwAAYOEXFzNcmJMUc9v3r33tay8L5o0ZM2a+af9d5fbww0lu25cLeCl7qFw47ao8pu6Op7/HVE7l7LwdXVc5PSQXnHIaZ1/kZI+8yC/lVJsFbb2ex1GGN3Orw7I3y94xvfvd744//vGP8cEPfjC23nrrIvC5MD1kLhCWPdzDDz/c4+/louV9993XcaFjTidJua1fhnG70912iHksKScc9RQYzdftvffe2+feelGfyzyG7IVzETFDuSmPM3v2crrPaqutVpzz/NvKyULlQmK5cAcAAF3lek/KMFy+/8/wWl7U1NfgXYbp3v72txdfX3zxxXHzzTfHtGnTOrbZHixlKC0fM98jZy+w0korxU477TQg99/f99r5Hj37hzz+lOtnr3/964shJjktND+yDy63oV+UHrEv/UM5vTWneZbK7dTLqZvZL330ox8tpnzmduM56TOP49xzz+3XuepuK/IyDJrhytT1wr0MGOdFgfk7eTFoPo/pne98Z8faY1/kziF53jP8uyA57bS8YC9fK53PZb5mu+5S0dktt9xSbFHfeWJpyv4510vz9tmvZXiy3MK+a7B3MHr4RVWGpPP8l89Fnv98HgCqJPQJwLBXvsHP6SC5gLOosoF44xvfWHx94okndvs72fzmeP5yq4lS5wk0nRf2Jk2a1PH15ptv/rL7y7rLqzbLhafB8t///d/FlZHZGOcVjIceemi/bp/NWDZenRfxAACA6qZjZtizXHw64ogj5vt5TvjobRGpXBQaTnI7wzIAmBMbs//q7pi6O56cOHn99df3+bHKRcbcPrDrwlNqb28vJnXkVuo//elP+3y/OfEle66cxPrb3/6219/NKa3ZM2Y/mY/VtY/saTu4rLlznZ2VWyN2DZyWi865lWIGLrvKiSk5aTUXYv/85z93hFg32WSTlz1mZzmVpbvJQRlQzdpycbY72QfnomDWm9NMF0UuTOdib74ucpGtOxkizgXZnGJU/veDfK4yUJvbR3aVC3XbbrvtkPTqAAA0r5zMucYaa8STTz5ZvPfNaY+5RXqGOfsqe46yR8vw4FBMCszJjjkEJacUliHF/gYGe9Pf99oZ5Muppx//+Me7DQ9myLEMHHbuZ3rrEe+8885uQ59lL5hTWZ977rle689dKFL2NtkrZX0ZWu0qL7Irg5nd9Vu9yaBwdzso5AWCOVVz5ZVX7nZyaBk4zMDmwr5uynBiDrs566yzev3dfK3kGmFO9SwvdszgadnDZ6/ZnZzQ+uEPf7iYfptB2t4CyDkxt/OxDUUP35ue+uvS7rvvXpyPvKAxn68M0WbvXYZiAaoi9AnAsJdXOWZQMxuo7hqFhd0msWx0MxjZeSpJTjD5zGc+U7xpz4WvbPBKna84y+a+1DkcmVf7ZYNWygkreX955Vnqa3A1r1DLK+Lyo6/Gjx8fl19+efH1Zz/72X5vWZEyMJoNeG6hMJhXmAIAAH2Tixk5ITPlAkNOz+h8kVxuPZcyEFpupZ2LFTk9I/uT4WbxxRcvtqYr+6Pcaq5rmDBdffXVxSSdUi7k5TZ6PS3YdScXnXLxLKea5DZ2nfu47LkygJo9Vy5IfvKTn+zXom/2XOlXv/pVsUjYdRJJhjrzorwyXJnTa7bYYouX9ZEZqOw8WSb706OOOip+//vfd3yv62JX2ZvmYnNnBx54YPGzXHA77LDD5pt8kr+bP88FvJwem+em9IUvfKFjcmm+xsrFruxts5byIsbOsmfM+yvDu7n43Xnh88ILL+x4bj/wgQ90XNC5sHKizvvf//7i6y9/+csdF2qmfNzc9vDoo48u/p3HlhNqUgZAy/OcPXPnhbx8zk466aTi64GadgQAwMiUUwlTbkueysmdfZW9QE6NzPflZ555ZtGD7LPPPjGYshfKi6+y7yr7i4EMmvb3vXauuWVoMteg8j19590NcornkUceWfRD2dPkBNCuPeLxxx8/35pZTnvM++lOhg/zsbJH/tSnPjVfv5aP8d3vfreYJpqBv7KvyXXD8nn90Y9+VARKO8v+NNcVuw6M6Yvs+bKf7dyjZRA3d+pLGWTsbse+PMdZVwYlc1JrXjRYXrTXVzvssEPHNurf+ta3imPrPMwm5Zpovi6zR075uQzgpkMOOaT4nK+jDPl2nrqa/42i/Hn2yuXgne6O45xzzinCu7krY+fneLB7+N701F+X8nkp/1az/0+2dgeGg5f2tgWAYSzfuGeDkAs6uXC1/fbbL/J95tWC2dRkc5MLWtlklFskdN5GIReMOjdZeSVXLjTlG/9csMtFumxksrnL7T3ySr3jjjuuuFJurbXWKhbTysYpm6qcRpJX8mVDWS5A9SQXzMoFq2zk+iK3BCzlVokf+tCHevzd17zmNUXgtas8xynPc3+2hAcAAAZHLkJ9//vfLxZJcmEl+5jsYfL9ek6PzEWPfG+f26TlYlqG6zIgmZNTckpGLozkxV3DSfYbOXXm7LPPLhbacnGpnPKR38/pIdmbZRgxF4NyESYXdnLS40EHHRS/+93v+vQ4OYkyJ3HmYlE+zm677VZsK5fnNO8/z2cuPOXCbbnNeV/lrgrZI/7f//1fsViXH7k4lVsa5sJiLlKVPW32jXkxYNfb58JeXiiYdZWhyLxdLrjlBM6sM7dc77rVe/ZzDz74YNEDXnnllcW0nLyvnL7yy1/+srjvrCeDl3m8Gd7MCxFzKkqey1yoK8PC5eSST3/608X95WspQ5yrr756UUtu2ZgTXvI1VG6rWMrF0+x5TznllOI1mgHRrDvrLaft5OLiN7/5zRgIOYknF0vzYsd8TldZZZViGm726OXiaT5euVCZ8txk6DR7/5yam9Ng8tiyL89zmwvTOVEnX1cAANCTXAPK9Z9c48k+Y8cdd+z3fWRQLLc+z7WofN/aeeeGwbyIMN8/52NmYLC/fU9vFua9dgY799tvv6J/zT4k19LygrLsK7KPyp4je4vOUxTzvX9eFJg9bobvssfJnil7nOw/spfMnrKz7MOOOeaYos+577774h3veEfRc+Vj5e3yfKT/+Z//mS/Amb1UrpPlVMe86CzXBPN5yv6m7HFy7a2/oc98vjM0mhMis/7sX3J7+ZQDXPbff/9ub5fTRbPPX9TpsLkDRfaCGc7NXRDzI6fXZl9Ynsvsj/O85UWNXdcXMwybv5M9X97XscceG+uuu25xHGVYMs9vnvOejiMDyOXgmuz7h7qH70lP/XVn+RrLEHO+bvJY+vv8AwwGkz4BaArl1YLZ1A2UnOD597//vWhI8w16XuX3/PPPx9Zbb11MI8mtA7JZ7Cqv4srQaE4SyQYnG9eUV+P94Ac/KK7WzEY2g5rZfOQiazY/+R8DsoFKnSeSDJSsvfOVirnN4G233dbjRzYw3bnqqqvmO+cAAED18oKzcqEsFzo6T/DMniYnbeSFZrlAluHI7HEyHJoLLl2DesNFLgqWC3k5pfTZZ58tvs5pIjkpJhfnMsSYC2H5s1wky5Dodttt16/HyR4tp57mhXu5KJSLiTlZJM9R9oW5OJiLOgvjE5/4RLFdYIYf83FysSwXB7Pe3DkhJ4/kz7sGPlP2itl35kJnhkWzpjzWvAAxF9myXy2niZQLY53PXZ6PXLDM10PnaTe5IJiTOQ844IAiMJs/z/BmLlbmQmIGhrPv7Song+brKgO5eRy5C0beJvvcfLzUdfvKXHjLCTnZ7+Zx5GstF1TL48v7ywBpTncdCHk/uQCYC8W5YJhh1ny8nBSUr4tcZM7Qa9fXfE6WzcX1/J3s5bNfz4s0c2JQ9v9//etfF3hhJgAAo1uGFzOgmPbYY4+F2iI9t9ku36sO1aTADBmW4dLuttNeVP19r50BvuzrMlSY/UZOcswL4ZZbbrmivs59UCl7q+yd8vvZQ2bvlD1A9lt5X9lPdSfX+PLnX/3qV4sL2TI0mmtj2XNmP5UXG+ZW7p3lzzLcl1M5MySbx5K9Ua77ZQAx1/uyB+qvfLycVJqvo+zRMuCa5yx7pu4GtHRWvlbyws8Mry6MvO1PfvKTYoeEPG95bLmGmceWF+1lYDP72uwXy8mnXWVPnb16Pg/5nOZtc20yQ5N5oWP21p0vLuyqfP3lxaudd1kcyh6+O731151fg+WE1fw7zuApQNVaGp1nbAPAMJXNW15FmQtVOa1ko402qrqkESkb67xaLxdWc2rpcF0cBgAAYOhcccUVxXb2Ocklp4cCAAD9l4HIDIxlSDEnCg7FGkyG8vKCqbxgK7cmz0mKNJcMof7whz+Mt771rR3bizO0cteMvMAyL/DMiywzvAxQNZM+AWgK5RZ+KbeJYHDkFXopt00Q+AQAABgdclrMBz/4wbjnnnu6/XkuSKec4AIAACycnLJYTjwcqjWY3M47J+TnZESBz+Z+3eQuH1Qjd3DMwGfuBCnwCQwXQp8ANI28+jG3NDzrrLNi6tSpVZcz4uQ5zW0u8hx33ToDAACAkSsneN5xxx3Fdn9TpkyZb5pJXhyYHzkZKLdgBAAA+u7ee++NyZMnx8knnxynnHJKsc32/vvvP6iPmVuY57bp5513Xvz6178uvnfAAQcM6mMycGbPnl1Mhc3dD7/zne8UX2+88caxww47VF3aqJJbyuffbk7I/d73vld87xOf+ETVZQF0GPv/vwSA4W3s2LHFAlQuMv3mN7+Jb3/721WXNKLkOc1GMs9xnmsAAABGh6985Stx6623xk033RS77rprrLPOOrHEEksUC1zTpk2L1tbW+OpXvxrbbrtt1aUCAEBTOfTQQ2PChAnz/XvVVVcd1Mf86U9/WgTVSjkhcostthjUx2TgzJw5sxiEU8p+7PDDD6+0ptHohBNO6NghMe24446x1157VVoTQGcmfQLQVLbccsv4zGc+U7zJ7twks2jyXOY5PfDAA4tzDAAAwOix3nrrFVOADjnkkGKCzHPPPRcPP/xwLLPMMvHud787Tj311PjkJz9ZdZkAANB0tt5662K652qrrVZcbHXQQQcN+mO+9rWvLS7iWmmllYr38Tktkuax8sorF7sxjBs3rujPjjnmmHj9619fdVmjzmabbRZLLbVULLfccvHe9743fvWrX1VdEsB8WhqNRmP+bwEAAEA1vvSlL8Vtt90WV111VZ9v8/zzzxcTqy+//PJ45plnYo011oj3ve99xXY7plcDAAAML/o+AACARWPSJwAAAMPC0UcfHeeff36/bjN9+vT46Ec/Gn/5y1+Kq68/9rGPxZJLLhk/+9nP4stf/vKg1QoAAED/6fsAAAAWnUvfAAAAqNTcuXPjBz/4QZx++un9vm1OennooYfi8MMPj/3337/43qGHHlpMjrnwwgvjoosuij333HMQqgYAAKCv9H0AAAADx6RPAAAAKnPZZZfF3nvvXSz87bTTTv267Zw5c+Jvf/tbrL766rHffvt1fH/MmDHx1a9+tfj61FNPHfCaAQAA6Dt9HwAAwMAS+gQAAKAyZ5xxRsyaNauY2HLsscf267Z33nlnzJ49O7bddttobZ2/vV177bVjrbXWiptvvjlqtdoAVw0AAEBf6fsAAAAGltAnAAAAlfn4xz8el156abFFX0tLS79uO2HChOLzOuus0+3PcwFw3rx5MWnSpAGpFQAAgP7T9wEAAAyssQN8fwAAANBn22233ULfdtq0acXnFVZYodufL7vsssXn6dOnL/RjAAAAsGj0fQAAAAPLpE8AAACaUk5zSYsttli3Py+/P3fu3CGtCwAAgIGh7wMAAHg5oU8AAACa0hJLLFF8bmtr63VxcOmllx7SugAAABgY+j4AAICXE/oEAACgKS2//PK9buM3Y8aM4vMyyywzpHUBAAAwMPR9AAAALyf0CQAAQFNaf/31i89PPPFEtz/P7y+11FKxxhprDHFlAAAADAR9HwAAwMsJfQIAANCUNt9882ILv5tuuinq9fp8P5s4cWJMnjw5ttpqqxgzZkxlNQIAALDw9H0AAAAvJ/QJAABAU1p88cXjHe94R0yaNClOPPHEju/XarU44ogjiq8//OEPV1ghAAAAi0LfBwAA8HJju/keAAAADCv33XdfXHLJJbHmmmvGe9/73o7vf+lLX4prrrkmfvzjH8cNN9wQG264YVx33XVxzz33xN577x277bZbpXUDAADQN/o+AACAvjHpEwAAgKZY/Dv66KPj7LPPnu/7K620Upx66qmx7777xl133VVMfpkzZ04cdthhxdSXlpaWymoGAACg7/R9AAAAfdPSaDQaffxdAAAAAAAAAAAAACpi0icAAAAAAAAAAABAExD6BAAAAAAAAAAAAGgCQp8AAAAAAAAAAAAATUDoEwAAAAAAAAAAAKAJCH0CAAAAAAAAAAAANAGhTwAAAAAAAAAAAIAmIPQJAAAAAAAAAAAA0ASEPgEAAAAAAAAAAACagNAnAAAAAAAAAAAAQBMQ+gQAAAAAAAAAAABoAkKfAAAAAAAAAAAAAE1A6BMAAAAAAAAAAACgCQh9AgAAAAAAAAAAADQBoU8AAAAAAAAAAACAJiD0CQAAAAAAAAAAANAEhD4BAAAAAAAAAAAAmoDQJwAAAAAAAAAAAEATEPoEAAAAAAAAAAAAaAJCnwAAAAAAAAAAAABNQOgTAAAAAAAAAAAAoAkIfQIAAAAAAAAAAAA0AaFPAAAAAAAAAAAAgCYg9AkAAAAAAAAAAADQBIQ+AQAAAAAAAAAAAJqA0CcAAAAAAAAAAABAExD6BAAAAAAAAAAAAGgCQp8AAAAAAAAAAAAATUDoEwAAAAAAAAAAAKAJCH0CAAAAAAAAAAAANAGhTwAAAAAAAAAAAIAmIPQJAAAAAAAAAAAA0ASEPgEAAAAAAAAAAACagNAnAAAAAAAAAAAAQBMQ+gQAAAAAAAAAAABoAkKfAAAAAAAAAAAAAE1A6BMAAAAAAAAAAACgCQh9AgAAAAAAAAAAADQBoU8AAAAAAAAAAACAJiD0CQAAAAAAAAAAANAEhD4BAAAAAAAAAAAAmoDQJwAAAAAAAAAAAEATEPoEAAAAAAAAAAAAaAJCnwAAAAAAAAAAAABNQOgTAAAAAAAAAAAAoAkIfQIAAAAAAAAAAAA0AaFPAAAAAAAAAAAAgCYg9AkAAAAAAAAAAADQBIQ+AQAAAAAAAAAAAJqA0CcAAAAAAAAAAABAExD6BAAAAAAAAAAAAGgCQp8AAAAAAAAAAAAATUDoEwAAAAAAAAAAAKAJCH0CAAAAAAAAAAAANAGhTwAAAAAAAAAAAIAmIPQJAAAAAAAAAAAA0ASEPgEAAAAAAAAAAACagNAnAAAAAAAAAAAAQBMQ+gQAAAAAAAAAAABoAkKfAAAAAAAAAAAAAE1A6BMAAAAAAAAAAACgCQh9AgAAAAAAAAAAADQBoU8AAAAAAAAAAACAJiD0CQAAAAAAAAAAANAEhD4BAAAAAAAAAAAAmoDQJwAAAAAAAAAAAEATEPoEAAAAAAAAAAAAaAJjqy4AAJpdo97I/xPRaEQUX5cf+cP8PxHR0hLRUn5uiWht/c/nlmjJzwAAAAAAAAAAsABCnwCMWo0MZM56MRrTZ0ZjxuyIOXOjMXdeRPHR1unref/5uvvvRXv7wheRec9x4yIWXyxaFn/p80tfL9bL9176HEsuHi3LLh0tyy0TLUsuPpCnBgAAAAAAAACAYailUSReAGDkaNTrETNnvxTmnD4rGi/MjCiCnbNe+t4LL30d+VGrx4iw2LgiABoZAF3uP0HQ/3w93/eWXrLqSgEAAAAAAAAAWEhCnwA0pUZO5ZwyNRrPTI36M88XnxvPTovGCzOKwGexzTovN3ZMRE4HXXG5aH3litGy8krRsvKK0bLKStHyyhWiZawh4AAAAAAAAAAAw5XQJwDDVqO9/aUgZxHufH6+gGcR7GRgtbQUYdAiBFqGQcvPKy4fLa25Fz0AAAAAAAAAAFUR+gSgco1646VJnZOeivqkp6Px1LMvhTyfnx7h/00ND2PHRMsrVnhpIujqK0frWqtG61qrRcsKy1ZdGQAAAAAAAADAqCH0CcDQBzynPBeNSU9HfeJ/Qp5PPh0xt63q0lgYyy4drWuuGi1rvxQCzTBoTgsFAAAAAAAAAGDgCX0CMGga9fpLW7P/J9xZn/RUNCZPiZgn4DmiLbPUS+HP/4RAW9deTRAUAAAAAAAAAGAACH0CMGAac+ZG/dFJUX9kYtQfmxyNJwU8+Y+llyzCn63rrxWtG6wTLeusFi1jxlRdFQAAAAAAAABAUxH6BGBgQp4PPxGNyU9H1P2/FfpgsXHRuu6a0brhOtG64drRsvbq0TKmteqqAAAAAAAAAACGNaFPAPoX8nxschHwzKBnY1KGPOtVl8VICYGut2YxBVQIFAAAAAAAAACge0KfAPSoMXfeS5M8hTwZaov/ZxJoGQJdZ/VoaRUCBQAAAAAAAABGN6FPAObTeH561O55OOr3PBL1R56IaK9VXRJELLlEtG66XozZbMNo3XT9aFli8aorAgAAAAAAAAAYckKfAKNc/r+BxqSnonb3w1G/95FoTJ5SdUnQuzGt0br+2tGaAdDNN4zWlZavuiIAAAAAAAAAgCEh9AkwCjXa2qP+0ONRv/vhqN37SMT0mVWXBAutZbVXFuHPnAJabAPf0lJ1SQAAAAAAAAAAg0LoE2CUaMyYVQQ867l1+4OPR8xrq7okGHjLLh1jXrP+S1NAN143WhYbV3VFAAAAAAAAAAADRugTYARrzJwdtdvvj9rt90Xj8SdzL/eqS4KhM25stL56vRiz9aZFCLRl3NiqKwIAAAAAAAAAWCRCnwAjTGNeW9Tveihqt90b9QcmRNTrVZcE1VtisRjz2ldH6zavidYN1omWVlvAAwAAAAAAAADNR+gTYARo1OvFlu21W++J+t0PRcy1dTv0aPllYszrNo0xGQBdc9WqqwEAAAAAAAAA6DOhT4AmVp/476jdcm/U7rg/YsasqsuBptOy2itjzNavKQKgLSsuV3U5AAAAAAAAAAC9EvoEaDL156ZF/dZ7i+3bG1OmVl0OjAwtES3rrVWEP8dsuUm0LLVE1RUBAAAAAAAAALyM0CdAE2jMayumedZuuDMaEyZXXQ6MbGPGROtmG8SY7beM1o3XjZaWlqorAgAAAAAAAAAoCH0CDGP1p56N2vX/itotd0e8OLfqcmDUaXnFCjHmjVvGmG03j5Zll666HAAAAAAAAABglBP6BBhmGu3tUf/XA9F+/b+i8eikqssByumfW2xUTP8cs9Grqq4GAAAAAAAAABilhD4BhonG89Oj/drbo3bjnRGzXqy6HKAHLausFGN22DrGvGGzaFli8arLAQAAAAAAAABGEaFPgIrVHno8atfcFvV7Ho6o+59kaBqLLxZj3rB5jNnxddG6yiuqrgYAAAAAAAAAGAWEPgEq0Jg7L2q33BO1a2+PxlPPVl0OsChaIlo3WjfGvHnraN10g2hpbam6IgAAAAAAAABghBL6BBhCjZmzo/3qW4vJnvHi3KrLAQZYyytXiDG7bFdMAG0ZO6bqcgAAAAAAAACAEUboE2AINJ6fHu1X3By1G++MmNdWdTnAYFtumRi78+tjzPZbRcvii1VdDQAAAAAAAAAwQgh9Agyi+tPPRe2yG6N2270RtXrV5QBDbaklYsyOW8fYN28TLUsvWXU1AAAAAAAAAECTE/oEGAT1if+O9ktujPrdD0X4n1lgsXExZvstY+xOb4iWFZatuhoAAAAAAAAAoEkJfQIMoNpDj0ft0hui/uDjVZcCDEdjxsSY178mxuy6XbSuvFLV1QAAAAAAAAAATUboE2AR5f+M1u95ONovuSEaT/y76nKAZtDSEq1bbhxjd3tjtK65atXVAAAAAAAAAABNQugTYFHCnv96INovui4aTz1bdTlAk2rdZL0Yu/eO0br26lWXAgAAAAAAAAAMc0KfAAuh9uCEaP/nVdGY+FTVpQAjQUtE62tfHWPf9mbbvgMAAAAAAAAAPRL6BOiH+sSnov2fV0b9wcerLgUYiVpbY8x2W8TYvXaIluWWqboaAAAAAAAAAGCYEfoE6IP6M1Oj/byro37nAxH+VxMYbIuNizE7bh1jd9suWpZcoupqAAAAAAAAAIBhQugToBeN6TOj/cJro3bjXRH1etXlAKPNUkvE2F23izFv3iZaxo2tuhoAAAAAAAAAoGJCnwDdaLw4N9ovuzFqV98aMa+t6nKA0W6FZWPsnjvEmG03j5bW1qqrAQAAAAAAAAAqIvQJ0EmjrT1q19wW7ZfeEDF7TtXlAMynZdVXxNi93xxjXrtx1aUAAAAAAAAAABUQ+gT4j9ot90TbeVdFTJtRdSkAvWp51Rox7l27Ruu6a1RdCgAAAAAAAAAwhIQ+gVGv/uSUaDvzkmg8NqnqUgD6riVizBu2iLHv2Clallmq6moAAAAAAAAAgCEg9AmMWo0X50b7+VdH7brbI+r+pxBoUksuEWP33jHGvOl10dLaUnU1AAAAAAAAAMAgEvoERp38n716buV+7pURM2ZVXQ7AgGhZc5UY9749onXdNasuBQAAAAAAAAAYJEKfwKhSnzwl2s66OBqPTa66FIDB2fL99ZvH2H12tuU7AAAAAAAAAIxAQp/AqGArd2BUWXLxGPvWN8eYHbaKltbWqqsBAAAAAAAAAAaI0CcwouX/xNVuvjvacyv3mbOrLgdg6Ld8f+8e0bqeLd8BAAAAAAAAYCQQ+gRGrPrkp6PtzEuiMcFW7sAoVm75/o6domXZpauuBgAAAAAAAABYBEKfwIjTaGuP9guuidqVN9vKHaDzlu/v2jXGbrtF1ZUAAAAAAAAAAAtJ6BMYUeoTnoy2U8+LxpSpVZcCMCy1vmb9GPf+vaJl+WWrLgUAAAAAAAAA6CehT2BEMN0ToB+WXDzGvXu3GPOGzauuBAAAAAAAAADoB6FPoOnVH8/pnudH4+nnqi4FoKm0vmaDGPeBvaJluWWqLgUAAAAAAAAA6AOhT6BpNdpzuue1UbviJtM9ARbWkkvEuPfsFmNev1nVlQAAAAAAAAAACyD0CTSl+uP/jrZTzzPdE2CAtG62QYx7v6mfAAAAAAAAADCcCX0CTcV0T4BBZOonAAAAAAAAAAxrQp9A06g/8e9oO8V0T4DB1rrZhjHu/Xua+gkAAAAAAAAAw4zQJzDsNer1aL/w2qhdeoPpngBDZakliu3ex2z56qorAQAAAAAAAAD+Q+gTGNYa02bEvJP+EY3HJlVdCsCoNOZNW8XYd+0aLePGVl0KAAAAAAAAAIx6Qp/AsFW75+FoO/X8iFkvVl0KwKjWsvrKMe7j74zWVV5RdSkAAAAAAAAAMKoJfQLDTqNWi/Zzr4zalbdUXQoApcXGxbh994wxr9+s6koAAAAAAAAAYNQS+gSGlfpz06LtxHOiMfGpqksBoButb9g8xr1392hZfLGqSwEAAAAAAACAUUfoExg2av96INpOuyBiztyqSwGgFy2rviLGffSd0brGylWXAgAAAAAAAACjitAnULlGW3u0//2yqF13R9WlANBX48bG2HfvGmO336rqSgAAAAAAAABg1BD6BCpVn/JctJ34j2g8OaXqUgBYCK1bbRLjPrBXtCyxeNWlAAAAAAAAAMCIJ/QJVKZ2yz3RduZFEXPbqi4FgEXQ8ooVYtzH3hmta69WdSkAAAAAAAAAMKIJfQJDrtFei/YzL47ajXdWXQoAA2XMmBj7nt1i7Jts9w4AAAAAAAAAg0XoExhSjRmzYt4J46Px2OSqSwFgEIx501Yx9j27R8uY1qpLAQAAAAAAAIARR+gTGDL1SU/HvOPOipg2o+pSABhErRuuE+M+/q5oWXrJqksBAAAAAAAAgBFF6BMYErU77o+2U8+PmNdWdSkADIGWlZaPcZ96b7SuvnLVpQAAAAAAAADAiCH0CQyq/J+Y9guuidrF11ddCgBDbfFxMe7D74gxm29UdSUAAAAAAAAAMCIIfQKDpjF3XrSd/M+o3/1Q1aUAUJWWiLFv3THG7vGmqisBhrnx48fHiSeeGI899lgsscQSscMOO8Shhx4aa665Zp9uf99998VRRx0Vt956a8yaNau43T777BMHHnhgLLbYYoNePwAAAD3T8wEAAAwcoU9gUNSnvhBtfzorGv9+pupSABgGWrfaJMbtt3e0LDau6lKAYejII4+M3/3ud7HhhhvGzjvvHP/+97/jggsuiOWWWy5OP/30WHvttXu9/R133BEf+9jHoq2tLfbcc89YffXV49prr40HH3ww3vjGN8Zxxx0XY8aMGbLjAQAA4P/T8wEAAAwsoU9gwNUffiLm/fnvEbNerLoUAIaRlrVWjcU++d5oWWHZqksBhpH7778/3vWud8U222wTJ5xwQseElosvvjgOPvjg2GWXXYrFwd7st99+cfvtt8evf/3r2GuvvYrvtbe3FxNfciHwiCOOKB4DAACAoaXnAwAAGHitg3CfwCjWft3tMe/Yvwl8AvAyjUlPx9wjT4z6hMlVlwIMI7m9X/r85z8/35Z8e+yxR7zhDW+IK664Ip5++ule7+Ouu+6K5ZdfvmPxL40dOzbe//73F1/n4iAAAABDT88HAAAw8IQ+gQHRqNWj7YyLov2MiyNq9arLAWC4mjEr5v3m1Gi/6a6qKwGGiRtuuKFYrMvFvq5ym77cnCJ/pzcrrLBCzJw5M1544YX5vj9lypTi80orrTTAVQMAANAXej4AAICBJ/QJLLLGvLZoO/6sqF13R9WlANAMarVoP/X8aL/w2qorASo2b968ePLJJ2O11Vabb+JLae211y4+P/roo73ez/777x+1Wi0OPfTQeOSRR2L27NlxySWXxG9+85ticXDfffcdtGMAAACge3o+AACAwTF2kO4XGCUas16MeX86MxoTnqy6FACaTIY+GzNnx9j37B4trS1VlwNUIKe05FSX3KavO8suu2zxecaMGb3eT24TmPfxk5/8JN72trd1fH/DDTeMY445JtZYY40BrhwAAIAF0fMBAAAMDpM+gYXWeH56zDv6rwKfACy02rW3R9tJ50Sjvb3qUoAKtLW1FZ+7m/jS+ftz587t9X5yK8Df//73xZaB++yzTxxwwAGx5ZZbxsMPPxzf/OY3Y9q0aYNQPQAAAL3R8wEAAAwOkz6BhVJ/6tmY9/vTI6b1fgUuACxI/V8PRNusF2PcJ98TLUssXnU5wBBaYokl5lsI7G4rwLTUUkv1eB9PPfVUfPazny3ua/z48bHuuut2/Oyoo46Ko48+Or72ta/FscceO+D1AwAA0DM9HwAAwOAw6RPot/pjk2PeUX8V+ARgwNQffiLm/eaUaEyfWXUpwBBaZpllorW1tcet/Mrvl1v+defvf/97zJkzJz71qU/Nt/iXDj744HjVq14VV1xxRUyZMmWAqwcAAKA3ej4AAIDBIfQJ9Evtnodj3u9Oi3hxTtWlADDCNCZPKS4qqD/zfNWlAEMkt/Jbe+2148knn+x28svEiROLzxtuuGGP9zF58uQef6elpaXj+/kYAAAADB09HwAAwOAQ+gT6rP2mu6Lt+PERbe1VlwLACNV4blrMO+rkqE98qupSgCGy7bbbFot/t91228t+dv311xeLeFtvvXWPt1955ZWLz4899li3P3/88cfn+z0AAACGjp4PAABg4Al9An3Sfsn10X7q+RH1etWlADDSzZwd8445JWoPTqi6EmAIvO997ys+H3nkkcWWfaWLL744brnllth1111jtdVW6/H2e++9d7Fd4HHHHdcxJaZ04oknxsMPPxzbbLNNrLnmmoN4FAAAAHRHzwcAADDwWhqNRmMQ7hcYIfJ/ItrHXxa1q2+tuhQARpsxY2Lc/m+LMa/btOpKgEH2/e9/P04++eRYd911Y7fddounn346zj///FhxxRXj1FNPLbYDTDfeeGPcdNNNsemmm8buu+/ecfvjjz8+fvKTn8RSSy0Ve+65Z6y00kpx9913F7+b017+8pe/FPcNAADA0NPzAQAADCyhT6BHjVot2v76z6jffn/VpQAwWrVEjH3XbjH2LdtUXQkwiLItzQXA0047LSZMmBArrLBCbLfddnHIIYd0LP6lo446Ko4++uh4z3veUyz4dXbttdcWk1/uvPPOePHFF2OVVVaJXXbZJQ466CDb/AEAAFRIzwcAADCwhD6BbjXaa9H25/FRv+eRqksBgBj79rfE2N3eWHUZAAAAAAAAAFApoU/gZRrt7dF2/Pio3/do1aUAQIexe+8YY/d4U9VlAAAAAAAAAEBlhD6B+TTa2qPtuLOj/sBjVZcCAC8zZs83xbi37lh1GQAAAAAAAABQCaFPoENjXlu0HXdW1B98vOpSAKBHY/bYPsbt/eaqywAAAAAAAACAISf0Cfz/wOcfz4z6w09UXQoALNCYXbeLce/YqeoyAAAAAAAAAGBItQ7twwHDNvD5hzMEPgFoGrXLboy2f1xRdRkAAAAAAAAAMKSEPmGUKwKffzoz6o9MrLoUAOiX2uU3Rdt5V1VdBgAAAAAAAAAMGaFPGMUabe3RdtzZUX/IhE8AmlPtkhui7YJrqi4DAAAAAAAAAIaE0CeMUo329mg7fnzUH5xQdSkAsEhqF10X7RddV3UZAAAAAAAAADDohD5hFGq016LthL9H/f5Hqy4FAAZE+wXXRPslN1RdBgAAAAAAAAAMKqFPGGUa9Xq0nXhO1O99pOpSAGBAtZ93VbRfcXPVZQAAAAAAAADAoBH6hFGm/fQLo373Q1WXAQCDov0fl0ftlnuqLgMAAAAAAAAABoXQJ4wibeddFbUb76q6DAAYPI2ItlPPj9p9j1ZdCQAAAAAAAAAMOKFPGCXar741apfcUHUZADD46vVo+/Pfo/74k1VXAgAAAAAAAAADSugTRoHa7fdF+/jLqi4DAIbOvLaY98czo/70c1VXAgAAAAAAAAADRugTRrjag49H21/Pi2g0qi4FAIbWrBdj3u9Pj8a0GVVXAgAAAAAAAAADQugTRrD6pKei7fizI2q1qksBgGo8P/2l4OeLc6quBAAAAAAAAAAWmdAnjFD1Z5+PeX84M2LuvKpLAYBKNZ56Nub96axotLVXXQoAAAAAAAAALBKhTxiBGjNmRduxp0fMmFV1KQAwLDQenRRtJ50TjXq96lIAAAAAAAAAYKEJfcII05gz96VtbJ+bVnUpADCs1O9+ONrPuKjqMgAAAAAAAABgoQl9wgjSaK9F2/FnR2PylKpLAYBhqXbDndF2/tVVlwEAAAAAAAAAC0XoE0aIRqMRbX/9Z9QfeqLqUgBgWKtdfH20X3t71WUAAAAAAAAAQL8JfcIIUbvouqjfcX/VZQBAU2g/+9KoPfR41WUAAAAAAAAAQL8IfcIIULvzwWi/6NqqywCA5lGvR9uf/x7156ZVXQkAAAAAAAAA9JnQJzS5+pNTim3do1F1JQDQZGbPibY/nRWNOXOrrgQAAAAAAAAA+kToE5pYY+bsmPensyLmtVVdCgA0pcZTz0bbyedGo+7qCQAAAAAAAACGP6FPaFKNWi3mnTA+4vnpVZcCAE2tfs8j0X7+1VWXAQAAAAAAAAALJPQJTar9zEui8eikqssAgBGhdukNUbv9vqrLAAAAAAAAAIBeCX1CE2q/5rao3fCvqssAgBGl7dTzoz7xqarLAAAAAAAAAIAeCX1Ck6k99Hi0j7+s6jIAYORpa495x58djekzq64EAAAAAAAAALol9AlNpP7ctGg78ZyIer3qUgBgZJo2I+YdPz4a7e1VVwIAAAAAAAAALyP0CU2iMWdutP3prIhZL1ZdCgCMaI3Hn4y2v11YdRkAAAAAAAAA8DJCn9AEGvVGtJ18bjSeerbqUgBgVKjfck+0X3FT1WUAAAAAAAAAwHyEPqEJ1C69Pur3PFJ1GQAwqrSfe2XUH36i6jIAAAAAAAAAoIPQJwxz9UcmRvuF11ZdBgCMPvVGzPvLudGYObvqSgAAAAAAAACgIPQJw1iGTOb95R9F6AQAqMD0mdH21/Oi0fD/iwEAAAAAAAContAnDFMZLmk75byIF2ZWXQoAjGr1+x+N2uU3VV0GAAAAAAAAAAh9wnBVu+LmqN/3aNVlAAAR0X7e1VGf8GTVZQAAAAAAAAAwygl9wjBUf/zJaD/vqqrLAABK9XrMO+mcaLw4p+pKAAAAAAAAABjFhD5hmMkwSdtJ/4io1asuBQDo7Pnp0Xbq+VVXAQAAAAAAAMAoJvQJw0zbqRdEY+oLVZcBAHSjftdD0X71rVWXAQAAAAAAAMAoJfQJw0j71bdF/a4Hqy4DAOhF+z+uiPqkp6ouAwAAAAAAAIBRSOgThon6pKej/R+XV10GALAg7bVoO/GcaMyZW3UlAAAAAAAAAIwyQp8wDGRopO2kc4oQCQAw/DWenRZtp19YdRkAAAAAAAAAjDJCnzAMtJ1xUTSeeb7qMgCAfqjffn+03/CvqssAAAAAAAAAYBQR+oSK1W69N+q33Vd1GQDAQmgff1nUXbgBAAAAAAAAwBAR+oQKNabPjLazL6m6DABgYc1ri7ZTz49GvVF1JQAAAAAAAACMAkKfUKG20y+KmD2n6jIAgEXQeGxS1K6+teoyAAAAAAAAABgFhD6hIrVb7on6PQ9XXQYAMADaz7sq6s9MrboMAAAAAAAAAEY4oU+obFv3S6suAwAYKG3ttnkHAAAAAAAAYNAJfUIF2k6/MOJF27oDwEjSeGxy1K6+peoyAAAAAAAAABjBhD6hkm3dH6m6DABgELSfd3XUp9jmHQAAAAAAAIDBIfQJQ8i27gAwwtnmHQAAAAAAAIBBJPQJQ6jtb7Z1B4CRrjFhctSuss07AAAAAAAAAANP6BOGSO3mu6N+r23dAWA0aD/fNu8AAAAAAAAADDyhTxgCjRdmRNt427oDwKhhm3cAAAAAAAAABoHQJwyBttNzW/e5VZcBAAz5Nu83V10GAAAAAAAAACOI0CcMstot90T93kerLgMAqED7eddE/RnbvAMAAAAAAAAwMIQ+YRA1XpwbbedcXnUZAEBV2tuj/exLq64CAAAAAAAAgBFC6BMGUfsF10TMnF11GQBAher3Pxa1ux6qugwAAAAAAAAARgChTxgk9SenRO3a26ouAwAYBtrGXxqNeW1VlwEAAAAAAABAkxP6hEHSduYlEfVG1WUAAMPB89Oj/dIbqq4CAAAAAAAAgCYn9AmDoHbz3dF4bFLVZQAAw0jt8pui/szzVZcBAAAAAAAAQBMT+oQB1nhxbrSde2XVZQAAw017LdrPvrTqKgAAAAAAAABoYkKfMMDaL7gmYsasqssAAIah+v2PRu2uh6ouAwAAAAAAAIAmJfQJA6j+5JSoXXtb1WUAAMNY2/hLozGvreoyAAAAAAAAAGhCQp8wgNrOuiSi3qi6DABgOHt+erRfekPVVQAAAAAAAADQhIQ+YYDUbrknGo9OqroMAKAJ1C6/KerPPl91GQAAAAAAAAA0GaFPGACNOXOj7R9XVF0GANAs2mvRfvalVVcBAAAAAAAAQJMR+oQB0H7+NREzZlVdBgDQROr3PRq1ux+qugwAAAAAAAAAmojQJyyi+tPPRe3a26suAwBoQu3jL4tGe63qMgAAAAAAAABoEkKfsIjaz7sqol6vugwAoAk1pr4QtevvqLoMAAAAAAAAAJqE0CcsgvqEJ6N+l21ZAYCF137x9dGYO6/qMgAAAAAAAABoAkKfsAja/nll1SUAAM1u5uyoXXFz1VUAAAAAAAAA0ASEPmEh1e57NBqPTKy6DABgBGi/4uZozJxddRkAAAAAAAAADHNCn7AQGo1GtP/zqqrLAABGirnzim3eAQAAAAAAAKA3Qp+wEOq33ReNJ6dUXQYAMILUrrsj6lNfqLoMAAAAAAAAAIYxoU/op0atFu0XXFN1GQDASOM9BgAAAAAAAAALIPQJ/VS77l/ReG5a1WUAACNQ/dZ7o/7kM1WXAQAAAAAAAMAwJfQJ/dCYOy/aL76u6jIAgJGq0Yj2866sugoAAAAAAAAAhimhT+iH2hU3R8ycXXUZAMAIVr/30ag/OrHqMgAAAAAAAAAYhoQ+oY8aM2dHe4Y+AQAGWdu5pn0CAAAAAAAA8HJCn9BH7RdfHzF3XtVlAACjQGPCk1G7+6GqywAAAAAAAABgmBH6hD5oPD89atfdUXUZAMAo0n7e1dFoNKouAwAAAAAAAIBhROgT+qDY1r1Wq7oMAGAUaTz1bNTvfrjqMgAAAAAAAAAYRoQ+YQEaM2dH7cY7qy4DABiF2i+9oeoSAAAAAAAAABhGhD5hAdqvvjViXlvVZQAAo1DjiX9H7aHHqy4DAAAAAAAAgGFC6BN60ZgzN2rX3FZ1GQDAKFYz7RMAAAAAAACA/xD6hF7Urrsj4sW5VZcBAIxi9Qcfj/rEf1ddBgAAAAAAAADDgNAn9KDR3h7tV91SdRkAANF+yY1VlwAAAAAAAADAMCD0CT2o3XR3xPRZVZcBABD1ux+M+tPPVV0GAAAAAAAAABUT+oRuNOr1qF1+U9VlAAC8pBHRfplpnwAAAAAAAACjndAndKN++/3ReG5a1WUAAHSo33ZvNJ6fXnUZAAAAAAAAAFRI6BO6aDQaJmkBAMNPrR7tJpEDAAAAAAAAjGpCn9BF/d5HovHvZ6ouAwDgZWo33hmNmbOrLgMAAAAAAACAigh9Qhftl5ryCQAMU23t0X7VrVVXAQAAAAAAAEBFhD6hk/ojE6MxYXLVZQAA9Kh27W3RmDO36jIAAAAAAAAAqIDQJ3TSfsXNVZcAANC7F+dG7ca7qq4CAAAAAAAAgAoIfcJ/1Ke+EPV7H6m6DACABapdd3s0Go2qywAAAAAAAABgiAl9wn/Urr09QngCAGgCjWeej/r9j1VdBgAAAAAAAABDTOgTMjgxry1qN95ZdRkAAH1Wu+a2qksAAAAAAAAAYIgJfUKGJm67L2L2nKrLAADos/r9j0b9meerLgMAAAAAAACAIST0CcXW7iZlAQBNpuE9DAAAAAAAAMBoI/TJqFd/dFI0Jk+pugwAgH6r3XR3NObOq7oMAAAAAAAAAIaI0CejXvu1t1ddAgDAwpkzN2q33Vd1FQAAAAAAAAAMEaFPRrXGzNlRv/PBqssAAFhotevvqLoEAAAAAAAAAIaI0CejWu3muyNqtarLAABYaI1JT0d94lNVlwEAAAAAAADAEBD6ZNRqNBpRu+FfVZcBALDIateZ9gkAAAAAAAAwGgh9MmrVH3oiGs88X3UZAACLrHb7fdGYM7fqMgAAAAAAAAAYZEKfjFq1603EAgBGiHltUbv13qqrAAAAAAAAAGCQCX0yKjVmzIr63Q9VXQYAwICxxTsAAAAAAADAyCf0yahUTMKq1asuAwBgwDT+/UzUJz1ddRkAAAAAAAAADCKhT0al2m22PwUARh7vcQAAAAAAAABGNqFPRp36089FwxQsAGAEqt12XzTqjarLAAAAAAAAAGCQCH0yOrd2BwAYiabPjPrDT1RdBQAAAAAAAACDROiTUaXRaETdtqcAwAhWv/WeqksAAAAAAAAAYJAIfTKqNB6bHI2pL1RdBgDAoKnd9WA05rVVXQYAAAAAAAAAg0Dok1GlZsonADDSzZkX9XsfqboKAAAAAAAAAAaB0CejRqNWi9od91ddBgDAoKvZ4h0AAAAAAABgRBL6ZNSo3/doxOw5VZcBADDo6vc/Fo1ZL1ZdBgAAAAAAAAADTOiTUaN2q63dAYBRolY34RwAAAAAAABgBBL6ZFRozJkb9XseqboMAIAhU7vNBS8AAAAAAAAAI43QJ6NC7c4HI9rbqy4DAGDINCZMjvpz06ouAwAAAAAAAIABJPTJqFC/9Z6qSwAAGFqNiLppnwAAAAAAAAAjitAnI17jhRlRf3hi1WUAAAy52q1CnwAAAAAAAAAjidAnI17trociGo2qywAAGHKNKVOj/tSzVZcBAAAAAAAAwAAR+mTEq9/zcNUlAABUxnshAAAAAAAAgJFD6JMRrTFnrq3dAYBRrSb0CQAAAAAAADBiCH0yotUfmBBRq1VdBgBAZRqP/zsaM2dXXQYAAAAAAAAAA0DokxHNZCsAYNRrNKJ27yNVVwEAAAAAAADAABD6ZMRq1OtRv+/RqssAAKhc/W4XwgAAAAAAAACMBEKfjFiNCZMjZr1YdRkAAJWrPzghGu3tVZcBAAAAAAAAwCIS+mTEqploBQDwknltUX/w8aqrAAAAAAAAAGARCX0yYtXvEfoEACh5bwQAAAAAAADQ/IQ+GZHqU6ZG45nnqy4DAGDYqN37SNUlAAAAAAAAALCIhD4ZkUyyAgDo4oWZUZ/4VNVVAAAAAAAAALAIhD4ZkWpCnwAAL+M9EgAAAAAAAEBzG1t1ATDQGrNejMaEyVWXAQAwPKehv3XHqsuAbo0fPz5OPPHEeOyxx2KJJZaIHXbYIQ499NBYc801+3T7F154IX73u9/FRRddFFOmTIlVVlmluI+DDz64+BoAAIDq6PkAAAAGTkuj0WgM4P1B5Wq33BNtf/1n1WUAAAxLi3/nv6JlhWWrLgPmc+SRRxaLdxtuuGHsvPPO8e9//zsuuOCCWG655eL000+Ptddeu9fbP/vss/HhD384JkyYEDvuuGO8+tWvjnvvvTeuv/76YgHxzDPPjBVXXHHIjgcAAID/T88HAAAwsIQ+GXHmnfSPqN9+X9VlAAAMS2Pfv1eM3X7LqsuADvfff3+8613vim222SZOOOGEWGyxxYrvX3zxxcXEll122aVYHOzNl770pTj//PPj29/+dnzkIx/p+P7RRx8dRx11VHz605+Oww47bNCPBQAAgPnp+QAAAAae7d0ZceqPPFF1CQAAw1b94ScihD4ZRnJ7v/T5z3++Y/Ev7bHHHvGGN7whrrjiinj66adj1VVX7fb2Tz31VDEhZrvttptv8S99/OMfjyeeeCJWXnnlQT4KAAAAuqPnAwAAGHitg3CfUJn6lOcips+qugwAgGGr/sjEqkuA+dxwww0xduzYYrGvqze+8Y2Rm1Pk7/TkyiuvLH7nbW9728t+tuyyy8YRRxwRBxxwwIDXDQAAwILp+QAAAAae0CcjSv1hIQYAgF5Nnxn1KVOrrgIK8+bNiyeffDJWW221+Sa+lNZee+3i86OPPtrrVoFpo402inPOOSf23Xff2HLLLWOHHXaIww8/PKZO9XoHAACogp4PAABgcAh9MqLY2h0AYMG8Z2K4eOGFF4qJLcsvv3y3P8+pLWnGjBk93seUKVOKz8cdd1x87WtfK7YE3G+//WL11VePU089NT70oQ/FtGnTBukIAAAA6ImeDwAAYHCMHaT7hUrYrhQAoI/T0bffquoyINra2orP3U186fz9uXPn9ngfs2fPLj5feumlceyxx8ZOO+1U/DsXFnPqy2mnnRY///nP4wc/+MEgHAEAAAA90fMBAAAMDpM+GTHqU56LmD6r6jIAAIY9F8owXCyxxBLzLQR2txVgWmqppXq8j9bWl9ravfbaq2PxL7W0tMRXv/rVWHzxxeP888+Per0+wNUDAADQGz0fAADA4BD6ZGRNrAIAYMGmz4z6lKlVVwGxzDLLFAt4PW3lV36/3PKvO+XPtthii27v/1WvelVxP1Ones0DAAAMJT0fAADA4BD6ZMSoP/JE1SUAADQN750YDnIrv7XXXjuefPLJbie/TJz40oVdG264YY/3sd566/Vpckw5YQYAAIChoecDAAAYHEKfjBi2KQUA6DtT0hkutt1222Lx7rbbbnvZz66//vpiy76tt96619un66677mU/y0kvkydPjrXWWquYAAMAAMDQ0vMBAAAMPKFPRoT6lOcips+qugwAgKbhghmGi/e9733F5yOPPDLmzJnT8f2LL744brnllth1111jtdVW6/H22223XTEV5qabborx48d3fL9er8dPf/rTYnHxAx/4wCAfBQAAAN3R8wEAAAy8lkaj0RiE+4Uh1X7dHdF+xkVVlwEA0FQW+/qno3WVlaouA+L73/9+nHzyybHuuuvGbrvtFk8//XScf/75seKKK8app55abAeYbrzxxmKhb9NNN43dd9+94/b33ntvHHDAATF9+vTYaaedYv311y9+95577onXve51cdJJJ8W4ceMqPEIAAIDRS88HAAAwsIQ+GRHmnXhO1O+4v+oyAACayth994yxb9qq6jIgsi3NBcDTTjstJkyYECussEIxzeWQQw7pWPxLRx11VBx99NHxnve8J37yk5/Mdx+5pV/+7Oqrr44XXnghVl999dhnn33iwAMPjMUXX7yCowIAACDp+QAAAAaW0CcjwpzDfxMxw/buAAD90fq6TWKxj76z6jIAAAAAAAAA6KPWvv4iDFf1KVMFPgEAFkL9kYlVlwAAAAAAAABAPwh90vQaT/y76hIAAJrT9FnRmDaj6ioAAAAAAAAA6COhT5pefdJTVZcAANC0vJcCAAAAAAAAaB5CnzS9+qSnqy4BAKBpeS8FAAAAAAAA0DyEPmlqjXojGpMFFQAAFlbDpE8AAAAAAACApiH0SVNrPDM1Ym5b1WUAADSt+kQX0AAAAAAAAAA0C6FPmprJVAAAi2jGrGi8MKPqKgAAAAAAAADoA6FPmlp9kslUAACLynsqAAAAAAAAgOYg9ElTq0806RMAYFF5TwUAAAAAAADQHIQ+aVqNRiMak6dUXQYAQNNrmPQJAAAAAAAA0BSEPmlajWemRsydV3UZAABNrz7JpE8AAAAAAACAZiD0SdNqTDSRCgBgQEyfFY3pM6uuAgAAAAAAAIAFEPqkadUnC30CAAyUui3eAQAAAAAAAIY9oU+aVmOibUgBAAaK91YAAAAAAAAAw5/QJ02p0WiY9AkAMIBM+gQAAAAAAAAY/oQ+aUqNqS9EzJlXdRkAACNG/ckpVZcAAAAAAAAAwAIIfdKUGlOmVl0CAMDIMm16NOa1VV0FAAAAAAAAAL0Q+qQpNZ4R+gQAGFCNiMazz1ddBQAAAAAAAAC9EPqkKTWeEUgAABho3mMBAAAAAAAADG9CnzQlkz4BAAae91gAAAAAAAAAw5vQJ02pbgoVAMCA8x4LAAAAAAAAYHgT+qTpNNraI6ZNr7oMAIARx6RPAAAAAAAAgOFN6JOm08gJVI2qqwAAGKHvswAAAAAAAAAYtoQ+aTomUAEADJJZL0Zj1otVVwEAAAAAAABAD4Q+aTomUAEADB7vtQAAAAAAAACGL6FPmo5JnwAAg8d7LQAAAAAAAIDhS+iTplM3fQoAYNB4rwUAAAAAAAAwfAl90nRMnwIAGDzeawEAAAAAAAAMX0KfNJXG7DkRs16sugwAgBGrYdInAAAAAAAAwLAl9ElTMXkKAGBwNZ59PhqNRtVlAAAAAAAAANANoU+aSmPqC1WXAAAwss1ri5g5u+oqAAAAAAAAAOiG0CdNpTF9VtUlAACMeN5zAQAAAAAAAAxPQp80lcb0mVWXAAAw4nnPBQAAAAAAADA8CX3SVAQQAAAGn/dcAAAAAAAAAMOT0CfNxVajAACDz3suAAAAAAAAgGFJ6JOmYuoUAMDg854LAAAAAAAAYHgS+qSpNEydAgAYdN5zAQAAAAAAAAxPQp80jUZbe8SLc6ouAwBgxDPpEwAAAAAAAGB4EvqkaQgfAAAMDe+7AAAAAAAAAIYnoU+ah21GAQCGxgzvuwAAAAAAAACGI6FPmoaJU8D/Y+8+wOwq6/yB/869M5OQHtIhgZAEQkgoSSBFeicgHaQKKq4NLKwuiu7q/m1rWQ0Ksqi7iCgKoi7rroBSBFGpgvQOAUJCaCGEkjYz/+c9YcZJmEmdmXPvzOfzPPPc5JZzf3dyMnPe837P7wWgk6yoj8bX3yy6CgAAAAAAAABWI/RJ1RD6BADoPI69AAAAAAAAACqP0CdVo9Hy7gAAncaxFwAAAAAAAEDlEfqkeug2BQDQeRx7AQAAAAAAAFQcoU+qhm5TAACdx7EXAAAAAAAAQOUR+qRqNL7xZtElAAB0G469AAAAAAAAACqP0CfVY+myoisAAOg+HHsBAAAAAAAAVByhT6pGo+ABAECncewFAAAAAAAAUHmEPqkeS5cXXQEAQPfh2AsAAAAAAACg4gh9Uj2W6TYFANBpdPoEAAAAAAAAqDhCn1SFxmXLIxoaiy4DAKDbsLw7AAAAAAAAQOUR+qQ6CB0AAHQux18AAAAAAAAAFUfok+rp9AkAQKdx/AUAAAAAAABQeYQ+qQ5LdJoCAOhUjr8AAAAAAAAAKo7QJ9XB8qIAAJ1rmeMvAAAAAAAAgEoj9ElVaBT6BADoXPUN0bhiRdFVAAAAAAAAANCC0CfVQegTAKDzWeIdAAAAAAAAoKIIfVIVGpctL7oEAIBuxzEYAAAAAAAAQGUR+izIueeeG+PHj89v11VjY2NceeWV8eEPfzh22223mDRpUuyxxx7x7ne/O375y1/GkiVL3vaafffdN3+fOXPmtLrNj3zkI/njkydPjmXLWu/ktOeee8a2224bL730UhRGl6lO9093Xh/7X/fzVh97Y8XyOP+RO+PQGy6PaVddFLOuvyy+89Dt8WZ960vAPrZ4YZx5x7Wxz7U/ixlX/zje/effxLXzW98n27KioSEuefK+OOrGX8X0qy6K/a79eXzl3j/HK8vevt8vXLYk/vGv18X0q38cB153aZz70B2xvKH+bc97dPHLMfm3F8aVzz6+XrUAQLfhGAwAWINf//rX+XmldJ5q0aJFaz0Pdvnll7d7Dfvss0++7da+0vmu/fbbL84+++x4+umnN/q90vm1U089Nd/ulClTms/r/eAHP4i99torP1eXvheLFy9e4/dr9uzZG10LAABAVxnXtRzHPfvss2t87le+8pXm5956660b/X4tv5rGdClDsaHbbsvcuXPz9zjhhBPadbsAdF81RRfAukmBy49+9KPx17/+NQYOHBi77757DB8+PF588cX8gONzn/tcfoK56WCrycyZM/MDrzvvvDNGjx69yjaXL18et9xyS5RKpXjjjTfijjvuiHe84x2rPOeZZ56J5557LiZMmBCDBg2KwrQRSKVjXPDoXfH7+U/G0J693vZYCk9+7I5r4vaX5sfMwZvHfsNHxz0Ln48LH78n/vrSc/GfMw6OunK5+fkPLnoxTrvlymhsjJi1+ZjYpFwTv5v3ZHzyzuvi09vNiBO3mrhOgefP3/PH+O2zj8cOA4bkr0lB0l88/VDc8uK8+Omuh0X/uh7Nz//yvX+OGxY8Fe/cfFweUP3Px++Oxoj42LY7r7Ld7zx4e2zbf1DM2mzMRn/PAKBLWuoYDABYuxdeeCG+/OUvxze/+c3CajjllFOiX79+q9yXzpvdfvvt+STmddddF7/61a9i1KhRG/weZ511Vtx99935BdLp/Nu0adPij3/8Y3zrW9/Kz9elC7Pr6uqib9++rb4+nV8744wzYuedVz0/AQAAULRKGNclV199dZx22mmtPtbQ0BBXXXVVu71XGp+tnp9I4czf//73cf3118fXv/71OPzww9vlvdJ4Nb3fiBEj2mV7ACD0WQXefPPNeM973hOPPPJIfvuJT3wiNtlkk+bH6+vr45JLLomvfe1r+ZUh//M//9N8AjuFOJtCn0cdddQq2033vf7663HIIYfEb3/727jpppveFvpMJ8aTXXfdNYrUuOLtXRppf0vrV8TX7r85fv3MI20+5xdPPZQHPt8zZvs4c8K05vu/cf8tccmc++PSpx6IU8Zs33z//7vnT7G0vj5+ttthMb7fyuDw+8ftlHf7POeh22PfEaNjWM/ea6zrxuefzgOfB47YKr4+ee/Isiy//6dP3hfffODW+I9H74zPTJyZ3/fy0jfjuufmxDFbbBv/vP3K/fbDt10dv3jqwVVCn+kz3PTC3PjB9FnN2wMAVtVY7xgMAFg3v/nNb+Kggw7KV50pQurAOXLkyLfdn86bpU6f6XzZd7/73Y2awLzvvvvyQOd//Md/RPmtC16/973v5bf/8A//0ObEZMvQZ/oCAACoREWO61IocunSpXmos62x1W233ZaHU3v37p3nHDZWarrVmptvvjnPZaQQ7IEHHhg9e/Zsl8/X1vsBwIawvHsVSN07U+DzpJNOyk9Stwx8Jukkc+pmkLp9poOb9JwmM2bMyANtqUPo6lLIM/nABz6Qn7Bu+ntroc/UxrxQqU0kHeqGBU/HETf+Kg987j7k7ZMkTX425/6oK5XjA1vvtMr9Z4yfGj3LNXH50w8133fny8/Fg6++FAeM2Ko58JkMrOuZBz+XNtTH/859dK21XfLk/fnt6eOnrhLQPHH0xNhskz7xm7mP5oHV5Nk3X8u7em7Tb9Pm56X3XrxiWb7se1Pn0NkP3ha7DRkZ0wdvto7fIQDohhyDAQDrYOLElat4fOELX4hXXnklKkk6b9Y0sfbnP/95g7ezYsWKPECaJuqaAp/JsrdWp0mdPgEAAKpV0eO6lIHYY4894t577827bbbmyiuvjF69er2tkVV7S6up7rTTTvHqq6+2mrMAgEog9FnhlixZEpdeeml+9cjHPvaxNT43dfkcM2ZMHtR86KGVwbtNN900X27qySefjIULF67y/D/96U8xbNiw2HbbbfNw6KOPPpov5d5SWvI9HWBNnTo1CiVw0OGueObhfCn0z016R5y7ywGtPmfeG4tj7huLY9KAwdG7pm6Vx3rV1Mb2A4bE06+/GgveXHll1W0vzstvp7USrGwKW9724vw11rW8oSHuWrgghvfsHVv27r/KY6Usi10GjYjXVyyP+xe9mN83oHblMu9vrlgZAk1eX74sylkWfWpq879fPf+JeHDRS/GJbXdZh+8MAHRjjsEAgHWw++67xxFHHNG8HOC6SiHKn/zkJ3HkkUfGjjvuGJMnT47jjz8+rrjiinatb9CglReiLl68uPm+NImYzpml82mr+8tf/pI/9pnPfCb/e7ptmgB99tln88f22Wef/PaCCy7I708XYae/p6Xk25IeS8+ZPXv2KmHSH/zgB/n3IH3+KVOmxLHHHhs/+9nP8otWW3rwwQfz5QD33nvvmDRpUj4h+ulPfzrmzJmzyvPSMvPpfZ566qm31ZBekx5b3T333BOnn356fo4wbTt1sznnnHNa7Z7zu9/9Ln+PNBG6ww475J2A0hL3Lb+/AABAdamEcd3BBx+c37a2hHsaO6WxSBqLrd55MwVV0zintfdMS8KnMVQav6Tl29dV0zLsKWNx991359tPjbhak8Z46fFrr722ze21NQZd1/HVyy+/HP/v//2//PH0vOnTp8f73//+fPy6ekOx9D5pNdjVfepTn8ofu/XWW1e5f8GCBfGv//qvzWPN1BAsjXFbC9+u67gUgI4n9Fnh7rrrrvzkajo4GjBgwBqfWyqV8hOyye9///vm+9OVLukkcdpWk3SwloKhTR08m25bdvtMv9yffvrp2HnnnaOubtWAX6drEDjoaCdtNSmu3Odd8a4tJ7S53PlTr7+a347q1a/Vx0f26pvfPvn6K6s8f4u37m8pLelek5Wan9uWeW8uzoOfo3qv+T3nvLYovx2xSZ8Y0qNXXDH3kXjuzdfi8cUL49rn5sSk/kOitlSO5Q31cd7Df413jhwXW7foBgoAtELoEwBYR5/97GdjyJAh8b//+79x3XXXrfX5qUNmWn0mTSYuWrQon1ycNWtWPPPMM/mEUdpee2k637WhS6vvt99+8ZGPfCT/c1otJ01wpcm+dJvOmyVp+cP09/V9j89//vP5hF6atEwTo0cddVS8+OKL+WRey3DoE088kU8O3nLLLflk4Hvf+958gi0tv3jcccfF888/HxsqdctJ206ThWmiNy1jmIKyaRn7E088MV577bXm56ZJ1HRh+vz58+OQQw6Jk08+Oe9+moKraYn71YOqAABA9Sh6XLfXXnvlDalaC32mlRtSB9I0Dlnd0Ucfnd+2FvpMAcd58+bFYYcdFrW1KxsErYumEOPw4cPzMOvWW2+dLy+fxkItpTFQGpelMVSqf32s6/gqfZ9TMPSyyy7L6zj11FPz8GvqQnraaafFjTfeGBvq8ccfz8ehqRHZNttsk287NQT7n//5n/z7mkKenTEuBWD91WzAa+hE6RdnMnbs2HV6fvoln6QDqSbpF+6FF16Y/9JPv/ybunymg4SmsOeuu+7afBI8dROoqKXdEyeMO1zqmLk2ryxfuTx6/7e6aa6uz1vdPxcvX7bK8/vVvf35qUtn75ra5ue2ZdGypev1njWlUnxm4ow4+283xoHXX9a8nPzZk2bmf/7FUw/Gi0veiDO2+Xv32obGxrweAGA1LrwBANZR//7940tf+lJ86EMfyruspEmiNV3AfNFFF+Xnp9KkWAo3piX6mrqXpImjX/3qV/k5rUMPPXSD6kndZtKEYHqPr371q/l9TcHNDQl9pjrPP//8fAKuabn4pm4zaaWc9Jw0UbY+UpgyTfKl4Ogll1zSfH8Kj6aJ0tQtJ71XmphMXVrefPPN/PuWvi9NUk3f+c538i6i6Xu/vlLANE3Epn+rNMk3atSo5sfOO++8vEtMCqWmf9Mk1ZT+rVLdffr0ye9L5xjf97735aHRdNF56lYKAABUn6LHden1e+65Z1x99dV53qHl+CRdrJbqS9mF9OeWUufLFFhMAc/U2CqtdtqkaTWG9Rmvpe2nsGNT4LPp9V//+tfzgOMHP/jB5uemAGQKlabPW1OzfvGbdR1fpT8/9thj8eEPfzg+8YlPNL8+hTJPOumk+PGPf5x/3zbEP/3TP+X/XmkVi5ah1fS50mc666yz8s+cmkZ11LgUgA2j02eFa2rb3fRLfm2aDrrSL+Ymu+yyS35y+M4772y+L4U7U2fQ1AU0SQdMo0ePzg8Y0knxlqHPpkBooYQ+K8KKhob8tq5UbvXxpvuXvrUPLV+H5y9rWPnctqTOnGvcRvmt92z4+3Lu+43YKi7f/cg4e+LM+ML2u8Wv9jgqJvQfHK8tXxY/fOzuOHGriTFsk95xx0vz48gbfxVTrrwwDrr+0vjN3EfX+j0AgG7FMRgAsB7S8m7ruhxgmvxL56a++MUvNk8MJptuuml87nOfy/+cupisq9RpMy1T1/S13Xbb5ee90gRVjx498gnI9e260tHSZF5aajB1dWm5bF46v5e+P+n8XVMnmqYOL+mi7pbdNFNXzhtuuCHvrrMh0uRimrRLk5YtJ1STNFmX/j3Sc5qWQUzvvWTJkrj33nubn5cm/1Iw9Oabbxb4BACAKlfkuK6tJd6XLl2aL52+//77t7lCaQpApvFV6lDZ8kK7a665JiZOnJiPE1eXLnJr+fXNb34zD1x+8pOfzMdiKQDbNCY7/PDD8z+33H7y3//93/nt+l4EuD7jq/S5khREfeONN5qfmy4gTCvApsDmhrjnnnvi/vvvz8fTq4+XZ8yYkd//yCOPxN/+9rfmejtiXArAhtHps8Klq1WS9Mt+XaSl4JOBAwc235daoO+0005x9913562/0xUmqf359ttvv8qVOemqmJ/+9Kf5L/Z0NUzqUjB06NDm7qGFEjioCD3KK39kLG9ceWC5uqYAZ6+3rmLq+VZQsyn82drze5Vr1+092wiHLnsrYNqrZtXtjO7TP/9q6cLH71l5ddTYHfPOoJ+449rYpt+m8alpB8b1zz0V/3L3H2PL3v1ix4F/v/oLALo1x2AAwHpKE3vpouK0HOBBBx2Ud8Bs7fxVWipvq622WqUDS5M0sVUul+OBBx5Y5/dNy62nLpxp3J9ClKkzTDqfdvrpp+fdUNL2Kk1aKj4tMZgmDQ844ID8fFy6+Dqdo0vdZNLkaZOm5fbSROTPf/7zPNCanrvHHnvEiBFrX72lLU2Ti+k2bXt16bxiurg8/Xulc4Rpuff0b5wm9caMGdNcb5oQTEvUAwAA1a+ocV2SOlamAGka0zWFCNPy5SnA+c53vrPN16Wx1b//+7/nXSmbXpe2kS5ya1r+fXVpdYOW0pgmLW+ftpXGPBMmTGh+LC3fnmpL4dM0fkpZi/Q9SKHStMR56jS6vtZ1fJXGf6mBVwpWpudMmzYtvy+NB9P3f2PHg2nM19p4cNGiRflt+jecPHlyh41LAdgwQp8Vbosttlhlmfe1efTRlZ0KR44cucr9qb126tyZfnGnK1DS8lap1XdL6RdyCn2mtufp9Y8//nh+FQ80aVpiffHylUuur+61FctWWXK9aVn31pZwT0uqv75ieQzpucm6vedb217be7ZlwZLX45In74uPbrtz9K2ti8vmPJBv89MTZ8T4foNi+qDN4rrn5sRPn7xf6BMAmgh9AgDrKQUvU5eX1CXyX//1X/POI6tLk3VNocfWpAuWU2eYl156aZ3f99RTT13lfFhayj1NoKXJqFRTCoVWorT0fAp7pmXwUveUtHxfmnhMk6b/+I//2HxuLk0gpqX0fvjDH+YTfWkiM32lSdR99tkn/14PHjx4vd//1VdfzW/TttakabLvmGOOyd8nLUOYziGm26YlCY8//vi8I876LmkIAABUlqLGdUkKO6Yxzv/93//F008/neclfvvb3+bjkBR2bEt6r9SlNHW+TE2uUnfPtGpB6gzaVlj04YcfXq/aUng0hT7ThXsp9JlCpanz5oZ0+Vyf8VX6nqSOqT/4wQ/y90xjwvSVxpPpc6Z/ozSu3NDxYOrcmb7akrIlHTkuBWDDOANX4dKBS+rGedttt8XChQtX6eDZmnQQkxx44IGr3J+usvjud7+bt+hu6hqarhJpafr06XkgNP1C33LLLfPOCBWxtDsVo6lz5jNvLG718WdeX3n/2L4r99Oteq/sJDv3jVdj8qarBimfe/O1WNHYEGP6rHmf3qxXn+hRKjdv+23v+VYtY/r8vWtta85/+M4Y3LNXHLflyiuynnx95WTFlr1XfqaaUilG9uobT711PwCQryVTdAUAQBUvB5gm2NJygOk8U0u9e/fObxcsWNDq69PSdWkCseUKNesrLVWezoWdfPLJ+URY6prS8lxYWjIvabkkXZOWy+V1tDSBl2pMX6m7yi233JJPnl155ZXx6U9/Og+yNk2wpk6b3/jGN6K+vj6fxEydd9JkY+oskzrM/OhHP1pl201LALaUuty09m/xi1/8Iu8uui7Ssn/pK23rzjvvzJehT//WF154YT45nDqrAgAA1a3Icd2sWbPy0GcKOKaxUur0mQKSa1vBIYUyU14ivTZ15kwrm6ZOpU2rq26s1NEydQJN47XPfvaz+fusKVTanuOr9H0866yz8q+nnnoqHw/+7ne/y5eBf//73x/XX3999OnTp3msuz7jwRQuXdel2dd3XApAx/n7GkFUpBTCTF0JUlAztSNfk1/+8pfx0EMP5a21W7YaT9KVHemX/H333Zcf3KQDhNVP5KZf6um1aRsp+JkOCCom9ClwUBGG9ewdW/TqF/e+8kK8sWL5Ko+lv9+36IX88UE9Vnbv3HnQyjbut700/23buvWt+yavpatmOSvlgdFn31wcc1cLm6ZuoXe8ND82KdfEhP6D2tzGY4sXxv8++2icMX5q1L615Hz9Wwe69S2Wqk/LzZfCvgYAzRyDAQAbKC1RN3To0Hw5wBRibCmdo0oThs8//3y+HODq0kXLaTJqQ5bHaymd50oTVynY+ZnPfKa5i0nTObckTUqtLk2gdYa0ys63vvWt+MMf/tDcmebggw/OJ9BSR50kncdL0hJ6X/rSl/LPkiY607m+9Jxf/epXeReYtMJPkzTp2NpnS6HSxYtXPbfSdA7x7rvvbrXGb3/72/H9738/D8KmCdvvfe97zZN4aen3dO4wfW+blgJsWQcAAFDdihrXpXBl2n4KNab3Tds55JBD1vq63XffPa83BRCvu+66fPx05JFHRntetHf44Yfn3UtTXWn8s++++25QqHR9xlcpCJqCt01j1fR9P+GEE+Kiiy7KG3ullRkeeeSR9R7rbrfdds3/Vq1JXT3TxZRNq9Kuz7gUgI4n9FkF0tUb6RduCnWmNuqrX4GRfqmmdt6pXXb6Zfr1r3/9bdtIv3R32WWX/ARuukIkLffe2pUwqePB/Pnz8wOHdNI3nWyuCAIHFeOIUdvEkvoV8b1HVm3xft7Df83vP2703wPHOw0cGlv17h9XzXs8D4o2WbhsSfzXY3/LO3geOWqbdXrP5NsP3rZKSPNnc+6PeW++FkeNGt8c5mzNOQ/dHtv2GxQHjRjTfN9Wb3UGvevllVefvbJsScx5bVHz/QCAYzAAYOOXA0zSRcitdWBJ57TSc1p21kwr3XzlK1/J/9wek3PpvFrqRPLCCy+scs4sdX1JnVJS8LLlxFcKRv7sZz+LzlAqlfLl+WbPnt28Mk+TuXPnNncsTdLk2U9/+tN8srWlF198MZYuXbrK0vapq2nSFCZtkiYUV+9smiYs06RgeqxpIq9Jer8U+EwTremcY/pK5yDTpN+TTz65ynOfeeaZ/LZlHQAAQHUralyXLmTbb7/98ve8+OKLY/PNN88v6lublH9I3UnT+OS//uu/8gDo6qufbqz0mZMUwly+fPkGL+2+PuOrefPm5cu+p2XVW0pjwTTWTWPL9D1Kxo4dm9+mUGrL8V/qmvroo4+u8vopU6bk48cUkk2Pt3TvvffmAc///M//bO7Wuj7jUgA6nuXdC/bf//3f+dLtrdliiy3yg6F0UJOu0khttS+55JK8Xfiee+4Zw4cPj1deeSVf9ildPZOu6EhX36/eWr3lEu9NJ3vbOrhJ96dtpBPe//AP/xAVQ+CgYrx7q0lx7XNz4qdP3h8PLXo5dhg4JO5Z+Hzc8fJzMWXTYfGuLf4e+kzdYj+/w27xoVuvjvff/NuYtfnY6F1TG7+b92S8sPSN+OzEmfmS601eXb40Lnny/vzPH95mSvP9szYbG1c++3hc99ycOOlPv4kZQzaPJxa/Ejc+/3QeKv3g1m0f5KdOoDc9/0z8cPqs5nb2yYGbjYnzH7kz/vnuP8Yhm4+NW1+cF8sbGuKUMZM64LsGAFWq5BgMANi45QDTBF86/7W6973vffkydH/+85/zpfBSJ5cVK1bkE1Np0ipNnKXJuo2Vzqul82vHH398fkH1oYceGjNmzMgnA9N9F1xwQd4hJXXYTO+fAo7jxo1rDl12pK222ip/75///Of58oXp+9WzZ8/8ou3U4TNNah5wwAH5c08//fT44x//mC/5ftVVV+UTeem8YKo3TeR96lOfat7ucccdl2/z/PPPj8ceeyyfeEuTcyncmrrsNHWASdJjX/jCF+Lzn/98/v1OE6sjRoyIBx98MP+3SR1rvvrVr+bPTROJ6f3/8R//Mf/3OfDAA/OlDdN2UxeddPF4RZ1PBAAAqnZcl8ZoaZnzu+66a73GGSmUmS6ue/bZZ/OVH9a2JPz6SiHJNFZLdQ0bNmyDV05dn/HVYYcdlgdEU+fNhx9+OHbeeec8cJrGiOn56d8h1ZKkHEkKgN566635irJTp07NL/C78cYb8yZhLbtxphq++c1vxnvf+974+Mc/nn+W8ePH591bf//73+fv8W//9m/NjcLWZ1wKQMcT+ixYOthIX61pueRUOsGartxIv0TTL/O0/PqCBQvy+9OBxWmnnZYfSKUrQtqSQp9N2jr4SB1F0y/t1NWgYpZ2T0qa0laKunI5D1Be8Ohdcc38J+OeV56P4T17x/vH7hjvG7dD/nhLUzYdHj+aeUgesEzPT8b2GRhnT5oZ+w4fvcpzFy9flm939dBn8q0p+8aPnrgn/m/uY/HTJ++LIT16xXFbTsgDn/3rerRZ7+yHbo/dh4yMaYM3W+X+tAT9BdMPin+7/+a47KkHY7NN+sY3p+wdE/oP3ujvEQB0GZljMABg43z2s5/NJwDTpFFLqbtkOteVLnBOE3lpAjHdt+222+bL2aXzXO1lxx13jHe/+93x4x//OA83/uY3v8nDlR/72Mfyc2lpKbq0TF3qApMmxdJXy/NoHemf//mf88+cAqm//e1v8xV+UhDzox/9aD5x17Q0Xzr/l2pMk5cpEPqnP/0prz1N4KWJwHTbJIVWL7zwwnxJwDSxl7aRlvxLy8anr5ahz+TYY4/NA6ipE076t0odetLF5u9617vySdKmbqNJWlIxdXlJ20/PTR18UtfUNAn8kY98JDbbbNXzLwAAQPUrYlyXxmQpC5GWLl+Xpd2bjB49OiZNmpR3CW3Ppd1bShcTptBnCrRuTKh0XcdXaen39Jy0FPy1116bjw2TFNBMq1u0DNam73/qjpoafaVx4wMPPJCv8JoueEyNv1Zfgj19r9K/W1rlIa0GmxqWDRw4MM+KvP/9788Dpk3WZ1wKQMfLGldf0wcq0PKrbor6a24uugwAgG6l9sPHRXnr1rvIAwAAAABAJUkX0qXVTVMg8mc/+1mHvMfnPve5/OLB1OGyrVVYAaCjad1DVch0+gQA6HRZZnl3AAAAAACqQ1rB4LXXXstXcOgIjz32WL5KQ+qEKfAJQJEs7051qLGrAgB0ureWEwUAAAAAgEqUFrdNS5wvX748X8I8LWc+a9asdn2P2bNn58uZp9Bnep+Pf/zj7bp9AFhf2idSHXoIHAAAdDrHYAAAAAAAVPiKVf369Ytnn302Zs6cGf/xH/8R5XK5Xd9j+PDh8eSTT8bgwYPjW9/6Vuywww7tun0AWF9ZY7rsASpc/e33xfKfX1l0GQAA3UqPf/lQZAP7FV0GAAAAAAAAAG/R6ZPq0KOu6AoAALqfno7BAAAAAAAAACqJ0CfVQegTAKDz1TkGAwAAAAAAAKgkQp9UhUzoEwCgc9XURFY2XAAAAAAAAACoJGZxqQ49aouuAACge3H8BQAAAAAAAFBxhD6pCjp9AgB0LsdfAAAAAAAAAJVH6JPqIHQAANC5HH8BAAAAAAAAVByhT6qD0AEAQOdy/AUAAAAAAABQcYQ+qQpZTTmiXC66DACAbsPy7gAAAAAAAACVR+iT6tGjtugKAAC6D8deAAAAAAAAABVH6JPqodsUAECn0ekTAAAAAAAAoPIIfVI1BA8AADqRYy8AAAAAAACAiiP0SfXoKXgAANBphD4BAAAAAAAAKo7QJ1Uj692r6BIAALqNrI9jLwAAAAAAAIBKI/RJ1cj69S66BACAbsOxFwAAAAAAAEDlEfqkamT9+hRdAgBAt+HYCwAAAAAAAKDyCH1SPXSbAgDoPI69AAAAAAAAACqO0CdVQ7cpAIDO49gLAAAAAAAAoPIIfVI1BA8AADpJj7rIetQVXQUAAAAAAAAAqxH6pGpklhgFAOgUjrsAAAAAAAAAKpPQJ9Wjb++ILCu6CgCArk+HdQAAAAAAAICKJPRJ1chKpYg+vYouAwCgy9PpEwAAAAAAAKAyCX1SVQQQAAA6XqbTJwAAAAAAAEBFEvqkqgggAAB0PMdcAAAAAAAAAJVJ6JOqotMnAEDHc8wFAAAAAAAAUJmEPqkuuk4BAHQ8x1wAAAAAAAAAFUnok6piqVEAgI7nmAsAAAAAAACgMgl9UlWy/gIIAAAdTegTAAAAAAAAoDIJfVJVsk0HFF0CAEDX1nuTyDbpUXQVAAAAAAAAALRC6JOqkg0ZGJEVXQUAQBc/3gIAAAAAAACgIgl9UlWy2pqIAf2KLgMAoMvKhmxadAkAAAAAAAAAtEHok6pT0n0KAKDDONYCAAAAAAAAqFxCn1Qd3acAADqOYy0AAAAAAACAyiX0SdXJdJ8CAOgwjrUAAAAAAAAAKpfQJ1VH9ykAgA6SRWSDhT4BAAAAAAAAKpXQJ1VH9ykAgA7Sv29kdbVFVwEAAAAAAABAG4Q+qTrZpv0jyuWiywAA6HJKOqoDAAAAAAAAVDShT6pOVipFNqh/0WUAAHQ5OqoDAAAAAAAAVDahT6pSpgsVAEC7c4wFAAAAAAAAUNmEPqlKulABALQ/x1gAAAAAAAAAlU3ok6qkCxUAQPtzjAUAAAAAAABQ2YQ+qUolXagAANpXuRTZoP5FVwEAAAAAAADAGgh9UpWyYYOKLgEAoEvJBg+MrGR4AAAAAAAAAFDJzOpSlbK+vSP69ym6DACALiMbOazoEgAAAAAAAABYC6FPqlZp5PCiSwAA6DIcWwEAAAAAAABUPqFPqlZJNyoAgHbj2AoAAAAAAACg8gl9UrUsQQoA0E6yiGzzoUVXAQAAAAAAAMBaCH1StUqjLEEKANAesiGbRtazR9FlAAAAAAAAALAWQp9Uraxfn4h+vYsuAwCg6umgDgAAAAAAAFAdhD6paqWRun0CAGwsx1QAAAAAAAAA1UHok6qmKxUAwMYrOaYCAAAAAAAAqApCn1S10ihdqQAANkrmQhoAAAAAAACAaiH0SVXTlQoAYONkgwdG1rNH0WUAAAAAAAAAsA6EPqlqWf++EX17F10GAEDVykbqnA4AAAAAAABQLYQ+qXqlUbp9AgBsKMdSAAAAAAAAANVD6JOqpzsVAMCGcywFAAAAAAAAUD2EPql6pZG6UwEAbJDMsRQAAAAAAABANRH6pOqVttys6BIAAKpSNnRQZD17FF0GAAAAAAAAAOtI6JOql/XtHdmwQUWXAQBQdUrjtii6BAAAAAAAAADWg9AnXUJp7KiiSwAAqDqOoagkV1xxRRx11FExefLkmDlzZnzqU5+KZ599doO21djYGKecckqMHz8+5s6d2+61AgAAsH6M+QAAANqP0Cddgi5VAADrzzEUlWL27Nnx6U9/OpYuXRonnnhiPgF45ZVXxtFHHx3PPPPMem/v4osvjltvvbVDagUAAGD9GPMBAAC0r5p23h4UQpcqAID1kw0bFFmfXkWXAfHQQw/FBRdcEFOnTo2LLroo6urq8vtnzZoVZ5xxRnzlK1/JH19XTzzxRHz729/uwIoBAABYV8Z8AAAA7U+nT7qErG/vPLgAAMC60eWTSpE6tCSnn3568+Rfsv/++8cuu+wSN9xwQyxYsGCdtlVfX593jxk0aFC+zB8AAADFMuYDAABof0KfdBm6fQIArDvHTlSKW265JWpqavLJvtXNmDEjGhsb8+esi+9///tx77335p1ievfu3QHVAgAAsD6M+QAAANqf0Cddhm5VAADrzrETlWDZsmUxb968GD58+CodX5qMGjWqefm+tXnggQfi/PPPj+OPPz5mzpzZIfUCAACw7oz5AAAAOobQJ12GblUAAOsmGz44sj69ii4DYtGiRXlXl/79+7f6eN++ffPbxYsXr3UiMS3xN2zYsPinf/qnDqkVAACA9WPMBwAA0DFqOmi70Omyvr0jGzYoGhe8VHQpAAAVzcUyVIrly5fnt611fGl5/9KlS9e4nXPOOSceffTRuPjiiy3xBwAAUCGM+QAAADqGTp90KZYpBQBYO8dMVIqePXuuMhHYWjeXpFevtjvT3nHHHfGjH/0oTj755Jg2bVoHVQoAAMD6MuYDAADoGEKfdCm6VgEArEXmmInK0adPnyiVSm0u5dd0f9OSf6t744034uyzz45Ro0bFJz/5yQ6tFQAAgPVjzAcAANAxLO9Ol6JrFQDAmmXDBkfWp+0OGtCZ0lJ+afJu3rx5eeeX2traVR5/5pln8ttx48a1+vp77703nn766fzPO+20U6vP2XffffPb6667LkaOHNnOnwAAAIC2GPMBAAB0DKFPupQUYMiGDYrGBS8VXQoAQEXS5ZNKk5bnu/zyy+POO++M6dOnr/LYzTffHFmWxZQpU1p97eabbx5nnHFGq4/96le/ivnz58cpp5wS/fr1y78AAADoXMZ8AAAA7S9rbGxs7IDtQmGW//raqP/TnUWXAQBQkWrfc0SUd9im6DKg2V133RXHH398TJ48OS666KLo2bNnfv8111yTT+6lri3nn3/+em/3hBNOyCcVdXsBAAAojjEfAABA+9Ppky6nNGGM0CcAQGvK5Shts2XRVcAq0sTfSSedFJdcckkcfvjh+YTfggUL4qqrrorBgwfH2Wef3fzcW2+9NW677baYMGFC7LfffoXWDQAAwNoZ8wEAALS/UgdsEwpV2nrLiB51RZcBAFBxSuNGRdazR9FlwNv8y7/8S/5VV1cXP/nJT/JJvoMPPjguvfTSGDVqVPPz0v3nnXdeXHvttYXWCwAAwLoz5gMAAGhflnenS1p20RXRcM8jRZcBAFBRao7aL2p2m1J0GQAAAAAAAABsIJ0+6ZLKE8cVXQIAQMVxjAQAAAAAAABQ3YQ+6ZJKE8ZElLKiywAAqBjZZkMjG9iv6DIAAAAAAAAA2AhCn3RJWZ9ekW25edFlAABUjNLEsUWXAAAAAAAAAMBGEvqkyyoLNgAANLO0OwAAAAAAAED1E/qkyyoJNgAArNSvT2SjhhddBQAAAAAAAAAbSeiTLqs0bFBkQwYWXQYAQOHK242NLMuKLgMAAAAAAACAjST0SZdW2s4S7wAApYmOiQAAAAAAAAC6AqFPurSyJd4BgO6urjZK24wuugoAAAAAAAAA2oHQJ11aNmZkRK+eRZcBAFCY0jZbRlZbU3QZAAAAAAAAALQDoU+6tKxUitK2Y4ouAwCgMKXtdD4HAAAAAAAA6CqEPunyypMEHQCAbirLojxxbNFVAAAAAAAAANBOhD7p8koTxkTU1RZdBgBApyuNHRVZ395FlwEAAAAAAABAOxH6pMvLetRFadLWRZcBANDpSlO2K7oEAAAAAAAAANqR0CfdQnmqwAMA0M3U1ER5x/FFVwEAAAAAAABAOxL6pFsojR8dYWlTAKAbKU0cG9kmPYouAwAAAAAAAIB2JPRJt5CVSlHeaduiywAA6DRlS7sDAAAAAAAAdDlCn3QblngHALqNTXpGacKYoqsAAAAAAAAAoJ0JfdJtlLYYEdmQgUWXAQDQ4co7jo+splx0GQAAAAAAAAC0M6FPuhXLnAIA3UF5Z8c8AAAAAAAAAF2R0CfdSskS7wBAVzewX2RbjSy6CgAAAAAAAAA6gNAn3Upp8MDIttys6DIAADq0s3mWZUWXAQAAAAAAAEAHEPqk2ynr9gkAdGGOdQAAAAAAAAC6LqFPup3yTttGlOz6AEDXk20+NErDBxddBgAAAAAAAAAdRPKNbifr0ytK244uugwAgHanyycAAAAAAABA1yb0SbdUnjqx6BIAANpXlkV58oSiqwAAAAAAAACgAwl90i2VJm0d0atn0WUAALSb0rZbRda/b9FlAAAAAAAAANCBhD7plrLamijvMqnoMgAA2k35HTsVXQIAAAAAAAAAHUzok26rPHPHoksAAGgfA/pGacKYoqsAAAAAAAAAoIMJfdJtlYYOitLYUUWXAQCw0Wqm7xBZyaE9AAAAAAAAQFdnZphuzTKoAEDVK5WiPGOHoqsAAAAAAAAAoBMIfdKtlbbfJqJPr6LLAADYYKXtxkbWv2/RZQAAAAAAAADQCYQ+6daymnKUp21fdBkAABusPHPHoksAAAAAAAAAoJMIfdLt5UGJLCu6DACA9ZYNHhClbbcqugwAAAAAAAAAOonQJ91eadCAKG03pugyAADWW3nXyZG5eAUAAAAAAACg2xD6hBSY2G1q0SUAAKyfutooT9uh6CoAAAAAAAAA6ERCn5D+I2yzZWRDNy26DACAdVaeul1km/QougwAAAAAAAAAOpHQJ0Tky6KWd51SdBkAAOusvJtjFwAAAAAAAIDuRugT3lLeZWJEj7qiywAAWKvS2FFRGjGk6DIAAAAAAAAA6GRCn/CWrGePKO8yqegyAADWqrz71KJLAAAAAAAAAKAAQp/QQnnPnSNKWdFlAAC0KRsyMEqTti66DAAAAAAAAAAKIPQJLZQGDYjSThOKLgMAoE3lvadH5iIVAAAAAAAAgG5J6BNWU7Pv9Ag5CgCgEvXvE+WdJxZdBQAAAAAAAAAFEfqE1ZRGDInSdmOLLgMA4G1q9tolsppy0WUAAAAAAAAAUBChT2hFzb4ziy4BAGBVvTeJ8owdi64CAAAAAAAAgAIJfUIrSqM3i9LYUUWXAQDQrGa3KZH1qCu6DAAAAAAAAAAKJPQJbSjvN6PoEgAAVupRG+XdpxZdBQAAAAAAAAAFE/qENpTHbxXZyGFFlwEAEOWZO0XWq2fRZQAAAAAAAABQMKFPWIOafXX7BAAKVi5HzZ47F10FAAAAAAAAABVA6BPWoLT9NpEN3bToMgCAbqy8y8TI+vctugwAAAAAAAAAKoDQJ6xBVsqivPe0ossAALqr/FhketFVAAAAAAAAAFAhhD5hLco7T4wYoLsWAND5SjuOj9KQgUWXAQAAAAAAAECFEPqEtcjK5ajZa5eiywAAuqGafWYUXQIAAAAAAAAAFUToE9ZBecaOEX17F10GANCNlCaOi9LmQ4suAwAAAAAAAIAKIvQJ6yCrq42aA95RdBkAQHeRZVFz8O5FVwEAAAAAAABAhRH6hHVUnrFDZIMGFF0GANANlHaeGKURQ4ouAwAAAAAAAIAKI/QJ6ygrl3XcAgA6Xk05ag/aregqAAAAAAAAAKhAQp+wHko7bRvZyGFFlwEAdGHlXSdHNrBf0WUAAAAAAAAAUIGEPmE9ZFkWNYfsUXQZAEBX1bMuavabWXQVAAAAAAAAAFQooU9YT+XxW0Vp6y2KLgMA6IJq9poWWe9Nii4DAAAAAAAAgAol9AkboObgPYsuAQDoavr2jvKeOxddBQAAAAAAAAAVTOgTNkBpyxFR2mGbossAALqQmv1nRtajrugyAAAAAAAAAKhgQp+wgWoO3j2ilBVdBgDQBWSDBkR55o5FlwEAAAAAAABAhRP6hA1UGjooytO2L7oMAKALqJm1W2TlctFlAAAAAAAAAFDhhD5hI9QcuGtEbU3RZQAAVSzbfGiUJk8ougwAAAAAAAAAqoDQJ2yErH/fKO82pegyAIAqVnPwHpFlWdFlAAAAAAAAAFAFhD5hI9XsOyOi9yZFlwEAVKHS1ltEecKYossAAAAAAAAAoEoIfcJGynr1jJqDdy+6DACg2pRLUXPkfkVXAQAAAAAAAEAVEfqEdlCevmNko4YXXQYAUEXKu0+N0vDBRZcBAAAAAAAAQBUR+oR2kJWyqD16/4gsK7oUAKAa9OsTNQfuWnQVAAAAAAAAAFQZoU9oJ6UtRkR5+vZFlwEAVIHaw/aKrEdd0WUAAAAAAAAAUGWEPqEd1RyyZ0SvnkWXAQBUsNLYUVGesl3RZQAAAAAAAABQhYQ+oR1lvTeJmoP3KLoMAKBSlUpRc/T+RVcBAAAAAAAAQJUS+oR2Vp6xY2SjhhddBgBQgcp7TI3S8MFFlwEAAAAAAABAlRL6hHaWlbKoTR28sqzoUgCAStKvT9Qc8I6iqwAAAAAAAACgigl9QgcobTEiytO3L7oMAKCC1B62V2Q9exRdBgAAAAAAAABVTOgTOkjNIXtG9OpZdBkAQAUojR0V5SnbFV0GAAAAAAAAAFVO6BM6SNZ7k6g5ePeiywAAilYqRc3R+xddBQAAAAAAAABdgNAndKDyjJ0iGzms6DIAgAKVd58SpeGDiy4DAAAAAAAAgC5A6BM6UFbKovbYA/MOXwBANzSwX9QcuGvRVQAAAAAAAADQRUiiQQcrjRoe5X2mFV0GAFCA2ncdFFnPHkWXAQAAAAAAAEAXIfQJnaDmgF0js6wrAHQr5Rk7Rnn86KLLAAAAAAAAAKALEfqETpDVlKP2hIMt8w4A3WlZ98P2KroKAAAAAAAAALoYCTTo1GXepxddBgDQCWqPs6w7AAAAAAAAAO1P6BM6Uc0B74hsxJCiywAAOlB55o5R3say7gAAAAAAAAC0P6FP6PRl3mdZ5h0AuvKy7oda1h0AAAAAAACAjiF5Bp2sNHJ4lPe1zDsAdDlZWtZ9lmXdAQAAAAAAAOgwQp9QgJr9LfMOAF1NeeZOUd5my6LLAAAAAAAAAKALE/qEAljmHQC6lmzT/pZ1BwAAAAAAAKDDSZxBQSzzDgBdRBZRc9xBkfWoK7oSAAAAAAAAALo4oU8oUM0BlnkHgC6xrPvWlnUHAAAAAAAAoOMJfUKBsnJa5v3giHK56FIAgA1gWXcAAAAAAAAAOpPQJxSsNHJY1Lxzj6LLAADWV7kUtaccZll3AAAAAAAAADqN0CdUgJo9d4nSxLFFlwEArIeaQ/aI0hYjii4DAAAAAAAAgG5E6BMqRO3xB0cM6Ft0GQDAOihtNzbKe+5SdBkAAAAAAAAAdDNCn1Ahst6bRN27D40o+W8JABVtQN+oPeHgyLKs6EoAAAAAAAAA6Gaky6CClLYaGTUH7Vp0GQBAW0pZ1J18aH6xBgAAAAAAAAB0NqFPqDDlfWdEafzoossAAFpRc+BuURozsugyAAAAAAAAAOimhD6hwqSlYmtPPCSib++iSwEAWihtMzq/OAMAAAAAAAAAiiL0CRUo69s7ak9+Z0qAFl0KAJCk380nHRJZye9mAAAAAAAAAIoj9AkVqrz1llHeTzcxAChc6sJ90jvzizIAAAAAAAAAoEhCn1DBag7cNbIxI4suAwC6tbSke3mbLYsuAwAAAAAAAACEPqGSZaVS1J18aETvTYouBQC6pXTxRc1BuxZdBgAAAAAAAADkhD6hwmUD+kbtiYfkS8sCAJ2o9yb5xRfpIgwAAAAAAAAAqARmsKEKlCeMiZpZuxVdBgB0H+VS1L3niPziCwAAAAAAAACoFEKfUCVq9psZpcnbFl0GAHQLNUftF6Wxo4ouAwAAAAAAAABWIfQJVaT2uFmRjRxWdBkA0KWVd50cNTN3KroMAAAAAAAAAHgboU+oIlldbdS976iIvr2LLgUAuqTSuC2i5oh9iy4DAAAAAAAAAFol9AlVJhvQN+ree2RETbnoUgCgS8kGDYjaUw+PrOwQGQAAAAAAAIDKZEYbqlBp9GZRc8wBRZcBAF1Hj7qoPe2oyHpvUnQlAAAAAAAAANAmoU+oUjXTto/ynjsXXQYAVL8sovakQ6I0fHDRlQAAAAAAAADAGgl9QhWrOXSvKG27VdFlAEBVq5m1e5QnbV10GQAAAAAAAACwVkKfUMWyUilq331YZEM3LboUAKhKpcnbRs1+M4suAwAAAAAAAADWidAnVLlskx5R+74jIzbpUXQpAFBVspHDova4WUWXAQAAAAAAAADrTOgTuoDS0EFRe/KhEaWs6FIAoDr07R117zsqsrraoisBAAAAAAAAgHUm9AldRHnCmKg5fN+iywCAyldXuzLwOaBv0ZUAAAAAAAAAwHoR+oQupGb3KVHeb0bRZQBA5SqVovbUw6O05YiiKwEAAAAAAACA9Sb0CV1M7cF7RHn69kWXAQCVJ4uoPX5W3h0bAAAAAAAAAKqR0Cd0QTXHHhilieOKLgMAKkrNO/eK8s4Tiy4DAAAAAAAAADaY0Cd0QVlauvbdh0a21ciiSwGAilDea5eo2Xta0WUAAAAAAAAAwEYR+oQuKqurjbrTjops+OCiSwGAQpV2nhg1h+5VdBkAAAAAAAAAsNGEPqELy3r1jLoPHBsxsF/RpQBAIUrbjona42ZFlmVFlwIAAAAAAAAAG03oE7q4bEDflcHP3psUXQoAdKpsixFRe+phkZUd8gIAAAAAAADQNZgBh26gNGxQ1L3/6Ii62qJLAYBOkQ3dNOr+4ZjIetQVXQoAAAAAAAAAtBuhT+gmSltuFrWnHh5R8t8egC6uf5+o++C7ItPlGgAAAAAAAIAuRvoLupHyhDFRe9xBEVnRlQBAB9mkR9R94NjIBvYruhIAAAAAAAAAaHdCn9DNlHeZFDWH7VN0GQDQ/nrURt37j47SiCFFVwIAAAAAAAAAHULoE7qhmj13jppD9yq6DABoP3Up8HlMlLYaWXQlAAAAAAAAANBhhD6hm6rZe1rUHLJH0WUAwMarrYna046K0thRRVcCAAAAAAAAAB1K6BO6sZp9Z0TNrN2KLgMANlzNysBneesti64EAAAAAAAAADqc0Cd0czX7vyPKB7yj6DIAYP3VlKP2fUdGeZvRRVcCAAAAAAAAAJ1C6BOI2oN2i/J+M4suAwDWL/D5niOivO1WRVcCAAAAAAAAAJ0ma2xsbOy8twMq2fKr/xT1v/9L0WUAwNqXdH/vEVGeMKboSgAAAAAAAACgUwl9AqtY8bs/518AUJFqa1Yu6T5eh08AAAAAAAAAuh+hT+BtVlx7c6y48qaiywCAVdXVRu37joryNlsWXQkAAAAAAAAAFELoE2jViutvjRX/d2PRZQDA3wOf7z86yuO2KLoSAAAAAAAAACiM0CfQphU33B4rfvOHossAoLvrURt1/3BMlMaMKroSAAAAAAAAACiU0CewRituuSdW/PJ3EQ1+VABQgD69ou4fjo7SqBFFVwJ0sCuuuCIuvvjiePLJJ6Nnz56x6667xplnnhmbb775Or3+lltuif/8z/+Me+65J954440YOnRo7L333nH66afHpptu2uH1AwAA0DZjPgAAgPYj9AmsVf19j8byn/xvxPIVRZcCQDeSbdo/aj94bJSGOHEPXd3s2bPjggsuiHHjxsVee+0V8+fPj6uvvjr69esXl19+eYwateZOv7/+9a/js5/9bD5xuP/++8fgwYPjb3/7W9x55535BOJll10WQ4YM6bTPAwAAwN8Z8wEAALQvoU9gnTQ8MTeW/devI95cUnQpAHQD2WZDo+4Dx0TWr0/RpQAd7KGHHorDDz88pk6dGhdddFHU1dXl919zzTVxxhln5J1b0uRgWxYtWpQ/J/nlL38ZY8aMaX7sO9/5Tpx//vlxxBFHxNe//vVO+DQAAAC0ZMwHAADQ/kodsE2gCyqNGRl1Hz0xor/wDQAdKxs7KupOP0HgE7qJtLxfkpbka5r8S1L3ll122SVuuOGGWLBgQZuvv/HGG+P111+PY489dpXJv+QjH/lIvs0//OEPHfgJAAAAaIsxHwAAQPsT+gTWWWn44OjxsZMjG2qZXQA6RmmHbaLug8dGtkmPoksBOsktt9wSNTU1+WTf6mbMmBFpcYr0nLaMHTs2zjzzzDjwwAPf9li5XM63/cYbb7R73QAAAKydMR8AAED7q+mAbQJdWDawX9R99KRY9p+/isan5hVdDgBdSPkdO0XNUftHVsqKLgXoJMuWLYt58+bF5ptvvkrHlyajRo3Kb5944ok2tzFx4sT8qzU33XRTPvnX1uMAAAB0HGM+AACAjqHTJ7Dest6bRN2Hj4vShFWXUgGADVVz4K5Re8wBAp/QzSxatCjv6tK/f/9WH+/bt29+u3jx4vXednrNV7/61fzPJ5xwwkZWCgAAwPoy5gMAAOgYQp/ABsnqaqP2fUdFaWdX0AKwEbIsao45IA99At3P8uXL89vWOr60vH/p0qXrtd3XXnstPvCBD8ScOXNijz32iGOOOaYdqgUAAGB9GPMBAAB0DKFPYINl5VLUnnBwlPeeVnQpAFSjmnLUnnp41Lxjp6IrAQrSs2fPVSYCW1sKMOnVq9c6b/OFF16IU045Je68887YcccdY/bs2ZFluggDAAB0NmM+AACAjiH0CWyUdDKl9tC9oubwvSOcVwFgXfXsEXUfODbKO2xTdCVAgfr06ROlUqnNpfya7m9a8m9tHn744Tj22GPj/vvvjxkzZsSFF16YvwcAAACdz5gPAACgYwh9Au2iZs9dovbUIyLqaosuBYAKlw0eEHUfPzlK47YouhSgYGkpv1GjRsW8efNa7fzyzDPP5Lfjxo1b67ZuvvnmOPHEE2P+/Plx2GGHxQ9/+EOTfwAAAAUy5gMAAOgYQp9Au0nd2uo+dlJkm/YvuhQAKlRpmy2j7hOnRGnYoKJLASrEtGnT8sm/tDRfa5N6qbP8lClT1riNO+64Iz70oQ/Fa6+9lt9+85vfzCcXAQAAKJYxHwAAQPsT+gTaVWmzoVH3iXdHNnZU0aUAUGHKu0+N2g8cG1mvnkWXAlSQo48+Or+dPXt2LFmypPn+a665Jp/Y22effWL48OFtvn7hwoXxiU98In/txz/+8TjzzDM7pW4AAADWzpgPAACg/WWNjY2NHbBdoJtrrK+PFb++NupvvrvoUgAoWrkcNUfvHzUzdii6EqBCffGLX4xLLrkkRo8eHfvuu28sWLAgrrrqqhg4cGBceuml+XKAya233hq33XZbTJgwIfbbb7/8vm9/+9vx/e9/P/r16xennHJKm+9x+umnR6nkukcAAIDOZswHAADQvoQ+gQ614s93xYr/vi6ioaHoUgAoQp9eUffeI6K01ciiKwEqWBqWpgnAyy67LObMmRMDBgyI6dOn511cmib/knPPPTfOO++8OPLII+NrX/taft8RRxwRDz744Frf4/7774+ampoO/RwAAAC8nTEfAABA+xL6BDpc/aNPxfKLfxPx+ptFlwJAJ8o2Hxp17zsqsoH9ii4FAAAAAAAAALoEoU+gUzS89Eos/69fR+NzLxZdCgCdoLTj+Kg94eDI6mqLLgUAAAAAAAAAugyhT6DTNC5dFssv+b9ouO+xoksBoKNkETUH7hY1B7yj6EoAAAAAAAAAoMsR+gQ6VfqRs+KqP0X9tTcXXQoA7a1HbdSe+M4ob7910ZUAAAAAAAAAQJck9AkUov5vD8Xyy66OWLqs6FIAaAfZkIFRe+oRUdpsSNGlAAAAAAAAAECXJfQJFKbhhYWx/Ce/ica5C4ouBYCNUJq6XdQec0BkPeqKLgUAAAAAAAAAujShT6BQjSvqY8Vv/hD1f7qz6FIAWF91tVFz1H5RM237oisBAAAAAAAAgG5B6BOoCPX3PhrLL70q4s0lRZcCwDrIhg+O2lMOi9LwwUWXAgAAAAAAAADdhtAnUDEaX14Uy37yv9H41LyiSwFgDcrTd4iaI/eNrK626FIAAAAAAAAAoFsR+gQqSmN9Q6y48o9Rf8NtEX46AVSWHnVRe+wBUZ6yXdGVAAAAAAAAAEC3JPQJVKT6B5+I5T+/MuK1N4ouBYB00DhyWNS++7AoDRlYdCkAAAAAAAAA0G0JfQIVq3HR4lj20/+LxsefKboUgG6tvNuUqDls78hqykWXAgAAAAAAAADdmtAnUNEaGxpixe//EvXX3BzhxxVA59qkZ9Qed1CUd9im6EoAAAAAAAAAAKFPoFo0PPZ0LL/0qmh8eVHRpQB0C6VxW0Tt8bMi27R/0aUAAAAAAAAAAG8R+gSqRuPSZbHi/26M+r/cFeEnF0DHqKuNmkP3ivI7doosy4quBgAAAAAAAABoQegTqDr1jz4VKy67WtdPgHZWGjsqao6fFaVBA4ouBQAAAAAAAABohdAnUL1dP//3hqi/+W+6fgK0R3fPd+4Z5V0n6+4JAAAAAAAAABVM6BOoavWPPBXLL7sqYuGrRZcCUJWysaOiVndPAAAAAAAAAKgKQp9A1dP1E2ADu3sesmeUd9PdEwAAAAAAAACqhdAn0GXUPzInll92ta6fAGuRjRkZtSccrLsnAAAAAAAAAFQZoU+gS2lcsjRW/OaGqL/l7qJLAajQ7p57RHm3Kbp7AgAAAAAAAEAVEvoEuqT6h+fEil/+PhpfeqXoUgAqQmncFlHzrgOjNHhg0aUAAAAAAAAAABtI6BPoshqXr4j662+NFdfdGrFiRdHlABSjX5+oPXzvKE+eUHQlAAAAAAAAAMBGEvoEuryGl16JFVdcFw33P150KQCdp1yK8u5To+bAXSPrUVd0NQAAAAAAAABAOxD6BLqN+gcejxX/fZ0l34Eur7T1FlFz1P5RGjao6FIAAAAAAAAAgHYk9Al0zyXfr781Yrkl34Eupn+fqD3MUu4AAAAAAAAA0FUJfQLdeMn366Ph/seKLgWgfZZy32PnqDngHZZyBwAAAAAAAIAuTOgT6NYs+Q5UO0u5AwAAAAAAAED3IfQJdHuNK1ZE/XWWfAeqjKXcAQAAAAAAAKDbEfoEeEvDy4tixZU3RcNdD0T4yQhUqh61K5dy32e6pdwBAAAAAAAAoJsR+gRYTcOzz8eK3/4xGh56ouhSAP6uXIryzJ2iZv+ZkfXtXXQ1AAAAAAAAAEABhD4B2tDw2NOx/P9ujMan5xddCtCdZRGlyROiZtbuURo0oOhqAAAAAAAAAIACCX0CrEX9PY/Eiiv/GI3Pv1x0KUA3U9p2q6g5ZI8obT6s6FIAAAAAAAAAgAog9AmwDhobGqL+9vtixe/+HPHK4qLLAbq4bIsRUfPOPaM8bouiSwEAAAAAAAAAKojQJ8B6aFy+Iur/dGesuO6WiDeWFF0O0MVkQzeNmoP3iPIO2xRdCgAAAAAAAABQgYQ+ATZA45tLY8X1t0b9TX+NWLa86HKAajegb9QcsGuUp02KrFQquhoAAAAAAAAAoEIJfQJshMZXX1sZ/rzlHuFPYMPCnnvuEuV37BRZbU3R1QAAAAAAAAAAFU7oE6AdNL7+Zqy46a9Rf9OdEW9a9h1Ys2zIwCjvMz3KUydGVlMuuhwAAAAAAAAAoEoIfQK0o8aly6L+5r/FihvuiHj1taLLASpMtvnQqNl3RpR2GB9ZKSu6HAAAAAAAAACgygh9AnSAxhUrov72+6L++tui8aVXii4HKFg2dlQe9ixvu1XRpQAAAAAAAAAAVUzoE6ADNTY0RMPdD8eK626NxnnPF10O0JmyiNJ2Y1d29hy9edHVAAAAAAAAAABdgNAnQCepf+DxleHPJ+cWXQrQkUpZlHbaNmr2mRGlzYYUXQ0AAAAAAAAA0IUIfQJ0soYn5saK62+JhgefiPATGLqOutoo7zwxyntPi9KgAUVXAwAAAAAAAAB0QUKfAAVpeGFh1P/5zqi/7b6IJUuLLgfYQNmgAVHedacoT9shsl49iy4HAAAAAAAAAOjChD4BCta4dFnU//X+qP/TXdH43ItFlwOsiyyitM1WUd5tcpQmjI2slBVdEQAAAAAAAADQDQh9AlSQ+kefivo/3xUN9z0W0dBQdDnA6jbpEeWdJ0V518lRGrpp0dUAAAAAAAAAAN2M0CdABWp89bWov/XeWHHL3RELXy26HOj2si1GRPkdO0V5p20jq6stuhwAAAAAAAAAoJsS+gSoYI0NjdHw0BNRf/PfouHBJyIa/MiGTtOjNspTtsvDnqXNhxVdDQAAAAAAAACA0CdAtWhc+GrU33Zv1N/5QDS+sLDocqBryiKy0SOjvPN2eeAz61FXdEUAAAAAAAAAAM2EPgGqUMNT86P+r/dH/d8einjtjaLLgaqXDRsU5anbRWnKdlHatH/R5QAAAAAAAAAAtEroE6CKNdY3RMMjc6L+rw9Ew32PRixbXnRJUD369Y7y5Akrw54jhxddDQAAAAAAAADAWgl9AnQRjUuXRcO9j+bLv6cgaDT48Q5v06MuSjtsszLoOW7LyEpZ0RUBAAAAAAAAAKwzoU+ALqhx8etRf9dD+RLwjc88V3Q5UKxyKUrjt1oZ9Jw4LrK62qIrAgAAAAAAAADYIEKfAF1cw/MvR8NdD0b9/Y9F49wFRZcDnaNcjtLYUVHafuso77RtZL03KboiAAAAAAAAAICNJvQJ0I00vrI4D3823P94NDz2VMSK+qJLgvbTq2eUJoyJ8sRxUdp2q8h69ii6IgAAAAAAAACAdiX0CdBNNS5dFg0Pz4mG+x+L+gefiHjtjaJLgvWWDRmYL9megp7ZVptHVioVXRIAAAAAAAAAQIcR+gQgGhsao/GpZ6M+dQBNy8AveKnokqB1pSyy0ZtHebuxUZo0LkpDBxVdEQAAAAAAAABApxH6BOBtGl5YGA0PvLUM/JPPRtRbBp4CbdIjStuMXhn03G5sZL03KboiAAAAAAAAAIBCCH0CsEaNy5ZHw1PzouGxp6Ph8Wei8an5QqB0fMhzzMgojd0iSuNGRbbZsMhKWdFVAQAAAAAAAAAUTugTgA0PgT72TDQ+LQTKRhLyBAAAAAAAAABYJ0KfAGx8CHTOvGh4XAiUddTzrZDnuFF50DPbXMgTAAAAAAAAAGBdCH0C0CEh0MYn50bD3AXRMPe5iEWvFV0WRcmyyIYMjGzksCiNGh6lMaOEPAEAAAAAAAAANpDQJwAdrnHx69HwzHPR+FYINIVB45XFRZdFRwQ8h266MuA5cniURg1bGfDsUVd0ZQAAAAAAAAAAXYLQJwDFBUHnLojGt0KgeRB04atFl8W6KqWA56C3Ap4rQ57Z5kMFPAEAAAAAAAAAOpDQJwAVo/G1N1YGQZ97MRpfeDkaX1gYDS+8HPHqaxF+WxWjVIpsUP+VS7QP2TS/LY0YujLgWVdbdHUAAAAAAAAAAN2K0CcAFa9x6bJofHFhHgJNYdCGdPv8ylBovLmk6PKqXxYR/fpE6a1QZ9bydtCAyMqloisEAAAAAAAAAEDoE4Cu0B20qSNo44uvRCxaHI2vvhaNr76e38Ybb+oSWsoi+vSOrF/vyPr3iaxvn8gG9v17uHPwQMuyAwAAAAAAAABUAaFPALq0xhX1EYtfXyUImodBV/n76xGvvRFRbb8Sy+WIFOTsmwKdfVYGOvv1jkihzqaAZ78+Eb17RZaCnwAAAAAAAAAAVDWhTwBI4dD063Dpsohly6NxSbpdFrFkWTQuW57fv8b70t8bGlduo+VXw1u3SZat7LiZbrMssqa/l0oRdXURPesiq6uN6FG3sutmjzbu61Hb/Of8MQAAAAAAAAAAug2hTwAAAAAAAAAAAIAqUCq6AAAAAAAAAAAAAADWTugTAAAAAAAAAAAAoAoIfQIAAAAAAAAAAABUAaFPAAAAAAAAAAAAgCog9AkAAAAAAAAAAABQBYQ+AQAAAAAAAAAAAKqA0CcAAAAAAAAAAABAFRD6BAAAAAAAAAAAAKgCQp8AAAAAAAAAAAAAVUDoEwAAAAAAAAAAAKAKCH0CAAAAAAAAAAAAVAGhTwAAAAAAAAAAAIAqIPQJAAAAAAAAAAAAUAWEPgEAAAAAAAAAAACqgNAnAAAAAAAAAAAAQBUQ+gQAAAAAAAAAAACoAkKfAAAAAAAAAAAAAFVA6BMAAAAAAAAAAACgCgh9AgAAAAAAAAAAAFQBoU8AAAAAAAAAAACAKiD0CQAAAAAAAAAAAFAFhD4BAAAAAAAAAAAAqoDQJwAAAAAAAAAAAEAVEPoEAAAAAAAAAAAAqAJCnwAAAAAAAAAAAABVQOgTAAAAAAAAAAAAoAoIfQIAAAAAAAAAAABUAaFPAAAAAAAAAAAAgCog9AkAAAAAAAAAAABQBYQ+AQAAAAAAAAAAAKqA0CcAAAAAAAAAAABAFRD6BAAAAAAAAAAAAKgCQp8AAAAAAAAAAAAAVUDoEwAAAAAAAAAAAKAKCH0CAAAAAAAAAAAAVAGhTwAAAAAAAAAAAIAqIPQJAAAAAAAAAAAAUAWEPgEAAAAAAAAAAACqgNAnAAAAAAAAAAAAQBUQ+gQAAAAAAAAAAACoAkKfAAAAAAAAAAAAAFVA6BMAAAAAAAAAAACgCgh9AgAAAAAAAAAAAFQBoU8AAAAAAAAAAACAKiD0CQAAAAAAAAAAAFAFhD4BAAAAAAAAAAAAqoDQJwAAAAAAAAAAAEAVEPoEAAAAAAAAAAAAqAJCnwAAAAAAAAAAAABVQOgTAAAAAAAAAAAAoAoIfQIAAAAAAAAAAABUAaFPAAAAAAAAAAAAgCog9AkAAAAAAAAAAABQBYQ+AQAAAAAAAAAAAKqA0CcAAAAAAAAAAABAFRD6BAAAAAAAAAAAAKgCQp8AAAAAAAAAAAAAVUDoEwAAAAAAAAAAAKAKCH0CAAAAAAAAAAAAVAGhTwAAAAAAAAAAAIAqIPQJAAAAAAAAAAAAUAWEPgEAAAAAAAAAAACqgNAnAAAAAAAAAAAAQBUQ+gQAAAAAAAAAAACoAkKfAAAAAAAAAAAAAFVA6BMAAAAAAAAAAACgCgh9AgAAAAAAAAAAAFQBoU8AAAAAAAAAAACAKiD0CQAAQOGuuOKKOOqoo2Ly5Mkxc+bM+NSnPhXPPvvsOr9+3rx58ZnPfCb23HPP2HHHHePwww+PX/ziFx1aMwAAAOvGmA8AAKD9ZI2NjY3tuD0AAABYL7Nnz44LLrggxo0bF3vttVfMnz8/rr766ujXr19cfvnlMWrUqDW+Pk0UHn/88bFw4cI4+OCDY/DgwXHttdfGU089Fe9973vziUEAAACKYcwHAADQvoQ+AQAAKMxDDz2Ud2iZOnVqXHTRRVFXV5fff80118QZZ5wRe++9dz45uCbpeen5P/jBD/KuL8mSJUvi1FNPjbvvvjt++ctfxqRJkzrl8wAAAPB3xnwAAADtz/LuAAAAFObiiy/Ob08//fTmyb9k//33j1122SVuuOGGWLBgwRo7vqQOL2mJwKbJv6Rnz55x5plnRrrO8bLLLuvgTwEAAEBrjPkAAADan9AnAAAAhbnllluipqYmn+xb3YwZM/IJvPScttx22235c2bOnPm2x1Inmdra2jW+HgAAgI5jzAcAAND+hD4BAAAoxLJly2LevHkxfPjwVTq+NBk1alR++8QTT7S5jTlz5uS3W2655dseS5N/I0aMiLlz5+bvBQAAQOcx5gMAAOgYQp8AAAAUYtGiRXnHlv79+7f6eN++ffPbxYsXt7mNhQsX5rdr2kZDQ0O89tpr7VIzAAAA68aYDwAAoGMIfQIAAFCI5cuX57etdXxpef/SpUs3ehu6vgAAAHQuYz4AAICOIfQJAABAIXr27LnKJN7qmibtevXq1aHbAAAAoP0Z8wEAAHQMoU8AAAAK0adPnyiVSm0u5dd0f9OSf61pWuLv1VdfbXMbWZbl7wUAAEDnMeYDAADoGEKfAAAAFCItwzdq1KiYN29eq11bnnnmmfx23LhxbW5jzJgx+e3TTz/9tsfSNufPnx9bbbVVPtEIAABA5zHmAwAA6BhGQAAAABRm2rRp+UTdnXfe+bbHbr755rxjy5QpU9b4+vScW2+99W2P3XHHHfm2p06d2u51AwAAsHbGfAAAAO1P6BMAAIDCHH300fnt7NmzY8mSJc33X3PNNfkE3j777BPDhw9v8/XpsV133TVuu+22uPbaa5vvT9s655xz8j+fdNJJHfoZAAAAaJ0xHwAAQPvLGhsbGztguwAAALBOvvjFL8Yll1wSo0ePjn333TcWLFgQV111VQwcODAuvfTSfDnAJHV2SRN9EyZMiP3226/59U8++WQcf/zxsXjx4pg1a1YMGzYsrrvuupgzZ06cdtppcdZZZxX46QAAALo3Yz4AAID2JfQJAABAodKwNE0AXnbZZfmk3YABA2L69Onx8Y9/vHnyLzn33HPjvPPOiyOPPDK+9rWvrbKN9LrU5SUtD7h06dJ8MjF1eznmmGPypQABAAAohjEfAABA+xL6BAAAAAAAAAAAAKgCpaILAAAAAAAAAAAAAGDthD4BAAAAAAAAAAAAqoDQJwAAAAAAAAAAAEAVEPoEAAAAAAAAAAAAqAJCnwAAAAAAAAAAAABVQOgTAAAAAAAAAAAAoAoIfQIAANAtXXHFFXHUUUfF5MmTY+bMmfGpT30qnn322XV+/bx58+Izn/lM7LnnnrHjjjvG4YcfHr/4xS86tGa69z53yy23xPvf//6YNm1aTJo0KfbZZ5/40pe+FC+//HKH1k333u9aamxsjFNOOSXGjx8fc+fObfda6Ro2dp9btGhRfP3rX4999903tt9++/z285//fDz//PMdWjfde7978MEH4yMf+UhMnz49/x174IEHxnnnnRfLli3r0LrpGj7xiU/EHnvssV6vWbhwYXz5y1/Of8btsMMOcdBBB8UPf/jDWLFiRYfV2V0Z99HZjPvobMZ8FMG4j85mzEeRPlGhY76sMf3mBgAAgG5k9uzZccEFF8S4ceNir732ivnz58fVV18d/fr1i8svvzxGjRq1xtenE0rHH398PnA/+OCDY/DgwXHttdfGU089Fe9973vzSUFoz33u17/+dXz2s5+Nnj17xv7775/vc3/729/izjvvjM033zwuu+yyGDJkSKd9HrrHfre6H//4x/HVr341//N1110XI0eO7KDK6a773IsvvhgnnXRSzJkzJ3bbbbd8svmBBx6Im2++Of9Z96tf/SoGDhzYaZ+H7rHfpd+nKdywfPnyOOCAA2LEiBHx5z//OR555JGYMWNGXHjhhVEulzvt81Bd0kTxueeeG8OGDYs//vGP6/SaV199NU488cR47LHH8n1uiy22yPe59PMuTT5/97vf7fC6uwvjPjqbcR+dzZiPIhj30dmM+SjSeZU85kuhTwAAAOguHnzwwcZtttmm8YQTTmhcunRp8/2///3v8/s/+MEPrnUbp59+ev7cG264ofm+N998s/Fd73pX4/jx4xvvvffeDquf7rfPvfLKK42TJ0/Ovx5//PFVHjvnnHPybZx11lkdVj/d92ddS2nf22GHHfLXpq9nnnmmA6qmu+9zH//4x/Pn/uQnP1nl/nPPPTe//xvf+EaH1E733u+OO+64/LlXX311833Lly9vfO9735vff8UVV3RY/VSvJUuWNH7uc59r/r24++67r/Nrv/rVr+avueSSS5rvW7FiReMZZ5yR3/+73/2ug6ruXoz76GzGfXQ2Yz6KYNxHZzPmoyhLqmDMZ3l3AAAAupWLL744vz399NOjrq6u+f7URWOXXXaJG264IRYsWLDGbi+pu0taSiYt8dckdeI488wz86WwUvcNaK997sYbb4zXX389jj322BgzZswqj6VlidI2//CHP3TgJ6A77nct1dfXx6c//ekYNGhQ3oEDOmKfe+655/JOHWmptZNPPnmVx0499dR8OV2dreiIn3X33ntv9O/fP++20aSmpib/vZvcddddHVY/1en666+PWbNm5V2FWo4H1sWSJUvypcFTd6HUQbJJ6ix01lln5X++9NJL273m7si4j85m3EdnM+ajCMZ9dDZjPopwfZWM+YQ+AQAA6FZuueWW/KROOim0urScS5q8S89py2233ZY/Z+bMmW97bOrUqVFbW7vG19P9bOw+N3bs2HxiueWJyZYni9K233jjjXavm+6937X0/e9/Pz9B/pWvfCV69+7dAdXSFWzsPpeCDuk5afnc1fXt2ze+8Y1vxHve8552r5vq1h4/6wYMGBCvvfZaLFq0aJX7n3/++fx20003beeqqXa//OUv82DWF77whfx35Pq455578uO2adOmRam06hRdWpYyLaN7++235+EbNo5xH53NuI/OZsxHEYz76GzGfBThl1Uy5hP6BAAAoNtYtmxZzJs3L4YPH77KlcEtB93JE0880eY25syZk99uueWWb3ssTfylKzjnzp2bvxe0xz43ceLE+NCHPhRTpkx522M33XRTfhJpm222aefK6e77XZMHHnggzj///PzK9NZCD9Be+9xDDz2U32699dbxm9/8Jo455pjYcccdY9ddd81Psr/88ssd+Anozj/rTjzxxHyyJQVtHn/88fz3auru973vfS+fHEz7Iqzeheq6667L950sy9brtU1jiS222KLVx9N+m/btNJ5gwxn30dmM++hsxnwUwbiPzmbMR1FOrZIxX81GbwEAAACqRLqaN139m5ZzaU26ojxZvHhxm9tYuHBhfrumbTQ0NORXD7tKmPbY59qSXvPVr341//MJJ5ywkZXSlbTXfpdOQKYl/oYNGxb/9E//1CG10jW0xz7X1GHjwgsvzJfR2mefffJOan/961/zZa9S5460jG6akIH2/FmXlglM2/ja1762SsehcePG5QGIzTbbrJ0rp9ql5Ug31CuvvJLftvWzrGm/ffXVVzf4PTDuo/MZ99HZjPkognEfnc2Yj6JMr5Ixn9AnAAAA3cby5cvz29auDG55/9KlSzd6Gzq+0F77XGvS5PIHPvCB/MrhPfbYwxXpdMh+d84558Sjjz4aF198sSX+6PB9rmm50tRJIS2dteeee+Z/TxM8qeNLmvj71re+FV/60pc64BPQnX/WpYnlH/zgB/mSgQcddFAMGjQo7rrrrrj77rvjc5/7XJx33nkmnWk3TWOE9j42ZFXGfXQ24z46mzEfRTDuo7MZ81GNlnXimM/y7gAAAHQbPXv2XOWEUVsD8l69enXoNug+OmJ/eeGFF+KUU06JO++8M18Ca/bs2eu9zAxdW3vsd3fccUf86Ec/ipNPPjmmTZvWQZXSVbTHPlcqrTxVfeCBBzZP/CXp59tZZ50VPXr0iKuuuirvqgbttd8999xz8cEPfjCfbLniiivi3//93+Pss8+OX/ziF3HGGWfE7bffnne/gs7ebwVvNo5xH53NuI/OZsxHEYz76GzGfFSjnp045hP6BAAAoNvo06dPfnKxrSVfmu5vWmKjNU3LybS1/EbaRjpRmd4L2mOfa+nhhx+OY489Nu6///6YMWNGvhyWfY323u9S5410AnzUqFHxyU9+skNrpWtoj591TY9tv/32rW5/yy23zLfz8ssvt1vdVLf22O/+53/+J5YsWRKnnXZajB49epXH0gRg2u9uuOGG5mUoYWOty1gicXy3cYz76GzGfXQ2Yz6KYNxHZzPmoxr178Qxn+XdAQAA6DbS0hnphPa8efPyKy1ra2tXefyZZ57Jb8eNG9fmNsaMGZPfPv300297LG1z/vz5sdVWWzVfuU731h77XJObb745PxmZlvg77LDD4itf+Uqby8TQvW3sfnfvvfc2/4zbaaedWn3Ovvvu27wk28iRI9v5E9Adf9al353r0gmhqWMCtMd+9+yzz7b5nBTmSvc/9dRT+XsMHTq03T8D3c+axhJN96dORZtttlknV9a1GPfR2Yz76GzGfBTBuI/OZsxHNRrTiWM+IxEAAAC6lbRkVTpJlJZIa21yJZ3smTJlyhpfn55z6623tro0Vtr21KlT271uuu8+17RvfehDH8on/tLtN7/5TRN/dNh+t/nmm+cTza19jRgxIn9OWmoy/b1fv34d/lnoPr9fk7/85S9veyx1eUkTNWmyWZcr2nO/GzJkSH775JNPtvp4mvxr+TzYWJMmTcqX8bvtttvetmxpmrROP+tS+KZcLhdWY1dh3EdnM+6jsxnzUQTjPjqbMR/VZlInjvmEPgEAAOhWjj766Px29uzZ+dIuTa655pp8gmWfffaJ4cOHt/n69Niuu+6aD9qvvfba5vvTts4555z8zyeddFKHfga61z63cOHC+MQnPpG/9uMf/3iceeaZnVI33Xe/SxMsH/3oR1v9apoAPPXUU/O/mwCkvX7WTZ8+Pe+wkX6/XnHFFc33pxPkX//61/NJnne9610d/CnobvvdrFmz8i59adncpi4xTS6++OJ47LHH8lBXCkZAe+jRo0e8853vjLlz5+b7WJP6+vr4xje+kf/ZWKJ9GPfR2Yz76GzGfBTBuI/OZsxHtenRiWO+rLGxsbFdtgQAAABV4otf/GJccsklMXr06Hy5qgULFsRVV10VAwcOjEsvvTRfNiZJXV3SScgJEybEfvvt1/z6dGXw8ccfH4sXL85PHA0bNixf7mrOnDlx2mmnxVlnnVXgp6Or7XPf/va34/vf/34+0ZI6bbTl9NNPt7wk7fqzrjUnnHBC3l3BEn90xD73wAMPxHve85549dVXY88998yXxErPvf/++2Py5Mnxk5/85G3LucHG7nc/+tGP4mtf+1q+vNoBBxwQm266adx33335c1O3l5/+9Kf5tqEt48ePz8cDf/zjH1e5/8EHH8zDgmkC+aijjlqli9UxxxyTd3jZe++98+BD6naVftalsUWa0E4di9h4xn10NuM+OpsxH0Uw7qOzGfNRtPEVOuYT+gQAAKDbSUPhdKLosssuyyfsBgwYkF9pnrppNJ0kSs4999w477zz4sgjj8xPDLWUXpc6vKRlZJYuXZqfGEpXaKbBvEla2nOfO+KII/ITSGuTThrV1NR06Oeg+/2sW50JQDp6n0snxNNjN910UyxatCjvNHTooYfGBz7wgbxbAnTEfvfnP/857/xyzz33xJtvvhlDhw7NJ2bS0rqW+WNDJwB//etfx9lnn50vSZnCCy09//zz8Z3vfCduuOGGPFCYfqemScIU9LKUc/sx7qOzGffR2Yz5KIJxH53NmI+ija/QMZ/QJwAAAAAAAAAAAEAV0PsdAAAAAAAAAAAAoAoIfQIAAAAAAAAAAABUAaFPAAAAAAAAAAAAgCog9AkAAAAAAAAAAABQBYQ+AQAAAAAAAAAAAKqA0CcAAAAAAAAAAABAFRD6BAAAAAAAAAAAAKgCQp8AAAAAAAAAAAAAVUDoEwAAAAAAAAAAAKAKCH0CAAAAAAAAAAAAVAGhTwAAAAAAAAAAAIAqIPQJAAAAAAAAAAAAUAWEPgEAAAAAAAAAAACqgNAnAAAAAAAAAAAAQBUQ+gQAAAAAAAAAAACoAkKfAAAAAAAAAAAAAFVA6BMAAAAAAAAAAACgCgh9AgAAAAAAAAAAAFQBoU8AAAAAAAAAAACAKiD0CQAAAAAAAAAAAFAFhD4BAAAAAAAAAAAAqoDQJwAAAAAAAAAAAEAVEPoEAAAAAAAAAAAAqAJCnwAAAAAAAAAAAABVQOgTAAAAAAAAAAAAoAoIfQKFeO211+KnP/1pvO9974tdd901Jk6cGJMnT47DDjss/u3f/i2efPLJwmq79dZbY/z48fnXihUroit69NFH33Zf02f+y1/+0ml13HXXXfGFL3wh3vnOd+b//pMmTYrddtstPvjBD8YVV1wR9fX10RXNnTu3+fv91FNPVdz7v/LKK/HCCy90aA3vfve7m2to+bXtttvGjjvumO8HJ510UvzoRz+KV199tc3t7LPPPvnrLr/88nap6/HHH4/Gxsb1es2vf/3rvIY99tij1c84e/bs6I7/vwEA1vfYNH19+ctfXqfX/dd//Vfza1Y/DttQHXH8lsaU7TW+beu4s7NtyLFlW2OQc889N7/vhBNOWOfj/Pb8nq5JU73p+94ZPvOZz+Tv96lPfSoqTcvzJKt/pXH81KlT4+CDD46zzz47br/99k7bhzd0X2ht/yrqXFBr4++2/l8AANB+2jq+beuraZ6ived3Onsc8Oabb8b5558fhx56aD4Xs9NOO8WRRx4ZP/zhD2PZsmXrvJ00l5vqPvDAA9f4vNNOO635+5Xmhdvy0EMPNT/v4YcfXuW4uLWvCRMm5PWnY/uPfvSjce21166xjpdeeinOO++8eNe73hUzZszIxzFpfvq4446L7373u7FgwYLYEGvbb9L897Rp0+Koo47KzzWsab6rms4RzJ8/P773ve/FySefHO94xzuax4UHHXRQfPazn42bbrqp02sC6I5qii4A6H7+8Ic/5BMBCxcuzP8+YMCA2GabbWLRokXx2GOP5Qfzl1xySZxxxhnxoQ99qOhyu5Q0GZImUd944434+c9/Xlgdixcvjs9//vNx5ZVX5n+vra2NESNGRO/eveOZZ56JG264If+68MIL80HdlltuWVit3c1FF12UD/jPOeecGDJkSIe/36BBg1b5902ByyVLlsRzzz0Xd9xxR/6VJvT//d//PR+Id2QQ/dvf/nZcdtllcffdd0dNTfUdIlXK/28AgI3xu9/9Lj73uc9FlmVrfF7TWKKS/elPf8qPz9Ik2Jlnnll0OV2C72nx0mReXV1d89/TxZrpfE6a8E4X0aWJx8MPPzz/d2r5vPbWFfaFzh5/AwDwdqNHj45NN910rc8rl8tR7VLgMF3smAKWacyd5mbSnMyDDz4YDzzwQD4eT8eoffr0Weu2Zs6cmT93zpw58fLLL7f6PUxzPS0vCktBwBQSbM1tt92W36bj4hRkbCmNK9I4pKWmuaQUwv3973+ff6Ug6ze/+c23nU+4/vrr46yzzsrnJtN8ZPo3T589fT/uvffe+Nvf/pbPR6Z5yxTO/P/s/Qm8rXP5P/6/D8c8JkPJFMosGZOkAZlSPmYnhEhmadBISaaQOUOoJHPDR9Qx9xGiiSjSIBGhyDx0nP/j9f7+7v1fZ5+1p3P2tM5+Ph+P/dj7rGnf615r7XNf93W9r2sw30cppE3e85577qlfiZcuueSSmhPtRK+88kotXv3Wt77VtVhu4YUXrnn+XJfnevnll9evFLsm1kkeEICh0XkVDUBHy0HzMcccU3/edNNNy7777lve9KY3dV3/2GOPlTPOOKNceOGF9aAxB+wHHXTQCG7xjOXKK6+siZHVV1+9x6TpoosuOqTbkNV0WTmXA/8Eb3kPbL311l3JoARqWZF37LHH1gLgdHu87LLLyute97oh3a6xZJFFFunx9c7qzOGUFYhHH3102+sSbH/5y18ud911V/nYxz5Wvv3tb5dVVlllitvkpEICyQSV0yPBdorNp8VGG21UV5TmZMFY/3wDAEyPLLxJTPirX/2qrLnmmj3eLrHE3XffPei/P7Fqup685jWvGZTHO/PMMwe1I+VoOe4c7BiknZ6O8wd7nzJwJ510UllsscWmuvy5556rMVW65Pzwhz+sCcDjjz9+ioTrYL6Hp+e9MFhx5PTqKf7OeZB0Tp1jjjmGfZsAAMaaTJ6b1kK/TpNcTAo+cxycxUdNvuXXv/51zdUlJ5Pb9GcCx1prrVWP63Ncnal+733ve9sWcr700ktl2WWXrU1/8u8UQbZbHJYGIJHum90ll9hTo4s8XgoL0zzkf//3f2uhYbp5NrIwLXnmbEc6gu622261AU0jBauJW5KHzALU5CLTuXIw30evvvpq3bY8fs55pDFSYpJOkxgvuboU784000xlp512Kh/+8IenaOyS/Zzi4TRyyeudIuPvf//7ZbbZZhvRbQeYURnvDgybHLDnIC8SPOQgvLXgMxJoZNz3Pvvs03USfyiSeUxtmWWWqV9DmVRIQeenP/3pmqR9wxveUIO0jCtrDfCSEEoiKMmirP7KmLMvfelLQ7ZNY1EC8eb1Hs0J45xwyGrBjOlI98oEwgmOWy2xxBL1ecwzzzwjtp353dmGbMtY/nwDAEyvprP7T37yk15v1xQPrrjiioP6+1OMmGOm/nR5GQmdcNw5WDHIaDjOZ2CSON1rr73KV7/61frvH//4x+Xqq68ele/h0f7+yt+gbJ9FewAADJYUR+YYPdL1srXBRhpJNOPlU5zYnzHvOf5vLRptJ00qIpMAcgyePE9T3DmQos/eJL+Y57PqqqvWf3/nO9+ZqhlRChGzqCoTJlsLPptj7yOOOKJ2Lk3+KSPgB1sKJLMP9txzz/rvW2+9tXZI7TRZ4JeCz3S9zc/J53ef1Jjizi233LLmf7OgNkW3Z5999ohtM8CMTtEnMCxS7Je2+Bn7tdpqq5UDDjig19tnpVBa2+cA+7zzzhu27WRoJeGTgCAOP/zwsvjii/d42xQAZ9VdM3qhEwMgpt+cc85Zu33G/fff32cBAAAAnWuTTTap3zOWLTFkb0WfSZpkegQwuiTBt8EGG9SfhyJhCgAADNxTTz1VpyvG8ssvP9X1TQFnbpPul/3RdMTsqeizyQemoHL99def4rJWKQzMlMA0hRlo0Wdjww03rN//+Mc/1uLSRrqXRiYO9CTnF7bZZpuu23dvPjJY3v3ud3f9nHxXJ3nkkUdqAW185CMfqc17epPGP02Dp0svvXTI9inAWKfoExgWGc+Xg/ZoVjL1tTIr3SFS8JkVVk0gsNxyy5WVVlqpHvy3k2BkjTXWqLe78847p1oldsghh9SD6pVXXrl2kdl7773riqqByAH/Jz/5yfKud72rPk5GBaQ9fVr/p6i1u1yX7bnlllu6xlSvs846tfh1q622Kj/4wQ/q7ZLUzIFv2v/nujyP3Xffvfz2t79tux1PP/10Oeuss+rYrzxe9ktGIOb+p5xySvnPf/7TdduHHnqobkOTcEkAln+/5z3v6bpN/t1sZ3fptpkRbu9///vLW9/61q5tP+ecc/q14q9x8cUXdwWUGevdn2TRkUceWQv9llpqqamuz2uXwtB3vOMdXa9pgo0kidvJ881z/Nvf/lZXGGbsQPZZVjHusMMO5cYbb+waUZDntsUWW9TVgdm/WQHYvIdbNfstr0dey+yXBI/Zpry/Mr5goNIJNUWxCZoSaGcbMyYh74/u77H8zmYbMkKvu9tuu612ysz1WaHZ+n5o9kUceuih9d+NjLjIv6+44oo62iI/5/Xv7TOe22SkR1ZNDqa8Bk0Xp+uuu67ta5p90yrv/xNPPLFuc+6f1yT7M+Mz7rvvvqkeY5dddun6dz5Leczsp9bP8E033VROO+20eiIjj5f3R94T2Ue5vrf3dD77eW/mc53PUMaLXHTRRW3/ZvT0nBrNa5Xvg/H5/uc//1lHmWala55Xti+rTvN4eV93l78veax0bs7Jn4x6ye/KZzD75uCDD55qHwMA9EeOezO2LccnPSWN/vKXv9RxdInDFlxwwR4fK8f0OVbOMXmSSzmuznHO+973vrogsd1Y6Oa4L8eRjeZYK4mnJmbbdttt62Pla/vtty+XX375FEWqzfFhEwt84xvfmOL4rfGHP/yhfOELX6jFq4lJmuOpxMztFjv1dNzZbPfPfvazum8OPPDA+jh5vIzYS2zdU9JuIHFlOz/60Y/K1ltvXY8jc/+MtPv5z38+1e3axSC96X5M3Ns+nd5zBQM1Pfs7sVKmGSRuzPsn+yzHz/1Z5HjttdfWTppJmOZ35X2dcxz33HPPFLfLe3HXXXftet8mudtdpijk+jxGfxO6A5HPRSReav2s9RY75XXM5zXPL69l9k32daaAtJ536Ovz9Ytf/KL+OzFXfn+mi+Tzn8dN3NOfmCu/L/HQxhtvXO+b7c0+a/d3o694sPW938SYvcXfrTFXtr2djEtMfJlzIHkv5PxDzo30dH6r+f15/11zzTV1v+Zzns/tBz/4wa5x9wAATJ8ciyeHkcY3yUUmN5GvHH8mr9gUIPZHcgc53s9xXI7duucKc8ya2CLH3ol18nsS7x511FF1hHh3mazXjNj+/e9/P9X1zTn93Ka3WLtVjrEjExu75woffvjhGr+n22OO75sC0XZFn3fccUf9nuea7ZwWc889d9fPzz33XNfPzaSJ5P96W1ya1yg5thwvpwh0KLQ+buu2NDFMvnIuo53m+ty2v7Jf815scqh5DVKIOdC8eFxyySU1Zkj+vj95/kieKe/PnPdod84ksXByi7ldE9e0jr3PZyAxW+KX5B5zm+Tm81nqHgf397xDEws2sVfr/s925H2cSaWJ7RML5vaf//zne3y8nL9KjiyfvWxf4vzk2nJZE/8BDCVFn8CwaAqN0vK9GdnXlxx85iud/iLJinT/zAHvlVde2fY+ORh/9tln6xis1lVbJ5xwQvnQhz5U75cVXjl4y8H1DTfcUAv/mmLEvqQFfRIHSWw988wz9XESSCTZkGKyPFYubydJu5ywTxFeRnQlcEpglXHnF154YT1IzYHjo48+Wt74xjfWk/FJluVgNomkVkkIpSAyxXgJ9DJ+INuS/ZsD3SQnciDdBDb5XUkiZv9FtrlJKvalOeA+/fTTa4CW7pyve93raoLyuOOOK3vssUe/Cj9zmzxWNMFdXzJmIavrsj+6SzFw9ncKPBNopJA0wVsCxiQ7DjrooB6TFgmEs93ZV0230d/85jc1wZT3UIpt89ySAM3vzvdcnsLLHMC3k1EGeS3z2iy77LL1fZr3V4oJv/nNb5b+yvNJMWFGHyQwX3rppevrm32X90e2uzVgTYImwUQkufjEE090XZfkXrYpK+iStO2taDNFtXlPNN785jfXfyfAThK3WSHZ/b3YaIqXN998864TB4MpJy2iPwFtnncS8Un+5fXIa5zXMfsmxdl5PknQNvI5yPNt5Hnnq/vzyOPldc77Mp+B/K1pV4zcXT7zee8kkM4Ik+zTJJoz+iJJ24EUTrczPZ/vbFNes6zQfPDBB+t+ygrMvNZJNObvTE8FnP/4xz/q+++CCy6o/87f3SeffLJ23srfn3ZBNwBAbxKjNce2PXV4b0a75ximJynwyzF9joVzTJ44Icd78803Xz0+TPyX4+N2ia6eJEGRx8sxeR4jx03jx4+v8dhnP/vZGps1cryX47Em6ZTjtPy79dgxMWC2IYmTFCpmJFqOWxNP5lg1hYStxaf9kfslfkpxYBJr+b1JMiT+ySK3HL9OT1zZXWLExLEphEsMlNcvibTs+8Hu8NjbPp2ecwXTY6D7O3FlijETt+W9l/MCmXCR93reCzkGbyfPK6MW991337oQLd1v8joljsjzTezTHJNHrk9xY97viYGSbOr+GUqCK69X4t687kMVv0V/FkJ++9vfrkWM+bzmc5X4PnFX7pvJD4mDmwVz/fl8RYpZs79z7iLvz5xj6U/8FonTEg/l/FH+duS1yz7LuZF2SeqB6i3+7k3OcWRBahK32Y5mX+U9knMJOUeSJH9PkrzM/ZOUX2yxxeo+zv7JfTISEwCAaZeYMcftKarLIp0cv77pTW+qCxvTJTF5xcQJOabvS3I6WXSU4/3555+/FsKlGUsjuaPkKhNbJNeQY/8c8+b35LbJBTX5uEbivGZxVmLA1vP3iU8SG0RyqTnO7I/EVsnhJjbJMWar5rg58Vpij+SGE5unw2XyoO2KPqe1y2c0RXmzzz57jc8aKSRsciHJt+a1ae0E2sjzyLF1cj9DpTmfkf3RjKMfKmnakdcyzzevT2KO/N4UJSduyPUD0TTNyQLceeaZp1/3yfsy8Vy6sOb9111yzokDUyCcz0rirryPI/F0FqfmHEziwvzOxME5Z5LPUmLx1gLRwZC4KrHgGWecUePHbFPO1zQNm5Lra5WcWhZ0fuc736mfyZwnSpyVxj65LPHjQM47AUwLRZ/AsMiBW6SYqHW11UDkYDQFRtGuo2Fr4VkOvho//vGPy5lnnlnvn2RcClDTiSUBRwoD40tf+lLbLo6tcmCcg+AEW81KqDxORo8nqZOVbznw7OlEeRKLWRmUxND3v//9+r0JNlLAmBP0xx57bN2+XJ/fl+RFs1qvVVZFJXhLkJekSMamJwGRA84kd/Jck3hr9keCyhQRNsV7ObjPv1PA1pt0dUmyMQe16VqRg/ocTCcplYPcJIfynNP9sC85yG2KMNuNjhiIFKglqZXAM1168lqkmC+vaZIYCc6yT5ouHt2lU0iCu9w++zrPK8FCgvIkT1Lklk6feY3yXsttkgxJMWFPnUByAJ9AOo+Z90UKdlN8msdMsNxTp6JWKajMys0EE+kImwLH/P68N7INSQzluaYLaKsETYssskjdvmYUevM+SfCc++Xn3qTgNe+JRk4o5N8Zy5f7N0m7dp+9bG/2d/fP3mBKoNR0ne1ppWMjr10C/CTNcgIlfwPyWcjrmU4teR/mZEgjn4MEjq2vZZ57Pjet8hrmpE0Sxvl85jPXLlDtLgn0dFttXsckhfM3Ke+pdJxNADk9pvXznUA6f8sSJGe1Yj4H2U85kZRtzYrE/J3Je6NdMXv2az5r+Uzk72DeG7ksJ0VeeOGFfv1dAADorhnZ3tOI9xx3JlGU47reFuvlWDqJnuZYJcfoOd7Jv3P8lCRPFvX0V2KiHCdlsV/irhwL5lguRZORKRVNx8QcQ+d4rOlWnxP9+XeOq5piyxyPJrZMTJrYIceJeW6JJ5p9kMVjfXXabJXj2CTJEiPmuCzHrSnMzDFrjo8TM01PXNldEnNJtGQ/ZP/mexNjp2BuWrqH9KS3fTqt5wqm10D3d+L9LDbM8XJe79wn0xiS+EsBaE+LpjJ1I7fL/RLrNOc08j1xTIo8U9jZ2mE1t23ixty3SdDl9c7is0gyq7+Lcgcqienm3E8Wi/Umib0m4ZgFu01Mnc9tPgNJ2ua8Q1MI3tfnq/UcxBxzzFFjt+zvPG7zPulLYr+ca2i2pYklE/smJpze7qi9xd+9Ofroo+v7LHFY3hf5zOV9ltc+25tzJEl89pT8zLmUdOPNZzyfiTy/vA8i78MUgAIAMG1yzJmYMcevmaaQY8gcS6bILpengCy5jb7O2ycOTtyZ2CYxbfKDrQ0emjxWjt2St8lxXI6dE8vluDB5guSKsmgs+ZRWWciYQrrEt4nlsuhyk002qfdJ7Jnj1Bzv9ldi83Qhje45sByrRpMHTXzQLMDrvpAqkxpbbztQOT5vYsHEaK1FqykqbAoJm86XKVxMk54Uv+Z1Sj5jKCWOyEK35jg9+3soi0szZS7nReadd96an0w8lfdH9nsWlyaeyPU95Tu7S06tGUc/mMWqyYkmn5WYOp+f5POawt+8DxM/5/xN9l1zXifnGZLXyvmULF7rafLjtPjTn/5UY6XEZ3lfZJ/le3L7KUL9+Mc/PkWuLPsyn6V8jvJ+T+ydrzyf5Ndyn9YFwgBDQdEnMCyaRNX0dpDIgXASGkmGdC/STAfGJD2SYMlJ/0bTYSTjstLloSnSyvcU1uUAMivuekpkNZouK1kJl0LItLBvJFHS/J4ceDYBSvekR07QNyug0p0v2xQ5OE3g0brdKZBN0BWtyZ906mgOrlMsms4gjeybJDESsMT0jlhOoWqCwmxLknatRXBpa58i2sjBeJ5Db1pHyk3P+yDBUVMkl+AsAWrrSIQkSJtOJume0659fgK8bHuC70jgk8eJPI8U7mbMXSNFqk3HoZ4ScdkfSYw2ia28v9JBI107E4T3pwAu+zhFvll9l2Rps32RhFZOBuRxEzQk+Oj+3srrn4RWkkAJfhLs5H3aFMJOj6agML+7+0jyFDEm0MlJi6FanZgCyUa78YStmm6kec1a32v57CUpmk6zGQWRDlADkc9BPqcDfR/n/ZUiz9y/kREUCRybZHG7laVDLdvUdK5JwrB1ZEu6TOX6fOaTpM02tpOANe/9RjrTZpVo9KfQGQCguyStEuNk8VJO8LdKfJPj4BzP5Ri4J4kLEyPkeLz78Wn+3YxM7qmzYk/SvT2d/JuYMjFd4oochyd5d9ddd/XrcZKIy2NkxF1i0mbcXOR5JRHXJFbajZPuSboEJmZojRGTnGjGTrcenw1GXJnXKrFXE2s0MXZTCJvjyeEyLecKptdA9nfi6sRokaRbU7AY6QaSYtHW90Hr69QkBnOb1jg1zyeLGXP8nZgzcV+rjJRrXosUeiZmS6ybIsskoLJIcSg1MVxf8Vve44nz0wUm29wqSd8UJSa2a7d/+pICxyyQbLanv1MpMq4w5wjynmpiusQ+mdyQ55Mk6nDL38Tm9+Yzm+R863sh25tzVZHzU+069GbEaBKVzX7I/XLuIfs+xHAAwFiU8/TNSOh2Xznm7m+cl2LDxI3dF/Nk4kCTW+gtDs1xfRbzpNgs5+tzXr57E5UUkSZWThySRWE5J9+aAznyyCNrcWWmcrVbDJTb577JhWVBYo7H83OOl5Pf6p7/6Usz2a/1WDLxcbMIsLV7Z/Nza9FnFmvlWDf5sKaAtD+yr/Ick5PNtIkcpycflrxhq+yTZtJGE8sn1s72pjg3x/7J8WaKRV8L1nqT+DfnGlq/0tk1OcI8r7wu2beJeVqbkAy25BiTa4wsNm1iwkh8k9+f5xq5XV9NViL7tmnq05pHGgyJR5q8eYqcs41ppJLCyUjMvc4663TdPq9x4p6ma+1AO5b2JfF1vpq8c2Kl1AekMU0KPFsX7zW5yOzj1hxm9lEKtxO/NwXHAENF0ScwLNJdIXoat91fKURKsVZ0L9LMKq4EJkmwNMWJ6a7RdBnNwXU7OdBO0drBBx/c4+9tAp9I4Wg7SZrkqwm6ustBaffCu9YisHYdHZrkUetYuBwsZqVRRja0jqRuJGhoCg8HWtTWXXNQncRYawFiI4mXvA4pNGwtvGyn9bn3J4joSQpqk6RK8NwUanaXoCWJneyLpqNJq7xHum/vtLwWrVqTv62a9106DfU0FrEJxJqR461BWKucYEiAn2C2eW1aA+tsQ5MAyvu6WQ2XLpPTK8W0eQ2TrEzCtFWKfoeyy2e0jkBvEm89aUb25YRHOtO2rrzL+yJdmLKP2r2ne5PPd1+/u6d9165AtPlcZfu6j1oZDs1nIycfWovYGwlmm2Lf/I1s95lIoUJ3zUmmdt1BAQD6kuOtppip+4j3ZhRa98Kw7nISPgWYPcWATXw60HgpBVPdJSnRHOslTumPxDGJ55J4aqf1OHUgHUfWXXfdtkVtSTB2Pz4bjLgyycx2x8cZM9h0URmuxU0DPVcwGAayv9OxJNuQuLMppm2VYsImWdoqMWJioSSK2h17R1PImvd8klCtUuyZ35kkal6XdHhpChj7O7JxWjXnf/qKoZI8y7ZksfChhx7alThrpENREn29dfftz5j5gWh3riExU7Ov+zOSc7DlvZBzKXkP9/Q3MAtIUxyb915e6+4y4aG7nMdYcsklB/Q3DABgRpJ8QqaG9fTVLl5qJ8fYOSbvKdfYxKE5vu+piUqmEl5yySV1MWC6G6bRRnfNufqMzG7X7CPH302OqTWPlGPJHFsnN5JjwCwqS/FochMpastxZArosjhsIIWfiYuiddFmfk4uLTmt1kVyTSfPxKLNPmhGu6cwsl2eopla1r0YN7myFGtm4WG6nqZwMM+j3aTB5DrSFTL7IwWXyQG2TqVMzJtcUo6zu+e/+it55BSStn5lP2SxZSY7pHg4i7iyjQPNTQ1EfmcWD6YIMYsS28n7IznSLJDsz/jxvpr+RGLO3oqn23UVzTY0efVWzfs2i3bzGWwnhb5NHcBAF/T2pmnW1Cpxf8a4d8//N3FUPjf5XLaeO0mzlOQom+YvAENlaM/uAfx/msRKXx0e+iNFSDl5nY6D6VDQJBCa1v2thWc52IsEPkkCtZMR6n1pCkcTlDUJnHYyYiEH1O26sbRr1d/aqaJdUVhvSZgEBQl0fve735UHH3ywroZLR5MEN01irT8H4r3J4/Y2jj0BWH8LCluTa1l9N62a1yIH061BWau8J9I5JQHLcLwW0VOHywQzTcIrXUebf7cLCJvCxgT2PQW3zUrDZj+0SoFnVk82AU6S0j0VKQ9UPkMpXkx3mnzWmg4zTRFo9k9PxaqDobXYtln115M99tijFghk27JiMduWACtJ1CR6s8p1Woo3pzVB3NrFp1Ve45xQSlIzn93Wrj1DLfszn49oHQ3TXZNYbvc5ajrmdNecsJie4m4AYGzLcWcSXFlclhPkzbFbxo/nZHuSW33J8X2KyNIhIsfaiZfyPfFSEiDTEi/1dfwz0I4o2cYkBXP8nu1L/JWfW4/12424n9bta3d8Nj1xZU/HuU3Mk9+XmHwwFqEN9rmCwTCQ/d0cT/eWMM5+6l5M2HRjTQKt6VDbXet7JO+ddCBtJGbOWPkkGJv3VZK8rYseh0pT9Np0kexJtjddj77xjW/Ugt18JfZKAjdJ4cRw0zotZFpiuNynNTHdqjk30r2b7HBoXr+8T3padJu4PZ1j83ck77nuheqD/TcMAGBGkO7wgxUrpJgyXexTSJnjtyYOTQ7gkUce6bpdYqzux3SZ4NYUjaWBSE9NdJr8Twrjui+YajSLefK7Ey8kNkrzjjSCyDFjGmO05kxT7JgcSiY+5HETQ/V3nyT+yzF9FqDlGDTHo00nz+7j2pOLSEFrcsXZ9sSUTdFna0fQdrmU7nmM7L8UNuYYNzmfLB7tKWfYyG0TG+Urx74peEx+68orr6z7NYsuUxibwr6BxiApKm32WV7fxNkp+kuh52OPPVZzQe0KHAdbE0Pm/dNT45zmvZrtzPu0rwl+ec2yv3P75nxKu9eoXYHm3XffPUVTl1ZZkNiuALaJfXpa+BjZn3m9k+vK+66/xdm9SRzYU8zUxIL5TDXScTQNf/L7877JPshrnPdyCot7yq0DDCZFn8CwyEF+k6jIif++irbi3//+d00ypetDqxy4J0mRACkHU0kEJEGVMX/pstJ6UrspMm1tqz49BWd9BQzN72nX0bFZxdeTgRSh5YA3HTu6d27I9mU1XAKInoK9gWj23/SOBo8ESE0w1wQd/ZFAKwWeTQeV5rXo6z3UvFbtXou+nk9fXUvb6SmR1fq7eut82HpdgqC+tHusBBQJopugv6cC0+lJoqboMyvWsl/zfs/qxwTH6Rgy2GMdWjVJtQn4axoAAQAASURBVHTA6akgtrWQOyclMk4jxZ8pbkwxdr5OO+20muDMGM7+FAu06u8owO56+/vTXDe9XXkHqvVz0dvftea6/C1uTg41pmW8IgBAf+QkeY7pEvOlaDP/ztjuFBBm2kBfcVlihnS+T/Ffa6Isxy9JGqRoqnWcXH/1dfwzkALNJNzSCSYLlVol/t1mm21qd5fB3r7Bjit7Os5tvXwgnUqn10DOFQyGgezvJunaWyyahFdPcV/e0/0Zvd2uU2OSo0lcZb9km3tbyDpYktxuPnut4yZ7km5I2c4LLrigTvfI5yKf33xlEV+S0Blz2Z9zSa2mpYPOaIzfButcyGD+DQMAYEo5/k0Xx+9+97tTHC+muC4FaSmsy8LGnuQ+aViSrpA59v/0pz9dLrvssqmO4ZrjwhzftxaStpPcTY4Lc4zYTNJI9/p2TXJyWYoWswAzRZD9LfpMziCx149//OO63ckH33zzzW2LPpN7S2fQLOhMzJaizxz/91X0mYVZrWO1B0NelxS65muvvfaqzzvj0JMLSX6pXcfH/srzzP5Mg5fkzU499dQaq6YgOE1LhlITQ6bQclpjyHa5seRpU9yY+LqnHHC71yi5wxTA9vS40xP7JD7LbXubsjgQyWH3pInlW3OzObeUHGlykSnaTv477+t8nXDCCfVzn3MuOb8CMFQUfQLDIi3ks8opAUba9m+00UZ93iet3nNQlNU6OdHfFHrlpP3mm29eLr744np5gommc8f73//+KQKg5iBseg/4mhP7PY327n5wPL1Fpr3JarmM7Mr3BH8Z0ZbAKImUJAgTYB1yyCGDUvSZQtUcwA7GAXOCnHe96121a8fPf/7zft0nQUlGMiZYTpFeOps0+7av0dHD8Vq0SjIzicTuWrezt5WBrcm/BGLTst1JiH/rW9/qKsw7++yz6z4frNWDGY2XgD2BXQo/c3Kg+ew1Y8CHSjMapKdRDt1lZWneM/m67777aiI7f3tysiEB5gEHHFBXWPa1gnEw9DbSsnl/tEvw9pRwG4wRma3vr97+rqU7VvP+nJbuqAAA0yLHHSnuPP/882tiKsez/R3tHvvss089yZ7YMbFTun5kLF6SFIkXU1A5LUWfgyUFnxljHen2nvg425divCwmS/wzLUWfwx1X9nRc2hoD9dXlcTAN5FzBcGuSR70de7crJGwWj+bzkBHn0+KYY46pyeDE5HlvZRpC3l99LaabHuls1OhvDJfPQb6yjxK/5SudT1OcnERa3lfpBjrUejv/MS3x22AVPo/WcyEAAPw/WaR0xRVX1GLC7bffvqy11lo1zkuOM7FK8mK9FX0mLkvhYWKxxC+JxXL8m3Hr7WKEL3zhCzWm669milxvi7KWXXbZ+j1T6wYihZwp+rzzzjtrkV86aGY72xW7pbgzRZ8p9kz8lokTKeoc7CYmkbgn5xVSgJnCvJ5kn2dqXrarp2mO02q//farj5nXP2PAE3dnf/WkXVwxkJxQ8/7Igte8HwdLOldmv+RcSrZnMJoFTW/s01zfLvaZlvxaf3J53fO8eW995StfKV/+8pdrQ5/EsZnImHNSadCTqRZ5X/Vn6ijAtBh4KzOAaZCDniTa4pvf/Gaf3QNS7NckuRKAdE9GNAVmabGfQtJ8b728kWCqOVDrKUjJfdPKPyPPetIEQTlZ39sYr6ZDY5KJQyWdFpOYS9IoP3/sYx+rB9vZx01RVjO2eXo1+6+nzpxJGKUQMwV06eTRlwRwkSK8/iRZk6BLwiXvh+b907wW6fLTU8IsIwYSVA71a9Gqp33UJEkTAPU2Qi+vX04GRE8r5SLjH7P/uiei8u8k7/J5yGuSpG1+/tSnPjVoq9yiWd2ZVWt5zbMtCXLyHhwqKdZM4N/6HupN3v+5T5M0zcmCfMbT5TOf97wO2TdZrTocWsdztsrfpXZjHpv3QU8jL9JxaXplZW8z6rC3zrLNdc3fAgCA4RzxHhMnTqzxY06S50R+FjX1tRAqJ9cjSZ0UV+axkrxqiv4ygWIkNcmmjM7LuLckBFMY1xRIDsf2DUZc2dNxbhOLJbGZTv3Dqb/nCkZq+kniw57Oh7SLA5v79TYtI+cpklhKfNZ9PHeKJi+88MJa8JmEcWKAP/zhD+Wkk04qQykdiSJxfLsuQq0St2W/NLFzYpUkivPZzec+xceRMZN9Jf0GQ8YV9tTtJh2HRyJ+az0Xktcv5zzayTmSZtzgcJ0LAQDg/8VOWdwX6eiYArAUbma8c9N9vq84L003cuycRXgHHXRQV+zYfSFef2KEZmpGa0zXdITvPm2iVWLE1tv2V1PEmEkLWQCWmCdFr+0WmjXdP3Nc2ywW663L5/TIsXpyuinCe/LJJ/u8fZMzadfgZVolvk5TpHStzHF8Orh2z202MUVPccVAYorm/ZG44L///W/b2+T1SQ4tt+kpjukuecdsZ+LPs846qwylJvZp4q928ro2RZpN7JMpEY12zyuxZ28xZT43PeWd835tLYzOPkzdwS233FL/nZg7TWZS5Jk6iCxEzeco+yvntQCGiqJPYNik414ObrOi6Ywzzuj1tlntlIOlHCSlS0t3TaeWHKR/5zvfqSvUsjoqAVSrdEppCu2SyGongVgSJBkn39tBcnOgnE6K7aQ7Ywry4p3vfGcZKk3xalb9tescmURRgrnonvBpknf9HdnVFPLl4LTdAfLPfvaz+rxTwJnOin3Jfkknm8hYg55a+kcSVnkfRMbw5fVtAt8kQxOsZExGO1lRmMA1z7f5fUOtSWp114wzyHPobTx4Dv7XXnvt+nNWc/a0T3baaaey5ZZbdo3iaGTsRAoj837/xCc+UYs9s3Isl+W6/urrPbLVVlvVwCkdM5uiyWzPUHXNSRCW0ZyRcX99vZ55XyR5nlWZN95441TXZ5RGk6BrTZTlb81QjbRLorJd4W0K21M4nRMJrR1HmxMK7ZLoOTHUU5HmQD/fSaQ279F2n+90+Uxn3qH+mwYA0M5qq61WY57EejnuT+yQ45e+xjW3LvbL8WN3OeGeeKFdvDTYeuqU3mxjOm/0FVv0lKQZybiy0VOMnRg9cuw+2HFCX93n+3uuYLjlvZt9kaRrU4jaKvFru/glMXkSa4kNepqYkc41WeSWSQytXSVzjuNzn/tc/fnDH/5wfazDDz+8/vvcc88td9xxRxkKiSGax9577737vH06s2bbs4ixXSzz9re/vevn1vfiUE0iyDa064iT5F+TyG9iqdb4LfFTkyRvlQWTPRlIDJeYLLF43itN5+PuLrjggvo3I919mvMLAAAMvcQdzTFduzgvuYjWY8y+YtEc3ycmTv4gRYL53kiuKXJM2O74s8nHZnFhs4AqMgmhyfe162iYHEGua71tf6VQNQWrKURt4pbuo90byVsld5sYv2kO03rMP9hTKNOQJWPVe2v8E9mXKQ6NvhabDtQiiyxSX8dITNh9W1qLTNvlhXqLKbpLsW0KTJOT6qnTZ17n5NCyQLa/i07TGCRxZVOM3FNM0ioFkb3l3nvSvMeTc+9pRH3i4Hjd617X1SU2i1qbGKvdfrz++ut7PceSz2UT87VKnN1MEdlkk03q94xyz0SO3XbbrRY7d5eagpxviZ4W7QEMBkWfwLBJgPLRj360/pyuEgk2uq9ES+IpBWtNYeW+++5bVllllbaP13TqaDpUNB0IW+XgrikazajrjIxvAq8cvGU1Ug6Wc+K8OVjtyYEHHtiVkMhYtdYiqXSSSbfLJrE1VAFK6wqnrO5rHQWR55UizKwiagLA7mPEmhb3WRXWn+RhCgxzkJyumnldchDbyMH2YYcd1rXCq7+t/HOfBDgpYEzQmYRmAq5GtitJ2Ix1z+9beOGF68rIRpIXe+21V/05r0MSwK0HzNknGaMR6XbZFOsOtazUynux2a95DU488cS6PVnNmBEOfcmYjiT0UkyZlX+thYIZA5DnncdNYWdWiTYyaj37Me/3FEjmdU4RaVaTRq7LbfqjeR2bUR/dpUAx7/HW1XztPnvTK69pEoUTJkyozz3PKcWrfSX28lluuoFmXzSF2K2vUwpWuxcytr5/e3ru0ypBfP4+tAa3eY2PP/74+nP+RrWueE1hcyS4bB2LmFWXuW3rCZ7p+Xzvueee9T7Zv/n71nqCKJ/P/L1Ol5t8XnMCAABguDUn00844YR+d31vHVWXTu+tx04pZMwxUNMJb7DGLvekOcbsvtit2cbElq2dV1JUdsopp0zRNaPdyO+RjisbKV7Ma9PExvmeUeJJpKTAMfH8cO3TgZ4rGG6Jq3fffff6cwoxm2RiE3/kOL9d4jWx37bbblt//vjHP173bWvMlHMcp556av13YqfWjjyJi1MgmJi46RS04YYb1s9RTx1mpkcKbfOZ+/znP9+1YLC1OLInSTTm/ZK4JDFf635IDJW4uinozX4cyHthWuV93brQMrFS4vV8XpPM3mabbbquy3Zl+/PZyfY3n9l8fnJuq5liMy3xd/fkeM5xNKM8W7cvr2c6uubvR+T9lEQvAADDI50Gm26NyUW2xlA51sv594wzb/QVi6ZJRUZG5zizGfPe2GyzzWpji3Sn32OPPabIs+b4Pgu9UmyXXEqTS4tddtmlNlRJN8McL7Yeg+Z4NzmMFMrlNn3lS9tJXjTHwE1xXE9Fn62dPdMwI9s5VJ0+Ez8kjooUQCbO7Z4zyrF04rPsn3SBzP5961vfOujbkhgiBZmRGKH1/ZCYrWmsk4LQZvJAYowUaCbO6q/EGM3rnhxZFmu25lCTK2xyu4nFBjKdI/tyo402qo938MEH1+Yz3fdnclPZn3mPpSAy7/Us3k1hcH9l/zdNifK+bKa5NOcdkhtu4qxsQ5M3zO9pGgglNmo935K8YJMz7U3ydq1FtolJsw35vOR1as4vpFC3aVKTIuvWKaHZP8ldJ8bNZ3m4mhMBY9P/v8cxwDDIQWAOso877rha9JSvFJFlJU4OYlNcGAlkEgQlIdeTdILIwVcSArn9Flts0eOBdJJ75513Xk0+fP3rX6+/LwWmKSpMIJYgqK/OHzn4TdfEJBxygJ2T9znAywFfk2RIJ4U8t6HqONE8n5zMz77KgWaSQDm4TKCWwCz7ItuR7qXdx/GtsMIK9Xu2d+ONN64Fleny19P2JshIAikH50kEZpxauqbktcr+S8CRwK0piO2PJEiS3ExBWUaDJ+GVA+0c8OeAPAnYptgxKyKTqGtGKjQSyOb3Z9tz3xy853GzIq0Zc5AVVk1Xk+GQIPv000+vr022JUVzeX/lOaWAszX53JMU+6XANQFXVqlddNFFdcVj9kde7+zvdKrMaICmSDBFeUn4RIpomzEaTVFjApAEs7lNCq9z/94kIEqxZfZr9m8Kf1sTWpF/572Qz15eo2YV3bRIQjlFw408xzzfBFBNAjLv0wRx/f09+TuTYsmMlUyCtPmM5L3RvD/yO1uLPrNKMcFwnlMSaXk/JiAejI5AeS+m2DSrQzP6IX8z8nmND33oQ3Uft0qB5Y9+9KP62ua6ZlxETrjMO++89YRLs4pxej7feZ9mv+bzm+Rxguj8rhTE529mAtOsRMzfgHbdnwAAhlpisHQkzPFhEk+9JY1aj2dzvySPct8cC+fYLsfmTXfLJJTSfSSPm2POgY6u669sS46bk6RJ7LPmmmvWY/0crybGyjFXOo80C9VyzJ8Fcc2I9cSfQzXqfXriytbj3HT4SHyXfZwYKN0Oc9/EQM3x6XDs02k5VzDcshDwr3/9a40NckzfxCBNIijH4xnH3l0SSHkN8rw/9rGP1eP8LMzKcX+zsCyvRVPYGSkGTaIqj5vXonXqRM6LJAmX+yfu66vjTXeJH1oXrSXpls9XHq9ZZJuYqlmM2Zc8nxRLptNnpl5k0WISj4lL8hnIZyLvzWYCxEDeC9Min4XEP3meiYfyu5NIz/PMuYmcD2pdNJi/TTlHkUR8znGlW1E+D9kf2S+JPRNvtfsc9Sf+bvWZz3ymq1tsti/7Lue38tlrxlUmxuztXBoAAIMvx48pcDvnnHPqMWG6+KcQtDW3s84669S8RYriEue1LmhqJ7m45NFyfj5xVxZwJcZKjJNcVAoYM3I68U5iyjRMSX6tWUSVY8fWHEiOZXO/LM5LPJBYNPmnNNJIbJqCzWxTjndznDlQ6Q6a2DDPOcfReeyeJLbPsX+2NTmYvvJW0yNdUxNbJDecY/V85Rg/i6oix+2JY5uFp0cfffSQbEdi/Bz3J15NbJG4LHmgxFaJ2xLPJY+XGDyxYV7T5LOykC+dLxP73Xnnnf36XYkHEiOkMDLxZPLWiVESSzQ5suQju8dYfcl7JTmlFDZnomcKfPOV903ikuSUsj+bHG9un1g1TaCaqZz9lTg1kyMyPTQFuU2clpg653GS288+6744OJclbs57Op+Z5Lzy+ma70mRq9dVXbzt9o5HzMYnd8/vyvJpYMO/pPPfWWDivZ/KyienzOcw+zuK75Deb+Cznf5ocH8BQ0OkTGHYJfNL2PSfFc4CVE/gpzkqBUwKWdL/I9X2dpM7BXROwpHtEa/v77g499NBa9JkgJsFVVsblgDAH8AlCms4ZfUmAlYPkHLwlMZjHSReHFNqlo0kKQXvbjsGQ35skSFZqJejLgX4OOnN5Oppk1VYzzjvb17paL0FXVj3lYDUH9kl6Zr/3JivPEqSmEC0HtTlQThIw46hzQJuD+97GlreTYCrJ1xy0Z1VYArpsS9PRMQFMknRJVOUAu11wlELdJHFz0J7XMsFt5L4JSnPwPdDtmh7pkpKkVgLnJJwSYDcFl1kZ2F95DRMkJVDIY+W1TeI1AXKC+ASBrd1LE7DlPZDXNK9tdwnsE6DnNrltX/LeSRI8wViCp6YLUqsULzbv86aLzrTKeynjGZqvBHA5CZLAKJ/vJO2SFB3Iysq8hzLKMcnrFKUm0ZbPQj77+RuQEyTNWMPW+6TAOCcYcqIh78fW0aDTI0Ft/v7kM5N9mqLpnODJ+7Qp2G2V4Dif43S7zWcl+yMrTJP8y+vfU4A4LZ/vnFxJZ90knROQZvvyfsvf4gTieS/2NHYUAGCo5fip6QaRuKG/o8ITS2QxVeLNHAPm+Dwn6RMr5FgwcUQzZqu1c+JgS0ybWDOJghxXZzsi25GYLrFMjvmzuCfHYFlI1hyDNZ39U9Q22uLKRpJUTQyUWC5xWWKfPG7rZILh2KfTeq5gOCU5lJgjRZiJb3KsnkRcziek4C+L9NpJXJuEWhagpkNIkrGJf5O4TFyRcxFJYDadhVIo2bx2ieO7x1LZP01BZt5rKZAeiLvvvnuKGC7bkhgnsVS6jeb1z+evv5/X2HLLLWsMl9gpC93SJSVJuSTKcx4m54jyPh3oe2FaX6ec28m5qfz9yHs77/FmcV67xYhJ5H3ta1+ridO8PomrErcnudo99hxo/N192xJH5r2QWC5/17L/c/4hyc4kzhNjDuVCZAAA2ssiphzv55gwx205Ps15/Rzv57gwx5jNsXl/47wcC+c4OMeYyXM20xiSN8uksOQD0nk+hYFNfi3H1BdccEHb6V1ZKJVFUznWzfFq4pEch2bRVS7LdbnNtMjzbI5D++rcmQWGTfHcUHX5bJX8RzrlpyAwvzsxVuLwHH8nnkguL4028voNZV4xzWFSyBjZ760dPLNwLvnW7I/EdomJkjtN3J1i3Sbe64+8DonJ0kAm51ISbyRuSDFm4s48Zp5v4oiBSoFq3pcpbE7OMTFq9lm2N7FoFsUlh5j3Zs63ZIrCQAs+I69LYsQ8j+Sp81nKZyrxfXJlzfmM7nIuIAtcc74li/WS0872JV+Yy/uaWpnfmTqGpjlKtj1FpMn15pxNq+Resx2pd0jervkc5vclPkuc324bAQbTuMnNEmyADpQD8XvuuaeOv2tavcNwahI+KerL+IqxICvUEsglcMxIhARxAAAAo4VzBQAAAEBfMj4+3UQj5xFSJAvQKXT6BDpWDrzylU54/RnzBwyOH/zgB3VFaUaIK/gEAABGE+cKAAAAAIAZnTJ1oKNk1EBkDFpGGURW3wykrT0wcBlJkFGPv/3tb8vJJ5/cNRIDAABgpDlXAAAAAACMJYo+gY5y1VVXlRNOOKHr329+85vLhz70oRHdJhgLjjnmmDrKvbHddtuVVVZZZUS3CQAAIJwrAAAAAADGEuPdgY6y3HLL1XHSc845Z9lwww3LueeeW2adddaR3iyY4a266qpl9tlnLwsssEDZfffdyxe/+MWR3iQAAIDKuQIAAAAAYCwZN3ny5MkjvREAAAAAAAAAAAAA9E6nTwAAAAAAAAAAAIAOoOgTAAAAAAAAAAAAoAMo+gQAAAAAAAAAAADoAIo+Aehy/PHHl1VWWaX87W9/67rs0EMPLcstt1y/v84///zSaZ566qny+OOPT3HZKaecUp/PjjvuWMaqV199tT7/7If//ve/vd725ZdfLueee27ZZpttyhprrFFWXXXVssUWW5TTTz+9vPjiiz3e7+abby777LNPecc73lFWXnnlsvbaa5edd965/OAHPyiTJ0+e6vaf/exnyzrrrFMee+yxQXmOAADAjBODJpbIZSeeeGLXZQ899FDXbVt/Tyfbb7/96vNJ3Nqb3//+9+UTn/hE2WCDDWq89ba3va3su+++5be//e1Ut82+yW1OOOGEIdxyAACA9vHgQOLA1q/EfNPq0UcfLc8+++ygPJ928ej0Si7sK1/5Stloo426Yrrdd9+9XH311W1vf8cdd9RtuPjiiwdtGwAYvcaP9AYAMDr88pe/LOecc07ZbbfdypJLLjnV9XPPPXd585vf3OfjLLLIIqWTJEGYwsSvf/3rZaGFFhrpzRlVkuz79a9/3eftnnjiiRpk3nfffWXmmWcuSy+9dHn++efL/fffX0466aRy7bXXlm9961tlnnnmmeJ+Rx99dDnvvPPqz3PNNVdZdtllyz//+c9y++2316+f/vSn5eSTTy6zzDJL130+/vGPl5/85CflM5/5TPnmN785BM8aAAAYDmM1Bp1eWSB3zTXX9Hm7Cy64oBx55JF1Md9rXvOaGm8lmZr47Prrry9f/epXy1ZbbdV1+7wGu+66azn77LNrkWgW8wEAAAxXPLj66qu3bThy9913158THyZO7G622WYb8O/P455xxhm1mcmPfvSjto870rKIL/snjWuSJ3vjG99YnnvuufLzn/+8fk2cOLEWzs400/+/z9taa61VNt1003LUUUfVAtF2sTYAMw5FnwDULo6HH354mXfeecvee+/d9jYrrrhi+c53vlNmNAl82pkwYULZbLPNyhxzzFHGmkmTJpWvfe1rNdjtS7pxHnTQQbXgM0nEU089tQaezYrCAw88sNxzzz21gPSwww7rul+C6BR8pkj0U5/6VNlll126AtMUdaajZxKRKfo85JBDuu634IILlj333LMW6V555ZW1mygAANBZhioGPeaYY8oLL7xQixxnRFkkl0LOvtx6663liCOOqD8nnsoivfHjx9d9k8svv/zyGp8lCfj617++634f+9jHymWXXVav+/73vz/FAjwAAIChjAe/973vTXXbdPF873vfW3/+/Oc/XyfBDVYHzTSEGa1SlHrAAQfUgs885+TsFl544a54LxMcrrrqqtopNfFeq8SAWez35S9/WfMUgBmc8e4AlEsvvbR2ZUzhXYIsSllggQXKMsssUxZddNEyljzwwAPlwx/+cL8KPpsCzRR3ZhVkuqY2BZ/NisKmYDPdaF555ZWu65pAc6eddqq/r3Ul4iabbFI7eTbdaRLcdh+Rka6hCXK7XwcAAIzdGDTxW+K4xHMzoiyOe/rpp/tcnJjxf/GRj3yk7LXXXrXgM3K/JP4WX3zx8tJLL9XFeK0S1+U1yWuT1wgAAGCwyUn2LdMd/v73v5c555yzTtRrCj5j3XXX7SqWveiii6a6b+K9Lbfcstx8883lpptuGtbtBmB4KfoEGONSiJcRBum4uM0224z05jCCvvvd79bOmRmtnm4vn/zkJ/u8T7q/RFYSLrTQQlNd/773va/sv//+5ROf+ERXgWZWJt577731580337zt4zYrNzMm/k9/+tNUicj3v//95ZFHHqldaAAAgM4hBp02SeYlabfhhhvWbi49ueuuu2oMlYVy6dzZXQpADz300Dpxod34xG233bbe5hvf+MYUC/cAAACml3iwf+abb77ywQ9+sOywww5tJ1kst9xy9fs//vGPtvfP/SLT+QCYcSn6BBjjJk6cWEfEZWXYIossMqiPnY6MCTxOPPHEttefcsop9frcrtV73vOeevmf//znWoCYziQZX5DE1qabblpHfj/33HM9jhv/4Q9/WHbbbbey3nrrlZVXXrm8+93vrp0j08WykSRXExRFbp9/X3HFFVNs24477tj29/z0pz+tXVMyDi+/4x3veEctbsxYhXbyWPlKN5Ws0MtzXnPNNctb3vKWGrilS2a7hNqLL75YzjrrrPI///M/5a1vfWvdB3k+6aD5q1/9qtfflecwEL/73e/q92xbRqf3lkhsxsDfdttt9eeNN9647W1SoLnffvuVCRMmlLnmmqteNttss9UEYsZ3vOlNb+pzu/J7uss+azqBAgAAnWMkY9B20j0lsclGG21UY6DEaZlIkO4z7WKRuPPOO8tBBx1U1l9//bLSSivVKQfbbbddjd2effbZqW7fxJetMehAZBszun7++ecvX/rSl3q97S233FK/v/3tb6/xWDspHN1jjz3qdneXDjJ5bfIaJXYFAAAY7fHgX//613LYYYfVuC45uzXWWKPGaMm9Jc/WPW5sGo80+a3Ear/4xS+mGEGfCXbpqJm4L7FicnRpdPLFL36x/r7+mpZ4MDnHxICf/vSn215/99131+9LLrlk2+tXXXXVsvTSS9dFgYlfAZgx/b/ZPgCMWVdddVX9vsEGG5TRJkm2BGSzzjprWWqppcp//vOf8pe//KWcdtppNZF14YUXTjEWPIWgBxxwQO1+0oz2e/Ob31yDrxRzZhR5igSTlMvjpavJr3/963rb3C4Jsde+9rW9blMKMw8++OCu5Fe6Wy6//PLloYceqsFqvjKuvBlP3t3Xv/71Ojo9IxkSjD322GPlD3/4Q/1K4NWanExnzDzWb37zm7rqMbfPOL4k/FKU+eMf/7gcccQRtRPLYEhgu++++9bRD/2RItoUsWbbEjz++9//rp0/s0/ToTPbm+LM1VZbbYr75TmkcLU3V199df0+yyyz1NequwTYSXimMDhdQ/MaAAAAo99oikETv2XCQZKAs88+e41rXnjhhbrALl+JuRJ/NgvYmvskJkwSMB1XkrhLLNok0zIyPV05eyq4HKgsbMxY98RYRx55ZFlwwQV7vf19991XvzcL7BI7JxZuRgOuvfbaNYbMzz1JUvP//u//6vPfbLPNBuV5AAAADEU8mBjsc5/7XM2pJa5Lvi8xWuKzfF1++eXl7LPPLq973evq7XN94qumcDI5wzQrybSESHyYZjRNEegb3vCGep9//etfNS+Wr//93/+t0/NWXHHFMpwSr+b5nHnmmfXfzZj3nuK65FQT16UBDQAzHkWfAGNYupY0QUtWvY025513Xu1wmQRXgq0ku1Lo+eUvf7kWQl5//fW1Q0kjq95S8JnE2wknnFA7m8QzzzxTO3tee+21tajxuuuuq4FQvpqVdSnSbG7fm6OPProWfCZBdtRRR5VNNtmka18msffVr361FqpmPHoKNrtLwedHP/rRuh0JInO/FIKmI0yC3QSSK6ywQr1tArc8zxQ9Zl+kiDVSaJnnmoAy37fccsv6WN2D5nYjH3qTDqsD0YyNmHfeeWvHz49//ON1dHsjycXvfe97dT9k/48bN65fj5tC2KZLabapCbRbpdg3qypvuOGG8vOf/1zRJwAAdIDRFINm8VgmKGRhX8agJz5MgjB+//vf18LOTHJIF9DjjjuuXv7qq6/WeDQFnykWzcSILIKLe+65p06DuP/++2vcmtiukckH01o8+a1vfatOwEhHmf48RhOnJY7KoshMqWiVuDgxa6Yv9NRppnlt8lrlNWueIwAAwGiKB1PUmfxeYrR09kxnzGYBXpqtZELDH//4x7LPPvuUSy65pIwfP7584QtfqI1cmm6facbS2jEzBaLZzuTYkrtL18xGFvvlsR5//PEaU2UyYV+mJx5sZFFiYtEHH3ywFqymKUo6m77//e/v8T7Zx4knm2kQAMx4jHcHGMOSyEpBZAroll122V5vmyRTM36gp68ESYMphXwpomyK/lI0mOAoK+qidbx5CgUTsEUKIVsLOHP/JOlSnPjII49Mc4Dz6KOP1sLOSIfNpuAzkgTLth144IH136eeemrbEfTpcJniyKZIM/dL0DnffPPVfzedR5skZLzzne/sKviM3DdFlBnvkFEVrYWWscwyy9SvBRZYoAyl5vllZWFGuGcUR5KHCXrTFSbj7vPeymUJkvsj78ckW5988slaWJskbE+a90EzYh4AABjdRlMMmoVm6QTzoQ99qMZkTcFnpFtLkneJ19LB5U9/+lO9PNMNktyLJBRbiyHTHSaFolmYmARcq8RmTZw2EOnKkgRk7p/i04HEaen8kgWLWXD4s5/9rPzud78r3/nOd2qcncLQPffcs8Zd7eS1yXPLa5ViVgAAgOGMB/srcVsKPpMvS96udeJCGqycc845NdZLXJOOl/2RHGK2MXmv1oLPyL933HHH+nOKSftjWuPB7hMdkjNMwWfke7YzudG+cmhZmPjEE09M8+8GYPTS6RNgDGsSZCnWa+0U2U4CpSZA6ElfjzFQ73rXu9p2h0xglGAqwWHjpptuqp1AUxzZbixECghTsJnCz4xknxZJlCV4zP17WpWXhGGCzGxbkpTdx5i366bZjG5PseTTTz/ddXkz1vyyyy4rb3zjG2uRaVPImZH33/zmN8tIyoiL5nvGW1xwwQV1/8bCCy9cA+J0wsk4xDPOOKNsv/32XcWt7SSBmsRjgu+87umk2rq6srvsk8iYQgAAYPQbLTFoij0T30UmJ7STotIUSCY+yYSBJCXT6SUxzX/+85/yiU98onYIzZi8JASbQtB8DVYXnHSpSbyVhY39XdTXxGmJr9LxpnUCRUa7Z1FeYst//vOf9ecUqnaXpGhGHz788MM13uqe6AQAABjKeLA/UvjYdA7dZZdd2t5m8cUXrwvzrrzyyjoF8AMf+ECfj5sJdpkI0dP0ujnmmGOK2Gs4pAFMunomR/nLX/6yTiXMc/rtb39brrjiira5t+TXEqsmT5d9v+CCCw7b9gIwPBR9AoxhSQJFu/HZ3aXTSbqCDKcUDrbTdGBJEqzxt7/9rX7vaTxdTM8quqbLSrM6sEnqtSsuTTFiilL/+te/TlX0mWC2v89p2223rQWf6SrzpS99qY5uyO9ed911y/rrr1/WWmutOopipDSBbRNQNwWfrTLSMF0+E3xnNGJrd9RWef1y2wceeKDu2zzXnm7baN63zfsYAAAY3UZLDJq4I4WfkVgri+p6G5XexIJZsJdiz4wDzMLDfCW5ts4665T11luvLlxMseRgyBjBLAzcdNNN+4yN2sVp6TaaRYndpXA1UyqyOC9Jz3ZFn5H4LkWf//rXv6bjWQAAAAw8HuyPLFBLcWasvPLKPd4u16VAMjm7/pplllnqYr8UVSZ+zO/K94yMb7pmpphyuLQ2s0kBaEa3pwg0xZzf/va36+S97pJry2LKNJsR1wHMmBR9AoxhCVi6F++NJj0l3hrp7NloRpyn6HKoPPvss/0KSJvxEe3GuydQ7O9zyuNcfPHF5dxzz60BaQojM/4iX+ny+drXvraOIRysTjID1VrkmWLUnopZl1hiiVq42lNHzqxKzMjBvIbZP8cee2yPnVRbNa91a3dUAABg9BotMWjr1Ii77757QLdP/JWOKeedd14dp5fnNHHixPqVTjCZPJFC0ukp/szYvhRlJub74he/OKD7NvFquqT2tEjwTW96U59TE5rXSLwFAACMxniwydn1lbfrLWfX0+MeeeSR5X//93+7ikoj+auVVlqp5sP+7//+r4ykTILYZpttyje+8Y06dbAn2deJ6cR1ADMmRZ8AY1gzPmGkDvbT/XGwNEFif4O2aTHXXHNNlfBrp9mfze2nR4LRAw44oH6l6DOjKvKVUYRZmZcOM+ngsvHGG5fhtvTSS3f93HTJaSfdcHoq4r3qqqvqyMLcP8/j1FNPrR1MB3KCYDDGgAAAADN+DNpoXSz461//esCxWzp75ivj/LKI7Y477qhJv4yCv/HGG8tHP/rR8oMf/KDHcYB9ueaaa2pyMTFfJj30JPFTvt7whjeU66+/vmvCxa9+9ateY7SmGLS3hZbNayTeAgAARmM82BrHJW+XRXO95ZL6G/fts88+NQ+XpiaZnvCWt7ylLpzL4r8Ufl5yySVDXvSZwtN08UzerKcFhYsuumj9/vjjj/f4OOI6gBlb+9m0AIwJCy64YP3+5JNPDsnjN8V+PSWbHnvssUH7XUsttVT9fv/99/d4m5NPPrnsscce5fvf//50FTlmfENPYxsSiGXEQyQAnB5J8CWB2Iy8yOOlq8zxxx9fE4nNuIof/vCHZSRkVP3rX//6+vOdd97Z9jYZV//ggw/Wn9Pxs9WPf/zjcsghh9T3x2KLLVa+973v9bvgs/V921MgDwAAjK0YtL8WX3zxrng1Uwl6kvHq9913X9fiwsQuf/7zn7vinyQB3/GOd9QR6VdccUU54YQTujp15n7TKnHW6quv3uNX06mmuV3rKMMkJOOPf/xjLUptpxlXn/3Qk+Y1al4zAACA0RQPJufULGjrbYJDc11/cnYZ556CzzjzzDPLoYceWjbddNOy7LLLdk3ye/TRR8tQy3S8D3zgA7WTZ0/+8Y9/dOXq2kk8+MILL9SfxXUAMyZFnwBj2Bvf+MaulV7Ngf9ges1rXjNFQqlVkma33nrroP2ud77znWWmmWYqDz/8cNvHTXBz2WWXlZtvvnmKEepN55XWy3r7HQkgs2ouHSrbueCCC8p///vf2nl07bXXnq7nlALVCRMmtC1SzYrE1VZbrauwcqS8//3vr9+zsrF1lEYj4+nz3spojbe//e1dlydJmg6fKZ7N2MGLLrpois6h/fHPf/6zfh/o/QAAgBkzBu2vFE028dq3v/3ttrfJ6POddtqpbLnlluUnP/lJvSwTFzbbbLOy1157tV3c2BrzTE+cljF9WRTX09eKK65Yb7f11lvXf2eBYyNTINLFJZM1Emd199JLL9U4LTbZZJO2vz/x81NPPVV/Fm8BAACjMR7MBIe3ve1tfcZ1zVSE5PgaySc2WvOD6a7ZaF1c18h2p6HJUOfm1ltvvfo9uch2nVFz2eWXX15/fve73932MVqLU8V1ADMmRZ8AY9gKK6xQg6IU3mX12mBbY4016veMOZg4ceIUHT4zrjydLAdLOpQ0BYif+tSnym9+85spRjfkshQJZuxdknTdx/o1K+J6ky4q6bQZGaveJP4i+/DCCy8sp5xyStf4hxQ6To+s4ouM60tysVU6gDYdPjfYYIMprkvnmXw1HUKHUgpTs0Iw+3bvvfcujzzySNd1KbBtOt0kKdqMj0ggnNcj4wrTpfOcc84pCy200IB/d8Ywtr7PAACAsR2DDsT+++9fu31eeeWV5aijjurq5tl0yUwMk5glMWQTayZJmMWNKYjMIramMDKyCO6YY47pih0z/q+R2KyJ04bavPPOWz72sY/Vn7/2ta/VxY/NpIpsYzrVZLHkwgsvXLbffvu2j5FFeonbspgxrxkAAMBojAf322+/2qwl+ajk7Vqbk2QCw5577lkXvi2//PLlgx/84FS5we75wdbiyNNOO63GhI1MicjjNdP++lu4Oi3x4A477FBzb8lvputnYrhGputlO9KgJlMQc9vecmjpcKrTJ8CM6f/1uwZgTMoogqyCyyq3X/3qV2Xdddcd1MffaqutaufLv/71rzWhllELCaQS2CS5liLB3kYTDNQXv/jFWnR4++231yAngUx+X35/OpXMP//8tQNKRvA10iHljjvuKF/+8pdrh5R0cklXlZ585jOfqQWO1113XTnwwANroux1r3tdXS3YjKT40Ic+VAOu6bXLLruUW265pRZ85vHyu/KV39MEeO95z3vKtttuO8X9mqLWBLvZ70Mp+zQjLrJ92Y8bbrhhWWaZZer+/tvf/lZvs8UWW5SPfOQjXfe55ppruoLiBOMHHXRQr78jgXrTyaaRQDujFtsVvQIAAGMzBh2ILB474ogjymGHHVbOP//82hUzsUyKPxPLpNtLEmPf/OY3y6yzzlrvk+8nnXRSXfyWjiuJCxPnpktMYsJ010yh5NFHH911n/jud79bF/PF9Ix976+PfvSjNXGZiQyf+9znyoknnljj1kzhyDYmjvv6179e5ptvvrb3z2sTeX1anwcAAMBoigff+ta3liOPPLJ8/vOfr/HPj370oxrXJe5JbjAybS7xWGtsk5goC/ySa0tRZYo9k/PLQr+Mc7/66qvLueeeW6644oqy2GKL1QV/TRfQdOH8+c9/XmPHFJlmkkRvpiUezGK+M844oy5GTM4zEx1S4JnphcmxpnA2nVPPPvvsKXKe7eK61g6nAMxYdPoEGOOabpLpxjnYMoI8Y+NS8JcCzBRkPvHEE+V973tfHVm+zjrrDOrvS2B13nnn1cRdEnhZPZeVd0nU7bzzzjXY6z6O4atf/WoN0FJ8mACwKUbsSYLCrO5L0uwd73hHHen3hz/8oSb2Nt988zpCIkWKzdj46ZHC2Pyuz372szVwTSFlViZm9WB+93HHHVdOP/30uu0jKfs0Cc8En0l4Zh9m9WHGJR5//PH1q3VURopDGymgzWrD3r6eeeaZqX5ngtzsj3TP6V4QCgAAjM0YdKAyHj0TFNLxMtMH7r///hq3JkmYODYxZDOCsJE49tJLL63PI/dJ/JNOK4ssskiNOxMbNSMGR0rir8TFWaCXRXLp2pnupU1snHi8t4kJzaSJ5rUCAAAYrfFgOngmrsukvsQ8ievSPGX11VevzWIy/SDTArvLgr7k3lJA2cR1kZxW4qlVVlmlLgZMoWZygRmjnhgrxaCLLrpovW0zOn4orLrqquV///d/y+67714LT7N9KVJdaaWVyic/+clakNrueUWeUwpTQ1wHMOMaNzn/UwEwZiX5k1Vr6WSSsXatI+hgtMqKy5/85Cd1fGLrSA4AAGB0E4OOblk4mQWNWbiZ7jZZjAgAADAYxIPD46abbqqNWrJoMc1qAJgx6fQJMMY1Y9Yjow9gtEsH14xRTBLy/e9//0hvDgAAMABi0NEt0zriYx/7mIJPAABgUIkHhzeu22+//UZ6UwAYQoo+AShbbrllWXrppesogBTUwWj2rW99q7zyyis1WJWEBACAziMGHZ3yWmT0e14bC+wAAIChIB4cWn/+85/LjTfeWN7+9reXtddee6Q3B4AhpOgTgDJ+/Phy9NFHlxdeeKGcdtppI7050KNHH320nH/++eXd7353PTEAAAB0HjHo6JTX4vnnn6+vTV4jAACAwSYeHFrHHXdcmX322csRRxwx0psCwBBT9AlA9Za3vKXsueeeteX/Aw88MNKbA22deOKJZY455ihf+cpXRnpTAACA6SAGHV3yGuS12GuvveprAwAAMFTEg0PjtttuKzfccEP5zGc+UxZbbLGR3hwAhti4yZMnTx7qXwIAAAAAAAAAAADA9NHpEwAAAAAAAAAAAKADKPoEAAAAAAAAAAAA6ACKPgEAAAAAAAAAAAA6gKJPAAAAAAAAAAAAgA6g6BMAAAAAAAAAAACgAyj6BAAAAAAAAAAAAOgAij4BAAAAAAAAAAAAOsD4kd4AYBi8/HIpt9wy5WVvf3sps846UlsEAAAAAIxWzicCAAAAjFrjJk+ePHmkNwIYYo8/XsrCC0952WOPlbLQQiO1RQAAAADAaOV8IgAAAMCoZbw7AAAAAAAAAAAAQAdQ9AkAAAAAAAAAAADQARR9AgAAAAAAAAAAAHQARZ8AAAAAAAAAAAAAHUDRJwAAAAAAAAAAAEAHUPQJAAAAAAAAAAAA0AEUfQIAAAAAAAAAAAB0gPEjvQHAMHjNa0q5++6pLwMAAAAA6M75RAAAAIBRa9zkyZMnj/RGAAAAAAAAAAAAANA7490BAAAAAAAAAAAAOoCiTwAAAAAAAAAAAIAOoOgTAAAAAAAAAAAAoAMo+gQAAAAAAAAAAADoAONHegOAYfDf/5Zy331TXrbccqWM9ycAAAAAAOjG+UQAAACAUWvc5MmTJ4/0RgBD7PHHS1l44Skve+yxUhZaaKS2CAAAAAAYrZxPBAAAABi1jHcHAAAAAAAAAAAA6ACKPgEAYAZwyimnlOWWW65+feYzn+n1tv/+97/LSiutVG+78847lxnFc889V0444YSyySablFVWWaWsvvrq5UMf+lC55pprBvQ4N998c9lll13KOuus0/UYEydOHLLthhmZv02ZjvvfctZZZ5VNN920rLzyymWttdYqe+21V7nzzjv7vO8///nPevsTTzxxurbhX//6V1l33XXLe97znul6HAAAAAAAYOQp+gQAgBnMddddV1555ZUer//JT35Si5BmJM8++2zZcccdy5lnnlnmnHPOstNOO9Xiz3vvvbfst99+9fL+uPjii8see+xR/vjHP9YCrf/5n/8pf//738v+++9fTjrppCF/HjAjG4t/m+LAAw8sxx9/fJk0aVL92/Sud72r3HLLLWXChAm1yLwnTz/9dPnYxz5Wv0+vL37xi7WoFgAAAAAA6HyKPgEAYAay0EILlf/85z+1oKgnV111VZlrrrnKjOTss88u9913X9lhhx3K5ZdfXjsKfvWrXy0//vGP6z5Jwebf/va3Xh8jBVFHHHFEvf3//u//lsMPP7x8/vOfL1deeWVZfPHFyze+8Y1aAAoM3Fj92/Tzn/+8XHvttbXDZ/6ufPazny3HHXdcOeecc2oR6Je+9KW290vh+fbbb1/uueee6d6GH/zgB3UbAAAAAACAGYOiTwAAmIGku2VcffXVPY4K/tWvflU23HDDMiPJ8x03blw55JBD6vfGIossUjuAprjqpptu6vUx/vCHP5TXve51tXA0BWqNeeaZp45EfvXVV8tdd901pM8DZlRj9W9TM8L9Ax/4QJltttm6Ln/b295Wll566fLggw/W0euNdDo96qijuroMr7feetP1+x999NHyla98xVh3AAAAAACYgSj6BACAGchyyy1XC4kyRvnll1+e6voUXKV4cfPNN++1M93uu+9e1lprrbLqqquW97///eWb3/xm27HM6Z6ZscEbbbRRve1b3vKWstlmm5Wvf/3r5cUXX5xq2z760Y+WP/3pT2Wfffapj5/bb7fdduWnP/3pVI+988471/tcccUVfT7vXXfdtRx00EFl3nnnneq6WWedtX5/7rnnen2MFFelG17GwXf35z//uX5vLQYF+m+s/m16zWteU78//PDDU1yeffDkk0+WWWaZpRaWN55//vly/vnn186gl156adliiy3KtJo8eXLtejx+/PjauRgAAAAAAJgxjB/pDQAAgCHx+OPTft+55y5ljjnaX/fEE6mkmbbHnXPOUoZhdPGmm25aTjvttFog9e53v3uK6zLufKWVVipLLbVU2/uee+655ZhjjqmFSimWmn/++evjHHvssXUs85lnnlkLiOLee+8tEyZMqJ3p0p1v0UUXrSPSUzh5xhlnlL/+9a91rHr3QqyMLF5yySXL1ltvXZ544ola7HXAAQfUbW7t8rfVVluVtddeu6ywwgp9PudsR09FTxMnTqw/p0hrIFJIli583/rWt8rNN99cO/OlGAym2xj9+zQW/zalw+kpp5xSLrzwwrL88svXbX/66afL1772tdrhM0WsTWF6pBtoClnf8Y53dHUgnlbf/e5367458cQTy2tf+9ppfhwAAAAAAGB0UfQJAMCMaeGFp/2+p55ayr77tr8uRT4prJoWhx1WyjB0W0s3uxQp/eQnP5misCqjgjOe/JOf/GTb+6VQ6rjjjivLLrts+c53vlMWWGCBrsLJz33uc+Xyyy+vHeg+8pGP1MvTMe/ZZ5+tRZEpiGx8/OMfr4VNKbbM9XOnSO3/k2KrdMnL4zVj2Nddd93y2c9+thYotRZWZbzx9EqhVZ7z4osvXtZff/0B3fdd73pXLfyK1VZbre7T1tHxMM3G6N+nsfi3KUWqF110UTn00EO7vhoHH3xw7TDaKkWfTcHn9HjggQdqYWmKTrPfUwALAAAAAADMGIx3BwCAGUwKo9785jdPNUY5nfRSzNTT+OSLL764jldOYVRTVBW5z6c//eky00wz1XHDjRRIHXXUUVMUVUU6yr3pTW+qj/XUU09N9XsyPrm1eLIppnrooYfKYLrqqqvKkUceWbv/HX300XWMcn9l21Mcli58GQ3929/+tnYBfOSRRwZ1G2EsGYt/m/I8Tz/99PKb3/ymdjLdddddywc/+MEy11xz1e6kP/jBD8pgmzRpUi0unXPOOcthKeYFAAAAAABmKDp9AgDADChjlDO+OGPJ3/Oe93QVVq2++url9a9/fR1l3N3vfve7+j3jgH//+99PdX2KlNI97rnnnqs/r7feevXyFE+lE1+69WUc+j333FO/IsVVrTKSubVoK+add976vbUIbDA6fB5xxBG1gCsjoddcc80B3T9FZIf/f10P003w+OOPL2effXb50pe+VL7xjW8M2nbCWDPW/jbl78/3v//9sssuu9SuoU1R6YEHHlh22mmn8pnPfKYss8wytbh8sJxzzjm1yDRj5bs/JwAAAAAAoPMp+gQAgBlQxvmmsOrqq6+uhVV//vOfyx//+MfyxS9+scf7PP300/X7BRdc0Otj53YprHrsscdqB82f/vSnXaODF1pooVq8tcgii9TueCmY7D66uLumCKr7badFCrmOPfbYct5555VZZ521FmtuvPHG0/WY2b6DDjqoXHLJJeWmm26qBWB5bGDgxtLfpvw9SgfSeeaZp46ub+0iuuiii9a/K+lUetlllw1a0WeKXFPsucUWW0z33z4AAAAAAGB06riiz+WWW67P22y11VY1wdN48skny2mnnVZuuOGG8vjjj9fkytZbb1122223OuoRAIAZ0GOPTft955675+v+8IdUAE3b4845ZxkuSy21VFlhhRXK9ddfX4sU00lv5plnLptsskmP90mxVPz85z8vCy64YK+PnyKovfbaq/zhD38oO+64Y3n/+99fRzfPN9989frttttu0Me19yXP85BDDikTJ06sXfsSAwykw+df//rXWjC1xhprlIUXXniK6xI3pAvhf/7zn/qVAjKYZmP479NY+tv0r3/9q7z00kv197crFG/Obzz88MOD9juvueaa8sorr5Qrr7yyfnWX35Xf+4Y3vKG+BgAAMBzShf/MM8+sx6CPPPJIee1rX1ve+973ln322aff3en/8Y9/lJNPPrnceuut9fESW0yYMKEe4wMAAIw1HVfxuN9++/WY2Dn//PPrOLe3ve1tU3T62Hnnncuf/vSn2uViiSWWqImir33ta3VEXAJEAABmQENVlNdHwdFo66iXTpcZiZyueuuuu25NrPQkhVgZnXznnXfW5EurFC7lsVL4+OEPf7jcd999tajqHe94R9cY9EYKjjJqebC6d/bHpEmT6rjkJJAWW2yxOop96aWXHtBjpCPfN7/5zfKJT3yi7LnnnlNclzgjY6cz7tm4ZKbbGP/7NFb+NqXQNMWeKTJt1yE4hebRvch8eqy99tptz5uk6+jpp59eu47uuuuu9TsAAAyHZ555puy00061y3+O/XNM/5e//KV85zvfqd35M1Ujx/O9yeKlHXbYoTZ5STyRxWDXXntt+cIXvlAf69BDDx225wMAADAazFQ6zP7779/2a+65566J2O2337588IMf7Lp9uvvcf//9dVRcCjyTwM3otBSAJphMFyAAAJgRbbrppvX7N77xjZoESWKkN9tss039nvHoGY/c6utf/3r51re+VX7zm9/UEcXNKOTcrhmf3BRfHnXUUbUbZrReN5TOOuusWvCZrv4XXnjhgAs+Y8sttywzzTRTOffcc8ujjz46RaFYisdeeOGFuo/SlRCYdmPlb1OKPHPuIb8zI+1b/fvf/+66LH97Bss666zT9pzJvvvuW69P4Xr+nQJZAAAYDqeeemot+MxxaJq3fOpTn6qxQAo2c9zen+YsOZbPbZPzS1yQx/jRj35UVltttfqYd99997A8FwAAgNGi4zp9tpOizhNOOKEsvvji5TOf+UzX5S+++GLXCsGsAGwkSZuAMAWfF110UU3CwAwtowxvuGHqywCAGVqOj1dZZZVaDNUUH/Vm9dVXr6PV0g1u8803L+95z3tq971f/epX5be//W0dB9wcb2eMWm7/61//uhZkpVtHiiP/7//+r3bSy/0y2jgj16bVFVdcUbt5bLjhhrXTX0/yO1L0GbldYoB2Muo92xm/+MUvyu23315vn8eP5ZdfvhZGnXLKKWWLLbaohWkpIMukgBSmpYPeQQcdNM3PBxhbf5si25UE9DnnnFNuu+22+nckRaDXXXdd3Ybdd9+96+/SUG8LAAyI84nAIEnn+3Tm3GOPPaa4/AMf+EA54ogjalzQmxzvpqvnW9/61rLBBht0XT777LOXgw8+uHayv/jii8vKK688ZM8BAABgtJkhij6zwi9JnKwKnGOOObouv+uuu8rzzz9fNtpoo9qxp3uSKWMf77jjjtrxQ7ceZmgZI/iud430VgAAIyAd9H73u9+V9ddfv1/jfDMiPcVYGbOWoqSMJE73zBQmJUGTRE2ko146bKQjx89+9rNywQUX1OuWWWaZ8tnPfrYWM2Wh1Q033FCLLafF97///VqYmYKu3oqZfvnLX9bj/sg256udvffeu6u4Ko+bbiNbbbVVV9FnZCxyij/TKeTKK6+ssUKKyD796U+XnXfeucwyyyzT9FyAsfe3KfK7M23kzDPPLNdcc03d/hS6rrjiiuVDH/pQ2WSTTaZpG6ZlWwBgQJxPBAZJjs/bSffPWGihhXq9f453J0+e3Hax1BprrFHj9CywAgAAGEvGTU6k1MFuuummstdee5X11luvjmFslQ4/KQTNyIgkb7vLOLNbb721dvxccsklh3GrAQAAAAAAYGxJ5/sUaR599NF1ZHu64vfW/f7EE0+s4+CPOeaY8sEPfnCq69P4Jd1E77zzzrrACgAAYCzo+E6fCQYjo966a8a1zT///G3v23QTefrpp8uM5NVXX61fo0W6rHbvtAoAAAAAAIw+oy3HMFByEqPX9773vXL44YfXnzOB77jjjuu14DOefPLJ+n2++ebrMdeX9+uzzz5bFlhggSHYagAAgNGno4s+f//739exDhnJ1m4sW8a9RU8r+5rLX3rppTKjSGA7YdfdyiOPP1FGi9cvtGD57rfOc5IFAAAAAABGe45h9wnl0ccfLZ3qdQu9rnz33O/KSYxCKcrcc889y+OPP16n8H3iE58ojzzySPnIRz7S431eeeWVfuX6mpzgjOLFjx870psAAACj1uwnfKqMdR1d9HnFFVfU7xMmTGh7/eyzzz5FQNhdEwDONddcZUY6IZOCz71OOK/MNPPMI7055dVJk8pZH9+tbpcTLAAAAAAAMHrlXH4KPvf79n5lppk775z+q5NeLafucqqcxCj1vve9r37F/vvvX7bffvva7XOdddYpq6yyynTl+uacc84h224AAIDRpqOLPq+77roaxL373e9ue30z6qGn8e3PPPNM/T733HOXGU0KPmce39EvL4Mpo3j+9a8pL3vtazPnZqS2CAAAAAAYrZxPHPNS8Dnz+JFvLMGMa7HFFqsdPo8++uia7+up6LM/ub5x48bNkLk+AACAnnRsVeC9995b/vGPf5TNN9+8zDHHHG1vs/TSS9fvDz74YNvrc3mKRhdddNEh3VYYcTlBu/DCU1722GOlLLTQSG0RAAAAADBaOZ8IDIJ04bzjjjvKpEmTyjvf+c6prl988cXr93//+989PkZvub50/8x4+De+8Y06uwIAAGNKx0ZAv/71r+v3Nddcs8fbrLzyynV0++23315HebT6+9//Xh5++OGy2mqrlZlHwRh0AAAAAAAAmJGKPvfcc8/y8Y9/vGsMe6t77rmnfk/RZk/WXnvt2snzF7/4xVTX/fKXv6yFn2usscYgbzkAAMDo1rFFn3fffXdXYWdPZptttrLFFluUhx56qHz729/uujwrCo899tj684QJE4ZhawEAAAAAAGDsyMj19773vXUE+6mnnjpVnu/888+vE/mSy+vJ6173urLeeuvVBi/XXntt1+Uvvvhi+frXv15/lusDAADGmo4d796McVhkkUV6vd1BBx1Ubr755nLUUUeV2267rSy77LLllltuqasHN9100xpsAgAAAAAAAIPrc5/7XC3wPPPMM2tnzre85S3lH//4R7nuuutqB88TTzyxLLTQQvW26eaZ4s4VVlihbLjhhl2P8fnPf77ssMMO5YADDqi5veQGc/8HHnig7LHHHvX2AAAAY0nHFn3++9//rt/nmWeeXm+3wAILlIsuuqicdNJJ5cYbb6wFn4sttlj55Cc/WXbZZZcaUAIAAAAAAACDK506L7/88nL66afXQs0777yzzDvvvLWoc++99y7LL798121T8JmOoFtttdUURZ8Z/37xxRfXzp5p9PLSSy+VpZZaqnzlK18p22yzzQg9MwAAgJHTsUWfV111Vb9vu/DCC5cjjzxySLcHAAAAAAAAmLpBS7p15qs3+++/f/1qJ0WezTh3AACAsW6mkd4AAAAAAAAAAAAAAPqm6BMAAAAAAAAAAACgAyj6BAAAAAAAAAAAAOgAij4BAAAAAAAAAAAAOoCiTwAAAAAAAAAAAIAOoOgTAAAAAAAAAAAAoAMo+gQAAAAAAAAAAADoAIo+AQAAAAAAAAAAADqAok8AAAAAAAAAAACADjB+pDcAGAbzzlvKJZdMfRkAAAAAQHfOJwIAAACMWoo+YSyYbbZStt12pLcCAAAAAOgEzicCAAAAjFrGuwMAAAAAAAAAAAB0AEWfAAAAAAAAAAAAAB1A0ScAAAAAAAAAAABAB1D0CQAAAAAAAAAAANABFH0CAAAAAAAAAAAAdABFnzAWPP54KePGTfmVywAAAAAAunM+EQAAAGDUUvQJAAAAAAAAAAAA0AEUfQIAAAAAAAAAAAB0gPEjvQEAAADMWJ577rly5plnlokTJ5aHH364zDLLLGXFFVcsu+66a9loo42muO2TTz5ZTjvttHLDDTeUxx9/vCy66KJl6623LrvttlsZP77/IeuNN95Yf+cf//jHMvPMM5c11lijHHjggWX55ZcfgmcIAAAAAAAAI0OnTwAAAAbNs88+W3bcccdagDnnnHOWnXbaqWyyySbl3nvvLfvtt1+9vPH000+XnXfeuVxwwQVlpZVWKrvsskuZY445yte+9rXy8Y9/vN+/85JLLikf/ehHyz//+c+y3XbblQ033LDccsstZfvtty933XXXED1TAAAAAAAAGH46fQIAADBozj777HLfffeVHXbYoRx++OFl3Lhx9fJ03UwHz5NOOqkWgS655JK1w+f9999fDjvssFocGgcffHA56KCDyk9/+tPaKXTjjTfu9fc98cQT5Stf+UpZaqmlymWXXVbmmWeeenkKPidMmFA+//nPlx/+8Idd2wEAAAAAAACdTKdPAAAABs3VV19dCywPOeSQKQotF1lkkdoBdNKkSeWmm24qL774Yu3Q+frXv74WiDYymv1Tn/pU/fmiiy7q8/ddfPHF5aWXXip77LFHV8FnvOUtbymbb755LUD9zW9+M+jPEwAAAAAAAEaCok8AAAAGza677lo7dc4777xTXTfrrLPW788991wdu/7888+Xtddeu8w005Sh6eKLL14WW2yxcscdd9Qi0d7cdttt9fu666471XXNZc1tAAAAAAAAoNMZ7w4AAMCgyUj1diZPnlzHtcdyyy1XHnjggfrzEkss0fb2Kfx86KGH6ldGwfckjzN+/Piy6KKLTnVdCkfjL3/5yzQ9FwAAAAAAABhtdPoEAABgyF144YW1u2eKOddff/3y1FNP1cvnn3/+trdvRrU//fTTvT5uHmfuueeuY+F7eoxnnnlmEJ4BAAAAAAAAjDxFnwAAAAypq666qhx55JG1I+fRRx9dZplllvLyyy9PMfK9u+byl156qdfHfuWVV6b7MQAAAAAAAKBTKPoEAABgSDt8HnLIIfXnY445pqy55pr159lnn72raLOdpih0rrnm6vXx8zh9Pcacc845Hc8AAAAAAAAARo/xI70BAAAAzHheffXVcuyxx5bzzjuvdtw8/vjjy8Ybb9x1/Xzzzdfr+PZmJHtGt/cmj/Ovf/2rTJ48uYwbN67tYzRj3gEAAAAAAKDT6fQJAADAoEqHzQMPPLAWfM4///z1e2vBZyy99NL1+4MPPtj2MXJ5OnQuuuiivf6uPE46fT7yyCNTXff3v/+9fl9mmWWm49kAAAAAAADA6KHoEwAAgEEzadKkWvA5ceLEsthii5Xvfe97XSPdW6288sp1dPvtt99eu4J2L9Z8+OGHy2qrrVZmnnnmXn/f2muvXb/fdtttU11366231u9rrLHGdD4rAAAAAAAAGB2Md4exICMxTz116ssAAGCQnXXWWeX666+vHTovvPDCssgii7S93WyzzVa22GKLcvHFF5dvf/vb5cMf/nBX0WjGwseECRP6/H1bbrllOf3008sZZ5xR3v3ud5fXvOY19fI777yzXHXVVWWFFVZQ9AkAMFDOJwIAAACMWoo+YSyYY45S9t13pLcCAIAZ3FNPPVWLPiPFlpdccknb26Xz57rrrlsOOuigcvPNN5ejjjqqdupcdtllyy233FLuueeesummm5b3vve9U9zv/PPPL88880zZaqutahfReMMb3lAfJ4WiKQDdbLPNyrPPPluuvPLKMssss5Qvf/nLw/DMAQBmMM4nAgAAAIxaij4BAAAYFL/85S/L888/X3++7rrr6lc7e++9dy36XGCBBcpFF11UTjrppHLjjTfWgs8Uc37yk58su+yySxk3btwU90tH0Ix9z0j3pugz9thjj9pR9Lzzzqvj5Oeee+7y9re/vY6ZX3755Yf4WQMAAAAAAMDwUfQJAADAoNhwww3LfffdN6D7LLzwwuXII4/s120zNr4nGRWfLwAAAAAAAJiRzTTSGwAAAAAAAAAAAABA3xR9AgAAAAAAAAAAAHQARZ8AAAAAAAAAAAAAHWD8SG8AMAyeeKKUFVaY8rI//KGUBRccqS0CAAAAAEYr5xMBAAAARi1FnzAWTJ78/07Udr8MAAAAAKA75xMBAAAARi3j3QEAAAAAAAAAAAA6gKJPAAAAAAAAAAAAgA6g6BMAAAAAAAAAAACgAyj6BAAAAAAAAAAAAOgAij4BAAAAAAAAAAAAOoCiTwAAAAAAAAAAAIAOoOgTAAAAAAAAAAAAoAMo+gQAAAAAAAAAAADoAIo+AQAAAAAAAAAAADqAok8AAAAAAAAAAACADqDoEwAAAAAAAAAAAKADKPoEAAAAAAAAAAAA6ACKPgEAAAAAAAAAAAA6wPiR3gBgGMw5ZymHHTb1ZQAAAAAA3TmfCAAAADBqKfqEsWCuuUo5/PCR3goAAAAAoBM4nwgAAAAwahnvDgAAAAAAAAAAANABFH0CAAAAAAAAAAAAdABFnwAAAAAAAAAAAAAdQNEnAAAAAAAAAAAAQAdQ9AkAAAAAAAAAAADQAcaP9AYAw+Df/y5l/fWnvOz//q+UBRYYqS0CAAAAAEYr5xMBAAAARi1FnzAWTJpUyu9/P/VlAAAAAADdOZ8IAAAAMGoZ7w4AAAAAAAAAAADQARR9AgAAAAAAAAAAAHQARZ8AAAAAAAAAAAAAHUDRJwAAAAAAAAAAAEAHUPQJAAAAAAAAAAAA0AEUfQIAAAAAAAAAAAB0AEWfAAAAAAAAAAAAAB1A0ScAAAAAAAAAAABAB1D0CQAAAAAAAAAAANABFH0CAAAAAAAAAAAAdABFnwAAAAAAAAAAAAAdQNEnAAAAAAAAAAAAQAdQ9AkAAAAAAAAAAADQAcaP9AYAw2D22UvZZ5+pLwMAAAAA6M75RAAAAIBRS9EnjAXzzFPKaaeN9FYAAAAAAJ3A+UQAAACAUct4dwAAAAAAAAAAAIAOoOgTAAAAAAAAAAAAoAMo+gQAAAAAAAAAAADoAIo+AQAAAAAAAAAAADqAok8AAAAAAAAAAACADjB+pDcAGAZPPVXKBz845WU/+EEp888/UlsEAAAAAIxWzicCAAAAjFqKPmEseOWVUm66aerLAAAAAAC6cz4RAAAAYNQy3h0AAAAAAAAAAACgAyj6BAAAAAAAAAAAAOgAij4BAAAAAAAAAAAAOoCiTwAAAAAAAAAAAIAOML50sJtuuqmcd9555Xe/+10ZN25cWWaZZcquu+5aNttssylu9+STT5bTTjut3HDDDeXxxx8viy66aNl6663LbrvtVsaP7+hdAAAAAAAAAAAAAIwRHVvxeP7555ejjjqqvPa1ry0f+MAHyquvvlp++tOfloMPPrg8+uijZffdd6+3e/rpp8vOO+9c/vSnP5WNN964LLHEEuXnP/95+drXvlaLRU8++eSRfioAAAAAAAAAAAAAM2bR53333VeOO+642tnzO9/5Ti38jP32268WgJ5wwgll2223LfPMM0/t8Hn//feXww47rOy00071dikMPeigg2qR6MSJE2sxKAAAAAAAAAAAAMBoNlPpQCn0/O9//1u+9KUvdRV8xoILLlgLOv/nf/6nPPHEE+XFF18sl1xySXn9619fdthhh67bzTzzzOVTn/pU/fmiiy4akecAAAAAAAAAAAAAMMN3+rzxxhvLQgstVNZaa62prttmm23qV9x+++3l+eefLxtttFGZaaYp61sXX3zxsthii5U77rijTJo0qRaCAgAAAAAAAAAAAIxWHdfp89///nd5/PHHy5vf/Oby2GOPlc997nNlvfXWK6uuumot9rz22mu7bvvAAw/U70sssUTbx0rh58svv1weeuihYdt+AAAAAAAAAAAAgDFR9JlCz3j22WfrGPdf/OIXZZNNNimbbrpp+fOf/1z23XffOv49nnrqqfp9/vnnb/tY88wzT/3+9NNPD9v2AwAAAAAAAAAAAIyJ8e7PPfdc/X7nnXeWt73tbeWMM84oc845Z71sr732Kttuu2055phjynve857axTNmnXXWto/VXP7SSy8N2/YDAAAAAAAAAAAAjIlOnzPPPHPXz1/4whe6Cj5jmWWWKTvvvHN55ZVXyk9/+tMy++yz18vz73aaotC55ppryLcbAAAAAAAAAAAAYEx1+mxGsqfYM0We3a244or1+9/+9rey8sor9zq+/Zlnnqnf55577iHcYhgF0tV2m22mvgwAAAAAoDvnEwEAAABGrY4r+lx88cXL+PHjy3//+98yefLkMm7cuCmub7p6zjHHHGXppZeuPz/44INtHyuXp3h00UUXHYYthxE033ylXHrpSG8FAAAAANAJnE8EAAAAGLU6brz7rLPOWlZbbbU6mv2OO+6Y6vrf/e539fvyyy9fO31mdPvtt99eXn311Slu9/e//708/PDD9bFaR8YDAAAAAAAAAAAAjEYdV/QZO+20U/1+9NFHd41oj3vvvbdcdNFFZf755y8bbrhhmW222coWW2xRHnroofLtb3+763aTJk0qxx57bP15woQJI/AMAAAAAAAAAAAAAGbw8e6x+eabl5tvvrlcccUV9eeNN964PPvss+UnP/lJLeg88sgjy9xzz11ve9BBB9XbHnXUUeW2224ryy67bLnlllvKPffcUzbddNPy3ve+d6SfDgAAAAAAAAAAAMCMWfQZX/3qV8uaa65Zvve975XLLrusjn1fa621ysc+9rGy+uqrd91ugQUWqN0/TzrppHLjjTfWgs/FFlusfPKTnyy77LJLGTdu3Ig+DwAAAAAAAAAAAIAZuugzxZpbb711/erLwgsvXLt/AgAAAAAAAAAAAHSqji36BAbgP/8p5SMfmfKyc84pZb75RmqLAAAAAIDRyvlEAAAAgFFL0SeMBS+/XMpll0152emnj9TWAAAwxhx00EHl17/+dfnZz37WddkvfvGLsssuu/R536OOOqr8z//8T6+3+fOf/1w222yzHq8/6aSTyiabbDLArQYAGMOcTwQG0XPPPVfOPPPMMnHixPLwww+XWWaZpay44opl1113LRtttFG/HmO99dYrTzzxRNvrJkyYUL74xS8O8lYDAACMXoo+AQAAGDKnnnpqufrqq8siiywyxeVveMMbyn777df2Pk899VS54IILypxzzllWXXXVPn/HvffeW78nWbjccstNdf2yyy47zdsPAADAtHv22WfLTjvtVO67776y0kor1Z+feeaZWgCamPDjH/94+ehHP9rrYzz++OO14DOFou95z3umur4/cSMAAMCMRNEnAAAAg+6ll14qRxxxRLn00kvbXr/YYouV/fffv+11e++9d/3+la98pV8Fm3/4wx/q9z322KO89a1vna7tBgAAYPCcffbZteBzhx12KIcffngZN25cvfzAAw8sW2+9dddkhiWXXLLPmC+366tAFAAAYCyYaaQ3AAAAgBnL9ddfXzbddNNa8LnBBhsM6L65zw033FA233zz+tUf6fSZxOGb3/zmadxiAAAAhkImPyReO+SQQ7oKPiPTIHbccccyadKkctNNN/VrusPyyy8/5NsLAADQCXT6BAAAYFBddtll5bnnniuHHXZYTeL1NzGXEX8nnHBCmXvuuctnP/vZfv++JACXWGKJMtdcc03HVgMAADDYdt111xrrzTvvvFNdN+uss9bviR97o+gTAABgSoo+AQAAGPSk3rHHHluLNwfiG9/4Rvn3v/9dDj744LLgggv26z7/+te/yuOPP17WWGONcvTRR5frrruuPProo2XRRRctW265Zdlzzz27EokAAAAMrwkTJrS9fPLkyWXixIn15+WWW67Xx8h49znnnLP89Kc/LZdffnn529/+VuPNd73rXeWAAw4oCy+88JBsOwAAwGhlvDsAAACDap111hlwweezzz5bvve979XuLx/60If6fb8k/+JXv/pVHQn43ve+t2y11Vbl5ZdfLieffHLZY4896s8AAACMHhdeeGG56667yuKLL17WX3/9Hm/34osv1iLP559/vpx++unlLW95S9luu+3qePhLL720bL311uWhhx4a1m0HAAAYaTp9AgAAMGpGwu+zzz4DKhhNsehSSy1V1l133fKFL3yhzDzzzPXyJAT33Xffcsstt5RzzjmnPi4AAAAj76qrripHHnlkGT9+fJ3YMMsss/R420x2WHbZZesCwVNPPbXMP//8XZ1CTzzxxHLmmWeWz3/+8+X8888fxmcAAAAwsnT6BAAAYMRlRN9MM81UdthhhwHdb5NNNqkj/g4//PCugs/I6L/DDjus/vzDH/5w0LcXAACAaevwecghh9SfjznmmLLmmmv2evt0Av3Rj35ULrjggq6Czxg3blwd7b7ooouWW2+9tTz22GNDvu0AAACjhaJPAAAARtTf//738sc//rGstdZadUTfYEkH0HSDyeMDAAAwcl599dXa1fNLX/pS7fD59a9/vWyxxRbT9Zh5nBVXXLH+/OCDDw7SlgIAAIx+xrsDAAAwoq6//vr6fbPNNhvwff/yl7+Uf/7zn+Utb3lL7e7ZPan40ksvldlmm23QthUAAICBefnll2t3z4kTJ9ZunaeddlqfHT4bifdS0LnYYouV17/+9VNd/8ILL9Tvs88++6BvNwAAwGil0ycAAAAj6je/+U39nk6fA3XUUUeVD3/4w+VnP/vZVNfdddddtehz1VVXHZTtBAAAYGAmTZpUDjzwwFrwmcLN733ve/0u+IyMdv/Qhz5Uzj777Kmue+6558o999xT5phjjvKmN71pkLccAABg9FL0CQAAwIi6++67a5fON77xjQO+7+abb16/n3LKKeXZZ5/tuvzJJ58sX/7yl+vPu+666yBuLQAAAP111lln1ekOiy66aLnwwgvL0ksvPaD7v+9976tj3K+44opy3333dV3+3//+t3z1q18tTz31VNlhhx1MeAAAAMYU490BAAAY0a4vDz30UFliiSXKTDP1vi4xSb6HH364bLjhhmWFFVaol2255Za1Y8x1111XNt1007LRRhvV0YE33nhjefzxx8tuu+1W3vOe9wzTswEAAKCRgswUfUZiuEsuuaTt7dL5c9111y2/+MUvyu23315vm7gvEitmNPwxxxxTtttuu7LJJpuUeeedt9x2223lj3/8Y1ljjTVqJ1EAAICxRNEnjAWzzFLKBhtMfRkAAIyCJODkyZPLPPPM0+dtv//979cE4Bve8Iauos8UiqbL53e/+91aFHrppZfWLjC5/rOf/WzZbLPNhuFZAADMYJxPBAbBL3/5y/L888/Xn7NQL1/t7L333rXoM/HeqaeeWrbaaquuos/YfffdyzLLLFPOPffccs0115RXXnmlLLnkkrUY9MMf/nCZddZZh+05AQAAjAbjJie7xgwj4yw23OIDZe+Tvl1mHj/yNb2T/vvf8o0DdynXXvnDmngFAAAAAABGb45how9sVA747gFl5vEzl04z6b+TyskTTi7X/PAaOQk62osfP3akNwEAAEat2U/4VBnrep+dBwAAAAAAAAAAAMCooOgTAAAAAAAAAAAAoAMo+gQAAAAAAAAAAADoAIo+AQAAAAAAAAAAADqAok8AAAAAAAAAAACADjB+pDcAGAbPPFPKoYdOednRR5cyzzwjtUUAAAAAwGjlfCIAAADAqKXoE8aCF18s5fTTp7zs8MOdpAUAAAAApuZ8IgAAAMCoZbw7AAAAAAAAAAAAQAdQ9AkAAAAAAAAAAADQARR9AgAAAAAAAAAAAHQARZ8AAAAAAAAAAAAAHUDRJwAAAAAAAAAAAEAHUPQJAAAAAAAAAAAA0AEUfQIAAAAAAAAAAAB0AEWfAAAAAAAAAAAAAB1A0ScAAAAAAAAAAABAB1D0CQAAAAAAAAAAANABFH0CAAAAAAAAAAAAdABFnwAAAAAAAAAAAAAdQNEnAAAAAAAAAAAAQAcYP9IbAAyDmWcuZcUVp74MAAAAAKA75xMBAAAARi1FnzAWLLBAKffcM9JbAQAAAAB0AucTAQAAAEYt490BAAAAAAAAAAAAOoCiTwAAAAAAAAAAAIAOoOgTAAAAAAAAAAAAoAMo+gQAAAAAAAAAAADoAIo+AQAAAAAAAAAAADrA+JHeAGAYPPdcKccdN+Vln/xkKXPNNVJbBAAAAACMVs4nAgAAAIxaij5hLHj++VK+9KUpL9t3XydpAQAAAICpOZ8IAAAAMGoZ7w4AAAAAAAAAAADQARR9AgAAAAAAAAAAAHQARZ8AAAAAAAAAAAAAHUDRJwAAAAAAAAAAAEAHUPQJAAAAAAAAAAAA0AEUfQIAAAAAAAAAAAB0AEWfAAAAAAAAAAAAAB1A0ScAAAAAAAAAAABAB1D0CQAAAAAAAAAAANABFH0CAAAAAAAAAAAAdABFnwAAAAAAAAAAAAAdQNEnAAAAAAAAAAAAQAdQ9AkAAAAAAAAAAADQAcaP9AYAw2DcuFIWXHDqywAAAAAAunM+EQAAAGDUUvQJY0FO0D7++EhvBQAAAADQCZxPBAAAABi1jHcHAAAAAAAAAAAA6ACKPgEAAAAAAAAAAAA6gKJPAAAAAAAAAAAAgA6g6BMAAAAAAAAAAACgAyj6BAAAAAAAAAAAAOgA40d6A4Bh8MILpZx77pSX7b57KXPMMVJbBAAAAACMVs4nAgAAAIxaij5hLHj22VL222/Ky7bbzklaAAAAAGBqzicCAAAAjFrGuwMAAAAAAAAAAAB0AEWfAAAAAAAAAAAAAB1A0ScAAAAAAAAAAABAB1D0CQAAAAAAAAAAANABFH0CAAAAAAAAAAAAdABFnwAAAAAAAAAAAAAdQNEnAAAAAAAAAAAAQAdQ9AkAAAAAAAAAAADQARR9AgAAAAAAAAAAAHQARZ8AAAAAAAAAAAAAHUDRJwAAAAAAAAAAAEAHUPQJAAAAAAAAAAAA0AEUfQIAAAAAAAAAAAB0AEWfAAAAAAAAAAAAAB1g/EhvADAMFlqolMmTR3orAAAAAIBO4HwiAAAAwKil0ycAAAAAAAAAAABAB1D0CQAAAAAAAAAAANABFH0CAAAAAAAAAAAAdABFnwAAAAAAAAAAAAAdYHzpUN/73vfK4Ycf3uP1t956a1lggQXqz08++WQ57bTTyg033FAef/zxsuiii5att9667LbbbmX8+I7dBQAAAB3hoIMOKr/+9a/Lz372s6muO/jgg8tVV13V9n5vetObypVXXtmv35HHP/XUU8s999xTXnnllbLKKquUfffdt6y99trTvf0AAAAAAAAwWnRsxeMf/vCH+v3DH/5wmXvuuae6fo455qjfn3766bLzzjuXP/3pT2XjjTcuSyyxRPn5z39evva1r5Xf/e535eSTTx72bYdh99JLpfzoR1NetuWWpcw220htEQAAY0QKMa+++uqyyCKL9BjbzTfffDVu665ZyNeXm266qeyzzz5l3nnnLe9///vLpEmTarHorrvuWk455ZSy4YYbTvfzAAAYU5xPBAAAABi1Orbo89577y2zzz57+fSnP11mmqnnKfXp8Hn//feXww47rOy0005dnWTSaeanP/1pmThxYi0GhRna00+Xst12U1722GOlLLTQSG0RAAAzuJdeeqkcccQR5dJLL+3xNi+88EL529/+Vt7+9reX/ffff5p+z8svv1w+97nP1cWAV1xxRXn9619fL89kh2233bZOiFhvvfW6FgYCANAPzicCAAAAjFo9V0uOYq+++mr54x//WEf99Vbw+eKLL5ZLLrmkJv122GGHrstnnnnm8qlPfar+fNFFFw3LNgMAAIwV119/fdl0001rwecGG2zQ4+0S1yW+W2655ab5d2U0/OOPP15jvqbgMzLlYcKECfW6a6+9dpofHwAAAAAAAEaTjiz6fOCBB2pHmOWXX77X2911113l+eefL2uvvfZUxaGLL754WWyxxcodd9xRR/8BAAAwOC677LLy3HPP1YkLZ555Zo+3y2j36Cu2680vfvGL+v1tb3vbVNetu+669fttt902zY8PAAAAAAAAo8lMnTraPcaNG1dHta+//vpl1VVXLdtss0258sorpygObTq8tJPCz4wCfOihh4ZpywEAAGZ8u+66a7nuuuvKTjvtVOO2voo+//GPf5Sdd965rLXWWmXNNdcsH/3oR+sivv7461//Wr8vueSSbWO++Mtf/jKNzwQAAAAAAABGl44u+szo9n/9619lyy23LBtttFH585//XA455JBywgkn1Oufeuqp+n3++edv+zjzzDNP/f70008P27YDAADM6NZZZ50y99xz93m7++67r34/7bTTymtf+9qy7bbbltVXX73cdNNNtWD0hhtu6PMxmrhvvvnmm+q6ZhueeeaZaXgWAAAAAAAAMPqMLx1o8uTJ5Q1veEPZf//9y1ZbbdV1+d///vey44471vGB73znO2sXz5h11lnbPk5z+UsvvTRMWw4AAEBj9tlnrx06Tz755ClGvKfoc++99y6HHnpo7RjaWwHpK6+80mPcJ+YDAAAAAABgRtORnT7TzfP666+fouCzGd13wAEH1J9/9KMf1QRiaxKwu6YodK655hrybQYAAGBK559/fpk4ceIUBZ+xwQYblM0226x28bzxxht7fYze4r4m5ptzzjkHdbsBAAAAAABgpHRk0WdvVl111fr9wQcf7Brv19P49mbEX3/GDgIAADAysV1vmriv3Qj3Z599tn6fZ555hmQbAQAAAAAAYLh1XNHnq6++Wu6+++5y++23t73++eef7+r2svTSS/eaJMzl6fiy6KKLDuEWAwAA0K4g87e//W259957217/wgsvTNHJsye9xX3NZcsss8wgbDEAAAAAAACMvI4r+oydd9657LLLLuVf//rXVNf98pe/rN9XWWWVsvLKK9fR7SkQTbFoq7///e/l4YcfLquttlqZeeaZh23bAQAAKOUvf/lL2X777csnPvGJttffcccdU3T87Mnaa69dv992221TXXfrrbfW72usscYgbDEAAAAAAACMvI4r+pxpppnKJptsUiZPnlyOO+64KYo50yHmzDPPrN07t9lmmzLbbLOVLbbYojz00EPl29/+dtftJk2aVI499tj684QJE0bkeQAAAIxlWaS3xBJLlPvvv79cdtllU1x3xRVXlJtvvrmstNJKfRZsvve97y3zzz9/ueCCC+rivtYunxdeeGFZaKGFyvve974hex4AAAAAAAAwnMaXDpROML/61a/K97///XLfffeVddZZp/zzn/8s1157bS0CPfHEE8siiyxSb3vQQQfVZOFRRx1VO78su+yy5ZZbbin33HNP2XTTTWuCEAAAgOFf0Jc47SMf+Uj53Oc+VyZOnFjHsGcxX2K2FGsef/zxZdy4cVMUg2Ziw4YbblhWWGGFelmmOxx22GHlkEMOKVtvvXXZfPPN6+U//vGP6wj5U045pS4IBAAAAAAAgBlBRxZ9vva1ry2XXnppOeOMM8o111xTO7ok0bfBBhuUvffeu3aMaSywwALloosuKieddFK58cYba/JwscUWK5/85CfriPjWBCIAAADDZ8011yyXX355Oe200+oivcRrCy64YNlxxx3LvvvuWws/W2Xh3+23317e8IY3dBV9xmabbVbmm2++GiP+4Ac/KLPMMku9Po/RjH8HAAAAAACAGUFHFn1GEnqHHnpo/erLwgsvXI488shh2S4AAACmlAkNPUl3zxNOOKFfj/Od73ynx+vWW2+9+gUAAAAAAAAzsplGegMAAAAAAAAAAAAAmIE7fQID8NrXlvLYY1NfBgAAAADQnfOJAAAAAKOWok8YC2aaqZSFFhrprQAAAAAAOoHziQAAAACjlvHuAAAAAAAAAAAAAB1A0ScAAAAAAAAAAABAB1D0CQAAAAAAAAAAANABFH0CAAAAAAAAAAAAdIDxI70BwDB4+eVSbrllysve/vZSZp11pLYIAAAAABitnE8EAAAAGLUUfcJY8J//lPLud0952WOPlbLQQiO1RQAAAADAaOV8IgAAAMCoZbw7AAAAAAAAAAAAQAdQ9AkAAAAAAAAAAADQARR9AgAAAAAAAAAAAHQARZ8AAAAAAAAAAAAAHUDRJwAAAAAAAAAAAEAHUPQJAAAAAAAAAAAA0AEUfQIAAAAAAAAAAAB0AEWfAAAAAAAAAAAAAB1A0ScAAAAAAAAAAABAB1D0CQAAAAAAAAAAANABxo/0BgAAAAAAAAAzpueee66ceeaZZeLEieXhhx8us8wyS1lxxRXLrrvuWjbaaKN+PcY//vGPcvLJJ5dbb721PPXUU2WppZYqEyZMKNttt92Qbz8AAMBoo9MnAAAAAAAAMOieffbZsuOOO9aizznnnLPstNNOZZNNNin33ntv2W+//erlfUmh6Pbbb1+uvPLKss4669RizxdeeKF84QtfKEcfffSwPA8AAIDRRKdPAAAAAAAAYNCdffbZ5b777is77LBDOfzww8u4cePq5QceeGDZeuuty0knnVSLQJdccskeH+Ooo44qjz32WDnrrLPKBhtsUC874IADaqfQ888/v2yxxRZl5ZVXHrbnBAAAMNJ0+gQAAAAAAAAG3dVXX10LPQ855JCugs9YZJFFagfQSZMmlZtuuqnXLp/XXntteetb39pV8Bmzzz57Ofjgg8vkyZPLxRdfPOTPAwAAYDTR6RPGgte8ppS77576MgAAAACA7pxPBAZJunE+88wzZd55553qullnnbV+f+6553q8/+23314LO9ddd92prltjjTXKLLPMUm677bZB3moAAIDRTdEnjAXjx5ey0kojvRUAAAAAQCdwPhEYJBMmTGh7eQo5J06cWH9ebrnlerz/Aw88UL+3G/+egs/Xv/715aGHHiovv/xyVxEpAADAjM54dwAAAAAAAGDYXHjhheWuu+4qiy++eFl//fV7vN2TTz5Zv88333xtr59nnnnKq6++Wp599tkh21YAAIDRRtEnAAAAAAAAMCyuuuqqcuSRR5bx48eXo48+unbs7Mkrr7xSv/fUxbO5PJ0+AQAAxgpFnwAAAAAAAMCwdPg85JBD6s/HHHNMWXPNNXu9/eyzzz5F8Wd3TbHnnHPOOejbCgAAMFqNH+kNAAAAAAAAAGZcGcF+7LHHlvPOO6925zz++OPLxhtv3Of9mrHuTz/9dNvrn3nmmTJu3Lgy99xzD/o2AwAAjFaKPmEs+O9/S7nvvikvW265Usb7EwAAAAAAdON8IjCI0o0z3T0nTpxY5p9//nLaaaf12eGzsfTSS9fvDz744FTXpfvnI488Ut74xjeWmWYy3BAAABg7nKGBseDJJ0tZeeUpL3vssVIWWmiktggAAAAAGK2cTwQGyaRJk8qBBx5Yrr/++rLYYouVs88+u6uQsz/WXnvt2snzF7/4Rdlvv/2muO6Xv/xlLfxcY401hmDLAQAARi/L3gAAAAAAAIBBd9ZZZ9WCz0UXXbRceOGFAyr4jNe97nVlvfXWK7fffnu59tpruy5/8cUXy9e//vX684QJEwZ9uwEAAEYznT4BAAAAAACAQfXUU0/Vos9YYYUVyiWXXNL2dhn1vu6669ZuninuzG033HDDrus///nPlx122KEccMABZdNNNy2LLLJIue6668oDDzxQ9thjj3p7AACAsUTRJwAAAAAAADCoMn79+eefrz+nSDNf7ey999616DMFn6eeemrZaqutpij6fOMb31guvvji2tnz5ptvLi+99FJZaqmlyle+8pWyzTbbDNvzAQAAGC0UfQIAAAAAAACDKoWb9913X79vv//++9evdlLk2YxzBwAAGOtmGukNAAAAAAAAAAAAAKBvij4BAAAAAAAAAAAAOoCiTwAAAAAAAAAAAIAOoOgTAAAAAAAAAAAAoAMo+gQAAAAAAAAAAADoAIo+AQAAAAAAAAAAADrA+JHeAAAAAAAAAGB4TZo0qX7NOuus9d/PPvtsueiii8ojjzxSVl111bLFFluUmWeeeaQ3EwAAgG50+gQAAAAAAIAx5Nxzzy3rrLNOuf766+u/X3755bLjjjuW448/vnz3u98thx56aNlzzz1rUSgAAACji6JPAAAAAAAAGCOuvfbacuyxx9bOns8880y97Ac/+EG5//77y0ILLVT222+/stxyy5Vbb721dv4EAABgdFH0CQAAAAAAAGPExRdfXGaaaabyzW9+s2y77bb1squvvrqMGzeufPGLX6xFnxdccEGZZ555yo9+9KOR3lwAAAC6Gd/9AmAGNN98pdxww9SXAQAAAAB053wizNDuvvvusvrqq5f11luv/vuFF14od9xxR5l11lnLO9/5znrZ3HPPXVZbbbXy6/8fe/cBZUV9/o//2V1YeglSBAGjooJR1KAoGsWIBUtiJwgqYo+Kgj1FwSi2JLagEStiCYrBltgiKFZEY4xGAVsMRQRUkF53/2fm+4O/C0vT3b337n29zpkzu5+Ze+e5ezgmn5n3/Txvv53hagEAAFid0Cfkg+LiiH32yXQVAAAAAEAucD8RqrWkrXvTpk1X/T5+/PhYvnx57Lzzzmnwc6Xk5yVLlmSoSgAAANZGe3cAAAAAAADIE5tuumlMmzZt1e8vvfRS2tp9jz32WDVWUlISEyZMiGbNmmWoSgAAANZG6BMAAAAAAADyRIcOHdIW7yNHjoxx48bF448/no5369Yt3S9btix+//vfx+effx6dO3fOcLUAAACsTnt3AAAAAAAAyBOnnXZavPDCC3HZZZelv5eWlsY+++wT22yzzarw56xZs6JBgwbpuQAAAGQXK30CAAAAAABAnth+++3j7rvvjt133z223HLL6NWrV/zxj39cdbxly5ax6667xl/+8pf0OAAAANnFSp+QD0pKIr76quzYJptEFMp9AwAAAACrcT8Rqr0k1HnPPfeUe2z48OFRq1atKq8JAACADSP0CfkguUHbvHnZsZkzI5o1y1RFAAAAAEC2cj8R8sqSJUti5syZUbNmzdh0003TPQAAANnL13IBAAAAAAAgz7z44ovRu3fv6NSpUxxwwAFxww03pONnnXVWDBo0KBYuXJjpEgEAACiHlT4BAAAAAAAgj9x8883x5z//OUpLS6OwsDDdJ1vi448/TgOhEydOTFu9FxcXZ7pcAAAAvsVKnwAAAAAAAJAnxo4dG7feems0b948brzxxnjzzTfLHL/++uujXbt28e9//ztGjhyZsToBAAAon9AnAAAAAAAA5Ilk9c6aNWvG3XffHd27d4969eqVOb7DDjvEXXfdla7w+fjjj2esTgAAAMon9AkAAAAAAAB54r333otOnTrFVltttdZzklVAd9lll5g8eXKV1gYAAMD6CX0CAAAAAABAnli8ePEaq3uWJ1kNdNGiRVVSEwAAABtO6BMAAAAAAADyRKtWreKDDz6IkpKStZ6zfPny9JyWLVtWaW0AAACsn9AnAAAAAAAA5Il99903vvjii7j55pvXes4tt9wSs2bNin322adKawMAAGD9amzAOQAAAAAAAEA1cMopp8Tf/va3GDp0aLz11lux++67p+PTp0+PkSNHxujRo2Ps2LHRuHHjOPnkkzNdLgAAAKsR+gQAAAAAAIA80aRJk7j77rujX79+aejzn//8Zzqe/JxspaWlaVv3ZCXQZs2aZbpcAAAAViP0CQAAAAAAAHmkXbt26Wqf//jHP+L1119PV/ksKSlJQ5677bZbHHzwwVFcXJzpMgEAACiH0CcAAAAAAADkmaKioujevXu6AQAAkDsKM10AAAAAAAAAAAAAAOtnpU8AAAAAAADIEyeccMIGn1tQUBD33ntvpdYDAADAxhH6hHzQsGHEww+vOQYAAAAAsDr3E6FaGz9+/AaFPUtLS9M9AAAA2UXoE/JBrVoRxxyT6SoAAAAAgFzgfiJUa0OGDCl3vKSkJL755pt4++2348knn4zDDjssBgwYUOX1AQAAsG5CnwAAAAAAAJAn9ttvv3UeP+aYY6Jbt27Rr1+/2GOPPeKQQw6pstoAAABYv8INOAcAAAC+s/79+8fee+9d7rHJkyfHJZdcEnvttVf86Ec/ii5dusQ555wTEydO3OD3/+STT2Lbbbdd6/bMM89U4KcBAADIj2Bohw4dYtiwYZkuBQAAgNVY6RMAAIBKbRv49NNPR4sWLdY4lgQ7jzvuuJg3b1507do1ttpqq5gyZUr84x//iBdeeCHuuOOO2H333dd7jZUB0f333z8Nea6uXbt2FfRpAAAA8kfr1q3j5ZdfznQZAAAArEboEwAAgAq3ZMmSuOKKK2LkyJFrPefyyy9PA59//OMf49BDD101/tprr8XJJ58cv/nNb9IAaGHhuptUTJgwId0nr9l5550r8FMAAADkpxUrVsT7778fxcXFmS4FAACA1Qh9AgAAUKHGjBkTV155ZUybNi1dwXPs2LFrnDNjxox4++23Y7vttisT+Ezsscce0blz5xg3blx8+OGH0b59+/Wu9FlQUBDbbLNNhX8WAACA6mZlt4S1hT1nzZoV9913X3z++efx05/+tEprAwAAYP2EPiEfzJoV0bx52bGZMyOaNctURQAAVGOPPPJILFiwIAYOHBjHHntsuaHNoqKiuOiii6LZWv4/6crVZJL32ZAHlm3bto169epVQPUAALifCNXb4Ycfnn5xbl1KS0ujVq1acdZZZ1VZXQAAAGwYoU8AAAAqVJ8+feK6666L+vXrr/Wcpk2bpu3Yy/Pll1/GW2+9FTVq1Iitttpqndf66quv0lVoOnXqFNdcc02MHj06vvjii2jVqlX8/Oc/j1NPPVU7QgAAgG9J5ktrU1hYGHXr1k2/vHfiiSem3RkAAADILkKfAAAAVKjddtvte70+aQ2/cOHCNLTZuHHjdZ47YcKEdP/Pf/4zZs+eHd26dUtf+/LLL8fNN9+ctoi/6667BD8BAAD+nzFjxmS6BAAAALIp9Jm0e1hfSwgAAACqXi7M15LA59NPPx2bbrpp/OpXv1rv+fPnz48f/vCH0aVLl7j00kvTtvGJJPiZtCF87bXX4s4774wzzzyzCqoHAAAAAACAylVY0W/YtWvXuPHGG2PKlCkV/dYAAABU0/nasmXL4pJLLon77rsvmjRpEnfccUe6X5/u3bvHs88+G4MGDVoV+Ewk7QgHDhyY/vz4449Xau0AAAC56Msvv4y5c+eu+n369Olx+eWXxxlnnBG33npr+iU7AAAA8iD0mUwQhw4dGgceeGD07ds3nnrqqVi6dGlFXwYAAIBqMl9LHjKedNJJ8eijj0bLli3j/vvvj2222eZ7v2+yAmjDhg2zMuQKAACQSVdccUX6xcCXX345/T0JePbs2TNGjBgRL774YvzpT3+K3r17x+LFizNdKgAAAJUd+hw7dmwMGDAg2rRpE6+//nqcf/75sddee8VVV10VkyZNqujLAQAAkMPztWQlmeTB4vjx46NDhw7x0EMPxVZbbbXBr//000/Tz5K0c19dSUlJLFmyJGrVqlXBVQMAAOSuUaNGxQMPPBA1a9aMgoKCdGzkyJExY8aMaNeuXVx99dXxk5/8JD788MMYNmxYpssFAACgskOfzZo1i9NOOy1tr5esznLYYYelK8cMHz48Dj/88DjmmGPSieOCBQsq+tIAAADk0HwtWXm0T58+8cknn6QPFJOHji1atNio90geRp544onx0ksvrXHs3XffTUOfHTt2rMCqAQAAclvSZaFGjRrpqp4HH3xwOpbME5MA6K9//es44ogj4pZbbolNNtkknnnmmUyXCwAAQGWHPr9tl112iWuuuSZeeeWVtE1Ely5dYsKECXHZZZelq8n85je/iX//+9+VWQIAAABZOl+78MIL43//+1/svffecdttt0W9evU2+j0OOeSQdJ+0HkzaEa40e/bs+N3vfpf+nARLAQAA+D/JCp6dO3eO9u3bp7/PnTs3/dJcnTp10vFEcXFx7LDDDumcDQAAgOxSoyoukjy4S1aMSVZXSVaNefDBB9PWe3/961/TFhLJ+MUXXxw//vGPq6IcAAAAMjxfS8Kmr732Wvrz5ptvnoY+y5OsQJq0o08k9UybNi3222+/tBV84uc//3k899xzMXr06DjooINi//33T1cvffHFF2PWrFnRt2/f2HfffSu0dgAAgFy2ePHiaNCgwarfX3/99SgpKUnnfUVFRWXOXbFiRQYqBAAAIKOhz5kzZ8Zjjz2Wbv/9739XPVQ89NBDo1OnTvH3v/89xo4dG8cff3zcdNNN6cM7AAAAKl8m52vfbsd+3333rfW8pI6Voc+kBeH48eNjs802WxX6LCwsTFf5TFrDJ6HQJLiatClMjidtCVe2KgQAAOD/tGzZctUcMJF8aS5p7b7nnnuuGku+TPfee++l5wIAAJAHoc9kIvj888+nD+SSlVuSbweWlpbGjjvuGD169EgfuiUtIhI/+9nP4oknnoiLLroorr/+eqFPAACASpSJ+dqkSZPWGEsCmcm2MdYWDk1WojnhhBPSDQAAgHXbaaed4vHHH48bb7wx/ZJd8oW/xMo534wZM+Laa6+Nr776Kg488MAMVwsAAEClhz4HDRoUTz/9dMydOzd9cNioUaP0QWHy8HCbbbYp9zVJO75LL700pk6dWtHlAAAA8P+YrwEAAHDmmWemXwYcOnRo+nsyPzzyyCNXdVk47LDDYs6cOdGqVas4/fTTM1wtAAAAlR76HDFixKoWfMmDw+7du0etWrXW+ZolS5bEpptuGj/+8Y8ruhwAAAD+H/M1AAAA2rZtG4888kjceeedMXPmzNhtt93ixBNPXHW8Y8eOsckmm8T5558fTZs2zWitAAAAVEHos2/fvnH00UfHVltttcGvSR4yPvvss9/ruuPGjUsnpIcffnhcc801ZY7Nnj07brnllnjhhRdi1qxZ6TcTjzrqqLTWGjUqpcM9AABA1snUfA0AAIDs8sMf/jCuvPLKco/dfvvtVV4PAAAAG67CE48XX3xxuk/ClR9++GHsueeeq45NnDgxnnnmmbRFRPItwooyf/78+PWvf522n1hd0rbw+OOPj48//jgOOOCA9Lqvvvpq/OEPf4j33nsvbr755gqrA7JW/foRQ4asOQYAQF7JxHwNAIAc5H4i5K133303pk+fHj/60Y+idevWmS4HAACAclTKMpcPPvhgXHXVVbHNNtuUeYj4/vvvx2233RZ33XVXGtI89thjK+R6gwcPjmnTppV7LFnh86OPPoqBAwdGr1690rEBAwZE//7909VqnnvuuTQMCtVanToRZ52V6SoAAMgCVT1fAwAgB7mfCNXev/71r/jzn/8cffr0WTU3vOiii+LJJ59Mfy4sLIxf/vKXcfbZZ2e4UgAAAFZXGBXs9ddfj9/97nfpZHCXXXYpc2znnXeOE044IQoKCuKKK66I8ePHf+/rjRkzJkaNGhX77rvvGscWL14cDz/8cLRs2TJ69uy5aryoqCiduCZGjBjxvWsAAADIBVU9XwMAACD7JJ0ekrDnyy+/HJ9++mk6Nnbs2HjiiSfSZ2jJfLF27drpwirJOAAAANU89HnnnXemE8KVq8N825ZbbpmO3X333Wkr9uTc7+Prr7+OSy+9NDp37hzHHXdcuS0oFi5cmB5PHmp+W5s2bdK2FG+++WasWLHie9UBAACQC6pyvgYAAEB2SuZ9S5cujdNOOy2OPPLIdOzxxx9PvwSYLJpy3333pYumJPPHpFsEAAAA1Tz0+eGHH0anTp1i1113Xes5yTcEf/zjH8c777zzva41aNCgNNSZtCZMJqKr++yzz9J927Zty319EvxMJrVTp079XnUAAADkgqqcrwEAAJCdkgVRtt566xgwYEDUq1cvSkpK0lU/k2dtP/vZz9JzkuPJ/DFZYAUAAIBqHvqcP39+NG7ceL3nNW3aNG2//l0lLSaeffbZuOCCC9LwZnnmzJmT7tdWT4MGDdL93Llzv3MdAAAAuaKq5msAAABkry+//DK22mqrVb8nwc558+bFNttsEz/4wQ9WjSfzx2QcAACAah763GyzzdIVYZYvX77Wc5J26u+99160bNnyO11jxowZccUVV0SXLl2iV69eaz0vWcUzUVxcXO7xleNLliz5TnUAAADkkqqYrwEAAJDdkjDnN998s+r3l156Kd3vvvvuZc6bMmVKNGzYsMrrAwAAoIpDn/vtt1/MnDkzfve736UPC1dXWloa11xzTUyfPj1++tOffqdr/PrXv07fe/DgweW2dV+pdu3a6X7ZsmXrDIUmrSugWvvyy4hmzcpuyRgAAHmlKuZrAABUA+4nQrWWrPL51ltvxaeffpp2hEi66yXP2/bZZ59V5zz33HPxwQcfxA477JDRWgEAAFhTjahgJ554Yjz++OMxcuTIePXVV9MJYrJCTDJZTB4cvvzyyzF58uS0XeCpp5660e//l7/8JV555ZX0IWWySs26NGrUaJ3t21e2pKhfv/5G1wE5pbR0zZuyyRgAAHmlsudrAABUE+4nQrX2i1/8IsaNGxc///nPo1atWrFgwYI0CLpypc8zzjgjnR8mc8Xjjz8+0+UCAABQ2aHPpCXEXXfdFRdddFH85z//iQceeGDVapzJqjGJbbbZJm644YbYZJNNNvr9n3rqqXR/2WWXpdvqHn300XQ74ogj4phjjknHkoeW5UnG69atG61atdroOgAAAHJNZc/XAAAAyH4HHXRQ2rr9z3/+cxr43HrrrePGG29cdXzq1KlRXFycLsDyk5/8JKO1AgAAUAWhz8SWW24ZjzzySPz73/+ON954I20fmLRYb9asWXTq1Cm6dOnynd87CXN27tx5jfFkcpqsWNO+ffu0ZWGHDh1i++23T1u3jx8/PkpKSqKwsLDM+dOmTYs99tgjioqKvnM9AAAAuaQy52sAAADkhtNOOy3tBpG0d2/SpEmZY1dddVUaBK1Tp07G6gMAAKCKQ58r7bjjjulWkY488shyx1977bU09JmEPfv167dq/NBDD42HHnoohg8fnk5eEytWrIjrrrsu/bl3794VWh8AAEAuqIz5GgAAALkjWc1z9cBnomPHjhmpBwAAgCwIfWaD/v37xyuvvBJXX311jBs3Ltq1a5cGRN9///20fUW3bt0yXSIAAAAAAAAAAABAZkKfb731Vtx+++3x0UcfxcKFC6O0tLTc8woKCtJ2gpUp+YbiiBEj4qabbooXX3wxDXy2bt06LrzwwjjhhBPSGgAAAPJFNs3XAAAAqHzfZwGUZG74/PPPV2g9AAAAZFnoM3mAmLRRT1qor+3hYWXYY489YtKkSeUea968eQwePLjKagEAAMhGmZqvAQAAkDnTpk37zq+1eAoAAEAehD6HDh0ay5cvjwMOOCBdSTMJXBYVFVX0ZQAAANhI5msAAAD5Z/jw4ZkuAQAAgGwOfb7zzjvRtm3btJ26b/8BAABkD/M1AACA/NO5c+dMlwAAAEAFKowKlqwa0759ew8QAQAAsoz5GgAAAAAAAOS2Cg99brXVVjFlypSKflsAAAC+J/M1AAAAAAAAyG0VHvo89thjY8KECfHCCy9U9FsDAADwPZivAQAAAAAAQG6rUdFv+JOf/CQOPPDAOPfcc+Pwww+PnXbaKRo2bLjW9oHdunWr6BIAAAAoh/kaAAAAAAAA5LYKD3127do1fWBYWloaI0eOTLd1SVaZAQAAoPKZrwEAAAAAAEBuq/DQ56677lrRbwl8X3XrRgwcuOYYAAB5xXwNAIAN4n4iAAAAQP6EPu+7776Kfkvg+6pXL2LQoExXAQBAhpmvAQCwQdxPhGqlZ8+esdtuu8WAAQPS3z///POoW7duNG7cONOlAQAA8B0UfpcXAQAAAAAAANlv0qRJMWXKlFW/d+vWLa6++uqM1gQAAEAWrfS50tKlS+OJJ56IcePGxfTp09M2gv3794/7778/tt9++9hpp50q69IAAACsg/kaAABA/igoKIiPP/44SkpKorCwMEpLS9MNAACA3FQpoc/33nsvzjnnnPjiiy/SSWMymdxss83SY4888kgMHjw4LrzwwjjppJMq4/IAAACshfkaAABAfmnfvn3861//ir333juaNWuWjo0dOzaOOOKI9b42mTOOGjWqCqoEAAAgY6HPZJWYU045Jb755pt08rjPPvvE7373u1XHu3Tpkn6b8Pe//3107Ngxdtlll4ouAQAAgHKYrwEAAOSfCy64IE477bT48ssv0y2RzAuTbUNCnwAAAFTz0Odtt92WThJ/85vfxPHHH5+Offsh4sUXXxw777xzurLMPffc4yEiAABAFTFfAwAAyD8//vGP48UXX4xPPvkkFi9eHH369Ik999wzTj/99EyXBgAAQDaEPl9++eXYaqutVj1ALM8BBxwQHTp0iAkTJlT05YHyfP11xF57lR17+eWIJk0yVREAABlgvgYAwAZxPxGqnfr168eOO+646vdNNtkkOnfunNGaAAAAyJLQ56xZs2Lfffdd73lt2rRJv1EIVIEVKyI++GDNMQAA8or5GgAAG8T9RKjWJk6cmOkSAAAAyKbQZ8OGDePzzz9f73lTp06NBg0aVPTlAQAAWAvzNQAAAFaaPXt2PPTQQzFu3LiYOXNmFBcXpyuAdunSJQ477LBo1qxZpksEAACgHIVRwXbeeed4//3341//+tdazxk/fnx88MEHsdNOO1X05QEAAFgL8zUAAABWzv26d+8eN910Uxr6/PTTT9MVQF999dX44x//GD/72c/i9ddfz3SZAAAAVEXos2/fvlFaWhpnnHFGPPLIIzFt2rRVx5YuXRrPPfdcnHfeeVFQUBDHH398RV8eAACAtTBfAwAAIJkLnnnmmfHNN9/EPvvsE9dff308/PDDMWLEiLjuuutir732ijlz5kT//v1j+vTpmS4XAACAym7v3qlTp7j44ovj2muvjUsvvTQdSx4YPvXUU/H3v/89SkpK0oeMZ511Vuy+++4VfXkAAADWwnwNAACAO+64I+bPn59+6e+0004rcyzp+vDzn/88hg4dGjfccEPce++9cckll2SsVgAAAKpgpc/EiSeeGMOHD0+/CVi7du30oeHy5cujsLAwdt1113Si2K9fv8q4NAAAAOtgvgYAAJDfXn755dh8883XCHx+2+mnnx5t27aNF154oUprAwAAIAMrfa6UPCxMtmSlmKQFRLJv3Lhx1KhRaZcEAABgA5ivAQAA5K+ZM2dGt27d1nvedtttJ/QJAACQhSr9iV6yWkyTJk0q+zIAAABsJPM1AACA/FO3bt346quv1nteck7SIQIAAIBqHvp87LHHNur8ww8/vKJLAAAAoBzmawAAAGy//fbxxhtvxMSJE6N9+/blnpMce/vtt2P33Xev8voAAACo4tDnJZdcEgUFBes9r7S0ND3PQ0QAAICqYb4GAADAscceG6+++mqceuqpMXDgwNh3333TThCJkpKSGDNmTFx++eXpzz179sx0uQAAAFR26DOZGJb3EHHFihUxd+7cmDBhQixatCi6d+8e2223XUVfHgAAgLUwXwMAAGC//faLHj16xMMPPxz9+vVLW7i3atUqPfb555/H4sWL0y8DHn300bH//vtnulwAAAAqO/R56623rvN4MlG89NJL028JDhgwoKIvDwAAwFqYrwEAAJD43e9+l37Z76677oopU6bEJ598supYmzZt4qSTTkpXBAUAACAPQp/rk3xbcPDgwekKMzfddFNcf/31VV0CAAAA5TBfAwAAyB9J6/ZkmzFjRrolmjdvHptuummmSwMAACCbQp+J4uLi2HnnneP111/PxOUBAABYC/M1AACA/NKiRYt0AwAAIDdkJPSZ+Prrr2PhwoWZujzkl9q1I848c80xAAAoh/kaAECecz8RAAAAIGtlJPT52GOPxT//+c/o0KFDJi4P+adBg4hbbsl0FQAA5ADzNQAA3E8EAAAAyKPQ5xFHHLHWY8uXL4+vvvoqZs+eHQUFBdGjR4+KvjwAAABrYb4GAAAAAAAAua3CQ58TJkxY7znFxcVx/PHHx7HHHlvRlwcAAGAtzNcAAAAAAAAgt1V46HP48OFrPVZYWBh169aNLbbYIurUqVPRlwYAAGAdzNcAAAAAAAAgt1V46LNz584V/ZYAAABUAPM1AAAArrjiithqq62iV69emS4FAACA76Dwu7wIAAAAAAAAyD1PPPFEPPLII5kuAwAAgGxZ6fPqq6/+zq8tKCiISy65pELrASJizpyIww8vO/bYYxGNG2eqIgAAMsB8DQCADeJ+IlRry5cvj1atWmXs+v3794+33347XnrppQ1+TY8ePeLf//53ucf22WefGDp0aAVWCAAAkGehz3vvvTd9GLhSaWlpmePrO+YhIlSCZcsixo5dcwwAgLxivgYAwAZxPxGqtQMPPDCeffbZ+Pjjj6Ndu3ZVeu0hQ4bE008/HS1atNjg15SUlMSHH34YrVu3jsNXD6RHxA9/+MMKrhIAACDPQp+33XZbPProo+lkMZkoHnLIIelkq2bNmjFjxowYPXp0vPbaa7HZZpvFEUccUdGXBwAAYC3M1wAAAPjZz36WrpqZzPv22GOP6NChQzRu3DgKCwvLPf+EE0743tdcsmRJXHHFFTFy5MiNfu1///vfWLRoUey5557Rr1+/710LAABArqvw0OeKFSviueeei+OOOy5+/etfrzFB7N27d7q6zDXXXBNt2rSJww47rKJLAAAAoBzmawAAAJx88slpN4ekw8PYsWPX2mY9OZ6c931Dn2PGjIkrr7wypk2bFl27dk2vuTEmTZqU7rfddtvvVQcAAEB1UeGhz6FDh6btFcp7gLhSnz59YtSoUTFs2DAPEQEAAKqI+RoAAABJi/QkzFlVHnnkkViwYEEMHDgwjj322Gjfvv1GvX7ChAnpfmNfBwAAUF1VeOjzww8/jH322WetDxBX2mKLLeKFF16o6MsDAACwFuZrAAAAJN0dqlLy5cLrrrsu6tev/51evzL0+cEHH8S1114bH330URQXF6et6c8555x0DgsAAJBP1v2k7zto0KBBfPrpp+s8J2kHkUzQfvCDH1T05QEAAFgL8zUAAACq2m677fadA5+JiRMnpvsbbrghttxyy+jZs2dss8028dRTT8XRRx8d7777bgVWCwAAkIehz86dO6ffsLvnnnvWes71118fkydPjn333beiLw8AAMBamK8BAACw0qxZs+Kmm25KW64nXSEGDRq0KlyZBCqzwcKFC6N58+Zpa/e//e1v6SqlF198cdx3331x+eWXx/z58+PCCy+MFStWZLpUAACA3G3v/stf/jLGjBmTtmlI9smDwpYtW6arxUydOjWeffbZeP/996Np06Zx1llnVfTlAQAAWAvzNQAAABJjx46N888/PxYsWJDOCQsKCtKAZSKZL95+++3x9ttvx29/+9uM1lm3bt0YNWpUuceSFT8fe+yx+Ne//pWu9rnzzjtXeX0AAADVIvTZrl27uOWWW9Jv2b355pvx1ltvlTmeTBy32mqruPnmm2OTTTap6MsDAACwFuZrAAAAfPLJJ3HOOeekq2Mmwclklc/TTz991fGkZfqf/vSneOCBB2KPPfbI6k4QHTt2TEOfSccKoU8AACBfVHjoM5FMAJ955pl4/vnnY/z48Wl7iESrVq3SY926dYuioqLKuDQAAADrYL4GAACQ3/785z/H0qVL09buBxxwwBrH+/TpE9tvv30cd9xxafAzk6HP2bNnx6effhpNmjSJLbbYYo3jixYtSve1a9fOQHUAAADVKPSZqFevXhx22GHpBgAAQPYwXwMAAMhf48aNiw4dOpQb+FypU6dOseOOO8bHH38cmfT666/HgAED0tVIhw4dWuZYSUlJ2oI+aU2/ww47ZKxGAACAqlZYmW+etFIYOXJk+k3BJ598Mh1L2gcuXry4Mi8LAADAepivAQAA5KdvvvkmWrduvd7zmjVrFl9//XVk0t577x0NGjSIl156KV599dUyx2655ZY0lLr//vun3SsAAADyRY3KmixeeumlabvA0tLSdOxnP/tZuv3+979PHy7+6U9/il122aUyLg8AAMBamK8BAADktx/84Afx2Wefrfe8lW3Vq8qECRPSuepmm20WRx55ZDpWv379+N3vfhcXXHBBnHrqqWnAs2XLlvGvf/0r3nnnndhyyy1j0KBBVVYjAABAtVzpc9GiRdGnT5947rnnonHjxnHggQeuepCYKC4ujtmzZ6cTs+RhIgAAAFXDfA0AAIDddtstPvrooxg9evRaz3n22Wfjk08+iV133bVKQ59DhgyJRx99tMz4wQcfHA8++GC66mfS7v3+++9P566nnXZa2sFik002qbIaAQAAquVKn/fcc09MnDgxDjnkkLjyyiujTp060b59+1XH77vvvrjuuuvi7rvvjrvuuisuv/zyii4BWF1xccTRR685BgBAXjFfAwBgg7ifCNVaEpZ85plnYsCAAXHyySdHly5d0vFly5alXwBMwqA333xz1KhRI/r27Vvh1580aVK548nqnitX+FzdTjvtFLfddluF1wIAAJCLKjz0+fTTT0fTpk3j6quvTleJKU/SgiGZTI4fP76iLw+Up1GjiJEjM10FAAAZZr4GAMAGcT8RqrWtt946/cLfJZdckgYpk62goCCdCyZboqioKAYOHBg/+tGPMl0uAAAAld3ePfkG4I9//OO1PkBML1pYmE4Sp0+fXtGXBwAAIMvma/3790/b8JVn4cKF6QoySav5jh07xr777ht//OMf01b0G+Ptt9+Ok046KW1TmHzGpI294CoAAED5DjrooHjiiSeiZ8+e8cMf/jBq1aoVNWvWjFatWsXhhx8ejzzySBxzzDGZLhMAAICqWOkzmRDOmTNnved9/fXX6bkAAABUjUzM14YMGZKuMNqiRYs1ji1dujTOOOOMeOONN+InP/lJHHDAAfHOO+/E7bffHm+++WYMHz58nQHVlcaOHRtnnnlmNGzYMH72s5/FihUr4m9/+1sa/PzTn/4U++23X4V8FgAAgOpk8803T1fzBAAAIM9Dn+3bt4/33nsvZsyYUe5DvcTUqVPjP//5T+ywww4VfXkAAACyYL62ZMmSuOKKK2LkOtqCjhgxIg18nnLKKXHhhReuGh88eHAa+HzggQeib9++67xOEhz9zW9+E/Xr149Ro0ZFy5Yt0/HkdcmqNIMGDYo999wz6tSp870+DwAAQHU1f/78mDlzZvrlv+bNm6erfgIAAJBH7d2PPvrotA3f2WefnbYOXN2sWbPi/PPPTx/MHXbYYRV9eQAAADI8XxszZkzaKjAJfHbt2nWt561cyfOXv/zlGu3gk5BmEgpdn6eeeiqtO2lJuDLwmWjbtm307t07Pfb8889/588CAABQXSVfnDvyyCOjc+fOccghh6TdFzp16hTHHXdcvPDCC5kuDwAAgKoKfR5++OHppDBZPebAAw+MfffdNwoKCmL8+PHRq1ev6NatW/z73/+OPfbYI33gCAAAQNWoqvnaI488EgsWLEjbBA4dOrTcc6ZNmxZTpkyJjh07pqt0flu9evXS8c8++yy++OKLdV4rWSk0sfvuu69xrEuXLul+3Lhx3/mzAAAAVDclJSXpl+2SrgkffPBBOi/cZJNN0i059tZbb8WZZ54Z119/faZLBQAAoCrauyduvPHGuO222+Lee++Nzz//PB1LHtQlW7Jay0knnZROJpNJJFAFvvkm4pRTyo7deWdEo0aZqggAgAypivlanz594rrrrlsjzPltSaBz5Yqc5WnTpk0a6Pz0009j0003Xev7/Pe//033m2++ebnvkUjeAwCAjeB+IlRryRf1nnnmmWjRokX86le/ip/+9KerWron3SGSY8mc7o477ki/kLfffvtlumQAAAAqO/RZWFiYfgPw1FNPTb8hmDxILC0tjWbNmsUOO+wQtWvXrozLAmuzdGlyF6fs2K23ZqoaAAAyqCrma7vtttt6z5kzZ066b9y4cbnHGzRokO7nzp27Qe/TqJwAwsrQ6bx58zagagAAVnE/Eaq1hx9+OJ37DR8+fI0v0CVfBjziiCOiQ4cOaQeIe+65R+gTAACguoc+zzrrrNhiiy3iggsuiJo1a8aOO+6YbgAAAGRWNs3Xli1blu6Li4vLPb5yfMmSJd/5fTb0PQAAAPLJxx9/nH5Zr7yOCSu1b98+Peftt9+u0toAAADIQOjz9ddfj9mzZ1f02wIAAFCN5msrWwcuTVaRKsfK8Xr16q3zfVauTJqEP5Mga3nvUbdu3QqpGQAAoDpI5kgFBQUbNG9bfZ4FAABA5hVW9BsWFRVFw4YNK/ptAQAAqEbztZVt3dfWen3l+MoW7Wuzsq17ee8zf/78Mq3iAQAAiOjatWuMGzcupk6dutZzvv766xg/fnzsueeeVVobAAAAGQh9Hn300fHqq6/Ga6+9VtFvDQAAQDWZr2255ZbpfvLkyeUeXznerl277/w+K8e22mqr710vAABAdXHBBRdE06ZN48QTT4zRo0evcfyjjz6KU045Je28cNFFF2WkRgAAAKqwvfu2224brVu3jpNPPjl9sNahQ4d0BZfCwjXzpUnriEsuuaSiSwAAACDL52stWrSIzTffPN59991YuHBhmRbsCxYsiPfeey89njyIXJfOnTvHyJEj01Vqdt111zXa2Sc6depUSZ8CAAAg+yXzptUtXbo0lixZEmeffXYa7kzmikk79xkzZqRbolWrVnHOOeekcy4AAACqcegzeSiYPBwsLS2Njz/+ON3WRugTAACg6mTbfC1ZefSPf/xj3HjjjfHrX/961Xjy+6JFi6JXr17rfY9u3bqlwdX7778/Dj/88GjTps2qVT4ffPDBaNasWRx44IGV+jkAAACy2dy5c9d5fP78+TFx4sQ1xqdNmxaff/55JVYGAABAVoQ+zzrrrPThIAAAANkl2+ZrSSvBZ555Ju69996YMGFC7LTTTvHOO+/E+PHjY5dddlkj9Dlq1Kj0oeN+++2XrlKaSFakGThwYJx//vlx1FFHxSGHHJKO//3vf08fXP7pT39KV6sBAADIV+W1cAcAACB3VXjos1+/fhX9lgAAAFTD+VpxcXEMHz48hgwZkoY/k8Bny5Yt44wzzohTTz01Pf5tjz76aBoI3WyzzVaFPhMHH3xwNGrUKP785z/HY489FjVr1kyPJyHX8toYAgAA5JNkDgUAAED18b1Dn8kDtOQB26BBgyqmIgAAACpEtszXJk2atNZj9evXT9vIb0gr+fvuu2+tx/bcc890AwAAAAAAgOrse4c+586dGwsXLiz32AknnJA+dDv99NO/72UAAADYSOZrAAAAlOfll1+Ov/zlL/HZZ5/FkiVL1npeQUFBPP/881VaGwAAAFXc3v3bkrZ7m266aWVeAgAAgO/AfA0AACA/jR07Ns4444woLS1d77lJ6BMAAIA8Cn0CAAAAAAAA2ePWW29NA5/HHHNMHHLIIdGoUSPhTgAAgBwi9AkAAAAAAAB54uOPP47tttsurrjiikyXAgAAwHcg9An5oGbNiK5d1xzLciUlJemWLQoLC9MNAAAAAKq1HL2fCGyY4uLiaNmyZabLAAAA4DsS+oR80LhxxIsvRi5Jwp69+/SN6bO+jGzRslnTeODeewQ/AQAAAKjecvB+IrDh9thjj3jzzTdjyZIlUatWrUyXAwAAwEYS+gSyNvSZBD5Pu/6eKCwqynQ5UbJiRdx+Xt+0LqFPAAAAAABy1XnnnRdHHXVUXHjhhTFw4MDYZJNNMl0SAAAAG0HoE8hqSeCzqIb/VAEAAAAAQEXYbLPN4vzzz49LL700nn/++WjevHn84Ac/KPfcgoKCGDVqVJXXCAAAwNpVSJLqySefTLfyJoJrO7by+AcffFARJQAAAFAO8zUAAAC+bezYsTFo0KD056S71RdffJFua5sbAgAAUA1Dn6WlpVX6OgAAADaM+RoAAADfdsstt8SKFSuiW7duceihh0aTJk2EOwEAAPIp9Dl69OiKqQQAAIAKZb4GAADA6j766KPYdttt0/AnAAAAeRj63GyzzSqmEqDyzJsXccklZceuuSaiQYNMVQQAQBUwXwMA4DtxPxGqtdq1a0fbtm0zXQYAAACZbO8OZLnFiyNuvbXs2KBBbtICAAAAAGtyPxGqtT322CPeeOONWLp0aRQXF2e6HAAAADZS4ca+AAAAAAAAAMhN/fv3TwOf5557bkyfPj3T5QAAALCRrPQJAAAAAAAAeeKuu+6KbbfdNl588cV0a9q0aTRu3Dhq1FjzsWFBQUGMGjUqI3UCAABQPqFPAAAAAAAAyBMjRowo8/usWbPSrTxJ6BMAAIDsIvQJAAAAAAAAeWL48OGZLgEAAIDvQegTAAAAAAAA8kTnzp0zXQIAAAD5GPqcM2dODB06NMaMGRPTp0+PTTbZJLp16xZnnnlmNGnSpMy5s2fPjltuuSVeeOGFtD1Fq1at4qijjoq+fftGjRo5+ycAAAAAAAAAAAAA8khOJh7nzZsXvXr1ik8++SS6dOmShj0//fTTuO++++LZZ5+Nhx9+OFq2bJmeO3fu3Dj++OPj448/jgMOOCDatm0br776avzhD3+I9957L26++eZMfxwAAAAAAACoEr/61a82+NyCgoK46qqrKrUeAAAA8iD0OWTIkDTw2a9fvzj77LNXjd9///1xxRVXpEHOq6++Oh1LVvj86KOPYuDAgWlQNDFgwIDo379/GhB97rnn0jAoAAAAAAAAVHePPvroeoOeidLSUqFPAACALJSToc+pU6dG06ZN4+STTy4zfthhh6Whz3/961/p74sXL1616mfPnj1XnVdUVBQXXXRRGvgcMWKE0CcAAAAAAAB5vdJnSUlJfPPNN/HPf/4z3nzzzTjyyCPjF7/4RZXXBwAAQDUMfSard5YnWf0z0axZs3T/7rvvxsKFC2P//fePwsLCMue2adMmWrdunU5aV6xYkQZBAQAAAAAAoDrr06fPes954IEH4sorr4xDDjmkSmoCAABgw5VNQuao5FuHSav2pG17jRo14swzz0zHP/vss3Tftm3bcl+XBD+XLl2arhwKAAAAAAAARPTu3Tu22GKLGDp0aKZLAQAAoDqs9Pltf/nLX2LQoEHpz8lqnb///e+jS5cu6e9z5sxJ940bNy73tQ0aNEj3c+fOrbJ6AQAAAAAAINu1a9cuXn311UyXAQAAQHVb6bNJkyZx6qmnxuGHHx61atWKCy64IO688870WLKKZ6K4uLjc164cX7JkSRVWDAAAAAAAANntk08+yXQJAAAAVMeVPg888MB0S/Tr1y9+8YtfpKt97rbbblG7du10fNmyZeW+dmUotF69elVYMWRAUVHEdtutOQYAAAAAsDr3E6Famz9//lqPLV++PGbNmhXDhg2LTz/9NHbfffcqrQ0AAIA8CH1+W+vWreOUU06Ja665JkaPHh2bbbbZOtu3z5s3L93Xr1+/SuuEKtekScT772e6CgAAAAAgF7ifCNXarrvuut5zSktLo6ioKE477bQqqQkAAIBq3N49WZ3z1VdfjZdeeqnc423atEn3X3/9dWy55Zbpz5MnTy733GS8bt260apVq0qsGAAAAAAAALJDEuhc25ZInp116tQpbrnllujSpUumywUAACDXV/pMQp+nnnpqOuF87bXXori4uMzx9//ft4+32GKL2H777dPW7ePHj4+SkpIoLPz/M65TpkyJadOmxR577JF+UxEAAAAAAACqu4kTJ2a6BAAAAPJppc+kFXu3bt3S1uxDhgwpc+w///lPDBs2LA2EHnrooVGrVq10P3Xq1Bg+fPiq81asWBHXXXdd+nPv3r2r/DMAAAAAAAAAAAAAVPuVPhO/+c1v0oDn0KFD46233oodd9wxPv/88xg9enQUFBTEDTfcEM2aNUvP7d+/f7zyyitx9dVXx7hx46Jdu3bpCqHJiqAHHXRQGiAFAAAAAAAAAAAAyHY5GfrcdNNN469//WvceuutadDz3//+dzRs2DD222+/OOOMM6J9+/arzm3SpEmMGDEibrrppnjxxRfTwGfr1q3jwgsvjBNOOCENiQIAAAAAAEB19Ktf/eo7vzZ5jnbVVVdVaD0AAADkYehzZZjzt7/9bbqtT/PmzWPw4MFVUhdkpQULIn7/+7JjF14YUa9epioCAAAAALKV+4lQrTz66KMbdf7qC6YIfQIAAGSXnA19Ahth4cKIyy8vO3bWWW7SAgAAAABrcj8R8nalz+XLl8fw4cNj5syZUVpaGm3atKnU2gAAANh4Qp8AAAAAAABQTfXp02eDzvvwww/jkksuWRX4POaYY9LfAQAAyC5CnwAAAAAAAJDH7rzzzrj55ptj6dKl0axZs7jyyiuja9eumS4LAACAcgh9AgAAAAAAQB6aMmVKuprn22+/na7uedBBB8WgQYOiUaNGmS4NAACAtRD6BAAAAAAAgDwzYsSIuO6662LhwoVpyHPgwIFx8MEHZ7osAAAA1kPoEwAAAAAAAPLEzJkz49e//nW8+uqr6eqee++9dwwePDht6w4AAED2E/oEAAAAAACAPPDkk0/GlVdeGd98803UrVs3be3eo0ePTJcFAADARhD6BAAAAAAAgGpszpw5cdlll8U//vGPdHXPXXbZJa6++upo06ZNpksDAABgIwl9AgAAAAAAQDU1ZsyYNPD51VdfRXFxcQwYMCBOPPHETJcFAADAdyT0CQAAAAAAANXUmWeeGQUFBenP9evXj8cffzzdNkTyulGjRlVyhQAAAGwMoU8AAAAAAACoxpKW7olktc9k21Arw6IAAABkD6FPAAAAAAAAqKaGDx+e6RIAAACoQEKfAAAAAAAAUE117tw50yUAAABQgQor8s0AAAAAAAAAAAAAqBxW+oR8UFAQ0bTpmmMAAAAAAKtzPxEAAAAgawl9Qj5IbtDOmpXpKgAAAACAXOB+IgAAAEDW0t4dAAAAAAAAAAAAIAcIfQIAAAAAAAAAAADkAKFPAAAAAAAAAAAAgBwg9AkAAAAAAAAAAACQA4Q+AQAAAAAAAAAAAHJAjUwXAFSBRYsi7r677NhJJ0XUqZOpigAAAACAbOV+IgAAAEDWEvqEfDB/fsTZZ5cd69HDTVoAAAAAYE3uJwIAAABkLe3dAQAAAAAAAAAAAHKA0CcAAAAAAAAAAABADhD6BAAAAAAAAAAAAMgBQp8AAAAAAAAAAAAAOUDoEwAAAAAAAAAAACAHCH0CAAAAAAAAAAAA5AChTwAAAAAAAAAAAIAcIPQJAAAAAAAAAAAAkAOEPgEAAAAAAAAAAAByQI1MFwBVraSkJN2yQWFhYboBAAAAAAAAAADA+gh9kleSsGfvPn1j+qwvIxu0bNY0Hrj3HsFPAAAAAAAAAAAA1kvok7wLfSaBz9OuvycKi4oyW8uKFXH7eX3TmoQ+AQAAAAAAAAAAWB+hT/JSEvgsquGfPwAAAAAAAAAAALlD6g0AAICM2Hbbbdd7zhFHHBHXXHPNes/bc88948svvyz3WO/eveOyyy77TjUCAAAAAABANhH6hHzQrFlEaWmmqwAAgDLOPvvscsdLS0tj2LBhsWDBgth9993X+z6zZs1KA5/bbbdd7Lvvvmsc79ixY4XUCwCQN9xPBAAAAMhaQp8AAABkRL9+/codv/vuu9PA5y9+8Ys4/PDD1/s+EyZMSPfdu3eP008/vcLrBAAAAAAAgGxRmOkCAAAAYKWPPvoorr/++mjTpk386le/2qDXTJw4Md23b9++kqsDAAAAAACAzBL6BAAAIGtcffXVsWzZsrj00kujTp06G/QaoU8AAAAAAADyhfbuAAAAZIWxY8fGq6++GnvuuWd07dp1g1+XtHevW7duPPvss/HXv/41/ve//0X9+vVjn332iXPOOSeaN29eqXUDAAAAAABAVbHSJwAAAFnhzjvvTPdnnnnmBr9m8eLFachz4cKFceutt8aOO+4YPXr0iBYtWsTIkSPjqKOOiqlTp1Zi1QAAAAAAAFB1rPQJ+WDJkognnig79vOfR9SqlamKAACgjA8++CDGjx8fu+yyS7ptqFmzZkW7du2iYcOGMWTIkGjcuHE6XlpaGjfccEMMHTo0fvvb38awYcMqsXoAgGrG/UQAAACArCX0Cflg7tyIHj3Kjs2cGdGsWaYqAgCAMkaNGpXue/fuvVGva9OmTTyxeiAhIgoKCtLW7k8++WS8/vrrMXPmTG3eAQA2lPuJAAAAAFlLe3cAAAAybvTo0VG3bt346U9/WmHvWaNGjdhuu+3SnydPnlxh7wsAAAAAAACZIvQJAABARk2cODE+//zzNPBZp06djXrtjBkz4s0334zp06eXe3zRokXpvnbt2hVSKwAAAAAAAGSS0CcAAAAZ9fbbb6f7XXbZZaNfm7R2P+644+KOO+5Y49iCBQvi/fffT4OkW2+9dYXUCgAAAAAAAJkk9AkAAEBG/ec//0n322+//Ua/9sADD0zbuI8aNSomTZq0anz58uVx1VVXxZw5c6Jnz55Rq1atCq0ZAAAAAAAAMqFGRq4KAAAA/8/kyZPTfYsWLdZ53htvvBHjx4+PDh06xH777ZeOtW3bNs4///y49tpro0ePHtG9e/do2LBhjBs3Lj788MPo1KlTnHvuuVXyOQAAAAAAAKCyWekTAACAjPr666/TfYMGDdZ5XhL4HDJkSDz//PNlxk866aS4/fbbY6eddop//OMfMWLEiCgtLU3DoMOGDUvbuwMAAAAAAEB1YKVPAAAAMuqpp57aoPP69euXbuXp2rVrugEAAAAAAEB1ZqVPAAAAAAAAAAAAgBwg9AkAAAAAAABUif79+8fee++9Ua+ZPXt2XHnlldGtW7fo2LFjdO/ePe64445Yvnx5pdUJAACQrYQ+AQAAAAAAgEo3ZMiQePrppzfqNXPnzo3jjz8+7r///vjRj34UJ5xwQtSpUyf+8Ic/xHnnnVdptQIAAGSrGpkuAAAAAAAAAKi+lixZEldccUWMHDlyo197yy23xEcffRQDBw6MXr16pWMDBgxIVwx99tln47nnnosDDjigEqoGAADITlb6BAAAAAAAACrFmDFj4qCDDkoDn127dt2o1y5evDgefvjhaNmyZfTs2XPVeFFRUVx00UXpzyNGjKjwmgEAALKZ0CcAAAAAAABQKR555JFYsGBBulLn0KFDN+q17777bixcuDA6d+4chYVlH2u2adMmWrduHW+++WasWLGigqsGAADIXkKfAAAAAAAAQKXo06dPjB49Om3NXlBQsFGv/eyzz9J927Ztyz2eBD+XLl0aU6dOrZBaAQAAckGNTBcAVIFNNomYOXPNMQAAAACA1bmfCFSg3Xbb7Tu/ds6cOem+cePG5R5v0KBBup87d+53vgYAAECuEfqEfJC0PGnWLNNVAAAAAAC5wP1EIEskq3gmiouLyz2+cnzJkiVVWhcAAEAmae8OAAAAAAAAZJ3atWun+2XLlq0zFFqvXr0qrQsAACCThD4BAAAAAACArNOoUaN1tm+fN29euq9fv36V1gUAAJBJQp8AAAAAAABA1tlyyy3T/eTJk8s9nozXrVs3WrVqVcWVAQAAZI7QJwAAAAAAAJB1tt9++7R1+/jx46OkpKTMsSlTpsS0adNip512iqKioozVCAAAUNVqVPkVgaq3dGnEa6+VHdtjj4ji4kxVBAAAAABkK/cTgSxRq1atOPTQQ+Ohhx6K4cOHx4knnpiOr1ixIq677rr05969e2e4SgAAgKol9An54JtvIn7607JjM2dGNGuWqYoAAAAAgGzlfiKQARMmTIjnn38+NttsszjyyCNXjffv3z9eeeWVuPrqq2PcuHHRrl27eO211+L999+Pgw46KLp165bRugEAAKqa9u4AAAAAAABAxkOfQ4YMiUcffbTMeJMmTWLEiBFx9NFHx3vvvZeu+Ll48eK48MIL09U+CwoKMlYzAABAJljpEwAAAAAAAKgSkyZNKnc8Wd3z2yt8flvz5s1j8ODBlVwZAABAbrDSJwAAAAAAAAAAAEAOEPoEAAAAAAAAAAAAyAFCnwAAAAAAAAAAAAA5QOgTAAAAAAAAAAAAIAcIfQIAAAAAAAAAAADkAKFPAAAAAAAAAAAAgBwg9AkAAAAAAAAAAACQA4Q+AQAAAAAAAAAAAHKA0CcAAAAAAAAAAABADhD6BAAAAAAAAAAAAMgBQp8AAAAAAAAAAAAAOUDoEwAAAAAAAAAAACAH1Mh0AUAV+MEPIv7znzXHAAAAAABW534iAAAAQNYS+oR8UKNGxI9+lOkqAAAAAIBc4H4iAAAAQNbS3h0AAAAAAAAAAAAgBwh9AgAAAAAAAAAAAOQAoU8AAAAAAAAAAACAHCD0CQAAAAAAAAAAAJADamS6AKAKLF8eMWlS2bFtt42o4T8BAAAAAMBq3E8EAAAAyFo5e4dmwYIFMXTo0Hjuuedi2rRpUbNmzdhuu+2iT58+sf/++5c5d/bs2XHLLbfECy+8ELNmzYpWrVrFUUcdFX379o0ablKRD2bPjth++7JjM2dGNGuWqYoAAAAAgGzlfiIAAABA1srJ9u7z58+PY489Ng191q1bN3r16hXdu3ePiRMnxtlnn52OrzR37tw4/vjj4/77748f/ehHccIJJ0SdOnXiD3/4Q5x33nkZ/RwAAAAAAAAAAAAAGyonl7m84447YtKkSdGzZ88YNGhQFBQUpOPnnntuuoLnTTfdlIZAN99883SFz48++igGDhyYhkMTAwYMiP79+8ezzz6brhR6wAEHZPgTAQAAAAAAAAAAAFTDlT6ffvrpNOh5/vnnrwp8Jlq0aJGuALpixYoYO3ZsLF68OB5++OFo2bJlGhBdqaioKC666KL05xEjRmTkMwAAAAAAAAAAAABU+5U++/TpE/PmzYuGDRuucay4uDjdL1iwIN59991YuHBh7L///lFYWDbf2qZNm2jdunW8+eabaUg0CYICAAAAAAAAAAAAZKucDH327t273PHS0tK0XXti2223jc8++yz9uW3btuWenwQ/p06dmm5JK3gAAAAAAAAAAACAbJWT7d3X5sEHH0xX90zCnHvttVfMmTMnHW/cuHG55zdo0CDdz507t0rrBAAAAAAAAAAAAMjb0OdTTz0VgwcPjho1asQ111wTNWvWjKVLl5Zp+b66leNLliyp0loBAAAAAAAAAAAA8jL0mazwef7556c/X3vttbHLLrukP9euXTvdL1u2rNzXrQyF1qtXr8pqBQAAAAAAAAAAAPguakQOKykpieuuuy7uueeedNXOP/7xj3HAAQesOt6oUaN1tm+fN29euq9fv34VVQwAAAAAAAAAAACQZ6HPZJXOZHXP5557Lho3bhy33HLLqhU+V9pyyy3T/eTJk8t9j2S8bt260apVqyqpGQAAAAAAAAAAACCv2ruvWLEizj333DTw2bp16/jLX/6yRuAzsf3226et28ePH5+uCvptU6ZMiWnTpsVOO+0URUVFVVg9AAAAAAAAAAAAQJ6EPm+//fYYM2ZMukLngw8+uGpFz9XVqlUrDj300Jg6dWoMHz68TGg0aQuf6N27d5XVDQAAAAAAAAAAAJA37d3nzJmThj4THTp0iIcffrjc85KVP7t06RL9+/ePV155Ja6++uoYN25ctGvXLl577bV4//3346CDDopu3bpV8ScAAAAAAAAAAAAAyIPQ51tvvRULFy5Mfx49enS6leeMM85IQ59NmjSJESNGxE033RQvvvhiGvhMWsJfeOGFccIJJ0RBQUEVfwIAAAAAAAAAAACAPAh97rfffjFp0qSNek3z5s1j8ODBlVYTZL1GjSJeeGHNMQAAAACA1bmfCAAAAJC1ci70CXwHxcUR++yT6SqoxkpKStItWxQWFqYbAAAAAN+B+4kAAAAAWUvoE4DvJQl79u7TN6bP+jKyRctmTeOBe+8R/AQAAAAAAAAAoFoR+gTge4c+k8DnadffE4VFRZkuJ0pWrIjbz+ub1iX0CQAAAAAAAABAdSL0CUCFSAKfRTX8zwoAAAAAAAAAAFQWS6ABAAAAAAAAAAAA5ABLskE+KCmJ+OqrsmObbBKh9TUAAAAAsDr3EwEAAACyltAn5IPkBm3z5mXHZs6MaNYsUxUBAAAAANnK/UQAAACArOVruQAAAAAAAAAAAAA5QOgTAAAAAAAAAAAAIAcIfQIAAAAAAAAAAADkAKFPAAAAAAAAAAAAgBwg9AkAAAAAAAAAAACQA4Q+AQAAAAAAAAAAAHKA0CcAAAAAAAAAAABADhD6BAAAAAAAAAAAAMgBQp8AAAAAAAAAAAAAOUDoEwAAAAAAAAAAACAHCH0CAAAAAAAAAAAA5IAamS4AAACA/PaXv/wlBg0atNbjr7/+ejRp0mSd7/H555/HzTffnJ47Z86c+OEPfxi9e/eOHj16VELFAAAAAAAAkBlCnwAAAGTUhAkT0v2JJ54Y9evXX+N4nTp11vn6adOmRc+ePWP27Nlx8MEHR9OmTeP555+PSy+9ND799NO45JJLKq12AAAAAAAAqEpCnwAAAGTUxIkTo3bt2nHxxRdHYWHhRr/+6quvjpkzZ8btt98eXbt2TcfOOeec6NOnTwwbNiwOPfTQ2H777SuhcgAAAAAAAKhaQp+QDxo2jHj44TXHAAAgw0pKSuLDDz+Mrbfe+jsFPpNVPpNVPXfeeedVgc9EEiIdMGBAGvx86KGHhD4BADaG+4kAAAAAWUvoE/JBrVoRxxyT6SoAAGANn332WSxatCjat2//nV4/fvz4KC0tjS5duqxxrFOnTlGzZs0YN25cBVQKAJBH3E8EAAAAyFobv4wKAAAAVGBr90RBQUG6Mudee+0VHTt2jKOPPjr+9re/bVBoNLH55puvcSwJfLZs2TKmTp0aS5curYTqAQAAAAAAoGoJfQIAAJDx0OfDDz8cX331Vfz85z+P/fffPz755JM4//zz4/rrr1/n62fPnp3uGzVqVO7xBg0apC3k58+fXwnVAwAAAAAAQNXS3h0AAICMSVqzb7bZZtGvX7844ogjVo1PmTIljj322Bg6dGjsvffescsuu5T7+mXLlqX74uLico+vHLfSJwAAAAAAANWBlT4BAADImGQ1zzFjxpQJfCbatGkT55xzTvrzE088sdbX165du0z4c3Urw55169atwKoBAAAAAAAgM4Q+AQAAyEodO3ZM95MnT17rOSvbus+dO7fc4/PmzYuCgoKoX79+JVUJAAAAAAAAVUfoE/LBrFkRBQVlt2QMAAAyqKSkJP7zn//E+PHjyz2+cOHCMqt5lmfLLbdcazA0Wf1z+vTpscUWW0RhoekvAMAGcz8RAAAAIGt56gUAAEDGHH/88XHCCSfEV199tcaxt956K93vsMMOa319586d05U833jjjXJfnwQ/O3XqVMFVAwAAAAAAQGYIfQIAAJARyeqb3bt3j9LS0vj973+frvy50sSJE2Po0KFRt27dOProo9f6Hptuumnsueee6Wqhzz///KrxxYsXx4033pj+3Lt370r+JAAAAAAAAFA1alTRdQAAAGANF1xwQfzzn/+MRx99NCZNmhS77bZbzJgxIw1wJiHQG264IVq0aJGem6zmmYQ7O3ToEPvtt9+q9/jtb38bPXv2jHPOOScOOuig9PzRo0fHZ599FieffHJ6PgAAAAAAAFQHVvoEAAAgYzbZZJMYOXJk9O3bN+bOnRv3339/vPbaa9G1a9d46KGH4oADDlh1bhL4HDJkSJkVPRNbbLHFqnNfeeWVePDBB6NOnTpx5ZVXxoUXXpiBTwUAAAAAAACVw0qfAAAAZFSjRo3ikksuSbd16devX7qV54c//OGqdu4AAAAAAABQXVnpEwAAAAAAAAAAACAHCH0CAAAAAAAAAAAA5AChTwAAAAAAAAAAAIAcIPQJAAAAAAAAAAAAkAOEPgEAAAAAAAAAAABygNAnAAAAAAAAAAAAQA4Q+gQAAAAAAAAAAADIAUKfAAAAAAAAAAAAADlA6BMAAAAAAAAAAAAgB9TIdAFAFahfP2LIkDXHAAAAAABW534iAAAAQNYS+oR8UKdOxFlnZboKAAAAACAXuJ8IAAAAkLW0dwcAAAAAAAAAAADIAUKfAAAAAAAAAAAAADlA6BMAAAAAAAAAAAAgBwh9AgAAAAAAAAAAAOQAoU8AAAAAAAAAAACAHFAj0wUAVeDLLyM6dCg7NmFCRNOmmaoIAAAAAMhW7icCAAAAZC2hT8gHpaX/d6N29TEAAAAAgNW5nwgAAACQtbR3BwAAAAAAAAAAAMgBQp8AAAAAAAAAAAAAOUDoEwAAAAAAAAAAACAHCH0CAAAAAAAAAAAA5AChTwAAAAAAAAAAAIAcIPQJAAAAAAAAAAAAkAOEPgEAAAAAAAAAAABygNAnAAAAAAAAAAAAQA4Q+gQAAAAAAAAAAADIAUKfAAAAAAAAAAAAADlA6BMAAAAAAAAAAAAgBwh9AgAAAAAAAAAAAOQAoU8AAAAAAAAAAACAHFAj0wUAVaBu3YiBA9ccAwAAAABYnfuJAAAAAFlL6BPyQb16EYMGZboKAAAAACAXuJ8IAAAAkLW0dwcAAAAAAAAAAADIAUKfAAAAAAAAAAAAADlA6BMAAAAAAAAAAAAgB9TIdAEAAAAAAABA9fXYY4/F8OHD47///W/Url079txzzxgwYEBsttlmG/T65Pwvv/yy3GO9e/eOyy67rIIrBgAAyF5CnwAAAAAAAECluOGGG+K2226Ldu3aRa9evWL69Onx1FNPxSuvvBIjR46MNm3arPP1s2bNSgOf2223Xey7775rHO/YsWMlVg8AAJB9hD4hH3z9dcRee5Ude/nliCZNMlURAAAAAJCt3E8EKsjEiRPTwGenTp1i2LBhUVxcnI4fdNBBcfbZZ8fgwYPT4+syYcKEdN+9e/c4/fTTq6RuAACAbCb0CflgxYqIDz5YcwwAAAAAYHXuJwIVJGnpnjjrrLNWBT4T+++/f+y6667x4osvxowZM6JFixbrDI4m2rdvXwUVAwAAZL/CTBcAAAAAAAAAVD/jxo2LGjVqpAHP1e2+++5RWlqanrMuQp8AAABlWekTAAAAAAAAqFBLly6Nzz//PDbbbLMyq3yu1KZNm3T/6aefrre9e926dePZZ5+Nv/71r/G///0v6tevH/vss0+cc8450bx580r7DAAAANnISp8AAAAAAABAhfrmm2/SlTwbNWpU7vEGDRqk+3nz5q31PRYvXpyGPBcuXBi33npr7LjjjtGjR4+0HfzIkSPjqKOOiqlTp1baZwAAAMhGVvoEAAAAAAAAKtSyZcvSfXmrfH57fMmSJWt9j1mzZkW7du2iYcOGMWTIkGjcuHE6noRJb7jhhhg6dGj89re/jWHDhlXKZwAAAMhGQp8AAAAAAABAhapdu3aZ8Gd57d8TSev2tUlawD/xxBNrjBcUFKSt3Z988sl4/fXXY+bMmdq8AwAAeUN7dwAAAAAAAKBC1a9fPwoLC9favn3l+Mo27xurRo0asd1226U/T548+XtUCgAAkFuEPgEAAAAAAIAKlbRvT1bq/Pzzz8td7XPKlCnpPmnfvjYzZsyIN998M6ZPn17u8UWLFpVZVRQAACAfCH0CAAAAAAAAFa5z585p4PPtt99e41jSlj1p0/7jH/94ra9PWrsfd9xxcccdd6xxbMGCBfH+++9HnTp1Yuutt67w2gEAALKV0CcAAAAAAABQ4Y466qh0f8MNN8TixYtXjf/jH/+It956K/bdd9/YdNNN1/r6Aw88MG3jPmrUqJg0adKq8eXLl8dVV10Vc+bMiZ49e0atWrUq+ZMAAABkjxqZLgAAAAAAAACofnbeeefo3bt3PPDAA3HYYYdFt27d0pbtTz/9dDRt2jR+9atfrTr3jTfeiPHjx0eHDh1iv/32S8fatm0b559/flx77bXRo0eP6N69ezRs2DDGjRsXH374YXTq1CnOPffcDH5CAACAqif0CQAAAAAAAFSKSy+9NLbccst46KGH4r777ovGjRvHwQcfnIY127Rps+q8JPA5ZMiQOOKII1aFPhMnnXRSbLXVVnH33XenK4Qm7eI333zzNAx64oknRnFxcYY+GQAAQGYIfQIAAAAAAACVoqCgII477rh0W5d+/fqlW3m6du2abgAAAEQUZroAAAAAAAAAAAAAAPJopc/+/fvH22+/HS+99NIaxxYuXBh33nln/P3vf4/p06dH06ZN45BDDokzzzwz6tSpk5F6oUrVrh1x5plrjgEAAAAArM79RAAAAICsVS1Cn0OGDImnn346WrRoscaxpUuXxhlnnBFvvPFG/OQnP4kDDjgg3nnnnbj99tvjzTffjOHDh0dxcXFG6oYq06BBxC23ZLoKAAAAACAXuJ8IAAAAkLVyOvS5ZMmSuOKKK2LkyJFrPWfEiBFp4POUU06JCy+8cNX44MGD08DnAw88EH379q2iigEAAAAAAAAAAAC+m8LIUWPGjImDDjooDXx27dp1reetXMnzl7/85Rrt4JPW7kkoFAAAAAAAAAAAACDb5Wzo85FHHokFCxbEwIEDY+jQoeWeM23atJgyZUp07Ngx6tevX+ZYvXr10vHPPvssvvjiiyqqGgAAAAAAAAAAACDPQp99+vSJ0aNHR69evaKgoKDcc5JAZ6Jt27blHm/Tpk26//TTTyuxUgAAAAAAAAAAAIDvr0bkqN12222958yZMyfdN27cuNzjDRo0SPdz586t4OoAAAAAAAAAAAAAKlbOhj43xLJly9J9cXFxucdXji9ZsqRK64IqlwSgDz+87NhjjyWJ6ExVBAAAQAaUlJSkWy4qLCxMNzLDvx3IM1lwPzGX/7uTy5YvX57pEgAAAIB8Dn3WqlUr3S9durTc4yvH69WrV6V1QZVLAtBjx645BgAAQN5IgjO9T+odX8z6InLRps02jQfufkB4LwP824E8lOH7ibn+353S0tKYNnVatG7TOnJN8refPGVy+hkAAACA7FStQ58r27rPmzev3OMrx+vXr1+ldQEAAABkIsSRhGfOHn52FBblVvitZEVJDDlhSPoZBPeqnn87QFXL5f/uJJYtWRbndT0vzhp2VhTVLIpcrD1kPgEAACBrVevQ55ZbbpnuJ0+eXO7xlePt2rWr0roAAAAAMiUJzxTVyK0ACtnBvx2gquXqf3dWLF+Rs/WvrB0AAADIXrn3FdmN0KJFi9h8883j3XffjYULF5Y5tmDBgnjvvffS402bNs1YjQAAAAAAAAAAAACR76HPxNFHHx2LFi2KG2+8scx48nsy3qtXr4zVBgAAAAAAAAAAALChqnV798SJJ54YzzzzTNx7770xYcKE2GmnneKdd96J8ePHxy677CL0CQAAAAAAAAAAAOSEar/SZ3FxcQwfPjz69u0bU6ZMiWHDhsWMGTPijDPOiKFDh6bHAQAAAAAAAAAAALJdtVnpc9KkSWs9Vr9+/bjkkkvSDQAAAAAAAAAAACAXVfuVPgEAAAAAAAAAAACqg2qz0icAsGFKSkrSLRsUFhamGwAAAAAAAAAA6yf0CQB5JAl79u7TN6bP+jKyQctmTeOBe+8R/ATIcwsWLIihQ4fGc889F9OmTYuaNWvGdtttF3369In9999/g95jzz33jC+/LP9/33r37h2XXXZZBVcNAAAAAAAAVU/oEwDyLPSZBD5Pu/6eKCwqymwtK1bE7ef1TWsS+gTIX/Pnz49evXrFpEmT4kc/+lH687x589IA6Nlnnx3nnXdenH766et8j1mzZqWBzyQouu+++65xvGPHjpX4CQAAAAAAAKDqCH0CQB5KAp9FNfzfAAAy74477kgDnz179oxBgwZFQUFBOn7uuefGUUcdFTfddFN07949Nt9887W+x4QJE9J9ct76AqIAAAAAAACQyyyrBQAAQMY8/fTTadDz/PPPXxX4TLRo0SKOPfbYWLFiRYwdO3ad7zFx4sR03759+0qvFwAAAAAAADLJEl+QD4qLI44+es0xAADIsD59+qTt3Bs2bLjGseL/9/9ZFyxYsM73EPoEAKhg7icCAAAAZC2hT8gHjRpFjByZ6SoAAGANvXv3Lne8tLQ0nnvuufTnbbfddp3vkbR3r1u3bjz77LPx17/+Nf73v/9F/fr1Y5999olzzjknmjdvXim1AwBUW+4nAgAAAGQt7d0BAADIOg8++GC8++670aZNm9hrr73Wet7ixYvTkOfChQvj1ltvjR133DF69OiRtocfOXJkHHXUUTF16tQqrR0AAAAAAAAqi5U+AQAAyCpPPfVUDB48OGrUqBHXXHNN1KxZc63nzpo1K9q1a5e2hx8yZEg0btx41UqhN9xwQwwdOjR++9vfxrBhw6rwEwAAAAAAAEDlEPoEAAAgq1b4vOKKK6KgoCCuvfba2GWXXdZ5frIS6BNPPLHGePL6pLX7k08+Ga+//nrMnDlTm3cAAAAAAABynvbuAAAAZFxJSUm6qufll1+ervB54403xqGHHvq93jN5n+222y79efLkyRVUKQAAAAAAAGSOlT4BAADIqKVLl8b5558fzz33XNqe/ZZbblnvCp8rzZgxIw10tm7dOlq2bLnG8UWLFqX72rVrV3jdAAAAAAAAUNWEPiEffPNNxCmnlB27886IRo0yVREAAKRWrFgR5557bowZMyYNbt5xxx2x5ZZbbvDrk9buf/jDH6J3795x2WWXlTm2YMGCeP/996NOnTqx9dZbV0L1AADVlPuJAAAAAFlL6BPywdKlEY88Unbs1lszVQ0AAKxy++23p4HPVq1axYMPPhgtWrTYqNcfeOCBaSv4UaNGxS9+8YvYdttt0/Hly5fHVVddFXPmzIm+fftGrVq1KukTAABUQ+4nAgAAAGQtoU8AAAAyIglkJqHPRIcOHeLhhx8u97yk1XuXLl3ijTfeiPHjx6fn7rfffumxtm3bpq3hr7322ujRo0d07949GjZsGOPGjYsPP/wwOnXqlK4kCgAAAAAAANWB0CcAAAAZ8dZbb8XChQvTn0ePHp1u5TnjjDPS0GcS+BwyZEgcccQRq0KfiZNOOim22mqruPvuu+Mf//hHLFu2LDbffPM0DHriiSdGcXFxlX0mAAAAAAAAqExCnwAAAGREEtycNGnSBp/fr1+/dCtP165d0w0AAAAAAACqs8JMFwAAAAAAAAAAAADA+gl9AgAAAAAAAAAAAOQAoU8AAAAAAAAAAACAHCD0CQAAAAAAAAAAAJADhD4BAAAAAAAAAAAAcoDQJwAAAAAAAAAAAEAOEPoEAAAAAAAAAAAAyAE1Ml0AAAAAAADlKykpSTeoUsuXr/HwYPny5el41Vy+aq4DAAAAkIuEPgEAAAAAslAS9ux9Uu/4YtYXkYtKS0tj2tRp0bpN68hFuVz/96290ZKl8dhqY0cff3R8U6s4qurf/uQpk9PPAQAAAEBZQp8AAAAAAFkoCb4lgc+zh58dhUWFkWuWLVkW53U9L84adlYU1SyKXJPL9X/f2ou//CZi69fKjJ1626mxtGmjqMr6Q+YTAAAAYA1Cn5APataM6Np1zTEAAAAAsl4S+CyqkVuhw8SK5SvSvfpzr/aC2sXx5U+2X2Osqv4OK+sHAAAAYE1Cn5APGjeOePHFTFcBAAAAAOSA5Y3rx2tPD850GQAAAACUI/d6AgEAAAAAAAAAAADkIaFPAAAAAAAAAAAAgBwg9AkAAAAAAAAAAACQA4Q+AQAAAAAAAAAAAHKA0CcAAAAAAAAAAABADqiR6QKAKjBvXsQll5Qdu+aaiAYNMlURAAAAAJCliuYtjO0GDi8z9sHlJ8SKBnUzVhMAAAAA/0foE/LB4sURt95admzQIKFPAAAAAGANRYuXxRZ3PF1mbNKvjo0VbicCAAAAZJz27gAAAAAAAAAAAAA5QOgTAAAAAAAAAAAAIAcIfQIAAAAAAAAAAADkAKFPAAAAAAAAAAAAgBwg9AkAAAAAAAAAAACQA4Q+AQAAAAAAAAAAAHKA0CcAAAAAAAAAAABADhD6BAAAAAAAAAAAAMgBQp8AAAAAAAAAAAAAOUDoEwAAAAAAAAAAACAHCH0CAAAAAAAAAAAA5AChTwAAAAAAAAAAAIAcIPQJAAAAAAAAAAAAkANqZLoAoAoUFUVst92aYwAAAAAAqyktKoy57dusMQYAAABA5gl9Qj5o0iTi/fczXQUAAAAAkAOWNWkQL745JNNlAAAAAFAOX80FAAAAAAAAAAAAyAFW+gQAyFIlJSXpli0KCwvTDQAAAAAAAADIDKFPAIAslIQ9e/fpG9NnfRnZomWzpvHAvfcIfgIAAAAAAABAhgh9AgBkaegzCXyedv09UVhUlOlyomTFirj9vL5pXUKfAAAAAAAAAJAZQp8AAFksCXwW1fB/2QAAAAAAAAAAoU/IDwsWRPz+92XHLrwwol69TFUEAAAAAGSpogWLo91Nj5YZ+/jcI2JFvdoZqwkAAACA/yP0Cflg4cKIyy8vO3bWWUKfAAAAAMAaihYuiW2vHlFm7L+nHiz0CQAAAJAFCjNdAAAAAAAAAAAAAADrZ6VPAAAAyDElJSXplosKCwvTLVfl8t9++fLlkctKS0tz/jPkqlz/u+fyv51crRsAAAAAqDxCnwAAAJBDksBh75N6xxezvohctGmzTeOBux/IyeBnrv/tk/onT5mcBuBysfZPP/k0uh/ZPQoKCiLXJH/zaVOnRes2rSMX+beTObn8twcAAAAAKofQJwAAAORYACgJHZ49/OwoLMqt4GTJipIYcsKQ9DPkaugzV//2iWVLlsV5Xc+LyMHsWGlJaZQUlMTZ954dRTWLIlf/9mcNOyun6/dvp+rl8t8eAAAAAKgcQp8AAACQg5LQYVGN3AswVQe5+rdfsXxF5Lpc/9vnev25zN8eAAAAAKgucm9ZCgAAAAAAAAAAAIA8JPQJAAAAAAAAAAAAkAOEPgEAAAAAAAAAAABygNAnAAAAAAAAAAAAQA4Q+gQAAAAAAAAAAADIAUKfAAAAAAAAAAAAADlA6BMAAAAAAAAAAAAgBwh9AgAAAAAAAAAAAOSAGpkuAKgCBQURTZuuOQYAAAAAsLqCgliyScM1xgAAAADIPKFPyAdJ4HPWrExXAQAAAADkgKVNG8azn92X6TIAAAAAKIf27gAAAAAAAAAAAAA5QOgTAAAAAAAAAAAAIAcIfQIAAAAAAAAAAADkAKFPAAAAAAAAAAAAgBwg9AkAAAAAAAAAAACQA2pkugCgCixaFHH33WXHTjopok6dTFUEAAAAAGSpwkVLou19z5cZm3z8flFSp1bGagIAAADg/wh9Qj6YPz/i7LPLjvXoIfQJAAAAAKyhxvzF0fH828uMfX7ET2Kp0CcAAABAxmnvDgAAAAAAAAAAAJADhD4BAAAAAAAAAAAAcoDQJwAAAAAAAAAAAEAOqJHpAgAAINeVlJSkW7YoLCxMt2zh7wMAAAAAAABQMYQ+AQDge0jCjL379I3ps76MbNGyWdN44N57siLY6O8DAAAAAAAAUHGEPgEA4HuGGpNA42nX3xOFRUWZLidKVqyI28/rm9aVDaFGfx8AAAAAAACAiiP0CQAAFSAJNBbV8H+v18bfBwAAAAAAAOD7y6ulbR577LE48sgjY+edd44uXbrEBRdcENOmTct0WQAAAHnv+87XPv/887jkkkuia9euseOOO8Zhhx0WDz/8cKXWDAAAwIYx5wMAAKg4eRP6vOGGG+Liiy+OJUuWRK9evdIJ5VNPPRVHHXVUTJkyJdPlAQAA5K3vO19LHhT+4he/iL/97W+x2267Re/evWPRokVx6aWXxjXXXFMlnwEAAIDymfMBAABUrLzorzhx4sS47bbbolOnTjFs2LAoLi5Oxw866KA4++yzY/DgwelxAAAAcm++dvXVV8fMmTPj9ttvT1d9SZxzzjnRp0+f9D0PPfTQ2H777avk8wD/X3t3Ai5z3f5x/LYUyhIqS8i+RihSWm1Fq6KEUkkbiucp7dJK8mRJm0pSkhbapEJJKiEpkjaJshQtKE7h/K/P/fx/88w5Z47tzJnfmTPv13W55piZc+Y339+cOd97vvf3vgEAAID/IeYDAAAAgPhLiUqf48eP98vevXtHgklp27atNWvWzGbNmmXr1q0L8QgBAAAAIDXlNF5TxZcZM2Z4i8Bg8U+KFi1q/fv3t/T0dJs0aVIuPwsAAAAAQCzEfAAAAAAQfymR9Dl37lwrXLiwB4+ZtWjRwgNC3QcAAAAAkFzx2rx58/w+ag+YmSrJ7LPPPsR7AAAAABASYj4AAAAAiL98n/T5999/2+rVq618+fIZdhAGKleu7JfLly8P4egAAAAAIHXFI15bsWKFXx566KFZbtPiX4UKFezHH3/0xwIAAAAAJA4xHwAAAADkjsKWz/3xxx++A7BUqVIxby9RooRfbtq0yfKDQoUK2Yihg61CpRJWoECBsA/Hx77OvYOtYMGC/nXYdBwj7s0b45PQsSlZ0gq8+27Gxy9ZUgdheVVeOld58bWcl3CukkteOl+cq+Q5V8L5yh7nKvnGp+7QwT5vRv6I13777Te/3NnP2LFjh23evNnKlClj+YFev8MHD7dD9j/ELPxfqz2TblZtcLU88x61p3TcSTv2Gv590+2F8S9YzeI1k24bcDIfu3D84UnmYxeOP1zJfPw5PfaC5bebZfo8sVn5urZjn8TMo5N57JP9+JP52KPnm8R8eQMx397b96ouYR8CAAAAgDws3yd9/vPPP34Zawdh9PVpaWmWH2ghvXGjRpaXlDu8Ud4anzx0PAkbmyJFzE48McNVeX19Mq+dq7z2Ws5LOFfJJa+dL85V8pwr4XzFxrlKwvHJY/PlVBaPeG13f0Z+qvry37ivsSWrgxodZMkq2cdeDm5+sCWrZD524fjDk8zHLhx/uJL5+HN07Fo5OLF8hqvKWmIl89gn+/En87En+3wzvyHm23sFa1YJ+xAAAAAA5GHJuE9zjxQtWjRDUJhZEATut99+CT0uAAAAAEh18YjXiPkAAAAAIG8i5gMAAACA3JHvkz6LFy/u7deyaw0RXB+0kAAAAAAAJE+8FrT427hxY7Y/Q9UZ9VgAAAAAgMQh5gMAAACA3JHvkz7V1qFy5cq2evXqmLsAV61a5Zc1a9YM4egAAAAAIHXFI16rXr26X65cuTLLbfqZa9assWrVqvlCIwAAAAAgcYj5AAAAACB3pEQE1Lx5cw/8Fi5cmOW2jz76yHcANm3aNJRjAwAAAIBUltN4Td+v+3z88cdZbluwYIH/7COOOCLuxw0AAAAA2DViPgAAAACIv5RI+jznnHP8cvjw4bZ169bI9dOnT/eAsFWrVla+fPkQjxAAAAAAUlNO4zXd1rJlS5s3b57NmDEjcr1+1ogRI/zrbt265epzAAAAAADERswHAAAAAPFXID09Pd1SwB133GETJkywqlWrWuvWrW3dunU2bdo0K126tD333HPeXgIAAAAAkHfjNVV20UJfvXr1rE2bNpHv//77761Lly62adMma9++vZUrV85mzpxpK1assJ49e9qAAQNCfHYAAAAAkNqI+QAAAAAgvlIm6VNPUwHlpEmTPAg84IAD7KijjrJrrrmGhE8AAAAASIJ47YEHHrDRo0dbx44dbciQIRl+hr5PVV7UHjAtLc0XE1XtpVOnTt4KEAAAAAAQDmI+AAAAAIivlEn6BAAAAAAAAAAAAAAAAAAASGYFwz4AAAAAAAAAAAAAAAAAAAAA7BpJnwAAAAAAAAAAAAAAAAAAAEmApE8AAAAAAAAAAAAAAAAAAIAkQNInAAAAAAAAAAAAAAAAAABAEiDpEwAAAAAAAAAAAAAAAAAAIAmQ9AkAAAAAAAAAAAAAAAAAAJAECod9AMgd/fr1s4ULF9rs2bPDPpSU9ueff9qjjz5qb7/9tv3000+2zz77WP369a1Hjx7Wtm3bsA8vpf3+++9+bt555x1bs2aNlS1b1lq3bm1XXXWVlSlTJuzDg5nNnTvXLrroIjvrrLNsyJAhYR9OSps4caINGjQo29s/+ugjfm9C8t5779mTTz5pixcvtgIFCliNGjX8b0yHDh3CPrSUVKdOnV3ep2PHjrynhWTbtm02duxYmzJliq1atcqKFStmTZo0sd69e9vhhx8e9uEhn83tf/vtN3vwwQft3XfftV9++cUqVqxo55xzjl188cVWuDBheG7M2RnzxM7HGe9w5tqMe2Ln0Ix34ufGjHni572MeXxs3LjRHn74YXvrrbd8HMuXL2/t2rWzSy+91EqXLp3hvqtXr7ZRo0b5+7vmOlWrVrVu3brZueeeG9rx54c1j7/++ssef/xxmzp1qs8bDzzwQDv11FN93qjfgcy++eYbGzlypH366af+vbVr17aePXv6eQMAAAAAIBnwyU0+NHr0aJs2bZqVK1cu7ENJaZs3b7auXbvaV199ZQ0aNPCvN23a5IvEffr0sX/96192+eWXh32YKUnnQefju+++s6OPPtoXjpcvX25PP/20fzj7/PPPW4UKFcI+TEv135+bbrrJ0tPTwz4UmNmXX37pl1r0L168eJbbY314jtw3btw4Gzx4sCfAnHnmmbZjxw5/D+vfv7+tXbvWLrnkkrAPMeXo73ssei/T+VLCWIsWLRJ+XPiva665xmbMmGGHHnqozwO0wK0584cffmiPPPKIHXvssWEfIvLJ3F6L/hdccIF9++23vmhcpUoV++CDD2zYsGGeYKRFfsR3zs6YJ3Y+zniHM9dm3BM7h2a8Ez83ZswTP+9lzONDiZvnn3++z1OqVatm5513nv3666/21FNP2fTp0/31rmRa0cahLl26+DlRorkSE3Wubr31Vv/+G264Ieynk5RrHn///bddccUV9vHHH/vrW6/nRYsW2ZgxY2z+/Pk2fvx423fffSP3/+KLL/y1r/ej008/3YoWLeo/u2/fvnbLLbf4bQAAAHtLcwxtMMz8NQAAcZeOfGPr1q3pN998c3rt2rX933HHHRf2IaW0+++/38/DwIED03fs2BG5fu3atektW7ZMr1evXvqKFStCPcZUdc899/i5eeCBBzJc//TTT/v1N9xwQ2jHhv/SOQjey66//vqwDyflde7cOb1Ro0bp27dvD/tQ8P+WLVuWXr9+/fT27dunr1+/PnL9L7/8kn7MMcekN2jQIH3jxo2hHiP+54knnvD3s1tvvTXsQ0lZc+bM8XNw9tln+5w58NFHH6XXrVs3vU2bNqEeH/LX3D6Ya06YMCFyv23btqX36dPHr3/rrbdCeQ75ec7OmCd2Ps54hzPXZtwTO4dmvBM/N2bMEz/vZczjI/g8XuOWlpYWuf6TTz7x95xevXpFruvdu7ffd9asWZHrtmzZkn7uueem16lTJ33x4sUJP/78sObx1FNP+W1Dhw7NcP1dd93l148dOzbD9R07dvT3/C+//DJy3YYNG/z3o2HDhj7HBwAAiIcg1md9DQCQGwrGP40UYVC7u/bt29sLL7xgJ5xwQtiHAzPfHaydO//+978z7ODRbmTt/t6+fbu3FEPi/fjjj76TXi17oqnKh6itD8J9P5s8ebK1atUq7EOBmVe++frrr61WrVpWsCDThrxCVc7Usu/222/3KkUBvbepStHZZ59t69evD/UY8b+Wcffff79VrlzZbrzxxrAPJ2V99tlnkb/1RYoUiVyv6lLVq1e3lStX2oYNG0I8QuSXuf3WrVsjFShVxSlQqFAhGzBggH/93HPPhfIc8uucnTFP7Hyc8Q5nrs24J3YOzXgnfm7MmCd+3suYx4fmgG+88Ybts88+/t4SXU2yadOmdsYZZ/gcUe/1qvKpqp5NmjTJ8Pm9qkzqPUhVoCZNmhTSM0nuNY+gkueVV16ZpR28KmZHv5YXLFjglT5PPvlkq1u3buT6MmXKeLXQtLQ0mzJlSi49IwAAkN+pY426S6j6uz4zHDhwoH3//fce82vuCABAPNHePZ948cUXvS3Sbbfd5hOI6A8sEI4ePXp4S8KSJUtmuS34AFDnDIn34IMPZjsRl4MOOijBR4SA2l+ppVXz5s2te/fu/uEuwrVixQrbsmULf1fymFmzZvl7VbNmzbLc1qlTJ/+HvEEf8Pzzzz/+3ha0Z0XilS5d2i+10Jq5DaBaK2qRtkSJEiEdHfLT3P7zzz+3v/76y9q2bZslgUsJLpUqVfIWk/qQV0kVyPmcnTFP7Hyc8Q5nrs24J3YOPW/ePMY7wXNjXuOJn/eq9TVjnnNKoNUcsGbNmp40mFn9+vV9I4XGcr/99vPEzqOPPjrL/Y444gg/N3Pnzk3QkeefNQ+91letWmVHHnmkFS9ePMNt+++/vzVq1Mjbvq9du9bKly8fGeNY5yG4TvdRAigAAMCebsDSJpTNmzf75sJg07I2/mgTojZ80u4dABBPlOzKR4uQM2fOtK5duzJRyCO6desW88MhTebefvtt/7pOnTohHBky++OPP+ytt97yXfWFCxe2q666KuxDSlmDBg3yRYd77rmH97I8YtmyZX6p86HfkeOOO84/MNeC6Ouvvx724aVsMsYvv/xitWvXtp9//tluvvlma9myZeS86AME5A2q6PLBBx/4+aESe7hOOeUUr+j17LPPetUWffC2evVqu+GGG3yh9oILLshQlQfY27m9ErikSpUqMX+OkiiUdKEqlojPnJ0xT+x8nPEOZ67NuCd2Ds14J35uzJgnft7LmMdHEENorGLRpiHROAZjfuihh2a5nxI+VXVV98vuZ6Wi3Vnz2J3XsixfvtwvVWkru/OgpFCdi+C+AAAAu0ublJXwqfmENrupGvyrr75qnTt3tt9//903vikuZe0TABBPJH3mE0cddVSWnazIm/ShqyoY6AMnLeggXBMnTvQqNldffbWtW7fOhg4dGnOnN3Kfgh8t5F977bWRD2SRdxai1fZNC0RqTaZKIApg1eJWrfmQWFqkFi3eqQWlKlZoYU8tz3Reevfu7btGEb7HH3/cL9lMkDcqHqmlX8OGDX3BW5V0TjrpJJs6daon2QQtLIGczu31Ia4ccMABMe8fVJTduHFjQo8zP8/ZGfPEzscZ73Dm2ox7YufQjHfi58aMeeLnvYx5fGj8lDyoSpNLlizJcNuOHTs8YTFI/lSlVSlVqlS2Y67v0fsUdn/NY09fy8H9Y50HVb1VddAgWRcAAGB3aA6nCuWaQ1x66aV26qmnWtGiRX0ec8cdd1jTpk1948maNWvCPlQAQD5De3cggbSr5+677/bKNEOGDPGdwwiXWi/16tXLK36oSpMWODXp1qQciaPF+zvvvNMX77V7H3mHKpgdcsgh1rdvX+vYsWPkei1oqLXWo48+ascff7y30UJiqLVZ0CqkRYsW9vDDD3ubOLnssst85+i9995rrVq18nOHcCxdutRbg+p3g9+P8KlazkMPPeTtdBo0aODnRFUDp0+f7u9j5cqVy/AeB+zt3D6ozJRd5djg+rS0tIQea36eszPmiZ2PM97hzLUZ98TOoRnvxM+NGfPEz3sZ8/jRe4iqB+u9XBWctFFFifyjR4+OVIzU+/0///yzW2NOpc89s7vjGryWd3V/zelJ+gQAAHti+/bttmjRIqtYsaJ16NAhkggatHKvUaOGLVy40O+jOTot3gEA8UKlTyCBVYBUqUO0kEACSN5w8skn+6Kxzslrr73mC8r33XefLV68OOxDSyk33XSTB0VKnCDQyVv0vvXOO+9kSYZS9SdV2wqqQiFxChUqFPlaC0rBYrXowwO169Mihip1ITyTJ0+OtIRG+PR3Xu0tu3fvbi+99JL/3dF1ap2rCi833nijV2sEcjq31y7+6MXkzIJFfFUQQnzm7Ix5YufjjHc4c23GPbFzaMY78XNjxjzx817GPH46derkCZ/aQKGWnqqu2q5dO5+nDBo0yO9TrFix3R7z6Pcn7FqRIkV2miyb+bW8q/Og6zkHAABgT2hzif5ps9VPP/0UqSCuOFSX9evX9+v0uYuwDgoAiBeSPoFcpp08qvxz++23exWgESNG2GmnnRb2YSGGSpUqRSp8Bu2XkJh2nXPmzLHrr7+eqoRJplGjRn65cuXKsA8lpQStybQIoQXqzIIPEH744YeEHxv+R39HdI7UShHhz8VeeOEF/9257rrrMnyopt3X/fr1893VasED5HRuH7SJzK4ValA1aFdtKrH7c3bGPLHzccY7nLk2457YOTTjnfi5MWOe+HkvYx5fffr08aTxgQMHekL/I4884htVgveegw46aLfGXOeMMd8zQVv37KpzZn4t7+w86HdIlaGD8wYAALA7NM+oV6+e/f777/bxxx9n2YyiOYb89ddfkes0LwcAIKdo7w7kIk3q9EGfWhDqA6gHH3yQCp954JzMnz/fd1OpTV5mqqgiv/76awhHl7qtUUUfjOtfZqpQoX+qfqMkCySOAlG14VMgqvZkmQUBalAlAYmh9yklGm3bti1mG5CgWoUqiSAcy5Yts9WrV9upp57KecgD1FpRO61r1qwZs4VfnTp1/DLYhQ3kZG5fvXr1nW6I0PVKelHiBeIzZz/uuOP8a8Y8MfNxtcAWxjuxc23eWxI7h2a8Ez83ZswTP+8988wz/WvGPL7vM5mr2X722Wd+WatWLdu8eXO2Y673oDVr1li1atW8GhR23+68f4h+L6Lvv2rVKq/KGk3nQOci1uYAAACA7GJ7zd/0mYk2jyjmUewpQewZbEIJ5nmKS4P7aI6opNHg5wAAsCdI+gRyiRYor7nmGm/Vpmo0jz32WORDJYS7gNyrVy//4PrDDz/M8iH4F1984Zf6kBWJoUAo1iKnPnx95ZVXrG7dutamTRvfJYfEU5vDLVu22AcffGBly5bNcNuCBQv8smHDhiEdXWrS+1bjxo19/JUQc9RRR2W4XS3kRL87CMfChQv9ko0eeYMquej35scff/R5QOa//d9//71fHnzwwSEdIfLT3P6www7z1pHz5s3L8mGt5jZKsjjmmGMytBlGzubsjHli5+OMdzhzbcY9sXNoxjvxc2PGPPHzXsY8fgYMGGCzZs2yGTNmWMmSJSPXa1zffPNNn8/o76wW9LXor+pPqgwaTe9NSjbMnISIXStXrpwdeuih9vnnn/uGiejW7Eq80Pu7bj/wwAP9umDOM3fuXDvrrLMy/KyPPvrILzkPAAAgO4rhNdfWJk59LqWNmtocrm4d6qCiCu/B3DrYbBhU+gw+fw4SPjWHVIX42267jTVQAMBeYbsAkEvGjBnji8LaEf/ss8+S8JlHaLdU69atfVfV6NGjM9y2ZMkSGzdunH84GN2mE7nr7LPPtr59+2b5F3zwqkBH/9dCMxJLgekpp5ziuxHvu+++SGAaVGt59NFH/felU6dOoR5nKuratatfqvptdAsznZfnnnvOP2TgdyY8+nsiWkhF+LTY3a5dO/vjjz9s5MiRGW5TlcDgujPOOCOkI0R+mtsXKVLE55FKthg/fnyGpNGhQ4f615krQCFnc3bGPLHzccY7nLk2457YOTTjnfi5MWOe+HkvYx4/qiCpMX/mmWcyXP/QQw/ZihUrPMFfc5vy5ctby5YtPdFWCaKBrVu32ogRI/xrxnzv6G+lEjCCcQzo/7o+eP+Xpk2b+lz+9ddf90TR6N8R/e3V7wafcwEAgFi+++47Gzx4sJ133nl28cUXezcUbeZZt26dz8UrVKjgCZ2ZW7drrpi5a96cOXP8M69FixZFkkABANhTBdIz/9VBvqB2PdrlOnv27LAPJSX9/vvvdtJJJ/nuYi1WZrc7R1UOjj766IQfX6pbu3atnX/++d5eTDu3Dz/8cP965syZvutq+PDhJEvlAarqpKCJtu7ht4fT78sPP/xg9evX94o4CmC1QKGFaf2+aFEJiXfjjTfa5MmT/e+9zoGqhqiKiFqDaGGD97HwdO/e3StIaR6m84PwrV+/3hdQteiqhANVd9GHbfrbr3nbJZdc4juxgXjM7bVgrIViVcjS9ykRQPMaVads3769/+3M3FYYOZuzM+aJnY8z3uHMtRn3xM6hGe/Ez40Z88TPexnz+FBSoTZQLF++3Fq1auUJhWrrrte9xl+bh9TmM6i22qVLF0881xjrd0LnRuerZ8+eXjUUe77moWpbGle9djXmquysBAol2GqO/uSTT2aofKvKqvpd0Otbyc9Kyn3jjTfs559/toEDB5J8CwAAstD8TgmeaWlp3pFDmwa//vprr56vTVNVqlSJ+X1Kxbn22mtt6tSpvom5RYsW9t577/lce+XKlTZx4kSf4wAAsDdI+synSPoMlxZoevfuvcv7XXHFFda/f/+EHBMy0gfb2nGvD1b1gZ7aL2mBTeeElsh5A0mfeYcWiB5++GGbPn26L0IriG3WrJn/vlDJMDyawmnBWh8KfPvtt76AoYSYK6+80itXIDwdOnTwXb+ffvpphtZyCJcWVlW5Re9lWtjW74wSbJSIoEprQDzn9ppfqpqW2jTptaeW8EoGuPDCC7O0WkV85uyMeWLn44x3OHNtxj2xc2jGO/FzY8Y88fNexjw+gkqq77//vn+tcTzzzDO9ymd0RSdRgqeSzNVKXEkDVatW9SRDJeCSZLv3ax5K4le1LCXya1OFKm0psbZXr16e1JmZ2r6PGjXKFi5c6P+vVauWJ962bds2Ic8FAAAkD3WH6NGjh1WuXNnnC5pjiDZrahOnEj4LFSqUIe6MntddffXV9vbbb3tleH3P3XffbatWrfJuQqxJAwBygqRPAAAAAAAAAAAAAAAAIGqjpirlayPbTTfd5BXyg0rj0ZukVFVfm9xUBb5UqVIZfoa+T5sPL7vsMq84/tVXX9mECRNI+AQA5FjhnP8IAAAAAAAAAAAAAAAAIH/45ZdfbNGiRd4FJVbCp5JBP/nkE+8msX37dtu6datdcsklfl9VKBe1gpcxY8Z4dw8SPgEA8ULSJwAAAAAAAAAAAAAAAPD/VJlTVTybN28euS5I+Bw/fry9+eabtnDhQv+/Kn3+9ddfduedd9q6deusb9++VrBgQTvmmGNs7NixXgFUCZ81a9YM7fkAAPIXkj4BAAAAAAAAAAAAAACA/1e1alVP3FS1T1Xv3LRpk1f3VPLma6+95rdVqVLFTj/9dDvhhBPs66+/thdffNEef/xxa9++vdWuXdvq1atnbdq0sX79+pHwCQCIK5I+AQAAAAAAAAAAAAAAkJLS09OtQIECkUspU6aMVa5c2R599FFbvny5t3v/+eefbfXq1X6fK664wo499lhr2rSp379Ro0a2bds2TxJVcqiSPsuWLWsjR460QoUKhfwMAQD5TcGwDwAAAAAAAAAAAAAAAAAIQ1pamv3zzz+2Zs2ayHVK2lSb9goVKtisWbM8mXP79u3esl3VPq+++upIwueWLVv8skmTJhn+LyR8AgByA5U+AQAAAAAAAAAAAAAAkHJUlfPJJ5+0pUuX2qpVq+zEE0/0xM6OHTvaaaedZpUqVbLffvvNVq5c6dereqeqgAZVQZUIWqxYMf9ZL730kpUoUcKOPPLIsJ8WACCfI+kTAAAAAAAAAAAAAAAAKeWzzz6z3r1726ZNm6xKlSpWsGBBmzp1qlf2VDv3yy67zBo3bhzze5Xw+ffff9u+++7r/585c6a98847dsQRR1jp0qUT/EwAAKmG9u4AAAAAAAAAAAAAAABIGZ9++qldeOGFdsghh9jQoUPttddes2effdYGDBhg27Zts0mTJtnChQsj91dFT/nzzz+96qcECZ/63lGjRtnWrVvt+uuv92qfAADkJip9AgAAAAAAAAAAAAAAIKUSPuvXr2/9+vWzo48+2q+vUaOGHXjggV7l84knnrDPP//cmjZt6rcVKlTINm7caFdccYUnfqr9e+HChW3u3Lk2f/5822+//Wzs2LFWrVq1kJ8dACAVUOkTAAAAAAAAAAAAAAAAKdHSvUePHtagQQPr379/JOFzx44dflmqVClr0aJFJDk0PT09UuVz/fr1nhT61Vdf2ZAhQ+yuu+6yRYsW2bHHHmtPPfWU1a5dO8RnBgBIJVT6BAAgD1DAWKBAgbAPAwAAAAAAAAAAAMiXli1bZl26dLFKlSpZ3759I8mdWqcrWLCgJ37qslixYn69EkO1fqcqn1K9enUbNmyYzZ492/744w/bvHmzJ3yWK1fOihcvHupzAwCkFpI+AQAR2qU2Z84ce+WVV2zp0qW2du1av/6QQw6xY445xi644AKrUqWKJbvJkyfbjTfeaK1bt7aHHnooYY9bp04dv1SLh5IlS/rXW7ZssTFjxnjweNlll+XaY2/YsMGefvppD0JXrVrlj3vAAQdY3bp1rU2bNnb22Wfbvvvum2uPDwAAAAC76+OPP/Y2e4HXX3/datWqtdPvufLKK+2dd97xrwcPHuwxTkCx7Lx587JcvyuKnZ555hn78MMPbfXq1fbPP/9Y6dKl7bDDDrP27dtbhw4dfDEQAAAAAJD3/f777zZhwgRP8NSamC4zU4y3bt06e/bZZ30tT+3fM9P3am0NAIAw8akkACCymNW1a1dPPJw2bZoVLVrUWrZsaU2aNLHffvvNxo8f7wtaU6dODftQ85WRI0d64mlaWlquLpi2bdvWHn74Yd912KxZM2vVqpXvYpw7d67ddtttdsYZZ3gQCwAAAAB5za7iUC3cvf/++3F9TCWaKrFz3LhxvkFS7f5OOOEEb+On5NJ///vfHkOrqgsAAAAAIG9bvHixPfjgg9atWzffDPjdd9/ZiBEjbNasWfb3339HuvGpffvEiRPtrbfesnPPPdereAIAkBdR6RMA4BU9O3fu7Mmdqn45YMAAq1q1auR2BTtK+lS7guuuu86KFCnCDra98MYbb/hldHsHLR7mpk2bNnl7ClX2vPfee+2ss87KcLsSPXW+lfx5zTXX2HPPPZerxwMAAAAAu0tVVTZu3OgbE/v165ft/bQYpyqcqrai+DUemyJvuOEGb9/36KOP+obIaN9//71dffXV9umnn/omuv/85z85fkwAAAAAQO7466+/bPjw4d7F4bjjjvNugGrj/vLLL9uoUaP8PieeeKJvKFTXPMWBnTp1smuvvdZvC1q+AwCQl/CXCQDgQYsSPk8++WQbPXp0hoRP0cLZpZde6u3ylKSo5MFt27aFdrzJqkaNGv4vkYHhzJkzvbrnSSedlCXhU8qVK+fVRpXIqwXLL7/8MmHHBgAAAAA7U7FiRWvQoIGtWLHClixZku39XnvtNdtvv/28q0E8vPLKK55EqqoumRM+pVq1ar5gGGzu08IgAAAAACBvUryoJE65++67vWND//79fd1M62KqAPrqq6/ak08+6QmfqgR61113+f21LkrCJwAgL+KvEwCkuM8++8zmz5/vSX8333zzTgOXnj17Wv369a1p06b2yy+/ZLhN7Q6UDKrE0YYNG9qRRx5p3bt3911y6enpWdqN16lTxwYOHOgVVNQWr0WLFta4cWOvOKpWCvLTTz9FbtNjasEtuC3w448/+s86//zzbcOGDXb99df7/dWWXkHZ888/n+Xxd0aPqUotan9+2GGH+c+66qqrPCEy2rJly/x2PbaqykRTANilSxe/TT8roP/rnyrVBP9XBVVRsq3+/8ADD/guQn2t8Y5FlWuOOuooH+ddLS7qvEjQliKWAw44wC655BIPeGOdfz13Bb/HH3+8NWrUyM/x7bffHrMd/N68DvS60+3aRanv6dChg5/LwCeffGJ9+vSxY445xsdcCax67axevXqnzx0AAABA8jv99NN32uJ9zZo1tmDBAmvbtq0VLVo0Lo8ZxCM7i6Nq1qzpcZ9i2LS0tCy3z54926644gpvBahY99RTT7X777/fN+VlprhYMU4QhyreUzyoNvKZTZ482eOohx56yB577DFvO3/44Yf7cShRNfDuu+/6zwhix3bt2nmspg2fAAAAAJAqgrUprT1deOGF9sMPP9jrr7/uRVEuv/xyO/PMM+2LL76wIUOGeMJnx44d7Z577oms96kDBAAAeRFJnwCQ4lQRRVQRRQHOzqgt+ZQpU3yhqEKFChkSIE877TQbO3ast0gIkveUUKokTLW9i1UZdPny5Z6YqdbiRxxxhFWuXNk+//xzryj6wgsv+G1KDFQCZ5UqVfznKQB77733YrYx79q1q1dZ0SKZkg2/+eYbu/XWW70l/e5Q8quCO7U4L1y4sD8PVT3VQpt+9qRJkyL3rVu3rrdDlzvvvDPDwt3DDz/siZK1atXyFhE7W7ysXr26f127dm3/vxbvzjjjDE/CVZuJWImV06dP92RPLdopYXNnlKQbVPwcM2aMj1MsapWo3Y16/GhKQO3WrZuP60EHHeRjogD52Wef9fOjxcmcvg60QKvWieXLl/cFy1KlSlnZsmX9tnHjxvnjz5gxw19zWgTVQq7OhQJvvV4AAAAA5F9amNPmtDfffDPmhj4t1un6IDk0HoI4auLEiR6bbt26Neb9tBnujjvuyBJL33fffdarVy+PXRXLqn2gYjEtICpRNHrz3gcffOAxoGIcLSYq5lFC6UcffeSxcVBdJjNVoVFbecVwipkrVapk++yzj9+mBUolnCqeVlVSbZxTQqhitXPOOcdWrlwZt7ECAAAAgLxMm/mCWFLFT7Qe99RTT9natWs9XlLspJhMMVOJEiU8ZgqQ8AkAyMtI+gSAFKfES9Ei0d5Q1UlVwlS1ECVGKrlQ1SrVAkGJgkqafPvtt72SZawkS1XwVFJl0DqhdevWtmPHDrvllls8cVMJjkqiVCVIVS4JFt4yU4Lnli1b/H6PP/64VzzR1wcffLAntgbJrdlR0qaSErUQpworqt6pY1YCqBIf1fpBi3lLly6NfI+qpugYVfVUOwBFSYg6XiVtagFuZ5Vmhg0b5lVfRAmc+r8ulfSoSpkaB7UVzOzFF1/0y6AVxc6oOqYW+BTQ6niUVHnBBRd4S/c5c+Z4cmZ21NJCz0tBrRJGX3rpJRs1apRNmzbNK6uqqqfGJKevA7Vq1IKoxlqPM2HChMjrQ49fsmRJe+aZZzI8/k033eQLpX379s12ARYAAABA8lNCpeIuVfpfuHBhzKTPAw880GOfeNGCn9rKK85RbKoOEJdeeqk98sgjHqfo+uyowqZiUm3QUyKnNswpNtJGNiV0KgYfMWKE3/fXX3/1OFRx2b/+9S+PQxXzKCZSsqmel+JRfZ3Z999/b4MGDfKNcvqneE8UQ2oBU0mgqgqqOEs/U4+vDg/qbqFODnvSEQMAAAAAkonW+qLjtiD+0QY7dWHQ+pbWnxSLaf1KiZ9an9T36XqtW0Z3UgAAIC8i6RMAUlxQSVKLSXtDCXhaNFLlS1XV3HfffSO3qXJnsPCkRadYyXn6HiVIBrvtVCky+FoLWMWKFYvcV4FYkCSYXZWVGjVqRP6vr4NKm0EiYXa0iKYFNz2+KktGt/FTFVQFfKpSqcooAVWbUdXT/fff3xfTtLinqqK6nypbZq6auSfOO+88v1Rl1Wgaa1VGVbUYLTzuDi3w6fg1lgpS582b560AlbTavHlzv1QCaGZKrtVzufjii+2EE06IXK8kUD0/7YDUz1PgnNPXQY8ePSJfBy3mlbirQPzaa6/1Rd7M91e7ee3E3FVCLwAAAIDkFlTx1IayaN9++613HFA10HhWYFGMqthFcZm6QGiD4fvvv2/Dhw+37t27exzVp0+fmJ0HtGFNlMTZqFGjyPWKkRQrKRkzqPSphMzNmzf7Rj11tQhiIVHS6W233eZfa3NcZopDozcCBt8b3Fcb9FTBJqDxUbyq65YsWeKVRAEAAAAgv1EnPsWI2myn7gfR8ZIutebVuHFj78yg9TJR4mfv3r3trLPO8lbvKmCibnwkfgIA8jKSPgEgxWkBS2K13d4dQUAUtNzLTK3WlRyo3XKLFy/OcJvahWvBK1qZMmX8UhU6dXs0VcCUWFVV1HIhOjExoEoqWtxSi/E///wz2+cRLHhlVx1Gi3CihMtoOv6bb77Zv9ainxJS9ZhKHM0JJTmq9buqwChADSi5VBVA1V4iOjF1Z7S4qEouSuzUIuW5557r50QUsOp6JX4qyTa62ksQDLdp0ybLz1QCqdorqqKMfn5OXgc615mTjrdv3x75mapOGovax8c6JwAAAADyF3VEUOtyVcJUPBQINoDFs7V7dIypxEklew4ePNjOPPNMO+SQQ/w2JYGqK4ViK7VsDyieCuKYtm3bZvmZFStW9K4IQaXP4L7B5sfMVGlGXSfUjl2VTqMpeTOI5wPqQqHas1nqAAAOHklEQVREWF2vzYuZKVZTq3khjgIAAACQ32iDnTbPKTZS1wVtxlMCp7rUBetfWtNSRwddPv/88xkKmCjxU7GfOuGpeIoSQ0n8BADkVRk/GQQApBwlVqoyyoYNG/bq+3/++edIMJQd3abWc8F9MydxRgsSGUuXLp3tbbGo8mWsZEO1V1ciqQI8/VM1lFjWrFnjl2obrn/Z0c9QgKcFx4ASMFVxRsmTChLvvvtuiwctIKqNhKp9NmnSxBc39bWSWDt27LjHP6948eKelKl/onOunYoKfNUmUZU9VU2mc+fOfntwvrQwmZuvA7U9jBWYayE1u6TTaJkXPwEAAADkL4oZjj32WO+uoM1pwcYwtXZXRZboiprxpnjy7LPP9n9B7KjYb/z48fb111/b/fff74+vY1Ico02KqhQabGjMSRyl2K9ChQr23Xff+X2jY7NYcVQQ12pTZ8OGDXf62MRRAAAAAPIbrSNqnUud/dSNT3GUkj5nz57t3QRVsEWb5FR0RcmdiuvUKTAo5BIkfmq9UUVYdLuKxUSvCQIAkFeQ9AkAKU4LQapcEl1NcmfUfk5BkxbcVOUkujJkdoJKLNEtvyVzVZKc2Fkrv+AYd3af4BjVMjxWMmo0LaBFB3jr16/3dg+iBb5XX33VLrroIsspBZxqi66EUu06XLBggbdQV9XRcuXK7fL7dZxahPzjjz9iVsssW7asV8RRVZkbbrjBXn75ZXvllVciSZ9B9dfdqSiak9dBrGTd4L56jbRv336nPzeotgMAAAAg/1LcoqTPqVOnenyjjWs//vij9e3bN66Ps3XrVq+WmZaWZkcccUSW25WEqZhJbf969erlXSMUS+mY9iSG2t04Sl0Q9jSOKlmyZMxOGJm7MQAAAABAfqL1ve7du3vcqI14l19+uXefGzt2rHdw0Hqbqn+q0MoFF1zgHe207nnUUUdZzZo1PUZT4qe+T5v59LPUfQEAgLyIpE8ASHFqk6cWBZ988onveFOr7eyo8uJ9991nmzdvtttvv926dOkSuf+qVauy/T61oguSDHPL2rVrY16vduLa0afkwZ0lSqriqapQKlmzZcuWe/TYau+u1hAay1mzZnmlF/2MWrVqWU4oIFVLQAWhSszVz5ZOnTrt1vdrwVHVaBSkahdjds9fC5JatNRCpSrTRI+JkkxVLSbWuVM7Q1U91eJmvF8HqlqjxFotcKpyqoJrAAAAAKkraHWuOGTQoEFe5VPOOOOMuD6OYiB1cyhWrJjNnz8/24ouul4dGJT0GcRRQRyjxFHFiLE6WCju0vPQRkrFUcuXL/c46vDDD89yX8VbQfXO3YmjFMMFHS+GDRu2x88dAAAAAJKZ1sNU6VObA1VURUVUevbs6cVF9H+tlV111VW+ntenTx9PBNXtWoNT0qc20mmD3aGHHuprf/EsXgMAQLxl3RIOAEgp9erV88UmVai85557dlppZMSIEZ7wqWREVVmR5s2b+6USE4OqItE+//xzT/YrUaJErlYSUcLq0qVLs1z/9ttv+3G1aNEiS2WUaNrFJzNnzox5u37OKaecYjfeeGOG6ydNmuTJmNr5N3ToUA8SVRHmuuuu8wW6XdlVBRi1eJdp06b5sWkR78QTT7TdoYU+Bbcybty4nd5XCa+idheBoKqNqunESigdOHCg9e/f3yuJxvt1oIXSoKV9rMeXe++9N9J+AwAAAED+piTMVq1aeYLlBx984BVZGjdubFWqVInr42hxT3GXNj0+//zzO72vEjaj4yjFMUGr+VhxjBJBb7rpJq8sI0EcFSSwZjZjxgyPL9V6cHe6PagLgv4pPlY1m1j02NocqNgNAAAAAJKZ1jYDWk8K1twUO6owi9aRvvnmG6tYsaIXGAmKtkyZMsXXOVesWOH3HTVqlHd8iO4YSMInACCvI+kTAOBVUpSMp8RC7X5Ti7xoqlIyfPjwSOLgrbfeasWLF/evO3To4MHSsmXLPGk0OtFR1UoGDBjgX5933nk7TbqMB+26U1XPwFdffeWJmHLJJZfsMrly//339zYOEyZMyJD8+t1339ldd93liZFVq1aNXK8kxiFDhngQqdu1CKkdgUqk/fLLLz1I3J3ETFHiZCxKVtWio1pRbNiwwSvJ7Emgec011/iuRLWuUHC7adOmLPfRYqQquOrnXnzxxZHr1dpC3/vEE0/Yxx9/HLle1Tf1vDXWWqTUmOTG60BjKXfccUeGxw+ScJ9++ml/PNoSAgAAAKkh2Hyo2Ebx0emnnx73x1BcFLSMV2zz+OOPe0wcTYuJkydP9jhLVTu7du0aue3CCy/0S1WR+frrryPXK3nztttu83hKz0Pfp/hIsbVissceeyxDHPrFF194nBnEZrsriKOuvfZaj5eiPfPMMx5b6riUMAsAAAAAyUob3bQuqPUi0XqW4i2pUaOGb3Zbt26dbxhUTKf1uOOOO87X7tTNUPdRzKWfo1hMXRE3bty4y2ItAADkFWxPAAB4lcqJEyfa5Zdf7q3yVFGyfv36XiFE7dE/++wzD3QUEKm6oxL8Akrge+CBB6xXr16ehKfgSotHqgiqVnjaZaddcv369cvV56DjUPCmduiq2qkAbt68eZ58qFYNu2rZrrZ62uGnJEklGWrxTtValCT5ySefeKCo5xEkj+r/SmTU+GihTsmZwQKhdgsqiVSLg6rKGVTMjEUVW0QVZNS274QTTohU9xQFl2rnrgXD4Os9cfzxx3vQeuedd/pz0jlq2LChP18tOmoRUI+rhFUlyEYnUKpCjSqW6voePXp45c0DDzzQE1qVyKnqN3quufU60Njp3CnQ1sKpXpOVKlXyx9YxBAuZTZs23aMxAQAAAJCc1KVCLdS1MU+xV3RsGk+K8bTJbfTo0b5BTpeKo9Ri/c8///SETCWd6lhGjhxp5cuXj3yvOkQoSVNxkTbtHXnkkZ7Yqe4HqsCphcVgU5ziqyAOVTv2F154wTcR6rGDOLRLly4Zkkp3RffVoqUq16hNveIoHZ+q22gjoxZCtYlPm/YAAAAAIBlpzUnrZnPnzrX33nvP1wMVZ0UXHVGRE7Vtf/HFF33dTWucWjNUhwbFfM2aNfOCI+pyqDXF6E17AAAkA5I+AQBObQ5effVVD37eeecdXxBSQqCCHyWFKtmwe/fungiamRIFX3nlFU9yVKtzfb+qZioZT9+XG9VXMitSpIi3WleQN2fOHE+Q1OKagjolUu5ukuHLL7/slS0//PBDmz17tpUsWdKTFzt37uzPI6iyOWbMGPv000+tQoUKkQW7gFqqKzlU97n++ut9bDQesajCixb/VG1Fj6f7RSd9SpA0qgBUVT/3lBb6lPSqKqYKgFWhVIuACnC10Hfqqaf6udVzyUzPQ8/nySef9OerY1XCaLdu3TwhU4uUufk60OKnqomqhfuiRYv8dalk05NOOsnPrRJ8AQAAAKQGxacnn3yyx36KccqUKZNrj3XllVdau3btPEbWQqBa/SkmUoyjGFnJlYqLSpcuneV7b7nlFo9j1EVCCaJaQFTspY2Wl112WaRzhiheVRyqSp+KQ7UJs1SpUr6B7/zzz9/teDagWFhJnYpvtblwyZIlHturPbzizyDGAwAAAIBkpeRObdBTwqcKl6irgdavLrroIi/SolhR1TsVU/Xv39+7OGjDnmJKba5TG3cVZdG/o48+2r9f99WaIAAAyaJAenTfIAAAkoxa0bdu3drb0y9YsMDyI1XpVMCphNagnSEAAAAAAAAAAACQyn744Qd78MEHvaqnOtxp45w28dWuXdu70aljnIrFqMuCNvZF27FjR6QtvBJBAQBIJgXDPgAAAJCVKsGIKr2osoyqsqiiDQAAAAAAAAAAAADzDnm33nqrF05p0qSJTZs2zdu3q0OEKnvqNnVsmDJlSuR7grpoSvgUEj4BAMmISp8AgKSWXyt99uzZ059PkPw5bNiwvWqPDgAAAAAAAAAAAKSCcePG2eTJk+2bb76xli1bWpcuXWzdunXe4n3QoEHWuXPnsA8RAIC4KByfHwMAAOKpYcOGNn/+fKtYsaL16tWLhE8AAAAAAAAAAAAghqBV+0UXXeTJntOnT/e271988YXVq1fPqlevbhMnTrRGjRpZnTp1wj5cAAByjEqfAAAAAAAAAAAAAAAASFpKfSlQoEDk/+qoN2HCBJs7d6799ttvft3AgQPt/PPPz3A/AACSEUmfAAAAAAAAAAAAAAAAyFfWr19vS5cutf/85z/21Vdf2ZtvvmlVq1YN+7AAAMgxkj4BAAAAAAAAAAAAAACQL23fvt0TQMuVKxf2oQAAEBckfQIAAAAAAAAAAAAAACBfJnwWKlQo7MMAACCuSPoEAAAAAAAAAAAAAAAAAABIAgXDPgAAAAAAAAAAAAAAAAAAAADsGkmfAAAAAAAAAAAAAAAAAAAASYCkTwAAAAAAAAAAAAAAAAAAgCRA0icAAAAAAAAAAAAAAAAAAEASIOkTAAAAAAAAAAAAAAAAAAAgCZD0CQAAAAAAAAAAAAAAAAAAkARI+gQAAAAAAAAAAAAAAAAAAEgCJH0CAAAAAAAAAAAAAAAAAAAkAZI+AQAAAAAAAAAAAAAAAAAAkgBJnwAAAAAAAAAAAAAAAAAAAEmApE8AAAAAAAAAAAAAAAAAAIAkQNInAAAAAAAAAAAAAAAAAABAEiDpEwAAAAAAAAAAAAAAAAAAIAmQ9AkAAAAAAAAAAAAAAAAAAJAESPoEAAAAAAAAAAAAAAAAAABIAiR9AgAAAAAAAAAAAAAAAAAAJAGSPgEAAAAAAAAAAAAAAAAAAJIASZ8AAAAAAAAAAAAAAAAAAACW9/0f/vKij+d78bAAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -767,7 +782,7 @@ ], "source": [ "fig, axes = plt.subplots(2, 3, figsize=(18, 12), dpi=150)\n", - "fig.suptitle('Error Type Distribution by Tool', fontsize=18, fontweight='bold', y=0.96)\n", + "# fig.suptitle('Error Type Distribution by Tool', fontsize=18, fontweight='bold', y=0.96)\n", "\n", "# Bandit severity distribution\n", "if not bandit_results.empty:\n", @@ -850,7 +865,7 @@ }, { "cell_type": "code", - "execution_count": 53, + "execution_count": 38, "id": "982f835e", "metadata": {}, "outputs": [ @@ -946,7 +961,7 @@ }, { "cell_type": "code", - "execution_count": 54, + "execution_count": 39, "id": "9f184293", "metadata": {}, "outputs": [ @@ -958,39 +973,40 @@ "================================================================================\n", "CODE QUALITY ANALYSIS SUMMARY\n", "================================================================================\n", + "Note: Radon cyclomatic complexity and maintainability entries with rank 'A' are treated as non-issues and excluded from issue counts while still used in distribution plots.\n", "\n", "📊 OVERALL METRICS:\n", - " Total Issues Found: 213\n", - " Files Analyzed: 46\n", - " Average Issues per File: 4.63\n", + " Total Issues Found (excluding Radon A ranks): 11\n", + " Files Analyzed (max across tools): 3\n", + " Average Issues per File: 3.67\n", "\n", "🔍 TOOL BREAKDOWN:\n", " BANDIT: 2 issues across 2 files\n", " RUFF: 0 issues across 0 files\n", " MYPY: 0 issues across 0 files\n", - " RADON_CC: 162 issues across 32 files\n", - " RADON_MI: 46 issues across 46 files\n", + " RADON_CC: 6 issues across 3 files\n", + " RADON_MI: 0 issues across 0 files\n", " FLAKE8_WPS: 3 issues across 3 files\n", "\n", "💡 QUALITY INSIGHTS:\n", " 🚨 Security: 0 high-severity security issues found\n", - " 🔄 Complexity: Average CC = 2.33, 0 functions with CC > 10\n", - " 🛠️ Maintainability: Average MI = 81.39, 0 files with MI < 20 (needs attention)\n", + " 🔄 Complexity: Average CC (all ranks) = 2.33, 0 functions with CC > 10\n", + " 🛠️ Maintainability: Average MI (all ranks) = 81.39, 0 files with MI < 20 (needs attention)\n", "\n", "📋 RECOMMENDATIONS:\n", - " 1. Address 213 total issues found across all tools\n", + " 1. Address 11 total issues found across all tools\n", " 2. Security: Review and fix 2 security issues\n", "\n", "================================================================================\n", "\n", "FINAL SUMMARY TABLE:\n", - " Tool Total Issues Files Analyzed Issues per File\n", - " bandit 2 2 1.0000\n", - " ruff 0 0 0.0000\n", - " mypy 0 0 0.0000\n", - " radon_cc 162 32 5.0625\n", - " radon_mi 46 46 1.0000\n", - "flake8_wps 3 3 1.0000\n", + " Tool Total Issues (A excl) Files Analyzed Issues per File\n", + " bandit 2 2 1.0\n", + " ruff 0 0 0.0\n", + " mypy 0 0 0.0\n", + " radon_cc 6 3 2.0\n", + " radon_mi 0 0 0.0\n", + "flake8_wps 3 3 1.0\n", "\n", "💾 Results saved to 'code_quality_summary.csv'\n", "💾 Detailed issues saved to 'detailed_issues.csv'\n" @@ -1002,14 +1018,16 @@ "print(\"\\n\" + \"=\"*80)\n", "print(\"CODE QUALITY ANALYSIS SUMMARY\")\n", "print(\"=\"*80)\n", + "print(\"Note: Radon cyclomatic complexity and maintainability entries with rank 'A' are treated as non-issues and excluded from issue counts while still used in distribution plots.\")\n", "\n", "# Overall statistics\n", "total_issues = sum(summary_stats[tool]['total_issues'] for tool in summary_stats)\n", - "total_files = max(summary_stats[tool]['files_analyzed'] for tool in summary_stats if summary_stats[tool]['files_analyzed'] > 0)\n", + "files_with_any = [summary_stats[tool]['files_analyzed'] for tool in summary_stats if summary_stats[tool]['files_analyzed'] > 0]\n", + "total_files = max(files_with_any) if files_with_any else 0\n", "\n", "print(f\"\\n📊 OVERALL METRICS:\")\n", - "print(f\" Total Issues Found: {total_issues}\")\n", - "print(f\" Files Analyzed: {total_files}\")\n", + "print(f\" Total Issues Found (excluding Radon A ranks): {total_issues}\")\n", + "print(f\" Files Analyzed (max across tools): {total_files}\")\n", "print(f\" Average Issues per File: {total_issues/total_files:.2f}\" if total_files > 0 else \" Average Issues per File: N/A\")\n", "\n", "# Tool-specific summaries\n", @@ -1027,18 +1045,18 @@ "if not radon_cc_results.empty:\n", " avg_complexity = radon_cc_results['complexity'].mean()\n", " high_complexity = len(radon_cc_results[radon_cc_results['complexity'] > 10])\n", - " print(f\" 🔄 Complexity: Average CC = {avg_complexity:.2f}, {high_complexity} functions with CC > 10\")\n", + " print(f\" 🔄 Complexity: Average CC (all ranks) = {avg_complexity:.2f}, {high_complexity} functions with CC > 10\")\n", "\n", "if not radon_mi_results.empty:\n", " avg_mi = radon_mi_results['mi_score'].mean()\n", " low_mi = len(radon_mi_results[radon_mi_results['mi_score'] < 20])\n", - " print(f\" 🛠️ Maintainability: Average MI = {avg_mi:.2f}, {low_mi} files with MI < 20 (needs attention)\")\n", + " print(f\" 🛠️ Maintainability: Average MI (all ranks) = {avg_mi:.2f}, {low_mi} files with MI < 20 (needs attention)\")\n", "\n", "# Recommendations\n", "print(f\"\\n📋 RECOMMENDATIONS:\")\n", "\n", "if total_issues == 0:\n", - " print(\" ✅ Excellent! No issues found by any tool.\")\n", + " print(\" ✅ Excellent! No issues found by any tool (after excluding A rank Radon entries).\")\n", "else:\n", " print(f\" 1. Address {total_issues} total issues found across all tools\")\n", " \n", @@ -1060,7 +1078,7 @@ "# Create final summary table\n", "summary_table = pd.DataFrame({\n", " 'Tool': list(summary_stats.keys()),\n", - " 'Total Issues': [summary_stats[tool]['total_issues'] for tool in summary_stats],\n", + " 'Total Issues (A excl)': [summary_stats[tool]['total_issues'] for tool in summary_stats],\n", " 'Files Analyzed': [summary_stats[tool]['files_analyzed'] for tool in summary_stats],\n", " 'Issues per File': [summary_stats[tool]['total_issues']/max(summary_stats[tool]['files_analyzed'], 1) for tool in summary_stats]\n", "})\n", From ce933b81461289e5f9d425351649d70dce83e876 Mon Sep 17 00:00:00 2001 From: vodkar Date: Fri, 12 Sep 2025 22:18:04 +0500 Subject: [PATCH 11/16] Changed plots --- code_quality_analysis.ipynb | 13 +++++++------ 1 file changed, 7 insertions(+), 6 deletions(-) diff --git a/code_quality_analysis.ipynb b/code_quality_analysis.ipynb index e29b029797..ad5ea29c21 100644 --- a/code_quality_analysis.ipynb +++ b/code_quality_analysis.ipynb @@ -352,7 +352,7 @@ }, { "cell_type": "code", - "execution_count": 32, + "execution_count": null, "id": "5b0cf9e3", "metadata": {}, "outputs": [ @@ -368,7 +368,8 @@ "rank\n", "A 156\n", "B 6\n", - "Name: count, dtype: int64\n" + "Name: count, dtype: int64\n", + "[1 6 2 3 5 4 8 7]\n" ] } ], @@ -765,13 +766,13 @@ }, { "cell_type": "code", - "execution_count": 37, + "execution_count": 43, "id": "f8c74802", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACn0AAAcACAYAAAAfNBQwAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAXEgAAFxIBZ5/SUgABAABJREFUeJzs3Ql4XHW5P/A3acu+K/siuyAgCAoiKDuIiisq4oYbchVF9KJeN1yvylVRQRQXQBAB2Soi+77vIPtOoS1CgVK60TaZmf/zHjz5pyFJkzbJySSfz/PkJk0yM+85M/HOy+973l9Lo9FoBAAAAAAAAAAAAADDWmvVBQAAAAAAAAAAAACwYEKfAAAAAAAAAAAAAE1A6BMAAAAAAAAAAACgCQh9AgAAAAAAAAAAADQBoU8AAAAAAAAAAACAJiD0CQAAAAAAAAAAANAEhD4BAAAAAAAAAAAAmoDQJwAAAAAAAAAAAEATEPoEAAAAAAAAAAAAaAJCnwAAAAAAAAAAAABNQOgTAAAAAAAAAAAAoAkIfQIAAAAAAAAAAAA0AaFPAAAAAAAAAAAAgCYg9AkAAAAAAAAAAADQBIQ+ARbCpEmT4tWvfnW3H5tssklst9128e53vzt+8YtfxNSpU6MZfP3rXy/q/+///u/5vr/rrrsW3z/99NNfdpv29vZ47LHH+vU4Rx11VHF/eb/0T/kau+6662I4uPzyy+MrX/lK7LbbbrHlllvG6173uth9992L71100UUxUt14440dz0X+DXT11FNPxcyZMyupDQAAAAAAAAAY2YQ+ARbRxhtvHFtvvXXHx2tf+9pYYYUV4qGHHopjjz023va2t8UDDzwQI80111wT73jHO2L8+PFVl8IQmzNnThx44IFx0EEHxbnnnhtz586NjTbaKNZff/2YMWNG8b0vfOELsf/++8cLL7wQo8W8efPiV7/6Vey1117x3HPPVV0OAAAAAAAAADACja26AIBm961vfauY7NnV888/X0zPvOKKK+KLX/xinH/++dHa2nxZ+xNOOCHa2tpilVVWme/7GWjt75RPRobDDz88rrzyyiLkecQRR8QWW2zR8bNGo1EEgvO1f+utt8bnP//5+Mtf/hIjSQa7zzvvvOLrsWP//1upKVOmxDHHHFNhZQAAAAAAAADASNd86SOAJrHiiivGT37yk1hsscViwoQJRRCuGa2zzjqxwQYbxLLLLlt1KQwDkydPjnPOOaf4+uijj54v8JlaWlrizW9+cxx55JHFv2+++ea4/vrrYyRZcskli7+J/AAAAAAAAAAAGEpCnwCDHPzMba9TbvcOze7ee++Ner0eyyyzTK+hx2233TbWXXfd4ut//etfQ1ghAAAAAAAAAMDIJfQJMMja29uLz0svvXS3Pxs/fnwcdNBBxXTEnJr4ute9Lvbaa6/4zne+0+326R/96Efj1a9+dVx11VVx//33xyGHHBJvetObYvPNN4/ddtst/vd//zemTp3abS1z586NP//5z/Ge97yneJzclv7QQw8tJpH2ZNdddy0e7/TTTy/+fdZZZxX/vummm4p//+53vyv+ndt5L6oXXnihmBC5zz77FFtob7nllrHHHnvEN7/5zXjggQe6vc3VV19dnL/tt98+Nttss+KY8hydfPLJMW/evPl+98YbbyxqzY/yeemq/Hn+blfPPvtssZ352972tqK2PIfve9/74rjjjivObXceeeSR+J//+Z/iPOZztM0228S73/3u4jife+65WFg5bTMfO+vIY/7sZz8b11577Xy/8+ijj3Yczz333NPjfeXrLX+n3LK8N+PGjSs+z5w5M2655ZZef/f3v/99XHjhhcXz0Z1LLrkkDjzwwOK5y3OTfwNf+cpXXlbrxIkTY5NNNilqzNDpgo6jfK12vv13v/vd4rWUf2Ovf/3rY//99y9+r1arvex+8rWc93PKKafEaaedFjvvvHNxuz333LN4XXT3OspjzL+/Uv5u+Tr68pe/XHydr9Pens/8nb333ruXMwoAAAAAAAAAjHZjqy4AYCR74oknigmfra2tRaCtszlz5hSBtzJcuOaaa8bGG29cBAEzhJkf//jHP4rw4mte85qX3XeGPk899dRoNBrFRMUMlebjZajziiuuKMKZOY2xNH369OLxbr/99uLfG264YVHXBRdcEFdeeWXHVMYFecUrXhFbb711PPjgg0Xwb/XVVy8++nr7nkybNi0+8IEPxOOPPx6LLbZYsa18Bgzz32eccUb8/e9/j2OOOSbe8pa3dNzmxBNPjB/96EfF16usskoRDHz++eeLQGp+5LGdcMIJMWbMmFhUt956a3zuc58r6sy68njz3GdA8e677y7q++Mf/xgrr7xyx23yXH/yk5+M2bNnx3LLLVdMfc1waJ67++67L84+++wiVJjnrz/yPOS26fmc5/P45JNPFs95fnzhC1+Igw8+uPi99ddfvwimZh1ZX4Ziu7rtttuK19ryyy8fu++++wIfO5/7pZZaqjimfD1l2DFDullHV6961au6vY8MSmawMl/f5WsqA4+TJk2Kc889N84///z4xje+ER/5yEeKn6+99trF5ND8W8lwZHd/D3fccUdxHLn1eufg5EUXXRSHHXZY8fe2xBJLFOfkxRdfLJ7P/PjnP/8Zv/nNb7oNZedj5flZbbXViuc769t0002L566r/NvNc5KvhZTnevHFF49ll122COfm41xzzTVFIHullVZ62e0z/J3e+9739nr+AQAAAAAAAIDRzaRPgAGWkwMzeHjZZZfFZz7zmWIr7AzHZaizsz/84Q9FiC23gM+Jg/n7Z555ZhHcy39neDBDZDlJszsnnXRS7LDDDnH55ZcXgbKLL764CANmwLEMSnaWEyoz/JcBtgwb5m0ydJfTHddYY41eJ0F2ttNOOxUTEMvg3bve9a7i371NMeyLDExm3RkqzBBq1pdBuAy35tTEtra2Yopp5xDrz372s+LrX/ziF8XEzzx/eR7/9Kc/FQG/Mvi5qJ5++umOwGcGU6+77roinJg1Zqgwp23m1NUvfelL893uxz/+cfEcZjAyp3Dmec/zndMvM0SY9/vb3/623/Vk4HPfffctQoR5zPm5fOyjjjoqrr/++o7fzcBhylq7m2pZhg3f/va3F2HbBcnwak4uTbNmzSpen3nbDOPmlM58LfQ2OTb96le/Kl57+VrM5z3PZx5Hfv7Wt74VLS0t8cMf/nC+yaVlGDKPI/+muspQa8rXShl2zucka8qg7X/9138Vf2/5e/mc5XORz0Geq5wC2p0MfGbwNF9TWe+ll15aHH93vv3tbxfHVcpJruXfSU4yzb+xfA13N001XwdZR/7t5t8TAAAAAAAAAEBPhD4BFtHHPvaxjq2e8yNDXm984xuLkFmG3zL42TUMmDLglpM2cypjbmXeWf77Qx/6UPF1ToXsTk5H/PWvf11MuCzl9tLlJMwMrJWeeeaZIlSX/u///m++SYnrrbdeERYtt+2uSgb0yi26O09CzEmJGQTMLezf8IY3FBMb02OPPVaE+XJCZW633tmOO+5YBG3zvgbiuDJEmoHP3KL9Bz/4wXzBv5xImucvg4a53XkGVrseUwYvOwcqc3Ll1772tdhll11eFgbui9wiPkOROXEzZVgwX2/vfOc7i38fe+yxHb+b5yZ/L7emz3BoZ3n+cqpmfydMZvA1w6qda8/gYgZhM0CZ5z0fN6fN5jTUzrKOnL6a8rx1noCbx5EB2QMOOKC43S9/+cuOn+V95jTOKVOmxA033DDffXYOU3Y+jgzAzps3rwhu5t9gBoFL+TeQfz/5mBnofPjhh192nDmpM0Oj5aTY7iZ09kX+nb/nPe+ZL5zaWX4vg6x5Ljr/PQMAAAAAAAAAdCX0CbCIclvnnE5Zfmy11VbFNt5lyC8DbhnQ6zplMacA3nnnnbHffvt1e7+5TXUqQ45d5fTADKV1tcEGGxSfZ8yY0fG9DCJmqCxDerlNdlcZXMxQZZXK7eFz8mNuq925/lVXXTWOP/74InBZBvfWWmutGDt2bLzwwgvFVuFlwLL0+c9/vgj15eTHRXXJJZcUn8tQZVevfOUri6mrKSevdt3e/PDDDy8mOWY4sZQB0pyS+dnPfrbf9ey///7FNMzuwpjlJNCcMJoyKPnWt76128BhTq7Mian5Gt5iiy36VUPWn9NljzvuuCKo2XV790ceeaSYCJph1AxelnJya/47f7+77eZTOe0y/z6ee+65jr+HMtxbbgvf+fWdodx8fW+33XbF9/Ix8rF6e94ypL3JJpsUAdPOz1vnYGgZrF1UGUbN5yyP6dFHH53vZ7Z2BwAAAAAAAAD6amyffxOAbuUUyjJo1lmGznIL6Qwq/uUvfylCn123kc4plBlavOOOO4qpoBMnTiw+33fffcVExNTdVtZlELI7ZSiyvb2943s5FTNluK8nm2666XxTKofapz71qWIr9pxKethhhxWBzgwiZhg1p5fmFuqdg4456fTTn/50EZzM0Fx+rLzyysWU1Zz0mbdZ2MmMneUW5pMnT+6YTHniiSd2+3vl73QO9OVxZOjxX//6VzG9MgOEOa00j2nnnXfuCLr2V+dJrV1DjOVz//jjjxfPaTlpNKduZshz5syZHdufL2rYMCdgZti1DLxOnTq12EL9iiuuKCZv5t9Ahilz4mZOzEwPPfRQ8fmpp57qmGbbVefpoHk+87kuj+P0008vtmfPIG35Wi/DrDlNs3yN5N9RGTb93ve+1+PW9U8++WTH43SVr6eBkiHl/N+JnFKa9R566KHF9zMEmgHZFVZYoZj8CgAAAAAAAADQG6FPgEGSIbMPfvCDRYgxQ29/+9vfiqmOq6++evHzDN/96Ec/KqYWdp4AmUHQnICYgb2rr766x/vvz7blOc0x9Ta1sPOW5VXI85JhuNyaPMOfuV347bffXnz85je/KaY4fuMb34jdd9+94zYZnNt8882LUG1urZ7nOs9nfmRoNCdDfuc73ym2iF9Y+TyVHnzwwQX+fucJpRk8PeOMM+IPf/hDEYTMAGkGa/Pjxz/+cbFN+/e///2XTclckJzeuaDvv/jiix1fv/71ry8CphmEvPDCC4vwZJ6r3O49z1NPkzD7K0O2e++9d/GR26kfeOCBxTn761//Gl/+8peLQGZ5fvK83nbbbX1+7abXve51sd566xUh5ssuu6x4fjM0nec27/vd7353t8/D3XffvcDH6fz7pe4m6S6KPO8Z+szXZ56frLkM3u6zzz49BlMBAAAAAAAAAEpCnwCDbLfdditCnznp89577+0IfX7uc58rpiLmtMKPfOQjxSTL3BY+twTPQGeGRHsLffZHThHsGmDsqqdt5IdSTnTMYGd+PPDAA3HTTTcVIbkMJ+YkzS9+8Ytx6qmnxmtf+9qO2+yxxx7FRx5b/n5+ZKgyJzeW28TnNNDepkmWyi3RO8ttxUsZ1uttWmp3Mrz7i1/8ogj25sTPfM6vu+66IvB46623FhNAc3Jlf7YR767OrsHF5Zdffr6f5TTPrCOPIcOH//znP4vXZL4+y0maC5K/v99++xVTaH/yk590O+G2lK/zr33ta8UE13xuMmS6yiqrdJzPvfbaK37961/38YjnP46f//znxXFk6PP8888vJnpuu+22sfbaa3f8Xufzmee6p6DsUNpzzz2LkG++lvO532qrrYrnIeVzAgAAAAAAAACwIK0L/A0AFknnLcnLoGFu557hv5STLb/+9a8X0xFz4mM5wTO3vx4oOR0x3X///d2GHdPDDz8cVcrJnhnwLMOnuVX5Rz/60WLKZ25LnpM+M3R47rnnFj/P38vjyY+UW5bvuuuuxbnMIGC5nXhuL16GIXM78lK59XdnU6ZM6XYC6itf+coFnqMMqd53333F5MmUteYW6zfffHPx73xec+Lm5z//+Tj55JOLj3xtZBgyQ6D90d1W5ClDxSmDxOuss858P8spmHn8Wc+0adPi4osv7vfW7nn7DHzmlug5XXNByu3RW1tbO4LH5Wux3Oa9OzmlNMO7EydOLM5jd8eRQeAMk2b4s7vQZAZAy+e7t+ctt1fP5y6nsA62fF7e/va3F1/n+S+fiwwG5wcAAAAAAAAAwIIIfQIMspw6mTLgl1uRp0mTJnX8vPxe19BbOQGwa+htYWQYMkOHGazMAGVXGTzsS4ivpzDrompvby/CfB//+Me7rSNDl+WEzXq9Xnw+7bTT4l3velccdthh3QZZ3/SmN3V8XZ7DFVdcsdfgZBmE7GrnnXcuPuc28uXjd5ah0o997GPFMfz5z3/uCDXmZMc8pjy/XeVW5eX0ye7uszdnnnlmt98/6aSTis9vfvObO8LDpVVXXbX4fp7rs846K26//fZiwmd5bH1VbgWfE1czLNmb8jWcz0W5dflOO+1UhDHz/F977bXd3u6EE04oAr/5/Hbepj7ltNA8jgzt5nnIiZl5HnNyaGcZAs7pn+nEE0/s9nEyVLr//vsXx3TBBRfEospwa6mncPW+++7b8Vor/xb7E7wFAAAAAAAAAEY3oU+AQZKhr9y2u9xaPENpq622WvH1+uuv3/F7Ockyt/4u5VTCz3zmMzFhwoTi311Dbwsjpyx+8pOfLL7+5je/Gddff33Hz3JqY24139OW4T0pt8/OraoX1dixYzsmIP7oRz8qpi92lucxJzumt7zlLcXnnIyawcYHH3ww/vd//3e++qdOnRpHHnlk8fWWW24535TJcivzI444IqZPn97xXOXEyHwuunPggQcWx5sBwwyZ5v2X8vjz5zmxcdlll40Pf/jDxfc32WSTIqiagdMvf/nL801uzcBi1peTKvN+cwJof2RYMLdqL6eV5uef/vSncdlllxXnJKeJdqechnnUUUcVdWXYMc99f3ziE5+IddddtzjfGczMoGk53bSU5ye3YP/9739fTLfM4y/lxNb3v//9xdf5/ay5lOHX008/PY4++uji33kuM7zZVRmS/NWvflU8d29961s7to3v7Atf+EIRMM3psD/+8Y/nm+aZr5t83vJvL2vaZ599YlF13lI+/666s8UWWxRTbPN1k6HVfL4G4rEBAAAAAAAAgNGhf0kPAF7mhz/84cuCaTlNMUNdzz33XPHvzTbbLL773e92/Pw1r3lNEVrMbciPO+64YvLiWmutVQQHyymgO+ywQzEJMYNqGQ7sLvzWHwcffHA89thjRYDygAMOKIJ7GVLL8FtOKMwJjOVU0r7IY8it0zMsmRMfM7h4+OGHL3R9hx56aBGqzC3KMxSYQbyczJlbrpfbrn/oQx/qCH3mxMcMe2YIMyc5nnHGGcWW5hlmfOKJJ2Lu3LnF7TNEWsrj/NKXvhTf/va3i+3D85gzCJr3n9M4d9lllyKw+K9//Wu+2l71qlfFL3/5y6LGDBBeeOGFseGGGxaBwQzn5vOd5zJDjmWoNGWwc7/99isea/fddy+e4wwn5nOcgdMMJH7/+9+PlVZaqV/nKgPExx57bDHtNO8zJ1Zm8DIDhBlu7Gmr8Dy+fKwytLowEyYzQHv88ccX5+KOO+4oXv8/+clPijqWW2654rhyW/sMY+a5yJ/l67+zb3zjG8XU2Xz9/Nd//VfxXOYk0vybKWvLY8znqqfjyDry76W349hmm23iBz/4QfG6zOmhOZ10gw02KP6myhpziuyf/vSnjkmkiyJrytdtHkcGbzPcfcghh3S8ZktZbz5PGZzN4+w8gRYAAAAAAAAAoDdCnwCLKEOTXS2++OJFuC7DabnFd3cTFXMSYm57/be//a0IKWZwMsNfeZsMCua22/l1TgzMaYjlttoLK0NtORlx/PjxxWPm9uO5Rfv2229fhOuuuuqqfoU+cxpphiVzm+oMPuaUy0WRW3Tn1MjcHj0nWeZ9ZjAwz8luu+0WH/jAB162FXmek5yemtuuZ1DzkUceKYKPGdLMc5fh1q6ByryfvE2GAHOiaN4mg5+f/exni8mS5aTOrjIgmtuV5+2uvvrqIkCbAdMM+WVANyeprr322vPdJoOhZ599dhEqzOmq+Vxm0DBDjnvssUcxNXOjjTbq97n61re+Fdttt12ccsopxesvA8Fve9vbimPICaM9yXPzjne8owjJbr755sUk0oWxxhprFAHKfJ7yI8OfGdbMMOvyyy9fbF2/6667Fuc6/93d38dvf/vbIvScgee777477rvvvuI1kMeVoch8bjtvl971tZzTMfP1ks91b5NSc7rpVlttVbyurrvuuo7XfYY/8/WUz1vnoO6iyr+xDBrn8eRrOP+2u8pjy0mz+fqxtTsAAAAAAAAA0B8tjUyfAACjQm55ntNev/Od7/QYcGVwZcA7g58rr7xyEbTOia8AAAAAAAAAAH3R/QgtAGDEyS3sc0v13GJ+USfHsvBOP/30jimkAp8AAAAAAAAAQH/Y3h0ARrCnn3465syZE7Nnz47vfe970dbWFh/84Adj2WWXrbq0UeXee+8ttrq/4oor4pRTTim2qN9///2rLgsAAAAAAAAAaDJCnwAwgt18883xla98pePfuaX4wQcfXGlNo9Ghhx4aEyZMmO/fq666aqU1AQAAAAAAAADNx/buADCCrb/++vGKV7willhiidh+++3jxBNPjBVXXLHqskadrbfeupjuudpqqxUh3IMOOqjqkgAAAAAAAACAJtTSaDQaVRcBAAAAAAAAAAAAQO9M+gQAAAAAAAAAAABoAkKfAAAAAAAAAAAAAE1A6BMAAAAAAAAAAACgCYytugAA6K+f//znccIJJ8S5554br3rVq+LVr371Qt3PpZdeGmuttdZC3fapp56KZZZZpvhYVB/96EfjpptuioMOOigOPfTQGAjTpk2LP//5z3HZZZfFE088Ee3t7bHaaqvFDjvsEJ/61Kdi7bXXnu/3H3/88Xj7298en/zkJ+PLX/7ygNQAAAD0bkG9zNixY2PppZcu+pY3v/nNxXv55ZZbbsAev9FoFL3VaaedFpMnT46llloqdt999/jRj34Ujz76aPzf//1f3HbbbTF79ux4xSteEccee2yvNR911FFx9NFH9/jzlpaWWGyxxeKVr3xlbLrppvGhD30odtxxxwE7nl133bU4jh/+8Ifx/ve/P4bKzJkzY/z48UX/9cADDxT9WB5n9l3bb7997LfffrHeeusN+OO++OKL8dxzzy10Xzucla+lrbfeOk455ZSqywEAYJSYNGlS7LbbbvOt33zrW99a4O3+9Kc/xRFHHFF8veqqq8ZVV101IL1NT33ikksuGauvvnpst9128fGPf/xlaz4D7cYbb4yPfexji7y2NhoNxhrgorj//vvjjDPOiOuvvz6efvrpmDt3bqy00kqx0UYbxc477xz77rtvLLHEEjESlf894/jjj483velNo6a/BkYuoU8Amsott9wSf/zjH+MTn/hEEfhMuQjU1bx58+Luu+8uvt544427DWcuvvji/X78vN/f/va3cdxxx8U555wzIKHPgfbII48U5yebtVxUXXPNNYsGLYOduViWdefiWeeGJs9l/oeBP/zhD7HTTjvFNttsU+kxAADAaLLuuusWiyzd9R8TJ06Me+65p/g466yz4m9/+1uxuDcQcqHjpz/9afF19g0rrLBCscAxa9asoj+YMmVK0Uvk4k8ugPR18SMDj5tvvnm3IdMMRGZvkguYl1xySfzXf/1XfOlLX4pmdfnll8f//M//xPPPP1/8O89h9qAvvPBCPPzww0UI9OSTT46DDz64WOQbKP/4xz+KUO4XvvCFIQ24AgDAaHLhhRfGN7/5zWKtpTfnnXfeoDx+9n5d+79arRYzZswoLtR78MEHi4v4fvWrXxVBUejNr3/962KNs16vF+ub66yzTowbNy6eeeaZuPrqq4uPXIP9zW9+E5tttlmMFvproFkJfQLQNHJa5Xe/+91isk3nxbLupn50vhozr8LMqx0HQi56HnPMMTGcz1E2JRn43GKLLYompZwok1eoffvb3y6uwvziF79Y/MeKnNZTysXWvLrv8MMPj7PPPrto9AAAgMH32c9+Nt773vd2+7NcjMkFiFxozH4kA4Y5nXMgnH/++cXnnPr/i1/8ouP7V155ZfFYubCZQdMNNtigX/e78sor9zqdMXdO+NrXvhY33HBDseCU0z5f//rXR7PJiwHL0Ozee+8dn//854uAbCnPYR7fX//61zjyyCNjzpw5AxZwzfvLvm+k+vCHPxxve9vbiglGAABQhZyome/pb7311l77lbxQrxxCMtDe9773FWs+PT1uXlyWkxuzv8o1n+4uJoR05plnFmHO3OHjxz/+ceyxxx4xZsyY+QbKfOMb34g77rij2GUkg8wj7fVUhrPXWGONUdVfAyNXa9UFAEBfnX766fHQQw8VW0gM5JaGI8kVV1xRNGbZtOV2eJ23EMyAZzYuOdUzrwLNqz87y6v68tzmOc5zDQAAVK+1tTXe9a53xWc+85ni37kF24QJEwbkvsvplNtuu223389t2Psb+OyL1VZbLX75y1/G8ssvX/y7Gbfvzl0ofvaznxVfZ9gzj6dz4DOtssoqxUV1n/vc54p/H3vssYO2GDzS5OJivva6LsYBAMBQeeMb31h8vuCCC/oUJHvNa14TQym3dC97kunTp8f48eOH9PFpLr/73e+Kz1/96lfjrW9963yBz5T9V160mGuJ+d8ETjzxxBhp8hjzw8WFwEgh9AlAU2hrayuajWxC9t1336rLGbZyUk655X13Wz7mlvY5RSfdddddL/t5bluQV69m85fnHAAAGB522WWXjq/zQq2BkFNEy+3Y+/L9gbTiiivGVlttNaDHM1Rym/rvfOc7xbaKeQy5k0JvcleF7M/yvB5//PFDVicAALDwMhiXLrrooqIH6C30mRfr5fT/oZYXnq277rrF1zmhEbrzwgsvxBNPPFF8veWWW/Z68d3uu+9efH3nnXcOWX0ALByhTwCaQjbVOVp/++23j1VXXXXA7vexxx4rJq/kNgabb755bLPNNvGBD3yg2C4xt97r7KMf/WjHlvFpzz33jFe/+tVx4403zre9el5NmdvPv/nNby62WH/d614Xe+21V7EomI/XVzmpM+8/P/oqa88rO3PrhZ6U/3GiXMjtOokmz3Ge64svvrjPjwsAAAyuXEQsdV5wzH6k7BuyH+lO+fOyd8neJv89efLk4t+5ZXz+e9dddy0+579T/ry8bW7zPljH1HUBtawvdyrorVfK3+urmTNnFlvZvfvd7y56tAxr7rPPPvHrX/+6mIrTH7m9Y+6wkMoJrL3J8Oz//u//FoHPH/zgBy/7+X333Rff/va3i0XivIAve9M3velNxX13nSpUHnv53H3rW98q/p3f7+zZZ5+NI444otgiPRf18phza8jckn7u3Lk91nrdddfFgQceWFws+NrXvraYMnvyyScX/WNv/WlOoM1tJ/N2WX9ORfr0pz9d9PLdKV9ruRXlD3/4w3jDG95Q1Pje9743pk2b1nGcH/rQh7q9/SWXXFLUmf1rPl7231/5ylfinnvu6fb3M6D717/+tbi/7PvzNllrTmm9/PLLezwfAACMXrml+8orr1ysl9x2223d/s6jjz5avKfN3RNyp4SuvvzlLxfva3PNqCfnnHNO8TsLGxpddtlli8+zZs0qPv/85z8v7i/7nd56mvydfB/eW3/QFwvzXjv7qew7sy8o1+ayV8se8LnnnnvZ75e9SPYr3Sl7yK59UZo3b178+c9/jg9+8IPF42Sfk2t2ucX5lClTegxJZi15DvP3s6fKdcRvfvOb8cADD8TCyiBl9klZR/Y/uaZ36qmnFuewlL3XW97yluJ4ertosOwFc41zQXLYS2lB/U/2df/85z+L11F38vX+ta99LXbeeefiudtuu+2KNckLL7xwvt/LPj/XVLPGXHNd0HEcdthhi9TD53+zyPs59NBDi9d39rLla7F8/K6vo97663xe8us8vp6G5Pz73/+OTTfdtJjya3t4oApCnwA0hXJ7jJ122mnA7jMb6Xe+853FG/ds7DbeeOOiKf/Xv/5VNHs59fKpp57q+P38eTYIpc0226xYkCsb6gyJfvKTnyyanWyaxo0bV9wmtyzM7RdzO/VcwLr33ntjsOTjZdOTC4Tdyeb2sssuK77ecMMNu/2dXCxL2dQBAADDqyfKoGQuOi1q35C9TDnJMyfD5L9f9apXFZ/LSTH58/x3fuQWbwNp6tSpHSHUXMAZTLmgmL1fLg49+OCDxcVueay5QFsuIpUhzr4oF4hyJ4pyy8cFyR4tP5Zaaqn5vp+Lo9kn/u1vfysWN7Ou3KZxxowZcdVVV8UhhxwyX/g1J4Z2fu7K56zzTg+5wPX2t789/vSnPxXTXPL+cpv0DET+9Kc/LRYWn3nmmZfVmOfiE5/4RFx55ZXFAl1ODZo0aVJ8//vfL+roSQZZDzjggCLgmYthm2yySdEPX3311cWC4Ze+9KUeF8m+973vxUknnVQ8Jzn9NY9rhRVW6PGxMtj83//938UCctbZ0tJSLMRlr3vuuecWffxf/vKX+W6Tx5ILf/lYuVifr+W8TS6sZng0F+B/9atf9fiYAACMTtl7ZTiwty3eyz4t3393Jy+8Stdcc03RA3Wn3JY9+4L+yve65QTHsicoHzN7nwzo9faYWXfuELewFua99u23317s6Jchvex7su/IYS9Zb+5C9573vKcI0w2EXPvL/icvwsu1v1yvy7WxvP8MAuZ6WvZPneVFaNlXZC25tpf91HrrrVdcWHfGGWcU5zd7tYXZqW///fcvLphbZ511inOVNWVoMy9oy56mfN3lOUh///vfu72vXI88//zz53u+e7P00ksXfWPKQOPXv/71uPnmm+cLm5Yy6JznKPuzrvKCwHyd5usng7H53GWPm6/v3AEjL8Qr7zN7tfI4cj22Oxk4Lv+2Or/+F6WHz9/JYG0GObO+DIj2tB7aW3/9jne8I5ZYYoni9ZC9Z3fy+cmQ7g477DCgA4sA+kroE4BhLxuEcjEwr34bCNlI5VWE2URlw3fttdcWDWZeiZbNSi5yZiPxuc99rmNaTk5e6dyc5sLbKaecUlzBlf7whz8UdWYjdPrppxfhyjPPPDOuuOKK4t/ZKM2ePbtoFPviwx/+cPEfDMr/aDAQshnKIGs2W9kwdac8x3ks3TV8AADA0MlFkBNPPLFjMkUu6Ky22mqLdJ/Z22Qvkz1K+uxnP1v8O6eI5Of8d8qf57/zYyAvwMvt3HPxL/ujJZdcsggaDpZ8jNxePRd8cspIXqCXfV8uzmSvltNJ8mfZ+3Xd7aEnuYiU1lxzzVhmmWUWurZcQMzFx1wkymBk9qVnn312sXiXgcly0k+GN3NBLeXiaOfnLqeB5r/z+ymni+Sx5MJU9roZUM0wZF7Ul6HMnFCTC7/5eJ3lIl0uqOUCY043ycfPfjZr+shHPtLjxM6cHJohy5wck7tb5AJmLoTm7X/5y18WC4B5PBk27U4uDGdvnfVlD33MMcf0es6yJ//HP/5R/A388Y9/LI4v68zPWXf2ujk5NOsuZS35nOdWhbnYmMeSt8ljzslL6dhjj53vok8AAEjle/KetnjP97p5wVPuDNednEyfF2DlRVDdrfXk+/d8D50XlOVkwv7Kda2yV8jeJuX6VrnO011oMHvMMjC4MEHTzhbmvXYOXck+Ladzlj1Qnpu8n6w9z8lvf/vbWFT5fGUQMXdWyPORj5E9R56zfNzsrbNvygvKOl8Ul33G448/XoT/MuyXvUquG2bQM5/nfC6zj+uvO+64o5gKmecojzlDsXluMpCZ56vzMZfPS9aea5Vd5W1zEmaGGft6UWj+d4Dsz/K85ONnn5cTajNw+vvf/75YN+1uh8BSnou84C97xpx4essttxT3kz12/veKDLFm79l52mqGPrNHywsQuwtp5vORwd/srcsLKhe1h89+Ny90zdtlfVl3hjK701t/nb1++XfdU2g1738g/o4AFpbQJwDDXk7GzDf92Uj0dDVWf+ViVoY5c6x/NimdF+qy6cqmLq/gykakrxMvc5Epazz44INf1mTlv8tt6bpr0LqTTfIGG2xQfAyEbEqzgUy5jUVP2/LlOc7/wJDnvKet8QAAgIGT79OzX+j8sd9++xWTJXJLwR/96EfFBVm5VXcG24a7XDDrejz5kQshuU1dHlcuKOUFc3lhWk5NGSx5AV4u2OVODbn41Hn6Ri7sZIgwF5gygNnXLezLRdXs2RZFLjRm75W15aJWLhaXctpl7iKRclHxscce69N9ZkA0Fy5zm8TsdZdbbrmOn+U0mQxVZv+bC3Sdp5WUFzjmxM5cfM3eNmVfnIuD+bx1t1hcLkzmYmpeuFjerlwgzwBmOdE0p4Z2la/vfF2XejunOVmnDD/ncZS7VKQ8j1l31p+LmBk4LZXTjXKibOc+OG+TAee3vvWtxWuyfF4BAKCUYcGcMpihxZxQ2Vlu8/3www8XE/17mla/oKmN5aTAfG+bj9MX2R9MnDixeO9fvt/O97oZkCuV0x/zgqmuwz0yMFhO2FzUXSQW5r12eZussZywmHKiZvZAu+yyS9GjLapLL720eM7yvOaa3/rrr9/xs9zBL/vsvCju+eefn2/78bK+nPLauT/J22Q/ns/3G97whj5fNFjK3ix7/87HlgHGHFCTcgeEDDyWEyfzMXp63SxM2DAH2GR/3Hm4TgZHsy/MrdzzosFcM82L8l588cWX3T6/n71W7rzwsY99rHiOO4ebM8yb8mLSPKepc5izu+BkeWw5uTPDoQPVw+dFjuUujfnfHcr77q/y7ygDpF23lM8Qb9aQf/ud//YAhpLQJwDDXrkwlG/sF2WbiVI2TeXk0GxMupPN5e67797RGPZFXv115513Fouz3ckJNqm/jeBAyEkr3/jGN4qGbIsttii+7kku6pWTg/I/HAAAAIMrFwpy4mHnj1ycyomYORUmw2ynnnpqsciS79eHu9xRoevx5EdeVJZbmOeCSE6FzMXGniZuDJR8jJTBws6LUqU8n+WWjbmQ0xdlb9fTluV9lSHJDL9mILI7nZ/r7hbdejvennZ2eOUrX9lxzsvjzUk6d911V/F1bjfYnY9//OMv+14GR3PhK6d85rF0J8979vK50JxTWbrqz24eOVknX1t5oWIuAHannI6UvXm+1lJOC0q5mJmLrF23isxFwyOOOKLHCyMBABi9MiyWwcXutngvJ3d2voipOxnMy/vJ96jlrgF93dr96KOPLt6ndv7YfPPNi/WrfA+b610ZuMxBJ52DbXkBVk51zAvycmDJYE0nXJj32hloTLmteU457dxX5cVruVteufvEoih7ozxXeS666rwjXudesDymDIpmUDEDsqXsbTLUmBfY9bc3z+eku4vcsofJ+8rH6bzVfOfgbucJnLllfZ637MP6Ox02e6nsP/N1lwNs8rXT+eLD7KHy/Od56TydNddpc+pob71m7g6SActcA836SuXrLKeAdjZ16tRiwmnnbeAHoofPoHUe10DYbrvtivXi7EO7Tuot/44y1Nw5vAwwlMYO6aMBwELIN/6pvCprUWWQsWwisznuSf4sm5C+TlRJ2RzlFYvlFV75WPk5m6GcSpJ62x5hMOTknGz4yyv5chv6BYVn84rD3B6hXCQDAAAGT07EKBdCsl/I9+K5wJRBz1zQyUWngVq0GAo5dSO3aSvlok8uAuYW33ls5STKRdkava/KnRZyWkhPF/SVvVrXBdielFu/5XEMhOwjcwE4a80e8oknnii+7lxPd1tJdjVr1qzi/JaTME888cRuf6/8nfL+M1yc958Lobmg1Z3ueufy9rlo29NzmQt42YdmsLS73ro8l32RdaZcfCx30uiq83nK+nKLwXyt5baFN910U/ziF78oPnLKT07oyYlKOZVmIC4wBQBgZMqwXr63zi2mcypjGa7MLdLzfWQ5QKQna621VhEeu+GGG4rJhoceemjx/ewBcsvrnBSY0y27s/rqqxcfXfuHXC8r39Pm+9mu8r191p1bredjllPyyxBoBgZ7Cu/1x8K81z7ssMOKnQ7yAric1J+15lTLvE1OvixDlwPVC2YwsJze2VU5vTHX8bKXyOf2U5/6VBHwzXOVtea5ymEqWV/ugJDTQRdmcmT2Rd3JwGAec9aYr4fyucqwcYZLs5fK104+fsogal5Ul6+ZvKhvYeSOh/nxhS98objAMC/SzABmvlZyXTB70kMOOSROO+20+Xqx9PnPf77H+83dIFLnXja3SP/+979fBEcz1Fpe+Je7LOZabb5+Ovehi9rD5/rmQF0sWwZSc401z0059CdDoPn3n2ztDlRJ6BOAYa/c9qGcprKocruCUm9B0nLRKhfO+nq/uR1EXnXX+crEbMBzCkk2UFdffXUMlWw6cquJcnuEbJxy4a8v4dnyXHfdrgAAABhcOZUiFzy+973vFQs4OdklF3py8SQXn5pROYljq622ive///3FQk/uupATRvoT+luU/i8X8fKjN50nuPSm3I4+w4d5m770WHkxY07hyQXfrtNBciu9XFDsLH9v3333jb/97W+xML1uuVDWl+Mtt95beumle/zd7kKd5eMt6Ph76637sxhX1puPm4uSC1L2s7lIm1tfnnzyycX2f2WgNj/+8pe/FPV9+tOfjoMOOmiht/0DAGDkygvwMniZUyxz4Ef+O3cxyC2os8/py8VsObUxg3u5fpRbT+f7znLK5z777NPjpMC8XQbzFkbeNkOfOTkx34vn+/0yMJhhzYUNDHa2MO+1MziZu9PlgJLcDSBry4sE8yMviMxQYIYEcyrloij7lXzeuk4g7SrPSdaR9eZznetqObk0w58ZusydOPIjh6zkRY65m96Cwr5d9dZvlT/rvFNgrtPltMsMP2Y9ZeizfN2Uk0AXVT5O7gaRHxn0zGPLQGa+1vN1nuubnXvlvvRinX8/e748jgyQ5uu/DH2Wa5ddQ5OL2sMP9AV9WV/+d5k87rxIM/97TV7kmmvXOcG2p10oAIaC0CcAw175Bn2gAoidG6tsCHLyR29h094asc4+97nPFdvGZwPzkY98pLjab6ONNiqmnmTwMxfrhir0mecqr7bLqyvL7QWyWe7rFgPluTbtBAAAqpPbreXC0rXXXhs/+9nPiskg3U1x6W0aZAYNh4vcCi8Djhn4zMkhX/nKV+KEE04ogq790Z9jygWs7Ptyi7qepuf0V25Pn/1VLgzmwu0ee+yxwNvkQl1OvckJLrnQlb1ZBj6//vWvFz/PaS55P9lDbrDBBrH88ssXFxP2J/TZ+ULJfIyNN964X7frHBrtqrvAZtkrLygsW/aXfe2tF1RnLqyXu1n0VZ7vT3ziE8VHhnXzecv+PbeMzykxv/zlL4tePn8OAACdZVgx34Nm75IhwAx99nVr967TDnPqfl4ElxfEZbBuIMN7XWW4Li9Yy4n7GfzMrcDLoN1APubCvNfOISnZH2XPkxM/8/dzAmkG6/L85ATQiy666GXbsve0A0J3PWLZP3z7298u1uz6I9cNM/yYHw888ECx1pbHldMw8zn84he/WOzM8drXvnZA+tiyp8oplZ3l85S9ZJ6LvDA0w7Q5dTO3Uc+pqH31ne98p6g/p1bmlNWe5POUr9N8vHxu8rWTocbyeciptPlc9VceR4Y+czrmN7/5zSI8eddddxX3W27VPpg9/KLIEHAGbvO5zz4714J7CqwCDLX+/RdVAKhAebVhOX1kUa2zzjrF1Yfp7rvv7vH3yp9laHNB8oq3stHJq/9y4S63zsgrETPwmbLZHQq5UJdXTpaBz7yCMhdW+xr47HyuB+JKTwAAYOEXFzNcmJMUc9v3r33tay8L5o0ZM2a+af9d5fbww0lu25cLeCl7qFw47ao8pu6Op7/HVE7l7LwdXVc5PSQXnHIaZ1/kZI+8yC/lVJsFbb2ex1GGN3Orw7I3y94xvfvd744//vGP8cEPfjC23nrrIvC5MD1kLhCWPdzDDz/c4+/louV9993XcaFjTidJua1fhnG70912iHksKScc9RQYzdftvffe2+feelGfyzyG7IVzETFDuSmPM3v2crrPaqutVpzz/NvKyULlQmK5cAcAAF3lek/KMFy+/8/wWl7U1NfgXYbp3v72txdfX3zxxXHzzTfHtGnTOrbZHixlKC0fM98jZy+w0korxU477TQg99/f99r5Hj37hzz+lOtnr3/964shJjktND+yDy63oV+UHrEv/UM5vTWneZbK7dTLqZvZL330ox8tpnzmduM56TOP49xzz+3XuepuK/IyDJrhytT1wr0MGOdFgfk7eTFoPo/pne98Z8faY1/kziF53jP8uyA57bS8YC9fK53PZb5mu+5S0dktt9xSbFHfeWJpyv4510vz9tmvZXiy3MK+a7B3MHr4RVWGpPP8l89Fnv98HgCqJPQJwLBXvsHP6SC5gLOosoF44xvfWHx94okndvs72fzmeP5yq4lS5wk0nRf2Jk2a1PH15ptv/rL7y7rLqzbLhafB8t///d/FlZHZGOcVjIceemi/bp/NWDZenRfxAACA6qZjZtizXHw64ogj5vt5TvjobRGpXBQaTnI7wzIAmBMbs//q7pi6O56cOHn99df3+bHKRcbcPrDrwlNqb28vJnXkVuo//elP+3y/OfEle66cxPrb3/6219/NKa3ZM2Y/mY/VtY/saTu4rLlznZ2VWyN2DZyWi865lWIGLrvKiSk5aTUXYv/85z93hFg32WSTlz1mZzmVpbvJQRlQzdpycbY72QfnomDWm9NMF0UuTOdib74ucpGtOxkizgXZnGJU/veDfK4yUJvbR3aVC3XbbrvtkPTqAAA0r5zMucYaa8STTz5ZvPfNaY+5RXqGOfsqe46yR8vw4FBMCszJjjkEJacUliHF/gYGe9Pf99oZ5Muppx//+Me7DQ9myLEMHHbuZ3rrEe+8885uQ59lL5hTWZ977rle689dKFL2NtkrZX0ZWu0qL7Irg5nd9Vu9yaBwdzso5AWCOVVz5ZVX7nZyaBk4zMDmwr5uynBiDrs566yzev3dfK3kGmFO9SwvdszgadnDZ6/ZnZzQ+uEPf7iYfptB2t4CyDkxt/OxDUUP35ue+uvS7rvvXpyPvKAxn68M0WbvXYZiAaoi9AnAsJdXOWZQMxuo7hqFhd0msWx0MxjZeSpJTjD5zGc+U7xpz4WvbPBKna84y+a+1DkcmVf7ZYNWygkreX955Vnqa3A1r1DLK+Lyo6/Gjx8fl19+efH1Zz/72X5vWZEyMJoNeG6hMJhXmAIAAH2Tixk5ITPlAkNOz+h8kVxuPZcyEFpupZ2LFTk9I/uT4WbxxRcvtqYr+6Pcaq5rmDBdffXVxSSdUi7k5TZ6PS3YdScXnXLxLKea5DZ2nfu47LkygJo9Vy5IfvKTn+zXom/2XOlXv/pVsUjYdRJJhjrzorwyXJnTa7bYYouX9ZEZqOw8WSb706OOOip+//vfd3yv62JX2ZvmYnNnBx54YPGzXHA77LDD5pt8kr+bP88FvJwem+em9IUvfKFjcmm+xsrFruxts5byIsbOsmfM+yvDu7n43Xnh88ILL+x4bj/wgQ90XNC5sHKizvvf//7i6y9/+csdF2qmfNzc9vDoo48u/p3HlhNqUgZAy/OcPXPnhbx8zk466aTi64GadgQAwMiUUwlTbkueysmdfZW9QE6NzPflZ555ZtGD7LPPPjGYshfKi6+y7yr7i4EMmvb3vXauuWVoMteg8j19590NcornkUceWfRD2dPkBNCuPeLxxx8/35pZTnvM++lOhg/zsbJH/tSnPjVfv5aP8d3vfreYJpqBv7KvyXXD8nn90Y9+VARKO8v+NNcVuw6M6Yvs+bKf7dyjZRA3d+pLGWTsbse+PMdZVwYlc1JrXjRYXrTXVzvssEPHNurf+ta3imPrPMwm5Zpovi6zR075uQzgpkMOOaT4nK+jDPl2nrqa/42i/Hn2yuXgne6O45xzzinCu7krY+fneLB7+N701F+X8nkp/1az/0+2dgeGg5f2tgWAYSzfuGeDkAs6uXC1/fbbL/J95tWC2dRkc5MLWtlklFskdN5GIReMOjdZeSVXLjTlG/9csMtFumxksrnL7T3ySr3jjjuuuFJurbXWKhbTysYpm6qcRpJX8mVDWS5A9SQXzMoFq2zk+iK3BCzlVokf+tCHevzd17zmNUXgtas8xynPc3+2hAcAAAZHLkJ9//vfLxZJcmEl+5jsYfL9ek6PzEWPfG+f26TlYlqG6zIgmZNTckpGLozkxV3DSfYbOXXm7LPPLhbacnGpnPKR38/pIdmbZRgxF4NyESYXdnLS40EHHRS/+93v+vQ4OYkyJ3HmYlE+zm677VZsK5fnNO8/z2cuPOXCbbnNeV/lrgrZI/7f//1fsViXH7k4lVsa5sJiLlKVPW32jXkxYNfb58JeXiiYdZWhyLxdLrjlBM6sM7dc77rVe/ZzDz74YNEDXnnllcW0nLyvnL7yy1/+srjvrCeDl3m8Gd7MCxFzKkqey1yoK8PC5eSST3/608X95WspQ5yrr756UUtu2ZgTXvI1VG6rWMrF0+x5TznllOI1mgHRrDvrLaft5OLiN7/5zRgIOYknF0vzYsd8TldZZZViGm726OXiaT5euVCZ8txk6DR7/5yam9Ng8tiyL89zmwvTOVEnX1cAANCTXAPK9Z9c48k+Y8cdd+z3fWRQLLc+z7WofN/aeeeGwbyIMN8/52NmYLC/fU9vFua9dgY799tvv6J/zT4k19LygrLsK7KPyp4je4vOUxTzvX9eFJg9bobvssfJnil7nOw/spfMnrKz7MOOOeaYos+577774h3veEfRc+Vj5e3yfKT/+Z//mS/Amb1UrpPlVMe86CzXBPN5yv6m7HFy7a2/oc98vjM0mhMis/7sX3J7+ZQDXPbff/9ub5fTRbPPX9TpsLkDRfaCGc7NXRDzI6fXZl9Ynsvsj/O85UWNXdcXMwybv5M9X97XscceG+uuu25xHGVYMs9vnvOejiMDyOXgmuz7h7qH70lP/XVn+RrLEHO+bvJY+vv8AwwGkz4BaArl1YLZ1A2UnOD597//vWhI8w16XuX3/PPPx9Zbb11MI8mtA7JZ7Cqv4srQaE4SyQYnG9eUV+P94Ac/KK7WzEY2g5rZfOQiazY/+R8DsoFKnSeSDJSsvfOVirnN4G233dbjRzYw3bnqqqvmO+cAAED18oKzcqEsFzo6T/DMniYnbeSFZrlAluHI7HEyHJoLLl2DesNFLgqWC3k5pfTZZ58tvs5pIjkpJhfnMsSYC2H5s1wky5Dodttt16/HyR4tp57mhXu5KJSLiTlZJM9R9oW5OJiLOgvjE5/4RLFdYIYf83FysSwXB7Pe3DkhJ4/kz7sGPlP2itl35kJnhkWzpjzWvAAxF9myXy2niZQLY53PXZ6PXLDM10PnaTe5IJiTOQ844IAiMJs/z/BmLlbmQmIGhrPv7Song+brKgO5eRy5C0beJvvcfLzUdfvKXHjLCTnZ7+Zx5GstF1TL48v7ywBpTncdCHk/uQCYC8W5YJhh1ny8nBSUr4tcZM7Qa9fXfE6WzcX1/J3s5bNfz4s0c2JQ9v9//etfF3hhJgAAo1uGFzOgmPbYY4+F2iI9t9ku36sO1aTADBmW4dLuttNeVP19r50BvuzrMlSY/UZOcswL4ZZbbrmivs59UCl7q+yd8vvZQ2bvlD1A9lt5X9lPdSfX+PLnX/3qV4sL2TI0mmtj2XNmP5UXG+ZW7p3lzzLcl1M5MySbx5K9Ua77ZQAx1/uyB+qvfLycVJqvo+zRMuCa5yx7pu4GtHRWvlbyws8Mry6MvO1PfvKTYoeEPG95bLmGmceWF+1lYDP72uwXy8mnXWVPnb16Pg/5nOZtc20yQ5N5oWP21p0vLuyqfP3lxaudd1kcyh6+O731151fg+WE1fw7zuApQNVaGp1nbAPAMJXNW15FmQtVOa1ko402qrqkESkb67xaLxdWc2rpcF0cBgAAYOhcccUVxXb2Ocklp4cCAAD9l4HIDIxlSDEnCg7FGkyG8vKCqbxgK7cmz0mKNJcMof7whz+Mt771rR3bizO0cteMvMAyL/DMiywzvAxQNZM+AWgK5RZ+KbeJYHDkFXopt00Q+AQAABgdclrMBz/4wbjnnnu6/XkuSKec4AIAACycnLJYTjwcqjWY3M47J+TnZESBz+Z+3eQuH1Qjd3DMwGfuBCnwCQwXQp8ANI28+jG3NDzrrLNi6tSpVZcz4uQ5zW0u8hx33ToDAACAkSsneN5xxx3Fdn9TpkyZb5pJXhyYHzkZKLdgBAAA+u7ee++NyZMnx8knnxynnHJKsc32/vvvP6iPmVuY57bp5513Xvz6178uvnfAAQcM6mMycGbPnl1Mhc3dD7/zne8UX2+88caxww47VF3aqJJbyuffbk7I/d73vld87xOf+ETVZQF0GPv/vwSA4W3s2LHFAlQuMv3mN7+Jb3/721WXNKLkOc1GMs9xnmsAAABGh6985Stx6623xk033RS77rprrLPOOrHEEksUC1zTpk2L1tbW+OpXvxrbbrtt1aUCAEBTOfTQQ2PChAnz/XvVVVcd1Mf86U9/WgTVSjkhcostthjUx2TgzJw5sxiEU8p+7PDDD6+0ptHohBNO6NghMe24446x1157VVoTQGcmfQLQVLbccsv4zGc+U7zJ7twks2jyXOY5PfDAA4tzDAAAwOix3nrrFVOADjnkkGKCzHPPPRcPP/xwLLPMMvHud787Tj311PjkJz9ZdZkAANB0tt5662K652qrrVZcbHXQQQcN+mO+9rWvLS7iWmmllYr38Tktkuax8sorF7sxjBs3rujPjjnmmHj9619fdVmjzmabbRZLLbVULLfccvHe9743fvWrX1VdEsB8WhqNRmP+bwEAAEA1vvSlL8Vtt90WV111VZ9v8/zzzxcTqy+//PJ45plnYo011oj3ve99xXY7plcDAAAML/o+AACARWPSJwAAAMPC0UcfHeeff36/bjN9+vT46Ec/Gn/5y1+Kq68/9rGPxZJLLhk/+9nP4stf/vKg1QoAAED/6fsAAAAWnUvfAAAAqNTcuXPjBz/4QZx++un9vm1OennooYfi8MMPj/3337/43qGHHlpMjrnwwgvjoosuij333HMQqgYAAKCv9H0AAAADx6RPAAAAKnPZZZfF3nvvXSz87bTTTv267Zw5c+Jvf/tbrL766rHffvt1fH/MmDHx1a9+tfj61FNPHfCaAQAA6Dt9HwAAwMAS+gQAAKAyZ5xxRsyaNauY2HLsscf267Z33nlnzJ49O7bddttobZ2/vV177bVjrbXWiptvvjlqtdoAVw0AAEBf6fsAAAAGltAnAAAAlfn4xz8el156abFFX0tLS79uO2HChOLzOuus0+3PcwFw3rx5MWnSpAGpFQAAgP7T9wEAAAyssQN8fwAAANBn22233ULfdtq0acXnFVZYodufL7vsssXn6dOnL/RjAAAAsGj0fQAAAAPLpE8AAACaUk5zSYsttli3Py+/P3fu3CGtCwAAgIGh7wMAAHg5oU8AAACa0hJLLFF8bmtr63VxcOmllx7SugAAABgY+j4AAICXE/oEAACgKS2//PK9buM3Y8aM4vMyyywzpHUBAAAwMPR9AAAALyf0CQAAQFNaf/31i89PPPFEtz/P7y+11FKxxhprDHFlAAAADAR9HwAAwMsJfQIAANCUNt9882ILv5tuuinq9fp8P5s4cWJMnjw5ttpqqxgzZkxlNQIAALDw9H0AAAAvJ/QJAABAU1p88cXjHe94R0yaNClOPPHEju/XarU44ogjiq8//OEPV1ghAAAAi0LfBwAA8HJju/keAAAADCv33XdfXHLJJbHmmmvGe9/73o7vf+lLX4prrrkmfvzjH8cNN9wQG264YVx33XVxzz33xN577x277bZbpXUDAADQN/o+AACAvjHpEwAAgKZY/Dv66KPj7LPPnu/7K620Upx66qmx7777xl133VVMfpkzZ04cdthhxdSXlpaWymoGAACg7/R9AAAAfdPSaDQaffxdAAAAAAAAAAAAACpi0icAAAAAAAAAAABAExD6BAAAAAAAAAAAAGgCQp8AAAAAAAAAAAAATUDoEwAAAAAAAAAAAKAJCH0CAAAAAAAAAAAANAGhTwAAAAAAAAAAAIAmIPQJAAAAAAAAAAAA0ASEPgEAAAAAAAAAAACagNAnAAAAAAAAAAAAQBMQ+gQAAAAAAAAAAABoAkKfAAAAAAAAAAAAAE1A6BMAAAAAAAAAAACgCQh9AgAAAAAAAAAAADQBoU8AAAAAAAAAAACAJiD0CQAAAAAAAAAAANAEhD4BAAAAAAAAAAAAmoDQJwAAAAAAAAAAAEATEPoEAAAAAAAAAAAAaAJCnwAAAAAAAAAAAABNQOgTAAAAAAAAAAAAoAkIfQIAAAAAAAAAAAA0AaFPAAAAAAAAAAAAgCYg9AkAAAAAAAAAAADQBIQ+AQAAAAAAAAAAAJqA0CcAAAAAAAAAAABAExD6BAAAAAAAAAAAAGgCQp8AAAAAAAAAAAAATUDoEwAAAAAAAAAAAKAJCH0CAAAAAAAAAAAANAGhTwAAAAAAAAAAAIAmIPQJAAAAAAAAAAAA0ASEPgEAAAAAAAAAAACagNAnAAAAAAAAAAAAQBMQ+gQAAAAAAAAAAABoAkKfAAAAAAAAAAAAAE1A6BMAAAAAAAAAAACgCQh9AgAAAAAAAAAAADQBoU8AAAAAAAAAAACAJiD0CQAAAAAAAAAAANAEhD4BAAAAAAAAAAAAmoDQJwAAAAAAAAAAAEATEPoEAAAAAAAAAAAAaAJCnwAAAAAAAAAAAABNQOgTAAAAAAAAAAAAoAkIfQIAAAAAAAAAAAA0AaFPAAAAAAAAAAAAgCYg9AkAAAAAAAAAAADQBIQ+AQAAAAAAAAAAAJqA0CcAAAAAAAAAAABAExD6BAAAAAAAAAAAAGgCQp8AAAAAAAAAAAAATUDoEwAAAAAAAAAAAKAJCH0CAAAAAAAAAAAANAGhTwAAAAAAAAAAAIAmIPQJAAAAAAAAAAAA0ASEPgEAAAAAAAAAAACagNAnAAAAAAAAAAAAQBMQ+gQAAAAAAAAAAABoAkKfAAAAAAAAAAAAAE1A6BMAAAAAAAAAAACgCQh9AgAAAAAAAAAAADQBoU8AAAAAAAAAAACAJiD0CQAAAAAAAAAAANAEhD4BAAAAAAAAAAAAmoDQJwAAAAAAAAAAAEATEPoEAAAAAAAAAAAAaAJjqy4AAJpdo97I/xPRaEQUX5cf+cP8PxHR0hLRUn5uiWht/c/nlmjJzwAAAAAAAAAAsABCnwCMWo0MZM56MRrTZ0ZjxuyIOXOjMXdeRPHR1unref/5uvvvRXv7wheRec9x4yIWXyxaFn/p80tfL9bL9176HEsuHi3LLh0tyy0TLUsuPpCnBgAAAAAAAACAYailUSReAGDkaNTrETNnvxTmnD4rGi/MjCiCnbNe+t4LL30d+VGrx4iw2LgiABoZAF3uP0HQ/3w93/eWXrLqSgEAAAAAAAAAWEhCnwA0pUZO5ZwyNRrPTI36M88XnxvPTovGCzOKwGexzTovN3ZMRE4HXXG5aH3litGy8krRsvKK0bLKStHyyhWiZawh4AAAAAAAAAAAw5XQJwDDVqO9/aUgZxHufH6+gGcR7GRgtbQUYdAiBFqGQcvPKy4fLa25Fz0AAAAAAAAAAFUR+gSgco1646VJnZOeivqkp6Px1LMvhTyfnx7h/00ND2PHRMsrVnhpIujqK0frWqtG61qrRcsKy1ZdGQAAAAAAAADAqCH0CcDQBzynPBeNSU9HfeJ/Qp5PPh0xt63q0lgYyy4drWuuGi1rvxQCzTBoTgsFAAAAAAAAAGDgCX0CMGga9fpLW7P/J9xZn/RUNCZPiZgn4DmiLbPUS+HP/4RAW9deTRAUAAAAAAAAAGAACH0CMGAac+ZG/dFJUX9kYtQfmxyNJwU8+Y+llyzCn63rrxWtG6wTLeusFi1jxlRdFQAAAAAAAABAUxH6BGBgQp4PPxGNyU9H1P2/FfpgsXHRuu6a0brhOtG64drRsvbq0TKmteqqAAAAAAAAAACGNaFPAPoX8nxschHwzKBnY1KGPOtVl8VICYGut2YxBVQIFAAAAAAAAACge0KfAPSoMXfeS5M8hTwZaov/ZxJoGQJdZ/VoaRUCBQAAAAAAAABGN6FPAObTeH561O55OOr3PBL1R56IaK9VXRJELLlEtG66XozZbMNo3XT9aFli8aorAgAAAAAAAAAYckKfAKNc/r+BxqSnonb3w1G/95FoTJ5SdUnQuzGt0br+2tGaAdDNN4zWlZavuiIAAAAAAAAAgCEh9AkwCjXa2qP+0ONRv/vhqN37SMT0mVWXBAutZbVXFuHPnAJabAPf0lJ1SQAAAAAAAAAAg0LoE2CUaMyYVQQ867l1+4OPR8xrq7okGHjLLh1jXrP+S1NAN143WhYbV3VFAAAAAAAAAAADRugTYARrzJwdtdvvj9rt90Xj8SdzL/eqS4KhM25stL56vRiz9aZFCLRl3NiqKwIAAAAAAAAAWCRCnwAjTGNeW9Tveihqt90b9QcmRNTrVZcE1VtisRjz2ldH6zavidYN1omWVlvAAwAAAAAAAADNR+gTYARo1OvFlu21W++J+t0PRcy1dTv0aPllYszrNo0xGQBdc9WqqwEAAAAAAAAA6DOhT4AmVp/476jdcm/U7rg/YsasqsuBptOy2itjzNavKQKgLSsuV3U5AAAAAAAAAAC9EvoEaDL156ZF/dZ7i+3bG1OmVl0OjAwtES3rrVWEP8dsuUm0LLVE1RUBAAAAAAAAALyM0CdAE2jMayumedZuuDMaEyZXXQ6MbGPGROtmG8SY7beM1o3XjZaWlqorAgAAAAAAAAAoCH0CDGP1p56N2vX/itotd0e8OLfqcmDUaXnFCjHmjVvGmG03j5Zll666HAAAAAAAAABglBP6BBhmGu3tUf/XA9F+/b+i8eikqssByumfW2xUTP8cs9Grqq4GAAAAAAAAABilhD4BhonG89Oj/drbo3bjnRGzXqy6HKAHLausFGN22DrGvGGzaFli8arLAQAAAAAAAABGEaFPgIrVHno8atfcFvV7Ho6o+59kaBqLLxZj3rB5jNnxddG6yiuqrgYAAAAAAAAAGAWEPgEq0Jg7L2q33BO1a2+PxlPPVl0OsChaIlo3WjfGvHnraN10g2hpbam6IgAAAAAAAABghBL6BBhCjZmzo/3qW4vJnvHi3KrLAQZYyytXiDG7bFdMAG0ZO6bqcgAAAAAAAACAEUboE2AINJ6fHu1X3By1G++MmNdWdTnAYFtumRi78+tjzPZbRcvii1VdDQAAAAAAAAAwQgh9Agyi+tPPRe2yG6N2270RtXrV5QBDbaklYsyOW8fYN28TLUsvWXU1AAAAAAAAAECTE/oEGAT1if+O9ktujPrdD0X4n1lgsXExZvstY+xOb4iWFZatuhoAAAAAAAAAoEkJfQIMoNpDj0ft0hui/uDjVZcCDEdjxsSY178mxuy6XbSuvFLV1QAAAAAAAAAATUboE2AR5f+M1u95ONovuSEaT/y76nKAZtDSEq1bbhxjd3tjtK65atXVAAAAAAAAAABNQugTYFHCnv96INovui4aTz1bdTlAk2rdZL0Yu/eO0br26lWXAgAAAAAAAAAMc0KfAAuh9uCEaP/nVdGY+FTVpQAjQUtE62tfHWPf9mbbvgMAAAAAAAAAPRL6BOiH+sSnov2fV0b9wcerLgUYiVpbY8x2W8TYvXaIluWWqboaAAAAAAAAAGCYEfoE6IP6M1Oj/byro37nAxH+VxMYbIuNizE7bh1jd9suWpZcoupqAAAAAAAAAIBhQugToBeN6TOj/cJro3bjXRH1etXlAKPNUkvE2F23izFv3iZaxo2tuhoAAAAAAAAAoGJCnwDdaLw4N9ovuzFqV98aMa+t6nKA0W6FZWPsnjvEmG03j5bW1qqrAQAAAAAAAAAqIvQJ0EmjrT1q19wW7ZfeEDF7TtXlAMynZdVXxNi93xxjXrtx1aUAAAAAAAAAABUQ+gT4j9ot90TbeVdFTJtRdSkAvWp51Rox7l27Ruu6a1RdCgAAAAAAAAAwhIQ+gVGv/uSUaDvzkmg8NqnqUgD6riVizBu2iLHv2Clallmq6moAAAAAAAAAgCEg9AmMWo0X50b7+VdH7brbI+r+pxBoUksuEWP33jHGvOl10dLaUnU1AAAAAAAAAMAgEvoERp38n716buV+7pURM2ZVXQ7AgGhZc5UY9749onXdNasuBQAAAAAAAAAYJEKfwKhSnzwl2s66OBqPTa66FIDB2fL99ZvH2H12tuU7AAAAAAAAAIxAQp/AqGArd2BUWXLxGPvWN8eYHbaKltbWqqsBAAAAAAAAAAaI0CcwouX/xNVuvjvacyv3mbOrLgdg6Ld8f+8e0bqeLd8BAAAAAAAAYCQQ+gRGrPrkp6PtzEuiMcFW7sAoVm75/o6domXZpauuBgAAAAAAAABYBEKfwIjTaGuP9guuidqVN9vKHaDzlu/v2jXGbrtF1ZUAAAAAAAAAAAtJ6BMYUeoTnoy2U8+LxpSpVZcCMCy1vmb9GPf+vaJl+WWrLgUAAAAAAAAA6CehT2BEMN0ToB+WXDzGvXu3GPOGzauuBAAAAAAAAADoB6FPoOnVH8/pnudH4+nnqi4FoKm0vmaDGPeBvaJluWWqLgUAAAAAAAAA6AOhT6BpNdpzuue1UbviJtM9ARbWkkvEuPfsFmNev1nVlQAAAAAAAAAACyD0CTSl+uP/jrZTzzPdE2CAtG62QYx7v6mfAAAAAAAAADCcCX0CTcV0T4BBZOonAAAAAAAAAAxrQp9A06g/8e9oO8V0T4DB1rrZhjHu/Xua+gkAAAAAAAAAw4zQJzDsNer1aL/w2qhdeoPpngBDZakliu3ex2z56qorAQAAAAAAAAD+Q+gTGNYa02bEvJP+EY3HJlVdCsCoNOZNW8XYd+0aLePGVl0KAAAAAAAAAIx6Qp/AsFW75+FoO/X8iFkvVl0KwKjWsvrKMe7j74zWVV5RdSkAAAAAAAAAMKoJfQLDTqNWi/Zzr4zalbdUXQoApcXGxbh994wxr9+s6koAAAAAAAAAYNQS+gSGlfpz06LtxHOiMfGpqksBoButb9g8xr1392hZfLGqSwEAAAAAAACAUUfoExg2av96INpOuyBiztyqSwGgFy2rviLGffSd0brGylWXAgAAAAAAAACjitAnULlGW3u0//2yqF13R9WlANBX48bG2HfvGmO336rqSgAAAAAAAABg1BD6BCpVn/JctJ34j2g8OaXqUgBYCK1bbRLjPrBXtCyxeNWlAAAAAAAAAMCIJ/QJVKZ2yz3RduZFEXPbqi4FgEXQ8ooVYtzH3hmta69WdSkAAAAAAAAAMKIJfQJDrtFei/YzL47ajXdWXQoAA2XMmBj7nt1i7Jts9w4AAAAAAAAAg0XoExhSjRmzYt4J46Px2OSqSwFgEIx501Yx9j27R8uY1qpLAQAAAAAAAIARR+gTGDL1SU/HvOPOipg2o+pSABhErRuuE+M+/q5oWXrJqksBAAAAAAAAgBFF6BMYErU77o+2U8+PmNdWdSkADIGWlZaPcZ96b7SuvnLVpQAAAAAAAADAiCH0CQyq/J+Y9guuidrF11ddCgBDbfFxMe7D74gxm29UdSUAAAAAAAAAMCIIfQKDpjF3XrSd/M+o3/1Q1aUAUJWWiLFv3THG7vGmqisBhrnx48fHiSeeGI899lgsscQSscMOO8Shhx4aa665Zp9uf99998VRRx0Vt956a8yaNau43T777BMHHnhgLLbYYoNePwAAAD3T8wEAAAwcoU9gUNSnvhBtfzorGv9+pupSABgGWrfaJMbtt3e0LDau6lKAYejII4+M3/3ud7HhhhvGzjvvHP/+97/jggsuiOWWWy5OP/30WHvttXu9/R133BEf+9jHoq2tLfbcc89YffXV49prr40HH3ww3vjGN8Zxxx0XY8aMGbLjAQAA4P/T8wEAAAwsoU9gwNUffiLm/fnvEbNerLoUAIaRlrVWjcU++d5oWWHZqksBhpH7778/3vWud8U222wTJ5xwQseElosvvjgOPvjg2GWXXYrFwd7st99+cfvtt8evf/3r2GuvvYrvtbe3FxNfciHwiCOOKB4DAACAoaXnAwAAGHitg3CfwCjWft3tMe/Yvwl8AvAyjUlPx9wjT4z6hMlVlwIMI7m9X/r85z8/35Z8e+yxR7zhDW+IK664Ip5++ule7+Ouu+6K5ZdfvmPxL40dOzbe//73F1/n4iAAAABDT88HAAAw8IQ+gQHRqNWj7YyLov2MiyNq9arLAWC4mjEr5v3m1Gi/6a6qKwGGiRtuuKFYrMvFvq5ym77cnCJ/pzcrrLBCzJw5M1544YX5vj9lypTi80orrTTAVQMAANAXej4AAICBJ/QJLLLGvLZoO/6sqF13R9WlANAMarVoP/X8aL/w2qorASo2b968ePLJJ2O11Vabb+JLae211y4+P/roo73ez/777x+1Wi0OPfTQeOSRR2L27NlxySWXxG9+85ticXDfffcdtGMAAACge3o+AACAwTF2kO4XGCUas16MeX86MxoTnqy6FACaTIY+GzNnx9j37B4trS1VlwNUIKe05FSX3KavO8suu2zxecaMGb3eT24TmPfxk5/8JN72trd1fH/DDTeMY445JtZYY40BrhwAAIAF0fMBAAAMDpM+gYXWeH56zDv6rwKfACy02rW3R9tJ50Sjvb3qUoAKtLW1FZ+7m/jS+ftz587t9X5yK8Df//73xZaB++yzTxxwwAGx5ZZbxsMPPxzf/OY3Y9q0aYNQPQAAAL3R8wEAAAwOkz6BhVJ/6tmY9/vTI6b1fgUuACxI/V8PRNusF2PcJ98TLUssXnU5wBBaYokl5lsI7G4rwLTUUkv1eB9PPfVUfPazny3ua/z48bHuuut2/Oyoo46Ko48+Or72ta/FscceO+D1AwAA0DM9HwAAwOAw6RPot/pjk2PeUX8V+ARgwNQffiLm/eaUaEyfWXUpwBBaZpllorW1tcet/Mrvl1v+defvf/97zJkzJz71qU/Nt/iXDj744HjVq14VV1xxRUyZMmWAqwcAAKA3ej4AAIDBIfQJ9Evtnodj3u9Oi3hxTtWlADDCNCZPKS4qqD/zfNWlAEMkt/Jbe+2148knn+x28svEiROLzxtuuGGP9zF58uQef6elpaXj+/kYAAAADB09HwAAwOAQ+gT6rP2mu6Lt+PERbe1VlwLACNV4blrMO+rkqE98qupSgCGy7bbbFot/t91228t+dv311xeLeFtvvXWPt1955ZWLz4899li3P3/88cfn+z0AAACGjp4PAABg4Al9An3Sfsn10X7q+RH1etWlADDSzZwd8445JWoPTqi6EmAIvO997ys+H3nkkcWWfaWLL744brnllth1111jtdVW6/H2e++9d7Fd4HHHHdcxJaZ04oknxsMPPxzbbLNNrLnmmoN4FAAAAHRHzwcAADDwWhqNRmMQ7hcYIfJ/ItrHXxa1q2+tuhQARpsxY2Lc/m+LMa/btOpKgEH2/e9/P04++eRYd911Y7fddounn346zj///FhxxRXj1FNPLbYDTDfeeGPcdNNNsemmm8buu+/ecfvjjz8+fvKTn8RSSy0Ve+65Z6y00kpx9913F7+b017+8pe/FPcNAADA0NPzAQAADCyhT6BHjVot2v76z6jffn/VpQAwWrVEjH3XbjH2LdtUXQkwiLItzQXA0047LSZMmBArrLBCbLfddnHIIYd0LP6lo446Ko4++uh4z3veUyz4dXbttdcWk1/uvPPOePHFF2OVVVaJXXbZJQ466CDb/AEAAFRIzwcAADCwhD6BbjXaa9H25/FRv+eRqksBgBj79rfE2N3eWHUZAAAAAAAAAFApoU/gZRrt7dF2/Pio3/do1aUAQIexe+8YY/d4U9VlAAAAAAAAAEBlhD6B+TTa2qPtuLOj/sBjVZcCAC8zZs83xbi37lh1GQAAAAAAAABQCaFPoENjXlu0HXdW1B98vOpSAKBHY/bYPsbt/eaqywAAAAAAAACAISf0Cfz/wOcfz4z6w09UXQoALNCYXbeLce/YqeoyAAAAAAAAAGBItQ7twwHDNvD5hzMEPgFoGrXLboy2f1xRdRkAAAAAAAAAMKSEPmGUKwKffzoz6o9MrLoUAOiX2uU3Rdt5V1VdBgAAAAAAAAAMGaFPGMUabe3RdtzZUX/IhE8AmlPtkhui7YJrqi4DAAAAAAAAAIaE0CeMUo329mg7fnzUH5xQdSkAsEhqF10X7RddV3UZAAAAAAAAADDohD5hFGq016LthL9H/f5Hqy4FAAZE+wXXRPslN1RdBgAAAAAAAAAMKqFPGGUa9Xq0nXhO1O99pOpSAGBAtZ93VbRfcXPVZQAAAAAAAADAoBH6hFGm/fQLo373Q1WXAQCDov0fl0ftlnuqLgMAAAAAAAAABoXQJ4wibeddFbUb76q6DAAYPI2ItlPPj9p9j1ZdCQAAAAAAAAAMOKFPGCXar741apfcUHUZADD46vVo+/Pfo/74k1VXAgAAAAAAAAADSugTRoHa7fdF+/jLqi4DAIbOvLaY98czo/70c1VXAgAAAAAAAAADRugTRrjag49H21/Pi2g0qi4FAIbWrBdj3u9Pj8a0GVVXAgAAAAAAAAADQugTRrD6pKei7fizI2q1qksBgGo8P/2l4OeLc6quBAAAAAAAAAAWmdAnjFD1Z5+PeX84M2LuvKpLAYBKNZ56Nub96axotLVXXQoAAAAAAAAALBKhTxiBGjNmRduxp0fMmFV1KQAwLDQenRRtJ50TjXq96lIAAAAAAAAAYKEJfcII05gz96VtbJ+bVnUpADCs1O9+ONrPuKjqMgAAAAAAAABgoQl9wgjSaK9F2/FnR2PylKpLAYBhqXbDndF2/tVVlwEAAAAAAAAAC0XoE0aIRqMRbX/9Z9QfeqLqUgBgWKtdfH20X3t71WUAAAAAAAAAQL8JfcIIUbvouqjfcX/VZQBAU2g/+9KoPfR41WUAAAAAAAAAQL8IfcIIULvzwWi/6NqqywCA5lGvR9uf/x7156ZVXQkAAAAAAAAA9JnQJzS5+pNTim3do1F1JQDQZGbPibY/nRWNOXOrrgQAAAAAAAAA+kToE5pYY+bsmPensyLmtVVdCgA0pcZTz0bbyedGo+7qCQAAAAAAAACGP6FPaFKNWi3mnTA+4vnpVZcCAE2tfs8j0X7+1VWXAQAAAAAAAAALJPQJTar9zEui8eikqssAgBGhdukNUbv9vqrLAAAAAAAAAIBeCX1CE2q/5rao3fCvqssAgBGl7dTzoz7xqarLAAAAAAAAAIAeCX1Ck6k99Hi0j7+s6jIAYORpa495x58djekzq64EAAAAAAAAALol9AlNpP7ctGg78ZyIer3qUgBgZJo2I+YdPz4a7e1VVwIAAAAAAAAALyP0CU2iMWdutP3prIhZL1ZdCgCMaI3Hn4y2v11YdRkAAAAAAAAA8DJCn9AEGvVGtJ18bjSeerbqUgBgVKjfck+0X3FT1WUAAAAAAAAAwHyEPqEJ1C69Pur3PFJ1GQAwqrSfe2XUH36i6jIAAAAAAAAAoIPQJwxz9UcmRvuF11ZdBgCMPvVGzPvLudGYObvqSgAAAAAAAACgIPQJw1iGTOb95R9F6AQAqMD0mdH21/Oi0fD/iwEAAAAAAAContAnDFMZLmk75byIF2ZWXQoAjGr1+x+N2uU3VV0GAAAAAAAAAAh9wnBVu+LmqN/3aNVlAAAR0X7e1VGf8GTVZQAAAAAAAAAwygl9wjBUf/zJaD/vqqrLAABK9XrMO+mcaLw4p+pKAAAAAAAAABjFhD5hmMkwSdtJ/4io1asuBQDo7Pnp0Xbq+VVXAQAAAAAAAMAoJvQJw0zbqRdEY+oLVZcBAHSjftdD0X71rVWXAQAAAAAAAMAoJfQJw0j71bdF/a4Hqy4DAOhF+z+uiPqkp6ouAwAAAAAAAIBRSOgThon6pKej/R+XV10GALAg7bVoO/GcaMyZW3UlAAAAAAAAAIwyQp8wDGRopO2kc4oQCQAw/DWenRZtp19YdRkAAAAAAAAAjDJCnzAMtJ1xUTSeeb7qMgCAfqjffn+03/CvqssAAAAAAAAAYBQR+oSK1W69N+q33Vd1GQDAQmgff1nUXbgBAAAAAAAAwBAR+oQKNabPjLazL6m6DABgYc1ri7ZTz49GvVF1JQAAAAAAAACMAkKfUKG20y+KmD2n6jIAgEXQeGxS1K6+teoyAAAAAAAAABgFhD6hIrVb7on6PQ9XXQYAMADaz7sq6s9MrboMAAAAAAAAAEY4oU+obFv3S6suAwAYKG3ttnkHAAAAAAAAYNAJfUIF2k6/MOJF27oDwEjSeGxy1K6+peoyAAAAAAAAABjBhD6hkm3dH6m6DABgELSfd3XUp9jmHQAAAAAAAIDBIfQJQ8i27gAwwtnmHQAAAAAAAIBBJPQJQ6jtb7Z1B4CRrjFhctSuss07AAAAAAAAAANP6BOGSO3mu6N+r23dAWA0aD/fNu8AAAAAAAAADDyhTxgCjRdmRNt427oDwKhhm3cAAAAAAAAABoHQJwyBttNzW/e5VZcBAAz5Nu83V10GAAAAAAAAACOI0CcMstot90T93kerLgMAqED7eddE/RnbvAMAAAAAAAAwMIQ+YRA1XpwbbedcXnUZAEBV2tuj/exLq64CAAAAAAAAgBFC6BMGUfsF10TMnF11GQBAher3Pxa1ux6qugwAAAAAAAAARgChTxgk9SenRO3a26ouAwAYBtrGXxqNeW1VlwEAAAAAAABAkxP6hEHSduYlEfVG1WUAAMPB89Oj/dIbqq4CAAAAAAAAgCYn9AmDoHbz3dF4bFLVZQAAw0jt8pui/szzVZcBAAAAAAAAQBMT+oQB1nhxbrSde2XVZQAAw017LdrPvrTqKgAAAAAAAABoYkKfMMDaL7gmYsasqssAAIah+v2PRu2uh6ouAwAAAAAAAIAmJfQJA6j+5JSoXXtb1WUAAMNY2/hLozGvreoyAAAAAAAAAGhCQp8wgNrOuiSi3qi6DABgOHt+erRfekPVVQAAAAAAAADQhIQ+YYDUbrknGo9OqroMAKAJ1C6/KerPPl91GQAAAAAAAAA0GaFPGACNOXOj7R9XVF0GANAs2mvRfvalVVcBAAAAAAAAQJMR+oQB0H7+NREzZlVdBgDQROr3PRq1ux+qugwAAAAAAAAAmojQJyyi+tPPRe3a26suAwBoQu3jL4tGe63qMgAAAAAAAABoEkKfsIjaz7sqol6vugwAoAk1pr4QtevvqLoMAAAAAAAAAJqE0CcsgvqEJ6N+l21ZAYCF137x9dGYO6/qMgAAAAAAAABoAkKfsAja/nll1SUAAM1u5uyoXXFz1VUAAAAAAAAA0ASEPmEh1e57NBqPTKy6DABgBGi/4uZozJxddRkAAAAAAAAADHNCn7AQGo1GtP/zqqrLAABGirnzim3eAQAAAAAAAKA3Qp+wEOq33ReNJ6dUXQYAMILUrrsj6lNfqLoMAAAAAAAAAIYxoU/op0atFu0XXFN1GQDASOM9BgAAAAAAAAALIPQJ/VS77l/ReG5a1WUAACNQ/dZ7o/7kM1WXAQAAAAAAAMAwJfQJ/dCYOy/aL76u6jIAgJGq0Yj2866sugoAAAAAAAAAhimhT+iH2hU3R8ycXXUZAMAIVr/30ag/OrHqMgAAAAAAAAAYhoQ+oY8aM2dHe4Y+AQAGWdu5pn0CAAAAAAAA8HJCn9BH7RdfHzF3XtVlAACjQGPCk1G7+6GqywAAAAAAAABgmBH6hD5oPD89atfdUXUZAMAo0n7e1dFoNKouAwAAAAAAAIBhROgT+qDY1r1Wq7oMAGAUaTz1bNTvfrjqMgAAAAAAAAAYRoQ+YQEaM2dH7cY7qy4DABiF2i+9oeoSAAAAAAAAABhGhD5hAdqvvjViXlvVZQAAo1DjiX9H7aHHqy4DAAAAAAAAgGFC6BN60ZgzN2rX3FZ1GQDAKFYz7RMAAAAAAACA/xD6hF7Urrsj4sW5VZcBAIxi9Qcfj/rEf1ddBgAAAAAAAADDgNAn9KDR3h7tV91SdRkAANF+yY1VlwAAAAAAAADAMCD0CT2o3XR3xPRZVZcBABD1ux+M+tPPVV0GAAAAAAAAABUT+oRuNOr1qF1+U9VlAAC8pBHRfplpnwAAAAAAAACjndAndKN++/3ReG5a1WUAAHSo33ZvNJ6fXnUZAAAAAAAAAFRI6BO6aDQaJmkBAMNPrR7tJpEDAAAAAAAAjGpCn9BF/d5HovHvZ6ouAwDgZWo33hmNmbOrLgMAAAAAAACAigh9Qhftl5ryCQAMU23t0X7VrVVXAQAAAAAAAEBFhD6hk/ojE6MxYXLVZQAA9Kh27W3RmDO36jIAAAAAAAAAqIDQJ3TSfsXNVZcAANC7F+dG7ca7qq4CAAAAAAAAgAoIfcJ/1Ke+EPV7H6m6DACABapdd3s0Go2qywAAAAAAAABgiAl9wn/Urr09QngCAGgCjWeej/r9j1VdBgAAAAAAAABDTOgTMjgxry1qN95ZdRkAAH1Wu+a2qksAAAAAAAAAYIgJfUKGJm67L2L2nKrLAADos/r9j0b9meerLgMAAAAAAACAIST0CcXW7iZlAQBNpuE9DAAAAAAAAMBoI/TJqFd/dFI0Jk+pugwAgH6r3XR3NObOq7oMAAAAAAAAAIaI0CejXvu1t1ddAgDAwpkzN2q33Vd1FQAAAAAAAAAMEaFPRrXGzNlRv/PBqssAAFhotevvqLoEAAAAAAAAAIaI0CejWu3muyNqtarLAABYaI1JT0d94lNVlwEAAAAAAADAEBD6ZNRqNBpRu+FfVZcBALDIateZ9gkAAAAAAAAwGgh9MmrVH3oiGs88X3UZAACLrHb7fdGYM7fqMgAAAAAAAAAYZEKfjFq1603EAgBGiHltUbv13qqrAAAAAAAAAGCQCX0yKjVmzIr63Q9VXQYAwICxxTsAAAAAAADAyCf0yahUTMKq1asuAwBgwDT+/UzUJz1ddRkAAAAAAAAADCKhT0al2m22PwUARh7vcQAAAAAAAABGNqFPRp36089FwxQsAGAEqt12XzTqjarLAAAAAAAAAGCQCH0yOrd2BwAYiabPjPrDT1RdBQAAAAAAAACDROiTUaXRaETdtqcAwAhWv/WeqksAAAAAAAAAYJAIfTKqNB6bHI2pL1RdBgDAoKnd9WA05rVVXQYAAAAAAAAAg0Dok1GlZsonADDSzZkX9XsfqboKAAAAAAAAAAaB0CejRqNWi9od91ddBgDAoKvZ4h0AAAAAAABgRBL6ZNSo3/doxOw5VZcBADDo6vc/Fo1ZL1ZdBgAAAAAAAAADTOiTUaN2q63dAYBRolY34RwAAAAAAABgBBL6ZFRozJkb9XseqboMAIAhU7vNBS8AAAAAAAAAI43QJ6NC7c4HI9rbqy4DAGDINCZMjvpz06ouAwAAAAAAAIABJPTJqFC/9Z6qSwAAGFqNiLppnwAAAAAAAAAjitAnI17jhRlRf3hi1WUAAAy52q1CnwAAAAAAAAAjidAnI17trociGo2qywAAGHKNKVOj/tSzVZcBAAAAAAAAwAAR+mTEq9/zcNUlAABUxnshAAAAAAAAgJFD6JMRrTFnrq3dAYBRrSb0CQAAAAAAADBiCH0yotUfmBBRq1VdBgBAZRqP/zsaM2dXXQYAAAAAAAAAA0DokxHNZCsAYNRrNKJ27yNVVwEAAAAAAADAABD6ZMRq1OtRv+/RqssAAKhc/W4XwgAAAAAAAACMBEKfjFiNCZMjZr1YdRkAAJWrPzghGu3tVZcBAAAAAAAAwCIS+mTEqploBQDwknltUX/w8aqrAAAAAAAAAGARCX0yYtXvEfoEACh5bwQAAAAAAADQ/IQ+GZHqU6ZG45nnqy4DAGDYqN37SNUlAAAAAAAAALCIhD4ZkUyyAgDo4oWZUZ/4VNVVAAAAAAAAALAIhD4ZkWpCnwAAL+M9EgAAAAAAAEBzG1t1ATDQGrNejMaEyVWXAQAwPKehv3XHqsuAbo0fPz5OPPHEeOyxx2KJJZaIHXbYIQ499NBYc801+3T7F154IX73u9/FRRddFFOmTIlVVlmluI+DDz64+BoAAIDq6PkAAAAGTkuj0WgM4P1B5Wq33BNtf/1n1WUAAAxLi3/nv6JlhWWrLgPmc+SRRxaLdxtuuGHsvPPO8e9//zsuuOCCWG655eL000+Ptddeu9fbP/vss/HhD384JkyYEDvuuGO8+tWvjnvvvTeuv/76YgHxzDPPjBVXXHHIjgcAAID/T88HAAAwsIQ+GXHmnfSPqN9+X9VlAAAMS2Pfv1eM3X7LqsuADvfff3+8613vim222SZOOOGEWGyxxYrvX3zxxcXEll122aVYHOzNl770pTj//PPj29/+dnzkIx/p+P7RRx8dRx11VHz605+Oww47bNCPBQAAgPnp+QAAAAae7d0ZceqPPFF1CQAAw1b94ScihD4ZRnJ7v/T5z3++Y/Ev7bHHHvGGN7whrrjiinj66adj1VVX7fb2Tz31VDEhZrvttptv8S99/OMfjyeeeCJWXnnlQT4KAAAAuqPnAwAAGHitg3CfUJn6lOcips+qugwAgGGr/sjEqkuA+dxwww0xduzYYrGvqze+8Y2Rm1Pk7/TkyiuvLH7nbW9728t+tuyyy8YRRxwRBxxwwIDXDQAAwILp+QAAAAae0CcjSv1hIQYAgF5Nnxn1KVOrrgIK8+bNiyeffDJWW221+Sa+lNZee+3i86OPPtrrVoFpo402inPOOSf23Xff2HLLLWOHHXaIww8/PKZO9XoHAACogp4PAABgcAh9MqLY2h0AYMG8Z2K4eOGFF4qJLcsvv3y3P8+pLWnGjBk93seUKVOKz8cdd1x87WtfK7YE3G+//WL11VePU089NT70oQ/FtGnTBukIAAAA6ImeDwAAYHCMHaT7hUrYrhQAoI/T0bffquoyINra2orP3U186fz9uXPn9ngfs2fPLj5feumlceyxx8ZOO+1U/DsXFnPqy2mnnRY///nP4wc/+MEgHAEAAAA90fMBAAAMDpM+GTHqU56LmD6r6jIAAIY9F8owXCyxxBLzLQR2txVgWmqppXq8j9bWl9ravfbaq2PxL7W0tMRXv/rVWHzxxeP888+Per0+wNUDAADQGz0fAADA4BD6ZGRNrAIAYMGmz4z6lKlVVwGxzDLLFAt4PW3lV36/3PKvO+XPtthii27v/1WvelVxP1Ones0DAAAMJT0fAADA4BD6ZMSoP/JE1SUAADQN750YDnIrv7XXXjuefPLJbie/TJz40oVdG264YY/3sd566/Vpckw5YQYAAIChoecDAAAYHEKfjBi2KQUA6DtT0hkutt1222Lx7rbbbnvZz66//vpiy76tt96619un66677mU/y0kvkydPjrXWWquYAAMAAMDQ0vMBAAAMPKFPRoT6lOcips+qugwAgKbhghmGi/e9733F5yOPPDLmzJnT8f2LL744brnllth1111jtdVW6/H22223XTEV5qabborx48d3fL9er8dPf/rTYnHxAx/4wCAfBQAAAN3R8wEAAAy8lkaj0RiE+4Uh1X7dHdF+xkVVlwEA0FQW+/qno3WVlaouA+L73/9+nHzyybHuuuvGbrvtFk8//XScf/75seKKK8app55abAeYbrzxxmKhb9NNN43dd9+94/b33ntvHHDAATF9+vTYaaedYv311y9+95577onXve51cdJJJ8W4ceMqPEIAAIDRS88HAAAwsIQ+GRHmnXhO1O+4v+oyAACayth994yxb9qq6jIgsi3NBcDTTjstJkyYECussEIxzeWQQw7pWPxLRx11VBx99NHxnve8J37yk5/Mdx+5pV/+7Oqrr44XXnghVl999dhnn33iwAMPjMUXX7yCowIAACDp+QAAAAaW0CcjwpzDfxMxw/buAAD90fq6TWKxj76z6jIAAAAAAAAA6KPWvv4iDFf1KVMFPgEAFkL9kYlVlwAAAAAAAABAPwh90vQaT/y76hIAAJrT9FnRmDaj6ioAAAAAAAAA6COhT5pefdJTVZcAANC0vJcCAAAAAAAAaB5CnzS9+qSnqy4BAKBpeS8FAAAAAAAA0DyEPmlqjXojGpMFFQAAFlbDpE8AAAAAAACApiH0SVNrPDM1Ym5b1WUAADSt+kQX0AAAAAAAAAA0C6FPmprJVAAAi2jGrGi8MKPqKgAAAAAAAADoA6FPmlp9kslUAACLynsqAAAAAAAAgOYg9ElTq0806RMAYFF5TwUAAAAAAADQHIQ+aVqNRiMak6dUXQYAQNNrmPQJAAAAAAAA0BSEPmlajWemRsydV3UZAABNrz7JpE8AAAAAAACAZiD0SdNqTDSRCgBgQEyfFY3pM6uuAgAAAAAAAIAFEPqkadUnC30CAAyUui3eAQAAAAAAAIY9oU+aVmOibUgBAAaK91YAAAAAAAAAw5/QJ02p0WiY9AkAMIBM+gQAAAAAAAAY/oQ+aUqNqS9EzJlXdRkAACNG/ckpVZcAAAAAAAAAwAIIfdKUGlOmVl0CAMDIMm16NOa1VV0FAAAAAAAAAL0Q+qQpNZ4R+gQAGFCNiMazz1ddBQAAAAAAAAC9EPqkKTWeEUgAABho3mMBAAAAAAAADG9CnzQlkz4BAAae91gAAAAAAAAAw5vQJ02pbgoVAMCA8x4LAAAAAAAAYHgT+qTpNNraI6ZNr7oMAIARx6RPAAAAAAAAgOFN6JOm08gJVI2qqwAAGKHvswAAAAAAAAAYtoQ+aTomUAEADJJZL0Zj1otVVwEAAAAAAABAD4Q+aTomUAEADB7vtQAAAAAAAACGL6FPmo5JnwAAg8d7LQAAAAAAAIDhS+iTplM3fQoAYNB4rwUAAAAAAAAwfAl90nRMnwIAGDzeawEAAAAAAAAMX0KfNJXG7DkRs16sugwAgBGrYdInAAAAAAAAwLAl9ElTMXkKAGBwNZ59PhqNRtVlAAAAAAAAANANoU+aSmPqC1WXAAAwss1ri5g5u+oqAAAAAAAAAOiG0CdNpTF9VtUlAACMeN5zAQAAAAAAAAxPQp80lcb0mVWXAAAw4nnPBQAAAAAAADA8CX3SVAQQAAAGn/dcAAAAAAAAAMOT0CfNxVajAACDz3suAAAAAAAAgGFJ6JOmYuoUAMDg854LAAAAAAAAYHgS+qSpNEydAgAYdN5zAQAAAAAAAAxPQp80jUZbe8SLc6ouAwBgxDPpEwAAAAAAAGB4EvqkaQgfAAAMDe+7AAAAAAAAAIYnoU+ah21GAQCGxgzvuwAAAAAAAACGI6FPmoaJU8D/Y+8+wOwq6/yB/869M5OQHtIhgZAEQkgoSSBFeicgHaQKKq4NLKwuiu7q/m1rWQ0Ksqi7iCgKoi7rroBSBFGpgvQOAUJCaCGEkjYz/+c9YcZJmEmdmXPvzOfzPPPc5JZzf3dyMnPe837P7wWgk6yoj8bX3yy6CgAAAAAAAABWI/RJ1RD6BADoPI69AAAAAAAAACqP0CdVo9Hy7gAAncaxFwAAAAAAAEDlEfqkeug2BQDQeRx7AQAAAAAAAFQcoU+qhm5TAACdx7EXAAAAAAAAQOUR+qRqNL7xZtElAAB0G469AAAAAAAAACqP0CfVY+myoisAAOg+HHsBAAAAAAAAVByhT6pGo+ABAECncewFAAAAAAAAUHmEPqkeS5cXXQEAQPfh2AsAAAAAAACg4gh9Uj2W6TYFANBpdPoEAAAAAAAAqDhCn1SFxmXLIxoaiy4DAKDbsLw7AAAAAAAAQOUR+qQ6CB0AAHQux18AAAAAAAAAFUfok+rp9AkAQKdx/AUAAAAAAABQeYQ+qQ5LdJoCAOhUjr8AAAAAAAAAKo7QJ9XB8qIAAJ1rmeMvAAAAAAAAgEoj9ElVaBT6BADoXPUN0bhiRdFVAAAAAAAAANCC0CfVQegTAKDzWeIdAAAAAAAAoKIIfVIVGpctL7oEAIBuxzEYAAAAAAAAQGUR+izIueeeG+PHj89v11VjY2NceeWV8eEPfzh22223mDRpUuyxxx7x7ne/O375y1/GkiVL3vaafffdN3+fOXPmtLrNj3zkI/njkydPjmXLWu/ktOeee8a2224bL730UhRGl6lO9093Xh/7X/fzVh97Y8XyOP+RO+PQGy6PaVddFLOuvyy+89Dt8WZ960vAPrZ4YZx5x7Wxz7U/ixlX/zje/effxLXzW98n27KioSEuefK+OOrGX8X0qy6K/a79eXzl3j/HK8vevt8vXLYk/vGv18X0q38cB153aZz70B2xvKH+bc97dPHLMfm3F8aVzz6+XrUAQLfhGAwAWINf//rX+XmldJ5q0aJFaz0Pdvnll7d7Dfvss0++7da+0vmu/fbbL84+++x4+umnN/q90vm1U089Nd/ulClTms/r/eAHP4i99torP1eXvheLFy9e4/dr9uzZG10LAABAVxnXtRzHPfvss2t87le+8pXm5956660b/X4tv5rGdClDsaHbbsvcuXPz9zjhhBPadbsAdF81RRfAukmBy49+9KPx17/+NQYOHBi77757DB8+PF588cX8gONzn/tcfoK56WCrycyZM/MDrzvvvDNGjx69yjaXL18et9xyS5RKpXjjjTfijjvuiHe84x2rPOeZZ56J5557LiZMmBCDBg2KwrQRSKVjXPDoXfH7+U/G0J693vZYCk9+7I5r4vaX5sfMwZvHfsNHxz0Ln48LH78n/vrSc/GfMw6OunK5+fkPLnoxTrvlymhsjJi1+ZjYpFwTv5v3ZHzyzuvi09vNiBO3mrhOgefP3/PH+O2zj8cOA4bkr0lB0l88/VDc8uK8+Omuh0X/uh7Nz//yvX+OGxY8Fe/cfFweUP3Px++Oxoj42LY7r7Ld7zx4e2zbf1DM2mzMRn/PAKBLWuoYDABYuxdeeCG+/OUvxze/+c3CajjllFOiX79+q9yXzpvdfvvt+STmddddF7/61a9i1KhRG/weZ511Vtx99935BdLp/Nu0adPij3/8Y3zrW9/Kz9elC7Pr6uqib9++rb4+nV8744wzYuedVz0/AQAAULRKGNclV199dZx22mmtPtbQ0BBXXXVVu71XGp+tnp9I4czf//73cf3118fXv/71OPzww9vlvdJ4Nb3fiBEj2mV7ACD0WQXefPPNeM973hOPPPJIfvuJT3wiNtlkk+bH6+vr45JLLomvfe1r+ZUh//M//9N8AjuFOJtCn0cdddQq2033vf7663HIIYfEb3/727jpppveFvpMJ8aTXXfdNYrUuOLtXRppf0vrV8TX7r85fv3MI20+5xdPPZQHPt8zZvs4c8K05vu/cf8tccmc++PSpx6IU8Zs33z//7vnT7G0vj5+ttthMb7fyuDw+8ftlHf7POeh22PfEaNjWM/ea6zrxuefzgOfB47YKr4+ee/Isiy//6dP3hfffODW+I9H74zPTJyZ3/fy0jfjuufmxDFbbBv/vP3K/fbDt10dv3jqwVVCn+kz3PTC3PjB9FnN2wMAVtVY7xgMAFg3v/nNb+Kggw7KV50pQurAOXLkyLfdn86bpU6f6XzZd7/73Y2awLzvvvvyQOd//Md/RPmtC16/973v5bf/8A//0ObEZMvQZ/oCAACoREWO61IocunSpXmos62x1W233ZaHU3v37p3nHDZWarrVmptvvjnPZaQQ7IEHHhg9e/Zsl8/X1vsBwIawvHsVSN07U+DzpJNOyk9Stwx8Jukkc+pmkLp9poOb9JwmM2bMyANtqUPo6lLIM/nABz6Qn7Bu+ntroc/UxrxQqU0kHeqGBU/HETf+Kg987j7k7ZMkTX425/6oK5XjA1vvtMr9Z4yfGj3LNXH50w8133fny8/Fg6++FAeM2Ko58JkMrOuZBz+XNtTH/859dK21XfLk/fnt6eOnrhLQPHH0xNhskz7xm7mP5oHV5Nk3X8u7em7Tb9Pm56X3XrxiWb7se1Pn0NkP3ha7DRkZ0wdvto7fIQDohhyDAQDrYOLElat4fOELX4hXXnklKkk6b9Y0sfbnP/95g7ezYsWKPECaJuqaAp/JsrdWp0mdPgEAAKpV0eO6lIHYY4894t577827bbbmyiuvjF69er2tkVV7S6up7rTTTvHqq6+2mrMAgEog9FnhlixZEpdeeml+9cjHPvaxNT43dfkcM2ZMHtR86KGVwbtNN900X27qySefjIULF67y/D/96U8xbNiw2HbbbfNw6KOPPpov5d5SWvI9HWBNnTo1CiVw0OGueObhfCn0z016R5y7ywGtPmfeG4tj7huLY9KAwdG7pm6Vx3rV1Mb2A4bE06+/GgveXHll1W0vzstvp7USrGwKW9724vw11rW8oSHuWrgghvfsHVv27r/KY6Usi10GjYjXVyyP+xe9mN83oHblMu9vrlgZAk1eX74sylkWfWpq879fPf+JeHDRS/GJbXdZh+8MAHRjjsEAgHWw++67xxFHHNG8HOC6SiHKn/zkJ3HkkUfGjjvuGJMnT47jjz8+rrjiinatb9CglReiLl68uPm+NImYzpml82mr+8tf/pI/9pnPfCb/e7ptmgB99tln88f22Wef/PaCCy7I708XYae/p6Xk25IeS8+ZPXv2KmHSH/zgB/n3IH3+KVOmxLHHHhs/+9nP8otWW3rwwQfz5QD33nvvmDRpUj4h+ulPfzrmzJmzyvPSMvPpfZ566qm31ZBekx5b3T333BOnn356fo4wbTt1sznnnHNa7Z7zu9/9Ln+PNBG6ww475J2A0hL3Lb+/AABAdamEcd3BBx+c37a2hHsaO6WxSBqLrd55MwVV0zintfdMS8KnMVQav6Tl29dV0zLsKWNx991359tPjbhak8Z46fFrr722ze21NQZd1/HVyy+/HP/v//2//PH0vOnTp8f73//+fPy6ekOx9D5pNdjVfepTn8ofu/XWW1e5f8GCBfGv//qvzWPN1BAsjXFbC9+u67gUgI4n9Fnh7rrrrvzkajo4GjBgwBqfWyqV8hOyye9///vm+9OVLukkcdpWk3SwloKhTR08m25bdvtMv9yffvrp2HnnnaOubtWAX6drEDjoaCdtNSmu3Odd8a4tJ7S53PlTr7+a347q1a/Vx0f26pvfPvn6K6s8f4u37m8pLelek5Wan9uWeW8uzoOfo3qv+T3nvLYovx2xSZ8Y0qNXXDH3kXjuzdfi8cUL49rn5sSk/kOitlSO5Q31cd7Df413jhwXW7foBgoAtELoEwBYR5/97GdjyJAh8b//+79x3XXXrfX5qUNmWn0mTSYuWrQon1ycNWtWPPPMM/mEUdpee2k637WhS6vvt99+8ZGPfCT/c1otJ01wpcm+dJvOmyVp+cP09/V9j89//vP5hF6atEwTo0cddVS8+OKL+WRey3DoE088kU8O3nLLLflk4Hvf+958gi0tv3jcccfF888/HxsqdctJ206ThWmiNy1jmIKyaRn7E088MV577bXm56ZJ1HRh+vz58+OQQw6Jk08+Oe9+moKraYn71YOqAABA9Sh6XLfXXnvlDalaC32mlRtSB9I0Dlnd0Ucfnd+2FvpMAcd58+bFYYcdFrW1KxsErYumEOPw4cPzMOvWW2+dLy+fxkItpTFQGpelMVSqf32s6/gqfZ9TMPSyyy7L6zj11FPz8GvqQnraaafFjTfeGBvq8ccfz8ehqRHZNttsk287NQT7n//5n/z7mkKenTEuBWD91WzAa+hE6RdnMnbs2HV6fvoln6QDqSbpF+6FF16Y/9JPv/ybunymg4SmsOeuu+7afBI8dROoqKXdEyeMO1zqmLk2ryxfuTx6/7e6aa6uz1vdPxcvX7bK8/vVvf35qUtn75ra5ue2ZdGypev1njWlUnxm4ow4+283xoHXX9a8nPzZk2bmf/7FUw/Gi0veiDO2+Xv32obGxrweAGA1LrwBANZR//7940tf+lJ86EMfyruspEmiNV3AfNFFF+Xnp9KkWAo3piX6mrqXpImjX/3qV/k5rUMPPXSD6kndZtKEYHqPr371q/l9TcHNDQl9pjrPP//8fAKuabn4pm4zaaWc9Jw0UbY+UpgyTfKl4Ogll1zSfH8Kj6aJ0tQtJ71XmphMXVrefPPN/PuWvi9NUk3f+c538i6i6Xu/vlLANE3Epn+rNMk3atSo5sfOO++8vEtMCqWmf9Mk1ZT+rVLdffr0ye9L5xjf97735aHRdNF56lYKAABUn6LHden1e+65Z1x99dV53qHl+CRdrJbqS9mF9OeWUufLFFhMAc/U2CqtdtqkaTWG9Rmvpe2nsGNT4LPp9V//+tfzgOMHP/jB5uemAGQKlabPW1OzfvGbdR1fpT8/9thj8eEPfzg+8YlPNL8+hTJPOumk+PGPf5x/3zbEP/3TP+X/XmkVi5ah1fS50mc666yz8s+cmkZ11LgUgA2j02eFa2rb3fRLfm2aDrrSL+Ymu+yyS35y+M4772y+L4U7U2fQ1AU0SQdMo0ePzg8Y0knxlqHPpkBooYQ+K8KKhob8tq5UbvXxpvuXvrUPLV+H5y9rWPnctqTOnGvcRvmt92z4+3Lu+43YKi7f/cg4e+LM+ML2u8Wv9jgqJvQfHK8tXxY/fOzuOHGriTFsk95xx0vz48gbfxVTrrwwDrr+0vjN3EfX+j0AgG7FMRgAsB7S8m7ruhxgmvxL56a++MUvNk8MJptuuml87nOfy/+cupisq9RpMy1T1/S13Xbb5ee90gRVjx498gnI9e260tHSZF5aajB1dWm5bF46v5e+P+n8XVMnmqYOL+mi7pbdNFNXzhtuuCHvrrMh0uRimrRLk5YtJ1STNFmX/j3Sc5qWQUzvvWTJkrj33nubn5cm/1Iw9Oabbxb4BACAKlfkuK6tJd6XLl2aL52+//77t7lCaQpApvFV6lDZ8kK7a665JiZOnJiPE1eXLnJr+fXNb34zD1x+8pOfzMdiKQDbNCY7/PDD8z+33H7y3//93/nt+l4EuD7jq/S5khREfeONN5qfmy4gTCvApsDmhrjnnnvi/vvvz8fTq4+XZ8yYkd//yCOPxN/+9rfmejtiXArAhtHps8Klq1WS9Mt+XaSl4JOBAwc235daoO+0005x9913562/0xUmqf359ttvv8qVOemqmJ/+9Kf5L/Z0NUzqUjB06NDm7qGFEjioCD3KK39kLG9ceWC5uqYAZ6+3rmLq+VZQsyn82drze5Vr1+092wiHLnsrYNqrZtXtjO7TP/9q6cLH71l5ddTYHfPOoJ+449rYpt+m8alpB8b1zz0V/3L3H2PL3v1ix4F/v/oLALo1x2AAwHpKE3vpouK0HOBBBx2Ud8Bs7fxVWipvq622WqUDS5M0sVUul+OBBx5Y5/dNy62nLpxp3J9ClKkzTDqfdvrpp+fdUNL2Kk1aKj4tMZgmDQ844ID8fFy6+Dqdo0vdZNLkaZOm5fbSROTPf/7zPNCanrvHHnvEiBFrX72lLU2Ti+k2bXt16bxiurg8/Xulc4Rpuff0b5wm9caMGdNcb5oQTEvUAwAA1a+ocV2SOlamAGka0zWFCNPy5SnA+c53vrPN16Wx1b//+7/nXSmbXpe2kS5ya1r+fXVpdYOW0pgmLW+ftpXGPBMmTGh+LC3fnmpL4dM0fkpZi/Q9SKHStMR56jS6vtZ1fJXGf6mBVwpWpudMmzYtvy+NB9P3f2PHg2nM19p4cNGiRflt+jecPHlyh41LAdgwQp8Vbosttlhlmfe1efTRlZ0KR44cucr9qb126tyZfnGnK1DS8lap1XdL6RdyCn2mtufp9Y8//nh+FQ80aVpiffHylUuur+61FctWWXK9aVn31pZwT0uqv75ieQzpucm6vedb217be7ZlwZLX45In74uPbrtz9K2ti8vmPJBv89MTZ8T4foNi+qDN4rrn5sRPn7xf6BMAmgh9AgDrKQUvU5eX1CXyX//1X/POI6tLk3VNocfWpAuWU2eYl156aZ3f99RTT13lfFhayj1NoKXJqFRTCoVWorT0fAp7pmXwUveUtHxfmnhMk6b/+I//2HxuLk0gpqX0fvjDH+YTfWkiM32lSdR99tkn/14PHjx4vd//1VdfzW/TttakabLvmGOOyd8nLUOYziGm26YlCY8//vi8I876LmkIAABUlqLGdUkKO6Yxzv/93//F008/neclfvvb3+bjkBR2bEt6r9SlNHW+TE2uUnfPtGpB6gzaVlj04YcfXq/aUng0hT7ThXsp9JlCpanz5oZ0+Vyf8VX6nqSOqT/4wQ/y90xjwvSVxpPpc6Z/ozSu3NDxYOrcmb7akrIlHTkuBWDDOANX4dKBS+rGedttt8XChQtX6eDZmnQQkxx44IGr3J+usvjud7+bt+hu6hqarhJpafr06XkgNP1C33LLLfPOCBWxtDsVo6lz5jNvLG718WdeX3n/2L4r99Oteq/sJDv3jVdj8qarBimfe/O1WNHYEGP6rHmf3qxXn+hRKjdv+23v+VYtY/r8vWtta85/+M4Y3LNXHLflyiuynnx95WTFlr1XfqaaUilG9uobT711PwCQryVTdAUAQBUvB5gm2NJygOk8U0u9e/fObxcsWNDq69PSdWkCseUKNesrLVWezoWdfPLJ+URY6prS8lxYWjIvabkkXZOWy+V1tDSBl2pMX6m7yi233JJPnl155ZXx6U9/Og+yNk2wpk6b3/jGN6K+vj6fxEydd9JkY+oskzrM/OhHP1pl201LALaUuty09m/xi1/8Iu8uui7Ssn/pK23rzjvvzJehT//WF154YT45nDqrAgAA1a3Icd2sWbPy0GcKOKaxUur0mQKSa1vBIYUyU14ivTZ15kwrm6ZOpU2rq26s1NEydQJN47XPfvaz+fusKVTanuOr9H0866yz8q+nnnoqHw/+7ne/y5eBf//73x/XX3999OnTp3msuz7jwRQuXdel2dd3XApAx/n7GkFUpBTCTF0JUlAztSNfk1/+8pfx0EMP5a21W7YaT9KVHemX/H333Zcf3KQDhNVP5KZf6um1aRsp+JkOCCom9ClwUBGG9ewdW/TqF/e+8kK8sWL5Ko+lv9+36IX88UE9Vnbv3HnQyjbut700/23buvWt+yavpatmOSvlgdFn31wcc1cLm6ZuoXe8ND82KdfEhP6D2tzGY4sXxv8++2icMX5q1L615Hz9Wwe69S2Wqk/LzZfCvgYAzRyDAQAbKC1RN3To0Hw5wBRibCmdo0oThs8//3y+HODq0kXLaTJqQ5bHaymd50oTVynY+ZnPfKa5i0nTObckTUqtLk2gdYa0ys63vvWt+MMf/tDcmebggw/OJ9BSR50kncdL0hJ6X/rSl/LPkiY607m+9Jxf/epXeReYtMJPkzTp2NpnS6HSxYtXPbfSdA7x7rvvbrXGb3/72/H9738/D8KmCdvvfe97zZN4aen3dO4wfW+blgJsWQcAAFDdihrXpXBl2n4KNab3Tds55JBD1vq63XffPa83BRCvu+66fPx05JFHRntetHf44Yfn3UtTXWn8s++++25QqHR9xlcpCJqCt01j1fR9P+GEE+Kiiy7KG3ullRkeeeSR9R7rbrfdds3/Vq1JXT3TxZRNq9Kuz7gUgI4n9FkF0tUb6RduCnWmNuqrX4GRfqmmdt6pXXb6Zfr1r3/9bdtIv3R32WWX/ARuukIkLffe2pUwqePB/Pnz8wOHdNI3nWyuCAIHFeOIUdvEkvoV8b1HVm3xft7Df83vP2703wPHOw0cGlv17h9XzXs8D4o2WbhsSfzXY3/LO3geOWqbdXrP5NsP3rZKSPNnc+6PeW++FkeNGt8c5mzNOQ/dHtv2GxQHjRjTfN9Wb3UGvevllVefvbJsScx5bVHz/QCAYzAAYOOXA0zSRcitdWBJ57TSc1p21kwr3XzlK1/J/9wek3PpvFrqRPLCCy+scs4sdX1JnVJS8LLlxFcKRv7sZz+LzlAqlfLl+WbPnt28Mk+TuXPnNncsTdLk2U9/+tN8srWlF198MZYuXbrK0vapq2nSFCZtkiYUV+9smiYs06RgeqxpIq9Jer8U+EwTremcY/pK5yDTpN+TTz65ynOfeeaZ/LZlHQAAQHUralyXLmTbb7/98ve8+OKLY/PNN88v6lublH9I3UnT+OS//uu/8gDo6qufbqz0mZMUwly+fPkGL+2+PuOrefPm5cu+p2XVW0pjwTTWTWPL9D1Kxo4dm9+mUGrL8V/qmvroo4+u8vopU6bk48cUkk2Pt3TvvffmAc///M//bO7Wuj7jUgA6nuXdC/bf//3f+dLtrdliiy3yg6F0UJOu0khttS+55JK8Xfiee+4Zw4cPj1deeSVf9ildPZOu6EhX36/eWr3lEu9NJ3vbOrhJ96dtpBPe//AP/xAVQ+CgYrx7q0lx7XNz4qdP3h8PLXo5dhg4JO5Z+Hzc8fJzMWXTYfGuLf4e+kzdYj+/w27xoVuvjvff/NuYtfnY6F1TG7+b92S8sPSN+OzEmfmS601eXb40Lnny/vzPH95mSvP9szYbG1c++3hc99ycOOlPv4kZQzaPJxa/Ejc+/3QeKv3g1m0f5KdOoDc9/0z8cPqs5nb2yYGbjYnzH7kz/vnuP8Yhm4+NW1+cF8sbGuKUMZM64LsGAFWq5BgMANi45QDTBF86/7W6973vffkydH/+85/zpfBSJ5cVK1bkE1Np0ipNnKXJuo2Vzqul82vHH398fkH1oYceGjNmzMgnA9N9F1xwQd4hJXXYTO+fAo7jxo1rDl12pK222ip/75///Of58oXp+9WzZ8/8ou3U4TNNah5wwAH5c08//fT44x//mC/5ftVVV+UTeem8YKo3TeR96lOfat7ucccdl2/z/PPPj8ceeyyfeEuTcyncmrrsNHWASdJjX/jCF+Lzn/98/v1OE6sjRoyIBx98MP+3SR1rvvrVr+bPTROJ6f3/8R//Mf/3OfDAA/OlDdN2UxeddPF4RZ1PBAAAqnZcl8ZoaZnzu+66a73GGSmUmS6ue/bZZ/OVH9a2JPz6SiHJNFZLdQ0bNmyDV05dn/HVYYcdlgdEU+fNhx9+OHbeeec8cJrGiOn56d8h1ZKkHEkKgN566635irJTp07NL/C78cYb8yZhLbtxphq++c1vxnvf+974+Mc/nn+W8ePH591bf//73+fv8W//9m/NjcLWZ1wKQMcT+ixYOthIX61pueRUOsGartxIv0TTL/O0/PqCBQvy+9OBxWmnnZYfSKUrQtqSQp9N2jr4SB1F0y/t1NWgYpZ2T0qa0laKunI5D1Be8Ohdcc38J+OeV56P4T17x/vH7hjvG7dD/nhLUzYdHj+aeUgesEzPT8b2GRhnT5oZ+w4fvcpzFy9flm939dBn8q0p+8aPnrgn/m/uY/HTJ++LIT16xXFbTsgDn/3rerRZ7+yHbo/dh4yMaYM3W+X+tAT9BdMPin+7/+a47KkHY7NN+sY3p+wdE/oP3ujvEQB0GZljMABg43z2s5/NJwDTpFFLqbtkOteVLnBOE3lpAjHdt+222+bL2aXzXO1lxx13jHe/+93x4x//OA83/uY3v8nDlR/72Mfyc2lpKbq0TF3qApMmxdJXy/NoHemf//mf88+cAqm//e1v8xV+UhDzox/9aD5x17Q0Xzr/l2pMk5cpEPqnP/0prz1N4KWJwHTbJIVWL7zwwnxJwDSxl7aRlvxLy8anr5ahz+TYY4/NA6ipE076t0odetLF5u9617vySdKmbqNJWlIxdXlJ20/PTR18UtfUNAn8kY98JDbbbNXzLwAAQPUrYlyXxmQpC5GWLl+Xpd2bjB49OiZNmpR3CW3Ppd1bShcTptBnCrRuTKh0XcdXaen39Jy0FPy1116bjw2TFNBMq1u0DNam73/qjpoafaVx4wMPPJCv8JoueEyNv1Zfgj19r9K/W1rlIa0GmxqWDRw4MM+KvP/9788Dpk3WZ1wKQMfLGldf0wcq0PKrbor6a24uugwAgG6l9sPHRXnr1rvIAwAAAABAJUkX0qXVTVMg8mc/+1mHvMfnPve5/OLB1OGyrVVYAaCjad1DVch0+gQA6HRZZnl3AAAAAACqQ1rB4LXXXstXcOgIjz32WL5KQ+qEKfAJQJEs7051qLGrAgB0ureWEwUAAAAAgEqUFrdNS5wvX748X8I8LWc+a9asdn2P2bNn58uZp9Bnep+Pf/zj7bp9AFhf2idSHXoIHAAAdDrHYAAAAAAAVPiKVf369Ytnn302Zs6cGf/xH/8R5XK5Xd9j+PDh8eSTT8bgwYPjW9/6Vuywww7tun0AWF9ZY7rsASpc/e33xfKfX1l0GQAA3UqPf/lQZAP7FV0GAAAAAAAAAG/R6ZPq0KOu6AoAALqfno7BAAAAAAAAACqJ0CfVQegTAKDz1TkGAwAAAAAAAKgkQp9UhUzoEwCgc9XURFY2XAAAAAAAAACoJGZxqQ49aouuAACge3H8BQAAAAAAAFBxhD6pCjp9AgB0LsdfAAAAAAAAAJVH6JPqIHQAANC5HH8BAAAAAAAAVByhT6qD0AEAQOdy/AUAAAAAAABQcYQ+qQpZTTmiXC66DACAbsPy7gAAAAAAAACVR+iT6tGjtugKAAC6D8deAAAAAAAAABVH6JPqodsUAECn0ekTAAAAAAAAoPIIfVI1BA8AADqRYy8AAAAAAACAiiP0SfXoKXgAANBphD4BAAAAAAAAKo7QJ1Uj692r6BIAALqNrI9jLwAAAAAAAIBKI/RJ1cj69S66BACAbsOxFwAAAAAAAEDlEfqkamT9+hRdAgBAt+HYCwAAAAAAAKDyCH1SPXSbAgDoPI69AAAAAAAAACqO0CdVQ7cpAIDO49gLAAAAAAAAoPIIfVI1BA8AADpJj7rIetQVXQUAAAAAAAAAqxH6pGpklhgFAOgUjrsAAAAAAAAAKpPQJ9Wjb++ILCu6CgCArk+HdQAAAAAAAICKJPRJ1chKpYg+vYouAwCgy9PpEwAAAAAAAKAyCX1SVQQQAAA6XqbTJwAAAAAAAEBFEvqkqgggAAB0PMdcAAAAAAAAAJVJ6JOqotMnAEDHc8wFAAAAAAAAUJmEPqkuuk4BAHQ8x1wAAAAAAAAAFUnok6piqVEAgI7nmAsAAAAAAACgMgl9UlWy/gIIAAAdTegTAAAAAAAAoDIJfVJVsk0HFF0CAEDX1nuTyDbpUXQVAAAAAAAAALRC6JOqkg0ZGJEVXQUAQBc/3gIAAAAAAACgIgl9UlWy2pqIAf2KLgMAoMvKhmxadAkAAAAAAAAAtEHok6pT0n0KAKDDONYCAAAAAAAAqFxCn1Qd3acAADqOYy0AAAAAAACAyiX0SdXJdJ8CAOgwjrUAAAAAAAAAKpfQJ1VH9ykAgA6SRWSDhT4BAAAAAAAAKpXQJ1VH9ykAgA7Sv29kdbVFVwEAAAAAAABAG4Q+qTrZpv0jyuWiywAA6HJKOqoDAAAAAAAAVDShT6pOVipFNqh/0WUAAHQ5OqoDAAAAAAAAVDahT6pSpgsVAEC7c4wFAAAAAAAAUNmEPqlKulABALQ/x1gAAAAAAAAAlU3ok6qkCxUAQPtzjAUAAAAAAABQ2YQ+qUolXagAANpXuRTZoP5FVwEAAAAAAADAGgh9UpWyYYOKLgEAoEvJBg+MrGR4AAAAAAAAAFDJzOpSlbK+vSP69ym6DACALiMbOazoEgAAAAAAAABYC6FPqlZp5PCiSwAA6DIcWwEAAAAAAABUPqFPqlZJNyoAgHbj2AoAAAAAAACg8gl9UrUsQQoA0E6yiGzzoUVXAQAAAAAAAMBaCH1StUqjLEEKANAesiGbRtazR9FlAAAAAAAAALAWQp9Uraxfn4h+vYsuAwCg6umgDgAAAAAAAFAdhD6paqWRun0CAGwsx1QAAAAAAAAA1UHok6qmKxUAwMYrOaYCAAAAAAAAqApCn1S10ihdqQAANkrmQhoAAAAAAACAaiH0SVXTlQoAYONkgwdG1rNH0WUAAAAAAAAAsA6EPqlqWf++EX17F10GAEDVykbqnA4AAAAAAABQLYQ+qXqlUbp9AgBsKMdSAAAAAAAAANVD6JOqpzsVAMCGcywFAAAAAAAAUD2EPql6pZG6UwEAbJDMsRQAAAAAAABANRH6pOqVttys6BIAAKpSNnRQZD17FF0GAAAAAAAAAOtI6JOql/XtHdmwQUWXAQBQdUrjtii6BAAAAAAAAADWg9AnXUJp7KiiSwAAqDqOoagkV1xxRRx11FExefLkmDlzZnzqU5+KZ599doO21djYGKecckqMHz8+5s6d2+61AgAAsH6M+QAAANqP0Cddgi5VAADrzzEUlWL27Nnx6U9/OpYuXRonnnhiPgF45ZVXxtFHHx3PPPPMem/v4osvjltvvbVDagUAAGD9GPMBAAC0r5p23h4UQpcqAID1kw0bFFmfXkWXAfHQQw/FBRdcEFOnTo2LLroo6urq8vtnzZoVZ5xxRnzlK1/JH19XTzzxRHz729/uwIoBAABYV8Z8AAAA7U+nT7qErG/vPLgAAMC60eWTSpE6tCSnn3568+Rfsv/++8cuu+wSN9xwQyxYsGCdtlVfX593jxk0aFC+zB8AAADFMuYDAABof0KfdBm6fQIArDvHTlSKW265JWpqavLJvtXNmDEjGhsb8+esi+9///tx77335p1ievfu3QHVAgAAsD6M+QAAANqf0Cddhm5VAADrzrETlWDZsmUxb968GD58+CodX5qMGjWqefm+tXnggQfi/PPPj+OPPz5mzpzZIfUCAACw7oz5AAAAOobQJ12GblUAAOsmGz44sj69ii4DYtGiRXlXl/79+7f6eN++ffPbxYsXr3UiMS3xN2zYsPinf/qnDqkVAACA9WPMBwAA0DFqOmi70Omyvr0jGzYoGhe8VHQpAAAVzcUyVIrly5fnt611fGl5/9KlS9e4nXPOOSceffTRuPjiiy3xBwAAUCGM+QAAADqGTp90KZYpBQBYO8dMVIqePXuuMhHYWjeXpFevtjvT3nHHHfGjH/0oTj755Jg2bVoHVQoAAMD6MuYDAADoGEKfdCm6VgEArEXmmInK0adPnyiVSm0u5dd0f9OSf6t744034uyzz45Ro0bFJz/5yQ6tFQAAgPVjzAcAANAxLO9Ol6JrFQDAmmXDBkfWp+0OGtCZ0lJ+afJu3rx5eeeX2traVR5/5pln8ttx48a1+vp77703nn766fzPO+20U6vP2XffffPb6667LkaOHNnOnwAAAIC2GPMBAAB0DKFPupQUYMiGDYrGBS8VXQoAQEXS5ZNKk5bnu/zyy+POO++M6dOnr/LYzTffHFmWxZQpU1p97eabbx5nnHFGq4/96le/ivnz58cpp5wS/fr1y78AAADoXMZ8AAAA7S9rbGxs7IDtQmGW//raqP/TnUWXAQBQkWrfc0SUd9im6DKg2V133RXHH398TJ48OS666KLo2bNnfv8111yTT+6lri3nn3/+em/3hBNOyCcVdXsBAAAojjEfAABA+9Ppky6nNGGM0CcAQGvK5Shts2XRVcAq0sTfSSedFJdcckkcfvjh+YTfggUL4qqrrorBgwfH2Wef3fzcW2+9NW677baYMGFC7LfffoXWDQAAwNoZ8wEAALS/UgdsEwpV2nrLiB51RZcBAFBxSuNGRdazR9FlwNv8y7/8S/5VV1cXP/nJT/JJvoMPPjguvfTSGDVqVPPz0v3nnXdeXHvttYXWCwAAwLoz5gMAAGhflnenS1p20RXRcM8jRZcBAFBRao7aL2p2m1J0GQAAAAAAAABsIJ0+6ZLKE8cVXQIAQMVxjAQAAAAAAABQ3YQ+6ZJKE8ZElLKiywAAqBjZZkMjG9iv6DIAAAAAAAAA2AhCn3RJWZ9ekW25edFlAABUjNLEsUWXAAAAAAAAAMBGEvqkyyoLNgAANLO0OwAAAAAAAED1E/qkyyoJNgAArNSvT2SjhhddBQAAAAAAAAAbSeiTLqs0bFBkQwYWXQYAQOHK242NLMuKLgMAAAAAAACAjST0SZdW2s4S7wAApYmOiQAAAAAAAAC6AqFPurSyJd4BgO6urjZK24wuugoAAAAAAAAA2oHQJ11aNmZkRK+eRZcBAFCY0jZbRlZbU3QZAAAAAAAAALQDoU+6tKxUitK2Y4ouAwCgMKXtdD4HAAAAAAAA6CqEPunyypMEHQCAbirLojxxbNFVAAAAAAAAANBOhD7p8koTxkTU1RZdBgBApyuNHRVZ395FlwEAAAAAAABAOxH6pMvLetRFadLWRZcBANDpSlO2K7oEAAAAAAAAANqR0CfdQnmqwAMA0M3U1ER5x/FFVwEAAAAAAABAOxL6pFsojR8dYWlTAKAbKU0cG9kmPYouAwAAAAAAAIB2JPRJt5CVSlHeaduiywAA6DRlS7sDAAAAAAAAdDlCn3QblngHALqNTXpGacKYoqsAAAAAAAAAoJ0JfdJtlLYYEdmQgUWXAQDQ4co7jo+splx0GQAAAAAAAAC0M6FPuhXLnAIA3UF5Z8c8AAAAAAAAAF2R0CfdSskS7wBAVzewX2RbjSy6CgAAAAAAAAA6gNAn3Upp8MDIttys6DIAADq0s3mWZUWXAQAAAAAAAEAHEPqk2ynr9gkAdGGOdQAAAAAAAAC6LqFPup3yTttGlOz6AEDXk20+NErDBxddBgAAAAAAAAAdRPKNbifr0ytK244uugwAgHanyycAAAAAAABA1yb0SbdUnjqx6BIAANpXlkV58oSiqwAAAAAAAACgAwl90i2VJm0d0atn0WUAALSb0rZbRda/b9FlAAAAAAAAANCBhD7plrLamijvMqnoMgAA2k35HTsVXQIAAAAAAAAAHUzok26rPHPHoksAAGgfA/pGacKYoqsAAAAAAAAAoIMJfdJtlYYOitLYUUWXAQCw0Wqm7xBZyaE9AAAAAAAAQFdnZphuzTKoAEDVK5WiPGOHoqsAAAAAAAAAoBMIfdKtlbbfJqJPr6LLAADYYKXtxkbWv2/RZQAAAAAAAADQCYQ+6daymnKUp21fdBkAABusPHPHoksAAAAAAAAAoJMIfdLt5UGJLCu6DACA9ZYNHhClbbcqugwAAAAAAAAAOonQJ91eadCAKG03pugyAADWW3nXyZG5eAUAAAAAAACg2xD6hBSY2G1q0SUAAKyfutooT9uh6CoAAAAAAAAA6ERCn5D+I2yzZWRDNy26DACAdVaeul1km/QougwAAAAAAAAAOpHQJ0Tky6KWd51SdBkAAOusvJtjFwAAAAAAAIDuRugT3lLeZWJEj7qiywAAWKvS2FFRGjGk6DIAAAAAAAAA6GRCn/CWrGePKO8yqegyAADWqrz71KJLAAAAAAAAAKAAQp/QQnnPnSNKWdFlAAC0KRsyMEqTti66DAAAAAAAAAAKIPQJLZQGDYjSThOKLgMAoE3lvadH5iIVAAAAAAAAgG5J6BNWU7Pv9Ag5CgCgEvXvE+WdJxZdBQAAAAAAAAAFEfqE1ZRGDInSdmOLLgMA4G1q9tolsppy0WUAAAAAAAAAUBChT2hFzb4ziy4BAGBVvTeJ8owdi64CAAAAAAAAgAIJfUIrSqM3i9LYUUWXAQDQrGa3KZH1qCu6DAAAAAAAAAAKJPQJbSjvN6PoEgAAVupRG+XdpxZdBQAAAAAAAAAFE/qENpTHbxXZyGFFlwEAEOWZO0XWq2fRZQAAAAAAAABQMKFPWIOafXX7BAAKVi5HzZ47F10FAAAAAAAAABVA6BPWoLT9NpEN3bToMgCAbqy8y8TI+vctugwAAAAAAAAAKoDQJ6xBVsqivPe0ossAALqr/FhketFVAAAAAAAAAFAhhD5hLco7T4wYoLsWAND5SjuOj9KQgUWXAQAAAAAAAECFEPqEtcjK5ajZa5eiywAAuqGafWYUXQIAAAAAAAAAFUToE9ZBecaOEX17F10GANCNlCaOi9LmQ4suAwAAAAAAAIAKIvQJ6yCrq42aA95RdBkAQHeRZVFz8O5FVwEAAAAAAABAhRH6hHVUnrFDZIMGFF0GANANlHaeGKURQ4ouAwAAAAAAAIAKI/QJ6ygrl3XcAgA6Xk05ag/aregqAAAAAAAAAKhAQp+wHko7bRvZyGFFlwEAdGHlXSdHNrBf0WUAAAAAAAAAUIGEPmE9ZFkWNYfsUXQZAEBX1bMuavabWXQVAAAAAAAAAFQooU9YT+XxW0Vp6y2KLgMA6IJq9poWWe9Nii4DAAAAAAAAgAol9AkboObgPYsuAQDoavr2jvKeOxddBQAAAAAAAAAVTOgTNkBpyxFR2mGbossAALqQmv1nRtajrugyAAAAAAAAAKhgQp+wgWoO3j2ilBVdBgDQBWSDBkR55o5FlwEAAAAAAABAhRP6hA1UGjooytO2L7oMAKALqJm1W2TlctFlAAAAAAAAAFDhhD5hI9QcuGtEbU3RZQAAVSzbfGiUJk8ougwAAAAAAAAAqoDQJ2yErH/fKO82pegyAIAqVnPwHpFlWdFlAAAAAAAAAFAFhD5hI9XsOyOi9yZFlwEAVKHS1ltEecKYossAAAAAAAAAoEoIfcJGynr1jJqDdy+6DACg2pRLUXPkfkVXAQAAAAAAAEAVEfqEdlCevmNko4YXXQYAUEXKu0+N0vDBRZcBAAAAAAAAQBUR+oR2kJWyqD16/4gsK7oUAKAa9OsTNQfuWnQVAAAAAAAAAFQZoU9oJ6UtRkR5+vZFlwEAVIHaw/aKrEdd0WUAAAAAAAAAUGWEPqEd1RyyZ0SvnkWXAQBUsNLYUVGesl3RZQAAAAAAAABQhYQ+oR1lvTeJmoP3KLoMAKBSlUpRc/T+RVcBAAAAAAAAQJUS+oR2Vp6xY2SjhhddBgBQgcp7TI3S8MFFlwEAAAAAAABAlRL6hHaWlbKoTR28sqzoUgCAStKvT9Qc8I6iqwAAAAAAAACgigl9QgcobTEiytO3L7oMAKCC1B62V2Q9exRdBgAAAAAAAABVTOgTOkjNIXtG9OpZdBkAQAUojR0V5SnbFV0GAAAAAAAAAFVO6BM6SNZ7k6g5ePeiywAAilYqRc3R+xddBQAAAAAAAABdgNAndKDyjJ0iGzms6DIAgAKVd58SpeGDiy4DAAAAAAAAgC5A6BM6UFbKovbYA/MOXwBANzSwX9QcuGvRVQAAAAAAAADQRUiiQQcrjRoe5X2mFV0GAFCA2ncdFFnPHkWXAQAAAAAAAEAXIfQJnaDmgF0js6wrAHQr5Rk7Rnn86KLLAAAAAAAAAKALEfqETpDVlKP2hIMt8w4A3WlZ98P2KroKAAAAAAAAALoYCTTo1GXepxddBgDQCWqPs6w7AAAAAAAAAO1P6BM6Uc0B74hsxJCiywAAOlB55o5R3say7gAAAAAAAAC0P6FP6PRl3mdZ5h0AuvKy7oda1h0AAAAAAACAjiF5Bp2sNHJ4lPe1zDsAdDlZWtZ9lmXdAQAAAAAAAOgwQp9QgJr9LfMOAF1NeeZOUd5my6LLAAAAAAAAAKALE/qEAljmHQC6lmzT/pZ1BwAAAAAAAKDDSZxBQSzzDgBdRBZRc9xBkfWoK7oSAAAAAAAAALo4oU8oUM0BlnkHgC6xrPvWlnUHAAAAAAAAoOMJfUKBsnJa5v3giHK56FIAgA1gWXcAAAAAAAAAOpPQJxSsNHJY1Lxzj6LLAADWV7kUtaccZll3AAAAAAAAADqN0CdUgJo9d4nSxLFFlwEArIeaQ/aI0hYjii4DAAAAAAAAgG5E6BMqRO3xB0cM6Ft0GQDAOihtNzbKe+5SdBkAAAAAAAAAdDNCn1Ahst6bRN27D40o+W8JABVtQN+oPeHgyLKs6EoAAAAAAAAA6Gaky6CClLYaGTUH7Vp0GQBAW0pZ1J18aH6xBgAAAAAAAAB0NqFPqDDlfWdEafzoossAAFpRc+BuURozsugyAAAAAAAAAOimhD6hwqSlYmtPPCSib++iSwEAWihtMzq/OAMAAAAAAAAAiiL0CRUo69s7ak9+Z0qAFl0KAJCk380nHRJZye9mAAAAAAAAAIoj9AkVqrz1llHeTzcxAChc6sJ90jvzizIAAAAAAAAAoEhCn1DBag7cNbIxI4suAwC6tbSke3mbLYsuAwAAAAAAAACEPqGSZaVS1J18aETvTYouBQC6pXTxRc1BuxZdBgAAAAAAAADkhD6hwmUD+kbtiYfkS8sCAJ2o9yb5xRfpIgwAAAAAAAAAqARmsKEKlCeMiZpZuxVdBgB0H+VS1L3niPziCwAAAAAAAACoFEKfUCVq9psZpcnbFl0GAHQLNUftF6Wxo4ouAwAAAAAAAABWIfQJVaT2uFmRjRxWdBkA0KWVd50cNTN3KroMAAAAAAAAAHgboU+oIlldbdS976iIvr2LLgUAuqTSuC2i5oh9iy4DAAAAAAAAAFol9AlVJhvQN+ree2RETbnoUgCgS8kGDYjaUw+PrOwQGQAAAAAAAIDKZEYbqlBp9GZRc8wBRZcBAF1Hj7qoPe2oyHpvUnQlAAAAAAAAANAmoU+oUjXTto/ynjsXXQYAVL8sovakQ6I0fHDRlQAAAAAAAADAGgl9QhWrOXSvKG27VdFlAEBVq5m1e5QnbV10GQAAAAAAAACwVkKfUMWyUilq331YZEM3LboUAKhKpcnbRs1+M4suAwAAAAAAAADWidAnVLlskx5R+74jIzbpUXQpAFBVspHDova4WUWXAQAAAAAAAADrTOgTuoDS0EFRe/KhEaWs6FIAoDr07R117zsqsrraoisBAAAAAAAAgHUm9AldRHnCmKg5fN+iywCAyldXuzLwOaBv0ZUAAAAAAAAAwHoR+oQupGb3KVHeb0bRZQBA5SqVovbUw6O05YiiKwEAAAAAAACA9Sb0CV1M7cF7RHn69kWXAQCVJ4uoPX5W3h0bAAAAAAAAAKqR0Cd0QTXHHhilieOKLgMAKkrNO/eK8s4Tiy4DAAAAAAAAADaY0Cd0QVlauvbdh0a21ciiSwGAilDea5eo2Xta0WUAAAAAAAAAwEYR+oQuKqurjbrTjops+OCiSwGAQpV2nhg1h+5VdBkAAAAAAAAAsNGEPqELy3r1jLoPHBsxsF/RpQBAIUrbjona42ZFlmVFlwIAAAAAAAAAG03oE7q4bEDflcHP3psUXQoAdKpsixFRe+phkZUd8gIAAAAAAADQNZgBh26gNGxQ1L3/6Ii62qJLAYBOkQ3dNOr+4ZjIetQVXQoAAAAAAAAAtBuhT+gmSltuFrWnHh5R8t8egC6uf5+o++C7ItPlGgAAAAAAAIAuRvoLupHyhDFRe9xBEVnRlQBAB9mkR9R94NjIBvYruhIAAAAAAAAAaHdCn9DNlHeZFDWH7VN0GQDQ/nrURt37j47SiCFFVwIAAAAAAAAAHULoE7qhmj13jppD9yq6DABoP3Up8HlMlLYaWXQlAAAAAAAAANBhhD6hm6rZe1rUHLJH0WUAwMarrYna046K0thRRVcCAAAAAAAAAB1K6BO6sZp9Z0TNrN2KLgMANlzNysBneesti64EAAAAAAAAADqc0Cd0czX7vyPKB7yj6DIAYP3VlKP2fUdGeZvRRVcCAAAAAAAAAJ1C6BOI2oN2i/J+M4suAwDWL/D5niOivO1WRVcCAAAAAAAAAJ0ma2xsbOy8twMq2fKr/xT1v/9L0WUAwNqXdH/vEVGeMKboSgAAAAAAAACgUwl9AqtY8bs/518AUJFqa1Yu6T5eh08AAAAAAAAAuh+hT+BtVlx7c6y48qaiywCAVdXVRu37joryNlsWXQkAAAAAAAAAFELoE2jViutvjRX/d2PRZQDA3wOf7z86yuO2KLoSAAAAAAAAACiM0CfQphU33B4rfvOHossAoLvrURt1/3BMlMaMKroSAAAAAAAAACiU0CewRituuSdW/PJ3EQ1+VABQgD69ou4fjo7SqBFFVwJ0sCuuuCIuvvjiePLJJ6Nnz56x6667xplnnhmbb775Or3+lltuif/8z/+Me+65J954440YOnRo7L333nH66afHpptu2uH1AwAA0DZjPgAAgPYj9AmsVf19j8byn/xvxPIVRZcCQDeSbdo/aj94bJSGOHEPXd3s2bPjggsuiHHjxsVee+0V8+fPj6uvvjr69esXl19+eYwateZOv7/+9a/js5/9bD5xuP/++8fgwYPjb3/7W9x55535BOJll10WQ4YM6bTPAwAAwN8Z8wEAALQvoU9gnTQ8MTeW/devI95cUnQpAHQD2WZDo+4Dx0TWr0/RpQAd7KGHHorDDz88pk6dGhdddFHU1dXl919zzTVxxhln5J1b0uRgWxYtWpQ/J/nlL38ZY8aMaX7sO9/5Tpx//vlxxBFHxNe//vVO+DQAAAC0ZMwHAADQ/kodsE2gCyqNGRl1Hz0xor/wDQAdKxs7KupOP0HgE7qJtLxfkpbka5r8S1L3ll122SVuuOGGWLBgQZuvv/HGG+P111+PY489dpXJv+QjH/lIvs0//OEPHfgJAAAAaIsxHwAAQPsT+gTWWWn44OjxsZMjG2qZXQA6RmmHbaLug8dGtkmPoksBOsktt9wSNTU1+WTf6mbMmBFpcYr0nLaMHTs2zjzzzDjwwAPf9li5XM63/cYbb7R73QAAAKydMR8AAED7q+mAbQJdWDawX9R99KRY9p+/isan5hVdDgBdSPkdO0XNUftHVsqKLgXoJMuWLYt58+bF5ptvvkrHlyajRo3Kb5944ok2tzFx4sT8qzU33XRTPvnX1uMAAAB0HGM+AACAjqHTJ7Dest6bRN2Hj4vShFWXUgGADVVz4K5Re8wBAp/QzSxatCjv6tK/f/9WH+/bt29+u3jx4vXednrNV7/61fzPJ5xwwkZWCgAAwPoy5gMAAOgYQp/ABsnqaqP2fUdFaWdX0AKwEbIsao45IA99At3P8uXL89vWOr60vH/p0qXrtd3XXnstPvCBD8ScOXNijz32iGOOOaYdqgUAAGB9GPMBAAB0DKFPYINl5VLUnnBwlPeeVnQpAFSjmnLUnnp41Lxjp6IrAQrSs2fPVSYCW1sKMOnVq9c6b/OFF16IU045Je68887YcccdY/bs2ZFluggDAAB0NmM+AACAjiH0CWyUdDKl9tC9oubwvSOcVwFgXfXsEXUfODbKO2xTdCVAgfr06ROlUqnNpfya7m9a8m9tHn744Tj22GPj/vvvjxkzZsSFF16YvwcAAACdz5gPAACgYwh9Au2iZs9dovbUIyLqaosuBYAKlw0eEHUfPzlK47YouhSgYGkpv1GjRsW8efNa7fzyzDPP5Lfjxo1b67ZuvvnmOPHEE2P+/Plx2GGHxQ9/+EOTfwAAAAUy5gMAAOgYQp9Au0nd2uo+dlJkm/YvuhQAKlRpmy2j7hOnRGnYoKJLASrEtGnT8sm/tDRfa5N6qbP8lClT1riNO+64Iz70oQ/Fa6+9lt9+85vfzCcXAQAAKJYxHwAAQPsT+gTaVWmzoVH3iXdHNnZU0aUAUGHKu0+N2g8cG1mvnkWXAlSQo48+Or+dPXt2LFmypPn+a665Jp/Y22effWL48OFtvn7hwoXxiU98In/txz/+8TjzzDM7pW4AAADWzpgPAACg/WWNjY2NHbBdoJtrrK+PFb++NupvvrvoUgAoWrkcNUfvHzUzdii6EqBCffGLX4xLLrkkRo8eHfvuu28sWLAgrrrqqhg4cGBceuml+XKAya233hq33XZbTJgwIfbbb7/8vm9/+9vx/e9/P/r16xennHJKm+9x+umnR6nkukcAAIDOZswHAADQvoQ+gQ614s93xYr/vi6ioaHoUgAoQp9eUffeI6K01ciiKwEqWBqWpgnAyy67LObMmRMDBgyI6dOn511cmib/knPPPTfOO++8OPLII+NrX/taft8RRxwRDz744Frf4/7774+ampoO/RwAAAC8nTEfAABA+xL6BDpc/aNPxfKLfxPx+ptFlwJAJ8o2Hxp17zsqsoH9ii4FAAAAAAAAALoEoU+gUzS89Eos/69fR+NzLxZdCgCdoLTj+Kg94eDI6mqLLgUAAAAAAAAAugyhT6DTNC5dFssv+b9ouO+xoksBoKNkETUH7hY1B7yj6EoAAAAAAAAAoMsR+gQ6VfqRs+KqP0X9tTcXXQoA7a1HbdSe+M4ob7910ZUAAAAAAAAAQJck9AkUov5vD8Xyy66OWLqs6FIAaAfZkIFRe+oRUdpsSNGlAAAAAAAAAECXJfQJFKbhhYWx/Ce/ica5C4ouBYCNUJq6XdQec0BkPeqKLgUAAAAAAAAAujShT6BQjSvqY8Vv/hD1f7qz6FIAWF91tVFz1H5RM237oisBAAAAAAAAgG5B6BOoCPX3PhrLL70q4s0lRZcCwDrIhg+O2lMOi9LwwUWXAgAAAAAAAADdhtAnUDEaX14Uy37yv9H41LyiSwFgDcrTd4iaI/eNrK626FIAAAAAAAAAoFsR+gQqSmN9Q6y48o9Rf8NtEX46AVSWHnVRe+wBUZ6yXdGVAAAAAAAAAEC3JPQJVKT6B5+I5T+/MuK1N4ouBYB00DhyWNS++7AoDRlYdCkAAAAAAAAA0G0JfQIVq3HR4lj20/+LxsefKboUgG6tvNuUqDls78hqykWXAgAAAAAAAADdmtAnUNEaGxpixe//EvXX3BzhxxVA59qkZ9Qed1CUd9im6EoAAAAAAAAAAKFPoFo0PPZ0LL/0qmh8eVHRpQB0C6VxW0Tt8bMi27R/0aUAAAAAAAAAAG8R+gSqRuPSZbHi/26M+r/cFeEnF0DHqKuNmkP3ivI7doosy4quBgAAAAAAAABoQegTqDr1jz4VKy67WtdPgHZWGjsqao6fFaVBA4ouBQAAAAAAAABohdAnUL1dP//3hqi/+W+6fgK0R3fPd+4Z5V0n6+4JAAAAAAAAABVM6BOoavWPPBXLL7sqYuGrRZcCUJWysaOiVndPAAAAAAAAAKgKQp9A1dP1E2ADu3sesmeUd9PdEwAAAAAAAACqhdAn0GXUPzInll92ta6fAGuRjRkZtSccrLsnAAAAAAAAAFQZoU+gS2lcsjRW/OaGqL/l7qJLAajQ7p57RHm3Kbp7AgAAAAAAAEAVEvoEuqT6h+fEil/+PhpfeqXoUgAqQmncFlHzrgOjNHhg0aUAAAAAAAAAABtI6BPoshqXr4j662+NFdfdGrFiRdHlABSjX5+oPXzvKE+eUHQlAAAAAAAAAMBGEvoEuryGl16JFVdcFw33P150KQCdp1yK8u5To+bAXSPrUVd0NQAAAAAAAABAOxD6BLqN+gcejxX/fZ0l34Eur7T1FlFz1P5RGjao6FIAAAAAAAAAgHYk9Al0zyXfr781Yrkl34Eupn+fqD3MUu4AAAAAAAAA0FUJfQLdeMn366Ph/seKLgWgfZZy32PnqDngHZZyBwAAAAAAAIAuTOgT6NYs+Q5UO0u5AwAAAAAAAED3IfQJdHuNK1ZE/XWWfAeqjKXcAQAAAAAAAKDbEfoEeEvDy4tixZU3RcNdD0T4yQhUqh61K5dy32e6pdwBAAAAAAAAoJsR+gRYTcOzz8eK3/4xGh56ouhSAP6uXIryzJ2iZv+ZkfXtXXQ1AAAAAAAAAEABhD4B2tDw2NOx/P9ujMan5xddCtCdZRGlyROiZtbuURo0oOhqAAAAAAAAAIACCX0CrEX9PY/Eiiv/GI3Pv1x0KUA3U9p2q6g5ZI8obT6s6FIAAAAAAAAAgAog9AmwDhobGqL+9vtixe/+HPHK4qLLAbq4bIsRUfPOPaM8bouiSwEAAAAAAAAAKojQJ8B6aFy+Iur/dGesuO6WiDeWFF0O0MVkQzeNmoP3iPIO2xRdCgAAAAAAAABQgYQ+ATZA45tLY8X1t0b9TX+NWLa86HKAajegb9QcsGuUp02KrFQquhoAAAAAAAAAoEIJfQJshMZXX1sZ/rzlHuFPYMPCnnvuEuV37BRZbU3R1QAAAAAAAAAAFU7oE6AdNL7+Zqy46a9Rf9OdEW9a9h1Ys2zIwCjvMz3KUydGVlMuuhwAAAAAAAAAoEoIfQK0o8aly6L+5r/FihvuiHj1taLLASpMtvnQqNl3RpR2GB9ZKSu6HAAAAAAAAACgygh9AnSAxhUrov72+6L++tui8aVXii4HKFg2dlQe9ixvu1XRpQAAAAAAAAAAVUzoE6ADNTY0RMPdD8eK626NxnnPF10O0JmyiNJ2Y1d29hy9edHVAAAAAAAAAABdgNAnQCepf+DxleHPJ+cWXQrQkUpZlHbaNmr2mRGlzYYUXQ0AAAAAAAAA0IUIfQJ0soYn5saK62+JhgefiPATGLqOutoo7zwxyntPi9KgAUVXAwAAAAAAAAB0QUKfAAVpeGFh1P/5zqi/7b6IJUuLLgfYQNmgAVHedacoT9shsl49iy4HAAAAAAAAAOjChD4BCta4dFnU//X+qP/TXdH43ItFlwOsiyyitM1WUd5tcpQmjI2slBVdEQAAAAAAAADQDQh9AlSQ+kefivo/3xUN9z0W0dBQdDnA6jbpEeWdJ0V518lRGrpp0dUAAAAAAAAAAN2M0CdABWp89bWov/XeWHHL3RELXy26HOj2si1GRPkdO0V5p20jq6stuhwAAAAAAAAAoJsS+gSoYI0NjdHw0BNRf/PfouHBJyIa/MiGTtOjNspTtsvDnqXNhxVdDQAAAAAAAACA0CdAtWhc+GrU33Zv1N/5QDS+sLDocqBryiKy0SOjvPN2eeAz61FXdEUAAAAAAAAAAM2EPgGqUMNT86P+r/dH/d8einjtjaLLgaqXDRsU5anbRWnKdlHatH/R5QAAAAAAAAAAtEroE6CKNdY3RMMjc6L+rw9Ew32PRixbXnRJUD369Y7y5Akrw54jhxddDQAAAAAAAADAWgl9AnQRjUuXRcO9j+bLv6cgaDT48Q5v06MuSjtsszLoOW7LyEpZ0RUBAAAAAAAAAKwzoU+ALqhx8etRf9dD+RLwjc88V3Q5UKxyKUrjt1oZ9Jw4LrK62qIrAgAAAAAAAADYIEKfAF1cw/MvR8NdD0b9/Y9F49wFRZcDnaNcjtLYUVHafuso77RtZL03KboiAAAAAAAAAICNJvQJ0I00vrI4D3823P94NDz2VMSK+qJLgvbTq2eUJoyJ8sRxUdp2q8h69ii6IgAAAAAAAACAdiX0CdBNNS5dFg0Pz4mG+x+L+gefiHjtjaJLgvWWDRmYL9megp7ZVptHVioVXRIAAAAAAAAAQIcR+gQgGhsao/GpZ6M+dQBNy8AveKnokqB1pSyy0ZtHebuxUZo0LkpDBxVdEQAAAAAAAABApxH6BOBtGl5YGA0PvLUM/JPPRtRbBp4CbdIjStuMXhn03G5sZL03KboiAAAAAAAAAIBCCH0CsEaNy5ZHw1PzouGxp6Ph8Wei8an5QqB0fMhzzMgojd0iSuNGRbbZsMhKWdFVAQAAAAAAAAAUTugTgA0PgT72TDQ+LQTKRhLyBAAAAAAAAABYJ0KfAGx8CHTOvGh4XAiUddTzrZDnuFF50DPbXMgTAAAAAAAAAGBdCH0C0CEh0MYn50bD3AXRMPe5iEWvFV0WRcmyyIYMjGzksCiNGh6lMaOEPAEAAAAAAAAANpDQJwAdrnHx69HwzHPR+FYINIVB45XFRZdFRwQ8h266MuA5cniURg1bGfDsUVd0ZQAAAAAAAAAAXYLQJwDFBUHnLojGt0KgeRB04atFl8W6KqWA56C3Ap4rQ57Z5kMFPAEAAAAAAAAAOpDQJwAVo/G1N1YGQZ97MRpfeDkaX1gYDS+8HPHqaxF+WxWjVIpsUP+VS7QP2TS/LY0YujLgWVdbdHUAAAAAAAAAAN2K0CcAFa9x6bJofHFhHgJNYdCGdPv8ylBovLmk6PKqXxYR/fpE6a1QZ9bydtCAyMqloisEAAAAAAAAAEDoE4Cu0B20qSNo44uvRCxaHI2vvhaNr76e38Ybb+oSWsoi+vSOrF/vyPr3iaxvn8gG9v17uHPwQMuyAwAAAAAAAABUAaFPALq0xhX1EYtfXyUImodBV/n76xGvvRFRbb8Sy+WIFOTsmwKdfVYGOvv1jkihzqaAZ78+Eb17RZaCnwAAAAAAAAAAVDWhTwBI4dD063Dpsohly6NxSbpdFrFkWTQuW57fv8b70t8bGlduo+VXw1u3SZat7LiZbrMssqa/l0oRdXURPesiq6uN6FG3sutmjzbu61Hb/Of8MQAAAAAAAAAAug2hTwAAAAAAAAAAAIAqUCq6AAAAAAAAAAAAAADWTugTAAAAAAAAAAAAoAoIfQIAAAAAAAAAAABUAaFPAAAAAAAAAAAAgCog9AkAAAAAAAAAAABQBYQ+AQAAAAAAAAAAAKqA0CcAAAAAAAAAAABAFRD6BAAAAAAAAAAAAKgCQp8AAAAAAAAAAAAAVUDoEwAAAAAAAAAAAKAKCH0CAAAAAAAAAAAAVAGhTwAAAAAAAAAAAIAqIPQJAAAAAAAAAAAAUAWEPgEAAAAAAAAAAACqgNAnAAAAAAAAAAAAQBUQ+gQAAAAAAAAAAACoAkKfAAAAAAAAAAAAAFVA6BMAAAAAAAAAAACgCgh9AgAAAAAAAAAAAFQBoU8AAAAAAAAAAACAKiD0CQAAAAAAAAAAAFAFhD4BAAAAAAAAAAAAqoDQJwAAAAAAAAAAAEAVEPoEAAAAAAAAAAAAqAJCnwAAAAAAAAAAAABVQOgTAAAAAAAAAAAAoAoIfQIAAAAAAAAAAABUAaFPAAAAAAAAAAAAgCog9AkAAAAAAAAAAABQBYQ+AQAAAAAAAAAAAKqA0CcAAAAAAAAAAABAFRD6BAAAAAAAAAAAAKgCQp8AAAAAAAAAAAAAVUDoEwAAAAAAAAAAAKAKCH0CAAAAAAAAAAAAVAGhTwAAAAAAAAAAAIAqIPQJAAAAAAAAAAAAUAWEPgEAAAAAAAAAAACqgNAnAAAAAAAAAAAAQBUQ+gQAAAAAAAAAAACoAkKfAAAAAAAAAAAAAFVA6BMAAAAAAAAAAACgCgh9AgAAAAAAAAAAAFQBoU8AAAAAAAAAAACAKiD0CQAAAAAAAAAAAFAFhD4BAAAAAAAAAAAAqoDQJwAAAAAAAAAAAEAVEPoEAAAAAAAAAAAAqAJCnwAAAAAAAAAAAABVQOgTAAAAAAAAAAAAoAoIfQIAAAAAAAAAAABUAaFPAAAAAAAAAAAAgCog9AkAAAAAAAAAAABQBYQ+AQAAAAAAAAAAAKqA0CcAAAAAAAAAAABAFRD6BAAAAAAAAAAAAKgCQp8AAAAAAAAAAAAAVUDoEwAAAAAAAAAAAKAKCH0CAAAAAAAAAAAAVAGhTwAAAAAAAAAAAIAqIPQJAAAAAAAAAAAAUAWEPgEAAAAAAAAAAACqgNAnAAAAAAAAAAAAQBUQ+gQAAAAAAAAAAACoAkKfAAAAAAAAAAAAAFVA6BMAAAAAAAAAAACgCgh9AgAAAAAAAAAAAFQBoU8AAAAAAAAAAACAKiD0CQAAQOGuuOKKOOqoo2Ly5Mkxc+bM+NSnPhXPPvvsOr9+3rx58ZnPfCb23HPP2HHHHePwww+PX/ziFx1aMwAAAOvGmA8AAKD9ZI2NjY3tuD0AAABYL7Nnz44LLrggxo0bF3vttVfMnz8/rr766ujXr19cfvnlMWrUqDW+Pk0UHn/88bFw4cI4+OCDY/DgwXHttdfGU089Fe9973vziUEAAACKYcwHAADQvoQ+AQAAKMxDDz2Ud2iZOnVqXHTRRVFXV5fff80118QZZ5wRe++9dz45uCbpeen5P/jBD/KuL8mSJUvi1FNPjbvvvjt++ctfxqRJkzrl8wAAAPB3xnwAAADtz/LuAAAAFObiiy/Ob08//fTmyb9k//33j1122SVuuOGGWLBgwRo7vqQOL2mJwKbJv6Rnz55x5plnRrrO8bLLLuvgTwEAAEBrjPkAAADan9AnAAAAhbnllluipqYmn+xb3YwZM/IJvPScttx22235c2bOnPm2x1Inmdra2jW+HgAAgI5jzAcAAND+hD4BAAAoxLJly2LevHkxfPjwVTq+NBk1alR++8QTT7S5jTlz5uS3W2655dseS5N/I0aMiLlz5+bvBQAAQOcx5gMAAOgYQp8AAAAUYtGiRXnHlv79+7f6eN++ffPbxYsXt7mNhQsX5rdr2kZDQ0O89tpr7VIzAAAA68aYDwAAoGMIfQIAAFCI5cuX57etdXxpef/SpUs3ehu6vgAAAHQuYz4AAICOIfQJAABAIXr27LnKJN7qmibtevXq1aHbAAAAoP0Z8wEAAHQMoU8AAAAK0adPnyiVSm0u5dd0f9OSf61pWuLv1VdfbXMbWZbl7wUAAEDnMeYDAADoGEKfAAAAFCItwzdq1KiYN29eq11bnnnmmfx23LhxbW5jzJgx+e3TTz/9tsfSNufPnx9bbbVVPtEIAABA5zHmAwAA6BhGQAAAABRm2rRp+UTdnXfe+bbHbr755rxjy5QpU9b4+vScW2+99W2P3XHHHfm2p06d2u51AwAAsHbGfAAAAO1P6BMAAIDCHH300fnt7NmzY8mSJc33X3PNNfkE3j777BPDhw9v8/XpsV133TVuu+22uPbaa5vvT9s655xz8j+fdNJJHfoZAAAAaJ0xHwAAQPvLGhsbGztguwAAALBOvvjFL8Yll1wSo0ePjn333TcWLFgQV111VQwcODAuvfTSfDnAJHV2SRN9EyZMiP3226/59U8++WQcf/zxsXjx4pg1a1YMGzYsrrvuupgzZ06cdtppcdZZZxX46QAAALo3Yz4AAID2JfQJAABAodKwNE0AXnbZZfmk3YABA2L69Onx8Y9/vHnyLzn33HPjvPPOiyOPPDK+9rWvrbKN9LrU5SUtD7h06dJ8MjF1eznmmGPypQABAAAohjEfAABA+xL6BAAAAAAAAAAAAKgCpaILAAAAAAAAAAAAAGDthD4BAAAAAAAAAAAAqoDQJwAAAAAAAAAAAEAVEPoEAAAAAAAAAAAAqAJCnwAAAAAAAAAAAABVQOgTAAAAAAAAAAAAoAoIfQIAANAtXXHFFXHUUUfF5MmTY+bMmfGpT30qnn322XV+/bx58+Izn/lM7LnnnrHjjjvG4YcfHr/4xS86tGa69z53yy23xPvf//6YNm1aTJo0KfbZZ5/40pe+FC+//HKH1k333u9aamxsjFNOOSXGjx8fc+fObfda6Ro2dp9btGhRfP3rX4999903tt9++/z285//fDz//PMdWjfde7978MEH4yMf+UhMnz49/x174IEHxnnnnRfLli3r0LrpGj7xiU/EHnvssV6vWbhwYXz5y1/Of8btsMMOcdBBB8UPf/jDWLFiRYfV2V0Z99HZjPvobMZ8FMG4j85mzEeRPlGhY76sMf3mBgAAgG5k9uzZccEFF8S4ceNir732ivnz58fVV18d/fr1i8svvzxGjRq1xtenE0rHH398PnA/+OCDY/DgwXHttdfGU089Fe9973vzSUFoz33u17/+dXz2s5+Nnj17xv7775/vc3/729/izjvvjM033zwuu+yyGDJkSKd9HrrHfre6H//4x/HVr341//N1110XI0eO7KDK6a773IsvvhgnnXRSzJkzJ3bbbbd8svmBBx6Im2++Of9Z96tf/SoGDhzYaZ+H7rHfpd+nKdywfPnyOOCAA2LEiBHx5z//OR555JGYMWNGXHjhhVEulzvt81Bd0kTxueeeG8OGDYs//vGP6/SaV199NU488cR47LHH8n1uiy22yPe59PMuTT5/97vf7fC6uwvjPjqbcR+dzZiPIhj30dmM+SjSeZU85kuhTwAAAOguHnzwwcZtttmm8YQTTmhcunRp8/2///3v8/s/+MEPrnUbp59+ev7cG264ofm+N998s/Fd73pX4/jx4xvvvffeDquf7rfPvfLKK42TJ0/Ovx5//PFVHjvnnHPybZx11lkdVj/d92ddS2nf22GHHfLXpq9nnnmmA6qmu+9zH//4x/Pn/uQnP1nl/nPPPTe//xvf+EaH1E733u+OO+64/LlXX311833Lly9vfO9735vff8UVV3RY/VSvJUuWNH7uc59r/r24++67r/Nrv/rVr+avueSSS5rvW7FiReMZZ5yR3/+73/2ug6ruXoz76GzGfXQ2Yz6KYNxHZzPmoyhLqmDMZ3l3AAAAupWLL744vz399NOjrq6u+f7URWOXXXaJG264IRYsWLDGbi+pu0taSiYt8dckdeI488wz86WwUvcNaK997sYbb4zXX389jj322BgzZswqj6VlidI2//CHP3TgJ6A77nct1dfXx6c//ekYNGhQ3oEDOmKfe+655/JOHWmptZNPPnmVx0499dR8OV2dreiIn3X33ntv9O/fP++20aSmpib/vZvcddddHVY/1en666+PWbNm5V2FWo4H1sWSJUvypcFTd6HUQbJJ6ix01lln5X++9NJL273m7si4j85m3EdnM+ajCMZ9dDZjPopwfZWM+YQ+AQAA6FZuueWW/KROOim0urScS5q8S89py2233ZY/Z+bMmW97bOrUqVFbW7vG19P9bOw+N3bs2HxiueWJyZYni9K233jjjXavm+6937X0/e9/Pz9B/pWvfCV69+7dAdXSFWzsPpeCDuk5afnc1fXt2ze+8Y1vxHve8552r5vq1h4/6wYMGBCvvfZaLFq0aJX7n3/++fx20003beeqqXa//OUv82DWF77whfx35Pq455578uO2adOmRam06hRdWpYyLaN7++235+EbNo5xH53NuI/OZsxHEYz76GzGfBThl1Uy5hP6BAAAoNtYtmxZzJs3L4YPH77KlcEtB93JE0880eY25syZk99uueWWb3ssTfylKzjnzp2bvxe0xz43ceLE+NCHPhRTpkx522M33XRTfhJpm222aefK6e77XZMHHnggzj///PzK9NZCD9Be+9xDDz2U32699dbxm9/8Jo455pjYcccdY9ddd81Psr/88ssd+Anozj/rTjzxxHyyJQVtHn/88fz3auru973vfS+fHEz7Iqzeheq6667L950sy9brtU1jiS222KLVx9N+m/btNJ5gwxn30dmM++hsxnwUwbiPzmbMR1FOrZIxX81GbwEAAACqRLqaN139m5ZzaU26ojxZvHhxm9tYuHBhfrumbTQ0NORXD7tKmPbY59qSXvPVr341//MJJ5ywkZXSlbTXfpdOQKYl/oYNGxb/9E//1CG10jW0xz7X1GHjwgsvzJfR2mefffJOan/961/zZa9S5460jG6akIH2/FmXlglM2/ja1762SsehcePG5QGIzTbbrJ0rp9ql5Ug31CuvvJLftvWzrGm/ffXVVzf4PTDuo/MZ99HZjPkognEfnc2Yj6JMr5Ixn9AnAAAA3cby5cvz29auDG55/9KlSzd6Gzq+0F77XGvS5PIHPvCB/MrhPfbYwxXpdMh+d84558Sjjz4aF198sSX+6PB9rmm50tRJIS2dteeee+Z/TxM8qeNLmvj71re+FV/60pc64BPQnX/WpYnlH/zgB/mSgQcddFAMGjQo7rrrrrj77rvjc5/7XJx33nkmnWk3TWOE9j42ZFXGfXQ24z46mzEfRTDuo7MZ81GNlnXimM/y7gAAAHQbPXv2XOWEUVsD8l69enXoNug+OmJ/eeGFF+KUU06JO++8M18Ca/bs2eu9zAxdW3vsd3fccUf86Ec/ipNPPjmmTZvWQZXSVbTHPlcqrTxVfeCBBzZP/CXp59tZZ50VPXr0iKuuuirvqgbttd8999xz8cEPfjCfbLniiivi3//93+Pss8+OX/ziF3HGGWfE7bffnne/gs7ebwVvNo5xH53NuI/OZsxHEYz76GzGfFSjnp045hP6BAAAoNvo06dPfnKxrSVfmu5vWmKjNU3LybS1/EbaRjpRmd4L2mOfa+nhhx+OY489Nu6///6YMWNGvhyWfY323u9S5410AnzUqFHxyU9+skNrpWtoj591TY9tv/32rW5/yy23zLfz8ssvt1vdVLf22O/+53/+J5YsWRKnnXZajB49epXH0gRg2u9uuOGG5mUoYWOty1gicXy3cYz76GzGfXQ2Yz6KYNxHZzPmoxr178Qxn+XdAQAA6DbS0hnphPa8efPyKy1ra2tXefyZZ57Jb8eNG9fmNsaMGZPfPv300297LG1z/vz5sdVWWzVfuU731h77XJObb745PxmZlvg77LDD4itf+Uqby8TQvW3sfnfvvfc2/4zbaaedWn3Ovvvu27wk28iRI9v5E9Adf9al353r0gmhqWMCtMd+9+yzz7b5nBTmSvc/9dRT+XsMHTq03T8D3c+axhJN96dORZtttlknV9a1GPfR2Yz76GzGfBTBuI/OZsxHNRrTiWM+IxEAAAC6lbRkVTpJlJZIa21yJZ3smTJlyhpfn55z6623tro0Vtr21KlT271uuu8+17RvfehDH8on/tLtN7/5TRN/dNh+t/nmm+cTza19jRgxIn9OWmoy/b1fv34d/lnoPr9fk7/85S9veyx1eUkTNWmyWZcr2nO/GzJkSH775JNPtvp4mvxr+TzYWJMmTcqX8bvtttvetmxpmrROP+tS+KZcLhdWY1dh3EdnM+6jsxnzUQTjPjqbMR/VZlInjvmEPgEAAOhWjj766Px29uzZ+dIuTa655pp8gmWfffaJ4cOHt/n69Niuu+6aD9qvvfba5vvTts4555z8zyeddFKHfga61z63cOHC+MQnPpG/9uMf/3iceeaZnVI33Xe/SxMsH/3oR1v9apoAPPXUU/O/mwCkvX7WTZ8+Pe+wkX6/XnHFFc33pxPkX//61/NJnne9610d/CnobvvdrFmz8i59adncpi4xTS6++OJ47LHH8lBXCkZAe+jRo0e8853vjLlz5+b7WJP6+vr4xje+kf/ZWKJ9GPfR2Yz76GzGfBTBuI/OZsxHtenRiWO+rLGxsbFdtgQAAABV4otf/GJccsklMXr06Hy5qgULFsRVV10VAwcOjEsvvTRfNiZJXV3SScgJEybEfvvt1/z6dGXw8ccfH4sXL85PHA0bNixf7mrOnDlx2mmnxVlnnVXgp6Or7XPf/va34/vf/34+0ZI6bbTl9NNPt7wk7fqzrjUnnHBC3l3BEn90xD73wAMPxHve85549dVXY88998yXxErPvf/++2Py5Mnxk5/85G3LucHG7nc/+tGP4mtf+1q+vNoBBxwQm266adx33335c1O3l5/+9Kf5tqEt48ePz8cDf/zjH1e5/8EHH8zDgmkC+aijjlqli9UxxxyTd3jZe++98+BD6naVftalsUWa0E4di9h4xn10NuM+OpsxH0Uw7qOzGfNRtPEVOuYT+gQAAKDbSUPhdKLosssuyyfsBgwYkF9pnrppNJ0kSs4999w477zz4sgjj8xPDLWUXpc6vKRlZJYuXZqfGEpXaKbBvEla2nOfO+KII/ITSGuTThrV1NR06Oeg+/2sW50JQDp6n0snxNNjN910UyxatCjvNHTooYfGBz7wgbxbAnTEfvfnP/857/xyzz33xJtvvhlDhw7NJ2bS0rqW+WNDJwB//etfx9lnn50vSZnCCy09//zz8Z3vfCduuOGGPFCYfqemScIU9LKUc/sx7qOzGffR2Yz5KIJxH53NmI+ija/QMZ/QJwAAAAAAAAAAAEAV0PsdAAAAAAAAAAAAoAoIfQIAAAAAAAAAAABUAaFPAAAAAAAAAAAAgCog9AkAAAAAAAAAAABQBYQ+AQAAAAAAAAAAAKqA0CcAAAAAAAAAAABAFRD6BAAAAAAAAAAAAKgCQp8AAAAAAAAAAAAAVUDoEwAAAAAAAAAAAKAKCH0CAAAAAAAAAAAAVAGhTwAAAAAAAAAAAIAqIPQJAAAAAAAAAAAAUAWEPgEAAAAAAAAAAACqgNAnAAAAAAAAAAAAQBUQ+gQAAAAAAAAAAACoAkKfAAAAAAAAAAAAAFVA6BMAAAAAAAAAAACgCgh9AgAAAAAAAAAAAFQBoU8AAAAAAAAAAACAKiD0CQAAAAAAAAAAAFAFhD4BAAAAAAAAAAAAqoDQJwAAAAAAAAAAAEAVEPoEAAAAAAAAAAAAqAJCnwAAAAAAAAAAAABVQOgTAAAAAAAAAAAAoAoIfQKFeO211+KnP/1pvO9974tdd901Jk6cGJMnT47DDjss/u3f/i2efPLJwmq79dZbY/z48fnXihUroit69NFH33Zf02f+y1/+0ml13HXXXfGFL3wh3vnOd+b//pMmTYrddtstPvjBD8YVV1wR9fX10RXNnTu3+fv91FNPVdz7v/LKK/HCCy90aA3vfve7m2to+bXtttvGjjvumO8HJ510UvzoRz+KV199tc3t7LPPPvnrLr/88nap6/HHH4/Gxsb1es2vf/3rvIY99tij1c84e/bs6I7/vwEA1vfYNH19+ctfXqfX/dd//Vfza1Y/DttQHXH8lsaU7TW+beu4s7NtyLFlW2OQc889N7/vhBNOWOfj/Pb8nq5JU73p+94ZPvOZz+Tv96lPfSoqTcvzJKt/pXH81KlT4+CDD46zzz47br/99k7bhzd0X2ht/yrqXFBr4++2/l8AANB+2jq+beuraZ6ived3Onsc8Oabb8b5558fhx56aD4Xs9NOO8WRRx4ZP/zhD2PZsmXrvJ00l5vqPvDAA9f4vNNOO635+5Xmhdvy0EMPNT/v4YcfXuW4uLWvCRMm5PWnY/uPfvSjce21166xjpdeeinOO++8eNe73hUzZszIxzFpfvq4446L7373u7FgwYLYEGvbb9L897Rp0+Koo47KzzWsab6rms4RzJ8/P773ve/FySefHO94xzuax4UHHXRQfPazn42bbrqp02sC6I5qii4A6H7+8Ic/5BMBCxcuzP8+YMCA2GabbWLRokXx2GOP5Qfzl1xySZxxxhnxoQ99qOhyu5Q0GZImUd944434+c9/Xlgdixcvjs9//vNx5ZVX5n+vra2NESNGRO/eveOZZ56JG264If+68MIL80HdlltuWVit3c1FF12UD/jPOeecGDJkSIe/36BBg1b5902ByyVLlsRzzz0Xd9xxR/6VJvT//d//PR+Id2QQ/dvf/nZcdtllcffdd0dNTfUdIlXK/28AgI3xu9/9Lj73uc9FlmVrfF7TWKKS/elPf8qPz9Ik2Jlnnll0OV2C72nx0mReXV1d89/TxZrpfE6a8E4X0aWJx8MPPzz/d2r5vPbWFfaFzh5/AwDwdqNHj45NN910rc8rl8tR7VLgMF3smAKWacyd5mbSnMyDDz4YDzzwQD4eT8eoffr0Weu2Zs6cmT93zpw58fLLL7f6PUxzPS0vCktBwBQSbM1tt92W36bj4hRkbCmNK9I4pKWmuaQUwv3973+ff6Ug6ze/+c23nU+4/vrr46yzzsrnJtN8ZPo3T589fT/uvffe+Nvf/pbPR6Z5yxTO/P/s/Qm8rXP5P/6/D8c8JkPJFMosGZOkAZlSPmYnhEhmadBISaaQOUOoJHPDR9Qx9xGiiSjSIBGhyDx0nP/j9f7+7v1fZ5+1p3P2tM5+Ph+P/dj7rGnf615r7XNf93W9r2sw30cppE3e85577qlfiZcuueSSmhPtRK+88kotXv3Wt77VtVhu4YUXrnn+XJfnevnll9evFLsm1kkeEICh0XkVDUBHy0HzMcccU3/edNNNy7777lve9KY3dV3/2GOPlTPOOKNceOGF9aAxB+wHHXTQCG7xjOXKK6+siZHVV1+9x6TpoosuOqTbkNV0WTmXA/8Eb3kPbL311l3JoARqWZF37LHH1gLgdHu87LLLyute97oh3a6xZJFFFunx9c7qzOGUFYhHH3102+sSbH/5y18ud911V/nYxz5Wvv3tb5dVVlllitvkpEICyQSV0yPBdorNp8VGG21UV5TmZMFY/3wDAEyPLLxJTPirX/2qrLnmmj3eLrHE3XffPei/P7Fqup685jWvGZTHO/PMMwe1I+VoOe4c7BiknZ6O8wd7nzJwJ510UllsscWmuvy5556rMVW65Pzwhz+sCcDjjz9+ioTrYL6Hp+e9MFhx5PTqKf7OeZB0Tp1jjjmGfZsAAMaaTJ6b1kK/TpNcTAo+cxycxUdNvuXXv/51zdUlJ5Pb9GcCx1prrVWP63Ncnal+733ve9sWcr700ktl2WWXrU1/8u8UQbZbHJYGIJHum90ll9hTo4s8XgoL0zzkf//3f2uhYbp5NrIwLXnmbEc6gu622261AU0jBauJW5KHzALU5CLTuXIw30evvvpq3bY8fs55pDFSYpJOkxgvuboU784000xlp512Kh/+8IenaOyS/Zzi4TRyyeudIuPvf//7ZbbZZhvRbQeYURnvDgybHLDnIC8SPOQgvLXgMxJoZNz3Pvvs03USfyiSeUxtmWWWqV9DmVRIQeenP/3pmqR9wxveUIO0jCtrDfCSEEoiKMmirP7KmLMvfelLQ7ZNY1EC8eb1Hs0J45xwyGrBjOlI98oEwgmOWy2xxBL1ecwzzzwjtp353dmGbMtY/nwDAEyvprP7T37yk15v1xQPrrjiioP6+1OMmGOm/nR5GQmdcNw5WDHIaDjOZ2CSON1rr73KV7/61frvH//4x+Xqq68ele/h0f7+yt+gbJ9FewAADJYUR+YYPdL1srXBRhpJNOPlU5zYnzHvOf5vLRptJ00qIpMAcgyePE9T3DmQos/eJL+Y57PqqqvWf3/nO9+ZqhlRChGzqCoTJlsLPptj7yOOOKJ2Lk3+KSPgB1sKJLMP9txzz/rvW2+9tXZI7TRZ4JeCz3S9zc/J53ef1Jjizi233LLmf7OgNkW3Z5999ohtM8CMTtEnMCxS7Je2+Bn7tdpqq5UDDjig19tnpVBa2+cA+7zzzhu27WRoJeGTgCAOP/zwsvjii/d42xQAZ9VdM3qhEwMgpt+cc85Zu33G/fff32cBAAAAnWuTTTap3zOWLTFkb0WfSZpkegQwuiTBt8EGG9SfhyJhCgAADNxTTz1VpyvG8ssvP9X1TQFnbpPul/3RdMTsqeizyQemoHL99def4rJWKQzMlMA0hRlo0Wdjww03rN//+Mc/1uLSRrqXRiYO9CTnF7bZZpuu23dvPjJY3v3ud3f9nHxXJ3nkkUdqAW185CMfqc17epPGP02Dp0svvXTI9inAWKfoExgWGc+Xg/ZoVjL1tTIr3SFS8JkVVk0gsNxyy5WVVlqpHvy3k2BkjTXWqLe78847p1oldsghh9SD6pVXXrl2kdl7773riqqByAH/Jz/5yfKud72rPk5GBaQ9fVr/p6i1u1yX7bnlllu6xlSvs846tfh1q622Kj/4wQ/q7ZLUzIFv2v/nujyP3Xffvfz2t79tux1PP/10Oeuss+rYrzxe9ktGIOb+p5xySvnPf/7TdduHHnqobkOTcEkAln+/5z3v6bpN/t1sZ3fptpkRbu9///vLW9/61q5tP+ecc/q14q9x8cUXdwWUGevdn2TRkUceWQv9llpqqamuz2uXwtB3vOMdXa9pgo0kidvJ881z/Nvf/lZXGGbsQPZZVjHusMMO5cYbb+waUZDntsUWW9TVgdm/WQHYvIdbNfstr0dey+yXBI/Zpry/Mr5goNIJNUWxCZoSaGcbMyYh74/u77H8zmYbMkKvu9tuu612ysz1WaHZ+n5o9kUceuih9d+NjLjIv6+44oo62iI/5/Xv7TOe22SkR1ZNDqa8Bk0Xp+uuu67ta5p90yrv/xNPPLFuc+6f1yT7M+Mz7rvvvqkeY5dddun6dz5Leczsp9bP8E033VROO+20eiIjj5f3R94T2Ue5vrf3dD77eW/mc53PUMaLXHTRRW3/ZvT0nBrNa5Xvg/H5/uc//1lHmWala55Xti+rTvN4eV93l78veax0bs7Jn4x6ye/KZzD75uCDD55qHwMA9EeOezO2LccnPSWN/vKXv9RxdInDFlxwwR4fK8f0OVbOMXmSSzmuznHO+973vrogsd1Y6Oa4L8eRjeZYK4mnJmbbdttt62Pla/vtty+XX375FEWqzfFhEwt84xvfmOL4rfGHP/yhfOELX6jFq4lJmuOpxMztFjv1dNzZbPfPfvazum8OPPDA+jh5vIzYS2zdU9JuIHFlOz/60Y/K1ltvXY8jc/+MtPv5z38+1e3axSC96X5M3Ns+nd5zBQM1Pfs7sVKmGSRuzPsn+yzHz/1Z5HjttdfWTppJmOZ35X2dcxz33HPPFLfLe3HXXXftet8mudtdpijk+jxGfxO6A5HPRSReav2s9RY75XXM5zXPL69l9k32daaAtJ536Ovz9Ytf/KL+OzFXfn+mi+Tzn8dN3NOfmCu/L/HQxhtvXO+b7c0+a/d3o694sPW938SYvcXfrTFXtr2djEtMfJlzIHkv5PxDzo30dH6r+f15/11zzTV1v+Zzns/tBz/4wa5x9wAATJ8ciyeHkcY3yUUmN5GvHH8mr9gUIPZHcgc53s9xXI7duucKc8ya2CLH3ol18nsS7x511FF1hHh3mazXjNj+/e9/P9X1zTn93Ka3WLtVjrEjExu75woffvjhGr+n22OO75sC0XZFn3fccUf9nuea7ZwWc889d9fPzz33XNfPzaSJ5P96W1ya1yg5thwvpwh0KLQ+buu2NDFMvnIuo53m+ty2v7Jf815scqh5DVKIOdC8eFxyySU1Zkj+vj95/kieKe/PnPdod84ksXByi7ldE9e0jr3PZyAxW+KX5B5zm+Tm81nqHgf397xDEws2sVfr/s925H2cSaWJ7RML5vaf//zne3y8nL9KjiyfvWxf4vzk2nJZE/8BDCVFn8CwaAqN0vK9GdnXlxx85iud/iLJinT/zAHvlVde2fY+ORh/9tln6xis1lVbJ5xwQvnQhz5U75cVXjl4y8H1DTfcUAv/mmLEvqQFfRIHSWw988wz9XESSCTZkGKyPFYubydJu5ywTxFeRnQlcEpglXHnF154YT1IzYHjo48+Wt74xjfWk/FJluVgNomkVkkIpSAyxXgJ9DJ+INuS/ZsD3SQnciDdBDb5XUkiZv9FtrlJKvalOeA+/fTTa4CW7pyve93raoLyuOOOK3vssUe/Cj9zmzxWNMFdXzJmIavrsj+6SzFw9ncKPBNopJA0wVsCxiQ7DjrooB6TFgmEs93ZV0230d/85jc1wZT3UIpt89ySAM3vzvdcnsLLHMC3k1EGeS3z2iy77LL1fZr3V4oJv/nNb5b+yvNJMWFGHyQwX3rppevrm32X90e2uzVgTYImwUQkufjEE090XZfkXrYpK+iStO2taDNFtXlPNN785jfXfyfAThK3WSHZ/b3YaIqXN998864TB4MpJy2iPwFtnncS8Un+5fXIa5zXMfsmxdl5PknQNvI5yPNt5Hnnq/vzyOPldc77Mp+B/K1pV4zcXT7zee8kkM4Ik+zTJJoz+iJJ24EUTrczPZ/vbFNes6zQfPDBB+t+ygrMvNZJNObvTE8FnP/4xz/q+++CCy6o/87f3SeffLJ23srfn3ZBNwBAbxKjNce2PXV4b0a75ximJynwyzF9joVzTJ44Icd78803Xz0+TPyX4+N2ia6eJEGRx8sxeR4jx03jx4+v8dhnP/vZGps1cryX47Em6ZTjtPy79dgxMWC2IYmTFCpmJFqOWxNP5lg1hYStxaf9kfslfkpxYBJr+b1JMiT+ySK3HL9OT1zZXWLExLEphEsMlNcvibTs+8Hu8NjbPp2ecwXTY6D7O3FlijETt+W9l/MCmXCR93reCzkGbyfPK6MW991337oQLd1v8joljsjzTezTHJNHrk9xY97viYGSbOr+GUqCK69X4t687kMVv0V/FkJ++9vfrkWM+bzmc5X4PnFX7pvJD4mDmwVz/fl8RYpZs79z7iLvz5xj6U/8FonTEg/l/FH+duS1yz7LuZF2SeqB6i3+7k3OcWRBahK32Y5mX+U9knMJOUeSJH9PkrzM/ZOUX2yxxeo+zv7JfTISEwCAaZeYMcftKarLIp0cv77pTW+qCxvTJTF5xcQJOabvS3I6WXSU4/3555+/FsKlGUsjuaPkKhNbJNeQY/8c8+b35LbJBTX5uEbivGZxVmLA1vP3iU8SG0RyqTnO7I/EVsnhJjbJMWar5rg58Vpij+SGE5unw2XyoO2KPqe1y2c0RXmzzz57jc8aKSRsciHJt+a1ae0E2sjzyLF1cj9DpTmfkf3RjKMfKmnakdcyzzevT2KO/N4UJSduyPUD0TTNyQLceeaZp1/3yfsy8Vy6sOb9111yzokDUyCcz0rirryPI/F0FqfmHEziwvzOxME5Z5LPUmLx1gLRwZC4KrHgGWecUePHbFPO1zQNm5Lra5WcWhZ0fuc736mfyZwnSpyVxj65LPHjQM47AUwLRZ/AsMiBW6SYqHW11UDkYDQFRtGuo2Fr4VkOvho//vGPy5lnnlnvn2RcClDTiSUBRwoD40tf+lLbLo6tcmCcg+AEW81KqDxORo8nqZOVbznw7OlEeRKLWRmUxND3v//9+r0JNlLAmBP0xx57bN2+XJ/fl+RFs1qvVVZFJXhLkJekSMamJwGRA84kd/Jck3hr9keCyhQRNsV7ObjPv1PA1pt0dUmyMQe16VqRg/ocTCcplYPcJIfynNP9sC85yG2KMNuNjhiIFKglqZXAM1168lqkmC+vaZIYCc6yT5ouHt2lU0iCu9w++zrPK8FCgvIkT1Lklk6feY3yXsttkgxJMWFPnUByAJ9AOo+Z90UKdlN8msdMsNxTp6JWKajMys0EE+kImwLH/P68N7INSQzluaYLaKsETYssskjdvmYUevM+SfCc++Xn3qTgNe+JRk4o5N8Zy5f7N0m7dp+9bG/2d/fP3mBKoNR0ne1ppWMjr10C/CTNcgIlfwPyWcjrmU4teR/mZEgjn4MEjq2vZZ57Pjet8hrmpE0Sxvl85jPXLlDtLgn0dFttXsckhfM3Ke+pdJxNADk9pvXznUA6f8sSJGe1Yj4H2U85kZRtzYrE/J3Je6NdMXv2az5r+Uzk72DeG7ksJ0VeeOGFfv1dAADorhnZ3tOI9xx3JlGU47reFuvlWDqJnuZYJcfoOd7Jv3P8lCRPFvX0V2KiHCdlsV/irhwL5lguRZORKRVNx8QcQ+d4rOlWnxP9+XeOq5piyxyPJrZMTJrYIceJeW6JJ5p9kMVjfXXabJXj2CTJEiPmuCzHrSnMzDFrjo8TM01PXNldEnNJtGQ/ZP/mexNjp2BuWrqH9KS3fTqt5wqm10D3d+L9LDbM8XJe79wn0xiS+EsBaE+LpjJ1I7fL/RLrNOc08j1xTIo8U9jZ2mE1t23ixty3SdDl9c7is0gyq7+Lcgcqienm3E8Wi/Umib0m4ZgFu01Mnc9tPgNJ2ua8Q1MI3tfnq/UcxBxzzFFjt+zvPG7zPulLYr+ca2i2pYklE/smJpze7qi9xd+9Ofroo+v7LHFY3hf5zOV9ltc+25tzJEl89pT8zLmUdOPNZzyfiTy/vA8i78MUgAIAMG1yzJmYMcevmaaQY8gcS6bILpengCy5jb7O2ycOTtyZ2CYxbfKDrQ0emjxWjt2St8lxXI6dE8vluDB5guSKsmgs+ZRWWciYQrrEt4nlsuhyk002qfdJ7Jnj1Bzv9ldi83Qhje45sByrRpMHTXzQLMDrvpAqkxpbbztQOT5vYsHEaK1FqykqbAoJm86XKVxMk54Uv+Z1Sj5jKCWOyEK35jg9+3soi0szZS7nReadd96an0w8lfdH9nsWlyaeyPU95Tu7S06tGUc/mMWqyYkmn5WYOp+f5POawt+8DxM/5/xN9l1zXifnGZLXyvmULF7rafLjtPjTn/5UY6XEZ3lfZJ/le3L7KUL9+Mc/PkWuLPsyn6V8jvJ+T+ydrzyf5Ndyn9YFwgBDQdEnMCyaRNX0dpDIgXASGkmGdC/STAfGJD2SYMlJ/0bTYSTjstLloSnSyvcU1uUAMivuekpkNZouK1kJl0LItLBvJFHS/J4ceDYBSvekR07QNyug0p0v2xQ5OE3g0brdKZBN0BWtyZ906mgOrlMsms4gjeybJDESsMT0jlhOoWqCwmxLknatRXBpa58i2sjBeJ5Db1pHyk3P+yDBUVMkl+AsAWrrSIQkSJtOJume0659fgK8bHuC70jgk8eJPI8U7mbMXSNFqk3HoZ4ScdkfSYw2ia28v9JBI107E4T3pwAu+zhFvll9l2Rps32RhFZOBuRxEzQk+Oj+3srrn4RWkkAJfhLs5H3aFMJOj6agML+7+0jyFDEm0MlJi6FanZgCyUa78YStmm6kec1a32v57CUpmk6zGQWRDlADkc9BPqcDfR/n/ZUiz9y/kREUCRybZHG7laVDLdvUdK5JwrB1ZEu6TOX6fOaTpM02tpOANe/9RjrTZpVo9KfQGQCguyStEuNk8VJO8LdKfJPj4BzP5Ri4J4kLEyPkeLz78Wn+3YxM7qmzYk/SvT2d/JuYMjFd4oochyd5d9ddd/XrcZKIy2NkxF1i0mbcXOR5JRHXJFbajZPuSboEJmZojRGTnGjGTrcenw1GXJnXKrFXE2s0MXZTCJvjyeEyLecKptdA9nfi6sRokaRbU7AY6QaSYtHW90Hr69QkBnOb1jg1zyeLGXP8nZgzcV+rjJRrXosUeiZmS6ybIsskoLJIcSg1MVxf8Vve44nz0wUm29wqSd8UJSa2a7d/+pICxyyQbLanv1MpMq4w5wjynmpiusQ+mdyQ55Mk6nDL38Tm9+Yzm+R863sh25tzVZHzU+069GbEaBKVzX7I/XLuIfs+xHAAwFiU8/TNSOh2Xznm7m+cl2LDxI3dF/Nk4kCTW+gtDs1xfRbzpNgs5+tzXr57E5UUkSZWThySRWE5J9+aAznyyCNrcWWmcrVbDJTb577JhWVBYo7H83OOl5Pf6p7/6Usz2a/1WDLxcbMIsLV7Z/Nza9FnFmvlWDf5sKaAtD+yr/Ick5PNtIkcpycflrxhq+yTZtJGE8sn1s72pjg3x/7J8WaKRV8L1nqT+DfnGlq/0tk1OcI8r7wu2beJeVqbkAy25BiTa4wsNm1iwkh8k9+f5xq5XV9NViL7tmnq05pHGgyJR5q8eYqcs41ppJLCyUjMvc4663TdPq9x4p6ma+1AO5b2JfF1vpq8c2Kl1AekMU0KPFsX7zW5yOzj1hxm9lEKtxO/NwXHAENF0ScwLNJdIXoat91fKURKsVZ0L9LMKq4EJkmwNMWJ6a7RdBnNwXU7OdBO0drBBx/c4+9tAp9I4Wg7SZrkqwm6ustBaffCu9YisHYdHZrkUetYuBwsZqVRRja0jqRuJGhoCg8HWtTWXXNQncRYawFiI4mXvA4pNGwtvGyn9bn3J4joSQpqk6RK8NwUanaXoCWJneyLpqNJq7xHum/vtLwWrVqTv62a9106DfU0FrEJxJqR461BWKucYEiAn2C2eW1aA+tsQ5MAyvu6WQ2XLpPTK8W0eQ2TrEzCtFWKfoeyy2e0jkBvEm89aUb25YRHOtO2rrzL+yJdmLKP2r2ne5PPd1+/u6d9165AtPlcZfu6j1oZDs1nIycfWovYGwlmm2Lf/I1s95lIoUJ3zUmmdt1BAQD6kuOtppip+4j3ZhRa98Kw7nISPgWYPcWATXw60HgpBVPdJSnRHOslTumPxDGJ55J4aqf1OHUgHUfWXXfdtkVtSTB2Pz4bjLgyycx2x8cZM9h0URmuxU0DPVcwGAayv9OxJNuQuLMppm2VYsImWdoqMWJioSSK2h17R1PImvd8klCtUuyZ35kkal6XdHhpChj7O7JxWjXnf/qKoZI8y7ZksfChhx7alThrpENREn29dfftz5j5gWh3riExU7Ov+zOSc7DlvZBzKXkP9/Q3MAtIUxyb915e6+4y4aG7nMdYcsklB/Q3DABgRpJ8QqaG9fTVLl5qJ8fYOSbvKdfYxKE5vu+piUqmEl5yySV1MWC6G6bRRnfNufqMzG7X7CPH302OqTWPlGPJHFsnN5JjwCwqS/FochMpastxZArosjhsIIWfiYuiddFmfk4uLTmt1kVyTSfPxKLNPmhGu6cwsl2eopla1r0YN7myFGtm4WG6nqZwMM+j3aTB5DrSFTL7IwWXyQG2TqVMzJtcUo6zu+e/+it55BSStn5lP2SxZSY7pHg4i7iyjQPNTQ1EfmcWD6YIMYsS28n7IznSLJDsz/jxvpr+RGLO3oqn23UVzTY0efVWzfs2i3bzGWwnhb5NHcBAF/T2pmnW1Cpxf8a4d8//N3FUPjf5XLaeO0mzlOQom+YvAENlaM/uAfx/msRKXx0e+iNFSDl5nY6D6VDQJBCa1v2thWc52IsEPkkCtZMR6n1pCkcTlDUJnHYyYiEH1O26sbRr1d/aqaJdUVhvSZgEBQl0fve735UHH3ywroZLR5MEN01irT8H4r3J4/Y2jj0BWH8LCluTa1l9N62a1yIH061BWau8J9I5JQHLcLwW0VOHywQzTcIrXUebf7cLCJvCxgT2PQW3zUrDZj+0SoFnVk82AU6S0j0VKQ9UPkMpXkx3mnzWmg4zTRFo9k9PxaqDobXYtln115M99tijFghk27JiMduWACtJ1CR6s8p1Woo3pzVB3NrFp1Ve45xQSlIzn93Wrj1DLfszn49oHQ3TXZNYbvc5ajrmdNecsJie4m4AYGzLcWcSXFlclhPkzbFbxo/nZHuSW33J8X2KyNIhIsfaiZfyPfFSEiDTEi/1dfwz0I4o2cYkBXP8nu1L/JWfW4/12424n9bta3d8Nj1xZU/HuU3Mk9+XmHwwFqEN9rmCwTCQ/d0cT/eWMM5+6l5M2HRjTQKt6VDbXet7JO+ddCBtJGbOWPkkGJv3VZK8rYseh0pT9Np0kexJtjddj77xjW/Ugt18JfZKAjdJ4cRw0zotZFpiuNynNTHdqjk30r2b7HBoXr+8T3padJu4PZ1j83ck77nuheqD/TcMAGBGkO7wgxUrpJgyXexTSJnjtyYOTQ7gkUce6bpdYqzux3SZ4NYUjaWBSE9NdJr8Twrjui+YajSLefK7Ey8kNkrzjjSCyDFjGmO05kxT7JgcSiY+5HETQ/V3nyT+yzF9FqDlGDTHo00nz+7j2pOLSEFrcsXZ9sSUTdFna0fQdrmU7nmM7L8UNuYYNzmfLB7tKWfYyG0TG+Urx74peEx+68orr6z7NYsuUxibwr6BxiApKm32WV7fxNkp+kuh52OPPVZzQe0KHAdbE0Pm/dNT45zmvZrtzPu0rwl+ec2yv3P75nxKu9eoXYHm3XffPUVTl1ZZkNiuALaJfXpa+BjZn3m9k+vK+66/xdm9SRzYU8zUxIL5TDXScTQNf/L7877JPshrnPdyCot7yq0DDCZFn8CwyEF+k6jIif++irbi3//+d00ypetDqxy4J0mRACkHU0kEJEGVMX/pstJ6UrspMm1tqz49BWd9BQzN72nX0bFZxdeTgRSh5YA3HTu6d27I9mU1XAKInoK9gWj23/SOBo8ESE0w1wQd/ZFAKwWeTQeV5rXo6z3UvFbtXou+nk9fXUvb6SmR1fq7eut82HpdgqC+tHusBBQJopugv6cC0+lJoqboMyvWsl/zfs/qxwTH6Rgy2GMdWjVJtQn4axoAAQAASURBVHTA6akgtrWQOyclMk4jxZ8pbkwxdr5OO+20muDMGM7+FAu06u8owO56+/vTXDe9XXkHqvVz0dvftea6/C1uTg41pmW8IgBAf+QkeY7pEvOlaDP/ztjuFBBm2kBfcVlihnS+T/Ffa6Isxy9JGqRoqnWcXH/1dfwzkALNJNzSCSYLlVol/t1mm21qd5fB3r7Bjit7Os5tvXwgnUqn10DOFQyGgezvJunaWyyahFdPcV/e0/0Zvd2uU2OSo0lcZb9km3tbyDpYktxuPnut4yZ7km5I2c4LLrigTvfI5yKf33xlEV+S0Blz2Z9zSa2mpYPOaIzfButcyGD+DQMAYEo5/k0Xx+9+97tTHC+muC4FaSmsy8LGnuQ+aViSrpA59v/0pz9dLrvssqmO4ZrjwhzftxaStpPcTY4Lc4zYTNJI9/p2TXJyWYoWswAzRZD9LfpMziCx149//OO63ckH33zzzW2LPpN7S2fQLOhMzJaizxz/91X0mYVZrWO1B0NelxS65muvvfaqzzvj0JMLSX6pXcfH/srzzP5Mg5fkzU499dQaq6YgOE1LhlITQ6bQclpjyHa5seRpU9yY+LqnHHC71yi5wxTA9vS40xP7JD7LbXubsjgQyWH3pInlW3OzObeUHGlykSnaTv477+t8nXDCCfVzn3MuOb8CMFQUfQLDIi3ks8opAUba9m+00UZ93iet3nNQlNU6OdHfFHrlpP3mm29eLr744np5gommc8f73//+KQKg5iBseg/4mhP7PY327n5wPL1Fpr3JarmM7Mr3BH8Z0ZbAKImUJAgTYB1yyCGDUvSZQtUcwA7GAXOCnHe96121a8fPf/7zft0nQUlGMiZYTpFeOps0+7av0dHD8Vq0SjIzicTuWrezt5WBrcm/BGLTst1JiH/rW9/qKsw7++yz6z4frNWDGY2XgD2BXQo/c3Kg+ew1Y8CHSjMapKdRDt1lZWneM/m67777aiI7f3tysiEB5gEHHFBXWPa1gnEw9DbSsnl/tEvw9pRwG4wRma3vr97+rqU7VvP+nJbuqAAA0yLHHSnuPP/882tiKsez/R3tHvvss089yZ7YMbFTun5kLF6SFIkXU1A5LUWfgyUFnxljHen2nvg425divCwmS/wzLUWfwx1X9nRc2hoD9dXlcTAN5FzBcGuSR70de7crJGwWj+bzkBHn0+KYY46pyeDE5HlvZRpC3l99LaabHuls1OhvDJfPQb6yjxK/5SudT1OcnERa3lfpBjrUejv/MS3x22AVPo/WcyEAAPw/WaR0xRVX1GLC7bffvqy11lo1zkuOM7FK8mK9FX0mLkvhYWKxxC+JxXL8m3Hr7WKEL3zhCzWm669milxvi7KWXXbZ+j1T6wYihZwp+rzzzjtrkV86aGY72xW7pbgzRZ8p9kz8lokTKeoc7CYmkbgn5xVSgJnCvJ5kn2dqXrarp2mO02q//farj5nXP2PAE3dnf/WkXVwxkJxQ8/7Igte8HwdLOldmv+RcSrZnMJoFTW/s01zfLvaZlvxaf3J53fO8eW995StfKV/+8pdrQ5/EsZnImHNSadCTqRZ5X/Vn6ijAtBh4KzOAaZCDniTa4pvf/Gaf3QNS7NckuRKAdE9GNAVmabGfQtJ8b728kWCqOVDrKUjJfdPKPyPPetIEQTlZ39sYr6ZDY5KJQyWdFpOYS9IoP3/sYx+rB9vZx01RVjO2eXo1+6+nzpxJGKUQMwV06eTRlwRwkSK8/iRZk6BLwiXvh+b907wW6fLTU8IsIwYSVA71a9Gqp33UJEkTAPU2Qi+vX04GRE8r5SLjH7P/uiei8u8k7/J5yGuSpG1+/tSnPjVoq9yiWd2ZVWt5zbMtCXLyHhwqKdZM4N/6HupN3v+5T5M0zcmCfMbT5TOf97wO2TdZrTocWsdztsrfpXZjHpv3QU8jL9JxaXplZW8z6rC3zrLNdc3fAgCA4RzxHhMnTqzxY06S50R+FjX1tRAqJ9cjSZ0UV+axkrxqiv4ygWIkNcmmjM7LuLckBFMY1xRIDsf2DUZc2dNxbhOLJbGZTv3Dqb/nCkZq+kniw57Oh7SLA5v79TYtI+cpklhKfNZ9PHeKJi+88MJa8JmEcWKAP/zhD+Wkk04qQykdiSJxfLsuQq0St2W/NLFzYpUkivPZzec+xceRMZN9Jf0GQ8YV9tTtJh2HRyJ+az0Xktcv5zzayTmSZtzgcJ0LAQDg/8VOWdwX6eiYArAUbma8c9N9vq84L003cuycRXgHHXRQV+zYfSFef2KEZmpGa0zXdITvPm2iVWLE1tv2V1PEmEkLWQCWmCdFr+0WmjXdP3Nc2ywW663L5/TIsXpyuinCe/LJJ/u8fZMzadfgZVolvk5TpHStzHF8Orh2z202MUVPccVAYorm/ZG44L///W/b2+T1SQ4tt+kpjukuecdsZ+LPs846qwylJvZp4q928ro2RZpN7JMpEY12zyuxZ28xZT43PeWd835tLYzOPkzdwS233FL/nZg7TWZS5Jk6iCxEzeco+yvntQCGiqJPYNik414ObrOi6Ywzzuj1tlntlIOlHCSlS0t3TaeWHKR/5zvfqSvUsjoqAVSrdEppCu2SyGongVgSJBkn39tBcnOgnE6K7aQ7Ywry4p3vfGcZKk3xalb9tescmURRgrnonvBpknf9HdnVFPLl4LTdAfLPfvaz+rxTwJnOin3Jfkknm8hYg55a+kcSVnkfRMbw5fVtAt8kQxOsZExGO1lRmMA1z7f5fUOtSWp114wzyHPobTx4Dv7XXnvt+nNWc/a0T3baaaey5ZZbdo3iaGTsRAoj837/xCc+UYs9s3Isl+W6/urrPbLVVlvVwCkdM5uiyWzPUHXNSRCW0ZyRcX99vZ55XyR5nlWZN95441TXZ5RGk6BrTZTlb81QjbRLorJd4W0K21M4nRMJrR1HmxMK7ZLoOTHUU5HmQD/fSaQ279F2n+90+Uxn3qH+mwYA0M5qq61WY57EejnuT+yQ45e+xjW3LvbL8WN3OeGeeKFdvDTYeuqU3mxjOm/0FVv0lKQZybiy0VOMnRg9cuw+2HFCX93n+3uuYLjlvZt9kaRrU4jaKvFru/glMXkSa4kNepqYkc41WeSWSQytXSVzjuNzn/tc/fnDH/5wfazDDz+8/vvcc88td9xxRxkKiSGax9577737vH06s2bbs4ixXSzz9re/vevn1vfiUE0iyDa064iT5F+TyG9iqdb4LfFTkyRvlQWTPRlIDJeYLLF43itN5+PuLrjggvo3I919mvMLAAAMvcQdzTFduzgvuYjWY8y+YtEc3ycmTv4gRYL53kiuKXJM2O74s8nHZnFhs4AqMgmhyfe162iYHEGua71tf6VQNQWrKURt4pbuo90byVsld5sYv2kO03rMP9hTKNOQJWPVe2v8E9mXKQ6NvhabDtQiiyxSX8dITNh9W1qLTNvlhXqLKbpLsW0KTJOT6qnTZ17n5NCyQLa/i07TGCRxZVOM3FNM0ioFkb3l3nvSvMeTc+9pRH3i4Hjd617X1SU2i1qbGKvdfrz++ut7PceSz2UT87VKnN1MEdlkk03q94xyz0SO3XbbrRY7d5eagpxviZ4W7QEMBkWfwLBJgPLRj360/pyuEgk2uq9ES+IpBWtNYeW+++5bVllllbaP13TqaDpUNB0IW+XgrikazajrjIxvAq8cvGU1Ug6Wc+K8OVjtyYEHHtiVkMhYtdYiqXSSSbfLJrE1VAFK6wqnrO5rHQWR55UizKwiagLA7mPEmhb3WRXWn+RhCgxzkJyumnldchDbyMH2YYcd1rXCq7+t/HOfBDgpYEzQmYRmAq5GtitJ2Ix1z+9beOGF68rIRpIXe+21V/05r0MSwK0HzNknGaMR6XbZFOsOtazUynux2a95DU488cS6PVnNmBEOfcmYjiT0UkyZlX+thYIZA5DnncdNYWdWiTYyaj37Me/3FEjmdU4RaVaTRq7LbfqjeR2bUR/dpUAx7/HW1XztPnvTK69pEoUTJkyozz3PKcWrfSX28lluuoFmXzSF2K2vUwpWuxcytr5/e3ru0ypBfP4+tAa3eY2PP/74+nP+RrWueE1hcyS4bB2LmFWXuW3rCZ7p+Xzvueee9T7Zv/n71nqCKJ/P/L1Ol5t8XnMCAABguDUn00844YR+d31vHVWXTu+tx04pZMwxUNMJb7DGLvekOcbsvtit2cbElq2dV1JUdsopp0zRNaPdyO+RjisbKV7Ma9PExvmeUeJJpKTAMfH8cO3TgZ4rGG6Jq3fffff6cwoxm2RiE3/kOL9d4jWx37bbblt//vjHP173bWvMlHMcp556av13YqfWjjyJi1MgmJi46RS04YYb1s9RTx1mpkcKbfOZ+/znP9+1YLC1OLInSTTm/ZK4JDFf635IDJW4uinozX4cyHthWuV93brQMrFS4vV8XpPM3mabbbquy3Zl+/PZyfY3n9l8fnJuq5liMy3xd/fkeM5xNKM8W7cvr2c6uubvR+T9lEQvAADDI50Gm26NyUW2xlA51sv594wzb/QVi6ZJRUZG5zizGfPe2GyzzWpji3Sn32OPPabIs+b4Pgu9UmyXXEqTS4tddtmlNlRJN8McL7Yeg+Z4NzmMFMrlNn3lS9tJXjTHwE1xXE9Fn62dPdMwI9s5VJ0+Ez8kjooUQCbO7Z4zyrF04rPsn3SBzP5961vfOujbkhgiBZmRGKH1/ZCYrWmsk4LQZvJAYowUaCbO6q/EGM3rnhxZFmu25lCTK2xyu4nFBjKdI/tyo402qo938MEH1+Yz3fdnclPZn3mPpSAy7/Us3k1hcH9l/zdNifK+bKa5NOcdkhtu4qxsQ5M3zO9pGgglNmo935K8YJMz7U3ydq1FtolJsw35vOR1as4vpFC3aVKTIuvWKaHZP8ldJ8bNZ3m4mhMBY9P/v8cxwDDIQWAOso877rha9JSvFJFlJU4OYlNcGAlkEgQlIdeTdILIwVcSArn9Flts0eOBdJJ75513Xk0+fP3rX6+/LwWmKSpMIJYgqK/OHzn4TdfEJBxygJ2T9znAywFfk2RIJ4U8t6HqONE8n5zMz77KgWaSQDm4TKCWwCz7ItuR7qXdx/GtsMIK9Xu2d+ONN64Fleny19P2JshIAikH50kEZpxauqbktcr+S8CRwK0piO2PJEiS3ExBWUaDJ+GVA+0c8OeAPAnYptgxKyKTqGtGKjQSyOb3Z9tz3xy853GzIq0Zc5AVVk1Xk+GQIPv000+vr022JUVzeX/lOaWAszX53JMU+6XANQFXVqlddNFFdcVj9kde7+zvdKrMaICmSDBFeUn4RIpomzEaTVFjApAEs7lNCq9z/94kIEqxZfZr9m8Kf1sTWpF/572Qz15eo2YV3bRIQjlFw408xzzfBFBNAjLv0wRx/f09+TuTYsmMlUyCtPmM5L3RvD/yO1uLPrNKMcFwnlMSaXk/JiAejI5AeS+m2DSrQzP6IX8z8nmND33oQ3Uft0qB5Y9+9KP62ua6ZlxETrjMO++89YRLs4pxej7feZ9mv+bzm+Rxguj8rhTE529mAtOsRMzfgHbdnwAAhlpisHQkzPFhEk+9JY1aj2dzvySPct8cC+fYLsfmTXfLJJTSfSSPm2POgY6u669sS46bk6RJ7LPmmmvWY/0crybGyjFXOo80C9VyzJ8Fcc2I9cSfQzXqfXriytbj3HT4SHyXfZwYKN0Oc9/EQM3x6XDs02k5VzDcshDwr3/9a40NckzfxCBNIijH4xnH3l0SSHkN8rw/9rGP1eP8LMzKcX+zsCyvRVPYGSkGTaIqj5vXonXqRM6LJAmX+yfu66vjTXeJH1oXrSXpls9XHq9ZZJuYqlmM2Zc8nxRLptNnpl5k0WISj4lL8hnIZyLvzWYCxEDeC9Min4XEP3meiYfyu5NIz/PMuYmcD2pdNJi/TTlHkUR8znGlW1E+D9kf2S+JPRNvtfsc9Sf+bvWZz3ymq1tsti/7Lue38tlrxlUmxuztXBoAAIMvx48pcDvnnHPqMWG6+KcQtDW3s84669S8RYriEue1LmhqJ7m45NFyfj5xVxZwJcZKjJNcVAoYM3I68U5iyjRMSX6tWUSVY8fWHEiOZXO/LM5LPJBYNPmnNNJIbJqCzWxTjndznDlQ6Q6a2DDPOcfReeyeJLbPsX+2NTmYvvJW0yNdUxNbJDecY/V85Rg/i6oix+2JY5uFp0cfffSQbEdi/Bz3J15NbJG4LHmgxFaJ2xLPJY+XGDyxYV7T5LOykC+dLxP73Xnnnf36XYkHEiOkMDLxZPLWiVESSzQ5suQju8dYfcl7JTmlFDZnomcKfPOV903ikuSUsj+bHG9un1g1TaCaqZz9lTg1kyMyPTQFuU2clpg653GS288+6744OJclbs57Op+Z5Lzy+ma70mRq9dVXbzt9o5HzMYnd8/vyvJpYMO/pPPfWWDivZ/KyienzOcw+zuK75Deb+Cznf5ocH8BQ0OkTGHYJfNL2PSfFc4CVE/gpzkqBUwKWdL/I9X2dpM7BXROwpHtEa/v77g499NBa9JkgJsFVVsblgDAH8AlCms4ZfUmAlYPkHLwlMZjHSReHFNqlo0kKQXvbjsGQ35skSFZqJejLgX4OOnN5Oppk1VYzzjvb17paL0FXVj3lYDUH9kl6Zr/3JivPEqSmEC0HtTlQThIw46hzQJuD+97GlreTYCrJ1xy0Z1VYArpsS9PRMQFMknRJVOUAu11wlELdJHFz0J7XMsFt5L4JSnPwPdDtmh7pkpKkVgLnJJwSYDcFl1kZ2F95DRMkJVDIY+W1TeI1AXKC+ASBrd1LE7DlPZDXNK9tdwnsE6DnNrltX/LeSRI8wViCp6YLUqsULzbv86aLzrTKeynjGZqvBHA5CZLAKJ/vJO2SFB3Iysq8hzLKMcnrFKUm0ZbPQj77+RuQEyTNWMPW+6TAOCcYcqIh78fW0aDTI0Ft/v7kM5N9mqLpnODJ+7Qp2G2V4Dif43S7zWcl+yMrTJP8y+vfU4A4LZ/vnFxJZ90knROQZvvyfsvf4gTieS/2NHYUAGCo5fip6QaRuKG/o8ITS2QxVeLNHAPm+Dwn6RMr5FgwcUQzZqu1c+JgS0ybWDOJghxXZzsi25GYLrFMjvmzuCfHYFlI1hyDNZ39U9Q22uLKRpJUTQyUWC5xWWKfPG7rZILh2KfTeq5gOCU5lJgjRZiJb3KsnkRcziek4C+L9NpJXJuEWhagpkNIkrGJf5O4TFyRcxFJYDadhVIo2bx2ieO7x1LZP01BZt5rKZAeiLvvvnuKGC7bkhgnsVS6jeb1z+evv5/X2HLLLWsMl9gpC93SJSVJuSTKcx4m54jyPh3oe2FaX6ec28m5qfz9yHs77/FmcV67xYhJ5H3ta1+ridO8PomrErcnudo99hxo/N192xJH5r2QWC5/17L/c/4hyc4kzhNjDuVCZAAA2ssiphzv55gwx205Ps15/Rzv57gwx5jNsXl/47wcC+c4OMeYyXM20xiSN8uksOQD0nk+hYFNfi3H1BdccEHb6V1ZKJVFUznWzfFq4pEch2bRVS7LdbnNtMjzbI5D++rcmQWGTfHcUHX5bJX8RzrlpyAwvzsxVuLwHH8nnkguL4028voNZV4xzWFSyBjZ760dPLNwLvnW7I/EdomJkjtN3J1i3Sbe64+8DonJ0kAm51ISbyRuSDFm4s48Zp5v4oiBSoFq3pcpbE7OMTFq9lm2N7FoFsUlh5j3Zs63ZIrCQAs+I69LYsQ8j+Sp81nKZyrxfXJlzfmM7nIuIAtcc74li/WS0872JV+Yy/uaWpnfmTqGpjlKtj1FpMn15pxNq+Resx2pd0jervkc5vclPkuc324bAQbTuMnNEmyADpQD8XvuuaeOv2tavcNwahI+KerL+IqxICvUEsglcMxIhARxAAAAo4VzBQAAAEBfMj4+3UQj5xFSJAvQKXT6BDpWDrzylU54/RnzBwyOH/zgB3VFaUaIK/gEAABGE+cKAAAAAIAZnTJ1oKNk1EBkDFpGGURW3wykrT0wcBlJkFGPv/3tb8vJJ5/cNRIDAABgpDlXAAAAAACMJYo+gY5y1VVXlRNOOKHr329+85vLhz70oRHdJhgLjjnmmDrKvbHddtuVVVZZZUS3CQAAIJwrAAAAAADGEuPdgY6y3HLL1XHSc845Z9lwww3LueeeW2adddaR3iyY4a266qpl9tlnLwsssEDZfffdyxe/+MWR3iQAAIDKuQIAAAAAYCwZN3ny5MkjvREAAAAAAAAAAAAA9E6nTwAAAAAAAAAAAIAOoOgTAAAAAAAAAAAAoAMo+gQAAAAAAAAAAADoAIo+Aehy/PHHl1VWWaX87W9/67rs0EMPLcstt1y/v84///zSaZ566qny+OOPT3HZKaecUp/PjjvuWMaqV199tT7/7If//ve/vd725ZdfLueee27ZZpttyhprrFFWXXXVssUWW5TTTz+9vPjiiz3e7+abby777LNPecc73lFWXnnlsvbaa5edd965/OAHPyiTJ0+e6vaf/exnyzrrrFMee+yxQXmOAADAjBODJpbIZSeeeGLXZQ899FDXbVt/Tyfbb7/96vNJ3Nqb3//+9+UTn/hE2WCDDWq89ba3va3su+++5be//e1Ut82+yW1OOOGEIdxyAACA9vHgQOLA1q/EfNPq0UcfLc8+++ygPJ928ej0Si7sK1/5Stloo426Yrrdd9+9XH311W1vf8cdd9RtuPjiiwdtGwAYvcaP9AYAMDr88pe/LOecc07ZbbfdypJLLjnV9XPPPXd585vf3OfjLLLIIqWTJEGYwsSvf/3rZaGFFhrpzRlVkuz79a9/3eftnnjiiRpk3nfffWXmmWcuSy+9dHn++efL/fffX0466aRy7bXXlm9961tlnnnmmeJ+Rx99dDnvvPPqz3PNNVdZdtllyz//+c9y++2316+f/vSn5eSTTy6zzDJL130+/vGPl5/85CflM5/5TPnmN785BM8aAAAYDmM1Bp1eWSB3zTXX9Hm7Cy64oBx55JF1Md9rXvOaGm8lmZr47Prrry9f/epXy1ZbbdV1+7wGu+66azn77LNrkWgW8wEAAAxXPLj66qu3bThy9913158THyZO7G622WYb8O/P455xxhm1mcmPfvSjto870rKIL/snjWuSJ3vjG99YnnvuufLzn/+8fk2cOLEWzs400/+/z9taa61VNt1003LUUUfVAtF2sTYAMw5FnwDULo6HH354mXfeecvee+/d9jYrrrhi+c53vlNmNAl82pkwYULZbLPNyhxzzFHGmkmTJpWvfe1rNdjtS7pxHnTQQbXgM0nEU089tQaezYrCAw88sNxzzz21gPSwww7rul+C6BR8pkj0U5/6VNlll126AtMUdaajZxKRKfo85JBDuu634IILlj333LMW6V555ZW1mygAANBZhioGPeaYY8oLL7xQixxnRFkkl0LOvtx6663liCOOqD8nnsoivfHjx9d9k8svv/zyGp8lCfj617++634f+9jHymWXXVav+/73vz/FAjwAAIChjAe/973vTXXbdPF873vfW3/+/Oc/XyfBDVYHzTSEGa1SlHrAAQfUgs885+TsFl544a54LxMcrrrqqtopNfFeq8SAWez35S9/WfMUgBmc8e4AlEsvvbR2ZUzhXYIsSllggQXKMsssUxZddNEyljzwwAPlwx/+cL8KPpsCzRR3ZhVkuqY2BZ/NisKmYDPdaF555ZWu65pAc6eddqq/r3Ul4iabbFI7eTbdaRLcdh+Rka6hCXK7XwcAAIzdGDTxW+K4xHMzoiyOe/rpp/tcnJjxf/GRj3yk7LXXXrXgM3K/JP4WX3zx8tJLL9XFeK0S1+U1yWuT1wgAAGCwyUn2LdMd/v73v5c555yzTtRrCj5j3XXX7SqWveiii6a6b+K9Lbfcstx8883lpptuGtbtBmB4KfoEGONSiJcRBum4uM0224z05jCCvvvd79bOmRmtnm4vn/zkJ/u8T7q/RFYSLrTQQlNd/773va/sv//+5ROf+ERXgWZWJt577731580337zt4zYrNzMm/k9/+tNUicj3v//95ZFHHqldaAAAgM4hBp02SeYlabfhhhvWbi49ueuuu2oMlYVy6dzZXQpADz300Dpxod34xG233bbe5hvf+MYUC/cAAACml3iwf+abb77ywQ9+sOywww5tJ1kst9xy9fs//vGPtvfP/SLT+QCYcSn6BBjjJk6cWEfEZWXYIossMqiPnY6MCTxOPPHEttefcsop9frcrtV73vOeevmf//znWoCYziQZX5DE1qabblpHfj/33HM9jhv/4Q9/WHbbbbey3nrrlZVXXrm8+93vrp0j08WykSRXExRFbp9/X3HFFVNs24477tj29/z0pz+tXVMyDi+/4x3veEctbsxYhXbyWPlKN5Ws0MtzXnPNNctb3vKWGrilS2a7hNqLL75YzjrrrPI///M/5a1vfWvdB3k+6aD5q1/9qtfflecwEL/73e/q92xbRqf3lkhsxsDfdttt9eeNN9647W1SoLnffvuVCRMmlLnmmqteNttss9UEYsZ3vOlNb+pzu/J7uss+azqBAgAAnWMkY9B20j0lsclGG21UY6DEaZlIkO4z7WKRuPPOO8tBBx1U1l9//bLSSivVKQfbbbddjd2effbZqW7fxJetMehAZBszun7++ecvX/rSl3q97S233FK/v/3tb6/xWDspHN1jjz3qdneXDjJ5bfIaJXYFAAAY7fHgX//613LYYYfVuC45uzXWWKPGaMm9Jc/WPW5sGo80+a3Ear/4xS+mGEGfCXbpqJm4L7FicnRpdPLFL36x/r7+mpZ4MDnHxICf/vSn215/99131+9LLrlk2+tXXXXVsvTSS9dFgYlfAZgx/b/ZPgCMWVdddVX9vsEGG5TRJkm2BGSzzjprWWqppcp//vOf8pe//KWcdtppNZF14YUXTjEWPIWgBxxwQO1+0oz2e/Ob31yDrxRzZhR5igSTlMvjpavJr3/963rb3C4Jsde+9rW9blMKMw8++OCu5Fe6Wy6//PLloYceqsFqvjKuvBlP3t3Xv/71Ojo9IxkSjD322GPlD3/4Q/1K4NWanExnzDzWb37zm7rqMbfPOL4k/FKU+eMf/7gcccQRtRPLYEhgu++++9bRD/2RItoUsWbbEjz++9//rp0/s0/ToTPbm+LM1VZbbYr75TmkcLU3V199df0+yyyz1NequwTYSXimMDhdQ/MaAAAAo99oikETv2XCQZKAs88+e41rXnjhhbrALl+JuRJ/NgvYmvskJkwSMB1XkrhLLNok0zIyPV05eyq4HKgsbMxY98RYRx55ZFlwwQV7vf19991XvzcL7BI7JxZuRgOuvfbaNYbMzz1JUvP//u//6vPfbLPNBuV5AAAADEU8mBjsc5/7XM2pJa5Lvi8xWuKzfF1++eXl7LPPLq973evq7XN94qumcDI5wzQrybSESHyYZjRNEegb3vCGep9//etfNS+Wr//93/+t0/NWXHHFMpwSr+b5nHnmmfXfzZj3nuK65FQT16UBDQAzHkWfAGNYupY0QUtWvY025513Xu1wmQRXgq0ku1Lo+eUvf7kWQl5//fW1Q0kjq95S8JnE2wknnFA7m8QzzzxTO3tee+21tajxuuuuq4FQvpqVdSnSbG7fm6OPProWfCZBdtRRR5VNNtmka18msffVr361FqpmPHoKNrtLwedHP/rRuh0JInO/FIKmI0yC3QSSK6ywQr1tArc8zxQ9Zl+kiDVSaJnnmoAy37fccsv6WN2D5nYjH3qTDqsD0YyNmHfeeWvHz49//ON1dHsjycXvfe97dT9k/48bN65fj5tC2KZLabapCbRbpdg3qypvuOGG8vOf/1zRJwAAdIDRFINm8VgmKGRhX8agJz5MgjB+//vf18LOTHJIF9DjjjuuXv7qq6/WeDQFnykWzcSILIKLe+65p06DuP/++2vcmtiukckH01o8+a1vfatOwEhHmf48RhOnJY7KoshMqWiVuDgxa6Yv9NRppnlt8lrlNWueIwAAwGiKB1PUmfxeYrR09kxnzGYBXpqtZELDH//4x7LPPvuUSy65pIwfP7584QtfqI1cmm6facbS2jEzBaLZzuTYkrtL18xGFvvlsR5//PEaU2UyYV+mJx5sZFFiYtEHH3ywFqymKUo6m77//e/v8T7Zx4knm2kQAMx4jHcHGMOSyEpBZAroll122V5vmyRTM36gp68ESYMphXwpomyK/lI0mOAoK+qidbx5CgUTsEUKIVsLOHP/JOlSnPjII49Mc4Dz6KOP1sLOSIfNpuAzkgTLth144IH136eeemrbEfTpcJniyKZIM/dL0DnffPPVfzedR5skZLzzne/sKviM3DdFlBnvkFEVrYWWscwyy9SvBRZYoAyl5vllZWFGuGcUR5KHCXrTFSbj7vPeymUJkvsj78ckW5988slaWJskbE+a90EzYh4AABjdRlMMmoVm6QTzoQ99qMZkTcFnpFtLkneJ19LB5U9/+lO9PNMNktyLJBRbiyHTHSaFolmYmARcq8RmTZw2EOnKkgRk7p/i04HEaen8kgWLWXD4s5/9rPzud78r3/nOd2qcncLQPffcs8Zd7eS1yXPLa5ViVgAAgOGMB/srcVsKPpMvS96udeJCGqycc845NdZLXJOOl/2RHGK2MXmv1oLPyL933HHH+nOKSftjWuPB7hMdkjNMwWfke7YzudG+cmhZmPjEE09M8+8GYPTS6RNgDGsSZCnWa+0U2U4CpSZA6ElfjzFQ73rXu9p2h0xglGAqwWHjpptuqp1AUxzZbixECghTsJnCz4xknxZJlCV4zP17WpWXhGGCzGxbkpTdx5i366bZjG5PseTTTz/ddXkz1vyyyy4rb3zjG2uRaVPImZH33/zmN8tIyoiL5nvGW1xwwQV1/8bCCy9cA+J0wsk4xDPOOKNsv/32XcWt7SSBmsRjgu+87umk2rq6srvsk8iYQgAAYPQbLTFoij0T30UmJ7STotIUSCY+yYSBJCXT6SUxzX/+85/yiU98onYIzZi8JASbQtB8DVYXnHSpSbyVhY39XdTXxGmJr9LxpnUCRUa7Z1FeYst//vOf9ecUqnaXpGhGHz788MM13uqe6AQAABjKeLA/UvjYdA7dZZdd2t5m8cUXrwvzrrzyyjoF8AMf+ECfj5sJdpkI0dP0ujnmmGOK2Gs4pAFMunomR/nLX/6yTiXMc/rtb39brrjiira5t+TXEqsmT5d9v+CCCw7b9gIwPBR9AoxhSQJFu/HZ3aXTSbqCDKcUDrbTdGBJEqzxt7/9rX7vaTxdTM8quqbLSrM6sEnqtSsuTTFiilL/+te/TlX0mWC2v89p2223rQWf6SrzpS99qY5uyO9ed911y/rrr1/WWmutOopipDSBbRNQNwWfrTLSMF0+E3xnNGJrd9RWef1y2wceeKDu2zzXnm7baN63zfsYAAAY3UZLDJq4I4WfkVgri+p6G5XexIJZsJdiz4wDzMLDfCW5ts4665T11luvLlxMseRgyBjBLAzcdNNN+4yN2sVp6TaaRYndpXA1UyqyOC9Jz3ZFn5H4LkWf//rXv6bjWQAAAAw8HuyPLFBLcWasvPLKPd4u16VAMjm7/pplllnqYr8UVSZ+zO/K94yMb7pmpphyuLQ2s0kBaEa3pwg0xZzf/va36+S97pJry2LKNJsR1wHMmBR9AoxhCVi6F++NJj0l3hrp7NloRpyn6HKoPPvss/0KSJvxEe3GuydQ7O9zyuNcfPHF5dxzz60BaQojM/4iX+ny+drXvraOIRysTjID1VrkmWLUnopZl1hiiVq42lNHzqxKzMjBvIbZP8cee2yPnVRbNa91a3dUAABg9BotMWjr1Ii77757QLdP/JWOKeedd14dp5fnNHHixPqVTjCZPJFC0ukp/szYvhRlJub74he/OKD7NvFquqT2tEjwTW96U59TE5rXSLwFAACMxniwydn1lbfrLWfX0+MeeeSR5X//93+7ikoj+auVVlqp5sP+7//+r4ykTILYZpttyje+8Y06dbAn2deJ6cR1ADMmRZ8AY1gzPmGkDvbT/XGwNEFif4O2aTHXXHNNlfBrp9mfze2nR4LRAw44oH6l6DOjKvKVUYRZmZcOM+ngsvHGG5fhtvTSS3f93HTJaSfdcHoq4r3qqqvqyMLcP8/j1FNPrR1MB3KCYDDGgAAAADN+DNpoXSz461//esCxWzp75ivj/LKI7Y477qhJv4yCv/HGG8tHP/rR8oMf/KDHcYB9ueaaa2pyMTFfJj30JPFTvt7whjeU66+/vmvCxa9+9ateY7SmGLS3hZbNayTeAgAARmM82BrHJW+XRXO95ZL6G/fts88+NQ+XpiaZnvCWt7ylLpzL4r8Ufl5yySVDXvSZwtN08UzerKcFhYsuumj9/vjjj/f4OOI6gBlb+9m0AIwJCy64YP3+5JNPDsnjN8V+PSWbHnvssUH7XUsttVT9fv/99/d4m5NPPrnsscce5fvf//50FTlmfENPYxsSiGXEQyQAnB5J8CWB2Iy8yOOlq8zxxx9fE4nNuIof/vCHZSRkVP3rX//6+vOdd97Z9jYZV//ggw/Wn9Pxs9WPf/zjcsghh9T3x2KLLVa+973v9bvgs/V921MgDwAAjK0YtL8WX3zxrng1Uwl6kvHq9913X9fiwsQuf/7zn7vinyQB3/GOd9QR6VdccUU54YQTujp15n7TKnHW6quv3uNX06mmuV3rKMMkJOOPf/xjLUptpxlXn/3Qk+Y1al4zAACA0RQPJufULGjrbYJDc11/cnYZ556CzzjzzDPLoYceWjbddNOy7LLLdk3ye/TRR8tQy3S8D3zgA7WTZ0/+8Y9/dOXq2kk8+MILL9SfxXUAMyZFnwBj2Bvf+MaulV7Ngf9ges1rXjNFQqlVkma33nrroP2ud77znWWmmWYqDz/8cNvHTXBz2WWXlZtvvnmKEepN55XWy3r7HQkgs2ouHSrbueCCC8p///vf2nl07bXXnq7nlALVCRMmtC1SzYrE1VZbrauwcqS8//3vr9+zsrF1lEYj4+nz3spojbe//e1dlydJmg6fKZ7N2MGLLrpois6h/fHPf/6zfh/o/QAAgBkzBu2vFE028dq3v/3ttrfJ6POddtqpbLnlluUnP/lJvSwTFzbbbLOy1157tV3c2BrzTE+cljF9WRTX09eKK65Yb7f11lvXf2eBYyNTINLFJZM1Emd199JLL9U4LTbZZJO2vz/x81NPPVV/Fm8BAACjMR7MBIe3ve1tfcZ1zVSE5PgaySc2WvOD6a7ZaF1c18h2p6HJUOfm1ltvvfo9uch2nVFz2eWXX15/fve73932MVqLU8V1ADMmRZ8AY9gKK6xQg6IU3mX12mBbY4016veMOZg4ceIUHT4zrjydLAdLOpQ0BYif+tSnym9+85spRjfkshQJZuxdknTdx/o1K+J6ky4q6bQZGaveJP4i+/DCCy8sp5xyStf4hxQ6To+s4ouM60tysVU6gDYdPjfYYIMprkvnmXw1HUKHUgpTs0Iw+3bvvfcujzzySNd1KbBtOt0kKdqMj0ggnNcj4wrTpfOcc84pCy200IB/d8Ywtr7PAACAsR2DDsT+++9fu31eeeWV5aijjurq5tl0yUwMk5glMWQTayZJmMWNKYjMIramMDKyCO6YY47pih0z/q+R2KyJ04bavPPOWz72sY/Vn7/2ta/VxY/NpIpsYzrVZLHkwgsvXLbffvu2j5FFeonbspgxrxkAAMBojAf322+/2qwl+ajk7Vqbk2QCw5577lkXvi2//PLlgx/84FS5we75wdbiyNNOO63GhI1MicjjNdP++lu4Oi3x4A477FBzb8lvputnYrhGputlO9KgJlMQc9vecmjpcKrTJ8CM6f/1uwZgTMoogqyCyyq3X/3qV2Xdddcd1MffaqutaufLv/71rzWhllELCaQS2CS5liLB3kYTDNQXv/jFWnR4++231yAngUx+X35/OpXMP//8tQNKRvA10iHljjvuKF/+8pdrh5R0cklXlZ585jOfqQWO1113XTnwwANroux1r3tdXS3YjKT40Ic+VAOu6bXLLruUW265pRZ85vHyu/KV39MEeO95z3vKtttuO8X9mqLWBLvZ70Mp+zQjLrJ92Y8bbrhhWWaZZer+/tvf/lZvs8UWW5SPfOQjXfe55ppruoLiBOMHHXRQr78jgXrTyaaRQDujFtsVvQIAAGMzBh2ILB474ogjymGHHVbOP//82hUzsUyKPxPLpNtLEmPf/OY3y6yzzlrvk+8nnXRSXfyWjiuJCxPnpktMYsJ010yh5NFHH911n/jud79bF/PF9Ix976+PfvSjNXGZiQyf+9znyoknnljj1kzhyDYmjvv6179e5ptvvrb3z2sTeX1anwcAAMBoigff+ta3liOPPLJ8/vOfr/HPj370oxrXJe5JbjAybS7xWGtsk5goC/ySa0tRZYo9k/PLQr+Mc7/66qvLueeeW6644oqy2GKL1QV/TRfQdOH8+c9/XmPHFJlmkkRvpiUezGK+M844oy5GTM4zEx1S4JnphcmxpnA2nVPPPvvsKXKe7eK61g6nAMxYdPoEGOOabpLpxjnYMoI8Y+NS8JcCzBRkPvHEE+V973tfHVm+zjrrDOrvS2B13nnn1cRdEnhZPZeVd0nU7bzzzjXY6z6O4atf/WoN0FJ8mACwKUbsSYLCrO5L0uwd73hHHen3hz/8oSb2Nt988zpCIkWKzdj46ZHC2Pyuz372szVwTSFlViZm9WB+93HHHVdOP/30uu0jKfs0Cc8En0l4Zh9m9WHGJR5//PH1q3VURopDGymgzWrD3r6eeeaZqX5ngtzsj3TP6V4QCgAAjM0YdKAyHj0TFNLxMtMH7r///hq3JkmYODYxZDOCsJE49tJLL63PI/dJ/JNOK4ssskiNOxMbNSMGR0rir8TFWaCXRXLp2pnupU1snHi8t4kJzaSJ5rUCAAAYrfFgOngmrsukvsQ8ievSPGX11VevzWIy/SDTArvLgr7k3lJA2cR1kZxW4qlVVlmlLgZMoWZygRmjnhgrxaCLLrpovW0zOn4orLrqquV///d/y+67714LT7N9KVJdaaWVyic/+clakNrueUWeUwpTQ1wHMOMaNzn/UwEwZiX5k1Vr6WSSsXatI+hgtMqKy5/85Cd1fGLrSA4AAGB0E4OOblk4mQWNWbiZ7jZZjAgAADAYxIPD46abbqqNWrJoMc1qAJgx6fQJMMY1Y9Yjow9gtEsH14xRTBLy/e9//0hvDgAAMABi0NEt0zriYx/7mIJPAABgUIkHhzeu22+//UZ6UwAYQoo+AShbbrllWXrppesogBTUwWj2rW99q7zyyis1WJWEBACAziMGHZ3yWmT0e14bC+wAAIChIB4cWn/+85/LjTfeWN7+9reXtddee6Q3B4AhpOgTgDJ+/Phy9NFHlxdeeKGcdtppI7050KNHH320nH/++eXd7353PTEAAAB0HjHo6JTX4vnnn6+vTV4jAACAwSYeHFrHHXdcmX322csRRxwx0psCwBBT9AlA9Za3vKXsueeeteX/Aw88MNKbA22deOKJZY455ihf+cpXRnpTAACA6SAGHV3yGuS12GuvveprAwAAMFTEg0PjtttuKzfccEP5zGc+UxZbbLGR3hwAhti4yZMnTx7qXwIAAAAAAAAAAADA9NHpEwAAAAAAAAAAAKADKPoEAAAAAAAAAAAA6ACKPgEAAAAAAAAAAAA6gKJPAAAAAAAAAAAAgA6g6BMAAAAAAAAAAACgAyj6BAAAAAAAAAAAAOgAij4BAAAAAAAAAAAAOsD4kd4AYBi8/HIpt9wy5WVvf3sps846UlsEAAAAAIxWzicCAAAAjFrjJk+ePHmkNwIYYo8/XsrCC0952WOPlbLQQiO1RQAAAADAaOV8IgAAAMCoZbw7AAAAAAAAAAAAQAdQ9AkAAAAAAAAAAADQARR9AgAAAAAAAAAAAHQARZ8AAAAAAAAAAAAAHUDRJwAAAAAAAAAAAEAHUPQJAAAAAAAAAAAA0AEUfQIAAAAAAAAAAAB0gPEjvQHAMHjNa0q5++6pLwMAAAAA6M75RAAAAIBRa9zkyZMnj/RGAAAAAAAAAAAAANA7490BAAAAAAAAAAAAOoCiTwAAAAAAAAAAAIAOoOgTAAAAAAAAAAAAoAMo+gQAAAAAAAAAAADoAONHegOAYfDf/5Zy331TXrbccqWM9ycAAAAAAOjG+UQAAACAUWvc5MmTJ4/0RgBD7PHHS1l44Skve+yxUhZaaKS2CAAAAAAYrZxPBAAAABi1jHcHAAAAAAAAAAAA6ACKPgEAYAZwyimnlOWWW65+feYzn+n1tv/+97/LSiutVG+78847lxnFc889V0444YSyySablFVWWaWsvvrq5UMf+lC55pprBvQ4N998c9lll13KOuus0/UYEydOHLLthhmZv02ZjvvfctZZZ5VNN920rLzyymWttdYqe+21V7nzzjv7vO8///nPevsTTzxxurbhX//6V1l33XXLe97znul6HAAAAAAAYOQp+gQAgBnMddddV1555ZUer//JT35Si5BmJM8++2zZcccdy5lnnlnmnHPOstNOO9Xiz3vvvbfst99+9fL+uPjii8see+xR/vjHP9YCrf/5n/8pf//738v+++9fTjrppCF/HjAjG4t/m+LAAw8sxx9/fJk0aVL92/Sud72r3HLLLWXChAm1yLwnTz/9dPnYxz5Wv0+vL37xi7WoFgAAAAAA6HyKPgEAYAay0EILlf/85z+1oKgnV111VZlrrrnKjOTss88u9913X9lhhx3K5ZdfXjsKfvWrXy0//vGP6z5Jwebf/va3Xh8jBVFHHHFEvf3//u//lsMPP7x8/vOfL1deeWVZfPHFyze+8Y1aAAoM3Fj92/Tzn/+8XHvttbXDZ/6ufPazny3HHXdcOeecc2oR6Je+9KW290vh+fbbb1/uueee6d6GH/zgB3UbAAAAAACAGYOiTwAAmIGku2VcffXVPY4K/tWvflU23HDDMiPJ8x03blw55JBD6vfGIossUjuAprjqpptu6vUx/vCHP5TXve51tXA0BWqNeeaZp45EfvXVV8tdd901pM8DZlRj9W9TM8L9Ax/4QJltttm6Ln/b295Wll566fLggw/W0euNdDo96qijuroMr7feetP1+x999NHyla98xVh3AAAAAACYgSj6BACAGchyyy1XC4kyRvnll1+e6voUXKV4cfPNN++1M93uu+9e1lprrbLqqquW97///eWb3/xm27HM6Z6ZscEbbbRRve1b3vKWstlmm5Wvf/3r5cUXX5xq2z760Y+WP/3pT2Wfffapj5/bb7fdduWnP/3pVI+988471/tcccUVfT7vXXfdtRx00EFl3nnnneq6WWedtX5/7rnnen2MFFelG17GwXf35z//uX5vLQYF+m+s/m16zWteU78//PDDU1yeffDkk0+WWWaZpRaWN55//vly/vnn186gl156adliiy3KtJo8eXLtejx+/PjauRgAAAAAAJgxjB/pDQAAgCHx+OPTft+55y5ljjnaX/fEE6mkmbbHnXPOUoZhdPGmm25aTjvttFog9e53v3uK6zLufKWVVipLLbVU2/uee+655ZhjjqmFSimWmn/++evjHHvssXUs85lnnlkLiOLee+8tEyZMqJ3p0p1v0UUXrSPSUzh5xhlnlL/+9a91rHr3QqyMLF5yySXL1ltvXZ544ola7HXAAQfUbW7t8rfVVluVtddeu6ywwgp9PudsR09FTxMnTqw/p0hrIFJIli583/rWt8rNN99cO/OlGAym2xj9+zQW/zalw+kpp5xSLrzwwrL88svXbX/66afL1772tdrhM0WsTWF6pBtoClnf8Y53dHUgnlbf/e5367458cQTy2tf+9ppfhwAAAAAAGB0UfQJAMCMaeGFp/2+p55ayr77tr8uRT4prJoWhx1WyjB0W0s3uxQp/eQnP5misCqjgjOe/JOf/GTb+6VQ6rjjjivLLrts+c53vlMWWGCBrsLJz33uc+Xyyy+vHeg+8pGP1MvTMe/ZZ5+tRZEpiGx8/OMfr4VNKbbM9XOnSO3/k2KrdMnL4zVj2Nddd93y2c9+thYotRZWZbzx9EqhVZ7z4osvXtZff/0B3fdd73pXLfyK1VZbre7T1tHxMM3G6N+nsfi3KUWqF110UTn00EO7vhoHH3xw7TDaKkWfTcHn9HjggQdqYWmKTrPfUwALAAAAAADMGIx3BwCAGUwKo9785jdPNUY5nfRSzNTT+OSLL764jldOYVRTVBW5z6c//eky00wz1XHDjRRIHXXUUVMUVUU6yr3pTW+qj/XUU09N9XsyPrm1eLIppnrooYfKYLrqqqvKkUceWbv/HX300XWMcn9l21Mcli58GQ3929/+tnYBfOSRRwZ1G2EsGYt/m/I8Tz/99PKb3/ymdjLdddddywc/+MEy11xz1e6kP/jBD8pgmzRpUi0unXPOOcthKeYFAAAAAABmKDp9AgDADChjlDO+OGPJ3/Oe93QVVq2++url9a9/fR1l3N3vfve7+j3jgH//+99PdX2KlNI97rnnnqs/r7feevXyFE+lE1+69WUc+j333FO/IsVVrTKSubVoK+add976vbUIbDA6fB5xxBG1gCsjoddcc80B3T9FZIf/f10P003w+OOPL2effXb50pe+VL7xjW8M2nbCWDPW/jbl78/3v//9sssuu9SuoU1R6YEHHlh22mmn8pnPfKYss8wytbh8sJxzzjm1yDRj5bs/JwAAAAAAoPMp+gQAgBlQxvmmsOrqq6+uhVV//vOfyx//+MfyxS9+scf7PP300/X7BRdc0Otj53YprHrsscdqB82f/vSnXaODF1pooVq8tcgii9TueCmY7D66uLumCKr7badFCrmOPfbYct5555VZZ521FmtuvPHG0/WY2b6DDjqoXHLJJeWmm26qBWB5bGDgxtLfpvw9SgfSeeaZp46ub+0iuuiii9a/K+lUetlllw1a0WeKXFPsucUWW0z33z4AAAAAAGB06riiz+WWW67P22y11VY1wdN48skny2mnnVZuuOGG8vjjj9fkytZbb1122223OuoRAIAZ0GOPTft955675+v+8IdUAE3b4845ZxkuSy21VFlhhRXK9ddfX4sU00lv5plnLptsskmP90mxVPz85z8vCy64YK+PnyKovfbaq/zhD38oO+64Y3n/+99fRzfPN9989frttttu0Me19yXP85BDDikTJ06sXfsSAwykw+df//rXWjC1xhprlIUXXniK6xI3pAvhf/7zn/qVAjKYZmP479NY+tv0r3/9q7z00kv197crFG/Obzz88MOD9juvueaa8sorr5Qrr7yyfnWX35Xf+4Y3vKG+BgAAMBzShf/MM8+sx6CPPPJIee1rX1ve+973ln322aff3en/8Y9/lJNPPrnceuut9fESW0yYMKEe4wMAAIw1HVfxuN9++/WY2Dn//PPrOLe3ve1tU3T62Hnnncuf/vSn2uViiSWWqImir33ta3VEXAJEAABmQENVlNdHwdFo66iXTpcZiZyueuuuu25NrPQkhVgZnXznnXfW5EurFC7lsVL4+OEPf7jcd999tajqHe94R9cY9EYKjjJqebC6d/bHpEmT6rjkJJAWW2yxOop96aWXHtBjpCPfN7/5zfKJT3yi7LnnnlNclzgjY6cz7tm4ZKbbGP/7NFb+NqXQNMWeKTJt1yE4hebRvch8eqy99tptz5uk6+jpp59eu47uuuuu9TsAAAyHZ555puy00061y3+O/XNM/5e//KV85zvfqd35M1Ujx/O9yeKlHXbYoTZ5STyRxWDXXntt+cIXvlAf69BDDx225wMAADAazFQ6zP7779/2a+65566J2O2337588IMf7Lp9uvvcf//9dVRcCjyTwM3otBSAJphMFyAAAJgRbbrppvX7N77xjZoESWKkN9tss039nvHoGY/c6utf/3r51re+VX7zm9/UEcXNKOTcrhmf3BRfHnXUUbUbZrReN5TOOuusWvCZrv4XXnjhgAs+Y8sttywzzTRTOffcc8ujjz46RaFYisdeeOGFuo/SlRCYdmPlb1OKPHPuIb8zI+1b/fvf/+66LH97Bss666zT9pzJvvvuW69P4Xr+nQJZAAAYDqeeemot+MxxaJq3fOpTn6qxQAo2c9zen+YsOZbPbZPzS1yQx/jRj35UVltttfqYd99997A8FwAAgNGi4zp9tpOizhNOOKEsvvji5TOf+UzX5S+++GLXCsGsAGwkSZuAMAWfF110UU3CwAwtowxvuGHqywCAGVqOj1dZZZVaDNUUH/Vm9dVXr6PV0g1u8803L+95z3tq971f/epX5be//W0dB9wcb2eMWm7/61//uhZkpVtHiiP/7//+r3bSy/0y2jgj16bVFVdcUbt5bLjhhrXTX0/yO1L0GbldYoB2Muo92xm/+MUvyu23315vn8eP5ZdfvhZGnXLKKWWLLbaohWkpIMukgBSmpYPeQQcdNM3PBxhbf5si25UE9DnnnFNuu+22+nckRaDXXXdd3Ybdd9+96+/SUG8LAAyI84nAIEnn+3Tm3GOPPaa4/AMf+EA54ogjalzQmxzvpqvnW9/61rLBBht0XT777LOXgw8+uHayv/jii8vKK688ZM8BAABgtJkhij6zwi9JnKwKnGOOObouv+uuu8rzzz9fNtpoo9qxp3uSKWMf77jjjtrxQ7ceZmgZI/iud430VgAAIyAd9H73u9+V9ddfv1/jfDMiPcVYGbOWoqSMJE73zBQmJUGTRE2ko146bKQjx89+9rNywQUX1OuWWWaZ8tnPfrYWM2Wh1Q033FCLLafF97///VqYmYKu3oqZfvnLX9bj/sg256udvffeu6u4Ko+bbiNbbbVVV9FnZCxyij/TKeTKK6+ssUKKyD796U+XnXfeucwyyyzT9FyAsfe3KfK7M23kzDPPLNdcc03d/hS6rrjiiuVDH/pQ2WSTTaZpG6ZlWwBgQJxPBAZJjs/bSffPWGihhXq9f453J0+e3Hax1BprrFHj9CywAgAAGEvGTU6k1MFuuummstdee5X11luvjmFslQ4/KQTNyIgkb7vLOLNbb721dvxccsklh3GrAQAAAAAAYGxJ5/sUaR599NF1ZHu64vfW/f7EE0+s4+CPOeaY8sEPfnCq69P4Jd1E77zzzrrACgAAYCzo+E6fCQYjo966a8a1zT///G3v23QTefrpp8uM5NVXX61fo0W6rHbvtAoAAAAAAIw+oy3HMFByEqPX9773vXL44YfXnzOB77jjjuu14DOefPLJ+n2++ebrMdeX9+uzzz5bFlhggSHYagAAgNGno4s+f//739exDhnJ1m4sW8a9RU8r+5rLX3rppTKjSGA7YdfdyiOPP1FGi9cvtGD57rfOc5IFAAAAAABGe45h9wnl0ccfLZ3qdQu9rnz33O/KSYxCKcrcc889y+OPP16n8H3iE58ojzzySPnIRz7S431eeeWVfuX6mpzgjOLFjx870psAAACj1uwnfKqMdR1d9HnFFVfU7xMmTGh7/eyzzz5FQNhdEwDONddcZUY6IZOCz71OOK/MNPPMI7055dVJk8pZH9+tbpcTLAAAAAAAMHrlXH4KPvf79n5lppk775z+q5NeLafucqqcxCj1vve9r37F/vvvX7bffvva7XOdddYpq6yyynTl+uacc84h224AAIDRpqOLPq+77roaxL373e9ue30z6qGn8e3PPPNM/T733HOXGU0KPmce39EvL4Mpo3j+9a8pL3vtazPnZqS2CAAAAAAYrZxPHPNS8Dnz+JFvLMGMa7HFFqsdPo8++uia7+up6LM/ub5x48bNkLk+AACAnnRsVeC9995b/vGPf5TNN9+8zDHHHG1vs/TSS9fvDz74YNvrc3mKRhdddNEh3VYYcTlBu/DCU1722GOlLLTQSG0RAAAAADBaOZ8IDIJ04bzjjjvKpEmTyjvf+c6prl988cXr93//+989PkZvub50/8x4+De+8Y06uwIAAGNKx0ZAv/71r+v3Nddcs8fbrLzyynV0++23315HebT6+9//Xh5++OGy2mqrlZlHwRh0AAAAAAAAmJGKPvfcc8/y8Y9/vGsMe6t77rmnfk/RZk/WXnvt2snzF7/4xVTX/fKXv6yFn2usscYgbzkAAMDo1rFFn3fffXdXYWdPZptttrLFFluUhx56qHz729/uujwrCo899tj684QJE4ZhawEAAAAAAGDsyMj19773vXUE+6mnnjpVnu/888+vE/mSy+vJ6173urLeeuvVBi/XXntt1+Uvvvhi+frXv15/lusDAADGmo4d796McVhkkUV6vd1BBx1Ubr755nLUUUeV2267rSy77LLllltuqasHN9100xpsAgAAAAAAAIPrc5/7XC3wPPPMM2tnzre85S3lH//4R7nuuutqB88TTzyxLLTQQvW26eaZ4s4VVlihbLjhhl2P8fnPf77ssMMO5YADDqi5veQGc/8HHnig7LHHHvX2AAAAY0nHFn3++9//rt/nmWeeXm+3wAILlIsuuqicdNJJ5cYbb6wFn4sttlj55Cc/WXbZZZcaUAIAAAAAAACDK506L7/88nL66afXQs0777yzzDvvvLWoc++99y7LL798121T8JmOoFtttdUURZ8Z/37xxRfXzp5p9PLSSy+VpZZaqnzlK18p22yzzQg9MwAAgJHTsUWfV111Vb9vu/DCC5cjjzxySLcHAAAAAAAAmLpBS7p15qs3+++/f/1qJ0WezTh3AACAsW6mkd4AAAAAAAAAAAAAAPqm6BMAAAAAAAAAAACgAyj6BAAAAAAAAAAAAOgAij4BAAAAAAAAAAAAOoCiTwAAAAAAAAAAAIAOoOgTAAAAAAAAAAAAoAMo+gQAAAAAAAAAAADoAIo+AQAAAAAAAAAAADqAok8AAAAAAAAAAACADjB+pDcAGAbzzlvKJZdMfRkAAAAAQHfOJwIAAACMWoo+YSyYbbZStt12pLcCAAAAAOgEzicCAAAAjFrGuwMAAAAAAAAAAAB0AEWfAAAAAAAAAAAAAB1A0ScAAAAAAAAAAABAB1D0CQAAAAAAAAAAANABFH0CAAAAAAAAAAAAdABFnzAWPP54KePGTfmVywAAAAAAunM+EQAAAGDUUvQJAAAAAAAAAAAA0AEUfQIAAAAAAAAAAAB0gPEjvQEAAADMWJ577rly5plnlokTJ5aHH364zDLLLGXFFVcsu+66a9loo42muO2TTz5ZTjvttHLDDTeUxx9/vCy66KJl6623LrvttlsZP77/IeuNN95Yf+cf//jHMvPMM5c11lijHHjggWX55ZcfgmcIAAAAAAAAI0OnTwAAAAbNs88+W3bcccdagDnnnHOWnXbaqWyyySbl3nvvLfvtt1+9vPH000+XnXfeuVxwwQVlpZVWKrvsskuZY445yte+9rXy8Y9/vN+/85JLLikf/ehHyz//+c+y3XbblQ033LDccsstZfvtty933XXXED1TAAAAAAAAGH46fQIAADBozj777HLfffeVHXbYoRx++OFl3Lhx9fJ03UwHz5NOOqkWgS655JK1w+f9999fDjvssFocGgcffHA56KCDyk9/+tPaKXTjjTfu9fc98cQT5Stf+UpZaqmlymWXXVbmmWeeenkKPidMmFA+//nPlx/+8Idd2wEAAAAAAACdTKdPAAAABs3VV19dCywPOeSQKQotF1lkkdoBdNKkSeWmm24qL774Yu3Q+frXv74WiDYymv1Tn/pU/fmiiy7q8/ddfPHF5aWXXip77LFHV8FnvOUtbymbb755LUD9zW9+M+jPEwAAAAAAAEaCok8AAAAGza677lo7dc4777xTXTfrrLPW788991wdu/7888+Xtddeu8w005Sh6eKLL14WW2yxcscdd9Qi0d7cdttt9fu666471XXNZc1tAAAAAAAAoNMZ7w4AAMCgyUj1diZPnlzHtcdyyy1XHnjggfrzEkss0fb2Kfx86KGH6ldGwfckjzN+/Piy6KKLTnVdCkfjL3/5yzQ9FwAAAAAAABhtdPoEAABgyF144YW1u2eKOddff/3y1FNP1cvnn3/+trdvRrU//fTTvT5uHmfuueeuY+F7eoxnnnlmEJ4BAAAAAAAAjDxFnwAAAAypq666qhx55JG1I+fRRx9dZplllvLyyy9PMfK9u+byl156qdfHfuWVV6b7MQAAAAAAAKBTKPoEAABgSDt8HnLIIfXnY445pqy55pr159lnn72raLOdpih0rrnm6vXx8zh9Pcacc845Hc8AAAAAAAAARo/xI70BAAAAzHheffXVcuyxx5bzzjuvdtw8/vjjy8Ybb9x1/Xzzzdfr+PZmJHtGt/cmj/Ovf/2rTJ48uYwbN67tYzRj3gEAAAAAAKDT6fQJAADAoEqHzQMPPLAWfM4///z1e2vBZyy99NL1+4MPPtj2MXJ5OnQuuuiivf6uPE46fT7yyCNTXff3v/+9fl9mmWWm49kAAAAAAADA6KHoEwAAgEEzadKkWvA5ceLEsthii5Xvfe97XSPdW6288sp1dPvtt99eu4J2L9Z8+OGHy2qrrVZmnnnmXn/f2muvXb/fdtttU11366231u9rrLHGdD4rAAAAAAAAGB2Md4exICMxTz116ssAAGCQnXXWWeX666+vHTovvPDCssgii7S93WyzzVa22GKLcvHFF5dvf/vb5cMf/nBX0WjGwseECRP6/H1bbrllOf3008sZZ5xR3v3ud5fXvOY19fI777yzXHXVVWWFFVZQ9AkAMFDOJwIAAACMWoo+YSyYY45S9t13pLcCAIAZ3FNPPVWLPiPFlpdccknb26Xz57rrrlsOOuigcvPNN5ejjjqqdupcdtllyy233FLuueeesummm5b3vve9U9zv/PPPL88880zZaqutahfReMMb3lAfJ4WiKQDdbLPNyrPPPluuvPLKMssss5Qvf/nLw/DMAQBmMM4nAgAAAIxaij4BAAAYFL/85S/L888/X3++7rrr6lc7e++9dy36XGCBBcpFF11UTjrppHLjjTfWgs8Uc37yk58su+yySxk3btwU90tH0Ix9z0j3pugz9thjj9pR9Lzzzqvj5Oeee+7y9re/vY6ZX3755Yf4WQMAAAAAAMDwUfQJAADAoNhwww3LfffdN6D7LLzwwuXII4/s120zNr4nGRWfLwAAAAAAAJiRzTTSGwAAAAAAAAAAAABA3xR9AgAAAAAAAAAAAHQARZ8AAAAAAAAAAAAAHWD8SG8AMAyeeKKUFVaY8rI//KGUBRccqS0CAAAAAEYr5xMBAAAARi1FnzAWTJ78/07Udr8MAAAAAKA75xMBAAAARi3j3QEAAAAAAAAAAAA6gKJPAAAAAAAAAAAAgA6g6BMAAAAAAAAAAACgAyj6BAAAAAAAAAAAAOgAij4BAAAAAAAAAAAAOoCiTwAAAAAAAAAAAIAOoOgTAAAAAAAAAAAAoAMo+gQAAAAAAAAAAADoAIo+AQAAAAAAAAAAADqAok8AAAAAAAAAAACADqDoEwAAAAAAAAAAAKADKPoEAAAAAAAAAAAA6ACKPgEAAAAAAAAAAAA6wPiR3gBgGMw5ZymHHTb1ZQAAAAAA3TmfCAAAADBqKfqEsWCuuUo5/PCR3goAAAAAoBM4nwgAAAAwahnvDgAAAAAAAAAAANABFH0CAAAAAAAAAAAAdABFnwAAAAAAAAAAAAAdQNEnAAAAAAAAAAAAQAdQ9AkAAAAAAAAAAADQAcaP9AYAw+Df/y5l/fWnvOz//q+UBRYYqS0CAAAAAEYr5xMBAAAARi1FnzAWTJpUyu9/P/VlAAAAAADdOZ8IAAAAMGoZ7w4AAAAAAAAAAADQARR9AgAAAAAAAAAAAHQARZ8AAAAAAAAAAAAAHUDRJwAAAAAAAAAAAEAHUPQJAAAAAAAAAAAA0AEUfQIAAAAAAAAAAAB0AEWfAAAAAAAAAAAAAB1A0ScAAAAAAAAAAABAB1D0CQAAAAAAAAAAANABFH0CAAAAAAAAAAAAdABFnwAAAAAAAAAAAAAdQNEnAAAAAAAAAAAAQAdQ9AkAAAAAAAAAAADQAcaP9AYAw2D22UvZZ5+pLwMAAAAA6M75RAAAAIBRS9EnjAXzzFPKaaeN9FYAAAAAAJ3A+UQAAACAUct4dwAAAAAAAAAAAIAOoOgTAAAAAAAAAAAAoAMo+gQAAAAAAAAAAADoAIo+AQAAAAAAAAAAADqAok8AAAAAAAAAAACADjB+pDcAGAZPPVXKBz845WU/+EEp888/UlsEAAAAAIxWzicCAAAAjFqKPmEseOWVUm66aerLAAAAAAC6cz4RAAAAYNQy3h0AAAAAAAAAAACgAyj6BAAAAAAAAAAAAOgAij4BAAAAAAAAAAAAOoCiTwAAAAAAAAAAAIAOML50sJtuuqmcd9555Xe/+10ZN25cWWaZZcquu+5aNttssylu9+STT5bTTjut3HDDDeXxxx8viy66aNl6663LbrvtVsaP7+hdAAAAAAAAAAAAAIwRHVvxeP7555ejjjqqvPa1ry0f+MAHyquvvlp++tOfloMPPrg8+uijZffdd6+3e/rpp8vOO+9c/vSnP5WNN964LLHEEuXnP/95+drXvlaLRU8++eSRfioAAAAAAAAAAAAAM2bR53333VeOO+642tnzO9/5Ti38jP32268WgJ5wwgll2223LfPMM0/t8Hn//feXww47rOy00071dikMPeigg2qR6MSJE2sxKAAAAAAAAAAAAMBoNlPpQCn0/O9//1u+9KUvdRV8xoILLlgLOv/nf/6nPPHEE+XFF18sl1xySXn9619fdthhh67bzTzzzOVTn/pU/fmiiy4akecAAAAAAAAAAAAAMMN3+rzxxhvLQgstVNZaa62prttmm23qV9x+++3l+eefLxtttFGZaaYp61sXX3zxsthii5U77rijTJo0qRaCAgAAAAAAAAAAAIxWHdfp89///nd5/PHHy5vf/Oby2GOPlc997nNlvfXWK6uuumot9rz22mu7bvvAAw/U70sssUTbx0rh58svv1weeuihYdt+AAAAAAAAAAAAgDFR9JlCz3j22WfrGPdf/OIXZZNNNimbbrpp+fOf/1z23XffOv49nnrqqfp9/vnnb/tY88wzT/3+9NNPD9v2AwAAAAAAAAAAAIyJ8e7PPfdc/X7nnXeWt73tbeWMM84oc845Z71sr732Kttuu2055phjynve857axTNmnXXWto/VXP7SSy8N2/YDAAAAAAAAAAAAjIlOnzPPPHPXz1/4whe6Cj5jmWWWKTvvvHN55ZVXyk9/+tMy++yz18vz73aaotC55ppryLcbAAAAAAAAAAAAYEx1+mxGsqfYM0We3a244or1+9/+9rey8sor9zq+/Zlnnqnf55577iHcYhgF0tV2m22mvgwAAAAAoDvnEwEAAABGrY4r+lx88cXL+PHjy3//+98yefLkMm7cuCmub7p6zjHHHGXppZeuPz/44INtHyuXp3h00UUXHYYthxE033ylXHrpSG8FAAAAANAJnE8EAAAAGLU6brz7rLPOWlZbbbU6mv2OO+6Y6vrf/e539fvyyy9fO31mdPvtt99eXn311Slu9/e//708/PDD9bFaR8YDAAAAAAAAAAAAjEYdV/QZO+20U/1+9NFHd41oj3vvvbdcdNFFZf755y8bbrhhmW222coWW2xRHnroofLtb3+763aTJk0qxx57bP15woQJI/AMAAAAAAAAAAAAAGbw8e6x+eabl5tvvrlcccUV9eeNN964PPvss+UnP/lJLeg88sgjy9xzz11ve9BBB9XbHnXUUeW2224ryy67bLnlllvKPffcUzbddNPy3ve+d6SfDgAAAAAAAAAAAMCMWfQZX/3qV8uaa65Zvve975XLLrusjn1fa621ysc+9rGy+uqrd91ugQUWqN0/TzrppHLjjTfWgs/FFlusfPKTnyy77LJLGTdu3Ig+DwAAAAAAAAAAAIAZuugzxZpbb711/erLwgsvXLt/AgAAAAAAAAAAAHSqji36BAbgP/8p5SMfmfKyc84pZb75RmqLAAAAAIDRyvlEAAAAgFFL0SeMBS+/XMpll0152emnj9TWAAAwxhx00EHl17/+dfnZz37WddkvfvGLsssuu/R536OOOqr8z//8T6+3+fOf/1w222yzHq8/6aSTyiabbDLArQYAGMOcTwQG0XPPPVfOPPPMMnHixPLwww+XWWaZpay44opl1113LRtttFG/HmO99dYrTzzxRNvrJkyYUL74xS8O8lYDAACMXoo+AQAAGDKnnnpqufrqq8siiywyxeVveMMbyn777df2Pk899VS54IILypxzzllWXXXVPn/HvffeW78nWbjccstNdf2yyy47zdsPAADAtHv22WfLTjvtVO67776y0kor1Z+feeaZWgCamPDjH/94+ehHP9rrYzz++OO14DOFou95z3umur4/cSMAAMCMRNEnAAAAg+6ll14qRxxxRLn00kvbXr/YYouV/fffv+11e++9d/3+la98pV8Fm3/4wx/q9z322KO89a1vna7tBgAAYPCcffbZteBzhx12KIcffngZN25cvfzAAw8sW2+9dddkhiWXXLLPmC+366tAFAAAYCyYaaQ3AAAAgBnL9ddfXzbddNNa8LnBBhsM6L65zw033FA233zz+tUf6fSZxOGb3/zmadxiAAAAhkImPyReO+SQQ7oKPiPTIHbccccyadKkctNNN/VrusPyyy8/5NsLAADQCXT6BAAAYFBddtll5bnnniuHHXZYTeL1NzGXEX8nnHBCmXvuuctnP/vZfv++JACXWGKJMtdcc03HVgMAADDYdt111xrrzTvvvFNdN+uss9bviR97o+gTAABgSoo+AQAAGPSk3rHHHluLNwfiG9/4Rvn3v/9dDj744LLgggv26z7/+te/yuOPP17WWGONcvTRR5frrruuPProo2XRRRctW265Zdlzzz27EokAAAAMrwkTJrS9fPLkyWXixIn15+WWW67Xx8h49znnnLP89Kc/LZdffnn529/+VuPNd73rXeWAAw4oCy+88JBsOwAAwGhlvDsAAACDap111hlwweezzz5bvve979XuLx/60If6fb8k/+JXv/pVHQn43ve+t2y11Vbl5ZdfLieffHLZY4896s8AAACMHhdeeGG56667yuKLL17WX3/9Hm/34osv1iLP559/vpx++unlLW95S9luu+3qePhLL720bL311uWhhx4a1m0HAAAYaTp9AgAAMGpGwu+zzz4DKhhNsehSSy1V1l133fKFL3yhzDzzzPXyJAT33Xffcsstt5RzzjmnPi4AAAAj76qrripHHnlkGT9+fJ3YMMsss/R420x2WHbZZesCwVNPPbXMP//8XZ1CTzzxxHLmmWeWz3/+8+X8888fxmcAAAAwsnT6BAAAYMRlRN9MM81UdthhhwHdb5NNNqkj/g4//PCugs/I6L/DDjus/vzDH/5w0LcXAACAaevwecghh9SfjznmmLLmmmv2evt0Av3Rj35ULrjggq6Czxg3blwd7b7ooouWW2+9tTz22GNDvu0AAACjhaJPAAAARtTf//738sc//rGstdZadUTfYEkH0HSDyeMDAAAwcl599dXa1fNLX/pS7fD59a9/vWyxxRbT9Zh5nBVXXLH+/OCDDw7SlgIAAIx+xrsDAAAwoq6//vr6fbPNNhvwff/yl7+Uf/7zn+Utb3lL7e7ZPan40ksvldlmm23QthUAAICBefnll2t3z4kTJ9ZunaeddlqfHT4bifdS0LnYYouV17/+9VNd/8ILL9Tvs88++6BvNwAAwGil0ycAAAAj6je/+U39nk6fA3XUUUeVD3/4w+VnP/vZVNfdddddtehz1VVXHZTtBAAAYGAmTZpUDjzwwFrwmcLN733ve/0u+IyMdv/Qhz5Uzj777Kmue+6558o999xT5phjjvKmN71pkLccAABg9FL0CQAAwIi6++67a5fON77xjQO+7+abb16/n3LKKeXZZ5/tuvzJJ58sX/7yl+vPu+666yBuLQAAAP111lln1ekOiy66aLnwwgvL0ksvPaD7v+9976tj3K+44opy3333dV3+3//+t3z1q18tTz31VNlhhx1MeAAAAMYU490BAAAY0a4vDz30UFliiSXKTDP1vi4xSb6HH364bLjhhmWFFVaol2255Za1Y8x1111XNt1007LRRhvV0YE33nhjefzxx8tuu+1W3vOe9wzTswEAAKCRgswUfUZiuEsuuaTt7dL5c9111y2/+MUvyu23315vm7gvEitmNPwxxxxTtttuu7LJJpuUeeedt9x2223lj3/8Y1ljjTVqJ1EAAICxRNEnjAWzzFLKBhtMfRkAAIyCJODkyZPLPPPM0+dtv//979cE4Bve8Iauos8UiqbL53e/+91aFHrppZfWLjC5/rOf/WzZbLPNhuFZAADMYJxPBAbBL3/5y/L888/Xn7NQL1/t7L333rXoM/HeqaeeWrbaaquuos/YfffdyzLLLFPOPffccs0115RXXnmlLLnkkrUY9MMf/nCZddZZh+05AQAAjAbjJie7xgwj4yw23OIDZe+Tvl1mHj/yNb2T/vvf8o0DdynXXvnDmngFAAAAAABGb45how9sVA747gFl5vEzl04z6b+TyskTTi7X/PAaOQk62osfP3akNwEAAEat2U/4VBnrep+dBwAAAAAAAAAAAMCooOgTAAAAAAAAAAAAoAMo+gQAAAAAAAAAAADoAIo+AQAAAAAAAAAAADqAok8AAAAAAAAAAACADjB+pDcAGAbPPFPKoYdOednRR5cyzzwjtUUAAAAAwGjlfCIAAADAqKXoE8aCF18s5fTTp7zs8MOdpAUAAAAApuZ8IgAAAMCoZbw7AAAAAAAAAAAAQAdQ9AkAAAAAAAAAAADQARR9AgAAAAAAAAAAAHQARZ8AAAAAAAAAAAAAHUDRJwAAAAAAAAAAAEAHUPQJAAAAAAAAAAAA0AEUfQIAAAAAAAAAAAB0AEWfAAAAAAAAAAAAAB1A0ScAAAAAAAAAAABAB1D0CQAAAAAAAAAAANABFH0CAAAAAAAAAAAAdABFnwAAAAAAAAAAAAAdQNEnAAAAAAAAAAAAQAcYP9IbAAyDmWcuZcUVp74MAAAAAKA75xMBAAAARi1FnzAWLLBAKffcM9JbAQAAAAB0AucTAQAAAEYt490BAAAAAAAAAAAAOoCiTwAAAAAAAAAAAIAOoOgTAAAAAAAAAAAAoAMo+gQAAAAAAAAAAADoAIo+AQAAAAAAAAAAADrA+JHeAGAYPPdcKccdN+Vln/xkKXPNNVJbBAAAAACMVs4nAgAAAIxaij5hLHj++VK+9KUpL9t3XydpAQAAAICpOZ8IAAAAMGoZ7w4AAAAAAAAAAADQARR9AgAAAAAAAAAAAHQARZ8AAAAAAAAAAAAAHUDRJwAAAAAAAAAAAEAHUPQJAAAAAAAAAAAA0AEUfQIAAAAAAAAAAAB0AEWfAAAAAAAAAAAAAB1A0ScAAAAAAAAAAABAB1D0CQAAAAAAAAAAANABFH0CAAAAAAAAAAAAdABFnwAAAAAAAAAAAAAdQNEnAAAAAAAAAAAAQAdQ9AkAAAAAAAAAAADQAcaP9AYAw2DcuFIWXHDqywAAAAAAunM+EQAAAGDUUvQJY0FO0D7++EhvBQAAAADQCZxPBAAAABi1jHcHAAAAAAAAAAAA6ACKPgEAAAAAAAAAAAA6gKJPAAAAAAAAAAAAgA6g6BMAAAAAAAAAAACgAyj6BAAAAAAAAAAAAOgA40d6A4Bh8MILpZx77pSX7b57KXPMMVJbBAAAAACMVs4nAgAAAIxaij5hLHj22VL222/Ky7bbzklaAAAAAGBqzicCAAAAjFrGuwMAAAAAAAAAAAB0AEWfAAAAAAAAAAAAAB1A0ScAAAAAAAAAAABAB1D0CQAAAAAAAAAAANABFH0CAAAAAAAAAAAAdABFnwAAAAAAAAAAAAAdQNEnAAAAAAAAAAAAQAdQ9AkAAAAAAAAAAADQARR9AgAAAAAAAAAAAHQARZ8AAAAAAAAAAAAAHUDRJwAAAAAAAAAAAEAHUPQJAAAAAAAAAAAA0AEUfQIAAAAAAAAAAAB0AEWfAAAAAAAAAAAAAB1g/EhvADAMFlqolMmTR3orAAAAAIBO4HwiAAAAwKil0ycAAAAAAAAAAABAB1D0CQAAAAAAAAAAANABFH0CAAAAAAAAAAAAdABFnwAAAAAAAAAAAAAdYHzpUN/73vfK4Ycf3uP1t956a1lggQXqz08++WQ57bTTyg033FAef/zxsuiii5att9667LbbbmX8+I7dBQAAAB3hoIMOKr/+9a/Lz372s6muO/jgg8tVV13V9n5vetObypVXXtmv35HHP/XUU8s999xTXnnllbLKKquUfffdt6y99trTvf0AAAAAAAAwWnRsxeMf/vCH+v3DH/5wmXvuuae6fo455qjfn3766bLzzjuXP/3pT2XjjTcuSyyxRPn5z39evva1r5Xf/e535eSTTx72bYdh99JLpfzoR1NetuWWpcw220htEQAAY0QKMa+++uqyyCKL9BjbzTfffDVu665ZyNeXm266qeyzzz5l3nnnLe9///vLpEmTarHorrvuWk455ZSy4YYbTvfzAAAYU5xPBAAAABi1Orbo89577y2zzz57+fSnP11mmqnnKfXp8Hn//feXww47rOy0005dnWTSaeanP/1pmThxYi0GhRna00+Xst12U1722GOlLLTQSG0RAAAzuJdeeqkcccQR5dJLL+3xNi+88EL529/+Vt7+9reX/ffff5p+z8svv1w+97nP1cWAV1xxRXn9619fL89kh2233bZOiFhvvfW6FgYCANAPzicCAAAAjFo9V0uOYq+++mr54x//WEf99Vbw+eKLL5ZLLrmkJv122GGHrstnnnnm8qlPfar+fNFFFw3LNgMAAIwV119/fdl0001rwecGG2zQ4+0S1yW+W2655ab5d2U0/OOPP15jvqbgMzLlYcKECfW6a6+9dpofHwAAAAAAAEaTjiz6fOCBB2pHmOWXX77X2911113l+eefL2uvvfZUxaGLL754WWyxxcodd9xRR/8BAAAwOC677LLy3HPP1YkLZ555Zo+3y2j36Cu2680vfvGL+v1tb3vbVNetu+669fttt902zY8PAAAAAAAAo8lMnTraPcaNG1dHta+//vpl1VVXLdtss0258sorpygObTq8tJPCz4wCfOihh4ZpywEAAGZ8u+66a7nuuuvKTjvtVOO2voo+//GPf5Sdd965rLXWWmXNNdcsH/3oR+sivv7461//Wr8vueSSbWO++Mtf/jKNzwQAAAAAAABGl44u+szo9n/9619lyy23LBtttFH585//XA455JBywgkn1Oufeuqp+n3++edv+zjzzDNP/f70008P27YDAADM6NZZZ50y99xz93m7++67r34/7bTTymtf+9qy7bbbltVXX73cdNNNtWD0hhtu6PMxmrhvvvnmm+q6ZhueeeaZaXgWAAAAAAAAMPqMLx1o8uTJ5Q1veEPZf//9y1ZbbdV1+d///vey44471vGB73znO2sXz5h11lnbPk5z+UsvvTRMWw4AAEBj9tlnrx06Tz755ClGvKfoc++99y6HHnpo7RjaWwHpK6+80mPcJ+YDAAAAAABgRtORnT7TzfP666+fouCzGd13wAEH1J9/9KMf1QRiaxKwu6YodK655hrybQYAAGBK559/fpk4ceIUBZ+xwQYblM0226x28bzxxht7fYze4r4m5ptzzjkHdbsBAAAAAABgpHRk0WdvVl111fr9wQcf7Brv19P49mbEX3/GDgIAADAysV1vmriv3Qj3Z599tn6fZ555hmQbAQAAAAAAYLh1XNHnq6++Wu6+++5y++23t73++eef7+r2svTSS/eaJMzl6fiy6KKLDuEWAwAA0K4g87e//W259957217/wgsvTNHJsye9xX3NZcsss8wgbDEAAAAAAACMvI4r+oydd9657LLLLuVf//rXVNf98pe/rN9XWWWVsvLKK9fR7SkQTbFoq7///e/l4YcfLquttlqZeeaZh23bAQAAKOUvf/lL2X777csnPvGJttffcccdU3T87Mnaa69dv992221TXXfrrbfW72usscYgbDEAAAAAAACMvI4r+pxpppnKJptsUiZPnlyOO+64KYo50yHmzDPPrN07t9lmmzLbbLOVLbbYojz00EPl29/+dtftJk2aVI499tj684QJE0bkeQAAAIxlWaS3xBJLlPvvv79cdtllU1x3xRVXlJtvvrmstNJKfRZsvve97y3zzz9/ueCCC+rivtYunxdeeGFZaKGFyvve974hex4AAAAAAAAwnMaXDpROML/61a/K97///XLfffeVddZZp/zzn/8s1157bS0CPfHEE8siiyxSb3vQQQfVZOFRRx1VO78su+yy5ZZbbin33HNP2XTTTWuCEAAAgOFf0Jc47SMf+Uj53Oc+VyZOnFjHsGcxX2K2FGsef/zxZdy4cVMUg2Ziw4YbblhWWGGFelmmOxx22GHlkEMOKVtvvXXZfPPN6+U//vGP6wj5U045pS4IBAAAAAAAgBlBRxZ9vva1ry2XXnppOeOMM8o111xTO7ok0bfBBhuUvffeu3aMaSywwALloosuKieddFK58cYba/JwscUWK5/85CfriPjWBCIAAADDZ8011yyXX355Oe200+oivcRrCy64YNlxxx3LvvvuWws/W2Xh3+23317e8IY3dBV9xmabbVbmm2++GiP+4Ac/KLPMMku9Po/RjH8HAAAAAACAGUFHFn1GEnqHHnpo/erLwgsvXI488shh2S4AAACmlAkNPUl3zxNOOKFfj/Od73ynx+vWW2+9+gUAAAAAAAAzsplGegMAAAAAAAAAAAAAmIE7fQID8NrXlvLYY1NfBgAAAADQnfOJAAAAAKOWok8YC2aaqZSFFhrprQAAAAAAOoHziQAAAACjlvHuAAAAAAAAAAAAAB1A0ScAAAAAAAAAAABAB1D0CQAAAAAAAAAAANABFH0CAAAAAAAAAAAAdIDxI70BwDB4+eVSbrllysve/vZSZp11pLYIAAAAABitnE8EAAAAGLUUfcJY8J//lPLud0952WOPlbLQQiO1RQAAAADAaOV8IgAAAMCoZbw7AAAAAAAAAAAAQAdQ9AkAAAAAAAAAAADQARR9AgAAAAAAAAAAAHQARZ8AAAAAAAAAAAAAHUDRJwAAAAAAAAAAAEAHUPQJAAAAAAAAAAAA0AEUfQIAAAAAAAAAAAB0AEWfAAAAAAAAAAAAAB1A0ScAAAAAAAAAAABAB1D0CQAAAAAAAAAAANABxo/0BgAAAAAAAAAzpueee66ceeaZZeLEieXhhx8us8wyS1lxxRXLrrvuWjbaaKN+PcY//vGPcvLJJ5dbb721PPXUU2WppZYqEyZMKNttt92Qbz8AAMBoo9MnAAAAAAAAMOieffbZsuOOO9aizznnnLPstNNOZZNNNin33ntv2W+//erlfUmh6Pbbb1+uvPLKss4669RizxdeeKF84QtfKEcfffSwPA8AAIDRRKdPAAAAAAAAYNCdffbZ5b777is77LBDOfzww8u4cePq5QceeGDZeuuty0knnVSLQJdccskeH+Ooo44qjz32WDnrrLPKBhtsUC874IADaqfQ888/v2yxxRZl5ZVXHrbnBAAAMNJ0+gQAAAAAAAAG3dVXX10LPQ855JCugs9YZJFFagfQSZMmlZtuuqnXLp/XXntteetb39pV8Bmzzz57Ofjgg8vkyZPLxRdfPOTPAwAAYDTR6RPGgte8ppS77576MgAAAACA7pxPBAZJunE+88wzZd55553qullnnbV+f+6553q8/+23314LO9ddd92prltjjTXKLLPMUm677bZB3moAAIDRTdEnjAXjx5ey0kojvRUAAAAAQCdwPhEYJBMmTGh7eQo5J06cWH9ebrnlerz/Aw88UL+3G/+egs/Xv/715aGHHiovv/xyVxEpAADAjM54dwAAAAAAAGDYXHjhheWuu+4qiy++eFl//fV7vN2TTz5Zv88333xtr59nnnnKq6++Wp599tkh21YAAIDRRtEnAAAAAAAAMCyuuuqqcuSRR5bx48eXo48+unbs7Mkrr7xSv/fUxbO5PJ0+AQAAxgpFnwAAAAAAAMCwdPg85JBD6s/HHHNMWXPNNXu9/eyzzz5F8Wd3TbHnnHPOOejbCgAAMFqNH+kNAAAAAAAAAGZcGcF+7LHHlvPOO6925zz++OPLxhtv3Of9mrHuTz/9dNvrn3nmmTJu3Lgy99xzD/o2AwAAjFaKPmEs+O9/S7nvvikvW265Usb7EwAAAAAAdON8IjCI0o0z3T0nTpxY5p9//nLaaaf12eGzsfTSS9fvDz744FTXpfvnI488Ut74xjeWmWYy3BAAABg7nKGBseDJJ0tZeeUpL3vssVIWWmiktggAAAAAGK2cTwQGyaRJk8qBBx5Yrr/++rLYYouVs88+u6uQsz/WXnvt2snzF7/4Rdlvv/2muO6Xv/xlLfxcY401hmDLAQAARi/L3gAAAAAAAIBBd9ZZZ9WCz0UXXbRceOGFAyr4jNe97nVlvfXWK7fffnu59tpruy5/8cUXy9e//vX684QJEwZ9uwEAAEYznT4BAAAAAACAQfXUU0/Vos9YYYUVyiWXXNL2dhn1vu6669ZuninuzG033HDDrus///nPlx122KEccMABZdNNNy2LLLJIue6668oDDzxQ9thjj3p7AACAsUTRJwAAAAAAADCoMn79+eefrz+nSDNf7ey999616DMFn6eeemrZaqutpij6fOMb31guvvji2tnz5ptvLi+99FJZaqmlyle+8pWyzTbbDNvzAQAAGC0UfQIAAAAAAACDKoWb9913X79vv//++9evdlLk2YxzBwAAGOtmGukNAAAAAAAAAAAAAKBvij4BAAAAAAAAAAAAOoCiTwAAAAAAAAAAAIAOoOgTAAAAAAAAAAAAoAMo+gQAAAAAAAAAAADoAIo+AQAAAAAAAAAAADrA+JHeAAAAAAAAAGB4TZo0qX7NOuus9d/PPvtsueiii8ojjzxSVl111bLFFluUmWeeeaQ3EwAAgG50+gQAAAAAAIAx5Nxzzy3rrLNOuf766+u/X3755bLjjjuW448/vnz3u98thx56aNlzzz1rUSgAAACji6JPAAAAAAAAGCOuvfbacuyxx9bOns8880y97Ac/+EG5//77y0ILLVT222+/stxyy5Vbb721dv4EAABgdFH0CQAAAAAAAGPExRdfXGaaaabyzW9+s2y77bb1squvvrqMGzeufPGLX6xFnxdccEGZZ555yo9+9KOR3lwAAAC6Gd/9AmAGNN98pdxww9SXAQAAAAB053wizNDuvvvusvrqq5f11luv/vuFF14od9xxR5l11lnLO9/5znrZ3HPPXVZbbbXy6/8fe/cBZUV9/o//2V1YeglSBAGjooJR1KAoGsWIBUtiJwgqYo+Kgj1FwSi2JLagEStiCYrBltgiKFZEY4xGAVsMRQRUkF53/2fm+4O/C0vT3b337n29zpkzu5+Ze+e5ezgmn5n3/Txvv53hagEAAFid0Cfkg+LiiH32yXQVAAAAAEAucD8RqrWkrXvTpk1X/T5+/PhYvnx57Lzzzmnwc6Xk5yVLlmSoSgAAANZGe3cAAAAAAADIE5tuumlMmzZt1e8vvfRS2tp9jz32WDVWUlISEyZMiGbNmmWoSgAAANZG6BMAAAAAAADyRIcOHdIW7yNHjoxx48bF448/no5369Yt3S9btix+//vfx+effx6dO3fOcLUAAACsTnt3AAAAAAAAyBOnnXZavPDCC3HZZZelv5eWlsY+++wT22yzzarw56xZs6JBgwbpuQAAAGQXK30CAAAAAABAnth+++3j7rvvjt133z223HLL6NWrV/zxj39cdbxly5ax6667xl/+8pf0OAAAANnFSp+QD0pKIr76quzYJptEFMp9AwAAAACrcT8Rqr0k1HnPPfeUe2z48OFRq1atKq8JAACADSP0CfkguUHbvHnZsZkzI5o1y1RFAAAAAEC2cj8R8sqSJUti5syZUbNmzdh0003TPQAAANnL13IBAAAAAAAgz7z44ovRu3fv6NSpUxxwwAFxww03pONnnXVWDBo0KBYuXJjpEgEAACiHlT4BAAAAAAAgj9x8883x5z//OUpLS6OwsDDdJ1vi448/TgOhEydOTFu9FxcXZ7pcAAAAvsVKnwAAAAAAAJAnxo4dG7feems0b948brzxxnjzzTfLHL/++uujXbt28e9//ztGjhyZsToBAAAon9AnAAAAAAAA5Ilk9c6aNWvG3XffHd27d4969eqVOb7DDjvEXXfdla7w+fjjj2esTgAAAMon9AkAAAAAAAB54r333otOnTrFVltttdZzklVAd9lll5g8eXKV1gYAAMD6CX0CAAAAAABAnli8ePEaq3uWJ1kNdNGiRVVSEwAAABtO6BMAAAAAAADyRKtWreKDDz6IkpKStZ6zfPny9JyWLVtWaW0AAACsn9AnAAAAAAAA5Il99903vvjii7j55pvXes4tt9wSs2bNin322adKawMAAGD9amzAOQAAAAAAAEA1cMopp8Tf/va3GDp0aLz11lux++67p+PTp0+PkSNHxujRo2Ps2LHRuHHjOPnkkzNdLgAAAKsR+gQAAAAAAIA80aRJk7j77rujX79+aejzn//8Zzqe/JxspaWlaVv3ZCXQZs2aZbpcAAAAViP0CQAAAAAAAHmkXbt26Wqf//jHP+L1119PV/ksKSlJQ5677bZbHHzwwVFcXJzpMgEAACiH0CcAAAAAAADkmaKioujevXu6AQAAkDsKM10AAAAAAAAAAAAAAOtnpU8AAAAAAADIEyeccMIGn1tQUBD33ntvpdYDAADAxhH6hHzQsGHEww+vOQYAAAAAsDr3E6FaGz9+/AaFPUtLS9M9AAAA2UXoE/JBrVoRxxyT6SoAAAAAgFzgfiJUa0OGDCl3vKSkJL755pt4++2348knn4zDDjssBgwYUOX1AQAAsG5CnwAAAAAAAJAn9ttvv3UeP+aYY6Jbt27Rr1+/2GOPPeKQQw6pstoAAABYv8INOAcAAAC+s/79+8fee+9d7rHJkyfHJZdcEnvttVf86Ec/ii5dusQ555wTEydO3OD3/+STT2Lbbbdd6/bMM89U4KcBAADIj2Bohw4dYtiwYZkuBQAAgNVY6RMAAIBKbRv49NNPR4sWLdY4lgQ7jzvuuJg3b1507do1ttpqq5gyZUr84x//iBdeeCHuuOOO2H333dd7jZUB0f333z8Nea6uXbt2FfRpAAAA8kfr1q3j5ZdfznQZAAAArEboEwAAgAq3ZMmSuOKKK2LkyJFrPefyyy9PA59//OMf49BDD101/tprr8XJJ58cv/nNb9IAaGHhuptUTJgwId0nr9l5550r8FMAAADkpxUrVsT7778fxcXFmS4FAACA1Qh9AgAAUKHGjBkTV155ZUybNi1dwXPs2LFrnDNjxox4++23Y7vttisT+Ezsscce0blz5xg3blx8+OGH0b59+/Wu9FlQUBDbbLNNhX8WAACA6mZlt4S1hT1nzZoV9913X3z++efx05/+tEprAwAAYP2EPiEfzJoV0bx52bGZMyOaNctURQAAVGOPPPJILFiwIAYOHBjHHntsuaHNoqKiuOiii6LZWv4/6crVZJL32ZAHlm3bto169epVQPUAALifCNXb4Ycfnn5xbl1KS0ujVq1acdZZZ1VZXQAAAGwYoU8AAAAqVJ8+feK6666L+vXrr/Wcpk2bpu3Yy/Pll1/GW2+9FTVq1Iitttpqndf66quv0lVoOnXqFNdcc02MHj06vvjii2jVqlX8/Oc/j1NPPVU7QgAAgG9J5ktrU1hYGHXr1k2/vHfiiSem3RkAAADILkKfAAAAVKjddtvte70+aQ2/cOHCNLTZuHHjdZ47YcKEdP/Pf/4zZs+eHd26dUtf+/LLL8fNN9+ctoi/6667BD8BAAD+nzFjxmS6BAAAALIp9Jm0e1hfSwgAAACqXi7M15LA59NPPx2bbrpp/OpXv1rv+fPnz48f/vCH0aVLl7j00kvTtvGJJPiZtCF87bXX4s4774wzzzyzCqoHAAAAAACAylVY0W/YtWvXuPHGG2PKlCkV/dYAAABU0/nasmXL4pJLLon77rsvmjRpEnfccUe6X5/u3bvHs88+G4MGDVoV+Ewk7QgHDhyY/vz4449Xau0AAAC56Msvv4y5c+eu+n369Olx+eWXxxlnnBG33npr+iU7AAAA8iD0mUwQhw4dGgceeGD07ds3nnrqqVi6dGlFXwYAAIBqMl9LHjKedNJJ8eijj0bLli3j/vvvj2222eZ7v2+yAmjDhg2zMuQKAACQSVdccUX6xcCXX345/T0JePbs2TNGjBgRL774YvzpT3+K3r17x+LFizNdKgAAAJUd+hw7dmwMGDAg2rRpE6+//nqcf/75sddee8VVV10VkyZNqujLAQAAkMPztWQlmeTB4vjx46NDhw7x0EMPxVZbbbXBr//000/Tz5K0c19dSUlJLFmyJGrVqlXBVQMAAOSuUaNGxQMPPBA1a9aMgoKCdGzkyJExY8aMaNeuXVx99dXxk5/8JD788MMYNmxYpssFAACgskOfzZo1i9NOOy1tr5esznLYYYelK8cMHz48Dj/88DjmmGPSieOCBQsq+tIAAADk0HwtWXm0T58+8cknn6QPFJOHji1atNio90geRp544onx0ksvrXHs3XffTUOfHTt2rMCqAQAAclvSZaFGjRrpqp4HH3xwOpbME5MA6K9//es44ogj4pZbbolNNtkknnnmmUyXCwAAQGWHPr9tl112iWuuuSZeeeWVtE1Ely5dYsKECXHZZZelq8n85je/iX//+9+VWQIAAABZOl+78MIL43//+1/svffecdttt0W9evU2+j0OOeSQdJ+0HkzaEa40e/bs+N3vfpf+nARLAQAA+D/JCp6dO3eO9u3bp7/PnTs3/dJcnTp10vFEcXFx7LDDDumcDQAAgOxSoyoukjy4S1aMSVZXSVaNefDBB9PWe3/961/TFhLJ+MUXXxw//vGPq6IcAAAAMjxfS8Kmr732Wvrz5ptvnoY+y5OsQJq0o08k9UybNi3222+/tBV84uc//3k899xzMXr06DjooINi//33T1cvffHFF2PWrFnRt2/f2HfffSu0dgAAgFy2ePHiaNCgwarfX3/99SgpKUnnfUVFRWXOXbFiRQYqBAAAIKOhz5kzZ8Zjjz2Wbv/9739XPVQ89NBDo1OnTvH3v/89xo4dG8cff3zcdNNN6cM7AAAAKl8m52vfbsd+3333rfW8pI6Voc+kBeH48eNjs802WxX6LCwsTFf5TFrDJ6HQJLiatClMjidtCVe2KgQAAOD/tGzZctUcMJF8aS5p7b7nnnuuGku+TPfee++l5wIAAJAHoc9kIvj888+nD+SSlVuSbweWlpbGjjvuGD169EgfuiUtIhI/+9nP4oknnoiLLroorr/+eqFPAACASpSJ+dqkSZPWGEsCmcm2MdYWDk1WojnhhBPSDQAAgHXbaaed4vHHH48bb7wx/ZJd8oW/xMo534wZM+Laa6+Nr776Kg488MAMVwsAAEClhz4HDRoUTz/9dMydOzd9cNioUaP0QWHy8HCbbbYp9zVJO75LL700pk6dWtHlAAAA8P+YrwEAAHDmmWemXwYcOnRo+nsyPzzyyCNXdVk47LDDYs6cOdGqVas4/fTTM1wtAAAAlR76HDFixKoWfMmDw+7du0etWrXW+ZolS5bEpptuGj/+8Y8ruhwAAAD+H/M1AAAA2rZtG4888kjceeedMXPmzNhtt93ixBNPXHW8Y8eOsckmm8T5558fTZs2zWitAAAAVEHos2/fvnH00UfHVltttcGvSR4yPvvss9/ruuPGjUsnpIcffnhcc801ZY7Nnj07brnllnjhhRdi1qxZ6TcTjzrqqLTWGjUqpcM9AABA1snUfA0AAIDs8sMf/jCuvPLKco/dfvvtVV4PAAAAG67CE48XX3xxuk/ClR9++GHsueeeq45NnDgxnnnmmbRFRPItwooyf/78+PWvf522n1hd0rbw+OOPj48//jgOOOCA9Lqvvvpq/OEPf4j33nsvbr755gqrA7JW/foRQ4asOQYAQF7JxHwNAIAc5H4i5K133303pk+fHj/60Y+idevWmS4HAACAclTKMpcPPvhgXHXVVbHNNtuUeYj4/vvvx2233RZ33XVXGtI89thjK+R6gwcPjmnTppV7LFnh86OPPoqBAwdGr1690rEBAwZE//7909VqnnvuuTQMCtVanToRZ52V6SoAAMgCVT1fAwAgB7mfCNXev/71r/jzn/8cffr0WTU3vOiii+LJJ59Mfy4sLIxf/vKXcfbZZ2e4UgAAAFZXGBXs9ddfj9/97nfpZHCXXXYpc2znnXeOE044IQoKCuKKK66I8ePHf+/rjRkzJkaNGhX77rvvGscWL14cDz/8cLRs2TJ69uy5aryoqCiduCZGjBjxvWsAAADIBVU9XwMAACD7JJ0ekrDnyy+/HJ9++mk6Nnbs2HjiiSfSZ2jJfLF27drpwirJOAAAANU89HnnnXemE8KVq8N825ZbbpmO3X333Wkr9uTc7+Prr7+OSy+9NDp37hzHHXdcuS0oFi5cmB5PHmp+W5s2bdK2FG+++WasWLHie9UBAACQC6pyvgYAAEB2SuZ9S5cujdNOOy2OPPLIdOzxxx9PvwSYLJpy3333pYumJPPHpFsEAAAA1Tz0+eGHH0anTp1i1113Xes5yTcEf/zjH8c777zzva41aNCgNNSZtCZMJqKr++yzz9J927Zty319EvxMJrVTp079XnUAAADkgqqcrwEAAJCdkgVRtt566xgwYEDUq1cvSkpK0lU/k2dtP/vZz9JzkuPJ/DFZYAUAAIBqHvqcP39+NG7ceL3nNW3aNG2//l0lLSaeffbZuOCCC9LwZnnmzJmT7tdWT4MGDdL93Llzv3MdAAAAuaKq5msAAABkry+//DK22mqrVb8nwc558+bFNttsEz/4wQ9WjSfzx2QcAACAah763GyzzdIVYZYvX77Wc5J26u+99160bNnyO11jxowZccUVV0SXLl2iV69eaz0vWcUzUVxcXO7xleNLliz5TnUAAADkkqqYrwEAAJDdkjDnN998s+r3l156Kd3vvvvuZc6bMmVKNGzYsMrrAwAAoIpDn/vtt1/MnDkzfve736UPC1dXWloa11xzTUyfPj1++tOffqdr/PrXv07fe/DgweW2dV+pdu3a6X7ZsmXrDIUmrSugWvvyy4hmzcpuyRgAAHmlKuZrAABUA+4nQrWWrPL51ltvxaeffpp2hEi66yXP2/bZZ59V5zz33HPxwQcfxA477JDRWgEAAFhTjahgJ554Yjz++OMxcuTIePXVV9MJYrJCTDJZTB4cvvzyyzF58uS0XeCpp5660e//l7/8JV555ZX0IWWySs26NGrUaJ3t21e2pKhfv/5G1wE5pbR0zZuyyRgAAHmlsudrAABUE+4nQrX2i1/8IsaNGxc///nPo1atWrFgwYI0CLpypc8zzjgjnR8mc8Xjjz8+0+UCAABQ2aHPpCXEXXfdFRdddFH85z//iQceeGDVapzJqjGJbbbZJm644YbYZJNNNvr9n3rqqXR/2WWXpdvqHn300XQ74ogj4phjjknHkoeW5UnG69atG61atdroOgAAAHJNZc/XAAAAyH4HHXRQ2rr9z3/+cxr43HrrrePGG29cdXzq1KlRXFycLsDyk5/8JKO1AgAAUAWhz8SWW24ZjzzySPz73/+ON954I20fmLRYb9asWXTq1Cm6dOnynd87CXN27tx5jfFkcpqsWNO+ffu0ZWGHDh1i++23T1u3jx8/PkpKSqKwsLDM+dOmTYs99tgjioqKvnM9AAAAuaQy52sAAADkhtNOOy3tBpG0d2/SpEmZY1dddVUaBK1Tp07G6gMAAKCKQ58r7bjjjulWkY488shyx1977bU09JmEPfv167dq/NBDD42HHnoohg8fnk5eEytWrIjrrrsu/bl3794VWh8AAEAuqIz5GgAAALkjWc1z9cBnomPHjhmpBwAAgCwIfWaD/v37xyuvvBJXX311jBs3Ltq1a5cGRN9///20fUW3bt0yXSIAAAAAAAAAAABAZkKfb731Vtx+++3x0UcfxcKFC6O0tLTc8woKCtJ2gpUp+YbiiBEj4qabbooXX3wxDXy2bt06LrzwwjjhhBPSGgAAAPJFNs3XAAAAqHzfZwGUZG74/PPPV2g9AAAAZFnoM3mAmLRRT1qor+3hYWXYY489YtKkSeUea968eQwePLjKagEAAMhGmZqvAQAAkDnTpk37zq+1eAoAAEAehD6HDh0ay5cvjwMOOCBdSTMJXBYVFVX0ZQAAANhI5msAAAD5Z/jw4ZkuAQAAgGwOfb7zzjvRtm3btJ26b/8BAABkD/M1AACA/NO5c+dMlwAAAEAFKowKlqwa0759ew8QAQAAsoz5GgAAAAAAAOS2Cg99brXVVjFlypSKflsAAAC+J/M1AAAAAAAAyG0VHvo89thjY8KECfHCCy9U9FsDAADwPZivAQAAAAAAQG6rUdFv+JOf/CQOPPDAOPfcc+Pwww+PnXbaKRo2bLjW9oHdunWr6BIAAAAoh/kaAAAAAAAA5LYKD3127do1fWBYWloaI0eOTLd1SVaZAQAAoPKZrwEAAAAAAEBuq/DQ56677lrRbwl8X3XrRgwcuOYYAAB5xXwNAIAN4n4iAAAAQP6EPu+7776Kfkvg+6pXL2LQoExXAQBAhpmvAQCwQdxPhGqlZ8+esdtuu8WAAQPS3z///POoW7duNG7cONOlAQAA8B0UfpcXAQAAAAAAANlv0qRJMWXKlFW/d+vWLa6++uqM1gQAAEAWrfS50tKlS+OJJ56IcePGxfTp09M2gv3794/7778/tt9++9hpp50q69IAAACsg/kaAABA/igoKIiPP/44SkpKorCwMEpLS9MNAACA3FQpoc/33nsvzjnnnPjiiy/SSWMymdxss83SY4888kgMHjw4LrzwwjjppJMq4/IAAACshfkaAABAfmnfvn3861//ir333juaNWuWjo0dOzaOOOKI9b42mTOOGjWqCqoEAAAgY6HPZJWYU045Jb755pt08rjPPvvE7373u1XHu3Tpkn6b8Pe//3107Ngxdtlll4ouAQAAgHKYrwEAAOSfCy64IE477bT48ssv0y2RzAuTbUNCnwAAAFTz0Odtt92WThJ/85vfxPHHH5+Offsh4sUXXxw777xzurLMPffc4yEiAABAFTFfAwAAyD8//vGP48UXX4xPPvkkFi9eHH369Ik999wzTj/99EyXBgAAQDaEPl9++eXYaqutVj1ALM8BBxwQHTp0iAkTJlT05YHyfP11xF57lR17+eWIJk0yVREAABlgvgYAwAZxPxGqnfr168eOO+646vdNNtkkOnfunNGaAAAAyJLQ56xZs2Lfffdd73lt2rRJv1EIVIEVKyI++GDNMQAA8or5GgAAG8T9RKjWJk6cmOkSAAAAyKbQZ8OGDePzzz9f73lTp06NBg0aVPTlAQAAWAvzNQAAAFaaPXt2PPTQQzFu3LiYOXNmFBcXpyuAdunSJQ477LBo1qxZpksEAACgHIVRwXbeeed4//3341//+tdazxk/fnx88MEHsdNOO1X05QEAAFgL8zUAAABWzv26d+8eN910Uxr6/PTTT9MVQF999dX44x//GD/72c/i9ddfz3SZAAAAVEXos2/fvlFaWhpnnHFGPPLIIzFt2rRVx5YuXRrPPfdcnHfeeVFQUBDHH398RV8eAACAtTBfAwAAIJkLnnnmmfHNN9/EPvvsE9dff308/PDDMWLEiLjuuutir732ijlz5kT//v1j+vTpmS4XAACAym7v3qlTp7j44ovj2muvjUsvvTQdSx4YPvXUU/H3v/89SkpK0oeMZ511Vuy+++4VfXkAAADWwnwNAACAO+64I+bPn59+6e+0004rcyzp+vDzn/88hg4dGjfccEPce++9cckll2SsVgAAAKpgpc/EiSeeGMOHD0+/CVi7du30oeHy5cujsLAwdt1113Si2K9fv8q4NAAAAOtgvgYAAJDfXn755dh8883XCHx+2+mnnx5t27aNF154oUprAwAAIAMrfa6UPCxMtmSlmKQFRLJv3Lhx1KhRaZcEAABgA5ivAQAA5K+ZM2dGt27d1nvedtttJ/QJAACQhSr9iV6yWkyTJk0q+zIAAABsJPM1AACA/FO3bt346quv1nteck7SIQIAAIBqHvp87LHHNur8ww8/vKJLAAAAoBzmawAAAGy//fbxxhtvxMSJE6N9+/blnpMce/vtt2P33Xev8voAAACo4tDnJZdcEgUFBes9r7S0ND3PQ0QAAICqYb4GAADAscceG6+++mqceuqpMXDgwNh3333TThCJkpKSGDNmTFx++eXpzz179sx0uQAAAFR26DOZGJb3EHHFihUxd+7cmDBhQixatCi6d+8e2223XUVfHgAAgLUwXwMAAGC//faLHj16xMMPPxz9+vVLW7i3atUqPfb555/H4sWL0y8DHn300bH//vtnulwAAAAqO/R56623rvN4MlG89NJL028JDhgwoKIvDwAAwFqYrwEAAJD43e9+l37Z76677oopU6bEJ598supYmzZt4qSTTkpXBAUAACAPQp/rk3xbcPDgwekKMzfddFNcf/31VV0CAAAA5TBfAwAAyB9J6/ZkmzFjRrolmjdvHptuummmSwMAACCbQp+J4uLi2HnnneP111/PxOUBAABYC/M1AACA/NKiRYt0AwAAIDdkJPSZ+Prrr2PhwoWZujzkl9q1I848c80xAAAoh/kaAECecz8RAAAAIGtlJPT52GOPxT//+c/o0KFDJi4P+adBg4hbbsl0FQAA5ADzNQAA3E8EAAAAyKPQ5xFHHLHWY8uXL4+vvvoqZs+eHQUFBdGjR4+KvjwAAABrYb4GAAAAAAAAua3CQ58TJkxY7znFxcVx/PHHx7HHHlvRlwcAAGAtzNcAAAAAAAAgt1V46HP48OFrPVZYWBh169aNLbbYIurUqVPRlwYAAGAdzNcAAAAAAAAgt1V46LNz584V/ZYAAABUAPM1AAAArrjiithqq62iV69emS4FAACA76Dwu7wIAAAAAAAAyD1PPPFEPPLII5kuAwAAgGxZ6fPqq6/+zq8tKCiISy65pELrASJizpyIww8vO/bYYxGNG2eqIgAAMsB8DQCADeJ+IlRry5cvj1atWmXs+v3794+33347XnrppQ1+TY8ePeLf//53ucf22WefGDp0aAVWCAAAkGehz3vvvTd9GLhSaWlpmePrO+YhIlSCZcsixo5dcwwAgLxivgYAwAZxPxGqtQMPPDCeffbZ+Pjjj6Ndu3ZVeu0hQ4bE008/HS1atNjg15SUlMSHH34YrVu3jsNXD6RHxA9/+MMKrhIAACDPQp+33XZbPProo+lkMZkoHnLIIelkq2bNmjFjxowYPXp0vPbaa7HZZpvFEUccUdGXBwAAYC3M1wAAAPjZz36WrpqZzPv22GOP6NChQzRu3DgKCwvLPf+EE0743tdcsmRJXHHFFTFy5MiNfu1///vfWLRoUey5557Rr1+/710LAABArqvw0OeKFSviueeei+OOOy5+/etfrzFB7N27d7q6zDXXXBNt2rSJww47rKJLAAAAoBzmawAAAJx88slpN4ekw8PYsWPX2mY9OZ6c931Dn2PGjIkrr7wypk2bFl27dk2vuTEmTZqU7rfddtvvVQcAAEB1UeGhz6FDh6btFcp7gLhSnz59YtSoUTFs2DAPEQEAAKqI+RoAAABJi/QkzFlVHnnkkViwYEEMHDgwjj322Gjfvv1GvX7ChAnpfmNfBwAAUF1VeOjzww8/jH322WetDxBX2mKLLeKFF16o6MsDAACwFuZrAAAAJN0dqlLy5cLrrrsu6tev/51evzL0+cEHH8S1114bH330URQXF6et6c8555x0DgsAAJBP1v2k7zto0KBBfPrpp+s8J2kHkUzQfvCDH1T05QEAAFgL8zUAAACq2m677fadA5+JiRMnpvsbbrghttxyy+jZs2dss8028dRTT8XRRx8d7777bgVWCwAAkIehz86dO6ffsLvnnnvWes71118fkydPjn333beiLw8AAMBamK8BAACw0qxZs+Kmm25KW64nXSEGDRq0KlyZBCqzwcKFC6N58+Zpa/e//e1v6SqlF198cdx3331x+eWXx/z58+PCCy+MFStWZLpUAACA3G3v/stf/jLGjBmTtmlI9smDwpYtW6arxUydOjWeffbZeP/996Np06Zx1llnVfTlAQAAWAvzNQAAABJjx46N888/PxYsWJDOCQsKCtKAZSKZL95+++3x9ttvx29/+9uM1lm3bt0YNWpUuceSFT8fe+yx+Ne//pWu9rnzzjtXeX0AAADVIvTZrl27uOWWW9Jv2b355pvx1ltvlTmeTBy32mqruPnmm2OTTTap6MsDAACwFuZrAAAAfPLJJ3HOOeekq2Mmwclklc/TTz991fGkZfqf/vSneOCBB2KPPfbI6k4QHTt2TEOfSccKoU8AACBfVHjoM5FMAJ955pl4/vnnY/z48Wl7iESrVq3SY926dYuioqLKuDQAAADrYL4GAACQ3/785z/H0qVL09buBxxwwBrH+/TpE9tvv30cd9xxafAzk6HP2bNnx6effhpNmjSJLbbYYo3jixYtSve1a9fOQHUAAADVKPSZqFevXhx22GHpBgAAQPYwXwMAAMhf48aNiw4dOpQb+FypU6dOseOOO8bHH38cmfT666/HgAED0tVIhw4dWuZYSUlJ2oI+aU2/ww47ZKxGAACAqlZYmW+etFIYOXJk+k3BJ598Mh1L2gcuXry4Mi8LAADAepivAQAA5KdvvvkmWrduvd7zmjVrFl9//XVk0t577x0NGjSIl156KV599dUyx2655ZY0lLr//vun3SsAAADyRY3KmixeeumlabvA0tLSdOxnP/tZuv3+979PHy7+6U9/il122aUyLg8AAMBamK8BAADktx/84Afx2Wefrfe8lW3Vq8qECRPSuepmm20WRx55ZDpWv379+N3vfhcXXHBBnHrqqWnAs2XLlvGvf/0r3nnnndhyyy1j0KBBVVYjAABAtVzpc9GiRdGnT5947rnnonHjxnHggQeuepCYKC4ujtmzZ6cTs+RhIgAAAFXDfA0AAIDddtstPvrooxg9evRaz3n22Wfjk08+iV133bVKQ59DhgyJRx99tMz4wQcfHA8++GC66mfS7v3+++9P566nnXZa2sFik002qbIaAQAAquVKn/fcc09MnDgxDjnkkLjyyiujTp060b59+1XH77vvvrjuuuvi7rvvjrvuuisuv/zyii4BWF1xccTRR685BgBAXjFfAwBgg7ifCNVaEpZ85plnYsCAAXHyySdHly5d0vFly5alXwBMwqA333xz1KhRI/r27Vvh1580aVK548nqnitX+FzdTjvtFLfddluF1wIAAJCLKjz0+fTTT0fTpk3j6quvTleJKU/SgiGZTI4fP76iLw+Up1GjiJEjM10FAAAZZr4GAMAGcT8RqrWtt946/cLfJZdckgYpk62goCCdCyZboqioKAYOHBg/+tGPMl0uAAAAld3ePfkG4I9//OO1PkBML1pYmE4Sp0+fXtGXBwAAIMvma/3790/b8JVn4cKF6QoySav5jh07xr777ht//OMf01b0G+Ptt9+Ok046KW1TmHzGpI294CoAAED5DjrooHjiiSeiZ8+e8cMf/jBq1aoVNWvWjFatWsXhhx8ejzzySBxzzDGZLhMAAICqWOkzmRDOmTNnved9/fXX6bkAAABUjUzM14YMGZKuMNqiRYs1ji1dujTOOOOMeOONN+InP/lJHHDAAfHOO+/E7bffHm+++WYMHz58nQHVlcaOHRtnnnlmNGzYMH72s5/FihUr4m9/+1sa/PzTn/4U++23X4V8FgAAgOpk8803T1fzBAAAIM9Dn+3bt4/33nsvZsyYUe5DvcTUqVPjP//5T+ywww4VfXkAAACyYL62ZMmSuOKKK2LkOtqCjhgxIg18nnLKKXHhhReuGh88eHAa+HzggQeib9++67xOEhz9zW9+E/Xr149Ro0ZFy5Yt0/HkdcmqNIMGDYo999wz6tSp870+DwAAQHU1f/78mDlzZvrlv+bNm6erfgIAAJBH7d2PPvrotA3f2WefnbYOXN2sWbPi/PPPTx/MHXbYYRV9eQAAADI8XxszZkzaKjAJfHbt2nWt561cyfOXv/zlGu3gk5BmEgpdn6eeeiqtO2lJuDLwmWjbtm307t07Pfb8889/588CAABQXSVfnDvyyCOjc+fOccghh6TdFzp16hTHHXdcvPDCC5kuDwAAgKoKfR5++OHppDBZPebAAw+MfffdNwoKCmL8+PHRq1ev6NatW/z73/+OPfbYI33gCAAAQNWoqvnaI488EgsWLEjbBA4dOrTcc6ZNmxZTpkyJjh07pqt0flu9evXS8c8++yy++OKLdV4rWSk0sfvuu69xrEuXLul+3Lhx3/mzAAAAVDclJSXpl+2SrgkffPBBOi/cZJNN0i059tZbb8WZZ54Z119/faZLBQAAoCrauyduvPHGuO222+Lee++Nzz//PB1LHtQlW7Jay0knnZROJpNJJFAFvvkm4pRTyo7deWdEo0aZqggAgAypivlanz594rrrrlsjzPltSaBz5Yqc5WnTpk0a6Pz0009j0003Xev7/Pe//033m2++ebnvkUjeAwCAjeB+IlRryRf1nnnmmWjRokX86le/ip/+9KerWron3SGSY8mc7o477ki/kLfffvtlumQAAAAqO/RZWFiYfgPw1FNPTb8hmDxILC0tjWbNmsUOO+wQtWvXrozLAmuzdGlyF6fs2K23ZqoaAAAyqCrma7vtttt6z5kzZ066b9y4cbnHGzRokO7nzp27Qe/TqJwAwsrQ6bx58zagagAAVnE/Eaq1hx9+OJ37DR8+fI0v0CVfBjziiCOiQ4cOaQeIe+65R+gTAACguoc+zzrrrNhiiy3iggsuiJo1a8aOO+6YbgAAAGRWNs3Xli1blu6Li4vLPb5yfMmSJd/5fTb0PQAAAPLJxx9/nH5Zr7yOCSu1b98+Peftt9+u0toAAADIQOjz9ddfj9mzZ1f02wIAAFCN5msrWwcuTVaRKsfK8Xr16q3zfVauTJqEP5Mga3nvUbdu3QqpGQAAoDpI5kgFBQUbNG9bfZ4FAABA5hVW9BsWFRVFw4YNK/ptAQAAqEbztZVt3dfWen3l+MoW7Wuzsq17ee8zf/78Mq3iAQAAiOjatWuMGzcupk6dutZzvv766xg/fnzsueeeVVobAAAAGQh9Hn300fHqq6/Ga6+9VtFvDQAAQDWZr2255ZbpfvLkyeUeXznerl277/w+K8e22mqr710vAABAdXHBBRdE06ZN48QTT4zRo0evcfyjjz6KU045Je28cNFFF2WkRgAAAKqwvfu2224brVu3jpNPPjl9sNahQ4d0BZfCwjXzpUnriEsuuaSiSwAAACDL52stWrSIzTffPN59991YuHBhmRbsCxYsiPfeey89njyIXJfOnTvHyJEj01Vqdt111zXa2Sc6depUSZ8CAAAg+yXzptUtXbo0lixZEmeffXYa7kzmikk79xkzZqRbolWrVnHOOeekcy4AAACqcegzeSiYPBwsLS2Njz/+ON3WRugTAACg6mTbfC1ZefSPf/xj3HjjjfHrX/961Xjy+6JFi6JXr17rfY9u3bqlwdX7778/Dj/88GjTps2qVT4ffPDBaNasWRx44IGV+jkAAACy2dy5c9d5fP78+TFx4sQ1xqdNmxaff/55JVYGAABAVoQ+zzrrrPThIAAAANkl2+ZrSSvBZ555Ju69996YMGFC7LTTTvHOO+/E+PHjY5dddlkj9Dlq1Kj0oeN+++2XrlKaSFakGThwYJx//vlx1FFHxSGHHJKO//3vf08fXP7pT39KV6sBAADIV+W1cAcAACB3VXjos1+/fhX9lgAAAFTD+VpxcXEMHz48hgwZkoY/k8Bny5Yt44wzzohTTz01Pf5tjz76aBoI3WyzzVaFPhMHH3xwNGrUKP785z/HY489FjVr1kyPJyHX8toYAgAA5JNkDgUAAED18b1Dn8kDtOQB26BBgyqmIgAAACpEtszXJk2atNZj9evXT9vIb0gr+fvuu2+tx/bcc890AwAAAAAAgOrse4c+586dGwsXLiz32AknnJA+dDv99NO/72UAAADYSOZrAAAAlOfll1+Ov/zlL/HZZ5/FkiVL1npeQUFBPP/881VaGwAAAFXc3v3bkrZ7m266aWVeAgAAgO/AfA0AACA/jR07Ns4444woLS1d77lJ6BMAAIA8Cn0CAAAAAAAA2ePWW29NA5/HHHNMHHLIIdGoUSPhTgAAgBwi9AkAAAAAAAB54uOPP47tttsurrjiikyXAgAAwHcg9An5oGbNiK5d1xzLciUlJemWLQoLC9MNAAAAAKq1HL2fCGyY4uLiaNmyZabLAAAA4DsS+oR80LhxxIsvRi5Jwp69+/SN6bO+jGzRslnTeODeewQ/AQAAAKjecvB+IrDh9thjj3jzzTdjyZIlUatWrUyXAwAAwEYS+gSyNvSZBD5Pu/6eKCwqynQ5UbJiRdx+Xt+0LqFPAAAAAABy1XnnnRdHHXVUXHjhhTFw4MDYZJNNMl0SAAAAG0HoE8hqSeCzqIb/VAEAAAAAQEXYbLPN4vzzz49LL700nn/++WjevHn84Ac/KPfcgoKCGDVqVJXXCAAAwNpVSJLqySefTLfyJoJrO7by+AcffFARJQAAAFAO8zUAAAC+bezYsTFo0KD056S71RdffJFua5sbAgAAUA1Dn6WlpVX6OgAAADaM+RoAAADfdsstt8SKFSuiW7duceihh0aTJk2EOwEAAPIp9Dl69OiKqQQAAIAKZb4GAADA6j766KPYdttt0/AnAAAAeRj63GyzzSqmEqDyzJsXccklZceuuSaiQYNMVQQAQBUwXwMA4DtxPxGqtdq1a0fbtm0zXQYAAACZbO8OZLnFiyNuvbXs2KBBbtICAAAAAGtyPxGqtT322CPeeOONWLp0aRQXF2e6HAAAADZS4ca+AAAAAAAAAMhN/fv3TwOf5557bkyfPj3T5QAAALCRrPQJAAAAAAAAeeKuu+6KbbfdNl588cV0a9q0aTRu3Dhq1FjzsWFBQUGMGjUqI3UCAABQPqFPAAAAAAAAyBMjRowo8/usWbPSrTxJ6BMAAIDsIvQJAAAAAAAAeWL48OGZLgEAAIDvQegTAAAAAAAA8kTnzp0zXQIAAAD5GPqcM2dODB06NMaMGRPTp0+PTTbZJLp16xZnnnlmNGnSpMy5s2fPjltuuSVeeOGFtD1Fq1at4qijjoq+fftGjRo5+ycAAAAAAAAAAAAA8khOJh7nzZsXvXr1ik8++SS6dOmShj0//fTTuO++++LZZ5+Nhx9+OFq2bJmeO3fu3Dj++OPj448/jgMOOCDatm0br776avzhD3+I9957L26++eZMfxwAAAAAAACoEr/61a82+NyCgoK46qqrKrUeAAAA8iD0OWTIkDTw2a9fvzj77LNXjd9///1xxRVXpEHOq6++Oh1LVvj86KOPYuDAgWlQNDFgwIDo379/GhB97rnn0jAoAAAAAAAAVHePPvroeoOeidLSUqFPAACALJSToc+pU6dG06ZN4+STTy4zfthhh6Whz3/961/p74sXL1616mfPnj1XnVdUVBQXXXRRGvgcMWKE0CcAAAAAAAB5vdJnSUlJfPPNN/HPf/4z3nzzzTjyyCPjF7/4RZXXBwAAQDUMfSard5YnWf0z0axZs3T/7rvvxsKFC2P//fePwsLCMue2adMmWrdunU5aV6xYkQZBAQAAAAAAoDrr06fPes954IEH4sorr4xDDjmkSmoCAABgw5VNQuao5FuHSav2pG17jRo14swzz0zHP/vss3Tftm3bcl+XBD+XLl2arhwKAAAAAAAARPTu3Tu22GKLGDp0aKZLAQAAoDqs9Pltf/nLX2LQoEHpz8lqnb///e+jS5cu6e9z5sxJ940bNy73tQ0aNEj3c+fOrbJ6AQAAAAAAINu1a9cuXn311UyXAQAAQHVb6bNJkyZx6qmnxuGHHx61atWKCy64IO688870WLKKZ6K4uLjc164cX7JkSRVWDAAAAAAAANntk08+yXQJAAAAVMeVPg888MB0S/Tr1y9+8YtfpKt97rbbblG7du10fNmyZeW+dmUotF69elVYMWRAUVHEdtutOQYAAAAAsDr3E6Famz9//lqPLV++PGbNmhXDhg2LTz/9NHbfffcqrQ0AAIA8CH1+W+vWreOUU06Ja665JkaPHh2bbbbZOtu3z5s3L93Xr1+/SuuEKtekScT772e6CgAAAAAgF7ifCNXarrvuut5zSktLo6ioKE477bQqqQkAAIBq3N49WZ3z1VdfjZdeeqnc423atEn3X3/9dWy55Zbpz5MnTy733GS8bt260apVq0qsGAAAAAAAALJDEuhc25ZInp116tQpbrnllujSpUumywUAACDXV/pMQp+nnnpqOuF87bXXori4uMzx9//ft4+32GKL2H777dPW7ePHj4+SkpIoLPz/M65TpkyJadOmxR577JF+UxEAAAAAAACqu4kTJ2a6BAAAAPJppc+kFXu3bt3S1uxDhgwpc+w///lPDBs2LA2EHnrooVGrVq10P3Xq1Bg+fPiq81asWBHXXXdd+nPv3r2r/DMAAAAAAAAAAAAAVPuVPhO/+c1v0oDn0KFD46233oodd9wxPv/88xg9enQUFBTEDTfcEM2aNUvP7d+/f7zyyitx9dVXx7hx46Jdu3bpCqHJiqAHHXRQGiAFAAAAAAAAAAAAyHY5GfrcdNNN469//WvceuutadDz3//+dzRs2DD222+/OOOMM6J9+/arzm3SpEmMGDEibrrppnjxxRfTwGfr1q3jwgsvjBNOOCENiQIAAAAAAEB19Ktf/eo7vzZ5jnbVVVdVaD0AAADkYehzZZjzt7/9bbqtT/PmzWPw4MFVUhdkpQULIn7/+7JjF14YUa9epioCAAAAALKV+4lQrTz66KMbdf7qC6YIfQIAAGSXnA19Ahth4cKIyy8vO3bWWW7SAgAAAABrcj8R8nalz+XLl8fw4cNj5syZUVpaGm3atKnU2gAAANh4Qp8AAAAAAABQTfXp02eDzvvwww/jkksuWRX4POaYY9LfAQAAyC5CnwAAAAAAAJDH7rzzzrj55ptj6dKl0axZs7jyyiuja9eumS4LAACAcgh9AgAAAAAAQB6aMmVKuprn22+/na7uedBBB8WgQYOiUaNGmS4NAACAtRD6BAAAAAAAgDwzYsSIuO6662LhwoVpyHPgwIFx8MEHZ7osAAAA1kPoEwAAAAAAAPLEzJkz49e//nW8+uqr6eqee++9dwwePDht6w4AAED2E/oEAAAAAACAPPDkk0/GlVdeGd98803UrVs3be3eo0ePTJcFAADARhD6BAAAAAAAgGpszpw5cdlll8U//vGPdHXPXXbZJa6++upo06ZNpksDAABgIwl9AgAAAAAAQDU1ZsyYNPD51VdfRXFxcQwYMCBOPPHETJcFAADAdyT0CQAAAAAAANXUmWeeGQUFBenP9evXj8cffzzdNkTyulGjRlVyhQAAAGwMoU8AAAAAAACoxpKW7olktc9k21Arw6IAAABkD6FPAAAAAAAAqKaGDx+e6RIAAACoQEKfAAAAAAAAUE117tw50yUAAABQgQor8s0AAAAAAAAAAAAAqBxW+oR8UFAQ0bTpmmMAAAAAAKtzPxEAAAAgawl9Qj5IbtDOmpXpKgAAAACAXOB+IgAAAEDW0t4dAAAAAAAAAAAAIAcIfQIAAAAAAAAAAADkAKFPAAAAAAAAAAAAgBwg9AkAAAAAAAAAAACQA4Q+AQAAAAAAAAAAAHJAjUwXAFSBRYsi7r677NhJJ0XUqZOpigAAAACAbOV+IgAAAEDWEvqEfDB/fsTZZ5cd69HDTVoAAAAAYE3uJwIAAABkLe3dAQAAAAAAAAAAAHKA0CcAAAAAAAAAAABADhD6BAAAAAAAAAAAAMgBQp8AAAAAAAAAAAAAOUDoEwAAAAAAAAAAACAHCH0CAAAAAAAAAAAA5AChTwAAAAAAAAAAAIAcIPQJAAAAAAAAAAAAkAOEPgEAAAAAAAAAAAByQI1MFwBVraSkJN2yQWFhYboBAAAAAAAAAADA+gh9kleSsGfvPn1j+qwvIxu0bNY0Hrj3HsFPAAAAAAAAAAAA1kvok7wLfSaBz9OuvycKi4oyW8uKFXH7eX3TmoQ+AQAAAAAAAAAAWB+hT/JSEvgsquGfPwAAAAAAAAAAALlD6g0AAICM2Hbbbdd7zhFHHBHXXHPNes/bc88948svvyz3WO/eveOyyy77TjUCAAAAAABANhH6hHzQrFlEaWmmqwAAgDLOPvvscsdLS0tj2LBhsWDBgth9993X+z6zZs1KA5/bbbdd7Lvvvmsc79ixY4XUCwCQN9xPBAAAAMhaQp8AAABkRL9+/codv/vuu9PA5y9+8Ys4/PDD1/s+EyZMSPfdu3eP008/vcLrBAAAAAAAgGxRmOkCAAAAYKWPPvoorr/++mjTpk386le/2qDXTJw4Md23b9++kqsDAAAAAACAzBL6BAAAIGtcffXVsWzZsrj00kujTp06G/QaoU8AAAAAAADyhfbuAAAAZIWxY8fGq6++GnvuuWd07dp1g1+XtHevW7duPPvss/HXv/41/ve//0X9+vVjn332iXPOOSeaN29eqXUDAAAAAABAVbHSJwAAAFnhzjvvTPdnnnnmBr9m8eLFachz4cKFceutt8aOO+4YPXr0iBYtWsTIkSPjqKOOiqlTp1Zi1QAAAAAAAFB1rPQJ+WDJkognnig79vOfR9SqlamKAACgjA8++CDGjx8fu+yyS7ptqFmzZkW7du2iYcOGMWTIkGjcuHE6XlpaGjfccEMMHTo0fvvb38awYcMqsXoAgGrG/UQAAACArCX0Cflg7tyIHj3Kjs2cGdGsWaYqAgCAMkaNGpXue/fuvVGva9OmTTyxeiAhIgoKCtLW7k8++WS8/vrrMXPmTG3eAQA2lPuJAAAAAFlLe3cAAAAybvTo0VG3bt346U9/WmHvWaNGjdhuu+3SnydPnlxh7wsAAAAAAACZIvQJAABARk2cODE+//zzNPBZp06djXrtjBkz4s0334zp06eXe3zRokXpvnbt2hVSKwAAAAAAAGSS0CcAAAAZ9fbbb6f7XXbZZaNfm7R2P+644+KOO+5Y49iCBQvi/fffT4OkW2+9dYXUCgAAAAAAAJkk9AkAAEBG/ec//0n322+//Ua/9sADD0zbuI8aNSomTZq0anz58uVx1VVXxZw5c6Jnz55Rq1atCq0ZAAAAAAAAMqFGRq4KAAAA/8/kyZPTfYsWLdZ53htvvBHjx4+PDh06xH777ZeOtW3bNs4///y49tpro0ePHtG9e/do2LBhjBs3Lj788MPo1KlTnHvuuVXyOQAAAAAAAKCyWekTAACAjPr666/TfYMGDdZ5XhL4HDJkSDz//PNlxk866aS4/fbbY6eddop//OMfMWLEiCgtLU3DoMOGDUvbuwMAAAAAAEB1YKVPAAAAMuqpp57aoPP69euXbuXp2rVrugEAAAAAAEB1ZqVPAAAAAAAAAAAAgBwg9AkAAAAAAABUif79+8fee++9Ua+ZPXt2XHnlldGtW7fo2LFjdO/ePe64445Yvnx5pdUJAACQrYQ+AQAAAAAAgEo3ZMiQePrppzfqNXPnzo3jjz8+7r///vjRj34UJ5xwQtSpUyf+8Ic/xHnnnVdptQIAAGSrGpkuAAAAAAAAAKi+lixZEldccUWMHDlyo197yy23xEcffRQDBw6MXr16pWMDBgxIVwx99tln47nnnosDDjigEqoGAADITlb6BAAAAAAAACrFmDFj4qCDDkoDn127dt2o1y5evDgefvjhaNmyZfTs2XPVeFFRUVx00UXpzyNGjKjwmgEAALKZ0CcAAAAAAABQKR555JFYsGBBulLn0KFDN+q17777bixcuDA6d+4chYVlH2u2adMmWrduHW+++WasWLGigqsGAADIXkKfAAAAAAAAQKXo06dPjB49Om3NXlBQsFGv/eyzz9J927Ztyz2eBD+XLl0aU6dOrZBaAQAAckGNTBcAVIFNNomYOXPNMQAAAACA1bmfCFSg3Xbb7Tu/ds6cOem+cePG5R5v0KBBup87d+53vgYAAECuEfqEfJC0PGnWLNNVAAAAAAC5wP1EIEskq3gmiouLyz2+cnzJkiVVWhcAAEAmae8OAAAAAAAAZJ3atWun+2XLlq0zFFqvXr0qrQsAACCThD4BAAAAAACArNOoUaN1tm+fN29euq9fv36V1gUAAJBJQp8AAAAAAABA1tlyyy3T/eTJk8s9nozXrVs3WrVqVcWVAQAAZI7QJwAAAAAAAJB1tt9++7R1+/jx46OkpKTMsSlTpsS0adNip512iqKioozVCAAAUNVqVPkVgaq3dGnEa6+VHdtjj4ji4kxVBAAAAABkK/cTgSxRq1atOPTQQ+Ohhx6K4cOHx4knnpiOr1ixIq677rr05969e2e4SgAAgKol9An54JtvIn7607JjM2dGNGuWqYoAAAAAgGzlfiKQARMmTIjnn38+NttsszjyyCNXjffv3z9eeeWVuPrqq2PcuHHRrl27eO211+L999+Pgw46KLp165bRugEAAKqa9u4AAAAAAABAxkOfQ4YMiUcffbTMeJMmTWLEiBFx9NFHx3vvvZeu+Ll48eK48MIL09U+CwoKMlYzAABAJljpEwAAAAAAAKgSkyZNKnc8Wd3z2yt8flvz5s1j8ODBlVwZAABAbrDSJwAAAAAAAAAAAEAOEPoEAAAAAAAAAAAAyAFCnwAAAAAAAAAAAAA5QOgTAAAAAAAAAAAAIAcIfQIAAAAAAAAAAADkAKFPAAAAAAAAAAAAgBwg9AkAAAAAAAAAAACQA4Q+AQAAAAAAAAAAAHKA0CcAAAAAAAAAAABADhD6BAAAAAAAAAAAAMgBQp8AAAAAAAAAAAAAOUDoEwAAAAAAAAAAACAH1Mh0AUAV+MEPIv7znzXHAAAAAABW534iAAAAQNYS+oR8UKNGxI9+lOkqAAAAAIBc4H4iAAAAQNbS3h0AAAAAAAAAAAAgBwh9AgAAAAAAAAAAAOQAoU8AAAAAAAAAAACAHCD0CQAAAAAAAAAAAJADamS6AKAKLF8eMWlS2bFtt42o4T8BAAAAAMBq3E8EAAAAyFo5e4dmwYIFMXTo0Hjuuedi2rRpUbNmzdhuu+2iT58+sf/++5c5d/bs2XHLLbfECy+8ELNmzYpWrVrFUUcdFX379o0ablKRD2bPjth++7JjM2dGNGuWqYoAAAAAgGzlfiIAAABA1srJ9u7z58+PY489Ng191q1bN3r16hXdu3ePiRMnxtlnn52OrzR37tw4/vjj4/77748f/ehHccIJJ0SdOnXiD3/4Q5x33nkZ/RwAAAAAAAAAAAAAGyonl7m84447YtKkSdGzZ88YNGhQFBQUpOPnnntuuoLnTTfdlIZAN99883SFz48++igGDhyYhkMTAwYMiP79+8ezzz6brhR6wAEHZPgTAQAAAAAAAAAAAFTDlT6ffvrpNOh5/vnnrwp8Jlq0aJGuALpixYoYO3ZsLF68OB5++OFo2bJlGhBdqaioKC666KL05xEjRmTkMwAAAAAAAAAAAABU+5U++/TpE/PmzYuGDRuucay4uDjdL1iwIN59991YuHBh7L///lFYWDbf2qZNm2jdunW8+eabaUg0CYICAAAAAAAAAAAAZKucDH327t273PHS0tK0XXti2223jc8++yz9uW3btuWenwQ/p06dmm5JK3gAAAAAAAAAAACAbJWT7d3X5sEHH0xX90zCnHvttVfMmTMnHW/cuHG55zdo0CDdz507t0rrBAAAAAAAAAAAAMjb0OdTTz0VgwcPjho1asQ111wTNWvWjKVLl5Zp+b66leNLliyp0loBAAAAAAAAAAAA8jL0mazwef7556c/X3vttbHLLrukP9euXTvdL1u2rNzXrQyF1qtXr8pqBQAAAAAAAAAAAPguakQOKykpieuuuy7uueeedNXOP/7xj3HAAQesOt6oUaN1tm+fN29euq9fv34VVQwAAAAAAAAAAACQZ6HPZJXOZHXP5557Lho3bhy33HLLqhU+V9pyyy3T/eTJk8t9j2S8bt260apVqyqpGQAAAAAAAAAAACCv2ruvWLEizj333DTw2bp16/jLX/6yRuAzsf3226et28ePH5+uCvptU6ZMiWnTpsVOO+0URUVFVVg9AAAAAAAAAAAAQJ6EPm+//fYYM2ZMukLngw8+uGpFz9XVqlUrDj300Jg6dWoMHz68TGg0aQuf6N27d5XVDQAAAAAAAAAAAJA37d3nzJmThj4THTp0iIcffrjc85KVP7t06RL9+/ePV155Ja6++uoYN25ctGvXLl577bV4//3346CDDopu3bpV8ScAAAAAAAAAAAAAyIPQ51tvvRULFy5Mfx49enS6leeMM85IQ59NmjSJESNGxE033RQvvvhiGvhMWsJfeOGFccIJJ0RBQUEVfwIAAAAAAAAAAACAPAh97rfffjFp0qSNek3z5s1j8ODBlVYTZL1GjSJeeGHNMQAAAACA1bmfCAAAAJC1ci70CXwHxcUR++yT6SqoxkpKStItWxQWFqYbAAAAAN+B+4kAAAAAWUvoE4DvJQl79u7TN6bP+jKyRctmTeOBe+8R/AQAAAAAAAAAoFoR+gTge4c+k8DnadffE4VFRZkuJ0pWrIjbz+ub1iX0CQAAAAAAAABAdSL0CUCFSAKfRTX8zwoAAAAAAAAAAFQWS6ABAAAAAAAAAAAA5ABLskE+KCmJ+OqrsmObbBKh9TUAAAAAsDr3EwEAAACyltAn5IPkBm3z5mXHZs6MaNYsUxUBAAAAANnK/UQAAACArOVruQAAAAAAAAAAAAA5QOgTAAAAAAAAAAAAIAcIfQIAAAAAAAAAAADkAKFPAAAAAAAAAAAAgBwg9AkAAAAAAAAAAACQA4Q+AQAAAAAAAAAAAHKA0CcAAAAAAAAAAABADhD6BAAAAAAAAAAAAMgBQp8AAAAAAAAAAAAAOUDoEwAAAAAAAAAAACAHCH0CAAAAAAAAAAAA5IAamS4AAACA/PaXv/wlBg0atNbjr7/+ejRp0mSd7/H555/HzTffnJ47Z86c+OEPfxi9e/eOHj16VELFAAAAAAAAkBlCnwAAAGTUhAkT0v2JJ54Y9evXX+N4nTp11vn6adOmRc+ePWP27Nlx8MEHR9OmTeP555+PSy+9ND799NO45JJLKq12AAAAAAAAqEpCnwAAAGTUxIkTo3bt2nHxxRdHYWHhRr/+6quvjpkzZ8btt98eXbt2TcfOOeec6NOnTwwbNiwOPfTQ2H777SuhcgAAAAAAAKhaQp+QDxo2jHj44TXHAAAgw0pKSuLDDz+Mrbfe+jsFPpNVPpNVPXfeeedVgc9EEiIdMGBAGvx86KGHhD4BADaG+4kAAAAAWUvoE/JBrVoRxxyT6SoAAGANn332WSxatCjat2//nV4/fvz4KC0tjS5duqxxrFOnTlGzZs0YN25cBVQKAJBH3E8EAAAAyFobv4wKAAAAVGBr90RBQUG6Mudee+0VHTt2jKOPPjr+9re/bVBoNLH55puvcSwJfLZs2TKmTp0aS5curYTqAQAAAAAAoGoJfQIAAJDx0OfDDz8cX331Vfz85z+P/fffPz755JM4//zz4/rrr1/n62fPnp3uGzVqVO7xBg0apC3k58+fXwnVAwAAAAAAQNXS3h0AAICMSVqzb7bZZtGvX7844ogjVo1PmTIljj322Bg6dGjsvffescsuu5T7+mXLlqX74uLico+vHLfSJwAAAAAAANWBlT4BAADImGQ1zzFjxpQJfCbatGkT55xzTvrzE088sdbX165du0z4c3Urw55169atwKoBAAAAAAAgM4Q+AQAAyEodO3ZM95MnT17rOSvbus+dO7fc4/PmzYuCgoKoX79+JVUJAAAAAAAAVUfoE/LBrFkRBQVlt2QMAAAyqKSkJP7zn//E+PHjyz2+cOHCMqt5lmfLLbdcazA0Wf1z+vTpscUWW0RhoekvAMAGcz8RAAAAIGt56gUAAEDGHH/88XHCCSfEV199tcaxt956K93vsMMOa319586d05U833jjjXJfnwQ/O3XqVMFVAwAAAAAAQGYIfQIAAJARyeqb3bt3j9LS0vj973+frvy50sSJE2Po0KFRt27dOProo9f6Hptuumnsueee6Wqhzz///KrxxYsXx4033pj+3Lt370r+JAAAAAAAAFA1alTRdQAAAGANF1xwQfzzn/+MRx99NCZNmhS77bZbzJgxIw1wJiHQG264IVq0aJGem6zmmYQ7O3ToEPvtt9+q9/jtb38bPXv2jHPOOScOOuig9PzRo0fHZ599FieffHJ6PgAAAAAAAFQHVvoEAAAgYzbZZJMYOXJk9O3bN+bOnRv3339/vPbaa9G1a9d46KGH4oADDlh1bhL4HDJkSJkVPRNbbLHFqnNfeeWVePDBB6NOnTpx5ZVXxoUXXpiBTwUAAAAAAACVw0qfAAAAZFSjRo3ikksuSbd16devX7qV54c//OGqdu4AAAAAAABQXVnpEwAAAAAAAAAAACAHCH0CAAAAAAAAAAAA5AChTwAAAAAAAAAAAIAcIPQJAAAAAAAAAAAAkAOEPgEAAAAAAAAAAABygNAnAAAAAAAAAAAAQA4Q+gQAAAAAAAAAAADIAUKfAAAAAAAAAAAAADlA6BMAAAAAAAAAAAAgB9TIdAFAFahfP2LIkDXHAAAAAABW534iAAAAQNYS+oR8UKdOxFlnZboKAAAAACAXuJ8IAAAAkLW0dwcAAAAAAAAAAADIAUKfAAAAAAAAAAAAADlA6BMAAAAAAAAAAAAgBwh9AgAAAAAAAAAAAOQAoU8AAAAAAAAAAACAHFAj0wUAVeDLLyM6dCg7NmFCRNOmmaoIAAAAAMhW7icCAAAAZC2hT8gHpaX/d6N29TEAAAAAgNW5nwgAAACQtbR3BwAAAAAAAAAAAMgBQp8AAAAAAAAAAAAAOUDoEwAAAAAAAAAAACAHCH0CAAAAAAAAAAAA5AChTwAAAAAAAAAAAIAcIPQJAAAAAAAAAAAAkAOEPgEAAAAAAAAAAABygNAnAAAAAAAAAAAAQA4Q+gQAAAAAAAAAAADIAUKfAAAAAAAAAAAAADlA6BMAAAAAAAAAAAAgBwh9AgAAAAAAAAAAAOQAoU8AAAAAAAAAAACAHFAj0wUAVaBu3YiBA9ccAwAAAABYnfuJAAAAAFlL6BPyQb16EYMGZboKAAAAACAXuJ8IAAAAkLW0dwcAAAAAAAAAAADIAUKfAAAAAAAAAAAAADlA6BMAAAAAAAAAAAAgB9TIdAEAAAAAAABA9fXYY4/F8OHD47///W/Url079txzzxgwYEBsttlmG/T65Pwvv/yy3GO9e/eOyy67rIIrBgAAyF5CnwAAAAAAAECluOGGG+K2226Ldu3aRa9evWL69Onx1FNPxSuvvBIjR46MNm3arPP1s2bNSgOf2223Xey7775rHO/YsWMlVg8AAJB9hD4hH3z9dcRee5Ude/nliCZNMlURAAAAAJCt3E8EKsjEiRPTwGenTp1i2LBhUVxcnI4fdNBBcfbZZ8fgwYPT4+syYcKEdN+9e/c4/fTTq6RuAACAbCb0CflgxYqIDz5YcwwAAAAAYHXuJwIVJGnpnjjrrLNWBT4T+++/f+y6667x4osvxowZM6JFixbrDI4m2rdvXwUVAwAAZL/CTBcAAAAAAAAAVD/jxo2LGjVqpAHP1e2+++5RWlqanrMuQp8AAABlWekTAAAAAAAAqFBLly6Nzz//PDbbbLMyq3yu1KZNm3T/6aefrre9e926dePZZ5+Nv/71r/G///0v6tevH/vss0+cc8450bx580r7DAAAANnISp8AAAAAAABAhfrmm2/SlTwbNWpU7vEGDRqk+3nz5q31PRYvXpyGPBcuXBi33npr7LjjjtGjR4+0HfzIkSPjqKOOiqlTp1baZwAAAMhGVvoEAAAAAAAAKtSyZcvSfXmrfH57fMmSJWt9j1mzZkW7du2iYcOGMWTIkGjcuHE6noRJb7jhhhg6dGj89re/jWHDhlXKZwAAAMhGQp8AAAAAAABAhapdu3aZ8Gd57d8TSev2tUlawD/xxBNrjBcUFKSt3Z988sl4/fXXY+bMmdq8AwAAeUN7dwAAAAAAAKBC1a9fPwoLC9favn3l+Mo27xurRo0asd1226U/T548+XtUCgAAkFuEPgEAAAAAAIAKlbRvT1bq/Pzzz8td7XPKlCnpPmnfvjYzZsyIN998M6ZPn17u8UWLFpVZVRQAACAfCH0CAAAAAAAAFa5z585p4PPtt99e41jSlj1p0/7jH/94ra9PWrsfd9xxcccdd6xxbMGCBfH+++9HnTp1Yuutt67w2gEAALKV0CcAAAAAAABQ4Y466qh0f8MNN8TixYtXjf/jH/+It956K/bdd9/YdNNN1/r6Aw88MG3jPmrUqJg0adKq8eXLl8dVV10Vc+bMiZ49e0atWrUq+ZMAAABkjxqZLgAAAAAAAACofnbeeefo3bt3PPDAA3HYYYdFt27d0pbtTz/9dDRt2jR+9atfrTr3jTfeiPHjx0eHDh1iv/32S8fatm0b559/flx77bXRo0eP6N69ezRs2DDGjRsXH374YXTq1CnOPffcDH5CAACAqif0CQAAAAAAAFSKSy+9NLbccst46KGH4r777ovGjRvHwQcfnIY127Rps+q8JPA5ZMiQOOKII1aFPhMnnXRSbLXVVnH33XenK4Qm7eI333zzNAx64oknRnFxcYY+GQAAQGYIfQIAAAAAAACVoqCgII477rh0W5d+/fqlW3m6du2abgAAAEQUZroAAAAAAAAAAAAAAPJopc/+/fvH22+/HS+99NIaxxYuXBh33nln/P3vf4/p06dH06ZN45BDDokzzzwz6tSpk5F6oUrVrh1x5plrjgEAAAAArM79RAAAAICsVS1Cn0OGDImnn346WrRoscaxpUuXxhlnnBFvvPFG/OQnP4kDDjgg3nnnnbj99tvjzTffjOHDh0dxcXFG6oYq06BBxC23ZLoKAAAAACAXuJ8IAAAAkLVyOvS5ZMmSuOKKK2LkyJFrPWfEiBFp4POUU06JCy+8cNX44MGD08DnAw88EH379q2iigEAAAAAAAAAAAC+m8LIUWPGjImDDjooDXx27dp1reetXMnzl7/85Rrt4JPW7kkoFAAAAAAAAAAAACDb5Wzo85FHHokFCxbEwIEDY+jQoeWeM23atJgyZUp07Ngx6tevX+ZYvXr10vHPPvssvvjiiyqqGgAAAAAAAAAAACDPQp99+vSJ0aNHR69evaKgoKDcc5JAZ6Jt27blHm/Tpk26//TTTyuxUgAAAAAAAAAAAIDvr0bkqN12222958yZMyfdN27cuNzjDRo0SPdz586t4OoAAAAAAAAAAAAAKlbOhj43xLJly9J9cXFxucdXji9ZsqRK64IqlwSgDz+87NhjjyWJ6ExVBAAAQAaUlJSkWy4qLCxMNzLDvx3IM1lwPzGX/7uTy5YvX57pEgAAAIB8Dn3WqlUr3S9durTc4yvH69WrV6V1QZVLAtBjx645BgAAQN5IgjO9T+odX8z6InLRps02jQfufkB4LwP824E8lOH7ibn+353S0tKYNnVatG7TOnJN8refPGVy+hkAAACA7FStQ58r27rPmzev3OMrx+vXr1+ldQEAAABkIsSRhGfOHn52FBblVvitZEVJDDlhSPoZBPeqnn87QFXL5f/uJJYtWRbndT0vzhp2VhTVLIpcrD1kPgEAACBrVevQ55ZbbpnuJ0+eXO7xlePt2rWr0roAAAAAMiUJzxTVyK0ACtnBvx2gquXqf3dWLF+Rs/WvrB0AAADIXrn3FdmN0KJFi9h8883j3XffjYULF5Y5tmDBgnjvvffS402bNs1YjQAAAAAAAAAAAACR76HPxNFHHx2LFi2KG2+8scx48nsy3qtXr4zVBgAAAAAAAAAAALChqnV798SJJ54YzzzzTNx7770xYcKE2GmnneKdd96J8ePHxy677CL0CQAAAAAAAAAAAOSEar/SZ3FxcQwfPjz69u0bU6ZMiWHDhsWMGTPijDPOiKFDh6bHAQAAAAAAAAAAALJdtVnpc9KkSWs9Vr9+/bjkkkvSDQAAAAAAAAAAACAXVfuVPgEAAAAAAAAAAACqg2qz0icAsGFKSkrSLRsUFhamGwAAAAAAAAAA6yf0CQB5JAl79u7TN6bP+jKyQctmTeOBe+8R/ATIcwsWLIihQ4fGc889F9OmTYuaNWvGdtttF3369In9999/g95jzz33jC+/LP9/33r37h2XXXZZBVcNAAAAAAAAVU/oEwDyLPSZBD5Pu/6eKCwqymwtK1bE7ef1TWsS+gTIX/Pnz49evXrFpEmT4kc/+lH687x589IA6Nlnnx3nnXdenH766et8j1mzZqWBzyQouu+++65xvGPHjpX4CQAAAAAAAKDqCH0CQB5KAp9FNfzfAAAy74477kgDnz179oxBgwZFQUFBOn7uuefGUUcdFTfddFN07949Nt9887W+x4QJE9J9ct76AqIAAAAAAACQyyyrBQAAQMY8/fTTadDz/PPPXxX4TLRo0SKOPfbYWLFiRYwdO3ad7zFx4sR03759+0qvFwAAAAAAADLJEl+QD4qLI44+es0xAADIsD59+qTt3Bs2bLjGseL/9/9ZFyxYsM73EPoEAKhg7icCAAAAZC2hT8gHjRpFjByZ6SoAAGANvXv3Lne8tLQ0nnvuufTnbbfddp3vkbR3r1u3bjz77LPx17/+Nf73v/9F/fr1Y5999olzzjknmjdvXim1AwBUW+4nAgAAAGQt7d0BAADIOg8++GC8++670aZNm9hrr73Wet7ixYvTkOfChQvj1ltvjR133DF69OiRtocfOXJkHHXUUTF16tQqrR0AAAAAAAAqi5U+AQAAyCpPPfVUDB48OGrUqBHXXHNN1KxZc63nzpo1K9q1a5e2hx8yZEg0btx41UqhN9xwQwwdOjR++9vfxrBhw6rwEwAAAAAAAEDlEPoEAAAgq1b4vOKKK6KgoCCuvfba2GWXXdZ5frIS6BNPPLHGePL6pLX7k08+Ga+//nrMnDlTm3cAAAAAAABynvbuAAAAZFxJSUm6qufll1+ervB54403xqGHHvq93jN5n+222y79efLkyRVUKQAAAAAAAGSOlT4BAADIqKVLl8b5558fzz33XNqe/ZZbblnvCp8rzZgxIw10tm7dOlq2bLnG8UWLFqX72rVrV3jdAAAAAAAAUNWEPiEffPNNxCmnlB27886IRo0yVREAAKRWrFgR5557bowZMyYNbt5xxx2x5ZZbbvDrk9buf/jDH6J3795x2WWXlTm2YMGCeP/996NOnTqx9dZbV0L1AADVlPuJAAAAAFlL6BPywdKlEY88Unbs1lszVQ0AAKxy++23p4HPVq1axYMPPhgtWrTYqNcfeOCBaSv4UaNGxS9+8YvYdttt0/Hly5fHVVddFXPmzIm+fftGrVq1KukTAABUQ+4nAgAAAGQtoU8AAAAyIglkJqHPRIcOHeLhhx8u97yk1XuXLl3ijTfeiPHjx6fn7rfffumxtm3bpq3hr7322ujRo0d07949GjZsGOPGjYsPP/wwOnXqlK4kCgAAAAAAANWB0CcAAAAZ8dZbb8XChQvTn0ePHp1u5TnjjDPS0GcS+BwyZEgcccQRq0KfiZNOOim22mqruPvuu+Mf//hHLFu2LDbffPM0DHriiSdGcXFxlX0mAAAAAAAAqExCnwAAAGREEtycNGnSBp/fr1+/dCtP165d0w0AAAAAAACqs8JMFwAAAAAAAAAAAADA+gl9AgAAAAAAAAAAAOQAoU8AAAAAAAAAAACAHCD0CQAAAAAAAAAAAJADhD4BAAAAAAAAAAAAcoDQJwAAAAAAAAAAAEAOEPoEAAAAAAAAAAAAyAE1Ml0AAAAAAADlKykpSTeoUsuXr/HwYPny5el41Vy+aq4DAAAAkIuEPgEAAAAAslAS9ux9Uu/4YtYXkYtKS0tj2tRp0bpN68hFuVz/96290ZKl8dhqY0cff3R8U6s4qurf/uQpk9PPAQAAAEBZQp8AAAAAAFkoCb4lgc+zh58dhUWFkWuWLVkW53U9L84adlYU1SyKXJPL9X/f2ou//CZi69fKjJ1626mxtGmjqMr6Q+YTAAAAYA1Cn5APataM6Np1zTEAAAAAsl4S+CyqkVuhw8SK5SvSvfpzr/aC2sXx5U+2X2Osqv4OK+sHAAAAYE1Cn5APGjeOePHFTFcBAAAAAOSA5Y3rx2tPD850GQAAAACUI/d6AgEAAAAAAAAAAADkIaFPAAAAAAAAAAAAgBwg9AkAAAAAAAAAAACQA4Q+AQAAAAAAAAAAAHKA0CcAAAAAAAAAAABADqiR6QKAKjBvXsQll5Qdu+aaiAYNMlURAAAAAJCliuYtjO0GDi8z9sHlJ8SKBnUzVhMAAAAA/0foE/LB4sURt95admzQIKFPAAAAAGANRYuXxRZ3PF1mbNKvjo0VbicCAAAAZJz27gAAAAAAAAAAAAA5QOgTAAAAAAAAAAAAIAcIfQIAAAAAAAAAAADkAKFPAAAAAAAAAAAAgBwg9AkAAAAAAAAAAACQA4Q+AQAAAAAAAAAAAHKA0CcAAAAAAAAAAABADhD6BAAAAAAAAAAAAMgBQp8AAAAAAAAAAAAAOUDoEwAAAAAAAAAAACAHCH0CAAAAAAAAAAAA5AChTwAAAAAAAAAAAIAcIPQJAAAAAAAAAAAAkANqZLoAoAoUFUVst92aYwAAAAAAqyktKoy57dusMQYAAABA5gl9Qj5o0iTi/fczXQUAAAAAkAOWNWkQL745JNNlAAAAAFAOX80FAAAAAAAAAAAAyAFW+gQAyFIlJSXpli0KCwvTDQAAAAAAAADIDKFPAIAslIQ9e/fpG9NnfRnZomWzpvHAvfcIfgIAAAAAAABAhgh9AgBkaegzCXyedv09UVhUlOlyomTFirj9vL5pXUKfAAAAAAAAAJAZQp8AAFksCXwW1fB/2QAAAAAAAAAAoU/IDwsWRPz+92XHLrwwol69TFUEAAAAAGSpogWLo91Nj5YZ+/jcI2JFvdoZqwkAAACA/yP0Cflg4cKIyy8vO3bWWUKfAAAAAMAaihYuiW2vHlFm7L+nHiz0CQAAAJAFCjNdAAAAAAAAAAAAAADrZ6VPAAAAyDElJSXplosKCwvTLVfl8t9++fLlkctKS0tz/jPkqlz/u+fyv51crRsAAAAAqDxCnwAAAJBDksBh75N6xxezvohctGmzTeOBux/IyeBnrv/tk/onT5mcBuBysfZPP/k0uh/ZPQoKCiLXJH/zaVOnRes2rSMX+beTObn8twcAAAAAKofQJwAAAORYACgJHZ49/OwoLMqt4GTJipIYcsKQ9DPkaugzV//2iWVLlsV5Xc+LyMHsWGlJaZQUlMTZ954dRTWLIlf/9mcNOyun6/dvp+rl8t8eAAAAAKgcQp8AAACQg5LQYVGN3AswVQe5+rdfsXxF5Lpc/9vnev25zN8eAAAAAKgucm9ZCgAAAAAAAAAAAIA8JPQJAAAAAAAAAAAAkAOEPgEAAAAAAAAAAABygNAnAAAAAAAAAAAAQA4Q+gQAAAAAAAAAAADIAUKfAAAAAAAAAAAAADlA6BMAAAAAAAAAAAAgBwh9AgAAAAAAAAAAAOSAGpkuAKgCBQURTZuuOQYAAAAAsLqCgliyScM1xgAAAADIPKFPyAdJ4HPWrExXAQAAAADkgKVNG8azn92X6TIAAAAAKIf27gAAAAAAAAAAAAA5QOgTAAAAAAAAAAAAIAcIfQIAAAAAAAAAAADkAKFPAAAAAAAAAAAAgBwg9AkAAAAAAAAAAACQA2pkugCgCixaFHH33WXHTjopok6dTFUEAAAAAGSpwkVLou19z5cZm3z8flFSp1bGagIAAADg/wh9Qj6YPz/i7LPLjvXoIfQJAAAAAKyhxvzF0fH828uMfX7ET2Kp0CcAAABAxmnvDgAAAAAAAAAAAJADhD4BAAAAAAAAAAAAcoDQJwAAAAAAAAAAAEAOqJHpAgAAINeVlJSkW7YoLCxMt2zh7wMAAAAAAABQMYQ+AQDge0jCjL379I3ps76MbNGyWdN44N57siLY6O8DAAAAAAAAUHGEPgEA4HuGGpNA42nX3xOFRUWZLidKVqyI28/rm9aVDaFGfx8AAAAAAACAiiP0CQAAFSAJNBbV8H+v18bfBwAAAAAAAOD7y6ulbR577LE48sgjY+edd44uXbrEBRdcENOmTct0WQAAAHnv+87XPv/887jkkkuia9euseOOO8Zhhx0WDz/8cKXWDAAAwIYx5wMAAKg4eRP6vOGGG+Liiy+OJUuWRK9evdIJ5VNPPRVHHXVUTJkyJdPlAQAA5K3vO19LHhT+4he/iL/97W+x2267Re/evWPRokVx6aWXxjXXXFMlnwEAAIDymfMBAABUrLzorzhx4sS47bbbolOnTjFs2LAoLi5Oxw866KA4++yzY/DgwelxAAAAcm++dvXVV8fMmTPj9ttvT1d9SZxzzjnRp0+f9D0PPfTQ2H777avk8wD/X3t3Ai5z3f5x/LYUyhIqS8i+RihSWm1Fq6KEUkkbiucp7dJK8mRJm0pSkhbapEJJKiEpkjaJshQtKE7h/K/P/fx/88w5Z47tzJnfmTPv13W55piZc+Y339+cOd97vvf3vgEAAID/IeYDAAAAgPhLiUqf48eP98vevXtHgklp27atNWvWzGbNmmXr1q0L8QgBAAAAIDXlNF5TxZcZM2Z4i8Bg8U+KFi1q/fv3t/T0dJs0aVIuPwsAAAAAQCzEfAAAAAAQfymR9Dl37lwrXLiwB4+ZtWjRwgNC3QcAAAAAkFzx2rx58/w+ag+YmSrJ7LPPPsR7AAAAABASYj4AAAAAiL98n/T5999/2+rVq618+fIZdhAGKleu7JfLly8P4egAAAAAIHXFI15bsWKFXx566KFZbtPiX4UKFezHH3/0xwIAAAAAJA4xHwAAAADkjsKWz/3xxx++A7BUqVIxby9RooRfbtq0yfKDQoUK2Yihg61CpRJWoECBsA/Hx77OvYOtYMGC/nXYdBwj7s0b45PQsSlZ0gq8+27Gxy9ZUgdheVVeOld58bWcl3CukkteOl+cq+Q5V8L5yh7nKvnGp+7QwT5vRv6I13777Te/3NnP2LFjh23evNnKlClj+YFev8MHD7dD9j/ELPxfqz2TblZtcLU88x61p3TcSTv2Gv590+2F8S9YzeI1k24bcDIfu3D84UnmYxeOP1zJfPw5PfaC5bebZfo8sVn5urZjn8TMo5N57JP9+JP52KPnm8R8eQMx397b96ouYR8CAAAAgDws3yd9/vPPP34Zawdh9PVpaWmWH2ghvXGjRpaXlDu8Ud4anzx0PAkbmyJFzE48McNVeX19Mq+dq7z2Ws5LOFfJJa+dL85V8pwr4XzFxrlKwvHJY/PlVBaPeG13f0Z+qvry37ivsSWrgxodZMkq2cdeDm5+sCWrZD524fjDk8zHLhx/uJL5+HN07Fo5OLF8hqvKWmIl89gn+/En87En+3wzvyHm23sFa1YJ+xAAAAAA5GHJuE9zjxQtWjRDUJhZEATut99+CT0uAAAAAEh18YjXiPkAAAAAIG8i5gMAAACA3JHvkz6LFy/u7deyaw0RXB+0kAAAAAAAJE+8FrT427hxY7Y/Q9UZ9VgAAAAAgMQh5gMAAACA3JHvkz7V1qFy5cq2evXqmLsAV61a5Zc1a9YM4egAAAAAIHXFI16rXr26X65cuTLLbfqZa9assWrVqvlCIwAAAAAgcYj5AAAAACB3pEQE1Lx5cw/8Fi5cmOW2jz76yHcANm3aNJRjAwAAAIBUltN4Td+v+3z88cdZbluwYIH/7COOOCLuxw0AAAAA2DViPgAAAACIv5RI+jznnHP8cvjw4bZ169bI9dOnT/eAsFWrVla+fPkQjxAAAAAAUlNO4zXd1rJlS5s3b57NmDEjcr1+1ogRI/zrbt265epzAAAAAADERswHAAAAAPFXID09Pd1SwB133GETJkywqlWrWuvWrW3dunU2bdo0K126tD333HPeXgIAAAAAkHfjNVV20UJfvXr1rE2bNpHv//77761Lly62adMma9++vZUrV85mzpxpK1assJ49e9qAAQNCfHYAAAAAkNqI+QAAAAAgvlIm6VNPUwHlpEmTPAg84IAD7KijjrJrrrmGhE8AAAAASIJ47YEHHrDRo0dbx44dbciQIRl+hr5PVV7UHjAtLc0XE1XtpVOnTt4KEAAAAAAQDmI+AAAAAIivlEn6BAAAAAAAAAAAAAAAAAAASGYFwz4AAAAAAAAAAAAAAAAAAAAA7BpJnwAAAAAAAAAAAAAAAAAAAEmApE8AAAAAAAAAAAAAAAAAAIAkQNInAAAAAAAAAAAAAAAAAABAEiDpEwAAAAAAAAAAAAAAAAAAIAmQ9AkAAAAAAAAAAAAAAAAAAJAECod9AMgd/fr1s4ULF9rs2bPDPpSU9ueff9qjjz5qb7/9tv3000+2zz77WP369a1Hjx7Wtm3bsA8vpf3+++9+bt555x1bs2aNlS1b1lq3bm1XXXWVlSlTJuzDg5nNnTvXLrroIjvrrLNsyJAhYR9OSps4caINGjQo29s/+ugjfm9C8t5779mTTz5pixcvtgIFCliNGjX8b0yHDh3CPrSUVKdOnV3ep2PHjrynhWTbtm02duxYmzJliq1atcqKFStmTZo0sd69e9vhhx8e9uEhn83tf/vtN3vwwQft3XfftV9++cUqVqxo55xzjl188cVWuDBheG7M2RnzxM7HGe9w5tqMe2Ln0Ix34ufGjHni572MeXxs3LjRHn74YXvrrbd8HMuXL2/t2rWzSy+91EqXLp3hvqtXr7ZRo0b5+7vmOlWrVrVu3brZueeeG9rx54c1j7/++ssef/xxmzp1qs8bDzzwQDv11FN93qjfgcy++eYbGzlypH366af+vbVr17aePXv6eQMAAAAAIBnwyU0+NHr0aJs2bZqVK1cu7ENJaZs3b7auXbvaV199ZQ0aNPCvN23a5IvEffr0sX/96192+eWXh32YKUnnQefju+++s6OPPtoXjpcvX25PP/20fzj7/PPPW4UKFcI+TEv135+bbrrJ0tPTwz4UmNmXX37pl1r0L168eJbbY314jtw3btw4Gzx4sCfAnHnmmbZjxw5/D+vfv7+tXbvWLrnkkrAPMeXo73ssei/T+VLCWIsWLRJ+XPiva665xmbMmGGHHnqozwO0wK0584cffmiPPPKIHXvssWEfIvLJ3F6L/hdccIF9++23vmhcpUoV++CDD2zYsGGeYKRFfsR3zs6YJ3Y+zniHM9dm3BM7h2a8Ez83ZswTP+9lzONDiZvnn3++z1OqVatm5513nv3666/21FNP2fTp0/31rmRa0cahLl26+DlRorkSE3Wubr31Vv/+G264Ieynk5RrHn///bddccUV9vHHH/vrW6/nRYsW2ZgxY2z+/Pk2fvx423fffSP3/+KLL/y1r/ej008/3YoWLeo/u2/fvnbLLbf4bQAAAHtLcwxtMMz8NQAAcZeOfGPr1q3pN998c3rt2rX933HHHRf2IaW0+++/38/DwIED03fs2BG5fu3atektW7ZMr1evXvqKFStCPcZUdc899/i5eeCBBzJc//TTT/v1N9xwQ2jHhv/SOQjey66//vqwDyflde7cOb1Ro0bp27dvD/tQ8P+WLVuWXr9+/fT27dunr1+/PnL9L7/8kn7MMcekN2jQIH3jxo2hHiP+54knnvD3s1tvvTXsQ0lZc+bM8XNw9tln+5w58NFHH6XXrVs3vU2bNqEeH/LX3D6Ya06YMCFyv23btqX36dPHr3/rrbdCeQ75ec7OmCd2Ps54hzPXZtwTO4dmvBM/N2bMEz/vZczjI/g8XuOWlpYWuf6TTz7x95xevXpFruvdu7ffd9asWZHrtmzZkn7uueem16lTJ33x4sUJP/78sObx1FNP+W1Dhw7NcP1dd93l148dOzbD9R07dvT3/C+//DJy3YYNG/z3o2HDhj7HBwAAiIcg1md9DQCQGwrGP40UYVC7u/bt29sLL7xgJ5xwQtiHAzPfHaydO//+978z7ODRbmTt/t6+fbu3FEPi/fjjj76TXi17oqnKh6itD8J9P5s8ebK1atUq7EOBmVe++frrr61WrVpWsCDThrxCVc7Usu/222/3KkUBvbepStHZZ59t69evD/UY8b+Wcffff79VrlzZbrzxxrAPJ2V99tlnkb/1RYoUiVyv6lLVq1e3lStX2oYNG0I8QuSXuf3WrVsjFShVxSlQqFAhGzBggH/93HPPhfIc8uucnTFP7Hyc8Q5nrs24J3YOzXgnfm7MmCd+3suYx4fmgG+88Ybts88+/t4SXU2yadOmdsYZZ/gcUe/1qvKpqp5NmjTJ8Pm9qkzqPUhVoCZNmhTSM0nuNY+gkueVV16ZpR28KmZHv5YXLFjglT5PPvlkq1u3buT6MmXKeLXQtLQ0mzJlSi49IwAAkN+pY426S6j6uz4zHDhwoH3//fce82vuCABAPNHePZ948cUXvS3Sbbfd5hOI6A8sEI4ePXp4S8KSJUtmuS34AFDnDIn34IMPZjsRl4MOOijBR4SA2l+ppVXz5s2te/fu/uEuwrVixQrbsmULf1fymFmzZvl7VbNmzbLc1qlTJ/+HvEEf8Pzzzz/+3ha0Z0XilS5d2i+10Jq5DaBaK2qRtkSJEiEdHfLT3P7zzz+3v/76y9q2bZslgUsJLpUqVfIWk/qQV0kVyPmcnTFP7Hyc8Q5nrs24J3YOPW/ePMY7wXNjXuOJn/eq9TVjnnNKoNUcsGbNmp40mFn9+vV9I4XGcr/99vPEzqOPPjrL/Y444gg/N3Pnzk3QkeefNQ+91letWmVHHnmkFS9ePMNt+++/vzVq1Mjbvq9du9bKly8fGeNY5yG4TvdRAigAAMCebsDSJpTNmzf75sJg07I2/mgTojZ80u4dABBPlOzKR4uQM2fOtK5duzJRyCO6desW88MhTebefvtt/7pOnTohHBky++OPP+ytt97yXfWFCxe2q666KuxDSlmDBg3yRYd77rmH97I8YtmyZX6p86HfkeOOO84/MNeC6Ouvvx724aVsMsYvv/xitWvXtp9//tluvvlma9myZeS86AME5A2q6PLBBx/4+aESe7hOOeUUr+j17LPPetUWffC2evVqu+GGG3yh9oILLshQlQfY27m9ErikSpUqMX+OkiiUdKEqlojPnJ0xT+x8nPEOZ67NuCd2Ds14J35uzJgnft7LmMdHEENorGLRpiHROAZjfuihh2a5nxI+VXVV98vuZ6Wi3Vnz2J3XsixfvtwvVWkru/OgpFCdi+C+AAAAu0ublJXwqfmENrupGvyrr75qnTt3tt9//903vikuZe0TABBPJH3mE0cddVSWnazIm/ShqyoY6AMnLeggXBMnTvQqNldffbWtW7fOhg4dGnOnN3Kfgh8t5F977bWRD2SRdxai1fZNC0RqTaZKIApg1eJWrfmQWFqkFi3eqQWlKlZoYU8tz3Reevfu7btGEb7HH3/cL9lMkDcqHqmlX8OGDX3BW5V0TjrpJJs6daon2QQtLIGczu31Ia4ccMABMe8fVJTduHFjQo8zP8/ZGfPEzscZ73Dm2ox7YufQjHfi58aMeeLnvYx5fGj8lDyoSpNLlizJcNuOHTs8YTFI/lSlVSlVqlS2Y67v0fsUdn/NY09fy8H9Y50HVb1VddAgWRcAAGB3aA6nCuWaQ1x66aV26qmnWtGiRX0ec8cdd1jTpk1948maNWvCPlQAQD5De3cggbSr5+677/bKNEOGDPGdwwiXWi/16tXLK36oSpMWODXp1qQciaPF+zvvvNMX77V7H3mHKpgdcsgh1rdvX+vYsWPkei1oqLXWo48+ascff7y30UJiqLVZ0CqkRYsW9vDDD3ubOLnssst85+i9995rrVq18nOHcCxdutRbg+p3g9+P8KlazkMPPeTtdBo0aODnRFUDp0+f7u9j5cqVy/AeB+zt3D6ozJRd5djg+rS0tIQea36eszPmiZ2PM97hzLUZ98TOoRnvxM+NGfPEz3sZ8/jRe4iqB+u9XBWctFFFifyjR4+OVIzU+/0///yzW2NOpc89s7vjGryWd3V/zelJ+gQAAHti+/bttmjRIqtYsaJ16NAhkggatHKvUaOGLVy40O+jOTot3gEA8UKlTyCBVYBUqUO0kEACSN5w8skn+6Kxzslrr73mC8r33XefLV68OOxDSyk33XSTB0VKnCDQyVv0vvXOO+9kSYZS9SdV2wqqQiFxChUqFPlaC0rBYrXowwO169Mihip1ITyTJ0+OtIRG+PR3Xu0tu3fvbi+99JL/3dF1ap2rCi833nijV2sEcjq31y7+6MXkzIJFfFUQQnzm7Ix5YufjjHc4c23GPbFzaMY78XNjxjzx817GPH46derkCZ/aQKGWnqqu2q5dO5+nDBo0yO9TrFix3R7z6Pcn7FqRIkV2miyb+bW8q/Og6zkHAABgT2hzif5ps9VPP/0UqSCuOFSX9evX9+v0uYuwDgoAiBeSPoFcpp08qvxz++23exWgESNG2GmnnRb2YSGGSpUqRSp8Bu2XkJh2nXPmzLHrr7+eqoRJplGjRn65cuXKsA8lpQStybQIoQXqzIIPEH744YeEHxv+R39HdI7UShHhz8VeeOEF/9257rrrMnyopt3X/fr1893VasED5HRuH7SJzK4ValA1aFdtKrH7c3bGPLHzccY7nLk2457YOTTjnfi5MWOe+HkvYx5fffr08aTxgQMHekL/I4884htVgveegw46aLfGXOeMMd8zQVv37KpzZn4t7+w86HdIlaGD8wYAALA7NM+oV6+e/f777/bxxx9n2YyiOYb89ddfkes0LwcAIKdo7w7kIk3q9EGfWhDqA6gHH3yQCp954JzMnz/fd1OpTV5mqqgiv/76awhHl7qtUUUfjOtfZqpQoX+qfqMkCySOAlG14VMgqvZkmQUBalAlAYmh9yklGm3bti1mG5CgWoUqiSAcy5Yts9WrV9upp57KecgD1FpRO61r1qwZs4VfnTp1/DLYhQ3kZG5fvXr1nW6I0PVKelHiBeIzZz/uuOP8a8Y8MfNxtcAWxjuxc23eWxI7h2a8Ez83ZswTP+8988wz/WvGPL7vM5mr2X722Wd+WatWLdu8eXO2Y673oDVr1li1atW8GhR23+68f4h+L6Lvv2rVKq/KGk3nQOci1uYAAACA7GJ7zd/0mYk2jyjmUewpQewZbEIJ5nmKS4P7aI6opNHg5wAAsCdI+gRyiRYor7nmGm/Vpmo0jz32WORDJYS7gNyrVy//4PrDDz/M8iH4F1984Zf6kBWJoUAo1iKnPnx95ZVXrG7dutamTRvfJYfEU5vDLVu22AcffGBly5bNcNuCBQv8smHDhiEdXWrS+1bjxo19/JUQc9RRR2W4XS3kRL87CMfChQv9ko0eeYMquej35scff/R5QOa//d9//71fHnzwwSEdIfLT3P6www7z1pHz5s3L8mGt5jZKsjjmmGMytBlGzubsjHli5+OMdzhzbcY9sXNoxjvxc2PGPPHzXsY8fgYMGGCzZs2yGTNmWMmSJSPXa1zffPNNn8/o76wW9LXor+pPqgwaTe9NSjbMnISIXStXrpwdeuih9vnnn/uGiejW7Eq80Pu7bj/wwAP9umDOM3fuXDvrrLMy/KyPPvrILzkPAAAgO4rhNdfWJk59LqWNmtocrm4d6qCiCu/B3DrYbBhU+gw+fw4SPjWHVIX42267jTVQAMBeYbsAkEvGjBnji8LaEf/ss8+S8JlHaLdU69atfVfV6NGjM9y2ZMkSGzdunH84GN2mE7nr7LPPtr59+2b5F3zwqkBH/9dCMxJLgekpp5ziuxHvu+++SGAaVGt59NFH/felU6dOoR5nKuratatfqvptdAsznZfnnnvOP2TgdyY8+nsiWkhF+LTY3a5dO/vjjz9s5MiRGW5TlcDgujPOOCOkI0R+mtsXKVLE55FKthg/fnyGpNGhQ4f615krQCFnc3bGPLHzccY7nLk2457YOTTjnfi5MWOe+HkvYx4/qiCpMX/mmWcyXP/QQw/ZihUrPMFfc5vy5ctby5YtPdFWCaKBrVu32ogRI/xrxnzv6G+lEjCCcQzo/7o+eP+Xpk2b+lz+9ddf90TR6N8R/e3V7wafcwEAgFi+++47Gzx4sJ133nl28cUXezcUbeZZt26dz8UrVKjgCZ2ZW7drrpi5a96cOXP8M69FixZFkkABANhTBdIz/9VBvqB2PdrlOnv27LAPJSX9/vvvdtJJJ/nuYi1WZrc7R1UOjj766IQfX6pbu3atnX/++d5eTDu3Dz/8cP965syZvutq+PDhJEvlAarqpKCJtu7ht4fT78sPP/xg9evX94o4CmC1QKGFaf2+aFEJiXfjjTfa5MmT/e+9zoGqhqiKiFqDaGGD97HwdO/e3StIaR6m84PwrV+/3hdQteiqhANVd9GHbfrbr3nbJZdc4juxgXjM7bVgrIViVcjS9ykRQPMaVads3769/+3M3FYYOZuzM+aJnY8z3uHMtRn3xM6hGe/Ez40Z88TPexnz+FBSoTZQLF++3Fq1auUJhWrrrte9xl+bh9TmM6i22qVLF0881xjrd0LnRuerZ8+eXjUUe77moWpbGle9djXmquysBAol2GqO/uSTT2aofKvKqvpd0Otbyc9Kyn3jjTfs559/toEDB5J8CwAAstD8TgmeaWlp3pFDmwa//vprr56vTVNVqlSJ+X1Kxbn22mtt6tSpvom5RYsW9t577/lce+XKlTZx4kSf4wAAsDdI+synSPoMlxZoevfuvcv7XXHFFda/f/+EHBMy0gfb2nGvD1b1gZ7aL2mBTeeElsh5A0mfeYcWiB5++GGbPn26L0IriG3WrJn/vlDJMDyawmnBWh8KfPvtt76AoYSYK6+80itXIDwdOnTwXb+ffvpphtZyCJcWVlW5Re9lWtjW74wSbJSIoEprQDzn9ppfqpqW2jTptaeW8EoGuPDCC7O0WkV85uyMeWLn44x3OHNtxj2xc2jGO/FzY8Y88fNexjw+gkqq77//vn+tcTzzzDO9ymd0RSdRgqeSzNVKXEkDVatW9SRDJeCSZLv3ax5K4le1LCXya1OFKm0psbZXr16e1JmZ2r6PGjXKFi5c6P+vVauWJ962bds2Ic8FAAAkD3WH6NGjh1WuXNnnC5pjiDZrahOnEj4LFSqUIe6MntddffXV9vbbb3tleH3P3XffbatWrfJuQqxJAwBygqRPAAAAAAAAAAAAAAAAIGqjpirlayPbTTfd5BXyg0rj0ZukVFVfm9xUBb5UqVIZfoa+T5sPL7vsMq84/tVXX9mECRNI+AQA5FjhnP8IAAAAAAAAAAAAAAAAIH/45ZdfbNGiRd4FJVbCp5JBP/nkE+8msX37dtu6datdcsklfl9VKBe1gpcxY8Z4dw8SPgEA8ULSJwAAAAAAAAAAAAAAAPD/VJlTVTybN28euS5I+Bw/fry9+eabtnDhQv+/Kn3+9ddfduedd9q6deusb9++VrBgQTvmmGNs7NixXgFUCZ81a9YM7fkAAPIXkj4BAAAAAAAAAAAAAACA/1e1alVP3FS1T1Xv3LRpk1f3VPLma6+95rdVqVLFTj/9dDvhhBPs66+/thdffNEef/xxa9++vdWuXdvq1atnbdq0sX79+pHwCQCIK5I+AQAAAAAAAAAAAAAAkJLS09OtQIECkUspU6aMVa5c2R599FFbvny5t3v/+eefbfXq1X6fK664wo499lhr2rSp379Ro0a2bds2TxJVcqiSPsuWLWsjR460QoUKhfwMAQD5TcGwDwAAAAAAAAAAAAAAAAAIQ1pamv3zzz+2Zs2ayHVK2lSb9goVKtisWbM8mXP79u3esl3VPq+++upIwueWLVv8skmTJhn+LyR8AgByA5U+AQAAAAAAAAAAAAAAkHJUlfPJJ5+0pUuX2qpVq+zEE0/0xM6OHTvaaaedZpUqVbLffvvNVq5c6dereqeqgAZVQZUIWqxYMf9ZL730kpUoUcKOPPLIsJ8WACCfI+kTAAAAAAAAAAAAAAAAKeWzzz6z3r1726ZNm6xKlSpWsGBBmzp1qlf2VDv3yy67zBo3bhzze5Xw+ffff9u+++7r/585c6a98847dsQRR1jp0qUT/EwAAKmG9u4AAAAAAAAAAAAAAABIGZ9++qldeOGFdsghh9jQoUPttddes2effdYGDBhg27Zts0mTJtnChQsj91dFT/nzzz+96qcECZ/63lGjRtnWrVvt+uuv92qfAADkJip9AgAAAAAAAAAAAAAAIKUSPuvXr2/9+vWzo48+2q+vUaOGHXjggV7l84knnrDPP//cmjZt6rcVKlTINm7caFdccYUnfqr9e+HChW3u3Lk2f/5822+//Wzs2LFWrVq1kJ8dACAVUOkTAAAAAAAAAAAAAAAAKdHSvUePHtagQQPr379/JOFzx44dflmqVClr0aJFJDk0PT09UuVz/fr1nhT61Vdf2ZAhQ+yuu+6yRYsW2bHHHmtPPfWU1a5dO8RnBgBIJVT6BAAgD1DAWKBAgbAPAwAAAAAAAAAAAMiXli1bZl26dLFKlSpZ3759I8mdWqcrWLCgJ37qslixYn69EkO1fqcqn1K9enUbNmyYzZ492/744w/bvHmzJ3yWK1fOihcvHupzAwCkFpI+AQAR2qU2Z84ce+WVV2zp0qW2du1av/6QQw6xY445xi644AKrUqWKJbvJkyfbjTfeaK1bt7aHHnooYY9bp04dv1SLh5IlS/rXW7ZssTFjxnjweNlll+XaY2/YsMGefvppD0JXrVrlj3vAAQdY3bp1rU2bNnb22Wfbvvvum2uPDwAAAAC76+OPP/Y2e4HXX3/datWqtdPvufLKK+2dd97xrwcPHuwxTkCx7Lx587JcvyuKnZ555hn78MMPbfXq1fbPP/9Y6dKl7bDDDrP27dtbhw4dfDEQAAAAAJD3/f777zZhwgRP8NSamC4zU4y3bt06e/bZZ30tT+3fM9P3am0NAIAw8akkACCymNW1a1dPPJw2bZoVLVrUWrZsaU2aNLHffvvNxo8f7wtaU6dODftQ85WRI0d64mlaWlquLpi2bdvWHn74Yd912KxZM2vVqpXvYpw7d67ddtttdsYZZ3gQCwAAAAB5za7iUC3cvf/++3F9TCWaKrFz3LhxvkFS7f5OOOEEb+On5NJ///vfHkOrqgsAAAAAIG9bvHixPfjgg9atWzffDPjdd9/ZiBEjbNasWfb3339HuvGpffvEiRPtrbfesnPPPdereAIAkBdR6RMA4BU9O3fu7Mmdqn45YMAAq1q1auR2BTtK+lS7guuuu86KFCnCDra98MYbb/hldHsHLR7mpk2bNnl7ClX2vPfee+2ss87KcLsSPXW+lfx5zTXX2HPPPZerxwMAAAAAu0tVVTZu3OgbE/v165ft/bQYpyqcqrai+DUemyJvuOEGb9/36KOP+obIaN9//71dffXV9umnn/omuv/85z85fkwAAAAAQO7466+/bPjw4d7F4bjjjvNugGrj/vLLL9uoUaP8PieeeKJvKFTXPMWBnTp1smuvvdZvC1q+AwCQl/CXCQDgQYsSPk8++WQbPXp0hoRP0cLZpZde6u3ylKSo5MFt27aFdrzJqkaNGv4vkYHhzJkzvbrnSSedlCXhU8qVK+fVRpXIqwXLL7/8MmHHBgAAAAA7U7FiRWvQoIGtWLHClixZku39XnvtNdtvv/28q0E8vPLKK55EqqoumRM+pVq1ar5gGGzu08IgAAAAACBvUryoJE65++67vWND//79fd1M62KqAPrqq6/ak08+6QmfqgR61113+f21LkrCJwAgL+KvEwCkuM8++8zmz5/vSX8333zzTgOXnj17Wv369a1p06b2yy+/ZLhN7Q6UDKrE0YYNG9qRRx5p3bt3911y6enpWdqN16lTxwYOHOgVVNQWr0WLFta4cWOvOKpWCvLTTz9FbtNjasEtuC3w448/+s86//zzbcOGDXb99df7/dWWXkHZ888/n+Xxd0aPqUotan9+2GGH+c+66qqrPCEy2rJly/x2PbaqykRTANilSxe/TT8roP/rnyrVBP9XBVVRsq3+/8ADD/guQn2t8Y5FlWuOOuooH+ddLS7qvEjQliKWAw44wC655BIPeGOdfz13Bb/HH3+8NWrUyM/x7bffHrMd/N68DvS60+3aRanv6dChg5/LwCeffGJ9+vSxY445xsdcCax67axevXqnzx0AAABA8jv99NN32uJ9zZo1tmDBAmvbtq0VLVo0Lo8ZxCM7i6Nq1qzpcZ9i2LS0tCy3z54926644gpvBahY99RTT7X777/fN+VlprhYMU4QhyreUzyoNvKZTZ482eOohx56yB577DFvO3/44Yf7cShRNfDuu+/6zwhix3bt2nmspg2fAAAAAJAqgrUprT1deOGF9sMPP9jrr7/uRVEuv/xyO/PMM+2LL76wIUOGeMJnx44d7Z577oms96kDBAAAeRFJnwCQ4lQRRVQRRQHOzqgt+ZQpU3yhqEKFChkSIE877TQbO3ast0gIkveUUKokTLW9i1UZdPny5Z6YqdbiRxxxhFWuXNk+//xzryj6wgsv+G1KDFQCZ5UqVfznKQB77733YrYx79q1q1dZ0SKZkg2/+eYbu/XWW70l/e5Q8quCO7U4L1y4sD8PVT3VQpt+9qRJkyL3rVu3rrdDlzvvvDPDwt3DDz/siZK1atXyFhE7W7ysXr26f127dm3/vxbvzjjjDE/CVZuJWImV06dP92RPLdopYXNnlKQbVPwcM2aMj1MsapWo3Y16/GhKQO3WrZuP60EHHeRjogD52Wef9fOjxcmcvg60QKvWieXLl/cFy1KlSlnZsmX9tnHjxvnjz5gxw19zWgTVQq7OhQJvvV4AAAAA5F9amNPmtDfffDPmhj4t1un6IDk0HoI4auLEiR6bbt26Neb9tBnujjvuyBJL33fffdarVy+PXRXLqn2gYjEtICpRNHrz3gcffOAxoGIcLSYq5lFC6UcffeSxcVBdJjNVoVFbecVwipkrVapk++yzj9+mBUolnCqeVlVSbZxTQqhitXPOOcdWrlwZt7ECAAAAgLxMm/mCWFLFT7Qe99RTT9natWs9XlLspJhMMVOJEiU8ZgqQ8AkAyMtI+gSAFKfES9Ei0d5Q1UlVwlS1ECVGKrlQ1SrVAkGJgkqafPvtt72SZawkS1XwVFJl0DqhdevWtmPHDrvllls8cVMJjkqiVCVIVS4JFt4yU4Lnli1b/H6PP/64VzzR1wcffLAntgbJrdlR0qaSErUQpworqt6pY1YCqBIf1fpBi3lLly6NfI+qpugYVfVUOwBFSYg6XiVtagFuZ5Vmhg0b5lVfRAmc+r8ulfSoSpkaB7UVzOzFF1/0y6AVxc6oOqYW+BTQ6niUVHnBBRd4S/c5c+Z4cmZ21NJCz0tBrRJGX3rpJRs1apRNmzbNK6uqqqfGJKevA7Vq1IKoxlqPM2HChMjrQ49fsmRJe+aZZzI8/k033eQLpX379s12ARYAAABA8lNCpeIuVfpfuHBhzKTPAw880GOfeNGCn9rKK85RbKoOEJdeeqk98sgjHqfo+uyowqZiUm3QUyKnNswpNtJGNiV0KgYfMWKE3/fXX3/1OFRx2b/+9S+PQxXzKCZSsqmel+JRfZ3Z999/b4MGDfKNcvqneE8UQ2oBU0mgqgqqOEs/U4+vDg/qbqFODnvSEQMAAAAAkonW+qLjtiD+0QY7dWHQ+pbWnxSLaf1KiZ9an9T36XqtW0Z3UgAAIC8i6RMAUlxQSVKLSXtDCXhaNFLlS1XV3HfffSO3qXJnsPCkRadYyXn6HiVIBrvtVCky+FoLWMWKFYvcV4FYkCSYXZWVGjVqRP6vr4NKm0EiYXa0iKYFNz2+KktGt/FTFVQFfKpSqcooAVWbUdXT/fff3xfTtLinqqK6nypbZq6auSfOO+88v1Rl1Wgaa1VGVbUYLTzuDi3w6fg1lgpS582b560AlbTavHlzv1QCaGZKrtVzufjii+2EE06IXK8kUD0/7YDUz1PgnNPXQY8ePSJfBy3mlbirQPzaa6/1Rd7M91e7ee3E3FVCLwAAAIDkFlTx1IayaN9++613HFA10HhWYFGMqthFcZm6QGiD4fvvv2/Dhw+37t27exzVp0+fmJ0HtGFNlMTZqFGjyPWKkRQrKRkzqPSphMzNmzf7Rj11tQhiIVHS6W233eZfa3NcZopDozcCBt8b3Fcb9FTBJqDxUbyq65YsWeKVRAEAAAAgv1EnPsWI2myn7gfR8ZIutebVuHFj78yg9TJR4mfv3r3trLPO8lbvKmCibnwkfgIA8jKSPgEgxWkBS2K13d4dQUAUtNzLTK3WlRyo3XKLFy/OcJvahWvBK1qZMmX8UhU6dXs0VcCUWFVV1HIhOjExoEoqWtxSi/E///wz2+cRLHhlVx1Gi3CihMtoOv6bb77Zv9ainxJS9ZhKHM0JJTmq9buqwChADSi5VBVA1V4iOjF1Z7S4qEouSuzUIuW5557r50QUsOp6JX4qyTa62ksQDLdp0ybLz1QCqdorqqKMfn5OXgc615mTjrdv3x75mapOGovax8c6JwAAAADyF3VEUOtyVcJUPBQINoDFs7V7dIypxEklew4ePNjOPPNMO+SQQ/w2JYGqK4ViK7VsDyieCuKYtm3bZvmZFStW9K4IQaXP4L7B5sfMVGlGXSfUjl2VTqMpeTOI5wPqQqHas1nqAAAOHklEQVREWF2vzYuZKVZTq3khjgIAAACQ32iDnTbPKTZS1wVtxlMCp7rUBetfWtNSRwddPv/88xkKmCjxU7GfOuGpeIoSQ0n8BADkVRk/GQQApBwlVqoyyoYNG/bq+3/++edIMJQd3abWc8F9MydxRgsSGUuXLp3tbbGo8mWsZEO1V1ciqQI8/VM1lFjWrFnjl2obrn/Z0c9QgKcFx4ASMFVxRsmTChLvvvtuiwctIKqNhKp9NmnSxBc39bWSWDt27LjHP6948eKelKl/onOunYoKfNUmUZU9VU2mc+fOfntwvrQwmZuvA7U9jBWYayE1u6TTaJkXPwEAAADkL4oZjj32WO+uoM1pwcYwtXZXRZboiprxpnjy7LPP9n9B7KjYb/z48fb111/b/fff74+vY1Ico02KqhQabGjMSRyl2K9ChQr23Xff+X2jY7NYcVQQ12pTZ8OGDXf62MRRAAAAAPIbrSNqnUud/dSNT3GUkj5nz57t3QRVsEWb5FR0RcmdiuvUKTAo5BIkfmq9UUVYdLuKxUSvCQIAkFeQ9AkAKU4LQapcEl1NcmfUfk5BkxbcVOUkujJkdoJKLNEtvyVzVZKc2Fkrv+AYd3af4BjVMjxWMmo0LaBFB3jr16/3dg+iBb5XX33VLrroIsspBZxqi66EUu06XLBggbdQV9XRcuXK7fL7dZxahPzjjz9iVsssW7asV8RRVZkbbrjBXn75ZXvllVciSZ9B9dfdqSiak9dBrGTd4L56jbRv336nPzeotgMAAAAg/1LcoqTPqVOnenyjjWs//vij9e3bN66Ps3XrVq+WmZaWZkcccUSW25WEqZhJbf969erlXSMUS+mY9iSG2t04Sl0Q9jSOKlmyZMxOGJm7MQAAAABAfqL1ve7du3vcqI14l19+uXefGzt2rHdw0Hqbqn+q0MoFF1zgHe207nnUUUdZzZo1PUZT4qe+T5v59LPUfQEAgLyIpE8ASHFqk6cWBZ988onveFOr7eyo8uJ9991nmzdvtttvv926dOkSuf+qVauy/T61oguSDHPL2rVrY16vduLa0afkwZ0lSqriqapQKlmzZcuWe/TYau+u1hAay1mzZnmlF/2MWrVqWU4oIFVLQAWhSszVz5ZOnTrt1vdrwVHVaBSkahdjds9fC5JatNRCpSrTRI+JkkxVLSbWuVM7Q1U91eJmvF8HqlqjxFotcKpyqoJrAAAAAKkraHWuOGTQoEFe5VPOOOOMuD6OYiB1cyhWrJjNnz8/24ouul4dGJT0GcRRQRyjxFHFiLE6WCju0vPQRkrFUcuXL/c46vDDD89yX8VbQfXO3YmjFMMFHS+GDRu2x88dAAAAAJKZ1sNU6VObA1VURUVUevbs6cVF9H+tlV111VW+ntenTx9PBNXtWoNT0qc20mmD3aGHHuprf/EsXgMAQLxl3RIOAEgp9erV88UmVai85557dlppZMSIEZ7wqWREVVmR5s2b+6USE4OqItE+//xzT/YrUaJErlYSUcLq0qVLs1z/9ttv+3G1aNEiS2WUaNrFJzNnzox5u37OKaecYjfeeGOG6ydNmuTJmNr5N3ToUA8SVRHmuuuu8wW6XdlVBRi1eJdp06b5sWkR78QTT7TdoYU+Bbcybty4nd5XCa+idheBoKqNqunESigdOHCg9e/f3yuJxvt1oIXSoKV9rMeXe++9N9J+AwAAAED+piTMVq1aeYLlBx984BVZGjdubFWqVInr42hxT3GXNj0+//zzO72vEjaj4yjFMUGr+VhxjBJBb7rpJq8sI0EcFSSwZjZjxgyPL9V6cHe6PagLgv4pPlY1m1j02NocqNgNAAAAAJKZ1jYDWk8K1twUO6owi9aRvvnmG6tYsaIXGAmKtkyZMsXXOVesWOH3HTVqlHd8iO4YSMInACCvI+kTAOBVUpSMp8RC7X5Ti7xoqlIyfPjwSOLgrbfeasWLF/evO3To4MHSsmXLPGk0OtFR1UoGDBjgX5933nk7TbqMB+26U1XPwFdffeWJmHLJJZfsMrly//339zYOEyZMyJD8+t1339ldd93liZFVq1aNXK8kxiFDhngQqdu1CKkdgUqk/fLLLz1I3J3ETFHiZCxKVtWio1pRbNiwwSvJ7Emgec011/iuRLWuUHC7adOmLPfRYqQquOrnXnzxxZHr1dpC3/vEE0/Yxx9/HLle1Tf1vDXWWqTUmOTG60BjKXfccUeGxw+ScJ9++ml/PNoSAgAAAKkh2Hyo2Ebx0emnnx73x1BcFLSMV2zz+OOPe0wcTYuJkydP9jhLVTu7du0aue3CCy/0S1WR+frrryPXK3nztttu83hKz0Pfp/hIsbVissceeyxDHPrFF194nBnEZrsriKOuvfZaj5eiPfPMMx5b6riUMAsAAAAAyUob3bQuqPUi0XqW4i2pUaOGb3Zbt26dbxhUTKf1uOOOO87X7tTNUPdRzKWfo1hMXRE3bty4y2ItAADkFWxPAAB4lcqJEyfa5Zdf7q3yVFGyfv36XiFE7dE/++wzD3QUEKm6oxL8Akrge+CBB6xXr16ehKfgSotHqgiqVnjaZaddcv369cvV56DjUPCmduiq2qkAbt68eZ58qFYNu2rZrrZ62uGnJEklGWrxTtValCT5ySefeKCo5xEkj+r/SmTU+GihTsmZwQKhdgsqiVSLg6rKGVTMjEUVW0QVZNS274QTTohU9xQFl2rnrgXD4Os9cfzxx3vQeuedd/pz0jlq2LChP18tOmoRUI+rhFUlyEYnUKpCjSqW6voePXp45c0DDzzQE1qVyKnqN3quufU60Njp3CnQ1sKpXpOVKlXyx9YxBAuZTZs23aMxAQAAAJCc1KVCLdS1MU+xV3RsGk+K8bTJbfTo0b5BTpeKo9Ri/c8///SETCWd6lhGjhxp5cuXj3yvOkQoSVNxkTbtHXnkkZ7Yqe4HqsCphcVgU5ziqyAOVTv2F154wTcR6rGDOLRLly4Zkkp3RffVoqUq16hNveIoHZ+q22gjoxZCtYlPm/YAAAAAIBlpzUnrZnPnzrX33nvP1wMVZ0UXHVGRE7Vtf/HFF33dTWucWjNUhwbFfM2aNfOCI+pyqDXF6E17AAAkA5I+AQBObQ5effVVD37eeecdXxBSQqCCHyWFKtmwe/fungiamRIFX3nlFU9yVKtzfb+qZioZT9+XG9VXMitSpIi3WleQN2fOHE+Q1OKagjolUu5ukuHLL7/slS0//PBDmz17tpUsWdKTFzt37uzPI6iyOWbMGPv000+tQoUKkQW7gFqqKzlU97n++ut9bDQesajCixb/VG1Fj6f7RSd9SpA0qgBUVT/3lBb6lPSqKqYKgFWhVIuACnC10Hfqqaf6udVzyUzPQ8/nySef9OerY1XCaLdu3TwhU4uUufk60OKnqomqhfuiRYv8dalk05NOOsnPrRJ8AQAAAKQGxacnn3yyx36KccqUKZNrj3XllVdau3btPEbWQqBa/SkmUoyjGFnJlYqLSpcuneV7b7nlFo9j1EVCCaJaQFTspY2Wl112WaRzhiheVRyqSp+KQ7UJs1SpUr6B7/zzz9/teDagWFhJnYpvtblwyZIlHturPbzizyDGAwAAAIBkpeRObdBTwqcKl6irgdavLrroIi/SolhR1TsVU/Xv39+7OGjDnmJKba5TG3cVZdG/o48+2r9f99WaIAAAyaJAenTfIAAAkoxa0bdu3drb0y9YsMDyI1XpVMCphNagnSEAAAAAAAAAAACQyn744Qd78MEHvaqnOtxp45w28dWuXdu70aljnIrFqMuCNvZF27FjR6QtvBJBAQBIJgXDPgAAAJCVKsGIKr2osoyqsqiiDQAAAAAAAAAAAADzDnm33nqrF05p0qSJTZs2zdu3q0OEKnvqNnVsmDJlSuR7grpoSvgUEj4BAMmISp8AgKSWXyt99uzZ059PkPw5bNiwvWqPDgAAAAAAAAAAAKSCcePG2eTJk+2bb76xli1bWpcuXWzdunXe4n3QoEHWuXPnsA8RAIC4KByfHwMAAOKpYcOGNn/+fKtYsaL16tWLhE8AAAAAAAAAAAAghqBV+0UXXeTJntOnT/e271988YXVq1fPqlevbhMnTrRGjRpZnTp1wj5cAAByjEqfAAAAAAAAAAAAAAAASFpKfSlQoEDk/+qoN2HCBJs7d6799ttvft3AgQPt/PPPz3A/AACSEUmfAAAAAAAAAAAAAAAAyFfWr19vS5cutf/85z/21Vdf2ZtvvmlVq1YN+7AAAMgxkj4BAAAAAAAAAAAAAACQL23fvt0TQMuVKxf2oQAAEBckfQIAAAAAAAAAAAAAACBfJnwWKlQo7MMAACCuSPoEAAAAAAAAAAAAAAAAAABIAgXDPgAAAAAAAAAAAAAAAAAAAADsGkmfAAAAAAAAAAAAAAAAAAAASYCkTwAAAAAAAAAAAAAAAAAAgCRA0icAAAAAAAAAAAAAAAAAAEASIOkTAAAAAAAAAAAAAAAAAAAgCZD0CQAAAAAAAAAAAAAAAAAAkARI+gQAAAAAAAAAAAAAAAAAAEgCJH0CAAAAAAAAAAAAAAAAAAAkAZI+AQAAAAAAAAAAAAAAAAAAkgBJnwAAAAAAAAAAAAAAAAAAAEmApE8AAAAAAAAAAAAAAAAAAIAkQNInAAAAAAAAAAAAAAAAAABAEiDpEwAAAAAAAAAAAAAAAAAAIAmQ9AkAAAAAAAAAAAAAAAAAAJAESPoEAAAAAAAAAAAAAAAAAABIAiR9AgAAAAAAAAAAAAAAAAAAJAGSPgEAAAAAAAAAAAAAAAAAAJIASZ8AAAAAAAAAAAAAAAAAAACW9/0f/vKij+d78bAAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAACn0AAAcACAYAAAAfNBQwAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAXEgAAFxIBZ5/SUgABAABJREFUeJzs3Ql4XHW5P/A3acu+K/siuyAgCAoiKDuIiisq4oYbchVF9KJeN1yvylVRQRQXQBAB2Soi+77vIPtOoS1CgVK60TaZmf/zHjz5pyFJkzbJySSfz/PkJk0yM+85M/HOy+973l9Lo9FoBAAAAAAAAAAAAADDWmvVBQAAAAAAAAAAAACwYEKfAAAAAAAAAAAAAE1A6BMAAAAAAAAAAACgCQh9AgAAAAAAAAAAADQBoU8AAAAAAAAAAACAJiD0CQAAAAAAAAAAANAEhD4BAAAAAAAAAAAAmoDQJwAAAAAAAAAAAEATEPoEAAAAAAAAAAAAaAJCnwAAAAAAAAAAAABNQOgTAAAAAAAAAAAAoAkIfQIAAAAAAAAAAAA0AaFPAAAAAAAAAAAAgCYg9AkAAAAAAAAAAADQBIQ+ARbCpEmT4tWvfnW3H5tssklst9128e53vzt+8YtfxNSpU6MZfP3rXy/q/+///u/5vr/rrrsW3z/99NNfdpv29vZ47LHH+vU4Rx11VHF/eb/0T/kau+6662I4uPzyy+MrX/lK7LbbbrHlllvG6173uth9992L71100UUxUt14440dz0X+DXT11FNPxcyZMyupDQAAAAAAAAAY2YQ+ARbRxhtvHFtvvXXHx2tf+9pYYYUV4qGHHopjjz023va2t8UDDzwQI80111wT73jHO2L8+PFVl8IQmzNnThx44IFx0EEHxbnnnhtz586NjTbaKNZff/2YMWNG8b0vfOELsf/++8cLL7wQo8W8efPiV7/6Vey1117x3HPPVV0OAAAAAAAAADACja26AIBm961vfauY7NnV888/X0zPvOKKK+KLX/xinH/++dHa2nxZ+xNOOCHa2tpilVVWme/7GWjt75RPRobDDz88rrzyyiLkecQRR8QWW2zR8bNGo1EEgvO1f+utt8bnP//5+Mtf/hIjSQa7zzvvvOLrsWP//1upKVOmxDHHHFNhZQAAAAAAAADASNd86SOAJrHiiivGT37yk1hsscViwoQJRRCuGa2zzjqxwQYbxLLLLlt1KQwDkydPjnPOOaf4+uijj54v8JlaWlrizW9+cxx55JHFv2+++ea4/vrrYyRZcskli7+J/AAAAAAAAAAAGEpCnwCDHPzMba9TbvcOze7ee++Ner0eyyyzTK+hx2233TbWXXfd4ut//etfQ1ghAAAAAAAAAMDIJfQJMMja29uLz0svvXS3Pxs/fnwcdNBBxXTEnJr4ute9Lvbaa6/4zne+0+326R/96Efj1a9+dVx11VVx//33xyGHHBJvetObYvPNN4/ddtst/vd//zemTp3abS1z586NP//5z/Ge97yneJzclv7QQw8tJpH2ZNdddy0e7/TTTy/+fdZZZxX/vummm4p//+53vyv+ndt5L6oXXnihmBC5zz77FFtob7nllrHHHnvEN7/5zXjggQe6vc3VV19dnL/tt98+Nttss+KY8hydfPLJMW/evPl+98YbbyxqzY/yeemq/Hn+blfPPvtssZ352972tqK2PIfve9/74rjjjivObXceeeSR+J//+Z/iPOZztM0228S73/3u4jife+65WFg5bTMfO+vIY/7sZz8b11577Xy/8+ijj3Yczz333NPjfeXrLX+n3LK8N+PGjSs+z5w5M2655ZZef/f3v/99XHjhhcXz0Z1LLrkkDjzwwOK5y3OTfwNf+cpXXlbrxIkTY5NNNilqzNDpgo6jfK12vv13v/vd4rWUf2Ovf/3rY//99y9+r1arvex+8rWc93PKKafEaaedFjvvvHNxuz333LN4XXT3OspjzL+/Uv5u+Tr68pe/XHydr9Pens/8nb333ruXMwoAAAAAAAAAjHZjqy4AYCR74oknigmfra2tRaCtszlz5hSBtzJcuOaaa8bGG29cBAEzhJkf//jHP4rw4mte85qX3XeGPk899dRoNBrFRMUMlebjZajziiuuKMKZOY2xNH369OLxbr/99uLfG264YVHXBRdcEFdeeWXHVMYFecUrXhFbb711PPjgg0Xwb/XVVy8++nr7nkybNi0+8IEPxOOPPx6LLbZYsa18Bgzz32eccUb8/e9/j2OOOSbe8pa3dNzmxBNPjB/96EfF16usskoRDHz++eeLQGp+5LGdcMIJMWbMmFhUt956a3zuc58r6sy68njz3GdA8e677y7q++Mf/xgrr7xyx23yXH/yk5+M2bNnx3LLLVdMfc1waJ67++67L84+++wiVJjnrz/yPOS26fmc5/P45JNPFs95fnzhC1+Igw8+uPi99ddfvwimZh1ZX4Ziu7rtttuK19ryyy8fu++++wIfO5/7pZZaqjimfD1l2DFDullHV6961au6vY8MSmawMl/f5WsqA4+TJk2Kc889N84///z4xje+ER/5yEeKn6+99trF5ND8W8lwZHd/D3fccUdxHLn1eufg5EUXXRSHHXZY8fe2xBJLFOfkxRdfLJ7P/PjnP/8Zv/nNb7oNZedj5flZbbXViuc769t0002L566r/NvNc5KvhZTnevHFF49ll122COfm41xzzTVFIHullVZ62e0z/J3e+9739nr+AQAAAAAAAIDRzaRPgAGWkwMzeHjZZZfFZz7zmWIr7AzHZaizsz/84Q9FiC23gM+Jg/n7Z555ZhHcy39neDBDZDlJszsnnXRS7LDDDnH55ZcXgbKLL764CANmwLEMSnaWEyoz/JcBtgwb5m0ydJfTHddYY41eJ0F2ttNOOxUTEMvg3bve9a7i371NMeyLDExm3RkqzBBq1pdBuAy35tTEtra2Yopp5xDrz372s+LrX/ziF8XEzzx/eR7/9Kc/FQG/Mvi5qJ5++umOwGcGU6+77roinJg1Zqgwp23m1NUvfelL893uxz/+cfEcZjAyp3Dmec/zndMvM0SY9/vb3/623/Vk4HPfffctQoR5zPm5fOyjjjoqrr/++o7fzcBhylq7m2pZhg3f/va3F2HbBcnwak4uTbNmzSpen3nbDOPmlM58LfQ2OTb96le/Kl57+VrM5z3PZx5Hfv7Wt74VLS0t8cMf/nC+yaVlGDKPI/+muspQa8rXShl2zucka8qg7X/9138Vf2/5e/mc5XORz0Geq5wC2p0MfGbwNF9TWe+ll15aHH93vv3tbxfHVcpJruXfSU4yzb+xfA13N001XwdZR/7t5t8TAAAAAAAAAEBPhD4BFtHHPvaxjq2e8yNDXm984xuLkFmG3zL42TUMmDLglpM2cypjbmXeWf77Qx/6UPF1ToXsTk5H/PWvf11MuCzl9tLlJMwMrJWeeeaZIlSX/u///m++SYnrrbdeERYtt+2uSgb0yi26O09CzEmJGQTMLezf8IY3FBMb02OPPVaE+XJCZW633tmOO+5YBG3zvgbiuDJEmoHP3KL9Bz/4wXzBv5xImucvg4a53XkGVrseUwYvOwcqc3Ll1772tdhll11eFgbui9wiPkOROXEzZVgwX2/vfOc7i38fe+yxHb+b5yZ/L7emz3BoZ3n+cqpmfydMZvA1w6qda8/gYgZhM0CZ5z0fN6fN5jTUzrKOnL6a8rx1noCbx5EB2QMOOKC43S9/+cuOn+V95jTOKVOmxA033DDffXYOU3Y+jgzAzps3rwhu5t9gBoFL+TeQfz/5mBnofPjhh192nDmpM0Oj5aTY7iZ09kX+nb/nPe+ZL5zaWX4vg6x5Ljr/PQMAAAAAAAAAdCX0CbCIclvnnE5Zfmy11VbFNt5lyC8DbhnQ6zplMacA3nnnnbHffvt1e7+5TXUqQ45d5fTADKV1tcEGGxSfZ8yY0fG9DCJmqCxDerlNdlcZXMxQZZXK7eFz8mNuq925/lVXXTWOP/74InBZBvfWWmutGDt2bLzwwgvFVuFlwLL0+c9/vgj15eTHRXXJJZcUn8tQZVevfOUri6mrKSevdt3e/PDDDy8mOWY4sZQB0pyS+dnPfrbf9ey///7FNMzuwpjlJNCcMJoyKPnWt76128BhTq7Mian5Gt5iiy36VUPWn9NljzvuuCKo2XV790ceeaSYCJph1AxelnJya/47f7+77eZTOe0y/z6ee+65jr+HMtxbbgvf+fWdodx8fW+33XbF9/Ix8rF6e94ypL3JJpsUAdPOz1vnYGgZrF1UGUbN5yyP6dFHH53vZ7Z2BwAAAAAAAAD6amyffxOAbuUUyjJo1lmGznIL6Qwq/uUvfylCn123kc4plBlavOOOO4qpoBMnTiw+33fffcVExNTdVtZlELI7ZSiyvb2943s5FTNluK8nm2666XxTKofapz71qWIr9pxKethhhxWBzgwiZhg1p5fmFuqdg4456fTTn/50EZzM0Fx+rLzyysWU1Zz0mbdZ2MmMneUW5pMnT+6YTHniiSd2+3vl73QO9OVxZOjxX//6VzG9MgOEOa00j2nnnXfuCLr2V+dJrV1DjOVz//jjjxfPaTlpNKduZshz5syZHdufL2rYMCdgZti1DLxOnTq12EL9iiuuKCZv5t9Ahilz4mZOzEwPPfRQ8fmpp57qmGbbVefpoHk+87kuj+P0008vtmfPIG35Wi/DrDlNs3yN5N9RGTb93ve+1+PW9U8++WTH43SVr6eBkiHl/N+JnFKa9R566KHF9zMEmgHZFVZYoZj8CgAAAAAAAADQG6FPgEGSIbMPfvCDRYgxQ29/+9vfiqmOq6++evHzDN/96Ec/KqYWdp4AmUHQnICYgb2rr766x/vvz7blOc0x9Ta1sPOW5VXI85JhuNyaPMOfuV347bffXnz85je/KaY4fuMb34jdd9+94zYZnNt8882LUG1urZ7nOs9nfmRoNCdDfuc73ym2iF9Y+TyVHnzwwQX+fucJpRk8PeOMM+IPf/hDEYTMAGkGa/Pjxz/+cbFN+/e///2XTclckJzeuaDvv/jiix1fv/71ry8CphmEvPDCC4vwZJ6r3O49z1NPkzD7K0O2e++9d/GR26kfeOCBxTn761//Gl/+8peLQGZ5fvK83nbbbX1+7abXve51sd566xUh5ssuu6x4fjM0nec27/vd7353t8/D3XffvcDH6fz7pe4m6S6KPO8Z+szXZ56frLkM3u6zzz49BlMBAAAAAAAAAEpCnwCDbLfdditCnznp89577+0IfX7uc58rpiLmtMKPfOQjxSTL3BY+twTPQGeGRHsLffZHThHsGmDsqqdt5IdSTnTMYGd+PPDAA3HTTTcVIbkMJ+YkzS9+8Ytx6qmnxmtf+9qO2+yxxx7FRx5b/n5+ZKgyJzeW28TnNNDepkmWyi3RO8ttxUsZ1uttWmp3Mrz7i1/8ogj25sTPfM6vu+66IvB46623FhNAc3Jlf7YR767OrsHF5Zdffr6f5TTPrCOPIcOH//znP4vXZL4+y0maC5K/v99++xVTaH/yk590O+G2lK/zr33ta8UE13xuMmS6yiqrdJzPvfbaK37961/38YjnP46f//znxXFk6PP8888vJnpuu+22sfbaa3f8Xufzmee6p6DsUNpzzz2LkG++lvO532qrrYrnIeVzAgAAAAAAAACwIK0L/A0AFknnLcnLoGFu557hv5STLb/+9a8X0xFz4mM5wTO3vx4oOR0x3X///d2GHdPDDz8cVcrJnhnwLMOnuVX5Rz/60WLKZ25LnpM+M3R47rnnFj/P38vjyY+UW5bvuuuuxbnMIGC5nXhuL16GIXM78lK59XdnU6ZM6XYC6itf+coFnqMMqd53333F5MmUteYW6zfffHPx73xec+Lm5z//+Tj55JOLj3xtZBgyQ6D90d1W5ClDxSmDxOuss858P8spmHn8Wc+0adPi4osv7vfW7nn7DHzmlug5XXNByu3RW1tbO4LH5Wux3Oa9OzmlNMO7EydOLM5jd8eRQeAMk2b4s7vQZAZAy+e7t+ctt1fP5y6nsA62fF7e/va3F1/n+S+fiwwG5wcAAAAAAAAAwIIIfQIMspw6mTLgl1uRp0mTJnX8vPxe19BbOQGwa+htYWQYMkOHGazMAGVXGTzsS4ivpzDrompvby/CfB//+Me7rSNDl+WEzXq9Xnw+7bTT4l3velccdthh3QZZ3/SmN3V8XZ7DFVdcsdfgZBmE7GrnnXcuPuc28uXjd5ah0o997GPFMfz5z3/uCDXmZMc8pjy/XeVW5eX0ye7uszdnnnlmt98/6aSTis9vfvObO8LDpVVXXbX4fp7rs846K26//fZiwmd5bH1VbgWfE1czLNmb8jWcz0W5dflOO+1UhDHz/F977bXd3u6EE04oAr/5/Hbepj7ltNA8jgzt5nnIiZl5HnNyaGcZAs7pn+nEE0/s9nEyVLr//vsXx3TBBRfEospwa6mncPW+++7b8Vor/xb7E7wFAAAAAAAAAEY3oU+AQZKhr9y2u9xaPENpq622WvH1+uuv3/F7Ockyt/4u5VTCz3zmMzFhwoTi311Dbwsjpyx+8pOfLL7+5je/Gddff33Hz3JqY24139OW4T0pt8/OraoX1dixYzsmIP7oRz8qpi92lucxJzumt7zlLcXnnIyawcYHH3ww/vd//3e++qdOnRpHHnlk8fWWW24535TJcivzI444IqZPn97xXOXEyHwuunPggQcWx5sBwwyZ5v2X8vjz5zmxcdlll40Pf/jDxfc32WSTIqiagdMvf/nL801uzcBi1peTKvN+cwJof2RYMLdqL6eV5uef/vSncdlllxXnJKeJdqechnnUUUcVdWXYMc99f3ziE5+IddddtzjfGczMoGk53bSU5ye3YP/9739fTLfM4y/lxNb3v//9xdf5/ay5lOHX008/PY4++uji33kuM7zZVRmS/NWvflU8d29961s7to3v7Atf+EIRMM3psD/+8Y/nm+aZr5t83vJvL2vaZ599YlF13lI+/666s8UWWxRTbPN1k6HVfL4G4rEBAAAAAAAAgNGhf0kPAF7mhz/84cuCaTlNMUNdzz33XPHvzTbbLL773e92/Pw1r3lNEVrMbciPO+64YvLiWmutVQQHyymgO+ywQzEJMYNqGQ7sLvzWHwcffHA89thjRYDygAMOKIJ7GVLL8FtOKMwJjOVU0r7IY8it0zMsmRMfM7h4+OGHL3R9hx56aBGqzC3KMxSYQbyczJlbrpfbrn/oQx/qCH3mxMcMe2YIMyc5nnHGGcWW5hlmfOKJJ2Lu3LnF7TNEWsrj/NKXvhTf/va3i+3D85gzCJr3n9M4d9lllyKw+K9//Wu+2l71qlfFL3/5y6LGDBBeeOGFseGGGxaBwQzn5vOd5zJDjmWoNGWwc7/99isea/fddy+e4wwn5nOcgdMMJH7/+9+PlVZaqV/nKgPExx57bDHtNO8zJ1Zm8DIDhBlu7Gmr8Dy+fKwytLowEyYzQHv88ccX5+KOO+4oXv8/+clPijqWW2654rhyW/sMY+a5yJ/l67+zb3zjG8XU2Xz9/Nd//VfxXOYk0vybKWvLY8znqqfjyDry76W349hmm23iBz/4QfG6zOmhOZ10gw02KP6myhpziuyf/vSnjkmkiyJrytdtHkcGbzPcfcghh3S8ZktZbz5PGZzN4+w8gRYAAAAAAAAAoDdCnwCLKEOTXS2++OJFuC7DabnFd3cTFXMSYm57/be//a0IKWZwMsNfeZsMCua22/l1TgzMaYjlttoLK0NtORlx/PjxxWPm9uO5Rfv2229fhOuuuuqqfoU+cxpphiVzm+oMPuaUy0WRW3Tn1MjcHj0nWeZ9ZjAwz8luu+0WH/jAB162FXmek5yemtuuZ1DzkUceKYKPGdLMc5fh1q6ByryfvE2GAHOiaN4mg5+f/exni8mS5aTOrjIgmtuV5+2uvvrqIkCbAdMM+WVANyeprr322vPdJoOhZ599dhEqzOmq+Vxm0DBDjnvssUcxNXOjjTbq97n61re+Fdttt12ccsopxesvA8Fve9vbimPICaM9yXPzjne8owjJbr755sUk0oWxxhprFAHKfJ7yI8OfGdbMMOvyyy9fbF2/6667Fuc6/93d38dvf/vbIvScgee777477rvvvuI1kMeVoch8bjtvl971tZzTMfP1ks91b5NSc7rpVlttVbyurrvuuo7XfYY/8/WUz1vnoO6iyr+xDBrn8eRrOP+2u8pjy0mz+fqxtTsAAAAAAAAA0B8tjUyfAACjQm55ntNev/Od7/QYcGVwZcA7g58rr7xyEbTOia8AAAAAAAAAAH3R/QgtAGDEyS3sc0v13GJ+USfHsvBOP/30jimkAp8AAAAAAAAAQH/Y3h0ARrCnn3465syZE7Nnz47vfe970dbWFh/84Adj2WWXrbq0UeXee+8ttrq/4oor4pRTTim2qN9///2rLgsAAAAAAAAAaDJCnwAwgt18883xla98pePfuaX4wQcfXGlNo9Ghhx4aEyZMmO/fq666aqU1AQAAAAAAAADNx/buADCCrb/++vGKV7willhiidh+++3jxBNPjBVXXLHqskadrbfeupjuudpqqxUh3IMOOqjqkgAAAAAAAACAJtTSaDQaVRcBAAAAAAAAAAAAQO9M+gQAAAAAAAAAAABoAkKfAAAAAAAAAAAAAE1A6BMAAAAAAAAAAACgCYytugAA6K+f//znccIJJ8S5554br3rVq+LVr371Qt3PpZdeGmuttdZC3fapp56KZZZZpvhYVB/96EfjpptuioMOOigOPfTQGAjTpk2LP//5z3HZZZfFE088Ee3t7bHaaqvFDjvsEJ/61Kdi7bXXnu/3H3/88Xj7298en/zkJ+PLX/7ygNQAAAD0bkG9zNixY2PppZcu+pY3v/nNxXv55ZZbbsAev9FoFL3VaaedFpMnT46llloqdt999/jRj34Ujz76aPzf//1f3HbbbTF79ux4xSteEccee2yvNR911FFx9NFH9/jzlpaWWGyxxeKVr3xlbLrppvGhD30odtxxxwE7nl133bU4jh/+8Ifx/ve/P4bKzJkzY/z48UX/9cADDxT9WB5n9l3bb7997LfffrHeeusN+OO++OKL8dxzzy10Xzucla+lrbfeOk455ZSqywEAYJSYNGlS7LbbbvOt33zrW99a4O3+9Kc/xRFHHFF8veqqq8ZVV101IL1NT33ikksuGauvvnpst9128fGPf/xlaz4D7cYbb4yPfexji7y2NhoNxhrgorj//vvjjDPOiOuvvz6efvrpmDt3bqy00kqx0UYbxc477xz77rtvLLHEEjESlf894/jjj483velNo6a/BkYuoU8Amsott9wSf/zjH+MTn/hEEfhMuQjU1bx58+Luu+8uvt544427DWcuvvji/X78vN/f/va3cdxxx8U555wzIKHPgfbII48U5yebtVxUXXPNNYsGLYOduViWdefiWeeGJs9l/oeBP/zhD7HTTjvFNttsU+kxAADAaLLuuusWiyzd9R8TJ06Me+65p/g466yz4m9/+1uxuDcQcqHjpz/9afF19g0rrLBCscAxa9asoj+YMmVK0Uvk4k8ugPR18SMDj5tvvnm3IdMMRGZvkguYl1xySfzXf/1XfOlLX4pmdfnll8f//M//xPPPP1/8O89h9qAvvPBCPPzww0UI9OSTT46DDz64WOQbKP/4xz+KUO4XvvCFIQ24AgDAaHLhhRfGN7/5zWKtpTfnnXfeoDx+9n5d+79arRYzZswoLtR78MEHi4v4fvWrXxVBUejNr3/962KNs16vF+ub66yzTowbNy6eeeaZuPrqq4uPXIP9zW9+E5tttlmMFvproFkJfQLQNHJa5Xe/+91isk3nxbLupn50vhozr8LMqx0HQi56HnPMMTGcz1E2JRn43GKLLYompZwok1eoffvb3y6uwvziF79Y/MeKnNZTysXWvLrv8MMPj7PPPrto9AAAgMH32c9+Nt773vd2+7NcjMkFiFxozH4kA4Y5nXMgnH/++cXnnPr/i1/8ouP7V155ZfFYubCZQdMNNtigX/e78sor9zqdMXdO+NrXvhY33HBDseCU0z5f//rXR7PJiwHL0Ozee+8dn//854uAbCnPYR7fX//61zjyyCNjzpw5AxZwzfvLvm+k+vCHPxxve9vbiglGAABQhZyome/pb7311l77lbxQrxxCMtDe9773FWs+PT1uXlyWkxuzv8o1n+4uJoR05plnFmHO3OHjxz/+ceyxxx4xZsyY+QbKfOMb34g77rij2GUkg8wj7fVUhrPXWGONUdVfAyNXa9UFAEBfnX766fHQQw8VW0gM5JaGI8kVV1xRNGbZtOV2eJ23EMyAZzYuOdUzrwLNqz87y6v68tzmOc5zDQAAVK+1tTXe9a53xWc+85ni37kF24QJEwbkvsvplNtuu223389t2Psb+OyL1VZbLX75y1/G8ssvX/y7Gbfvzl0ofvaznxVfZ9gzj6dz4DOtssoqxUV1n/vc54p/H3vssYO2GDzS5OJivva6LsYBAMBQeeMb31h8vuCCC/oUJHvNa14TQym3dC97kunTp8f48eOH9PFpLr/73e+Kz1/96lfjrW9963yBz5T9V160mGuJ+d8ETjzxxBhp8hjzw8WFwEgh9AlAU2hrayuajWxC9t1336rLGbZyUk655X13Wz7mlvY5RSfdddddL/t5bluQV69m85fnHAAAGB522WWXjq/zQq2BkFNEy+3Y+/L9gbTiiivGVlttNaDHM1Rym/rvfOc7xbaKeQy5k0JvcleF7M/yvB5//PFDVicAALDwMhiXLrrooqIH6C30mRfr5fT/oZYXnq277rrF1zmhEbrzwgsvxBNPPFF8veWWW/Z68d3uu+9efH3nnXcOWX0ALByhTwCaQjbVOVp/++23j1VXXXXA7vexxx4rJq/kNgabb755bLPNNvGBD3yg2C4xt97r7KMf/WjHlvFpzz33jFe/+tVx4403zre9el5NmdvPv/nNby62WH/d614Xe+21V7EomI/XVzmpM+8/P/oqa88rO3PrhZ6U/3GiXMjtOokmz3Ge64svvrjPjwsAAAyuXEQsdV5wzH6k7BuyH+lO+fOyd8neJv89efLk4t+5ZXz+e9dddy0+579T/ry8bW7zPljH1HUBtawvdyrorVfK3+urmTNnFlvZvfvd7y56tAxr7rPPPvHrX/+6mIrTH7m9Y+6wkMoJrL3J8Oz//u//FoHPH/zgBy/7+X333Rff/va3i0XivIAve9M3velNxX13nSpUHnv53H3rW98q/p3f7+zZZ5+NI444otgiPRf18phza8jckn7u3Lk91nrdddfFgQceWFws+NrXvraYMnvyyScX/WNv/WlOoM1tJ/N2WX9ORfr0pz9d9PLdKV9ruRXlD3/4w3jDG95Q1Pje9743pk2b1nGcH/rQh7q9/SWXXFLUmf1rPl7231/5ylfinnvu6fb3M6D717/+tbi/7PvzNllrTmm9/PLLezwfAACMXrml+8orr1ysl9x2223d/s6jjz5avKfN3RNyp4SuvvzlLxfva3PNqCfnnHNO8TsLGxpddtlli8+zZs0qPv/85z8v7i/7nd56mvydfB/eW3/QFwvzXjv7qew7sy8o1+ayV8se8LnnnnvZ75e9SPYr3Sl7yK59UZo3b178+c9/jg9+8IPF42Sfk2t2ucX5lClTegxJZi15DvP3s6fKdcRvfvOb8cADD8TCyiBl9klZR/Y/uaZ36qmnFuewlL3XW97yluJ4ertosOwFc41zQXLYS2lB/U/2df/85z+L11F38vX+ta99LXbeeefiudtuu+2KNckLL7xwvt/LPj/XVLPGXHNd0HEcdthhi9TD53+zyPs59NBDi9d39rLla7F8/K6vo97663xe8us8vp6G5Pz73/+OTTfdtJjya3t4oApCnwA0hXJ7jJ122mnA7jMb6Xe+853FG/ds7DbeeOOiKf/Xv/5VNHs59fKpp57q+P38eTYIpc0226xYkCsb6gyJfvKTnyyanWyaxo0bV9wmtyzM7RdzO/VcwLr33ntjsOTjZdOTC4Tdyeb2sssuK77ecMMNu/2dXCxL2dQBAADDqyfKoGQuOi1q35C9TDnJMyfD5L9f9apXFZ/LSTH58/x3fuQWbwNp6tSpHSHUXMAZTLmgmL1fLg49+OCDxcVueay5QFsuIpUhzr4oF4hyJ4pyy8cFyR4tP5Zaaqn5vp+Lo9kn/u1vfysWN7Ou3KZxxowZcdVVV8UhhxwyX/g1J4Z2fu7K56zzTg+5wPX2t789/vSnPxXTXPL+cpv0DET+9Kc/LRYWn3nmmZfVmOfiE5/4RFx55ZXFAl1ODZo0aVJ8//vfL+roSQZZDzjggCLgmYthm2yySdEPX3311cWC4Ze+9KUeF8m+973vxUknnVQ8Jzn9NY9rhRVW6PGxMtj83//938UCctbZ0tJSLMRlr3vuuecWffxf/vKX+W6Tx5ILf/lYuVifr+W8TS6sZng0F+B/9atf9fiYAACMTtl7ZTiwty3eyz4t3393Jy+8Stdcc03RA3Wn3JY9+4L+yve65QTHsicoHzN7nwzo9faYWXfuELewFua99u23317s6Jchvex7su/IYS9Zb+5C9573vKcI0w2EXPvL/icvwsu1v1yvy7WxvP8MAuZ6WvZPneVFaNlXZC25tpf91HrrrVdcWHfGGWcU5zd7tYXZqW///fcvLphbZ511inOVNWVoMy9oy56mfN3lOUh///vfu72vXI88//zz53u+e7P00ksXfWPKQOPXv/71uPnmm+cLm5Yy6JznKPuzrvKCwHyd5usng7H53GWPm6/v3AEjL8Qr7zN7tfI4cj22Oxk4Lv+2Or/+F6WHz9/JYG0GObO+DIj2tB7aW3/9jne8I5ZYYoni9ZC9Z3fy+cmQ7g477DCgA4sA+kroE4BhLxuEcjEwr34bCNlI5VWE2URlw3fttdcWDWZeiZbNSi5yZiPxuc99rmNaTk5e6dyc5sLbKaecUlzBlf7whz8UdWYjdPrppxfhyjPPPDOuuOKK4t/ZKM2ePbtoFPviwx/+cPEfDMr/aDAQshnKIGs2W9kwdac8x3ks3TV8AADA0MlFkBNPPLFjMkUu6Ky22mqLdJ/Z22Qvkz1K+uxnP1v8O6eI5Of8d8qf57/zYyAvwMvt3HPxL/ujJZdcsggaDpZ8jNxePRd8cspIXqCXfV8uzmSvltNJ8mfZ+3Xd7aEnuYiU1lxzzVhmmWUWurZcQMzFx1wkymBk9qVnn312sXiXgcly0k+GN3NBLeXiaOfnLqeB5r/z+ymni+Sx5MJU9roZUM0wZF7Ul6HMnFCTC7/5eJ3lIl0uqOUCY043ycfPfjZr+shHPtLjxM6cHJohy5wck7tb5AJmLoTm7X/5y18WC4B5PBk27U4uDGdvnfVlD33MMcf0es6yJ//HP/5R/A388Y9/LI4v68zPWXf2ujk5NOsuZS35nOdWhbnYmMeSt8ljzslL6dhjj53vok8AAEjle/KetnjP97p5wVPuDNednEyfF2DlRVDdrfXk+/d8D50XlOVkwv7Kda2yV8jeJuX6VrnO011oMHvMMjC4MEHTzhbmvXYOXck+Ladzlj1Qnpu8n6w9z8lvf/vbWFT5fGUQMXdWyPORj5E9R56zfNzsrbNvygvKOl8Ul33G448/XoT/MuyXvUquG2bQM5/nfC6zj+uvO+64o5gKmecojzlDsXluMpCZ56vzMZfPS9aea5Vd5W1zEmaGGft6UWj+d4Dsz/K85ONnn5cTajNw+vvf/75YN+1uh8BSnou84C97xpx4essttxT3kz12/veKDLFm79l52mqGPrNHywsQuwtp5vORwd/srcsLKhe1h89+Ny90zdtlfVl3hjK701t/nb1++XfdU2g1738g/o4AFpbQJwDDXk7GzDf92Uj0dDVWf+ViVoY5c6x/NimdF+qy6cqmLq/gykakrxMvc5Epazz44INf1mTlv8tt6bpr0LqTTfIGG2xQfAyEbEqzgUy5jUVP2/LlOc7/wJDnvKet8QAAgIGT79OzX+j8sd9++xWTJXJLwR/96EfFBVm5VXcG24a7XDDrejz5kQshuU1dHlcuKOUFc3lhWk5NGSx5AV4u2OVODbn41Hn6Ri7sZIgwF5gygNnXLezLRdXs2RZFLjRm75W15aJWLhaXctpl7iKRclHxscce69N9ZkA0Fy5zm8TsdZdbbrmOn+U0mQxVZv+bC3Sdp5WUFzjmxM5cfM3eNmVfnIuD+bx1t1hcLkzmYmpeuFjerlwgzwBmOdE0p4Z2la/vfF2XejunOVmnDD/ncZS7VKQ8j1l31p+LmBk4LZXTjXKibOc+OG+TAee3vvWtxWuyfF4BAKCUYcGcMpihxZxQ2Vlu8/3www8XE/17mla/oKmN5aTAfG+bj9MX2R9MnDixeO9fvt/O97oZkCuV0x/zgqmuwz0yMFhO2FzUXSQW5r12eZussZywmHKiZvZAu+yyS9GjLapLL720eM7yvOaa3/rrr9/xs9zBL/vsvCju+eefn2/78bK+nPLauT/J22Q/ns/3G97whj5fNFjK3ix7/87HlgHGHFCTcgeEDDyWEyfzMXp63SxM2DAH2GR/3Hm4TgZHsy/MrdzzosFcM82L8l588cWX3T6/n71W7rzwsY99rHiOO4ebM8yb8mLSPKepc5izu+BkeWw5uTPDoQPVw+dFjuUujfnfHcr77q/y7ygDpF23lM8Qb9aQf/ud//YAhpLQJwDDXrkwlG/sF2WbiVI2TeXk0GxMupPN5e67797RGPZFXv115513Fouz3ckJNqm/jeBAyEkr3/jGN4qGbIsttii+7kku6pWTg/I/HAAAAIMrFwpy4mHnj1ycyomYORUmw2ynnnpqsciS79eHu9xRoevx5EdeVJZbmOeCSE6FzMXGniZuDJR8jJTBws6LUqU8n+WWjbmQ0xdlb9fTluV9lSHJDL9mILI7nZ/r7hbdejvennZ2eOUrX9lxzsvjzUk6d911V/F1bjfYnY9//OMv+14GR3PhK6d85rF0J8979vK50JxTWbrqz24eOVknX1t5oWIuAHannI6UvXm+1lJOC0q5mJmLrF23isxFwyOOOKLHCyMBABi9MiyWwcXutngvJ3d2voipOxnMy/vJ96jlrgF93dr96KOPLt6ndv7YfPPNi/WrfA+b610ZuMxBJ52DbXkBVk51zAvycmDJYE0nXJj32hloTLmteU457dxX5cVruVteufvEoih7ozxXeS666rwjXudesDymDIpmUDEDsqXsbTLUmBfY9bc3z+eku4vcsofJ+8rH6bzVfOfgbucJnLllfZ637MP6Ox02e6nsP/N1lwNs8rXT+eLD7KHy/Od56TydNddpc+pob71m7g6SActcA836SuXrLKeAdjZ16tRiwmnnbeAHoofPoHUe10DYbrvtivXi7EO7Tuot/44y1Nw5vAwwlMYO6aMBwELIN/6pvCprUWWQsWwisznuSf4sm5C+TlRJ2RzlFYvlFV75WPk5m6GcSpJ62x5hMOTknGz4yyv5chv6BYVn84rD3B6hXCQDAAAGT07EKBdCsl/I9+K5wJRBz1zQyUWngVq0GAo5dSO3aSvlok8uAuYW33ls5STKRdkava/KnRZyWkhPF/SVvVrXBdielFu/5XEMhOwjcwE4a80e8oknnii+7lxPd1tJdjVr1qzi/JaTME888cRuf6/8nfL+M1yc958Lobmg1Z3ueufy9rlo29NzmQt42YdmsLS73ro8l32RdaZcfCx30uiq83nK+nKLwXyt5baFN910U/ziF78oPnLKT07oyYlKOZVmIC4wBQBgZMqwXr63zi2mcypjGa7MLdLzfWQ5QKQna621VhEeu+GGG4rJhoceemjx/ewBcsvrnBSY0y27s/rqqxcfXfuHXC8r39Pm+9mu8r191p1bredjllPyyxBoBgZ7Cu/1x8K81z7ssMOKnQ7yAric1J+15lTLvE1OvixDlwPVC2YwsJze2VU5vTHX8bKXyOf2U5/6VBHwzXOVtea5ymEqWV/ugJDTQRdmcmT2Rd3JwGAec9aYr4fyucqwcYZLs5fK104+fsogal5Ul6+ZvKhvYeSOh/nxhS98objAMC/SzABmvlZyXTB70kMOOSROO+20+Xqx9PnPf77H+83dIFLnXja3SP/+979fBEcz1Fpe+Je7LOZabb5+Ovehi9rD5/rmQF0sWwZSc401z0059CdDoPn3n2ztDlRJ6BOAYa/c9qGcprKocruCUm9B0nLRKhfO+nq/uR1EXnXX+crEbMBzCkk2UFdffXUMlWw6cquJcnuEbJxy4a8v4dnyXHfdrgAAABhcOZUiFzy+973vFQs4OdklF3py8SQXn5pROYljq622ive///3FQk/uupATRvoT+luU/i8X8fKjN50nuPSm3I4+w4d5m770WHkxY07hyQXfrtNBciu9XFDsLH9v3333jb/97W+xML1uuVDWl+Mtt95beumle/zd7kKd5eMt6Ph76637sxhX1puPm4uSC1L2s7lIm1tfnnzyycX2f2WgNj/+8pe/FPV9+tOfjoMOOmiht/0DAGDkygvwMniZUyxz4Ef+O3cxyC2os8/py8VsObUxg3u5fpRbT+f7znLK5z777NPjpMC8XQbzFkbeNkOfOTkx34vn+/0yMJhhzYUNDHa2MO+1MziZu9PlgJLcDSBry4sE8yMviMxQYIYEcyrloij7lXzeuk4g7SrPSdaR9eZznetqObk0w58ZusydOPIjh6zkRY65m96Cwr5d9dZvlT/rvFNgrtPltMsMP2Y9ZeizfN2Uk0AXVT5O7gaRHxn0zGPLQGa+1vN1nuubnXvlvvRinX8/e748jgyQ5uu/DH2Wa5ddQ5OL2sMP9AV9WV/+d5k87rxIM/97TV7kmmvXOcG2p10oAIaC0CcAw175Bn2gAoidG6tsCHLyR29h094asc4+97nPFdvGZwPzkY98pLjab6ONNiqmnmTwMxfrhir0mecqr7bLqyvL7QWyWe7rFgPluTbtBAAAqpPbreXC0rXXXhs/+9nPiskg3U1x6W0aZAYNh4vcCi8Djhn4zMkhX/nKV+KEE04ogq790Z9jygWs7Ptyi7qepuf0V25Pn/1VLgzmwu0ee+yxwNvkQl1OvckJLrnQlb1ZBj6//vWvFz/PaS55P9lDbrDBBrH88ssXFxP2J/TZ+ULJfIyNN964X7frHBrtqrvAZtkrLygsW/aXfe2tF1RnLqyXu1n0VZ7vT3ziE8VHhnXzecv+PbeMzykxv/zlL4tePn8OAACdZVgx34Nm75IhwAx99nVr967TDnPqfl4ElxfEZbBuIMN7XWW4Li9Yy4n7GfzMrcDLoN1APubCvNfOISnZH2XPkxM/8/dzAmkG6/L85ATQiy666GXbsve0A0J3PWLZP3z7298u1uz6I9cNM/yYHw888ECx1pbHldMw8zn84he/WOzM8drXvnZA+tiyp8oplZ3l85S9ZJ6LvDA0w7Q5dTO3Uc+pqH31ne98p6g/p1bmlNWe5POUr9N8vHxu8rWTocbyeciptPlc9VceR4Y+czrmN7/5zSI8eddddxX3W27VPpg9/KLIEHAGbvO5zz4714J7CqwCDLX+/RdVAKhAebVhOX1kUa2zzjrF1Yfp7rvv7vH3yp9laHNB8oq3stHJq/9y4S63zsgrETPwmbLZHQq5UJdXTpaBz7yCMhdW+xr47HyuB+JKTwAAYOEXFzNcmJMUc9v3r33tay8L5o0ZM2a+af9d5fbww0lu25cLeCl7qFw47ao8pu6Op7/HVE7l7LwdXVc5PSQXnHIaZ1/kZI+8yC/lVJsFbb2ex1GGN3Orw7I3y94xvfvd744//vGP8cEPfjC23nrrIvC5MD1kLhCWPdzDDz/c4+/louV9993XcaFjTidJua1fhnG70912iHksKScc9RQYzdftvffe2+feelGfyzyG7IVzETFDuSmPM3v2crrPaqutVpzz/NvKyULlQmK5cAcAAF3lek/KMFy+/8/wWl7U1NfgXYbp3v72txdfX3zxxXHzzTfHtGnTOrbZHixlKC0fM98jZy+w0korxU477TQg99/f99r5Hj37hzz+lOtnr3/964shJjktND+yDy63oV+UHrEv/UM5vTWneZbK7dTLqZvZL330ox8tpnzmduM56TOP49xzz+3XuepuK/IyDJrhytT1wr0MGOdFgfk7eTFoPo/pne98Z8faY1/kziF53jP8uyA57bS8YC9fK53PZb5mu+5S0dktt9xSbFHfeWJpyv4510vz9tmvZXiy3MK+a7B3MHr4RVWGpPP8l89Fnv98HgCqJPQJwLBXvsHP6SC5gLOosoF44xvfWHx94okndvs72fzmeP5yq4lS5wk0nRf2Jk2a1PH15ptv/rL7y7rLqzbLhafB8t///d/FlZHZGOcVjIceemi/bp/NWDZenRfxAACA6qZjZtizXHw64ogj5vt5TvjobRGpXBQaTnI7wzIAmBMbs//q7pi6O56cOHn99df3+bHKRcbcPrDrwlNqb28vJnXkVuo//elP+3y/OfEle66cxPrb3/6219/NKa3ZM2Y/mY/VtY/saTu4rLlznZ2VWyN2DZyWi865lWIGLrvKiSk5aTUXYv/85z93hFg32WSTlz1mZzmVpbvJQRlQzdpycbY72QfnomDWm9NMF0UuTOdib74ucpGtOxkizgXZnGJU/veDfK4yUJvbR3aVC3XbbrvtkPTqAAA0r5zMucYaa8STTz5ZvPfNaY+5RXqGOfsqe46yR8vw4FBMCszJjjkEJacUliHF/gYGe9Pf99oZ5Muppx//+Me7DQ9myLEMHHbuZ3rrEe+8885uQ59lL5hTWZ977rle689dKFL2NtkrZX0ZWu0qL7Irg5nd9Vu9yaBwdzso5AWCOVVz5ZVX7nZyaBk4zMDmwr5uynBiDrs566yzev3dfK3kGmFO9SwvdszgadnDZ6/ZnZzQ+uEPf7iYfptB2t4CyDkxt/OxDUUP35ue+uvS7rvvXpyPvKAxn68M0WbvXYZiAaoi9AnAsJdXOWZQMxuo7hqFhd0msWx0MxjZeSpJTjD5zGc+U7xpz4WvbPBKna84y+a+1DkcmVf7ZYNWygkreX955Vnqa3A1r1DLK+Lyo6/Gjx8fl19+efH1Zz/72X5vWZEyMJoNeG6hMJhXmAIAAH2Tixk5ITPlAkNOz+h8kVxuPZcyEFpupZ2LFTk9I/uT4WbxxRcvtqYr+6Pcaq5rmDBdffXVxSSdUi7k5TZ6PS3YdScXnXLxLKea5DZ2nfu47LkygJo9Vy5IfvKTn+zXom/2XOlXv/pVsUjYdRJJhjrzorwyXJnTa7bYYouX9ZEZqOw8WSb706OOOip+//vfd3yv62JX2ZvmYnNnBx54YPGzXHA77LDD5pt8kr+bP88FvJwem+em9IUvfKFjcmm+xsrFruxts5byIsbOsmfM+yvDu7n43Xnh88ILL+x4bj/wgQ90XNC5sHKizvvf//7i6y9/+csdF2qmfNzc9vDoo48u/p3HlhNqUgZAy/OcPXPnhbx8zk466aTi64GadgQAwMiUUwlTbkueysmdfZW9QE6NzPflZ555ZtGD7LPPPjGYshfKi6+y7yr7i4EMmvb3vXauuWVoMteg8j19590NcornkUceWfRD2dPkBNCuPeLxxx8/35pZTnvM++lOhg/zsbJH/tSnPjVfv5aP8d3vfreYJpqBv7KvyXXD8nn90Y9+VARKO8v+NNcVuw6M6Yvs+bKf7dyjZRA3d+pLGWTsbse+PMdZVwYlc1JrXjRYXrTXVzvssEPHNurf+ta3imPrPMwm5Zpovi6zR075uQzgpkMOOaT4nK+jDPl2nrqa/42i/Hn2yuXgne6O45xzzinCu7krY+fneLB7+N701F+X8nkp/1az/0+2dgeGg5f2tgWAYSzfuGeDkAs6uXC1/fbbL/J95tWC2dRkc5MLWtlklFskdN5GIReMOjdZeSVXLjTlG/9csMtFumxksrnL7T3ySr3jjjuuuFJurbXWKhbTysYpm6qcRpJX8mVDWS5A9SQXzMoFq2zk+iK3BCzlVokf+tCHevzd17zmNUXgtas8xynPc3+2hAcAAAZHLkJ9//vfLxZJcmEl+5jsYfL9ek6PzEWPfG+f26TlYlqG6zIgmZNTckpGLozkxV3DSfYbOXXm7LPPLhbacnGpnPKR38/pIdmbZRgxF4NyESYXdnLS40EHHRS/+93v+vQ4OYkyJ3HmYlE+zm677VZsK5fnNO8/z2cuPOXCbbnNeV/lrgrZI/7f//1fsViXH7k4lVsa5sJiLlKVPW32jXkxYNfb58JeXiiYdZWhyLxdLrjlBM6sM7dc77rVe/ZzDz74YNEDXnnllcW0nLyvnL7yy1/+srjvrCeDl3m8Gd7MCxFzKkqey1yoK8PC5eSST3/608X95WspQ5yrr756UUtu2ZgTXvI1VG6rWMrF0+x5TznllOI1mgHRrDvrLaft5OLiN7/5zRgIOYknF0vzYsd8TldZZZViGm726OXiaT5euVCZ8txk6DR7/5yam9Ng8tiyL89zmwvTOVEnX1cAANCTXAPK9Z9c48k+Y8cdd+z3fWRQLLc+z7WofN/aeeeGwbyIMN8/52NmYLC/fU9vFua9dgY799tvv6J/zT4k19LygrLsK7KPyp4je4vOUxTzvX9eFJg9bobvssfJnil7nOw/spfMnrKz7MOOOeaYos+577774h3veEfRc+Vj5e3yfKT/+Z//mS/Amb1UrpPlVMe86CzXBPN5yv6m7HFy7a2/oc98vjM0mhMis/7sX3J7+ZQDXPbff/9ub5fTRbPPX9TpsLkDRfaCGc7NXRDzI6fXZl9Ynsvsj/O85UWNXdcXMwybv5M9X97XscceG+uuu25xHGVYMs9vnvOejiMDyOXgmuz7h7qH70lP/XVn+RrLEHO+bvJY+vv8AwwGkz4BaArl1YLZ1A2UnOD597//vWhI8w16XuX3/PPPx9Zbb11MI8mtA7JZ7Cqv4srQaE4SyQYnG9eUV+P94Ac/KK7WzEY2g5rZfOQiazY/+R8DsoFKnSeSDJSsvfOVirnN4G233dbjRzYw3bnqqqvmO+cAAED18oKzcqEsFzo6T/DMniYnbeSFZrlAluHI7HEyHJoLLl2DesNFLgqWC3k5pfTZZ58tvs5pIjkpJhfnMsSYC2H5s1wky5Dodttt16/HyR4tp57mhXu5KJSLiTlZJM9R9oW5OJiLOgvjE5/4RLFdYIYf83FysSwXB7Pe3DkhJ4/kz7sGPlP2itl35kJnhkWzpjzWvAAxF9myXy2niZQLY53PXZ6PXLDM10PnaTe5IJiTOQ844IAiMJs/z/BmLlbmQmIGhrPv7Song+brKgO5eRy5C0beJvvcfLzUdfvKXHjLCTnZ7+Zx5GstF1TL48v7ywBpTncdCHk/uQCYC8W5YJhh1ny8nBSUr4tcZM7Qa9fXfE6WzcX1/J3s5bNfz4s0c2JQ9v9//etfF3hhJgAAo1uGFzOgmPbYY4+F2iI9t9ku36sO1aTADBmW4dLuttNeVP19r50BvuzrMlSY/UZOcswL4ZZbbrmivs59UCl7q+yd8vvZQ2bvlD1A9lt5X9lPdSfX+PLnX/3qV4sL2TI0mmtj2XNmP5UXG+ZW7p3lzzLcl1M5MySbx5K9Ua77ZQAx1/uyB+qvfLycVJqvo+zRMuCa5yx7pu4GtHRWvlbyws8Mry6MvO1PfvKTYoeEPG95bLmGmceWF+1lYDP72uwXy8mnXWVPnb16Pg/5nOZtc20yQ5N5oWP21p0vLuyqfP3lxaudd1kcyh6+O731151fg+WE1fw7zuApQNVaGp1nbAPAMJXNW15FmQtVOa1ko402qrqkESkb67xaLxdWc2rpcF0cBgAAYOhcccUVxXb2Ocklp4cCAAD9l4HIDIxlSDEnCg7FGkyG8vKCqbxgK7cmz0mKNJcMof7whz+Mt771rR3bizO0cteMvMAyL/DMiywzvAxQNZM+AWgK5RZ+KbeJYHDkFXopt00Q+AQAABgdclrMBz/4wbjnnnu6/XkuSKec4AIAACycnLJYTjwcqjWY3M47J+TnZESBz+Z+3eQuH1Qjd3DMwGfuBCnwCQwXQp8ANI28+jG3NDzrrLNi6tSpVZcz4uQ5zW0u8hx33ToDAACAkSsneN5xxx3Fdn9TpkyZb5pJXhyYHzkZKLdgBAAA+u7ee++NyZMnx8knnxynnHJKsc32/vvvP6iPmVuY57bp5513Xvz6178uvnfAAQcM6mMycGbPnl1Mhc3dD7/zne8UX2+88caxww47VF3aqJJbyuffbk7I/d73vld87xOf+ETVZQF0GPv/vwSA4W3s2LHFAlQuMv3mN7+Jb3/721WXNKLkOc1GMs9xnmsAAABGh6985Stx6623xk033RS77rprrLPOOrHEEksUC1zTpk2L1tbW+OpXvxrbbrtt1aUCAEBTOfTQQ2PChAnz/XvVVVcd1Mf86U9/WgTVSjkhcostthjUx2TgzJw5sxiEU8p+7PDDD6+0ptHohBNO6NghMe24446x1157VVoTQGcmfQLQVLbccsv4zGc+U7zJ7twks2jyXOY5PfDAA4tzDAAAwOix3nrrFVOADjnkkGKCzHPPPRcPP/xwLLPMMvHud787Tj311PjkJz9ZdZkAANB0tt5662K652qrrVZcbHXQQQcN+mO+9rWvLS7iWmmllYr38Tktkuax8sorF7sxjBs3rujPjjnmmHj9619fdVmjzmabbRZLLbVULLfccvHe9743fvWrX1VdEsB8WhqNRmP+bwEAAEA1vvSlL8Vtt90WV111VZ9v8/zzzxcTqy+//PJ45plnYo011oj3ve99xXY7plcDAAAML/o+AACARWPSJwAAAMPC0UcfHeeff36/bjN9+vT46Ec/Gn/5y1+Kq68/9rGPxZJLLhk/+9nP4stf/vKg1QoAAED/6fsAAAAWnUvfAAAAqNTcuXPjBz/4QZx++un9vm1OennooYfi8MMPj/3337/43qGHHlpMjrnwwgvjoosuij333HMQqgYAAKCv9H0AAAADx6RPAAAAKnPZZZfF3nvvXSz87bTTTv267Zw5c+Jvf/tbrL766rHffvt1fH/MmDHx1a9+tfj61FNPHfCaAQAA6Dt9HwAAwMAS+gQAAKAyZ5xxRsyaNauY2HLsscf267Z33nlnzJ49O7bddttobZ2/vV177bVjrbXWiptvvjlqtdoAVw0AAEBf6fsAAAAGltAnAAAAlfn4xz8el156abFFX0tLS79uO2HChOLzOuus0+3PcwFw3rx5MWnSpAGpFQAAgP7T9wEAAAyssQN8fwAAANBn22233ULfdtq0acXnFVZYodufL7vsssXn6dOnL/RjAAAAsGj0fQAAAAPLpE8AAACaUk5zSYsttli3Py+/P3fu3CGtCwAAgIGh7wMAAHg5oU8AAACa0hJLLFF8bmtr63VxcOmllx7SugAAABgY+j4AAICXE/oEAACgKS2//PK9buM3Y8aM4vMyyywzpHUBAAAwMPR9AAAALyf0CQAAQFNaf/31i89PPPFEtz/P7y+11FKxxhprDHFlAAAADAR9HwAAwMsJfQIAANCUNt9882ILv5tuuinq9fp8P5s4cWJMnjw5ttpqqxgzZkxlNQIAALDw9H0AAAAvJ/QJAABAU1p88cXjHe94R0yaNClOPPHEju/XarU44ogjiq8//OEPV1ghAAAAi0LfBwAA8HJju/keAAAADCv33XdfXHLJJbHmmmvGe9/73o7vf+lLX4prrrkmfvzjH8cNN9wQG264YVx33XVxzz33xN577x277bZbpXUDAADQN/o+AACAvjHpEwAAgKZY/Dv66KPj7LPPnu/7K620Upx66qmx7777xl133VVMfpkzZ04cdthhxdSXlpaWymoGAACg7/R9AAAAfdPSaDQaffxdAAAAAAAAAAAAACpi0icAAAAAAAAAAABAExD6BAAAAAAAAAAAAGgCQp8AAAAAAAAAAAAATUDoEwAAAAAAAAAAAKAJCH0CAAAAAAAAAAAANAGhTwAAAAAAAAAAAIAmIPQJAAAAAAAAAAAA0ASEPgEAAAAAAAAAAACagNAnAAAAAAAAAAAAQBMQ+gQAAAAAAAAAAABoAkKfAAAAAAAAAAAAAE1A6BMAAAAAAAAAAACgCQh9AgAAAAAAAAAAADQBoU8AAAAAAAAAAACAJiD0CQAAAAAAAAAAANAEhD4BAAAAAAAAAAAAmoDQJwAAAAAAAAAAAEATEPoEAAAAAAAAAAAAaAJCnwAAAAAAAAAAAABNQOgTAAAAAAAAAAAAoAkIfQIAAAAAAAAAAAA0AaFPAAAAAAAAAAAAgCYg9AkAAAAAAAAAAADQBIQ+AQAAAAAAAAAAAJqA0CcAAAAAAAAAAABAExD6BAAAAAAAAAAAAGgCQp8AAAAAAAAAAAAATUDoEwAAAAAAAAAAAKAJCH0CAAAAAAAAAAAANAGhTwAAAAAAAAAAAIAmIPQJAAAAAAAAAAAA0ASEPgEAAAAAAAAAAACagNAnAAAAAAAAAAAAQBMQ+gQAAAAAAAAAAABoAkKfAAAAAAAAAAAAAE1A6BMAAAAAAAAAAACgCQh9AgAAAAAAAAAAADQBoU8AAAAAAAAAAACAJiD0CQAAAAAAAAAAANAEhD4BAAAAAAAAAAAAmoDQJwAAAAAAAAAAAEATEPoEAAAAAAAAAAAAaAJCnwAAAAAAAAAAAABNQOgTAAAAAAAAAAAAoAkIfQIAAAAAAAAAAAA0AaFPAAAAAAAAAAAAgCYg9AkAAAAAAAAAAADQBIQ+AQAAAAAAAAAAAJqA0CcAAAAAAAAAAABAExD6BAAAAAAAAAAAAGgCQp8AAAAAAAAAAAAATUDoEwAAAAAAAAAAAKAJCH0CAAAAAAAAAAAANAGhTwAAAAAAAAAAAIAmIPQJAAAAAAAAAAAA0ASEPgEAAAAAAAAAAACagNAnAAAAAAAAAAAAQBMQ+gQAAAAAAAAAAABoAkKfAAAAAAAAAAAAAE1A6BMAAAAAAAAAAACgCQh9AgAAAAAAAAAAADQBoU8AAAAAAAAAAACAJiD0CQAAAAAAAAAAANAEhD4BAAAAAAAAAAAAmoDQJwAAAAAAAAAAAEATEPoEAAAAAAAAAAAAaAJjqy4AAJpdo97I/xPRaEQUX5cf+cP8PxHR0hLRUn5uiWht/c/nlmjJzwAAAAAAAAAAsABCnwCMWo0MZM56MRrTZ0ZjxuyIOXOjMXdeRPHR1unref/5uvvvRXv7wheRec9x4yIWXyxaFn/p80tfL9bL9176HEsuHi3LLh0tyy0TLUsuPpCnBgAAAAAAAACAYailUSReAGDkaNTrETNnvxTmnD4rGi/MjCiCnbNe+t4LL30d+VGrx4iw2LgiABoZAF3uP0HQ/3w93/eWXrLqSgEAAAAAAAAAWEhCnwA0pUZO5ZwyNRrPTI36M88XnxvPTovGCzOKwGexzTovN3ZMRE4HXXG5aH3litGy8krRsvKK0bLKStHyyhWiZawh4AAAAAAAAAAAw5XQJwDDVqO9/aUgZxHufH6+gGcR7GRgtbQUYdAiBFqGQcvPKy4fLa25Fz0AAAAAAAAAAFUR+gSgco1646VJnZOeivqkp6Px1LMvhTyfnx7h/00ND2PHRMsrVnhpIujqK0frWqtG61qrRcsKy1ZdGQAAAAAAAADAqCH0CcDQBzynPBeNSU9HfeJ/Qp5PPh0xt63q0lgYyy4drWuuGi1rvxQCzTBoTgsFAAAAAAAAAGDgCX0CMGga9fpLW7P/J9xZn/RUNCZPiZgn4DmiLbPUS+HP/4RAW9deTRAUAAAAAAAAAGAACH0CMGAac+ZG/dFJUX9kYtQfmxyNJwU8+Y+llyzCn63rrxWtG6wTLeusFi1jxlRdFQAAAAAAAABAUxH6BGBgQp4PPxGNyU9H1P2/FfpgsXHRuu6a0brhOtG64drRsvbq0TKmteqqAAAAAAAAAACGNaFPAPoX8nxschHwzKBnY1KGPOtVl8VICYGut2YxBVQIFAAAAAAAAACge0KfAPSoMXfeS5M8hTwZaov/ZxJoGQJdZ/VoaRUCBQAAAAAAAABGN6FPAObTeH561O55OOr3PBL1R56IaK9VXRJELLlEtG66XozZbMNo3XT9aFli8aorAgAAAAAAAAAYckKfAKNc/r+BxqSnonb3w1G/95FoTJ5SdUnQuzGt0br+2tGaAdDNN4zWlZavuiIAAAAAAAAAgCEh9AkwCjXa2qP+0ONRv/vhqN37SMT0mVWXBAutZbVXFuHPnAJabAPf0lJ1SQAAAAAAAAAAg0LoE2CUaMyYVQQ867l1+4OPR8xrq7okGHjLLh1jXrP+S1NAN143WhYbV3VFAAAAAAAAAAADRugTYARrzJwdtdvvj9rt90Xj8SdzL/eqS4KhM25stL56vRiz9aZFCLRl3NiqKwIAAAAAAAAAWCRCnwAjTGNeW9Tveihqt90b9QcmRNTrVZcE1VtisRjz2ldH6zavidYN1omWVlvAAwAAAAAAAADNR+gTYARo1OvFlu21W++J+t0PRcy1dTv0aPllYszrNo0xGQBdc9WqqwEAAAAAAAAA6DOhT4AmVp/476jdcm/U7rg/YsasqsuBptOy2itjzNavKQKgLSsuV3U5AAAAAAAAAAC9EvoEaDL156ZF/dZ7i+3bG1OmVl0OjAwtES3rrVWEP8dsuUm0LLVE1RUBAAAAAAAAALyM0CdAE2jMayumedZuuDMaEyZXXQ6MbGPGROtmG8SY7beM1o3XjZaWlqorAgAAAAAAAAAoCH0CDGP1p56N2vX/itotd0e8OLfqcmDUaXnFCjHmjVvGmG03j5Zll666HAAAAAAAAABglBP6BBhmGu3tUf/XA9F+/b+i8eikqssByumfW2xUTP8cs9Grqq4GAAAAAAAAABilhD4BhonG89Oj/drbo3bjnRGzXqy6HKAHLausFGN22DrGvGGzaFli8arLAQAAAAAAAABGEaFPgIrVHno8atfcFvV7Ho6o+59kaBqLLxZj3rB5jNnxddG6yiuqrgYAAAAAAAAAGAWEPgEq0Jg7L2q33BO1a2+PxlPPVl0OsChaIlo3WjfGvHnraN10g2hpbam6IgAAAAAAAABghBL6BBhCjZmzo/3qW4vJnvHi3KrLAQZYyytXiDG7bFdMAG0ZO6bqcgAAAAAAAACAEUboE2AINJ6fHu1X3By1G++MmNdWdTnAYFtumRi78+tjzPZbRcvii1VdDQAAAAAAAAAwQgh9Agyi+tPPRe2yG6N2270RtXrV5QBDbaklYsyOW8fYN28TLUsvWXU1AAAAAAAAAECTE/oEGAT1if+O9ktujPrdD0X4n1lgsXExZvstY+xOb4iWFZatuhoAAAAAAAAAoEkJfQIMoNpDj0ft0hui/uDjVZcCDEdjxsSY178mxuy6XbSuvFLV1QAAAAAAAAAATUboE2AR5f+M1u95ONovuSEaT/y76nKAZtDSEq1bbhxjd3tjtK65atXVAAAAAAAAAABNQugTYFHCnv96INovui4aTz1bdTlAk2rdZL0Yu/eO0br26lWXAgAAAAAAAAAMc0KfAAuh9uCEaP/nVdGY+FTVpQAjQUtE62tfHWPf9mbbvgMAAAAAAAAAPRL6BOiH+sSnov2fV0b9wcerLgUYiVpbY8x2W8TYvXaIluWWqboaAAAAAAAAAGCYEfoE6IP6M1Oj/byro37nAxH+VxMYbIuNizE7bh1jd9suWpZcoupqAAAAAAAAAIBhQugToBeN6TOj/cJro3bjXRH1etXlAKPNUkvE2F23izFv3iZaxo2tuhoAAAAAAAAAoGJCnwDdaLw4N9ovuzFqV98aMa+t6nKA0W6FZWPsnjvEmG03j5bW1qqrAQAAAAAAAAAqIvQJ0EmjrT1q19wW7ZfeEDF7TtXlAMynZdVXxNi93xxjXrtx1aUAAAAAAAAAABUQ+gT4j9ot90TbeVdFTJtRdSkAvWp51Rox7l27Ruu6a1RdCgAAAAAAAAAwhIQ+gVGv/uSUaDvzkmg8NqnqUgD6riVizBu2iLHv2Clallmq6moAAAAAAAAAgCEg9AmMWo0X50b7+VdH7brbI+r+pxBoUksuEWP33jHGvOl10dLaUnU1AAAAAAAAAMAgEvoERp38n716buV+7pURM2ZVXQ7AgGhZc5UY9749onXdNasuBQAAAAAAAAAYJEKfwKhSnzwl2s66OBqPTa66FIDB2fL99ZvH2H12tuU7AAAAAAAAAIxAQp/AqGArd2BUWXLxGPvWN8eYHbaKltbWqqsBAAAAAAAAAAaI0CcwouX/xNVuvjvacyv3mbOrLgdg6Ld8f+8e0bqeLd8BAAAAAAAAYCQQ+gRGrPrkp6PtzEuiMcFW7sAoVm75/o6domXZpauuBgAAAAAAAABYBEKfwIjTaGuP9guuidqVN9vKHaDzlu/v2jXGbrtF1ZUAAAAAAAAAAAtJ6BMYUeoTnoy2U8+LxpSpVZcCMCy1vmb9GPf+vaJl+WWrLgUAAAAAAAAA6CehT2BEMN0ToB+WXDzGvXu3GPOGzauuBAAAAAAAAADoB6FPoOnVH8/pnudH4+nnqi4FoKm0vmaDGPeBvaJluWWqLgUAAAAAAAAA6AOhT6BpNdpzuue1UbviJtM9ARbWkkvEuPfsFmNev1nVlQAAAAAAAAAACyD0CTSl+uP/jrZTzzPdE2CAtG62QYx7v6mfAAAAAAAAADCcCX0CTcV0T4BBZOonAAAAAAAAAAxrQp9A06g/8e9oO8V0T4DB1rrZhjHu/Xua+gkAAAAAAAAAw4zQJzDsNer1aL/w2qhdeoPpngBDZakliu3ex2z56qorAQAAAAAAAAD+Q+gTGNYa02bEvJP+EY3HJlVdCsCoNOZNW8XYd+0aLePGVl0KAAAAAAAAAIx6Qp/AsFW75+FoO/X8iFkvVl0KwKjWsvrKMe7j74zWVV5RdSkAAAAAAAAAMKoJfQLDTqNWi/Zzr4zalbdUXQoApcXGxbh994wxr9+s6koAAAAAAAAAYNQS+gSGlfpz06LtxHOiMfGpqksBoButb9g8xr1392hZfLGqSwEAAAAAAACAUUfoExg2av96INpOuyBiztyqSwGgFy2rviLGffSd0brGylWXAgAAAAAAAACjitAnULlGW3u0//2yqF13R9WlANBX48bG2HfvGmO336rqSgAAAAAAAABg1BD6BCpVn/JctJ34j2g8OaXqUgBYCK1bbRLjPrBXtCyxeNWlAAAAAAAAAMCIJ/QJVKZ2yz3RduZFEXPbqi4FgEXQ8ooVYtzH3hmta69WdSkAAAAAAAAAMKIJfQJDrtFei/YzL47ajXdWXQoAA2XMmBj7nt1i7Jts9w4AAAAAAAAAg0XoExhSjRmzYt4J46Px2OSqSwFgEIx501Yx9j27R8uY1qpLAQAAAAAAAIARR+gTGDL1SU/HvOPOipg2o+pSABhErRuuE+M+/q5oWXrJqksBAAAAAAAAgBFF6BMYErU77o+2U8+PmNdWdSkADIGWlZaPcZ96b7SuvnLVpQAAAAAAAADAiCH0CQyq/J+Y9guuidrF11ddCgBDbfFxMe7D74gxm29UdSUAAAAAAAAAMCIIfQKDpjF3XrSd/M+o3/1Q1aUAUJWWiLFv3THG7vGmqisBhrnx48fHiSeeGI899lgsscQSscMOO8Shhx4aa665Zp9uf99998VRRx0Vt956a8yaNau43T777BMHHnhgLLbYYoNePwAAAD3T8wEAAAwcoU9gUNSnvhBtfzorGv9+pupSABgGWrfaJMbtt3e0LDau6lKAYejII4+M3/3ud7HhhhvGzjvvHP/+97/jggsuiOWWWy5OP/30WHvttXu9/R133BEf+9jHoq2tLfbcc89YffXV49prr40HH3ww3vjGN8Zxxx0XY8aMGbLjAQAA4P/T8wEAAAwsoU9gwNUffiLm/fnvEbNerLoUAIaRlrVWjcU++d5oWWHZqksBhpH7778/3vWud8U222wTJ5xwQseElosvvjgOPvjg2GWXXYrFwd7st99+cfvtt8evf/3r2GuvvYrvtbe3FxNfciHwiCOOKB4DAACAoaXnAwAAGHitg3CfwCjWft3tMe/Yvwl8AvAyjUlPx9wjT4z6hMlVlwIMI7m9X/r85z8/35Z8e+yxR7zhDW+IK664Ip5++ule7+Ouu+6K5ZdfvmPxL40dOzbe//73F1/n4iAAAABDT88HAAAw8IQ+gQHRqNWj7YyLov2MiyNq9arLAWC4mjEr5v3m1Gi/6a6qKwGGiRtuuKFYrMvFvq5ym77cnCJ/pzcrrLBCzJw5M1544YX5vj9lypTi80orrTTAVQMAANAXej4AAICBJ/QJLLLGvLZoO/6sqF13R9WlANAMarVoP/X8aL/w2qorASo2b968ePLJJ2O11Vabb+JLae211y4+P/roo73ez/777x+1Wi0OPfTQeOSRR2L27NlxySWXxG9+85ticXDfffcdtGMAAACge3o+AACAwTF2kO4XGCUas16MeX86MxoTnqy6FACaTIY+GzNnx9j37B4trS1VlwNUIKe05FSX3KavO8suu2zxecaMGb3eT24TmPfxk5/8JN72trd1fH/DDTeMY445JtZYY40BrhwAAIAF0fMBAAAMDpM+gYXWeH56zDv6rwKfACy02rW3R9tJ50Sjvb3qUoAKtLW1FZ+7m/jS+ftz587t9X5yK8Df//73xZaB++yzTxxwwAGx5ZZbxsMPPxzf/OY3Y9q0aYNQPQAAAL3R8wEAAAwOkz6BhVJ/6tmY9/vTI6b1fgUuACxI/V8PRNusF2PcJ98TLUssXnU5wBBaYokl5lsI7G4rwLTUUkv1eB9PPfVUfPazny3ua/z48bHuuut2/Oyoo46Ko48+Or72ta/FscceO+D1AwAA0DM9HwAAwOAw6RPot/pjk2PeUX8V+ARgwNQffiLm/eaUaEyfWXUpwBBaZpllorW1tcet/Mrvl1v+defvf/97zJkzJz71qU/Nt/iXDj744HjVq14VV1xxRUyZMmWAqwcAAKA3ej4AAIDBIfQJ9Evtnodj3u9Oi3hxTtWlADDCNCZPKS4qqD/zfNWlAEMkt/Jbe+2148knn+x28svEiROLzxtuuGGP9zF58uQef6elpaXj+/kYAAAADB09HwAAwOAQ+gT6rP2mu6Lt+PERbe1VlwLACNV4blrMO+rkqE98qupSgCGy7bbbFot/t91228t+dv311xeLeFtvvXWPt1955ZWLz4899li3P3/88cfn+z0AAACGjp4PAABg4Al9An3Sfsn10X7q+RH1etWlADDSzZwd8445JWoPTqi6EmAIvO997ys+H3nkkcWWfaWLL744brnllth1111jtdVW6/H2e++9d7Fd4HHHHdcxJaZ04oknxsMPPxzbbLNNrLnmmoN4FAAAAHRHzwcAADDwWhqNRmMQ7hcYIfJ/ItrHXxa1q2+tuhQARpsxY2Lc/m+LMa/btOpKgEH2/e9/P04++eRYd911Y7fddounn346zj///FhxxRXj1FNPLbYDTDfeeGPcdNNNsemmm8buu+/ecfvjjz8+fvKTn8RSSy0Ve+65Z6y00kpx9913F7+b017+8pe/FPcNAADA0NPzAQAADCyhT6BHjVot2v76z6jffn/VpQAwWrVEjH3XbjH2LdtUXQkwiLItzQXA0047LSZMmBArrLBCbLfddnHIIYd0LP6lo446Ko4++uh4z3veUyz4dXbttdcWk1/uvPPOePHFF2OVVVaJXXbZJQ466CDb/AEAAFRIzwcAADCwhD6BbjXaa9H25/FRv+eRqksBgBj79rfE2N3eWHUZAAAAAAAAAFApoU/gZRrt7dF2/Pio3/do1aUAQIexe+8YY/d4U9VlAAAAAAAAAEBlhD6B+TTa2qPtuLOj/sBjVZcCAC8zZs83xbi37lh1GQAAAAAAAABQCaFPoENjXlu0HXdW1B98vOpSAKBHY/bYPsbt/eaqywAAAAAAAACAISf0Cfz/wOcfz4z6w09UXQoALNCYXbeLce/YqeoyAAAAAAAAAGBItQ7twwHDNvD5hzMEPgFoGrXLboy2f1xRdRkAAAAAAAAAMKSEPmGUKwKffzoz6o9MrLoUAOiX2uU3Rdt5V1VdBgAAAAAAAAAMGaFPGMUabe3RdtzZUX/IhE8AmlPtkhui7YJrqi4DAAAAAAAAAIaE0CeMUo329mg7fnzUH5xQdSkAsEhqF10X7RddV3UZAAAAAAAAADDohD5hFGq016LthL9H/f5Hqy4FAAZE+wXXRPslN1RdBgAAAAAAAAAMKqFPGGUa9Xq0nXhO1O99pOpSAGBAtZ93VbRfcXPVZQAAAAAAAADAoBH6hFGm/fQLo373Q1WXAQCDov0fl0ftlnuqLgMAAAAAAAAABoXQJ4wibeddFbUb76q6DAAYPI2ItlPPj9p9j1ZdCQAAAAAAAAAMOKFPGCXar741apfcUHUZADD46vVo+/Pfo/74k1VXAgAAAAAAAAADSugTRoHa7fdF+/jLqi4DAIbOvLaY98czo/70c1VXAgAAAAAAAAADRugTRrjag49H21/Pi2g0qi4FAIbWrBdj3u9Pj8a0GVVXAgAAAAAAAAADQugTRrD6pKei7fizI2q1qksBgGo8P/2l4OeLc6quBAAAAAAAAAAWmdAnjFD1Z5+PeX84M2LuvKpLAYBKNZ56Nub96axotLVXXQoAAAAAAAAALBKhTxiBGjNmRduxp0fMmFV1KQAwLDQenRRtJ50TjXq96lIAAAAAAAAAYKEJfcII05gz96VtbJ+bVnUpADCs1O9+ONrPuKjqMgAAAAAAAABgoQl9wgjSaK9F2/FnR2PylKpLAYBhqXbDndF2/tVVlwEAAAAAAAAAC0XoE0aIRqMRbX/9Z9QfeqLqUgBgWKtdfH20X3t71WUAAAAAAAAAQL8JfcIIUbvouqjfcX/VZQBAU2g/+9KoPfR41WUAAAAAAAAAQL8IfcIIULvzwWi/6NqqywCA5lGvR9uf/x7156ZVXQkAAAAAAAAA9JnQJzS5+pNTim3do1F1JQDQZGbPibY/nRWNOXOrrgQAAAAAAAAA+kToE5pYY+bsmPensyLmtVVdCgA0pcZTz0bbyedGo+7qCQAAAAAAAACGP6FPaFKNWi3mnTA+4vnpVZcCAE2tfs8j0X7+1VWXAQAAAAAAAAALJPQJTar9zEui8eikqssAgBGhdukNUbv9vqrLAAAAAAAAAIBeCX1CE2q/5rao3fCvqssAgBGl7dTzoz7xqarLAAAAAAAAAIAeCX1Ck6k99Hi0j7+s6jIAYORpa495x58djekzq64EAAAAAAAAALol9AlNpP7ctGg78ZyIer3qUgBgZJo2I+YdPz4a7e1VVwIAAAAAAAAALyP0CU2iMWdutP3prIhZL1ZdCgCMaI3Hn4y2v11YdRkAAAAAAAAA8DJCn9AEGvVGtJ18bjSeerbqUgBgVKjfck+0X3FT1WUAAAAAAAAAwHyEPqEJ1C69Pur3PFJ1GQAwqrSfe2XUH36i6jIAAAAAAAAAoIPQJwxz9UcmRvuF11ZdBgCMPvVGzPvLudGYObvqSgAAAAAAAACgIPQJw1iGTOb95R9F6AQAqMD0mdH21/Oi0fD/iwEAAAAAAAContAnDFMZLmk75byIF2ZWXQoAjGr1+x+N2uU3VV0GAAAAAAAAAAh9wnBVu+LmqN/3aNVlAAAR0X7e1VGf8GTVZQAAAAAAAAAwygl9wjBUf/zJaD/vqqrLAABK9XrMO+mcaLw4p+pKAAAAAAAAABjFhD5hmMkwSdtJ/4io1asuBQDo7Pnp0Xbq+VVXAQAAAAAAAMAoJvQJw0zbqRdEY+oLVZcBAHSjftdD0X71rVWXAQAAAAAAAMAoJfQJw0j71bdF/a4Hqy4DAOhF+z+uiPqkp6ouAwAAAAAAAIBRSOgThon6pKej/R+XV10GALAg7bVoO/GcaMyZW3UlAAAAAAAAAIwyQp8wDGRopO2kc4oQCQAw/DWenRZtp19YdRkAAAAAAAAAjDJCnzAMtJ1xUTSeeb7qMgCAfqjffn+03/CvqssAAAAAAAAAYBQR+oSK1W69N+q33Vd1GQDAQmgff1nUXbgBAAAAAAAAwBAR+oQKNabPjLazL6m6DABgYc1ri7ZTz49GvVF1JQAAAAAAAACMAkKfUKG20y+KmD2n6jIAgEXQeGxS1K6+teoyAAAAAAAAABgFhD6hIrVb7on6PQ9XXQYAMADaz7sq6s9MrboMAAAAAAAAAEY4oU+obFv3S6suAwAYKG3ttnkHAAAAAAAAYNAJfUIF2k6/MOJF27oDwEjSeGxy1K6+peoyAAAAAAAAABjBhD6hkm3dH6m6DABgELSfd3XUp9jmHQAAAAAAAIDBIfQJQ8i27gAwwtnmHQAAAAAAAIBBJPQJQ6jtb7Z1B4CRrjFhctSuss07AAAAAAAAAANP6BOGSO3mu6N+r23dAWA0aD/fNu8AAAAAAAAADDyhTxgCjRdmRNt427oDwKhhm3cAAAAAAAAABoHQJwyBttNzW/e5VZcBAAz5Nu83V10GAAAAAAAAACOI0CcMstot90T93kerLgMAqED7eddE/RnbvAMAAAAAAAAwMIQ+YRA1XpwbbedcXnUZAEBV2tuj/exLq64CAAAAAAAAgBFC6BMGUfsF10TMnF11GQBAher3Pxa1ux6qugwAAAAAAAAARgChTxgk9SenRO3a26ouAwAYBtrGXxqNeW1VlwEAAAAAAABAkxP6hEHSduYlEfVG1WUAAMPB89Oj/dIbqq4CAAAAAAAAgCYn9AmDoHbz3dF4bFLVZQAAw0jt8pui/szzVZcBAAAAAAAAQBMT+oQB1nhxbrSde2XVZQAAw017LdrPvrTqKgAAAAAAAABoYkKfMMDaL7gmYsasqssAAIah+v2PRu2uh6ouAwAAAAAAAIAmJfQJA6j+5JSoXXtb1WUAAMNY2/hLozGvreoyAAAAAAAAAGhCQp8wgNrOuiSi3qi6DABgOHt+erRfekPVVQAAAAAAAADQhIQ+YYDUbrknGo9OqroMAKAJ1C6/KerPPl91GQAAAAAAAAA0GaFPGACNOXOj7R9XVF0GANAs2mvRfvalVVcBAAAAAAAAQJMR+oQB0H7+NREzZlVdBgDQROr3PRq1ux+qugwAAAAAAAAAmojQJyyi+tPPRe3a26suAwBoQu3jL4tGe63qMgAAAAAAAABoEkKfsIjaz7sqol6vugwAoAk1pr4QtevvqLoMAAAAAAAAAJqE0CcsgvqEJ6N+l21ZAYCF137x9dGYO6/qMgAAAAAAAABoAkKfsAja/nll1SUAAM1u5uyoXXFz1VUAAAAAAAAA0ASEPmEh1e57NBqPTKy6DABgBGi/4uZozJxddRkAAAAAAAAADHNCn7AQGo1GtP/zqqrLAABGirnzim3eAQAAAAAAAKA3Qp+wEOq33ReNJ6dUXQYAMILUrrsj6lNfqLoMAAAAAAAAAIYxoU/op0atFu0XXFN1GQDASOM9BgAAAAAAAAALIPQJ/VS77l/ReG5a1WUAACNQ/dZ7o/7kM1WXAQAAAAAAAMAwJfQJ/dCYOy/aL76u6jIAgJGq0Yj2866sugoAAAAAAAAAhimhT+iH2hU3R8ycXXUZAMAIVr/30ag/OrHqMgAAAAAAAAAYhoQ+oY8aM2dHe4Y+AQAGWdu5pn0CAAAAAAAA8HJCn9BH7RdfHzF3XtVlAACjQGPCk1G7+6GqywAAAAAAAABgmBH6hD5oPD89atfdUXUZAMAo0n7e1dFoNKouAwAAAAAAAIBhROgT+qDY1r1Wq7oMAGAUaTz1bNTvfrjqMgAAAAAAAAAYRoQ+YQEaM2dH7cY7qy4DABiF2i+9oeoSAAAAAAAAABhGhD5hAdqvvjViXlvVZQAAo1DjiX9H7aHHqy4DAAAAAAAAgGFC6BN60ZgzN2rX3FZ1GQDAKFYz7RMAAAAAAACA/xD6hF7Urrsj4sW5VZcBAIxi9Qcfj/rEf1ddBgAAAAAAAADDgNAn9KDR3h7tV91SdRkAANF+yY1VlwAAAAAAAADAMCD0CT2o3XR3xPRZVZcBABD1ux+M+tPPVV0GAAAAAAAAABUT+oRuNOr1qF1+U9VlAAC8pBHRfplpnwAAAAAAAACjndAndKN++/3ReG5a1WUAAHSo33ZvNJ6fXnUZAAAAAAAAAFRI6BO6aDQaJmkBAMNPrR7tJpEDAAAAAAAAjGpCn9BF/d5HovHvZ6ouAwDgZWo33hmNmbOrLgMAAAAAAACAigh9Qhftl5ryCQAMU23t0X7VrVVXAQAAAAAAAEBFhD6hk/ojE6MxYXLVZQAA9Kh27W3RmDO36jIAAAAAAAAAqIDQJ3TSfsXNVZcAANC7F+dG7ca7qq4CAAAAAAAAgAoIfcJ/1Ke+EPV7H6m6DACABapdd3s0Go2qywAAAAAAAABgiAl9wn/Urr09QngCAGgCjWeej/r9j1VdBgAAAAAAAABDTOgTMjgxry1qN95ZdRkAAH1Wu+a2qksAAAAAAAAAYIgJfUKGJm67L2L2nKrLAADos/r9j0b9meerLgMAAAAAAACAIST0CcXW7iZlAQBNpuE9DAAAAAAAAMBoI/TJqFd/dFI0Jk+pugwAgH6r3XR3NObOq7oMAAAAAAAAAIaI0CejXvu1t1ddAgDAwpkzN2q33Vd1FQAAAAAAAAAMEaFPRrXGzNlRv/PBqssAAFhotevvqLoEAAAAAAAAAIaI0CejWu3muyNqtarLAABYaI1JT0d94lNVlwEAAAAAAADAEBD6ZNRqNBpRu+FfVZcBALDIateZ9gkAAAAAAAAwGgh9MmrVH3oiGs88X3UZAACLrHb7fdGYM7fqMgAAAAAAAAAYZEKfjFq1603EAgBGiHltUbv13qqrAAAAAAAAAGCQCX0yKjVmzIr63Q9VXQYAwICxxTsAAAAAAADAyCf0yahUTMKq1asuAwBgwDT+/UzUJz1ddRkAAAAAAAAADCKhT0al2m22PwUARh7vcQAAAAAAAABGNqFPRp36089FwxQsAGAEqt12XzTqjarLAAAAAAAAAGCQCH0yOrd2BwAYiabPjPrDT1RdBQAAAAAAAACDROiTUaXRaETdtqcAwAhWv/WeqksAAAAAAAAAYJAIfTKqNB6bHI2pL1RdBgDAoKnd9WA05rVVXQYAAAAAAAAAg0Dok1GlZsonADDSzZkX9XsfqboKAAAAAAAAAAaB0CejRqNWi9od91ddBgDAoKvZ4h0AAAAAAABgRBL6ZNSo3/doxOw5VZcBADDo6vc/Fo1ZL1ZdBgAAAAAAAAADTOiTUaN2q63dAYBRolY34RwAAAAAAABgBBL6ZFRozJkb9XseqboMAIAhU7vNBS8AAAAAAAAAI43QJ6NC7c4HI9rbqy4DAGDINCZMjvpz06ouAwAAAAAAAIABJPTJqFC/9Z6qSwAAGFqNiLppnwAAAAAAAAAjitAnI17jhRlRf3hi1WUAAAy52q1CnwAAAAAAAAAjidAnI17trociGo2qywAAGHKNKVOj/tSzVZcBAAAAAAAAwAAR+mTEq9/zcNUlAABUxnshAAAAAAAAgJFD6JMRrTFnrq3dAYBRrSb0CQAAAAAAADBiCH0yotUfmBBRq1VdBgBAZRqP/zsaM2dXXQYAAAAAAAAAA0DokxHNZCsAYNRrNKJ27yNVVwEAAAAAAADAABD6ZMRq1OtRv+/RqssAAKhc/W4XwgAAAAAAAACMBEKfjFiNCZMjZr1YdRkAAJWrPzghGu3tVZcBAAAAAAAAwCIS+mTEqploBQDwknltUX/w8aqrAAAAAAAAAGARCX0yYtXvEfoEACh5bwQAAAAAAADQ/IQ+GZHqU6ZG45nnqy4DAGDYqN37SNUlAAAAAAAAALCIhD4ZkUyyAgDo4oWZUZ/4VNVVAAAAAAAAALAIhD4ZkWpCnwAAL+M9EgAAAAAAAEBzG1t1ATDQGrNejMaEyVWXAQAwPKehv3XHqsuAbo0fPz5OPPHEeOyxx2KJJZaIHXbYIQ499NBYc801+3T7F154IX73u9/FRRddFFOmTIlVVlmluI+DDz64+BoAAIDq6PkAAAAGTkuj0WgM4P1B5Wq33BNtf/1n1WUAAAxLi3/nv6JlhWWrLgPmc+SRRxaLdxtuuGHsvPPO8e9//zsuuOCCWG655eL000+Ptddeu9fbP/vss/HhD384JkyYEDvuuGO8+tWvjnvvvTeuv/76YgHxzDPPjBVXXHHIjgcAAID/T88HAAAwsIQ+GXHmnfSPqN9+X9VlAAAMS2Pfv1eM3X7LqsuADvfff3+8613vim222SZOOOGEWGyxxYrvX3zxxcXEll122aVYHOzNl770pTj//PPj29/+dnzkIx/p+P7RRx8dRx11VHz605+Oww47bNCPBQAAgPnp+QAAAAae7d0ZceqPPFF1CQAAw1b94ScihD4ZRnJ7v/T5z3++Y/Ev7bHHHvGGN7whrrjiinj66adj1VVX7fb2Tz31VDEhZrvttptv8S99/OMfjyeeeCJWXnnlQT4KAAAAuqPnAwAAGHitg3CfUJn6lOcips+qugwAgGGr/sjEqkuA+dxwww0xduzYYrGvqze+8Y2Rm1Pk7/TkyiuvLH7nbW9728t+tuyyy8YRRxwRBxxwwIDXDQAAwILp+QAAAAae0CcjSv1hIQYAgF5Nnxn1KVOrrgIK8+bNiyeffDJWW221+Sa+lNZee+3i86OPPtrrVoFpo402inPOOSf23Xff2HLLLWOHHXaIww8/PKZO9XoHAACogp4PAABgcAh9MqLY2h0AYMG8Z2K4eOGFF4qJLcsvv3y3P8+pLWnGjBk93seUKVOKz8cdd1x87WtfK7YE3G+//WL11VePU089NT70oQ/FtGnTBukIAAAA6ImeDwAAYHCMHaT7hUrYrhQAoI/T0bffquoyINra2orP3U186fz9uXPn9ngfs2fPLj5feumlceyxx8ZOO+1U/DsXFnPqy2mnnRY///nP4wc/+MEgHAEAAAA90fMBAAAMDpM+GTHqU56LmD6r6jIAAIY9F8owXCyxxBLzLQR2txVgWmqppXq8j9bWl9ravfbaq2PxL7W0tMRXv/rVWHzxxeP888+Per0+wNUDAADQGz0fAADA4BD6ZGRNrAIAYMGmz4z6lKlVVwGxzDLLFAt4PW3lV36/3PKvO+XPtthii27v/1WvelVxP1Ones0DAAAMJT0fAADA4BD6ZMSoP/JE1SUAADQN750YDnIrv7XXXjuefPLJbie/TJz40oVdG264YY/3sd566/Vpckw5YQYAAIChoecDAAAYHEKfjBi2KQUA6DtT0hkutt1222Lx7rbbbnvZz66//vpiy76tt96619un66677mU/y0kvkydPjrXWWquYAAMAAMDQ0vMBAAAMPKFPRoT6lOcips+qugwAgKbhghmGi/e9733F5yOPPDLmzJnT8f2LL744brnllth1111jtdVW6/H22223XTEV5qabborx48d3fL9er8dPf/rTYnHxAx/4wCAfBQAAAN3R8wEAAAy8lkaj0RiE+4Uh1X7dHdF+xkVVlwEA0FQW+/qno3WVlaouA+L73/9+nHzyybHuuuvGbrvtFk8//XScf/75seKKK8app55abAeYbrzxxmKhb9NNN43dd9+94/b33ntvHHDAATF9+vTYaaedYv311y9+95577onXve51cdJJJ8W4ceMqPEIAAIDRS88HAAAwsIQ+GRHmnXhO1O+4v+oyAACayth994yxb9qq6jIgsi3NBcDTTjstJkyYECussEIxzeWQQw7pWPxLRx11VBx99NHxnve8J37yk5/Mdx+5pV/+7Oqrr44XXnghVl999dhnn33iwAMPjMUXX7yCowIAACDp+QAAAAaW0CcjwpzDfxMxw/buAAD90fq6TWKxj76z6jIAAAAAAAAA6KPWvv4iDFf1KVMFPgEAFkL9kYlVlwAAAAAAAABAPwh90vQaT/y76hIAAJrT9FnRmDaj6ioAAAAAAAAA6COhT5pefdJTVZcAANC0vJcCAAAAAAAAaB5CnzS9+qSnqy4BAKBpeS8FAAAAAAAA0DyEPmlqjXojGpMFFQAAFlbDpE8AAAAAAACApiH0SVNrPDM1Ym5b1WUAADSt+kQX0AAAAAAAAAA0C6FPmprJVAAAi2jGrGi8MKPqKgAAAAAAAADoA6FPmlp9kslUAACLynsqAAAAAAAAgOYg9ElTq0806RMAYFF5TwUAAAAAAADQHIQ+aVqNRiMak6dUXQYAQNNrmPQJAAAAAAAA0BSEPmlajWemRsydV3UZAABNrz7JpE8AAAAAAACAZiD0SdNqTDSRCgBgQEyfFY3pM6uuAgAAAAAAAIAFEPqkadUnC30CAAyUui3eAQAAAAAAAIY9oU+aVmOibUgBAAaK91YAAAAAAAAAw5/QJ02p0WiY9AkAMIBM+gQAAAAAAAAY/oQ+aUqNqS9EzJlXdRkAACNG/ckpVZcAAAAAAAAAwAIIfdKUGlOmVl0CAMDIMm16NOa1VV0FAAAAAAAAAL0Q+qQpNZ4R+gQAGFCNiMazz1ddBQAAAAAAAAC9EPqkKTWeEUgAABho3mMBAAAAAAAADG9CnzQlkz4BAAae91gAAAAAAAAAw5vQJ02pbgoVAMCA8x4LAAAAAAAAYHgT+qTpNNraI6ZNr7oMAIARx6RPAAAAAAAAgOFN6JOm08gJVI2qqwAAGKHvswAAAAAAAAAYtoQ+aTomUAEADJJZL0Zj1otVVwEAAAAAAABAD4Q+aTomUAEADB7vtQAAAAAAAACGL6FPmo5JnwAAg8d7LQAAAAAAAIDhS+iTplM3fQoAYNB4rwUAAAAAAAAwfAl90nRMnwIAGDzeawEAAAAAAAAMX0KfNJXG7DkRs16sugwAgBGrYdInAAAAAAAAwLAl9ElTMXkKAGBwNZ59PhqNRtVlAAAAAAAAANANoU+aSmPqC1WXAAAwss1ri5g5u+oqAAAAAAAAAOiG0CdNpTF9VtUlAACMeN5zAQAAAAAAAAxPQp80lcb0mVWXAAAw4nnPBQAAAAAAADA8CX3SVAQQAAAGn/dcAAAAAAAAAMOT0CfNxVajAACDz3suAAAAAAAAgGFJ6JOmYuoUAMDg854LAAAAAAAAYHgS+qSpNEydAgAYdN5zAQAAAAAAAAxPQp80jUZbe8SLc6ouAwBgxDPpEwAAAAAAAGB4EvqkaQgfAAAMDe+7AAAAAAAAAIYnoU+ah21GAQCGxgzvuwAAAAAAAACGI6FPmoaJU8D/Y+8+wOwq6/yB/869M5OQHtIhgZAEQkgoSSBFeicgHaQKKq4NLKwuiu7q/m1rWQ0Ksqi7iCgKoi7rroBSBFGpgvQOAUJCaCGEkjYz/+c9YcZJmEmdmXPvzOfzPPPc5JZzf3dyMnPe837P7wWgk6yoj8bX3yy6CgAAAAAAAABWI/RJ1RD6BADoPI69AAAAAAAAACqP0CdVo9Hy7gAAncaxFwAAAAAAAEDlEfqkeug2BQDQeRx7AQAAAAAAAFQcoU+qhm5TAACdx7EXAAAAAAAAQOUR+qRqNL7xZtElAAB0G469AAAAAAAAACqP0CfVY+myoisAAOg+HHsBAAAAAAAAVByhT6pGo+ABAECncewFAAAAAAAAUHmEPqkeS5cXXQEAQPfh2AsAAAAAAACg4gh9Uj2W6TYFANBpdPoEAAAAAAAAqDhCn1SFxmXLIxoaiy4DAKDbsLw7AAAAAAAAQOUR+qQ6CB0AAHQux18AAAAAAAAAFUfok+rp9AkAQKdx/AUAAAAAAABQeYQ+qQ5LdJoCAOhUjr8AAAAAAAAAKo7QJ9XB8qIAAJ1rmeMvAAAAAAAAgEoj9ElVaBT6BADoXPUN0bhiRdFVAAAAAAAAANCC0CfVQegTAKDzWeIdAAAAAAAAoKIIfVIVGpctL7oEAIBuxzEYAAAAAAAAQGUR+izIueeeG+PHj89v11VjY2NceeWV8eEPfzh22223mDRpUuyxxx7x7ne/O375y1/GkiVL3vaafffdN3+fOXPmtLrNj3zkI/njkydPjmXLWu/ktOeee8a2224bL730UhRGl6lO9093Xh/7X/fzVh97Y8XyOP+RO+PQGy6PaVddFLOuvyy+89Dt8WZ960vAPrZ4YZx5x7Wxz7U/ixlX/zje/effxLXzW98n27KioSEuefK+OOrGX8X0qy6K/a79eXzl3j/HK8vevt8vXLYk/vGv18X0q38cB153aZz70B2xvKH+bc97dPHLMfm3F8aVzz6+XrUAQLfhGAwAWINf//rX+XmldJ5q0aJFaz0Pdvnll7d7Dfvss0++7da+0vmu/fbbL84+++x4+umnN/q90vm1U089Nd/ulClTms/r/eAHP4i99torP1eXvheLFy9e4/dr9uzZG10LAABAVxnXtRzHPfvss2t87le+8pXm5956660b/X4tv5rGdClDsaHbbsvcuXPz9zjhhBPadbsAdF81RRfAukmBy49+9KPx17/+NQYOHBi77757DB8+PF588cX8gONzn/tcfoK56WCrycyZM/MDrzvvvDNGjx69yjaXL18et9xyS5RKpXjjjTfijjvuiHe84x2rPOeZZ56J5557LiZMmBCDBg2KwrQRSKVjXPDoXfH7+U/G0J693vZYCk9+7I5r4vaX5sfMwZvHfsNHxz0Ln48LH78n/vrSc/GfMw6OunK5+fkPLnoxTrvlymhsjJi1+ZjYpFwTv5v3ZHzyzuvi09vNiBO3mrhOgefP3/PH+O2zj8cOA4bkr0lB0l88/VDc8uK8+Omuh0X/uh7Nz//yvX+OGxY8Fe/cfFweUP3Px++Oxoj42LY7r7Ld7zx4e2zbf1DM2mzMRn/PAKBLWuoYDABYuxdeeCG+/OUvxze/+c3CajjllFOiX79+q9yXzpvdfvvt+STmddddF7/61a9i1KhRG/weZ511Vtx99935BdLp/Nu0adPij3/8Y3zrW9/Kz9elC7Pr6uqib9++rb4+nV8744wzYuedVz0/AQAAULRKGNclV199dZx22mmtPtbQ0BBXXXVVu71XGp+tnp9I4czf//73cf3118fXv/71OPzww9vlvdJ4Nb3fiBEj2mV7ACD0WQXefPPNeM973hOPPPJIfvuJT3wiNtlkk+bH6+vr45JLLomvfe1r+ZUh//M//9N8AjuFOJtCn0cdddQq2033vf7663HIIYfEb3/727jpppveFvpMJ8aTXXfdNYrUuOLtXRppf0vrV8TX7r85fv3MI20+5xdPPZQHPt8zZvs4c8K05vu/cf8tccmc++PSpx6IU8Zs33z//7vnT7G0vj5+ttthMb7fyuDw+8ftlHf7POeh22PfEaNjWM/ea6zrxuefzgOfB47YKr4+ee/Isiy//6dP3hfffODW+I9H74zPTJyZ3/fy0jfjuufmxDFbbBv/vP3K/fbDt10dv3jqwVVCn+kz3PTC3PjB9FnN2wMAVtVY7xgMAFg3v/nNb+Kggw7KV50pQurAOXLkyLfdn86bpU6f6XzZd7/73Y2awLzvvvvyQOd//Md/RPmtC16/973v5bf/8A//0ObEZMvQZ/oCAACoREWO61IocunSpXmos62x1W233ZaHU3v37p3nHDZWarrVmptvvjnPZaQQ7IEHHhg9e/Zsl8/X1vsBwIawvHsVSN07U+DzpJNOyk9Stwx8Jukkc+pmkLp9poOb9JwmM2bMyANtqUPo6lLIM/nABz6Qn7Bu+ntroc/UxrxQqU0kHeqGBU/HETf+Kg987j7k7ZMkTX425/6oK5XjA1vvtMr9Z4yfGj3LNXH50w8133fny8/Fg6++FAeM2Ko58JkMrOuZBz+XNtTH/859dK21XfLk/fnt6eOnrhLQPHH0xNhskz7xm7mP5oHV5Nk3X8u7em7Tb9Pm56X3XrxiWb7se1Pn0NkP3ha7DRkZ0wdvto7fIQDohhyDAQDrYOLElat4fOELX4hXXnklKkk6b9Y0sfbnP/95g7ezYsWKPECaJuqaAp/JsrdWp0mdPgEAAKpV0eO6lIHYY4894t577827bbbmyiuvjF69er2tkVV7S6up7rTTTvHqq6+2mrMAgEog9FnhlixZEpdeeml+9cjHPvaxNT43dfkcM2ZMHtR86KGVwbtNN900X27qySefjIULF67y/D/96U8xbNiw2HbbbfNw6KOPPpov5d5SWvI9HWBNnTo1CiVw0OGueObhfCn0z016R5y7ywGtPmfeG4tj7huLY9KAwdG7pm6Vx3rV1Mb2A4bE06+/GgveXHll1W0vzstvp7USrGwKW9724vw11rW8oSHuWrgghvfsHVv27r/KY6Usi10GjYjXVyyP+xe9mN83oHblMu9vrlgZAk1eX74sylkWfWpq879fPf+JeHDRS/GJbXdZh+8MAHRjjsEAgHWw++67xxFHHNG8HOC6SiHKn/zkJ3HkkUfGjjvuGJMnT47jjz8+rrjiinatb9CglReiLl68uPm+NImYzpml82mr+8tf/pI/9pnPfCb/e7ptmgB99tln88f22Wef/PaCCy7I708XYae/p6Xk25IeS8+ZPXv2KmHSH/zgB/n3IH3+KVOmxLHHHhs/+9nP8otWW3rwwQfz5QD33nvvmDRpUj4h+ulPfzrmzJmzyvPSMvPpfZ566qm31ZBekx5b3T333BOnn356fo4wbTt1sznnnHNa7Z7zu9/9Ln+PNBG6ww475J2A0hL3Lb+/AABAdamEcd3BBx+c37a2hHsaO6WxSBqLrd55MwVV0zintfdMS8KnMVQav6Tl29dV0zLsKWNx991359tPjbhak8Z46fFrr722ze21NQZd1/HVyy+/HP/v//2//PH0vOnTp8f73//+fPy6ekOx9D5pNdjVfepTn8ofu/XWW1e5f8GCBfGv//qvzWPN1BAsjXFbC9+u67gUgI4n9Fnh7rrrrvzkajo4GjBgwBqfWyqV8hOyye9///vm+9OVLukkcdpWk3SwloKhTR08m25bdvtMv9yffvrp2HnnnaOubtWAX6drEDjoaCdtNSmu3Odd8a4tJ7S53PlTr7+a347q1a/Vx0f26pvfPvn6K6s8f4u37m8pLelek5Wan9uWeW8uzoOfo3qv+T3nvLYovx2xSZ8Y0qNXXDH3kXjuzdfi8cUL49rn5sSk/kOitlSO5Q31cd7Df413jhwXW7foBgoAtELoEwBYR5/97GdjyJAh8b//+79x3XXXrfX5qUNmWn0mTSYuWrQon1ycNWtWPPPMM/mEUdpee2k637WhS6vvt99+8ZGPfCT/c1otJ01wpcm+dJvOmyVp+cP09/V9j89//vP5hF6atEwTo0cddVS8+OKL+WRey3DoE088kU8O3nLLLflk4Hvf+958gi0tv3jcccfF888/HxsqdctJ206ThWmiNy1jmIKyaRn7E088MV577bXm56ZJ1HRh+vz58+OQQw6Jk08+Oe9+moKraYn71YOqAABA9Sh6XLfXXnvlDalaC32mlRtSB9I0Dlnd0Ucfnd+2FvpMAcd58+bFYYcdFrW1KxsErYumEOPw4cPzMOvWW2+dLy+fxkItpTFQGpelMVSqf32s6/gqfZ9TMPSyyy7L6zj11FPz8GvqQnraaafFjTfeGBvq8ccfz8ehqRHZNttsk287NQT7n//5n/z7mkKenTEuBWD91WzAa+hE6RdnMnbs2HV6fvoln6QDqSbpF+6FF16Y/9JPv/ybunymg4SmsOeuu+7afBI8dROoqKXdEyeMO1zqmLk2ryxfuTx6/7e6aa6uz1vdPxcvX7bK8/vVvf35qUtn75ra5ue2ZdGypev1njWlUnxm4ow4+283xoHXX9a8nPzZk2bmf/7FUw/Gi0veiDO2+Xv32obGxrweAGA1LrwBANZR//7940tf+lJ86EMfyruspEmiNV3AfNFFF+Xnp9KkWAo3piX6mrqXpImjX/3qV/k5rUMPPXSD6kndZtKEYHqPr371q/l9TcHNDQl9pjrPP//8fAKuabn4pm4zaaWc9Jw0UbY+UpgyTfKl4Ogll1zSfH8Kj6aJ0tQtJ71XmphMXVrefPPN/PuWvi9NUk3f+c538i6i6Xu/vlLANE3Epn+rNMk3atSo5sfOO++8vEtMCqWmf9Mk1ZT+rVLdffr0ye9L5xjf97735aHRdNF56lYKAABUn6LHden1e+65Z1x99dV53qHl+CRdrJbqS9mF9OeWUufLFFhMAc/U2CqtdtqkaTWG9Rmvpe2nsGNT4LPp9V//+tfzgOMHP/jB5uemAGQKlabPW1OzfvGbdR1fpT8/9thj8eEPfzg+8YlPNL8+hTJPOumk+PGPf5x/3zbEP/3TP+X/XmkVi5ah1fS50mc666yz8s+cmkZ11LgUgA2j02eFa2rb3fRLfm2aDrrSL+Ymu+yyS35y+M4772y+L4U7U2fQ1AU0SQdMo0ePzg8Y0knxlqHPpkBooYQ+K8KKhob8tq5UbvXxpvuXvrUPLV+H5y9rWPnctqTOnGvcRvmt92z4+3Lu+43YKi7f/cg4e+LM+ML2u8Wv9jgqJvQfHK8tXxY/fOzuOHGriTFsk95xx0vz48gbfxVTrrwwDrr+0vjN3EfX+j0AgG7FMRgAsB7S8m7ruhxgmvxL56a++MUvNk8MJptuuml87nOfy/+cupisq9RpMy1T1/S13Xbb5ee90gRVjx498gnI9e260tHSZF5aajB1dWm5bF46v5e+P+n8XVMnmqYOL+mi7pbdNFNXzhtuuCHvrrMh0uRimrRLk5YtJ1STNFmX/j3Sc5qWQUzvvWTJkrj33nubn5cm/1Iw9Oabbxb4BACAKlfkuK6tJd6XLl2aL52+//77t7lCaQpApvFV6lDZ8kK7a665JiZOnJiPE1eXLnJr+fXNb34zD1x+8pOfzMdiKQDbNCY7/PDD8z+33H7y3//93/nt+l4EuD7jq/S5khREfeONN5qfmy4gTCvApsDmhrjnnnvi/vvvz8fTq4+XZ8yYkd//yCOPxN/+9rfmejtiXArAhtHps8Klq1WS9Mt+XaSl4JOBAwc235daoO+0005x9913562/0xUmqf359ttvv8qVOemqmJ/+9Kf5L/Z0NUzqUjB06NDm7qGFEjioCD3KK39kLG9ceWC5uqYAZ6+3rmLq+VZQsyn82drze5Vr1+092wiHLnsrYNqrZtXtjO7TP/9q6cLH71l5ddTYHfPOoJ+449rYpt+m8alpB8b1zz0V/3L3H2PL3v1ix4F/v/oLALo1x2AAwHpKE3vpouK0HOBBBx2Ud8Bs7fxVWipvq622WqUDS5M0sVUul+OBBx5Y5/dNy62nLpxp3J9ClKkzTDqfdvrpp+fdUNL2Kk1aKj4tMZgmDQ844ID8fFy6+Dqdo0vdZNLkaZOm5fbSROTPf/7zPNCanrvHHnvEiBFrX72lLU2Ti+k2bXt16bxiurg8/Xulc4Rpuff0b5wm9caMGdNcb5oQTEvUAwAA1a+ocV2SOlamAGka0zWFCNPy5SnA+c53vrPN16Wx1b//+7/nXSmbXpe2kS5ya1r+fXVpdYOW0pgmLW+ftpXGPBMmTGh+LC3fnmpL4dM0fkpZi/Q9SKHStMR56jS6vtZ1fJXGf6mBVwpWpudMmzYtvy+NB9P3f2PHg2nM19p4cNGiRflt+jecPHlyh41LAdgwQp8Vbosttlhlmfe1efTRlZ0KR44cucr9qb126tyZfnGnK1DS8lap1XdL6RdyCn2mtufp9Y8//nh+FQ80aVpiffHylUuur+61FctWWXK9aVn31pZwT0uqv75ieQzpucm6vedb217be7ZlwZLX45In74uPbrtz9K2ti8vmPJBv89MTZ8T4foNi+qDN4rrn5sRPn7xf6BMAmgh9AgDrKQUvU5eX1CXyX//1X/POI6tLk3VNocfWpAuWU2eYl156aZ3f99RTT13lfFhayj1NoKXJqFRTCoVWorT0fAp7pmXwUveUtHxfmnhMk6b/+I//2HxuLk0gpqX0fvjDH+YTfWkiM32lSdR99tkn/14PHjx4vd//1VdfzW/TttakabLvmGOOyd8nLUOYziGm26YlCY8//vi8I876LmkIAABUlqLGdUkKO6Yxzv/93//F008/neclfvvb3+bjkBR2bEt6r9SlNHW+TE2uUnfPtGpB6gzaVlj04YcfXq/aUng0hT7ThXsp9JlCpanz5oZ0+Vyf8VX6nqSOqT/4wQ/y90xjwvSVxpPpc6Z/ozSu3NDxYOrcmb7akrIlHTkuBWDDOANX4dKBS+rGedttt8XChQtX6eDZmnQQkxx44IGr3J+usvjud7+bt+hu6hqarhJpafr06XkgNP1C33LLLfPOCBWxtDsVo6lz5jNvLG718WdeX3n/2L4r99Oteq/sJDv3jVdj8qarBimfe/O1WNHYEGP6rHmf3qxXn+hRKjdv+23v+VYtY/r8vWtta85/+M4Y3LNXHLflyiuynnx95WTFlr1XfqaaUilG9uobT711PwCQryVTdAUAQBUvB5gm2NJygOk8U0u9e/fObxcsWNDq69PSdWkCseUKNesrLVWezoWdfPLJ+URY6prS8lxYWjIvabkkXZOWy+V1tDSBl2pMX6m7yi233JJPnl155ZXx6U9/Og+yNk2wpk6b3/jGN6K+vj6fxEydd9JkY+oskzrM/OhHP1pl201LALaUuty09m/xi1/8Iu8uui7Ssn/pK23rzjvvzJehT//WF154YT45nDqrAgAA1a3Icd2sWbPy0GcKOKaxUur0mQKSa1vBIYUyU14ivTZ15kwrm6ZOpU2rq26s1NEydQJN47XPfvaz+fusKVTanuOr9H0866yz8q+nnnoqHw/+7ne/y5eBf//73x/XX3999OnTp3msuz7jwRQuXdel2dd3XApAx/n7GkFUpBTCTF0JUlAztSNfk1/+8pfx0EMP5a21W7YaT9KVHemX/H333Zcf3KQDhNVP5KZf6um1aRsp+JkOCCom9ClwUBGG9ewdW/TqF/e+8kK8sWL5Ko+lv9+36IX88UE9Vnbv3HnQyjbut700/23buvWt+yavpatmOSvlgdFn31wcc1cLm6ZuoXe8ND82KdfEhP6D2tzGY4sXxv8++2icMX5q1L615Hz9Wwe69S2Wqk/LzZfCvgYAzRyDAQAbKC1RN3To0Hw5wBRibCmdo0oThs8//3y+HODq0kXLaTJqQ5bHaymd50oTVynY+ZnPfKa5i0nTObckTUqtLk2gdYa0ys63vvWt+MMf/tDcmebggw/OJ9BSR50kncdL0hJ6X/rSl/LPkiY607m+9Jxf/epXeReYtMJPkzTp2NpnS6HSxYtXPbfSdA7x7rvvbrXGb3/72/H9738/D8KmCdvvfe97zZN4aen3dO4wfW+blgJsWQcAAFDdihrXpXBl2n4KNab3Tds55JBD1vq63XffPa83BRCvu+66fPx05JFHRntetHf44Yfn3UtTXWn8s++++25QqHR9xlcpCJqCt01j1fR9P+GEE+Kiiy7KG3ullRkeeeSR9R7rbrfdds3/Vq1JXT3TxZRNq9Kuz7gUgI4n9FkF0tUb6RduCnWmNuqrX4GRfqmmdt6pXXb6Zfr1r3/9bdtIv3R32WWX/ARuukIkLffe2pUwqePB/Pnz8wOHdNI3nWyuCAIHFeOIUdvEkvoV8b1HVm3xft7Df83vP2703wPHOw0cGlv17h9XzXs8D4o2WbhsSfzXY3/LO3geOWqbdXrP5NsP3rZKSPNnc+6PeW++FkeNGt8c5mzNOQ/dHtv2GxQHjRjTfN9Wb3UGvevllVefvbJsScx5bVHz/QCAYzAAYOOXA0zSRcitdWBJ57TSc1p21kwr3XzlK1/J/9wek3PpvFrqRPLCCy+scs4sdX1JnVJS8LLlxFcKRv7sZz+LzlAqlfLl+WbPnt28Mk+TuXPnNncsTdLk2U9/+tN8srWlF198MZYuXbrK0vapq2nSFCZtkiYUV+9smiYs06RgeqxpIq9Jer8U+EwTremcY/pK5yDTpN+TTz65ynOfeeaZ/LZlHQAAQHUralyXLmTbb7/98ve8+OKLY/PNN88v6lublH9I3UnT+OS//uu/8gDo6qufbqz0mZMUwly+fPkGL+2+PuOrefPm5cu+p2XVW0pjwTTWTWPL9D1Kxo4dm9+mUGrL8V/qmvroo4+u8vopU6bk48cUkk2Pt3TvvffmAc///M//bO7Wuj7jUgA6nuXdC/bf//3f+dLtrdliiy3yg6F0UJOu0khttS+55JK8Xfiee+4Zw4cPj1deeSVf9ildPZOu6EhX36/eWr3lEu9NJ3vbOrhJ96dtpBPe//AP/xAVQ+CgYrx7q0lx7XNz4qdP3h8PLXo5dhg4JO5Z+Hzc8fJzMWXTYfGuLf4e+kzdYj+/w27xoVuvjvff/NuYtfnY6F1TG7+b92S8sPSN+OzEmfmS601eXb40Lnny/vzPH95mSvP9szYbG1c++3hc99ycOOlPv4kZQzaPJxa/Ejc+/3QeKv3g1m0f5KdOoDc9/0z8cPqs5nb2yYGbjYnzH7kz/vnuP8Yhm4+NW1+cF8sbGuKUMZM64LsGAFWq5BgMANi45QDTBF86/7W6973vffkydH/+85/zpfBSJ5cVK1bkE1Np0ipNnKXJuo2Vzqul82vHH398fkH1oYceGjNmzMgnA9N9F1xwQd4hJXXYTO+fAo7jxo1rDl12pK222ip/75///Of58oXp+9WzZ8/8ou3U4TNNah5wwAH5c08//fT44x//mC/5ftVVV+UTeem8YKo3TeR96lOfat7ucccdl2/z/PPPj8ceeyyfeEuTcyncmrrsNHWASdJjX/jCF+Lzn/98/v1OE6sjRoyIBx98MP+3SR1rvvrVr+bPTROJ6f3/8R//Mf/3OfDAA/OlDdN2UxeddPF4RZ1PBAAAqnZcl8ZoaZnzu+66a73GGSmUmS6ue/bZZ/OVH9a2JPz6SiHJNFZLdQ0bNmyDV05dn/HVYYcdlgdEU+fNhx9+OHbeeec8cJrGiOn56d8h1ZKkHEkKgN566635irJTp07NL/C78cYb8yZhLbtxphq++c1vxnvf+974+Mc/nn+W8ePH591bf//73+fv8W//9m/NjcLWZ1wKQMcT+ixYOthIX61pueRUOsGartxIv0TTL/O0/PqCBQvy+9OBxWmnnZYfSKUrQtqSQp9N2jr4SB1F0y/t1NWgYpZ2T0qa0laKunI5D1Be8Ohdcc38J+OeV56P4T17x/vH7hjvG7dD/nhLUzYdHj+aeUgesEzPT8b2GRhnT5oZ+w4fvcpzFy9flm939dBn8q0p+8aPnrgn/m/uY/HTJ++LIT16xXFbTsgDn/3rerRZ7+yHbo/dh4yMaYM3W+X+tAT9BdMPin+7/+a47KkHY7NN+sY3p+wdE/oP3ujvEQB0GZljMABg43z2s5/NJwDTpFFLqbtkOteVLnBOE3lpAjHdt+222+bL2aXzXO1lxx13jHe/+93x4x//OA83/uY3v8nDlR/72Mfyc2lpKbq0TF3qApMmxdJXy/NoHemf//mf88+cAqm//e1v8xV+UhDzox/9aD5x17Q0Xzr/l2pMk5cpEPqnP/0prz1N4KWJwHTbJIVWL7zwwnxJwDSxl7aRlvxLy8anr5ahz+TYY4/NA6ipE076t0odetLF5u9617vySdKmbqNJWlIxdXlJ20/PTR18UtfUNAn8kY98JDbbbNXzLwAAQPUrYlyXxmQpC5GWLl+Xpd2bjB49OiZNmpR3CW3Ppd1bShcTptBnCrRuTKh0XcdXaen39Jy0FPy1116bjw2TFNBMq1u0DNam73/qjpoafaVx4wMPPJCv8JoueEyNv1Zfgj19r9K/W1rlIa0GmxqWDRw4MM+KvP/9788Dpk3WZ1wKQMfLGldf0wcq0PKrbor6a24uugwAgG6l9sPHRXnr1rvIAwAAAABAJUkX0qXVTVMg8mc/+1mHvMfnPve5/OLB1OGyrVVYAaCjad1DVch0+gQA6HRZZnl3AAAAAACqQ1rB4LXXXstXcOgIjz32WL5KQ+qEKfAJQJEs7051qLGrAgB0ureWEwUAAAAAgEqUFrdNS5wvX748X8I8LWc+a9asdn2P2bNn58uZp9Bnep+Pf/zj7bp9AFhf2idSHXoIHAAAdDrHYAAAAAAAVPiKVf369Ytnn302Zs6cGf/xH/8R5XK5Xd9j+PDh8eSTT8bgwYPjW9/6Vuywww7tun0AWF9ZY7rsASpc/e33xfKfX1l0GQAA3UqPf/lQZAP7FV0GAAAAAAAAAG/R6ZPq0KOu6AoAALqfno7BAAAAAAAAACqJ0CfVQegTAKDz1TkGAwAAAAAAAKgkQp9UhUzoEwCgc9XURFY2XAAAAAAAAACoJGZxqQ49aouuAACge3H8BQAAAAAAAFBxhD6pCjp9AgB0LsdfAAAAAAAAAJVH6JPqIHQAANC5HH8BAAAAAAAAVByhT6qD0AEAQOdy/AUAAAAAAABQcYQ+qQpZTTmiXC66DACAbsPy7gAAAAAAAACVR+iT6tGjtugKAAC6D8deAAAAAAAAABVH6JPqodsUAECn0ekTAAAAAAAAoPIIfVI1BA8AADqRYy8AAAAAAACAiiP0SfXoKXgAANBphD4BAAAAAAAAKo7QJ1Uj692r6BIAALqNrI9jLwAAAAAAAIBKI/RJ1cj69S66BACAbsOxFwAAAAAAAEDlEfqkamT9+hRdAgBAt+HYCwAAAAAAAKDyCH1SPXSbAgDoPI69AAAAAAAAACqO0CdVQ7cpAIDO49gLAAAAAAAAoPIIfVI1BA8AADpJj7rIetQVXQUAAAAAAAAAqxH6pGpklhgFAOgUjrsAAAAAAAAAKpPQJ9Wjb++ILCu6CgCArk+HdQAAAAAAAICKJPRJ1chKpYg+vYouAwCgy9PpEwAAAAAAAKAyCX1SVQQQAAA6XqbTJwAAAAAAAEBFEvqkqgggAAB0PMdcAAAAAAAAAJVJ6JOqotMnAEDHc8wFAAAAAAAAUJmEPqkuuk4BAHQ8x1wAAAAAAAAAFUnok6piqVEAgI7nmAsAAAAAAACgMgl9UlWy/gIIAAAdTegTAAAAAAAAoDIJfVJVsk0HFF0CAEDX1nuTyDbpUXQVAAAAAAAAALRC6JOqkg0ZGJEVXQUAQBc/3gIAAAAAAACgIgl9UlWy2pqIAf2KLgMAoMvKhmxadAkAAAAAAAAAtEHok6pT0n0KAKDDONYCAAAAAAAAqFxCn1Qd3acAADqOYy0AAAAAAACAyiX0SdXJdJ8CAOgwjrUAAAAAAAAAKpfQJ1VH9ykAgA6SRWSDhT4BAAAAAAAAKpXQJ1VH9ykAgA7Sv29kdbVFVwEAAAAAAABAG4Q+qTrZpv0jyuWiywAA6HJKOqoDAAAAAAAAVDShT6pOVipFNqh/0WUAAHQ5OqoDAAAAAAAAVDahT6pSpgsVAEC7c4wFAAAAAAAAUNmEPqlKulABALQ/x1gAAAAAAAAAlU3ok6qkCxUAQPtzjAUAAAAAAABQ2YQ+qUolXagAANpXuRTZoP5FVwEAAAAAAADAGgh9UpWyYYOKLgEAoEvJBg+MrGR4AAAAAAAAAFDJzOpSlbK+vSP69ym6DACALiMbOazoEgAAAAAAAABYC6FPqlZp5PCiSwAA6DIcWwEAAAAAAABUPqFPqlZJNyoAgHbj2AoAAAAAAACg8gl9UrUsQQoA0E6yiGzzoUVXAQAAAAAAAMBaCH1StUqjLEEKANAesiGbRtazR9FlAAAAAAAAALAWQp9Uraxfn4h+vYsuAwCg6umgDgAAAAAAAFAdhD6paqWRun0CAGwsx1QAAAAAAAAA1UHok6qmKxUAwMYrOaYCAAAAAAAAqApCn1S10ihdqQAANkrmQhoAAAAAAACAaiH0SVXTlQoAYONkgwdG1rNH0WUAAAAAAAAAsA6EPqlqWf++EX17F10GAEDVykbqnA4AAAAAAABQLYQ+qXqlUbp9AgBsKMdSAAAAAAAAANVD6JOqpzsVAMCGcywFAAAAAAAAUD2EPql6pZG6UwEAbJDMsRQAAAAAAABANRH6pOqVttys6BIAAKpSNnRQZD17FF0GAAAAAAAAAOtI6JOql/XtHdmwQUWXAQBQdUrjtii6BAAAAAAAAADWg9AnXUJp7KiiSwAAqDqOoagkV1xxRRx11FExefLkmDlzZnzqU5+KZ599doO21djYGKecckqMHz8+5s6d2+61AgAAsH6M+QAAANqP0Cddgi5VAADrzzEUlWL27Nnx6U9/OpYuXRonnnhiPgF45ZVXxtFHHx3PPPPMem/v4osvjltvvbVDagUAAGD9GPMBAAC0r5p23h4UQpcqAID1kw0bFFmfXkWXAfHQQw/FBRdcEFOnTo2LLroo6urq8vtnzZoVZ5xxRnzlK1/JH19XTzzxRHz729/uwIoBAABYV8Z8AAAA7U+nT7qErG/vPLgAAMC60eWTSpE6tCSnn3568+Rfsv/++8cuu+wSN9xwQyxYsGCdtlVfX593jxk0aFC+zB8AAADFMuYDAABof0KfdBm6fQIArDvHTlSKW265JWpqavLJvtXNmDEjGhsb8+esi+9///tx77335p1ievfu3QHVAgAAsD6M+QAAANqf0Cddhm5VAADrzrETlWDZsmUxb968GD58+CodX5qMGjWqefm+tXnggQfi/PPPj+OPPz5mzpzZIfUCAACw7oz5AAAAOobQJ12GblUAAOsmGz44sj69ii4DYtGiRXlXl/79+7f6eN++ffPbxYsXr3UiMS3xN2zYsPinf/qnDqkVAACA9WPMBwAA0DFqOmi70Omyvr0jGzYoGhe8VHQpAAAVzcUyVIrly5fnt611fGl5/9KlS9e4nXPOOSceffTRuPjiiy3xBwAAUCGM+QAAADqGTp90KZYpBQBYO8dMVIqePXuuMhHYWjeXpFevtjvT3nHHHfGjH/0oTj755Jg2bVoHVQoAAMD6MuYDAADoGEKfdCm6VgEArEXmmInK0adPnyiVSm0u5dd0f9OSf6t744034uyzz45Ro0bFJz/5yQ6tFQAAgPVjzAcAANAxLO9Ol6JrFQDAmmXDBkfWp+0OGtCZ0lJ+afJu3rx5eeeX2traVR5/5pln8ttx48a1+vp77703nn766fzPO+20U6vP2XffffPb6667LkaOHNnOnwAAAIC2GPMBAAB0DKFPupQUYMiGDYrGBS8VXQoAQEXS5ZNKk5bnu/zyy+POO++M6dOnr/LYzTffHFmWxZQpU1p97eabbx5nnHFGq4/96le/ivnz58cpp5wS/fr1y78AAADoXMZ8AAAA7S9rbGxs7IDtQmGW//raqP/TnUWXAQBQkWrfc0SUd9im6DKg2V133RXHH398TJ48OS666KLo2bNnfv8111yTT+6lri3nn3/+em/3hBNOyCcVdXsBAAAojjEfAABA+9Ppky6nNGGM0CcAQGvK5Shts2XRVcAq0sTfSSedFJdcckkcfvjh+YTfggUL4qqrrorBgwfH2Wef3fzcW2+9NW677baYMGFC7LfffoXWDQAAwNoZ8wEAALS/UgdsEwpV2nrLiB51RZcBAFBxSuNGRdazR9FlwNv8y7/8S/5VV1cXP/nJT/JJvoMPPjguvfTSGDVqVPPz0v3nnXdeXHvttYXWCwAAwLoz5gMAAGhflnenS1p20RXRcM8jRZcBAFBRao7aL2p2m1J0GQAAAAAAAABsIJ0+6ZLKE8cVXQIAQMVxjAQAAAAAAABQ3YQ+6ZJKE8ZElLKiywAAqBjZZkMjG9iv6DIAAAAAAAAA2AhCn3RJWZ9ekW25edFlAABUjNLEsUWXAAAAAAAAAMBGEvqkyyoLNgAANLO0OwAAAAAAAED1E/qkyyoJNgAArNSvT2SjhhddBQAAAAAAAAAbSeiTLqs0bFBkQwYWXQYAQOHK242NLMuKLgMAAAAAAACAjST0SZdW2s4S7wAApYmOiQAAAAAAAAC6AqFPurSyJd4BgO6urjZK24wuugoAAAAAAAAA2oHQJ11aNmZkRK+eRZcBAFCY0jZbRlZbU3QZAAAAAAAAALQDoU+6tKxUitK2Y4ouAwCgMKXtdD4HAAAAAAAA6CqEPunyypMEHQCAbirLojxxbNFVAAAAAAAAANBOhD7p8koTxkTU1RZdBgBApyuNHRVZ395FlwEAAAAAAABAOxH6pMvLetRFadLWRZcBANDpSlO2K7oEAAAAAAAAANqR0CfdQnmqwAMA0M3U1ER5x/FFVwEAAAAAAABAOxL6pFsojR8dYWlTAKAbKU0cG9kmPYouAwAAAAAAAIB2JPRJt5CVSlHeaduiywAA6DRlS7sDAAAAAAAAdDlCn3QblngHALqNTXpGacKYoqsAAAAAAAAAoJ0JfdJtlLYYEdmQgUWXAQDQ4co7jo+splx0GQAAAAAAAAC0M6FPuhXLnAIA3UF5Z8c8AAAAAAAAAF2R0CfdSskS7wBAVzewX2RbjSy6CgAAAAAAAAA6gNAn3Upp8MDIttys6DIAADq0s3mWZUWXAQAAAAAAAEAHEPqk2ynr9gkAdGGOdQAAAAAAAAC6LqFPup3yTttGlOz6AEDXk20+NErDBxddBgAAAAAAAAAdRPKNbifr0ytK244uugwAgHanyycAAAAAAABA1yb0SbdUnjqx6BIAANpXlkV58oSiqwAAAAAAAACgAwl90i2VJm0d0atn0WUAALSb0rZbRda/b9FlAAAAAAAAANCBhD7plrLamijvMqnoMgAA2k35HTsVXQIAAAAAAAAAHUzok26rPHPHoksAAGgfA/pGacKYoqsAAAAAAAAAoIMJfdJtlYYOitLYUUWXAQCw0Wqm7xBZyaE9AAAAAAAAQFdnZphuzTKoAEDVK5WiPGOHoqsAAAAAAAAAoBMIfdKtlbbfJqJPr6LLAADYYKXtxkbWv2/RZQAAAAAAAADQCYQ+6daymnKUp21fdBkAABusPHPHoksAAAAAAAAAoJMIfdLt5UGJLCu6DACA9ZYNHhClbbcqugwAAAAAAAAAOonQJ91eadCAKG03pugyAADWW3nXyZG5eAUAAAAAAACg2xD6hBSY2G1q0SUAAKyfutooT9uh6CoAAAAAAAAA6ERCn5D+I2yzZWRDNy26DACAdVaeul1km/QougwAAAAAAAAAOpHQJ0Tky6KWd51SdBkAAOusvJtjFwAAAAAAAIDuRugT3lLeZWJEj7qiywAAWKvS2FFRGjGk6DIAAAAAAAAA6GRCn/CWrGePKO8yqegyAADWqrz71KJLAAAAAAAAAKAAQp/QQnnPnSNKWdFlAAC0KRsyMEqTti66DAAAAAAAAAAKIPQJLZQGDYjSThOKLgMAoE3lvadH5iIVAAAAAAAAgG5J6BNWU7Pv9Ag5CgCgEvXvE+WdJxZdBQAAAAAAAAAFEfqE1ZRGDInSdmOLLgMA4G1q9tolsppy0WUAAAAAAAAAUBChT2hFzb4ziy4BAGBVvTeJ8owdi64CAAAAAAAAgAIJfUIrSqM3i9LYUUWXAQDQrGa3KZH1qCu6DAAAAAAAAAAKJPQJbSjvN6PoEgAAVupRG+XdpxZdBQAAAAAAAAAFE/qENpTHbxXZyGFFlwEAEOWZO0XWq2fRZQAAAAAAAABQMKFPWIOafXX7BAAKVi5HzZ47F10FAAAAAAAAABVA6BPWoLT9NpEN3bToMgCAbqy8y8TI+vctugwAAAAAAAAAKoDQJ6xBVsqivPe0ossAALqr/FhketFVAAAAAAAAAFAhhD5hLco7T4wYoLsWAND5SjuOj9KQgUWXAQAAAAAAAECFEPqEtcjK5ajZa5eiywAAuqGafWYUXQIAAAAAAAAAFUToE9ZBecaOEX17F10GANCNlCaOi9LmQ4suAwAAAAAAAIAKIvQJ6yCrq42aA95RdBkAQHeRZVFz8O5FVwEAAAAAAABAhRH6hHVUnrFDZIMGFF0GANANlHaeGKURQ4ouAwAAAAAAAIAKI/QJ6ygrl3XcAgA6Xk05ag/aregqAAAAAAAAAKhAQp+wHko7bRvZyGFFlwEAdGHlXSdHNrBf0WUAAAAAAAAAUIGEPmE9ZFkWNYfsUXQZAEBX1bMuavabWXQVAAAAAAAAAFQooU9YT+XxW0Vp6y2KLgMA6IJq9poWWe9Nii4DAAAAAAAAgAol9AkboObgPYsuAQDoavr2jvKeOxddBQAAAAAAAAAVTOgTNkBpyxFR2mGbossAALqQmv1nRtajrugyAAAAAAAAAKhgQp+wgWoO3j2ilBVdBgDQBWSDBkR55o5FlwEAAAAAAABAhRP6hA1UGjooytO2L7oMAKALqJm1W2TlctFlAAAAAAAAAFDhhD5hI9QcuGtEbU3RZQAAVSzbfGiUJk8ougwAAAAAAAAAqoDQJ2yErH/fKO82pegyAIAqVnPwHpFlWdFlAAAAAAAAAFAFhD5hI9XsOyOi9yZFlwEAVKHS1ltEecKYossAAAAAAAAAoEoIfcJGynr1jJqDdy+6DACg2pRLUXPkfkVXAQAAAAAAAEAVEfqEdlCevmNko4YXXQYAUEXKu0+N0vDBRZcBAAAAAAAAQBUR+oR2kJWyqD16/4gsK7oUAKAa9OsTNQfuWnQVAAAAAAAAAFQZoU9oJ6UtRkR5+vZFlwEAVIHaw/aKrEdd0WUAAAAAAAAAUGWEPqEd1RyyZ0SvnkWXAQBUsNLYUVGesl3RZQAAAAAAAABQhYQ+oR1lvTeJmoP3KLoMAKBSlUpRc/T+RVcBAAAAAAAAQJUS+oR2Vp6xY2SjhhddBgBQgcp7TI3S8MFFlwEAAAAAAABAlRL6hHaWlbKoTR28sqzoUgCAStKvT9Qc8I6iqwAAAAAAAACgigl9QgcobTEiytO3L7oMAKCC1B62V2Q9exRdBgAAAAAAAABVTOgTOkjNIXtG9OpZdBkAQAUojR0V5SnbFV0GAAAAAAAAAFVO6BM6SNZ7k6g5ePeiywAAilYqRc3R+xddBQAAAAAAAABdgNAndKDyjJ0iGzms6DIAgAKVd58SpeGDiy4DAAAAAAAAgC5A6BM6UFbKovbYA/MOXwBANzSwX9QcuGvRVQAAAAAAAADQRUiiQQcrjRoe5X2mFV0GAFCA2ncdFFnPHkWXAQAAAAAAAEAXIfQJnaDmgF0js6wrAHQr5Rk7Rnn86KLLAAAAAAAAAKALEfqETpDVlKP2hIMt8w4A3WlZ98P2KroKAAAAAAAAALoYCTTo1GXepxddBgDQCWqPs6w7AAAAAAAAAO1P6BM6Uc0B74hsxJCiywAAOlB55o5R3say7gAAAAAAAAC0P6FP6PRl3mdZ5h0AuvKy7oda1h0AAAAAAACAjiF5Bp2sNHJ4lPe1zDsAdDlZWtZ9lmXdAQAAAAAAAOgwQp9QgJr9LfMOAF1NeeZOUd5my6LLAAAAAAAAAKALE/qEAljmHQC6lmzT/pZ1BwAAAAAAAKDDSZxBQSzzDgBdRBZRc9xBkfWoK7oSAAAAAAAAALo4oU8oUM0BlnkHgC6xrPvWlnUHAAAAAAAAoOMJfUKBsnJa5v3giHK56FIAgA1gWXcAAAAAAAAAOpPQJxSsNHJY1Lxzj6LLAADWV7kUtaccZll3AAAAAAAAADqN0CdUgJo9d4nSxLFFlwEArIeaQ/aI0hYjii4DAAAAAAAAgG5E6BMqRO3xB0cM6Ft0GQDAOihtNzbKe+5SdBkAAAAAAAAAdDNCn1Ahst6bRN27D40o+W8JABVtQN+oPeHgyLKs6EoAAAAAAAAA6Gaky6CClLYaGTUH7Vp0GQBAW0pZ1J18aH6xBgAAAAAAAAB0NqFPqDDlfWdEafzoossAAFpRc+BuURozsugyAAAAAAAAAOimhD6hwqSlYmtPPCSib++iSwEAWihtMzq/OAMAAAAAAAAAiiL0CRUo69s7ak9+Z0qAFl0KAJCk380nHRJZye9mAAAAAAAAAIoj9AkVqrz1llHeTzcxAChc6sJ90jvzizIAAAAAAAAAoEhCn1DBag7cNbIxI4suAwC6tbSke3mbLYsuAwAAAAAAAACEPqGSZaVS1J18aETvTYouBQC6pXTxRc1BuxZdBgAAAAAAAADkhD6hwmUD+kbtiYfkS8sCAJ2o9yb5xRfpIgwAAAAAAAAAqARmsKEKlCeMiZpZuxVdBgB0H+VS1L3niPziCwAAAAAAAACoFEKfUCVq9psZpcnbFl0GAHQLNUftF6Wxo4ouAwAAAAAAAABWIfQJVaT2uFmRjRxWdBkA0KWVd50cNTN3KroMAAAAAAAAAHgboU+oIlldbdS976iIvr2LLgUAuqTSuC2i5oh9iy4DAAAAAAAAAFol9AlVJhvQN+ree2RETbnoUgCgS8kGDYjaUw+PrOwQGQAAAAAAAIDKZEYbqlBp9GZRc8wBRZcBAF1Hj7qoPe2oyHpvUnQlAAAAAAAAANAmoU+oUjXTto/ynjsXXQYAVL8sovakQ6I0fHDRlQAAAAAAAADAGgl9QhWrOXSvKG27VdFlAEBVq5m1e5QnbV10GQAAAAAAAACwVkKfUMWyUilq331YZEM3LboUAKhKpcnbRs1+M4suAwAAAAAAAADWidAnVLlskx5R+74jIzbpUXQpAFBVspHDova4WUWXAQAAAAAAAADrTOgTuoDS0EFRe/KhEaWs6FIAoDr07R117zsqsrraoisBAAAAAAAAgHUm9AldRHnCmKg5fN+iywCAyldXuzLwOaBv0ZUAAAAAAAAAwHoR+oQupGb3KVHeb0bRZQBA5SqVovbUw6O05YiiKwEAAAAAAACA9Sb0CV1M7cF7RHn69kWXAQCVJ4uoPX5W3h0bAAAAAAAAAKqR0Cd0QTXHHhilieOKLgMAKkrNO/eK8s4Tiy4DAAAAAAAAADaY0Cd0QVlauvbdh0a21ciiSwGAilDea5eo2Xta0WUAAAAAAAAAwEYR+oQuKqurjbrTjops+OCiSwGAQpV2nhg1h+5VdBkAAAAAAAAAsNGEPqELy3r1jLoPHBsxsF/RpQBAIUrbjona42ZFlmVFlwIAAAAAAAAAG03oE7q4bEDflcHP3psUXQoAdKpsixFRe+phkZUd8gIAAAAAAADQNZgBh26gNGxQ1L3/6Ii62qJLAYBOkQ3dNOr+4ZjIetQVXQoAAAAAAAAAtBuhT+gmSltuFrWnHh5R8t8egC6uf5+o++C7ItPlGgAAAAAAAIAuRvoLupHyhDFRe9xBEVnRlQBAB9mkR9R94NjIBvYruhIAAAAAAAAAaHdCn9DNlHeZFDWH7VN0GQDQ/nrURt37j47SiCFFVwIAAAAAAAAAHULoE7qhmj13jppD9yq6DABoP3Up8HlMlLYaWXQlAAAAAAAAANBhhD6hm6rZe1rUHLJH0WUAwMarrYna046K0thRRVcCAAAAAAAAAB1K6BO6sZp9Z0TNrN2KLgMANlzNysBneesti64EAAAAAAAAADqc0Cd0czX7vyPKB7yj6DIAYP3VlKP2fUdGeZvRRVcCAAAAAAAAAJ1C6BOI2oN2i/J+M4suAwDWL/D5niOivO1WRVcCAAAAAAAAAJ0ma2xsbOy8twMq2fKr/xT1v/9L0WUAwNqXdH/vEVGeMKboSgAAAAAAAACgUwl9AqtY8bs/518AUJFqa1Yu6T5eh08AAAAAAAAAuh+hT+BtVlx7c6y48qaiywCAVdXVRu37joryNlsWXQkAAAAAAAAAFELoE2jViutvjRX/d2PRZQDA3wOf7z86yuO2KLoSAAAAAAAAACiM0CfQphU33B4rfvOHossAoLvrURt1/3BMlMaMKroSAAAAAAAAACiU0CewRituuSdW/PJ3EQ1+VABQgD69ou4fjo7SqBFFVwJ0sCuuuCIuvvjiePLJJ6Nnz56x6667xplnnhmbb775Or3+lltuif/8z/+Me+65J954440YOnRo7L333nH66afHpptu2uH1AwAA0DZjPgAAgPYj9AmsVf19j8byn/xvxPIVRZcCQDeSbdo/aj94bJSGOHEPXd3s2bPjggsuiHHjxsVee+0V8+fPj6uvvjr69esXl19+eYwateZOv7/+9a/js5/9bD5xuP/++8fgwYPjb3/7W9x55535BOJll10WQ4YM6bTPAwAAwN8Z8wEAALQvoU9gnTQ8MTeW/devI95cUnQpAHQD2WZDo+4Dx0TWr0/RpQAd7KGHHorDDz88pk6dGhdddFHU1dXl919zzTVxxhln5J1b0uRgWxYtWpQ/J/nlL38ZY8aMaX7sO9/5Tpx//vlxxBFHxNe//vVO+DQAAAC0ZMwHAADQ/kodsE2gCyqNGRl1Hz0xor/wDQAdKxs7KupOP0HgE7qJtLxfkpbka5r8S1L3ll122SVuuOGGWLBgQZuvv/HGG+P111+PY489dpXJv+QjH/lIvs0//OEPHfgJAAAAaIsxHwAAQPsT+gTWWWn44OjxsZMjG2qZXQA6RmmHbaLug8dGtkmPoksBOsktt9wSNTU1+WTf6mbMmBFpcYr0nLaMHTs2zjzzzDjwwAPf9li5XM63/cYbb7R73QAAAKydMR8AAED7q+mAbQJdWDawX9R99KRY9p+/isan5hVdDgBdSPkdO0XNUftHVsqKLgXoJMuWLYt58+bF5ptvvkrHlyajRo3Kb5944ok2tzFx4sT8qzU33XRTPvnX1uMAAAB0HGM+AACAjqHTJ7Dest6bRN2Hj4vShFWXUgGADVVz4K5Re8wBAp/QzSxatCjv6tK/f/9WH+/bt29+u3jx4vXednrNV7/61fzPJ5xwwkZWCgAAwPoy5gMAAOgYQp/ABsnqaqP2fUdFaWdX0AKwEbIsao45IA99At3P8uXL89vWOr60vH/p0qXrtd3XXnstPvCBD8ScOXNijz32iGOOOaYdqgUAAGB9GPMBAAB0DKFPYINl5VLUnnBwlPeeVnQpAFSjmnLUnnp41Lxjp6IrAQrSs2fPVSYCW1sKMOnVq9c6b/OFF16IU045Je68887YcccdY/bs2ZFluggDAAB0NmM+AACAjiH0CWyUdDKl9tC9oubwvSOcVwFgXfXsEXUfODbKO2xTdCVAgfr06ROlUqnNpfya7m9a8m9tHn744Tj22GPj/vvvjxkzZsSFF16YvwcAAACdz5gPAACgYwh9Au2iZs9dovbUIyLqaosuBYAKlw0eEHUfPzlK47YouhSgYGkpv1GjRsW8efNa7fzyzDPP5Lfjxo1b67ZuvvnmOPHEE2P+/Plx2GGHxQ9/+EOTfwAAAAUy5gMAAOgYQp9Au0nd2uo+dlJkm/YvuhQAKlRpmy2j7hOnRGnYoKJLASrEtGnT8sm/tDRfa5N6qbP8lClT1riNO+64Iz70oQ/Fa6+9lt9+85vfzCcXAQAAKJYxHwAAQPsT+gTaVWmzoVH3iXdHNnZU0aUAUGHKu0+N2g8cG1mvnkWXAlSQo48+Or+dPXt2LFmypPn+a665Jp/Y22effWL48OFtvn7hwoXxiU98In/txz/+8TjzzDM7pW4AAADWzpgPAACg/WWNjY2NHbBdoJtrrK+PFb++NupvvrvoUgAoWrkcNUfvHzUzdii6EqBCffGLX4xLLrkkRo8eHfvuu28sWLAgrrrqqhg4cGBceuml+XKAya233hq33XZbTJgwIfbbb7/8vm9/+9vx/e9/P/r16xennHJKm+9x+umnR6nkukcAAIDOZswHAADQvoQ+gQ614s93xYr/vi6ioaHoUgAoQp9eUffeI6K01ciiKwEqWBqWpgnAyy67LObMmRMDBgyI6dOn511cmib/knPPPTfOO++8OPLII+NrX/taft8RRxwRDz744Frf4/7774+ampoO/RwAAAC8nTEfAABA+xL6BDpc/aNPxfKLfxPx+ptFlwJAJ8o2Hxp17zsqsoH9ii4FAAAAAAAAALoEoU+gUzS89Eos/69fR+NzLxZdCgCdoLTj+Kg94eDI6mqLLgUAAAAAAAAAugyhT6DTNC5dFssv+b9ouO+xoksBoKNkETUH7hY1B7yj6EoAAAAAAAAAoMsR+gQ6VfqRs+KqP0X9tTcXXQoA7a1HbdSe+M4ob7910ZUAAAAAAAAAQJck9AkUov5vD8Xyy66OWLqs6FIAaAfZkIFRe+oRUdpsSNGlAAAAAAAAAECXJfQJFKbhhYWx/Ce/ica5C4ouBYCNUJq6XdQec0BkPeqKLgUAAAAAAAAAujShT6BQjSvqY8Vv/hD1f7qz6FIAWF91tVFz1H5RM237oisBAAAAAAAAgG5B6BOoCPX3PhrLL70q4s0lRZcCwDrIhg+O2lMOi9LwwUWXAgAAAAAAAADdhtAnUDEaX14Uy37yv9H41LyiSwFgDcrTd4iaI/eNrK626FIAAAAAAAAAoFsR+gQqSmN9Q6y48o9Rf8NtEX46AVSWHnVRe+wBUZ6yXdGVAAAAAAAAAEC3JPQJVKT6B5+I5T+/MuK1N4ouBYB00DhyWNS++7AoDRlYdCkAAAAAAAAA0G0JfQIVq3HR4lj20/+LxsefKboUgG6tvNuUqDls78hqykWXAgAAAAAAAADdmtAnUNEaGxpixe//EvXX3BzhxxVA59qkZ9Qed1CUd9im6EoAAAAAAAAAAKFPoFo0PPZ0LL/0qmh8eVHRpQB0C6VxW0Tt8bMi27R/0aUAAAAAAAAAAG8R+gSqRuPSZbHi/26M+r/cFeEnF0DHqKuNmkP3ivI7doosy4quBgAAAAAAAABoQegTqDr1jz4VKy67WtdPgHZWGjsqao6fFaVBA4ouBQAAAAAAAABohdAnUL1dP//3hqi/+W+6fgK0R3fPd+4Z5V0n6+4JAAAAAAAAABVM6BOoavWPPBXLL7sqYuGrRZcCUJWysaOiVndPAAAAAAAAAKgKQp9A1dP1E2ADu3sesmeUd9PdEwAAAAAAAACqhdAn0GXUPzInll92ta6fAGuRjRkZtSccrLsnAAAAAAAAAFQZoU+gS2lcsjRW/OaGqL/l7qJLAajQ7p57RHm3Kbp7AgAAAAAAAEAVEvoEuqT6h+fEil/+PhpfeqXoUgAqQmncFlHzrgOjNHhg0aUAAAAAAAAAABtI6BPoshqXr4j662+NFdfdGrFiRdHlABSjX5+oPXzvKE+eUHQlAAAAAAAAAMBGEvoEuryGl16JFVdcFw33P150KQCdp1yK8u5To+bAXSPrUVd0NQAAAAAAAABAOxD6BLqN+gcejxX/fZ0l34Eur7T1FlFz1P5RGjao6FIAAAAAAAAAgHYk9Al0zyXfr781Yrkl34Eupn+fqD3MUu4AAAAAAAAA0FUJfQLdeMn366Ph/seKLgWgfZZy32PnqDngHZZyBwAAAAAAAIAuTOgT6NYs+Q5UO0u5AwAAAAAAAED3IfQJdHuNK1ZE/XWWfAeqjKXcAQAAAAAAAKDbEfoEeEvDy4tixZU3RcNdD0T4yQhUqh61K5dy32e6pdwBAAAAAAAAoJsR+gRYTcOzz8eK3/4xGh56ouhSAP6uXIryzJ2iZv+ZkfXtXXQ1AAAAAAAAAEABhD4B2tDw2NOx/P9ujMan5xddCtCdZRGlyROiZtbuURo0oOhqAAAAAAAAAIACCX0CrEX9PY/Eiiv/GI3Pv1x0KUA3U9p2q6g5ZI8obT6s6FIAAAAAAAAAgAog9AmwDhobGqL+9vtixe/+HPHK4qLLAbq4bIsRUfPOPaM8bouiSwEAAAAAAAAAKojQJ8B6aFy+Iur/dGesuO6WiDeWFF0O0MVkQzeNmoP3iPIO2xRdCgAAAAAAAABQgYQ+ATZA45tLY8X1t0b9TX+NWLa86HKAajegb9QcsGuUp02KrFQquhoAAAAAAAAAoEIJfQJshMZXX1sZ/rzlHuFPYMPCnnvuEuV37BRZbU3R1QAAAAAAAAAAFU7oE6AdNL7+Zqy46a9Rf9OdEW9a9h1Ys2zIwCjvMz3KUydGVlMuuhwAAAAAAAAAoEoIfQK0o8aly6L+5r/FihvuiHj1taLLASpMtvnQqNl3RpR2GB9ZKSu6HAAAAAAAAACgygh9AnSAxhUrov72+6L++tui8aVXii4HKFg2dlQe9ixvu1XRpQAAAAAAAAAAVUzoE6ADNTY0RMPdD8eK626NxnnPF10O0JmyiNJ2Y1d29hy9edHVAAAAAAAAAABdgNAnQCepf+DxleHPJ+cWXQrQkUpZlHbaNmr2mRGlzYYUXQ0AAAAAAAAA0IUIfQJ0soYn5saK62+JhgefiPATGLqOutoo7zwxyntPi9KgAUVXAwAAAAAAAAB0QUKfAAVpeGFh1P/5zqi/7b6IJUuLLgfYQNmgAVHedacoT9shsl49iy4HAAAAAAAAAOjChD4BCta4dFnU//X+qP/TXdH43ItFlwOsiyyitM1WUd5tcpQmjI2slBVdEQAAAAAAAADQDQh9AlSQ+kefivo/3xUN9z0W0dBQdDnA6jbpEeWdJ0V518lRGrpp0dUAAAAAAAAAAN2M0CdABWp89bWov/XeWHHL3RELXy26HOj2si1GRPkdO0V5p20jq6stuhwAAAAAAAAAoJsS+gSoYI0NjdHw0BNRf/PfouHBJyIa/MiGTtOjNspTtsvDnqXNhxVdDQAAAAAAAACA0CdAtWhc+GrU33Zv1N/5QDS+sLDocqBryiKy0SOjvPN2eeAz61FXdEUAAAAAAAAAAM2EPgGqUMNT86P+r/dH/d8einjtjaLLgaqXDRsU5anbRWnKdlHatH/R5QAAAAAAAAAAtEroE6CKNdY3RMMjc6L+rw9Ew32PRixbXnRJUD369Y7y5Akrw54jhxddDQAAAAAAAADAWgl9AnQRjUuXRcO9j+bLv6cgaDT48Q5v06MuSjtsszLoOW7LyEpZ0RUBAAAAAAAAAKwzoU+ALqhx8etRf9dD+RLwjc88V3Q5UKxyKUrjt1oZ9Jw4LrK62qIrAgAAAAAAAADYIEKfAF1cw/MvR8NdD0b9/Y9F49wFRZcDnaNcjtLYUVHafuso77RtZL03KboiAAAAAAAAAICNJvQJ0I00vrI4D3823P94NDz2VMSK+qJLgvbTq2eUJoyJ8sRxUdp2q8h69ii6IgAAAAAAAACAdiX0CdBNNS5dFg0Pz4mG+x+L+gefiHjtjaJLgvWWDRmYL9megp7ZVptHVioVXRIAAAAAAAAAQIcR+gQgGhsao/GpZ6M+dQBNy8AveKnokqB1pSyy0ZtHebuxUZo0LkpDBxVdEQAAAAAAAABApxH6BOBtGl5YGA0PvLUM/JPPRtRbBp4CbdIjStuMXhn03G5sZL03KboiAAAAAAAAAIBCCH0CsEaNy5ZHw1PzouGxp6Ph8Wei8an5QqB0fMhzzMgojd0iSuNGRbbZsMhKWdFVAQAAAAAAAAAUTugTgA0PgT72TDQ+LQTKRhLyBAAAAAAAAABYJ0KfAGx8CHTOvGh4XAiUddTzrZDnuFF50DPbXMgTAAAAAAAAAGBdCH0C0CEh0MYn50bD3AXRMPe5iEWvFV0WRcmyyIYMjGzksCiNGh6lMaOEPAEAAAAAAAAANpDQJwAdrnHx69HwzHPR+FYINIVB45XFRZdFRwQ8h266MuA5cniURg1bGfDsUVd0ZQAAAAAAAAAAXYLQJwDFBUHnLojGt0KgeRB04atFl8W6KqWA56C3Ap4rQ57Z5kMFPAEAAAAAAAAAOpDQJwAVo/G1N1YGQZ97MRpfeDkaX1gYDS+8HPHqaxF+WxWjVIpsUP+VS7QP2TS/LY0YujLgWVdbdHUAAAAAAAAAAN2K0CcAFa9x6bJofHFhHgJNYdCGdPv8ylBovLmk6PKqXxYR/fpE6a1QZ9bydtCAyMqloisEAAAAAAAAAEDoE4Cu0B20qSNo44uvRCxaHI2vvhaNr76e38Ybb+oSWsoi+vSOrF/vyPr3iaxvn8gG9v17uHPwQMuyAwAAAAAAAABUAaFPALq0xhX1EYtfXyUImodBV/n76xGvvRFRbb8Sy+WIFOTsmwKdfVYGOvv1jkihzqaAZ78+Eb17RZaCnwAAAAAAAAAAVDWhTwBI4dD063Dpsohly6NxSbpdFrFkWTQuW57fv8b70t8bGlduo+VXw1u3SZat7LiZbrMssqa/l0oRdXURPesiq6uN6FG3sutmjzbu61Hb/Of8MQAAAAAAAAAAug2hTwAAAAAAAAAAAIAqUCq6AAAAAAAAAAAAAADWTugTAAAAAAAAAAAAoAoIfQIAAAAAAAAAAABUAaFPAAAAAAAAAAAAgCog9AkAAAAAAAAAAABQBYQ+AQAAAAAAAAAAAKqA0CcAAAAAAAAAAABAFRD6BAAAAAAAAAAAAKgCQp8AAAAAAAAAAAAAVUDoEwAAAAAAAAAAAKAKCH0CAAAAAAAAAAAAVAGhTwAAAAAAAAAAAIAqIPQJAAAAAAAAAAAAUAWEPgEAAAAAAAAAAACqgNAnAAAAAAAAAAAAQBUQ+gQAAAAAAAAAAACoAkKfAAAAAAAAAAAAAFVA6BMAAAAAAAAAAACgCgh9AgAAAAAAAAAAAFQBoU8AAAAAAAAAAACAKiD0CQAAAAAAAAAAAFAFhD4BAAAAAAAAAAAAqoDQJwAAAAAAAAAAAEAVEPoEAAAAAAAAAAAAqAJCnwAAAAAAAAAAAABVQOgTAAAAAAAAAAAAoAoIfQIAAAAAAAAAAABUAaFPAAAAAAAAAAAAgCog9AkAAAAAAAAAAABQBYQ+AQAAAAAAAAAAAKqA0CcAAAAAAAAAAABAFRD6BAAAAAAAAAAAAKgCQp8AAAAAAAAAAAAAVUDoEwAAAAAAAAAAAKAKCH0CAAAAAAAAAAAAVAGhTwAAAAAAAAAAAIAqIPQJAAAAAAAAAAAAUAWEPgEAAAAAAAAAAACqgNAnAAAAAAAAAAAAQBUQ+gQAAAAAAAAAAACoAkKfAAAAAAAAAAAAAFVA6BMAAAAAAAAAAACgCgh9AgAAAAAAAAAAAFQBoU8AAAAAAAAAAACAKiD0CQAAAAAAAAAAAFAFhD4BAAAAAAAAAAAAqoDQJwAAAAAAAAAAAEAVEPoEAAAAAAAAAAAAqAJCnwAAAAAAAAAAAABVQOgTAAAAAAAAAAAAoAoIfQIAAAAAAAAAAABUAaFPAAAAAAAAAAAAgCog9AkAAAAAAAAAAABQBYQ+AQAAAAAAAAAAAKqA0CcAAAAAAAAAAABAFRD6BAAAAAAAAAAAAKgCQp8AAAAAAAAAAAAAVUDoEwAAAAAAAAAAAKAKCH0CAAAAAAAAAAAAVAGhTwAAAAAAAAAAAIAqIPQJAAAAAAAAAAAAUAWEPgEAAAAAAAAAAACqgNAnAAAAAAAAAAAAQBUQ+gQAAAAAAAAAAACoAkKfAAAAAAAAAAAAAFVA6BMAAAAAAAAAAACgCgh9AgAAAAAAAAAAAFQBoU8AAAAAAAAAAACAKiD0CQAAQOGuuOKKOOqoo2Ly5Mkxc+bM+NSnPhXPPvvsOr9+3rx58ZnPfCb23HPP2HHHHePwww+PX/ziFx1aMwAAAOvGmA8AAKD9ZI2NjY3tuD0AAABYL7Nnz44LLrggxo0bF3vttVfMnz8/rr766ujXr19cfvnlMWrUqDW+Pk0UHn/88bFw4cI4+OCDY/DgwXHttdfGU089Fe9973vziUEAAACKYcwHAADQvoQ+AQAAKMxDDz2Ud2iZOnVqXHTRRVFXV5fff80118QZZ5wRe++9dz45uCbpeen5P/jBD/KuL8mSJUvi1FNPjbvvvjt++ctfxqRJkzrl8wAAAPB3xnwAAADtz/LuAAAAFObiiy/Ob08//fTmyb9k//33j1122SVuuOGGWLBgwRo7vqQOL2mJwKbJv6Rnz55x5plnRrrO8bLLLuvgTwEAAEBrjPkAAADan9AnAAAAhbnllluipqYmn+xb3YwZM/IJvPScttx22235c2bOnPm2x1Inmdra2jW+HgAAgI5jzAcAAND+hD4BAAAoxLJly2LevHkxfPjwVTq+NBk1alR++8QTT7S5jTlz5uS3W2655dseS5N/I0aMiLlz5+bvBQAAQOcx5gMAAOgYQp8AAAAUYtGiRXnHlv79+7f6eN++ffPbxYsXt7mNhQsX5rdr2kZDQ0O89tpr7VIzAAAA68aYDwAAoGMIfQIAAFCI5cuX57etdXxpef/SpUs3ehu6vgAAAHQuYz4AAICOIfQJAABAIXr27LnKJN7qmibtevXq1aHbAAAAoP0Z8wEAAHQMoU8AAAAK0adPnyiVSm0u5dd0f9OSf61pWuLv1VdfbXMbWZbl7wUAAEDnMeYDAADoGEKfAAAAFCItwzdq1KiYN29eq11bnnnmmfx23LhxbW5jzJgx+e3TTz/9tsfSNufPnx9bbbVVPtEIAABA5zHmAwAA6BhGQAAAABRm2rRp+UTdnXfe+bbHbr755rxjy5QpU9b4+vScW2+99W2P3XHHHfm2p06d2u51AwAAsHbGfAAAAO1P6BMAAIDCHH300fnt7NmzY8mSJc33X3PNNfkE3j777BPDhw9v8/XpsV133TVuu+22uPbaa5vvT9s655xz8j+fdNJJHfoZAAAAaJ0xHwAAQPvLGhsbGztguwAAALBOvvjFL8Yll1wSo0ePjn333TcWLFgQV111VQwcODAuvfTSfDnAJHV2SRN9EyZMiP3226/59U8++WQcf/zxsXjx4pg1a1YMGzYsrrvuupgzZ06cdtppcdZZZxX46QAAALo3Yz4AAID2JfQJAABAodKwNE0AXnbZZfmk3YABA2L69Onx8Y9/vHnyLzn33HPjvPPOiyOPPDK+9rWvrbKN9LrU5SUtD7h06dJ8MjF1eznmmGPypQABAAAohjEfAABA+xL6BAAAAAAAAAAAAKgCpaILAAAAAAAAAAAAAGDthD4BAAAAAAAAAAAAqoDQJwAAAAAAAAAAAEAVEPoEAAAAAAAAAAAAqAJCnwAAAAAAAAAAAABVQOgTAAAAAAAAAAAAoAoIfQIAANAtXXHFFXHUUUfF5MmTY+bMmfGpT30qnn322XV+/bx58+Izn/lM7LnnnrHjjjvG4YcfHr/4xS86tGa69z53yy23xPvf//6YNm1aTJo0KfbZZ5/40pe+FC+//HKH1k333u9aamxsjFNOOSXGjx8fc+fObfda6Ro2dp9btGhRfP3rX4999903tt9++/z285//fDz//PMdWjfde7978MEH4yMf+UhMnz49/x174IEHxnnnnRfLli3r0LrpGj7xiU/EHnvssV6vWbhwYXz5y1/Of8btsMMOcdBBB8UPf/jDWLFiRYfV2V0Z99HZjPvobMZ8FMG4j85mzEeRPlGhY76sMf3mBgAAgG5k9uzZccEFF8S4ceNir732ivnz58fVV18d/fr1i8svvzxGjRq1xtenE0rHH398PnA/+OCDY/DgwXHttdfGU089Fe9973vzSUFoz33u17/+dXz2s5+Nnj17xv7775/vc3/729/izjvvjM033zwuu+yyGDJkSKd9HrrHfre6H//4x/HVr341//N1110XI0eO7KDK6a773IsvvhgnnXRSzJkzJ3bbbbd8svmBBx6Im2++Of9Z96tf/SoGDhzYaZ+H7rHfpd+nKdywfPnyOOCAA2LEiBHx5z//OR555JGYMWNGXHjhhVEulzvt81Bd0kTxueeeG8OGDYs//vGP6/SaV199NU488cR47LHH8n1uiy22yPe59PMuTT5/97vf7fC6uwvjPjqbcR+dzZiPIhj30dmM+SjSeZU85kuhTwAAAOguHnzwwcZtttmm8YQTTmhcunRp8/2///3v8/s/+MEPrnUbp59+ev7cG264ofm+N998s/Fd73pX4/jx4xvvvffeDquf7rfPvfLKK42TJ0/Ovx5//PFVHjvnnHPybZx11lkdVj/d92ddS2nf22GHHfLXpq9nnnmmA6qmu+9zH//4x/Pn/uQnP1nl/nPPPTe//xvf+EaH1E733u+OO+64/LlXX311833Lly9vfO9735vff8UVV3RY/VSvJUuWNH7uc59r/r24++67r/Nrv/rVr+avueSSS5rvW7FiReMZZ5yR3/+73/2ug6ruXoz76GzGfXQ2Yz6KYNxHZzPmoyhLqmDMZ3l3AAAAupWLL744vz399NOjrq6u+f7URWOXXXaJG264IRYsWLDGbi+pu0taSiYt8dckdeI488wz86WwUvcNaK997sYbb4zXX389jj322BgzZswqj6VlidI2//CHP3TgJ6A77nct1dfXx6c//ekYNGhQ3oEDOmKfe+655/JOHWmptZNPPnmVx0499dR8OV2dreiIn3X33ntv9O/fP++20aSmpib/vZvcddddHVY/1en666+PWbNm5V2FWo4H1sWSJUvypcFTd6HUQbJJ6ix01lln5X++9NJL273m7si4j85m3EdnM+ajCMZ9dDZjPopwfZWM+YQ+AQAA6FZuueWW/KROOim0urScS5q8S89py2233ZY/Z+bMmW97bOrUqVFbW7vG19P9bOw+N3bs2HxiueWJyZYni9K233jjjXavm+6937X0/e9/Pz9B/pWvfCV69+7dAdXSFWzsPpeCDuk5afnc1fXt2ze+8Y1vxHve8552r5vq1h4/6wYMGBCvvfZaLFq0aJX7n3/++fx20003beeqqXa//OUv82DWF77whfx35Pq455578uO2adOmRam06hRdWpYyLaN7++235+EbNo5xH53NuI/OZsxHEYz76GzGfBThl1Uy5hP6BAAAoNtYtmxZzJs3L4YPH77KlcEtB93JE0880eY25syZk99uueWWb3ssTfylKzjnzp2bvxe0xz43ceLE+NCHPhRTpkx522M33XRTfhJpm222aefK6e77XZMHHnggzj///PzK9NZCD9Be+9xDDz2U32699dbxm9/8Jo455pjYcccdY9ddd81Psr/88ssd+Anozj/rTjzxxHyyJQVtHn/88fz3auru973vfS+fHEz7Iqzeheq6667L950sy9brtU1jiS222KLVx9N+m/btNJ5gwxn30dmM++hsxnwUwbiPzmbMR1FOrZIxX81GbwEAAACqRLqaN139m5ZzaU26ojxZvHhxm9tYuHBhfrumbTQ0NORXD7tKmPbY59qSXvPVr341//MJJ5ywkZXSlbTXfpdOQKYl/oYNGxb/9E//1CG10jW0xz7X1GHjwgsvzJfR2mefffJOan/961/zZa9S5460jG6akIH2/FmXlglM2/ja1762SsehcePG5QGIzTbbrJ0rp9ql5Ug31CuvvJLftvWzrGm/ffXVVzf4PTDuo/MZ99HZjPkognEfnc2Yj6JMr5Ixn9AnAAAA3cby5cvz29auDG55/9KlSzd6Gzq+0F77XGvS5PIHPvCB/MrhPfbYwxXpdMh+d84558Sjjz4aF198sSX+6PB9rmm50tRJIS2dteeee+Z/TxM8qeNLmvj71re+FV/60pc64BPQnX/WpYnlH/zgB/mSgQcddFAMGjQo7rrrrrj77rvjc5/7XJx33nkmnWk3TWOE9j42ZFXGfXQ24z46mzEfRTDuo7MZ81GNlnXimM/y7gAAAHQbPXv2XOWEUVsD8l69enXoNug+OmJ/eeGFF+KUU06JO++8M18Ca/bs2eu9zAxdW3vsd3fccUf86Ec/ipNPPjmmTZvWQZXSVbTHPlcqrTxVfeCBBzZP/CXp59tZZ50VPXr0iKuuuirvqgbttd8999xz8cEPfjCfbLniiivi3//93+Pss8+OX/ziF3HGGWfE7bffnne/gs7ebwVvNo5xH53NuI/OZsxHEYz76GzGfFSjnp045hP6BAAAoNvo06dPfnKxrSVfmu5vWmKjNU3LybS1/EbaRjpRmd4L2mOfa+nhhx+OY489Nu6///6YMWNGvhyWfY323u9S5410AnzUqFHxyU9+skNrpWtoj591TY9tv/32rW5/yy23zLfz8ssvt1vdVLf22O/+53/+J5YsWRKnnXZajB49epXH0gRg2u9uuOGG5mUoYWOty1gicXy3cYz76GzGfXQ2Yz6KYNxHZzPmoxr178Qxn+XdAQAA6DbS0hnphPa8efPyKy1ra2tXefyZZ57Jb8eNG9fmNsaMGZPfPv300297LG1z/vz5sdVWWzVfuU731h77XJObb745PxmZlvg77LDD4itf+Uqby8TQvW3sfnfvvfc2/4zbaaedWn3Ovvvu27wk28iRI9v5E9Adf9al353r0gmhqWMCtMd+9+yzz7b5nBTmSvc/9dRT+XsMHTq03T8D3c+axhJN96dORZtttlknV9a1GPfR2Yz76GzGfBTBuI/OZsxHNRrTiWM+IxEAAAC6lbRkVTpJlJZIa21yJZ3smTJlyhpfn55z6623tro0Vtr21KlT271uuu8+17RvfehDH8on/tLtN7/5TRN/dNh+t/nmm+cTza19jRgxIn9OWmoy/b1fv34d/lnoPr9fk7/85S9veyx1eUkTNWmyWZcr2nO/GzJkSH775JNPtvp4mvxr+TzYWJMmTcqX8bvtttvetmxpmrROP+tS+KZcLhdWY1dh3EdnM+6jsxnzUQTjPjqbMR/VZlInjvmEPgEAAOhWjj766Px29uzZ+dIuTa655pp8gmWfffaJ4cOHt/n69Niuu+6aD9qvvfba5vvTts4555z8zyeddFKHfga61z63cOHC+MQnPpG/9uMf/3iceeaZnVI33Xe/SxMsH/3oR1v9apoAPPXUU/O/mwCkvX7WTZ8+Pe+wkX6/XnHFFc33pxPkX//61/NJnne9610d/CnobvvdrFmz8i59adncpi4xTS6++OJ47LHH8lBXCkZAe+jRo0e8853vjLlz5+b7WJP6+vr4xje+kf/ZWKJ9GPfR2Yz76GzGfBTBuI/OZsxHtenRiWO+rLGxsbFdtgQAAABV4otf/GJccsklMXr06Hy5qgULFsRVV10VAwcOjEsvvTRfNiZJXV3SScgJEybEfvvt1/z6dGXw8ccfH4sXL85PHA0bNixf7mrOnDlx2mmnxVlnnVXgp6Or7XPf/va34/vf/34+0ZI6bbTl9NNPt7wk7fqzrjUnnHBC3l3BEn90xD73wAMPxHve85549dVXY88998yXxErPvf/++2Py5Mnxk5/85G3LucHG7nc/+tGP4mtf+1q+vNoBBxwQm266adx33335c1O3l5/+9Kf5tqEt48ePz8cDf/zjH1e5/8EHH8zDgmkC+aijjlqli9UxxxyTd3jZe++98+BD6naVftalsUWa0E4di9h4xn10NuM+OpsxH0Uw7qOzGfNRtPEVOuYT+gQAAKDbSUPhdKLosssuyyfsBgwYkF9pnrppNJ0kSs4999w477zz4sgjj8xPDLWUXpc6vKRlZJYuXZqfGEpXaKbBvEla2nOfO+KII/ITSGuTThrV1NR06Oeg+/2sW50JQDp6n0snxNNjN910UyxatCjvNHTooYfGBz7wgbxbAnTEfvfnP/857/xyzz33xJtvvhlDhw7NJ2bS0rqW+WNDJwB//etfx9lnn50vSZnCCy09//zz8Z3vfCduuOGGPFCYfqemScIU9LKUc/sx7qOzGffR2Yz5KIJxH53NmI+ija/QMZ/QJwAAAAAAAAAAAEAV0PsdAAAAAAAAAAAAoAoIfQIAAAAAAAAAAABUAaFPAAAAAAAAAAAAgCog9AkAAAAAAAAAAABQBYQ+AQAAAAAAAAAAAKqA0CcAAAAAAAAAAABAFRD6BAAAAAAAAAAAAKgCQp8AAAAAAAAAAAAAVUDoEwAAAAAAAAAAAKAKCH0CAAAAAAAAAAAAVAGhTwAAAAAAAAAAAIAqIPQJAAAAAAAAAAAAUAWEPgEAAAAAAAAAAACqgNAnAAAAAAAAAAAAQBUQ+gQAAAAAAAAAAACoAkKfAAAAAAAAAAAAAFVA6BMAAAAAAAAAAACgCgh9AgAAAAAAAAAAAFQBoU8AAAAAAAAAAACAKiD0CQAAAAAAAAAAAFAFhD4BAAAAAAAAAAAAqoDQJwAAAAAAAAAAAEAVEPoEAAAAAAAAAAAAqAJCnwAAAAAAAAAAAABVQOgTAAAAAAAAAAAAoAoIfQKFeO211+KnP/1pvO9974tdd901Jk6cGJMnT47DDjss/u3f/i2efPLJwmq79dZbY/z48fnXihUroit69NFH33Zf02f+y1/+0ml13HXXXfGFL3wh3vnOd+b//pMmTYrddtstPvjBD8YVV1wR9fX10RXNnTu3+fv91FNPVdz7v/LKK/HCCy90aA3vfve7m2to+bXtttvGjjvumO8HJ510UvzoRz+KV199tc3t7LPPPvnrLr/88nap6/HHH4/Gxsb1es2vf/3rvIY99tij1c84e/bs6I7/vwEA1vfYNH19+ctfXqfX/dd//Vfza1Y/DttQHXH8lsaU7TW+beu4s7NtyLFlW2OQc889N7/vhBNOWOfj/Pb8nq5JU73p+94ZPvOZz+Tv96lPfSoqTcvzJKt/pXH81KlT4+CDD46zzz47br/99k7bhzd0X2ht/yrqXFBr4++2/l8AANB+2jq+beuraZ6ived3Onsc8Oabb8b5558fhx56aD4Xs9NOO8WRRx4ZP/zhD2PZsmXrvJ00l5vqPvDAA9f4vNNOO635+5Xmhdvy0EMPNT/v4YcfXuW4uLWvCRMm5PWnY/uPfvSjce21166xjpdeeinOO++8eNe73hUzZszIxzFpfvq4446L7373u7FgwYLYEGvbb9L897Rp0+Koo47KzzWsab6rms4RzJ8/P773ve/FySefHO94xzuax4UHHXRQfPazn42bbrqp02sC6I5qii4A6H7+8Ic/5BMBCxcuzP8+YMCA2GabbWLRokXx2GOP5Qfzl1xySZxxxhnxoQ99qOhyu5Q0GZImUd944434+c9/Xlgdixcvjs9//vNx5ZVX5n+vra2NESNGRO/eveOZZ56JG264If+68MIL80HdlltuWVit3c1FF12UD/jPOeecGDJkSIe/36BBg1b5902ByyVLlsRzzz0Xd9xxR/6VJvT//d//PR+Id2QQ/dvf/nZcdtllcffdd0dNTfUdIlXK/28AgI3xu9/9Lj73uc9FlmVrfF7TWKKS/elPf8qPz9Ik2Jlnnll0OV2C72nx0mReXV1d89/TxZrpfE6a8E4X0aWJx8MPPzz/d2r5vPbWFfaFzh5/AwDwdqNHj45NN910rc8rl8tR7VLgMF3smAKWacyd5mbSnMyDDz4YDzzwQD4eT8eoffr0Weu2Zs6cmT93zpw58fLLL7f6PUxzPS0vCktBwBQSbM1tt92W36bj4hRkbCmNK9I4pKWmuaQUwv3973+ff6Ug6ze/+c23nU+4/vrr46yzzsrnJtN8ZPo3T589fT/uvffe+Nvf/pbPR6Z5yxTO/P/s/Qm8rWP9P/5fh2MeUyihQpmlTElSQqaUzI4hlJSZlEohfEwhY6QiJHPDR2SmT+YmIlQaDBEZMg9x/o/X9f3d+7/OPmuPZ0/rnOfz8diPtfca73Wve+3H9b7f7+t9DeVxlELa5D3vvvvu+pN46YILLqg50U706quv1uLVH/zgB12T5eabb76a589tea8XX3xx/Umxa2Kd5AEBGB6dV9EAdLQMmo888sj6+3rrrVd23XXX8s53vrPr9scee6x8+9vfLueee24dNGbAvtdee43iFk9dLr300poYee9739tj0nSBBRYY1m3IbLrMnMvAP8FbjoFNNtmkKxmUQC0z8o466qhaAJxujxdddFF585vfPKzbNS2Zf/75e/y8MztzJGUG4hFHHNH2tgTb3/jGN8qdd95ZPve5z5WzzjqrLLvsspPcJycVEkgmqJwSCbZTbD4Ya6+9dp1RmpMF0/r3GwBgSmTiTWLC3/zmN2XFFVfs8X6JJe66664hf/3Equl68oY3vGFInu+0004b0o6UY2XcOdQxSDs9jfOHep8ycMcff3xZcMEFJ7v++eefrzFVuuT89Kc/rQnAY445ZpKE61Aew1NyLAxVHDmleoq/cx4knVNnmWWWEd8mAIBpTVaeG2yhX6dJLiYFnxkHZ/JRk2/57W9/W3N1ycnkPv1ZgWOllVaq4/qMq7Oq30c+8pG2hZwvv/xyWWyxxWrTn/ydIsh2k8PSACTSfbO75BJ7anSR50thYZqH/O///m8tNEw3z0YmpiXPnO1IR9AddtihNqBppGA1cUvykJmAmlxkOlcO5XH0+uuv123L8+ecRxojJSbpNInxkqtL8e50001Xtt566/KpT31qksYu2c8pHk4jl3zeKTL+8Y9/XGaaaaZR3XaAqZXl3YERkwF7BnmR4CGD8NaCz0igkeW+P//5z3edxB+OZB6TW3TRRevPcCYVUtD5pS99qSZp3/rWt9YgLcuVtQZ4SQglEZRkUWZ/ZZmzgw8+eNi2aVqUQLz5vMdywjgnHDJbMMt0pHtlAuEEx60WXnjh+j7mmGOOUdvOvHa2IdsyLX+/AQCmVNPZ/Re/+EWv92uKB5daaqkhff0UI2bM1J8uL6OhE8adQxWDjIVxPgOTxOnOO+9c/ud//qf+/fOf/7xcfvnlY/IYHuvHV/4HZftM2gMAYKikODJj9EjXy9YGG2kk0Swvn+LE/izznvF/a9FoO2lSEVkJIGPw5Hma4s6BFH32JvnFvJ/llluu/n322WdP1owohYiZVJUVJlsLPpux9yGHHFI7lyb/lCXgh1oKJLMPPvOZz9S/b7755tohtdNkgl8KPtP1Nr8nn999pcYUd2600UY1/5sJtSm6Pf3000dtmwGmdoo+gRGRYr+0xc+yX8svv3zZY489er1/ZgqltX0G2GecccaIbSfDKwmfBARx0EEHlYUWWqjH+6YAOLPumqUXOjEAYsrNOuustdtn/PnPf+6zAAAAgM617rrr1sssy5YYsreizyRNsnoEMLYkwbfGGmvU34cjYQoAAAzc008/XVdXjCWWWGKy25sCztwn3S/7o+mI2VPRZ5MPTEHl6quvPsl1rVIYmFUC0xRmoEWfjbXWWqte/ulPf6rFpY10L42sONCTnF/YdNNNu+7fvfnIUPnwhz/c9XvyXZ3kkUceqQW08elPf7o27+lNGv80DZ4uvPDCYdunANM6RZ/AiMjyfBm0RzOTqa+ZWekOkYLPzLBqAoHFF1+8LL300nXw306CkRVWWKHe74477phslti+++5bB9XLLLNM7SKzyy671BlVA5EB/3777Vc+9KEP1efJUgFpT5/W/ylq7S63ZXtuuummrmWqV1lllVr8uvHGG5ef/OQn9X5Jambgm/b/uS3vY8cddyy///3v227HM888U77zne/UZb/yfNkvWQIxjz/xxBPLf/7zn677PvTQQ3UbmoRLArD8veaaa3bdJ38329ldum1mCbePfexj5T3veU/Xtn/3u9/t14y/xvnnn98VUGZZ7/4kiw477LBa6Pf2t799stvz2aUw9AMf+EDXZ5pgI0nidvJ+8x7/8Y9/1BmGWXYg+yyzGLfccsty/fXXdy1RkPe24YYb1tmB2b+ZAdgcw62a/ZbPI59l9kuCx2xTjq8sXzBQ6YSaotgETQm0s41ZJiHHR/djLK/ZbEOW0OvulltuqZ0yc3tmaLYeD82+iP3337/+3cgSF/n7kksuqUtb5Pd8/r19x3OfLOmRWZNDKZ9B08XpmmuuafuZZt+0yvF/3HHH1W3O4/OZZH9m+Yz77rtvsufYbrvtuv7OdynPmf3U+h2+4YYbysknn1xPZOT5cnzkmMg+yu29HdP57ufYzPc636EsL3Leeee1/Z/R03tqNJ9VLofi+/2vf/2rLmWama55X9m+zDrN8+W47i7/X/Jc6dyckz9Z6iWvle9g9s3ee+892T4GAOiPjHuzbFvGJz0ljf7617/W5egSh73pTW/q8bkyps9YOWPyJJcyrs4456Mf/WidkNhuWehm3JdxZKMZayXx1MRsm222WX2u/GyxxRbl4osvnqRItRkfNrHAqaeeOsn4rXHPPfeUr33ta7V4NTFJM55KzNxuslNP485mu3/5y1/WfbPnnnvW58nzZYm9xNY9Je0GEle287Of/axssskmdRyZx2dJuxtvvHGy+7WLQXrTfUzc2z6d0nMFAzUl+zuxUlYzSNyY4yf7LOPn/kxyvPrqq2snzSRM81o5rnOO4+67757kfjkWt99++67jNsnd7rKKQm7Pc/Q3oTsQ+V5E4qXW71pvsVM+x3xf8/7yWWbfZF9nFZDW8w59fb9uvfXW+ndirrx+VhfJ9z/Pm7inPzFXXi/x0DrrrFMfm+3NPmv3f6OveLD12G9izN7i79aYK9veTpZLTHyZcyA5FnL+IedGejq/1bx+jr+rrrqq7td8z/O9/cQnPtG13D0AAFMmY/HkMNL4JrnI5Cbyk/Fn8opNAWJ/JHeQ8X7GcRm7dc8VZsya2CJj78Q6eZ3Eu4cffnhdQry7rKzXLLH9xz/+cbLbm3P6uU9vsXarjLEjKzZ2zxU+/PDDNX5Pt8eM75sC0XZFn7fffnu9zHvNdg7G7LPP3vX7888/3/V7s9JE8n+9TS7NZ5QcW8bLKQIdDq3P27otTQyTn5zLaKe5Pfftr+zXHItNDjWfQQoxB5oXjwsuuKDGDMnf9yfPH8kz5fjMeY9250wSCye3mPs1cU3rsvf5DiRmS/yS3GPuk9x8vkvd4+D+nndoYsEm9mrd/9mOHMdZqTSxfWLB3P+AAw7o8fly/io5snz3sn2J85Nry3VN/AcwnBR9AiOiKTRKy/dmyb6+ZPCZn3T6iyQr0v0zA95LL7207WMyGH/uuefqMlits7aOPfbYss0229THZYZXBm8ZXF933XW18K8pRuxLWtAncZDE1rPPPlufJ4FEkg0pJstz5fp2krTLCfsU4WWJrgROCayy3Pm5555bB6kZOD766KPlHe94Rz0Zn2RZBrNJJLVKQigFkSnGS6CX5QeyLdm/GegmOZGBdBPY5LWSRMz+i2xzk1TsSzPgPuWUU2qAlu6cb37zm2uC8uijjy477bRTvwo/c588VzTBXV+yzEJm12V/dJdi4OzvFHgm0EghaYK3BIxJduy11149Ji0SCGe7s6+abqO/+93vaoIpx1CKbfPekgDNa+cy16fwMgP4drKUQT7LfDaLLbZYPU5zfKWY8Hvf+17pr7yfFBNm6YME5ossskj9fLPvcnxku1sD1iRoEkxEkov//ve/u25Lci/blBl0Sdr2VrSZotocE413vetd9e8E2EniNjMkux+LjaZ4eYMNNug6cTCUctIi+hPQ5n0nEZ/kXz6PfMb5HLNvUpyd95MEbSPfg7zfRt53frq/jzxfPuccl/kO5H9Nu2Lk7vKdz7GTQDpLmGSfJtGcpS+StB1I4XQ7U/L9zjblM8sMzQceeKDup8zAzGedRGP+z/RUwPnPf/6zHn/nnHNO/Tv/d5966qnaeSv/f9oF3QAAvUmM1oxte+rw3iztnjFMT1LglzF9xsIZkydOyHhvrrnmquPDxH8ZH7dLdPUkCYo8X8bkeY6Mm8aPH1/jsa985Ss1NmtkvJfxWJN0yjgtf7eOHRMDZhuSOEmhYpZEy7g18WTGqikkbC0+7Y88LvFTigOTWMvrJsmQ+CeT3DJ+nZK4srvEiIljUwiXGCifXxJp2fdD3eGxt306JecKpsRA93fiyhRjJm7LsZfzAlnhIsd6joWMwdvJ+8pSi7vuumudiJbuN/mcEkfk/Sb2acbkkdtT3JjjPTFQkk3dv0NJcOXzStybz3244rfoz0TIs846qxYx5vua71Xi+8RdeWxWfkgc3EyY68/3K1LMmv2dcxc5PnOOpT/xWyROSzyU80f535HPLvss50baJakHqrf4uzc5x5EJqUncZjuafZVjJOcSco4kSf6eJHmZxycpv+CCC9Z9nP2Tx2RJTAAABi8xY8btKarLJJ2MX9/5znfWiY3pkpi8YuKEjOn7kpxOJh1lvD/33HPXQrg0Y2kkd5RcZWKL5Boy9s+YN6+T+yYX1OTjGonzmslZiQFbz98nPklsEMmlZpzZH4mtksNNbJIxZqtm3Jx4LbFHcsOJzdPhMnnQdkWfg+3yGU1R3swzz1zjs0YKCZtcSPKt+WxaO4E28j4ytk7uZ7g05zOyP5rl6IdLmnbks8z7zeeTmCOvm6LkxA25fSCapjmZgDvHHHP06zE5LhPPpQtrjr/uknNOHJgC4XxXEnflOI7E05mcmnMwiQvzmomDc84k36XE4q0FokMhcVViwW9/+9s1fsw25XxN07Apub5WyallQufZZ59dv5M5T5Q4K419cl3ix4GcdwIYDEWfwIjIwC1STNQ622ogMhhNgVG062jYWniWwVfj5z//eTnttNPq45OMSwFqOrEk4EhhYBx88MFtuzi2ysA4g+AEW81MqDxPlh5PUicz3zLw7OlEeRKLmRmUxNCPf/zjetkEGylgzAn6o446qm5fbs/rJXnRzNZrlVlRCd4S5CUpkmXTk4DIgDPJnbzXJN6a/ZGgMkWETfFeBvf5OwVsvUlXlyQbM6hN14oM6jOYTlIqg9wkh/Ke0/2wLxnkNkWY7ZaOGIgUqCWplcAzXXryWaSYL59pkhgJzrJPmi4e3aVTSIK73D/7Ou8rwUKC8iRPUuSWTp/5jHKs5T5JhqSYsKdOIBnAJ5DOc+a4SMFuik/znAmWe+pU1CoFlZm5mWAiHWFT4JjXz7GRbUhiKO81XUBbJWiaf/756/Y1S6E3x0mC5zwuv/cmBa85Jho5oZC/syxfHt8k7dp997K92d/dv3tDKYFS03W2p5mOjXx2CfCTNMsJlPwPyHchn2c6teQ4zMmQRr4HCRxbP8u893xvWuUzzEmbJIzz/cx3rl2g2l0S6Om22nyOSQrnf1KOqXScTQA5JQb7/U4gnf9lCZIzWzHfg+ynnEjKtmZGYv7P5NhoV8ye/ZrvWr4T+T+YYyPX5aTIiy++2K//CwAA3TVLtve0xHvGnUkUZVzX22S9jKWT6GnGKhmjZ7yTvzN+SpInk3r6KzFRxkmZ7Je4K2PBjOVSNBlZpaLpmJgxdMZjTbf6nOjP3xlXNcWWGY8mtkxMmtgh48S8t8QTzT7I5LG+Om22yjg2SbLEiBmXZdyawsyMWTM+Tsw0JXFld0nMJdGS/ZD9m8smxk7B3GC6h/Skt3062HMFU2qg+zvxfiYbZryczzuPyWoMSfylALSnSVNZdSP3y+MS6zTnNHKZOCZFninsbO2wmvs2cWMe2yTo8nln8lkkmdXfSbkDlcR0c+4nk8V6k8Rek3DMhN0mps73Nt+BJG1z3qEpBO/r+9V6DmKWWWapsVv2d563OU76ktgv5xqabWliycS+iQmntDtqb/F3b4444oh6nCUOy3GR71yOs3z22d6cI0nis6fkZ86lpBtvvuP5TuT95TiIHIcpAAUAYHAy5kzMmPFrVlPIGDJjyRTZ5foUkCW30dd5+8TBiTsT2ySmTX6wtcFDk8fK2C15m4zjMnZOLJdxYfIEyRVl0ljyKa0ykTGFdIlvE8tl0uW6665bH5PYM+PUjHf7K7F5upBG9xxYxqrR5EETHzQT8LpPpMpKja33HaiMz5tYMDFaa9FqigqbQsKm82UKF9OkJ8Wv+ZySzxhOiSMy0a0Zp2d/D2dxaVaZy3mROeecs+YnE0/l+Mh+z+TSxBO5vad8Z3fJqTXL0Q9lsWpyoslnJabO9yf5vKbwN8dh4uecv8m+a87r5DxD8lo5n5LJaz2t/DgYf/nLX2qslPgsx0X2WS6T208R6j777DNJriz7Mt+lfI9yvCf2zk/eT/JreUzrBGGA4aDoExgRTaJqSjtIZCCchEaSId2LNNOBMUmPJFhy0r/RdBjJclnp8tAUaeUyhXUZQGbGXU+JrEbTZSUz4VIImRb2jSRKmtfJwLMJULonPXKCvpkBle582abI4DSBR+t2p0A2QVe0Jn/SqaMZXKdYNJ1BGtk3SWIkYIkpXWI5haoJCrMtSdq1FsGlrX2KaCOD8byH3rQuKTclx0GCo6ZILsFZAtTWJRGSIG06maR7Trv2+Qnwsu0JviOBT54n8j5SuJtl7hopUm06DvWUiMv+SGK0SWzl+EoHjXTtTBDenwK47OMU+Wb2XZKlzfZFElo5GZDnTdCQ4KP7sZXPPwmtJIES/CTYyXHaFMJOiaagMK/dfUnyFDEm0MlJi+GanZgCyUa75QlbNd1I85m1Hmv57iUpmk6zWQoiHaAGIt+DfE8Hehzn+EqRZx7fyBIUCRybZHG7maXDLdvUdK5JwrB1yZZ0mcrt+c4nSZttbCcBa479RjrTZpZo9KfQGQCguyStEuNk8lJO8LdKfJNxcMZzGQP3JHFhYoSMx7uPT/N3s2RyT50Ve5Lu7enk38SUiekSV2QcnuTdnXfe2a/nSSIuz5El7hKTNsvNRd5XEnFNYqXdctI9SZfAxAytMWKSE82y063js6GIK/NZJfZqYo0mxm4KYTOeHCmDOVcwpQayvxNXJ0aLJN2agsVIN5AUi7YeB62fU5MYzH1a49S8n0xmzPg7MWfivlZZUq75LFLomZgtsW6KLJOAyiTF4dTEcH3FbznGE+enC0y2uVWSvilKTGzXbv/0JQWOmSDZbE9/V6XIcoU5R5BjqonpEvtk5Ya8nyRRR1r+Jzavm+9skvOtx0K2N+eqIuen2nXozRKjSVQ2+yGPy7mH7PsQwwEA06Kcp2+WhG73kzF3f+O8FBsmbuw+mScrDjS5hd7i0IzrM5knxWY5X5/z8t2bqKSINLFy4pBMCss5+dYcyGGHHVaLK7MqV7vJQLl/HptcWCYkZjye3zNeTn6re/6nL83Kfq1jycTHzSTA1u6dze+tRZ+ZrJWxbvJhTQFpf2Rf5T0mJ5vVJjJOTz4secNW2SfNShtNLJ9YO9ub4tyM/ZPjzSoWfU1Y603i35xraP1JZ9fkCPO+8rlk3ybmaW1CMtSSY0yuMTLZtIkJI/FNXj/vNXK/vpqsRPZt09SnNY80FBKPNHnzFDlnG9NIJYWTkZh7lVVW6bp/PuPEPU3X2oF2LO1L4uv8NHnnxEqpD0hjmhR4tk7ea3KR2cetOczsoxRuJ35vCo4BhouiT2BEpLtC9LTcdn+lECnFWtG9SDOzuBKYJMHSFCemu0bTZTSD63Yy0E7R2t57793j6zaBT6RwtJ0kTfLTBF3dZVDavfCutQisXUeHJnnUuixcBouZaZQlG1qXpG4kaGgKDwda1NZdM6hOYqy1ALGRxEs+hxQathZettP63vsTRPQkBbVJUiV4bgo1u0vQksRO9kXT0aRVjpHu2zuYz6JVa/K3VXPcpdNQT8siNoFYs+R4axDWKicYEuAnmG0+m9bAOtvQJIByXDez4dJlckqlmDafYZKVSZi2StHvcHb5jNYl0JvEW0+aJftywiOdaVtn3uW4SBem7KN2x3Rv8v3u67V72nftCkSb71W2r/tSKyOh+W7k5ENrEXsjwWxT7Jv/ke2+EylU6K45ydSuOygAQF8y3mqKmbov8d4shda9MKy7nIRPAWZPMWATnw40XkrBVHdJSjRjvcQp/ZE4JvFcEk/ttI5TB9JxZNVVV21b1JYEY/fx2VDElUlmthsfZ5nBpovKSE1uGui5gqEwkP2djiXZhsSdTTFtqxQTNsnSVokREwslUdRu7B1NIWuO+SShWqXYM6+ZJGo+l3R4aQoY+7tk42A153/6iqGSPMu2ZLLw/vvv35U4a6RDURJ9vXX37c8y8wPR7lxDYqZmX/dnSc6hlmMh51JyDPf0PzATSFMcm2Mvn3V3WeGhu5zHeNvb3jag/2EAAFOT5BOyalhPP+3ipXYyxs6YvKdcYxOHZnzfUxOVrEp4wQUX1MmA6W6YRhvdNefqs2R2u2YfGX83OabWPFLGkhlbJzeSMWAmlaV4NLmJFLVlHJkCukwOG0jhZ+KiaJ20md+TS0tOq3WSXNPJM7Fosw+apd1TGNkuT9GsWta9GDe5shRrZuJhup6mcDDvo91Kg8l1pCtk9kcKLpMDbF2VMjFvckkZZ3fPf/VX8sgpJG39yX7IZMus7JDi4UziyjYONDc1EHnNTB5MEWImJbaT4yM50kyQ7M/y4301/YnEnL0VT7frKpptaPLqrZrjNpN28x1sJ4W+TR3AQCf09qZp1tQqcX+Wce+e/2/iqHxv8r1sPXeSZinJUTbNXwCGy/Ce3QP4/zSJlb46PPRHipBy8jodB9OhoEkgNK37WwvPMtiLBD5JArWTJdT70hSOJihrEjjtZImFDKjbdWNp16q/tVNFu6Kw3pIwCQoS6PzhD38oDzzwQJ0Nl44mCW6axFp/BuK9yfP2thx7ArD+FhS2Jtcy+26wms8ig+nWoKxVjol0TknAMhKfRfTU4TLBTJPwStfR5u92AWFT2JjAvqfgtplp2OyHVinwzOzJJsBJUrqnIuWByncoxYvpTpPvWtNhpikCzf7pqVh1KLQW2zaz/nqy00471QKBbFtmLGbbEmAliZpEb2a5DqZ4c7AJ4tYuPq3yGeeEUpKa+e62du0Zbtmf+X5E69Iw3TWJ5Xbfo6ZjTnfNCYspKe4GAKZtGXcmwZXJZTlB3ozdsvx4TrYnudWXjO9TRJYOERlrJ17KZeKlJEAGEy/1Nf4ZaEeUbGOSghm/Z/sSf+X31rF+uyXuB7t97cZnUxJX9jTObWKevF5i8qGYhDbU5wqGwkD2dzOe7i1hnP3UvZiw6caaBFrToba71mMkx046kDYSM2dZ+SQYm+MqSd7WSY/DpSl6bbpI9iTbm65Hp556ai3YzU9iryRwkxRODDfY1UIGE8PlMa2J6VbNuZHu3WRHQvP55TjpadJt4vZ0js3/kRxz3QvVh/p/GADA1CDd4YcqVkgxZbrYp5Ay47cmDk0O4JFHHum6X2Ks7mO6rODWFI2lgUhPTXSa/E8K47pPmGo0k3ny2okXEhuleUcaQWTMmMYYrTnTFDsmh5IVH/K8iaH6u08S/2VMnwloGYNmPNp08uy+XHtyESloTa44256Ysin6bO0I2i6X0j2Pkf2XwsaMcZPzyeTRnnKGjdw3sVF+MvZNwWPyW5deemndr5l0mcLYFPYNNAZJUWmzz/L5Js5O0V8KPR977LGaC2pX4DjUmhgyx09PjXOaYzXbmeO0rxX88pllf+f+zfmUdp9RuwLNu+66a5KmLq0yIbFdAWwT+/Q08TGyP/N5J9eV466/xdm9SRzYU8zUxIL5TjXScTQNf/L6OW6yD/IZ51hOYXFPuXWAoaToExgRGeQ3iYqc+O+raCuefPLJmmRK14dWGbgnSZEAKYOpJAKSoMoyf+my0npSuykybW2rPiUFZ30FDM3rtOvo2Mzi68lAitAy4E3Hju6dG7J9mQ2XAKKnYG8gmv03pUuDRwKkJphrgo7+SKCVAs+mg0rzWfR1DDWfVbvPoq/301fX0nZ6SmS1vlZvnQ9bb0sQ1Jd2z5WAIkF0E/T3VGA6JUnUFH1mxlr2a473zH5McJyOIUO9rEOrJqmWDjg9FcS2FnLnpESW00jxZ4obU4ydn5NPPrkmOLMMZ8dAVk4AAQAASURBVH+KBVr1dynA7nr7/9PcNqVdeQeq9XvR2/+15rb8L25ODjUGs7wiAEB/5CR5xnSJ+VK0mb+zbHcKCLPaQF9xWWKGdL5P8V9roizjlyQNUjTVupxcf/U1/hlIgWYSbukEk4lKrRL/brrpprW7y1Bv31DHlT2Nc1uvH0in0ik1kHMFQ2Eg+7tJuvYWiybh1VPcl2O6P0tvt+vUmORoElfZL9nm3iayDpUkt5vvXutykz1JN6Rs5znnnFNX98j3It/f/GQSX5LQWeayP+eSWg2mg85YjN+G6lzIUP4PAwBgUhn/povjD3/4w0nGiymuS0FaCusysbEneUwalqQrZMb+X/rSl8pFF1002RiuGRdmfN9aSNpOcjcZF2aM2Kykke717Zrk5LoULWYCZoog+1v0mZxBYq+f//zndbuTD/7Vr37Vtugzubd0Bs2EzsRsKfrM+L+vos9MzGpdVnso5HNJoWt+dt555/q+sxx6ciHJL7Xr+NhfeZ/Zn2nwkrzZSSedVGPVFASnaclwamLIFFoONoZslxtLnjbFjYmve8oBt/uMkjtMAWxPzzslsU/is9y3t1UWByI57J40sXxrbjbnlpIjTS4yRdvJf+e4zs+xxx5bv/c555LzKwDDRdEnMCLSQj6znBJgpG3/2muv3edj0uo9g6LM1smJ/qbQKyftN9hgg3L++efX6xNMNJ07Pvaxj00SADWDsCkd8DUn9nta2rv74HhKi0x7k9lyWbIrlwn+skRbAqMkUpIgTIC17777DknRZwpVM4AdigFzgpwPfehDtWvHjTfe2K/HJCjJkowJllOkl84mzb7ta+nokfgsWiWZmURid63b2dvMwNbkXwKxwWx3EuI/+MEPugrzTj/99LrPh2r2YJbGS8CewC6Fnzk50Hz3mmXAh0uzNEhPSzl0l5mlOWbyc99999VEdv735GRDAsw99tijzrDsawbjUOhtScvm+GiX4O0p4TYUS2S2Hl+9/V9Ld6zm+BxMd1QAgMHIuCPFnWeeeWZNTGU829+l3ePzn/98Pcme2DGxU7p+ZFm8JCkSL6agcjBFn0MlBZ9ZxjrS7T3xcbYvxXiZTJb4ZzBFnyMdV/Y0Lm2Ngfrq8jiUBnKuYKQ1yaPext7tCgmbyaP5PmSJ88E48sgjazI4MXmOrayGkOOrr8l0UyKdjRr9jeHyPchP9lHit/yk82mKk5NIy3GVbqDDrbfzH4OJ34aq8HmsngsBAOD/ySSlSy65pBYTbrHFFmWllVaqcV5ynIlVkhfrregzcVkKDxOLJX5JLJbxb5ZbbxcjfO1rX6sxXX81q8j1NilrscUWq5dZtW4gUsiZos877rijFvmlg2a2s12xW4o7U/SZYs/Eb1lxIkWdQ93EJBL35LxCCjBTmNeT7POsmpft6mk1x8Habbfd6nPm888y4Im7s7960i6uGEhOqDk+MuE1x+NQSefK7JecS8n2DEWzoCmNfZrb28U+g8mv9SeX1z3Pm2Pr0EMPLd/4xjdqQ5/EsVmRMeek0qAnq1rkuOrPqqMAgzHwVmYAg5BBTxJt8b3vfa/P7gEp9muSXAlAuicjmgKztNhPIWkuW69vJJhqBmo9BSl5bFr5Z8mznjRBUE7W97aMV9OhMcnE4ZJOi0nMJWmU3z/3uc/VwXb2cVOU1SzbPKWa/ddTZ84kjFKImQK6dPLoSwK4SBFef5KsSdAl4ZLjoTl+ms8iXX56SphliYEElcP9WbTqaR81SdIEQL0toZfPLycDoqeZcpHlH7P/uiei8neSd/k+5DNJ0ja/f/GLXxyyWW7RzO7MrLV85tmWBDk5BodLijUT+LceQ73J8Z/HNEnTnCzIdzxdPvN9z+eQfZPZqiOhdXnOVvm/1G6Zx+Y46GnJi3RcmlKZ2dssddhbZ9nmtuZ/AQDASC7xHldeeWWNH3OSPCfyM6mpr4lQObkeSeqkuDLPleRVU/SXFShGU5NsytJ5We4tCcEUxjUFkiOxfUMRV/Y0zm1isSQ206l/JPX3XMForX6S+LCn8yHt4sDmcb2tlpHzFEksJT7rvjx3iibPPffcWvCZhHFigHvuuaccf/zxZTilI1Ekjm/XRahV4rbslyZ2TqySRHG+u/nep/g4ssxkX0m/oZDlCnvqdpOOw6MRv7WeC8nnl3Me7eQcSbPc4EidCwEA4P/FTpncF+nomAKwFG5meeem+3xfcV6abmTsnEl4e+21V1fs2H0iXn9ihGbVjNaYrukI3321iVaJEVvv219NEWNWWsgEsMQ8KXptN9Gs6f6ZcW0zWay3Lp9TImP15HRThPfUU0/1ef8mZ9KuwctgJb5OU6R0rcw4Ph1cu+c2m5iip7hiIDFFc3wkLvjvf//b9j75fJJDy316imO6S94x25n48zvf+U4ZTk3s08Rf7eRzbYo0m9gnq0Q02r2vxJ69xZT53vSUd87x2loYnX2YuoObbrqp/p2YO01mUuSZOohMRM33KPsr57UAhouiT2DEpONeBreZ0fTtb3+71/tmtlMGSxkkpUtLd02nlgzSzz777DpDLbOjEkC1SqeUptAuiax2EoglQZLl5HsbJDcD5XRSbCfdGVOQFx/84AfLcGmKVzPrr13nyCSKEsxF94RPk7zr75JdTSFfBqftBsi//OUv6/tOAWc6K/Yl+yWdbCLLGvTU0j+SsMpxEFmGL59vE/gmGZpgJctktJMZhQlc836b1xtuTVKru2Y5g7yH3pYHz+B/5ZVXrr9nNmdP+2TrrbcuG220UddSHI0sO5HCyBzvX/jCF2qxZ2aO5brc1l99HSMbb7xxDZzSMbMpmsz2DFfXnARhWZozstxfX59njoskzzMr8/rrr5/s9iyl0SToWhNl+V8zXEvaJVHZrvA2he0pnM6JhNaOo80JhXZJ9JwY6qlIc6Df7yRSm2O03fc7XT7TmXe4/6cBALSz/PLL15gnsV7G/YkdMn7pa7nm1sl+GT92lxPuiRfaxUtDradO6c02pvNGX7FFT0ma0YwrGz3F2InRI2P3oY4T+uo+399zBSMtx272RZKuTSFqq8Sv7eKXxORJrCU26GnFjHSuySS3rMTQ2lUy5zi++tWv1t8/9alP1ec66KCD6t/f//73y+23316GQ2KI5rl32WWXPu+fzqzZ9kxibBfLvP/97+/6vfVYHK6VCLIN7TriJPnXJPKbWKo1fkv81CTJW2XCZE8GEsMlJkssnmOl6Xzc3TnnnFP/Z6S7T3N+AQCA4Ze4oxnTtYvzkotoHWP2FYtmfJ+YOPmDFAnmspFcU2RM2G782eRjM7mwmUAVWQmhyfe162iYHEFua71vf6VQNQWrKURt4pbuS7s3krdK7jYxftMcpnXMP9SrUKYhS5ZV763xT2Rfpjg0+ppsOlDzzz9//RwjMWH3bWktMm2XF+otpuguxbYpME1OqqdOn/mck0PLBNn+TjpNY5DElU0xck8xSasURPaWe+9Jc4wn597TEvWJg+PNb35zV5fYTGptYqx2+/Haa6/t9RxLvpdNzNcqcXazisi6665bL7OUe1bk2GGHHWqxc3epKcj5luhp0h7AUFD0CYyYBCif/exn6+/pKpFgo/tMtCSeUrDWFFbuuuuuZdlll237fE2njqZDRdOBsFUGd03RaJa6zpLxTeCVwVtmI2WwnBPnzWC1J3vuuWdXQiLLqrUWSaWTTLpdNomt4QpQWmc4ZXZf61IQeV8pwswsoiYA7L6MWNPiPrPC+pM8TIFhBsnpqpnPJYPYRgbbBx54YNcMr/628s9jEuCkgDFBZxKaCbga2a4kYbOse15vvvnmqzMjG0le7LzzzvX3fA5JALcOmLNPsoxGpNtlU6w73DJTK8dis1/zGRx33HF1ezKbMUs49CXLdCShl2LKzPxrLRTMMgB533neFHZmlmgjS61nP+Z4T4FkPucUkWY2aeS23Kc/ms+xWeqjuxQo5hhvnc3X7rs3pfKZJlE4YcKE+t7znlK82ldiL9/lphto9kVTiN36OaVgtXshY+vx29N7H6wE8fn/0Brc5jM+5phj6u/5H9U64zWFzZHgsnVZxMy6zH1bT/BMyff7M5/5TH1M9m/+v7WeIMr3M/+v0+Um39ecAAAAGGnNyfRjjz22313fW5eqS6f31rFTChkzBmo64Q3Vsss9acaY3Se7NduY2LK180qKyk488cRJuma0W/J7tOPKRooX89k0sXEus5R4EikpcEw8P1L7dKDnCkZa4uodd9yx/p5CzCaZ2MQfGee3S7wm9ttss83q7/vss0/dt60xU85xnHTSSfXvxE6tHXkSF6dAMDFx0ylorbXWqt+jnjrMTIkU2uY7d8ABB3RNGGwtjuxJEo05XhKXJOZr3Q+JoRJXNwW92Y8DORYGK8d160TLxEqJ1/N9TTJ700037bot25Xtz3cn2998Z/P9ybmtZhWbwcTf3ZPjOcfRLOXZun35PNPRNf8/IsdTEr0AAIyMdBpsujUmF9kaQ2Wsl/PvWc680VcsmiYVWTI648xmmffG+uuvXxtbpDv9TjvtNEmeNeP7TPRKsV1yKU0uLbbbbrvaUCXdDDNebB2DZrybHEYK5XKfvvKl7SQvmjFwUxzXU9Fna2fPNMzIdg5Xp8/ED4mjIgWQiXO754wylk58lv2TLpDZv+95z3uGfFsSQ6QgMxIjtB4PidmaxjopCG1WHkiMkQLNxFn9lRij+dyTI8tkzdYcanKFTW43sdhAVufIvlx77bXr8+299961+Uz3/ZncVPZnjrEUROZYz+TdFAb3V/Z/05Qox2Wzmktz3iG54SbOyjY0ecO8TtNAKLFR6/mW5AWbnGlvkrdrLbJNTJptyPcln1NzfiGFuk2TmhRZt64Smv2T3HVi3HyXR6o5ETBt+v/3OAYYARkEZpB99NFH16Kn/KSILDNxMohNcWEkkEkQlIRcT9IJIoOvJARy/w033LDHgXSSe2eccUZNPnzrW9+qr5cC0xQVJhBLENRX548MftM1MQmHDLBz8j4DvAz4miRDOinkvQ1Xx4nm/eRkfvZVBppJAmVwmUAtgVn2RbYj3Uu7L8e35JJL1sts7zrrrFMLKtPlr6ftTZCRBFIG50kEZjm1dE3JZ5X9l4AjgVtTENsfSZAkuZmCsiwNnoRXBtoZ8GdAngRsU+yYGZFJ1DVLKjQSyOb1s+15bAbved7MSGuWOcgMq6aryUhIkH3KKafUzybbkqK5HF95TyngbE0+9yTFfilwTcCVWWrnnXdenfGY/ZHPO/s7nSqzNEBTJJiivCR8IkW0zTIaTVFjApAEs7lPCq/z+N4kIEqxZfZr9m8Kf1sTWpG/cyzku5fPqJlFNxhJKKdouJH3mPebAKpJQOY4TRDX39fJ/5kUS2ZZySRIm+9Ijo3m+MhrthZ9ZpZiguG8pyTScjwmIB6KjkA5FlNsmtmhWfoh/zPyfY1tttmm7uNWKbD82c9+Vj/b3NYsF5ETLnPOOWc94dLMYpyS73eO0+zXfH+TPE4QnddKQXz+ZyYwzUzE/A9o1/0JAGC4JQZLR8KMD5N46i1p1DqezeOSPMpjMxbO2C5j86a7ZRJK6T6S582Yc6BL1/VXtiXj5iRpEvusuOKKdayf8WpirIy50nmkmaiWMX8mxDVLrCf+HK6l3qckrmwd56bDR+K77OPEQOl2mMcmBmrGpyOxTwdzrmCkZSLg3/72txobZEzfxCBNIijj8SzH3l0SSPkM8r4/97nP1XF+JmZl3N9MLMtn0RR2RopBk6jK8+azaF11IudFkoTL4xP39dXxprvED62T1pJ0y/crz9dMsk1M1UzG7EveT4ol0+kzq15k0mISj4lL8h3IdyLHZrMCxECOhcHIdyHxT95n4qG8dhLpeZ85N5HzQa2TBvO/KecokojPOa50K8r3Ifsj+yWxZ+Ktdt+j/sTfrb785S93dYvN9mXf5fxWvnvNcpWJMXs7lwYAwNDL+DEFbt/97nfrmDBd/FMI2prbWWWVVWreIkVxifNaJzS1k1xc8mg5P5+4KxO4EmMlxkkuKgWMWXI68U5iyjRMSX6tmUSVsWNrDiRj2Twuk/MSDyQWTf4pjTQSm6ZgM9uU8W7GmQOV7qCJDfOeM47Oc/cksX3G/tnW5GD6yltNiXRNTWyR3HDG6vnJGD+TqiLj9sSxzcTTI444Yli2IzF+xv2JVxNbJC5LHiixVeK2xHPJ4yUGT2yYzzT5rEzkS+fLxH533HFHv14r8UBihBRGJp5M3joxSmKJJkeWfGT3GKsvOVaSU0phc1b0TIFvfnLcJC5JTin7s8nx5v6JVdMEqlmVs78Sp2bliKwemoLcJk5LTJ3zOMntZ591nxyc6xI355jOdyY5r3y+2a40mXrve9/bdvWNRs7HJHbP6+V9NbFgjum899ZYOJ9n8rKJ6fM9zD7O5LvkN5v4LOd/mhwfwHDQ6RMYcQl80vY9J8UzwMoJ/BRnpcApAUu6X+T2vk5SZ3DXBCzpHtHa/r67/fffvxZ9JohJcJWZcRkQZgCfIKTpnNGXBFgZJGfwlsRgniddHFJol44mKQTtbTuGQl43SZDM1ErQl4F+Bp25Ph1NMmurWc4729c6Wy9BV2Y9ZbCagX2SntnvvcnMswSpKUTLoDYD5SQBsxx1BrQZ3Pe2bHk7CaaSfM2gPbPCEtBlW5qOjglgkqRLoioD7HbBUQp1k8TNoD2fZYLbyGMTlGbwPdDtmhLpkpKkVgLnJJwSYDcFl5kZ2F/5DBMkJVDIc+WzTeI1AXKC+ASBrd1LE7DlGMhnms+2uwT2CdBzn9y3Lzl2kgRPMJbgqemC1CrFi81x3nTRGawcS1meoflJAJeTIAmM8v1O0i5J0YHMrMwxlKUck7xOUWoSbfku5Luf/wE5QdIsa9j6mBQY5wRDTjTkeGxdGnRKJKjN/598Z7JPUzSdEzw5TpuC3VYJjvM9TrfbfFeyPzLDNMm/fP49BYiD+X7n5Eo66ybpnIA025fjLf+LE4jnWOxp2VEAgOGW8VPTDSJxQ3+XCk8skclUiTczBsz4PCfpEytkLJg4ollmq7Vz4lBLTJtYM4mCjKuzHZHtSEyXWCZj/kzuyRgsE8maMVjT2T9FbWMtrmwkSdXEQInlEpcl9snztq5MMBL7dLDnCkZSkkOJOVKEmfgmY/Uk4nI+IQV/maTXTuLaJNQyATUdQpKMTfybxGXiipyLSAKz6SyUQsnms0sc3z2Wyv5pCjJzrKVAeiDuuuuuSWK4bEtinMRS6Taazz/fv/5+X2OjjTaqMVxip0x0S5eUJOWSKM95mJwjynE60GNhsJ9Tzu3k3FT+f+TYzjHeTM5rNxkxibxvfvObNXGazydxVeL2JFe7x54Djb+7b1viyBwLieXyfy37P+cfkuxM4jwx5nBORAYAoL1MYsp4P2PCjNsyPs15/Yz3My7MGLMZm/c3zstYOOPgjDGT52xWY0jeLCuFJR+QzvMpDGzyaxlTn3POOW1X78pEqUyaylg349XEIxmHZtJVrsttuc9g5H0249C+OndmgmFTPDdcXT5bJf+RTvkpCMxrJ8ZKHJ7xd+KJ5PLSaCOf33DmFdMcJoWMkf3e2sEzE+eSb83+SGyXmCi508TdKdZt4r3+yOeQmCwNZHIuJfFG4oYUYybuzHPm/SaOGKgUqOa4TGFzco6JUbPPsr2JRTMpLjnEHJs535JVFAZa8Bn5XBIj5n0kT53vUr5Tie+TK2vOZ3SXcwGZ4JrzLZmsl5x2ti/5wlzf16qVec3UMTTNUbLtKSJNrjfnbFol95rtSL1D8nbN9zCvl/gscX67bQQYSuMmNlOwATpQBuJ33313Xf6uafUOI6lJ+KSoL8tXTAsyQy2BXALHLImQIA4AAGCscK4AAAAA6EuWj0830ch5hBTJAnQKnT6BjpWBV37SCa8/y/wBQ+MnP/lJnVGaJcQVfAIAAGOJcwUAAAAAwNROmTrQUbLUQGQZtCxlEJl9M5C29sDAZUmCLPX4+9//vpxwwgldS2IAAACMNucKAAAAAIBpiaJPoKNcdtll5dhjj+36+13velfZZpttRnWbYFpw5JFH1qXcG5tvvnlZdtllR3WbAAAAwrkCAAAAAGBaYnl3oKMsvvjidTnpWWedtay11lrl+9//fplxxhlHe7NgqrfccsuVmWeeucwzzzxlxx13LF//+tdHe5MAAAAq5woAAAAAgGnJuIkTJ04c7Y0AAAAAAAAAAAAAoHc6fQIAAAAAAAAAAAB0AEWfAAAAAAAAAAAAAB1A0ScAAAAAAAAAAABAB1D0CdBBjjnmmLLsssuWf/zjH5Pd9txzz5Xvfe97Zdttty2rrbZaWWaZZcr73ve+8slPfrIcddRR5a9//WuZFu2///5l8cUXL1/4whdKp3vooYfqe8lPu2NgqDSvcdNNN5WR8t///rf87W9/G/BtQ+3VV18t6667btl6663L66+/PiKvCQDA1EsMN3Ix3FDGfrfeemtXXJR4ZKwbiRhuzTXXrK9x4YUXlpEyceLEcv/99w/4tuGw/fbbl49+9KPlhRdeGLHXBACAaSlebuKagf4kdzZYjz76aI3Nh0Ji+2zPcccdV4bKY489Vg499NCy9tprd50z2HHHHcvll1/e9v6333573Ybzzz9/yLYBgLFL0SdAh/j1r39dvvvd79ag4W1ve9skt91xxx21UC2Jwd/+9rdljjnmKEsvvXSZd955y5/+9KeaSPzYxz5WTj311FHbfujJr371q7LhhhuWn/zkJwO6bTjMMMMM5ctf/nL5zW9+U04//fQReU0AAKZOYjgYvDvvvLNsvvnm5dvf/vaAbhsuX/3qV8uDDz5YjjjiiBF7TQAAmJbi5fe+972T/aTQsfGud72r7X1mmmmmAb/+K6+8Uo4//vg6seuJJ54oY9Ef//jHel7g7LPPLo888kh5xzveUWadddZy4403lr322qvsvffekzUvWWmllcp6661XDj/88GFtHgPA2DB+tDcAgL6ls8hBBx1U5pxzzrLLLrtMctuTTz5Zdt555/L000+XLbbYouyzzz5l7rnn7ro9M9QSOCUZktllSSJusskmo/AumFLzzz9/ueyyy+rvCyywQJlanHbaaT128uzttuGyxhprlPe///3llFNOKeuvv35ZaKGFRvT1AQDofGK4kZf9+JnPfKYW0E5rpsY48dxzz63Fnd0Lpvu6bbgkwZwuvBdccEH5xCc+UZPLAADA0MXLP/rRjya7b7p4fuQjH6m/H3DAAWWVVVYZsg6ayQGNVSlK3WOPPep5g7znb37zm2W++eart918881l1113rXFgOqWm82erfffdt1x99dXlG9/4Rp1QCsDUS6dPgA6Q5dP+/Oc/l+22264GQa3OO++8Ouhffvnly8EHHzxJsjBmn332OuMryYk48cQTR3TbGdoulIsuumj9ye8MnwTML730Ul1eBAAABkoMN/KSAEus1CTCpiVNnDjLLLOM9qZM1ZKQHjduXO2aAwAADH28zP9z1VVX1ZUG0tkzHUlb49xVV121q1g25xe6SyOTjTbaqK6kd8MNN4zodgMwshR9Aoxxr776au3wMv3005dNN910stv/8Ic/1MvM5kryoSdZ+iyyBMC//vWvYdxi6HwrrrhiWWyxxcovfvGLevIBAAD6SwwHU6cFF1ywrL766rXLqOQpAAAMfbzM/zPXXHPVFQa23HLL8oY3vGGy2xdffPF6+c9//rPt4/O4OOmkk4Z5SwEYTZZ3Bxjjrrzyyprg+8AHPlCX9+6u6fiYdv5p9z/jjDO2fZ7llluuXHLJJTU4eNOb3jTZ7VlCMEsnXH755eWBBx6oz5XZYGuvvXb59Kc/XbvNdJfXzLJqv/vd72qnmtxnmWWWqcnJddZZZ7L7r7nmmuXhhx8uP/3pT8tFF11UL7OMwzve8Y7y/e9/v6vDTWavZcmBG2+8sTz66KNlpplmqkupbbzxxrXbTYLBofDaa6+Vn/3sZ+XHP/5xuffee8sLL7xQZ8utttpqZaeddipvf/vbJ3tMuj+eddZZtRgwy45n+7M/s7Tb1ltvXVZYYYXJHnPHHXeUM844o/zmN7+pSzlmZl7e81prrVUf027fttO6jEWOi9al7O6///66BOStt95al6XIPsvnl6XKM1vyjW9846D2UfbPD37wg/KXv/ylzDzzzLUbUZ4v+6idHDc5jrKsRB6TAP4tb3lL+dCHPlT3aetsxByPX/7yl7v+PvXUU+tPPueVV165x9uOOOKISY7bbF9mPf7jH/8oEydO7DpuP/WpT002S7R5zSzbvs0229TlLbLvcuzlOM9jGh//+Mdrp89zzjmndmACAID+EMMNXQyX104c8Mtf/rI88cQTdV+8//3vL5/73Ocmi9f233//Gtt97GMfq0vftcp7Pfvss2scl+dMR8w8z2677VYuvfTSmgjL77vvvvtk25D3+8Mf/rD85Cc/KX/961/r55UEW2K5xBXtDGec0k6T8EvcmffVyHF4+umnl//7v/+r7zvHXuKz3CfPmSLGwcjznXbaaeXuu++un+1SSy1Vk4o97Y+BxN6JaRNzNv73f/+3/iRGzGfU0235fAcTl7a+5rvf/e7axTPLRt511131+5FE65e+9KWu++bvFHzm9RJvAwAAQxcvD1bydWeeeWa56aab6sTJxKRZDSExSmKV5Lca2267bbntttu6/m5i4eT+muXjEwcmVkwMmbgnMeX48eNrLJH77LDDDjUu7o+s3tEUX9533339ekz2T356knglWvOE3c8nLLLIInXCWnKUiXUAmPoo+gQY45KkiJ6SCekyccUVV9RExmabbVYTN0nMZRZYqyRill566bbPkWRSlgJIojCdZhIITTfddDWhlRl3SVQlYdKamDrkkENqMVwkEbXEEkvUQC3Jn/yst9565eijj267DHkK6H7729/WToovvvhiTZo1ycIEfPvtt18trkwQlqAk90nBZH5+/vOfl5NPPrnMNttsU7BXS3n++edrwigBYCS4TMLr73//e7ngggtqQirb35r4TOIo+zcJ0uzPBFNJFibBmeAv25b9ks+hkfez99571wAxCcok4/LaTaCV18nyC/0t/Gwn27PjjjvWxFk+o3e+853l5ZdfLn/605/KPffcUxNr559/fk1yDcQpp5xSbr/99rqv81llxuD1119ff5IMzf5rlWLTnXfeub5mjqMFFligfq45NhNsJ0ma52wKY1OImmLZbGeSotm+/CTh19ttrcftZz7zmZq8zOeRJGqOmbxejpG8XhKcOZ67y7Gd5Gkel/2V58p7bPXBD36wFn0mqD/wwAPrdwIAAPoihhuaGC7JsBTYPfvss/U5M3kuBZQZ5+c1syRg9zF8O4nXUuiXxzbj/8RLieGuvfbaGnf0JnFD4qIU3mY78jz5Oz/Z393jouGOU/orx0aSmymWbSYeRmLeFCwmTsxlCjYHItv/61//uiZRs23//ve/a9FkfnIcdV/6fKCx9xxzzFE/k+znbPs888xT48AUEfd222Dj0laZpLn99tvXGDTvLa/Tvbg4BbP5rqXAOYnf5nsAAABMebw8GIkpvvrVr9YcXmKvxAeJQ5KDy8/FF19cY7A3v/nN9f65Pfm0pnAycXfim8Qbkdg2MUVinHjrW99aH5MYJHFMfjL5LJMDBxpPTanE2nk/mYQXzTLvPZ17SIyZmFzRJ8BUaiIAY9Z///vfiSussMLEd73rXRPvuuuutvd55ZVXJm677bb1Ps3PkksuOXHjjTeeeNhhh0286qqrJj7zzDM9vsbLL788ccMNN6yP++QnPznx73//e9dt+X2dddapt+2zzz5d13/ve9+r1y211FITzznnnImvvfZa122XXXbZxOWXX77efsghh0zyWh/+8Ie7tvHnP/951/VPPPFEvbznnnsmLrPMMhMXX3zxiccdd9zEF198ses+d999d9e2fOELX+j3PvzSl75UH7PvvvtOcv3ee+9dr99ggw0m3nHHHV3Xv/TSSxOPPfbYetuyyy478b777uu67dxzz63XZzsefvjhSR5z8MEH19vyeeXvyH5ZbbXV6vWnn356/Twb+Tzf97731dtOO+20fr2XBx98sGv/tX5Om222Wdf+zufZeOCBB7r22de+9rV+77PWY+krX/nKxOeff75en+0/5ZRTum676aabuh7z+uuvT9xiiy3q9VtttdXE+++/v+u2HH9f/vKX622rrLLKxMcee2yS19tmm23qbdnv3fV0W7Zp7bXXrrd97nOfm/joo4923Zbn33nnnbs+q9bj6OKLL+7a/s0337zru/Hkk0/W99Aqf7/nPe+p973zzjv7vf8AAJh2ieGGLobLzyc+8YlJYou8XmKK3Lbnnnv2GftlTL/lllt27avESI3f//73Ez/wgQ90vdYJJ5zQddstt9zSdf1yyy038cc//nHXPnvuuecmfv7zn6+3Lb300hOfffbZEY1T2mkee+ONN3Zdt9dee9Xrdt9997rNjccff7wrdttxxx0n9lfrsZD3kW1rXHjhhfXYym35fUpj795i+d5uG2xc2vp5r7XWWl2fW/ZbE9+3ar5/l19+eb/3HwAATOv6Ey/3lhfLuL27xHVNLHLAAQdMEp/98Y9/7IpJE2+/+uqrbZ+3NaaOxIZN3NAaw0T+bvJ+ibX6k89K/PyXv/yl/gzWr3/964kbbbRRV+y+8sorT7zooot6fcwvfvGLrlgMgKmTllUAY9gf//jH2tUkXSR66u6RLizf+c53aqfHZlnALJ2W5QaynNyuu+5aVl111Trb689//vNkj7/66qtrN8V0XcnMsNalAPJ706UjnVSyLemIks4xsccee5QJEyZM0gEx3WEOPfTQ+nuWDcyS5N2tuOKKkyz7lu4czRIHmYmX5ez22muvSZZbyGy5E044oXY8yQy6dOkYrCwnl5lt6dKZJQizzEEjs/nSmTPvI+81HUBaH9d0gEy3kNbHZCnBLLWQ5frS7aPpEvL444/X37NcYuuShpk5mNfJEu9T2hmk2a5NNtlkkqUh01Emy9B9+MMfrjMRByqdT/JZpitMZPuzjOJGG21U/25mEsY111xTO45maYssM58OOI3MjjzssMPqTMKnnnqqdleZUunqk64r2Y85blqXAZl33nnL8ccfX99zZlxmqcR2cow1MzfThTVdYFrl76ZjzC233DLF2wwAwNRPDDd0MVyWzktnzNbYIt1Jm6XO022yL1kWPh1KE9NkmfjESI3EJ80Se71JDJSOo80+y37/+te/Xn/PsuG///3vRzROGWicmPittctqOpamC066vgymi+jCCy9cP9dsW2PTTTet3U0jx/aUxt6DNRRx6Wc/+9muzy37LdvZnTgRAACGJ14eqMQmWWkv+bmsbtG6qt6SSy5Z44LEqYm3E5v0R1YpyDZmxYLWGCby91ZbbVV/T1zeH4mfs9JDu9UeBrISRuKrdCiNXGY7s9JBT5q4JecVskIDAFMfRZ8AY1iTbEvCoV2ioZGAJcV9SWglWffRj350kkLCJKKuu+66mqjKUmatspxdpPgwyZ/usnRaklEJHpIkSWLtmWeeqQm4JAvbSTIw25zEZZYC767dMmpJFGb7oykq7C5LoyfJN3HixPp+BitLHcbKK688SRKu1cc//vF6mW3K+4hmWbeLLrqoJkNT1NlIsjZJrCRYm+dMEqxZovELX/hCTT69/vrrXY9JIWiSmLmcEk2SN0uQ33zzzfXzbmSZyCQ3k7gaqK233rptgrHZ3ixn2ASYSTw3x1FTJNoqz9N8rlPy2TWa18ux1lpM2/qdyPegp9dLwP6e97ynz9dplkDMkpAAANAXMdzQxXDLLLPMJJPtWp8zmsl2/YkbMjkvRZfdpQCwr7igWXa8VfZV83m1xoUjFacMJE785je/WbcrSxQ2ll122Zr8/PKXvzzg502BZ7tju4kTU/SaJQSnJPYerKGIS9sd692JEwEAYPji5f5KfqpZgn277bZre59M/Et80EwS648f/ehH5c477yxbbrll29szqS1aY6zhlpg2sX0mnmXyYia6XXrppbUA9T//+U+PMWEzebHd5E4AOt/40d4AAHrWJI+aLh99SZHhZpttVn+SVMvsrRQBXnbZZbX7SGa7feUrX6ldR975znfWxzzwwAP1Mom4nuT+jSZ5k2ChdcZc90RKurr861//Kn/7298mu71dsi2dTpI0jIMPPniSjpWt/vnPf06yHYPRdMu56667umbkdZdOI/H888/X95FkY/ZrCj7ToSbb+I1vfKPOFEwXnnRJWWmllWoitZEkX4o9v/a1r5Ubbrih/qQIdJVVVimrrbZa+dCHPlTe/OY3lym133771e4zd9xxR+16k+RWtuX9739/fY2mWHWg8hm20yRZczwloZd90MxoTOKs6SjTXRLNzWed43OwHWuieb100ukpUG9mLrY7Vuacc85JuhD1pPnutSZyAQCgJ2K4oYvheioSbIr5Uhib/dMag/UU+/W2r1Jcmgl6A92OdIFM4WkTO45knNIfe+65Z02A5vNM99h8PikoTSy6xhpr9LpPBhMnJmbOcZ/OPXlv6bI52Nh7sIYiLm13rHcnTgQAgOGPl/uSSVhNE5TEdT3JbSmQbBfr9iQrdKSYMnF5Yoe8Vi7vueeerpiutcnLcGuNU1IAmslqH/vYx2ox51lnnVV23333yR6Tgs+cA0gM9MQTT4zYtgIwchR9AoxhzeysZtbYQDRLU+dn++23L5dffnktQExS7Pzzzy8HHHDAJN1R2nXBaOe5557rV1DWJBOTuOmuXRIriaFGEkJ9ab3/QDWPTZDTn0AnAVEST3lP2Xff//73a4CYgscsR5GfdPl84xvfWJfia+3cmd+TXD3jjDNqp518pllmMT/5jJJsS4J0Soo/s9x8ilFPP/302pUn+7wpMk3n0QR/KVAd6HIZrUsA9nT9iy++OMlx8cgjj9Sf3qR7S7axp4RzfzSvlyA7PwM9Vvo7i7T57vU0UxIAAFqJ4YYuhuupiHQgsox3X/uqp7inMZAONCMVp/RHJuf97Gc/K6eddlrtuJnjJkWg+Tn22GPrcZbVIlZcccUBPW9v+yu35X01ceJgY+/BGoq4tD9Ft83xJE4EAICRiZd7G//3Fe/2Fuv29LyHHXZY+d///d9JVtZLIWgmWCbW+r//+78ymrJkfFZhyEp/t912W4/3y75OnNVMfgNg6qLoE2AMaxI+PQ3GU+B3zDHH1I6S3Zf862699darS511n83WBFf9DXaaBE9fCbtmm/tKoDVak3C//e1v+/24wWje84477liXVByIBId77LFH/UnRZ5M0y1J0SWKlq2eW+WtdAjCdPfOTpR6y/EKWRU9AePfdd9fPMEuv5/Obks6XCTKTuEsAmo6f2aYUmWZf/uY3v6kdQFNo2t/EcDRLt3fX+tk3y9c3+zTvf5tttinDLa+X7UhA++EPf3jYXqc5joeq2w4AAFM3MdzY0uyr1mRgd/3dj2MpTumvLGV46KGH1kmAKcxNMjCdZBMvpivmpz/96Vpc/Ja3vGWK48TWYywdS6c09h6MkYpLm2S1OBEAAIYuXh6o1hg0sUgas/Q2fu9vzPr5z3++xkwZ7yeuePe7311X3kiDlxR+XnDBBcNe9JkYNl08k2/sqWlMM2Hu8ccf7/F5mn09lBMMARg7phvtDQCgZ29605sm6U7SXQKOJGqynECzbFp/2v9nCcFGs/R3b4/fZZddapBz55131iXaIgWPPSXOsqRBul9GgqD+JqOS+Iwsn96TbMN99903RYm5d7zjHX2+5+zzFEtmKcIs+RYp6kzRZrMERd5bOnkmaZvkbbN8xE9/+tN6maUO77///lqE2XxeH/jAB8ree+9dLrnkklqkGVl2Lu9pMNKdJJ9FCkkjAWc6tWT5vh/+8If1J8WkCfpSBDoQPS2/2Hy2eT8LL7xwv/dpOq1kKYws2Tel+vN66azzhz/8YYqW3Gu+e813EQAAeiOGG54YbrDSzTJ6i7cGG4uNZpzSl8SwSRA2MWCW9VtuueVqkWdWqUjHmkxoTEfOTA4cijgxx1fzGS+++OJTFHsP1kjFpc33u6ekMgAAMPB4eaCSnxo/fnyfq080t/Un1k2skILPyKoJ+++/f52QmZX0kn+LRx99tAy35Pg+/vGP1wmFPUkMFfPPP3/b29OIplmFQY4LYOqk6BNgDGsSFpmJ1QzMW2XZ7re+9a319yzj3brMQLvB/TXXXFN//9CHPtR1fZYXj9zWLtBKQeJ1111Xrr322ppozGumu2OWGExBYTs///nPa5Fhig1XX331fr3XJJxWXnnl+vtZZ53V9j4PPvhg2XrrrctGG21UfvGLX5TBajqupMNJijLbSSFnXmvbbbftSjzttNNOZcKECeXHP/7xZPfPDMHll1++qxAz0v1z/fXXLzvvvHMtAO3u/e9/f9fvzWMGKsmsdBXN8o/tZvO95z3v6Zq9mETuQFx88cVtrz/77LPrZT7bJsht9ulll13W47J9X/nKV8oWW2xR9t1330mu763DaU+3Na+XZe1zbHeX4zNJ7ixvceSRR5bBaoL35rsIAAC9EcMNTww3WM0KDNkX7YosEw9mYt9QGak4pS9Zyv2jH/1o2WGHHWqBabvjtOkKM9A4MR1q28WvTZy41FJLdXWiGWzs3RoLtisE7em2KYlLBxMnNgXVAADAlMfLA5XVJ973vvf1GZMmHowPfvCDXddnYlyjNa7I5LlG0+ilVbY78fOU5PX6Y7XVVuuKbdp1Rs11TQ6vp1UmWotTxS4AUydFnwBjWJbsTtCSJExml3WXgrskLBKc3HjjjbUg8ZZbbpks0EhnlSR7HnjggVoEmFlpjQ033LB2ikmAsNtuu00SBKSDxxe+8IX6exJG6eSS5dJSxBgnnHBCTRq2JomuuOKK8vWvf73+ni6YAymW23333WunmCxfmARoayeYdMPJ6yYpmiTpxz72sTJY6YSZjptJuH3mM5+pSxE2Upx5yimnlAsvvLD+ndub4C+z6uKkk06qBZ2tkihsOnw2SdgEkEmyJuGWpexy2UiHnSbJl6X0sjTEYCyxxBK1e00+83322WeSzy/v5bjjjquvleMo73sgkkRON9KmYDWX2eYEyDn2MtOwkeLWbEeOoxTHtnZWyesfdNBBtctMknPN8dN9WciHH354sm3o6bYc6+l6lG4yn/vc57pmNEaSuXvttVdNKmY7s5TgYOT93n333fX3JMoBAKAvYrjhieEGK8mvpZdeusYkiV/S5bF1+1KAOdCix96MRJzSH4lDm+LdHG+tBZd5vzkG8v5zHPa3yLeRGOmrX/1q1zLveb4zzzyznHPOOfXvvMcpjb2jmbzYug/7um1K4tKB+N3vflcvxYkAADB08fJgJCZOt89f/epX5Wtf+9okq1tkQmTijJdffrnm0j7xiU9MlnvqHle0FkeefPLJk0zUzAoXeb6s3hD9LVxNLJiYrKeJcO1sueWWtTtnlqZPLNuaI8t5gmxHJm7m3EDu204Tf6XDqU6fAFOn/9fvGoAxKYmgzFJLkV2WO1t11VUnu89aa61VvvnNb5ZvfOMbdRnxdHycY445ateOBDpJADYdLlZZZZVy/PHHdy3BFzPOOGMNXLLMWwoX11xzzbpMQRIwCRySfEynjoMPPrjrMUmeZLbbj370o/q6J554Yk0m5rUee+yxrgRjEkEDkYTJIYccUg488MCaNDrvvPPKoosuWhOHSZpltl0CkyxHl+2eEtlnn/3sZ+s+22qrrcqCCy5Yu99k1l8za+5Tn/rUJMHSdtttVxNEKfhMQDXffPPVn3TXaQKu7L/NNtusa99mf2d/ZTZeiiiz3EQSWXmdJMmSgD3iiCOm6P2ksDPbedttt9XjIe8lz5vPKO8ln3c+p3nmmWdAz5vPMMtXnH/++fU5s80JMHNcJqGbAL2R65Kwy3GUpSqTiE6yONuRALhJCH75y1+eZDZl5PhKJ6IsMZilFZMYzDHQ2235rL797W/XRGo+k4985CP1uE3y7m9/+1s9fnP8p2i1WVpwoJJoz/PMPffcdSlEAADoixhu+GK4wch+S7y0zTbb1IRX9n0m3CVxl4TbnHPOWZNkiVla9/FgjUSc0l/5nNPRMsWdic8S0+U4S0Kz6RC799571+0biBwnWf0iy8In5ssx9O9//7u+x/32269rEuSUxN7RxJv53NZdd926nZmA2dttUxKX9lfeb+L/fI5N9x0AAGBo4uWByiTJww47rBxwwAHlggsuKD/72c9qTJqxf2KwyMSwxAutMWnyPpmcmLF9iipT7LnnnnvWOCGTLi+//PLy/e9/v1xyySU1hklTl6YLaOKATOJM3Jsi06yC0ZtMumtimeS5+iOxamLLTFZL7i+rWCR2TdyVWDaFs4l1Tj/99DLzzDO3fY7s4xhs7APA2KfoE2CMS3fJBED/93//V2estbPBBhvUICPLrGU2W7q7JIGSZF8SbAlQcp+111677eOTIEmXyiTprr766q7kXJJhSZIkCdkaDCWoSIeMPN+5555bZ+QloZJuIumkkqXqkkwbjE022aQuk/6DH/ygJsnSmSOvlyAtSxqmG8ob3/jGMqWyrQm0ErClK00CrSRvEkglSZXkWBJ0rZIETHI1idIEfAmsMlMwj0n3knxW6V7TuiR5krTpXHLGGWfUACuJpiSHstxdHpP30yyrN1j5/JJ0SyI1y+YliZfPLwWp+YzSIWgwnUQTJGf7836TKEzgms4pSdhlVmR3SRpnO3L/dAvK/smShk2XmSzXt9JKK032uBTQJtF81VVX1f2TRGR/blt22WVrMWiWEcx3JMdtkrfprJNlJvO+221nf+U7F/nuNMvYAwBAX8RwwxPDDVa6mmRfnXrqqfVzSZyS2Cax2x577FH3S2KNFAYOheGOU/or8WCWmU+cmGMxx1c6neazyLGVQtj3vve9A37efJ4ptMzzptNNjrN8zond2q0uMZjYO9KFJ9+LfHZJrmYfJrGZSZS93TbYuLS/mlU/Es+P5nENAABTa7w8UIkPEoclPm5i0nTyTLyT+Djx7kwzzTTZ4zLBMgWjiY0TE2YSZRxzzDHl/e9/fy0izXWJYZrYOZPVEv/k9+Ti8l422mijMhzSjCSxZYpP8zrZluQXs5pFYrKtt956ko6lrRIfpTC1dRVDAKY+4ybmjDAAY1aSfkn4JVGUBMlglwEH+i/LDyZoz7Ibv/jFL2riEAAA+kMM11lStHrXXXfVjpSjsQQ9nSUJ4z/84Q91OfspKR4FAIBpkXh5ZNxwww21S2gau5x11lmjvTkADJPphuuJARga6S65yy671N8zqwwYftdff33tMJoZmgo+AQAYCDHc2JFOl1mO/NBDD217+7/+9a+u5fWWWmqpEd46Ok1W+kjBZzq2KvgEAICBEy+PjPPPP79eDlU3VQDGJkWfAB0ghWeLLLJIXQ4tnQeB4ZWlCrNM4ec+97nR3hQAADqQGG5sWGaZZeoyfVnSPsvitS54lGXB99xzz7o0+Pve9766HD305rvf/W4ZN25cPW4AAIDBES8Pr/vvv782NskS9ZmwBsDUS9EnQAcYP358OeKII8qLL75YTj755NHeHJiqXXHFFeW3v/1t2XvvvcvCCy882psDAEAHEsONDUsssUTZbrvt6hKCX/jCF8pqq61Wl3NP98+11167/O53vyuLLbZYOfLII0d7Uxnj0uEzy09OmDChrLjiiqO9OQAA0LHEy8Pr6KOPLjPPPHM55JBDRntTABhm4ya2TnEHYEw77rjjagfCJBre/va3j/bmwFQnXX422GCDMt9885WzzjqrTDed+TEAAAyeGG5suPnmm8s555xTl3J/7LHHyqyzzloneK233nplyy23LLPMMstobyJj3LbbbluPnZ/85CeOFwAAGALi5aF3yy23lO23374ceuihZbPNNhvtzQFgmCn6BAAAAAAAAAAAAOgA2lcBAAAAAAAAAAAAdABFnwAAAAAAAAAAAAAdQNEnAAAAAAAAAAAAQAdQ9AkAAAAAAAAAAADQARR9AgAAAAAAAAAAAHQARZ8AAAAAAAAAAAAAHUDRJwAAAAAAAAAAAEAHGD/aGwCMgFdeKeWmmya97v3vL2XGGUdriwAAAACAscr5RAAAAIAxa9zEiRMnjvZGAMPs8cdLmW++Sa977LFS5p13tLYIAAAAABirnE8EAAAAGLMs7w4AAAAAAAAAAADQARR9AgAAAAAAAAAAAHQARZ8AAAAAAAAAAAAAHUDRJwAAAAAAAAAAAEAHUPQJAAAAAAAAAAAA0AEUfQIAAAAAAAAAAAB0AEWfAAAAAAAAAAAAAB1g/GhvADAC3vCGUu66a/LrAAAAAAC6cz4RAAAAYMwaN3HixImjvREAAAAAAAAAAAAA9M7y7gAAAAAAAAAAAAAdQNEnAAAAAAAAAAAAQAdQ9AkAAAAAAAAAAADQARR9AgAAAAAAAAAAAHSA8aO9AcAI+O9/S7nvvkmvW3zxUsb7FwAAAAAAdON8IgAAAMCYNW7ixIkTR3sjgGH2+OOlzDffpNc99lgp8847WlsEAAAAAIxVzicCAAAAjFmWdwcAAAAAAAAAAADoAIo+AQBgKnDiiSeWxRdfvP58+ctf7vW+Tz75ZFl66aXrfbfddtsytXj++efLscceW9Zdd92y7LLLlve+971lm222KVddddWAnudXv/pV2W677coqq6zS9RxXXnnlsG03TM38b8rquP8t3/nOd8p6661XlllmmbLSSiuVnXfeudxxxx19PvZf//pXvf9xxx03RdvwxBNPlFVXXbWsueaaU/Q8AAAAAADA6FP0CQAAU5lrrrmmvPrqqz3e/otf/KIWIU1NnnvuubLVVluV0047rcw666xl6623rsWf9957b9ltt93q9f1x/vnnl5122qn86U9/qgVan/zkJ8uDDz5Ydt9993L88ccP+/uAqdm0+L8p9txzz3LMMceU1157rf5v+tCHPlRuuummMmHChFpk3pNnnnmmfO5zn6uXU+rrX/96LaoFAAAAAAA6n6JPAACYisw777zlP//5Ty0o6slll11WZptttjI1Of3008t9991Xttxyy3LxxRfXjoL/8z//U37+85/XfZKCzX/84x+9PkcKog455JB6///93/8tBx10UDnggAPKpZdeWhZaaKFy6qmn1gJQYOCm1f9NN954Y7n66qtrh8/8X/nKV75Sjj766PLd7363FoEefPDBbR+XwvMtttii3H333VO8DT/5yU/qNgAAAAAAAFMHRZ8AADAVSXfLuPzyy3tcKvg3v/lNWWuttcrUJO933LhxZd99962Xjfnnn792AE1x1Q033NDrc9xzzz3lzW9+cy0cTYFaY4455qhLIr/++uvlzjvvHNb3AVOrafV/U7OE+8c//vEy00wzdV3/vve9ryyyyCLlgQceqEuvN9Lp9PDDD+/qMrzaaqtN0es/+uij5dBDD7WsOwAAAAAATEUUfQIAwFRk8cUXr4VEWUb5lVdemez2FFyleHGDDTbotTPdjjvuWFZaaaWy3HLLlY997GPle9/7XttlmdM9M8sGr7322vW+7373u8v6669fvvWtb5WXXnppsm377Gc/W/7yl7+Uz3/+8/X5c//NN9+8XHHFFZM997bbblsfc8kll/T5vrfffvuy1157lTnnnHOy22acccZ6+fzzz/f6HCmuSje8LAff3f33318vW4tBgf6bVv83veENb6iXDz/88CTXZx889dRTZYYZZqiF5Y0XXnihnHnmmbUz6IUXXlg23HDDMlgTJ06sXY/Hjx9fOxcDAAAAAABTh/GjvQEAADAsHn988I+dffZSZpml/W3//ncqaQb3vLPOWsoILF283nrrlZNPPrkWSH34wx+e5LYsd7700kuXt7/97W0f+/3vf78ceeSRtVApxVJzzz13fZ6jjjqqLst82mmn1QKiuPfee8uECRNqZ7p051tggQXqEukpnPz2t79d/va3v9Vl1bsXYmXJ4re97W1lk002Kf/+979rsdcee+xRt7m1y9/GG29cVl555bLkkkv2+Z6zHT0VPV155ZX19xRpDUQKydKF7wc/+EH51a9+VTvzpRgMptg0+v9pWvzflA6nJ554Yjn33HPLEkssUbf9mWeeKd/85jdrh88UsTaF6ZFuoClk/cAHPtDVgXiwfvjDH9Z9c9xxx5U3vvGNg34eAAAAAABgbFH0CQDA1Gm++Qb/2JNOKmXXXdvfliKfFFYNxoEHljIC3dbSzS5FSr/4xS8mKazKUsFZnny//fZr+7gUSh199NFlscUWK2effXaZZ555ugonv/rVr5aLL764dqD79Kc/Xa9Px7znnnuuFkWmILKxzz771MKmFFvm9tlTpPb/SbFVuuTl+Zpl2FddddXyla98pRYotRZWZXnjKZVCq7znhRZaqKy++uoDeuyHPvShWvgVyy+/fN2nrUvHw6BNo/+fpsX/TSlSPe+888r+++/f9dPYe++9a4fRVin6bAo+p8Tf//73WliaotPs9xTAAgAAAAAAUwfLuwMAwFQmhVHvete7JltGOZ30UszU0/LJ559/fl1eOYVRTVFV5DFf+tKXynTTTVeXG26kQOrwww+fpKgq0lHune98Z32up59+erLXyfLJrcWTTTHVQw89VIbSZZddVg477LDa/e+II46oyyj3V7Y9xWHpwpeloX//+9/XLoCPPPLIkG4jTEumxf9NeZ+nnHJK+d3vflc7mW6//fblE5/4RJltttlqd9Kf/OQnZai99tprtbh01llnLQemmBcAAAAAAJiq6PQJAABToSyjnOWLsyz5mmuu2VVY9d73vre85S1vqUsZd/eHP/yhXmY54D/+8Y+T3Z4ipXSPe/755+vvq622Wr0+xVPpxJdufVkO/e67764/keKqVlmSubVoK+acc8562VoENhQdPg855JBawJUloVdcccUBPT5FZAf9f10P003wmGOOKaeffno5+OCDy6mnnjpk2wnTmmntf1P+//z4xz8u2223Xe0a2hSV7rnnnmXrrbcuX/7yl8uiiy5ai8uHyne/+91aZJpl5bu/JwAAAAAAoPMp+gQAgKlQlvNNYdXll19eC6vuv//+8qc//al8/etf7/ExzzzzTL0855xzen3u3C+FVY899ljtoHnFFVd0LR0877zz1uKt+eefv3bHS8Fk96WLu2uKoLrfdzBSyHXUUUeVM844o8w444y1WHOdddaZoufM9u21117lggsuKDfccEMtAMtzAwM3Lf1vyv+jdCCdY4456tL1rV1EF1hggfp/JZ1KL7rooiEr+kyRa4o9N9xwwyn+3wcAAAAAAIxNHVf0ufjii/d5n4033rgmeBpPPfVUOfnkk8t1111XHn/88Zpc2WSTTcoOO+xQl3oEAGAq9Nhjg3/s7LP3fNs996QCaHDPO+usZaS8/e1vL0suuWS59tpra5FiOulNP/30Zd111+3xMSmWihtvvLG86U1v6vX5UwS18847l3vuuadstdVW5WMf+1hdunmuueaqt2+++eZDvlx7X/I+991333LllVfWrn2JAQbS4fNvf/tbLZhaYYUVynzzzTfJbYkb0oXwP//5T/1JARkM2jT8/2la+t/0xBNPlJdffrm+frtC8eb8xsMPPzxkr3nVVVeVV199tVx66aX1p7u8Vl73rW99a/0MAABgJKQL/2mnnVbHoI888kh54xvfWD7ykY+Uz3/+8/3uTv/Pf/6znHDCCeXmm2+uz5fYYsKECXWMDwAAMK3puIrH3XbbrcfEzplnnlmXc3vf+943SaePbbfdtvzlL3+pXS4WXnjhmij65je/WZeIS4AIAMBUaLiK8vooOBprHfXS6TJLIqer3qqrrloTKz1JIVaWTr7jjjtq8qVVCpfyXCl8/NSnPlXuu+++WlT1gQ98oGsZ9EYKjrLU8lB17+yP1157rS6XnATSggsuWJdiX2SRRQb0HOnI973vfa984QtfKJ/5zGcmuS1xRpadznLPlktmik3j/5+mlf9NKTRNsWeKTNt1CE6heXQvMp8SK6+8ctvzJuk6esopp9Suo9tvv329BACAkfDss8+Wrbfeunb5z9g/Y/q//vWv5eyzz67d+bOqRsbzvcnkpS233LI2eUk8kclgV199dfna175Wn2v//fcfsfcDAAAwFkxXOszuu+/e9mf22WevidgtttiifOITn+i6f7r7/PnPf65LxaXAMwncLJ2WAtAEk+kCBAAAU6P11luvXp566qk1CZLESG823XTTepnl0bM8cqtvfetb5Qc/+EH53e9+V5cobpZCzv2a5ZOb4svDDz+8dsOM1tuG03e+851a8Jmu/ueee+6ACz5jo402KtNNN135/ve/Xx599NFJCsVSPPbiiy/WfZSuhMDgTSv/m1LkmXMPec0sad/qySef7Lou/3uGyiqrrNL2nMmuu+5ab0/hev5OgSwAAIyEk046qRZ8Zhya5i1f/OIXayyQgs2M2/vTnCVj+dw3Ob/EBXmOn/3sZ2X55Zevz3nXXXeNyHsBAAAYKzqu02c7Keo89thjy0ILLVS+/OUvd13/0ksvdc0QzAzARpK0CQhT8HneeefVJAxM1bKU4XXXTX4dADBVy/h42WWXrcVQTfFRb9773vfWpdXSDW6DDTYoa665Zu2+95vf/Kb8/ve/r8sBN+PtLKOW+//2t7+tBVnp1pHiyP/7v/+rnfTyuCxtnCXXBuuSSy6p3TzWWmut2umvJ3mNFH1G7pcYoJ0s9Z7tjFtvvbXcdttt9f55/lhiiSVqYdSJJ55YNtxww1qYlgKyrBSQwrR00Ntrr70G/X6Aaet/U2S7koD+7ne/W2655Zb6fyRFoNdcc03dhh133LHr/9JwbwsADIjzicAQSef7dObcaaedJrn+4x//eDnkkENqXNCbjHfT1fM973lPWWONNbqun3nmmcvee+9dO9mff/75ZZlllhm29wAAADDWTBVFn5nhlyROZgXOMsssXdffeeed5YUXXihrr7127djTPcmUZR9vv/322vFDtx6mallG8EMfGu2tAABGQTro/eEPfyirr756v5bzzRLpKcbKMmspSsqSxOmemcKkJGiSqIl01EuHjXTk+OUvf1nOOeecetuiiy5avvKVr9Ripky0uu6662qx5WD8+Mc/roWZKejqrZjp17/+dR33R7Y5P+3ssssuXcVVed50G9l44427ij4jyyKn+DOdQi699NIaK6SI7Etf+lLZdtttywwzzDCo9wJMe/+bIq+d1UZOO+20ctVVV9XtT6HrUkstVbbZZpuy7rrrDmobBrMtADAgzicCQyTj83bS/TPmnXfeXh+f8e7EiRPbTpZaYYUVapyeCVYAAADTknETEyl1sBtuuKHsvPPOZbXVVqvLMLZKh58UgmbJiCRvu8tyZjfffHPt+Pm2t71tBLcaAAAAAAAApi3pfJ8izSOOOKIu2Z6u+L11vz/uuOPqcvBHHnlk+cQnPjHZ7Wn8km6id9xxR51gBQAAMC3o+E6fCQYjS7111yzXNvfcc7d9bNNN5JlnnilTk9dff73+jBXpstq90yoAAAAAADD2jLUcw0DJSYxdP/rRj8pBBx1Uf88KfEcffXSvBZ/x1FNP1cu55pqrx1xfjtfnnnuuzDPPPMOw1QAAAGNPRxd9/vGPf6zLOmRJtnbLsmW5t+hpZl9z/csvv1ymFglsJ2y/Q3nk8X+XseIt876p/PAHZzjJAgAAAAAAYz3HsOOE8ujjj5ZO9eZ531x++P0fykmMQSnK/MxnPlMef/zxugrfF77whfLII4+UT3/60z0+5tVXX+1Xrq/JCU4tXtrnqNHeBAAAGLNmPvaLZVrX0UWfl1xySb2cMGFC29tnnnnmSQLC7poAcLbZZitT0wmZFHzufOwZZbrppx/tzSmvv/Za+c4+O9TtcoIFAAAAAADGrpzLT8HnbmftVqabvvPO6b/+2uvlpO1OkpMYoz760Y/Wn9h9993LFltsUbt9rrLKKmXZZZedolzfrLPOOmzbDQAAMNZ0dNHnNddcU4O4D3/4w21vb5Z66Gn59meffbZezj777GVqk4LP6cd39MfLUMpSPE88Mel1b3xj1rkZrS0CAAAAAMYq5xOneSn4nH786DeWYOq14IIL1g6fRxxxRM339VT02Z9c37hx46bKXB8AAEBPOrYq8N577y3//Oc/ywYbbFBmmWWWtvdZZJFF6uUDDzzQ9vZcn6LRBRZYYFi3FUZdTtDON9+k1z32WCnzzjtaWwQAAAAAjFXOJwJDIF04b7/99vLaa6+VD37wg5PdvtBCC9XLJ598ssfn6C3Xl+6fWR7+He94h86uAADANKVjI6Df/va39XLFFVfs8T7LLLNMXbr9tttuq0t5tHrwwQfLww8/XJZffvky/RhYBh0AAAAAAACmpqLPz3zmM2WfffbpWoa91d13310vU7TZk5VXXrl28rz11lsnu+3Xv/51LfxcYYUVhnjLAQAAxraOLfq86667ugo7ezLTTDOVDTfcsDz00EPlrLPO6ro+MwqPOuqo+vuECRNGYGsBAAAAAABg2pEl1z/ykY/UJdhPOumkyfJ8Z555Zl2RL7m8nrz5zW8uq622Wm3wcvXVV3dd/9JLL5Vvfetb9Xe5PgAAYFrTscu7N8s4zD///L3eb6+99iq/+tWvyuGHH15uueWWsthii5Wbbrqpzh5cb731arAJAAAAAAAADK2vfvWrtcDztNNOq5053/3ud5d//vOf5ZprrqkdPI877rgy77zz1vumm2eKO5dccsmy1lprdT3HAQccULbccsuyxx571NxecoN5/N///vey00471fsDAABMSzq26PPJJ5+sl3PMMUev95tnnnnKeeedV44//vhy/fXX14LPBRdcsOy3335lu+22qwElAAAAAAAAMLTSqfPiiy8up5xySi3UvOOOO8qcc85Zizp32WWXssQSS3TdNwWf6Qi68cYbT1L0meXfzz///NrZM41eXn755fL2t7+9HHrooWXTTTcdpXcGAAAwejq26POyyy7r933nm2++cthhhw3r9gAAAAAAAACTN2hJt8789Gb33XevP+2kyLNZzh0AAGBaN91obwAAAAAAAAAAAAAAfVP0CQAAAAAAAAAAANABFH0CAAAAAAAAAAAAdABFnwAAAAAAAAAAAAAdQNEnAAAAAAAAAAAAQAdQ9AkAAAAAAAAAAADQARR9AgAAAAAAAAAAAHQARZ8AAAAAAAAAAAAAHUDRJwAAAAAAAAAAAEAHGD/aGwCMgDnnLOWCCya/DgAAAACgO+cTAQAAAMYsRZ8wLZhpplI222y0twIAAAAA6ATOJwIAAACMWZZ3BwAAAAAAAAAAAOgAij4BAAAAAAAAAAAAOoCiTwAAAAAAAAAAAIAOoOgTAAAAAAAAAAAAoAMo+gQAAAAAAAAAAADoAIo+YVrw+OOljBs36U+uAwAAAADozvlEAAAAgDFL0ScAAAAAAAAAAABAB1D0CQAAAAAAAAAAANABxo/2BgAAADB1ef7558tpp51WrrzyyvLwww+XGWaYoSy11FJl++23L2uvvfYk933qqafKySefXK677rry+OOPlwUWWKBssskmZYcddijjx/c/ZL3++uvra/7pT38q008/fVlhhRXKnnvuWZZYYolheIcAAAAAAAAwOnT6BAAAYMg899xzZauttqoFmLPOOmvZeuuty7rrrlvuvffesttuu9XrG88880zZdtttyznnnFOWXnrpst1225VZZpmlfPOb3yz77LNPv1/zggsuKJ/97GfLv/71r7L55puXtdZaq9x0001liy22KHfeeecwvVMAAAAAAAAYeTp9AgAAMGROP/30ct9995Utt9yyHHTQQWXcuHH1+nTdTAfP448/vhaBvu1tb6sdPv/85z+XAw88sBaHxt5771322muvcsUVV9ROoeuss06vr/fvf/+7HHrooeXtb397ueiii8occ8xRr0/B54QJE8oBBxxQfvrTn3ZtBwAAAAAAAHQynT4BAAAYMpdffnktsNx3330nKbScf/75awfQ1157rdxwww3lpZdeqh063/KWt9QC0UaWZv/iF79Yfz/vvPP6fL3zzz+/vPzyy2WnnXbqKviMd7/73WWDDTaoBai/+93vhvx9AgAAAAAAwGhQ9AkAAMCQ2X777WunzjnnnHOy22acccZ6+fzzz9dl11944YWy8sorl+mmmzQ0XWihhcqCCy5Ybr/99lok2ptbbrmlXq666qqT3dZc19wHAAAAAAAAOp3l3QEAABgyWVK9nYkTJ9bl2mPxxRcvf//73+vvCy+8cNv7p/DzoYceqj9ZCr4neZ7x48eXBRZYYLLbUjgaf/3rXwf1XgAAAAAAAGCs0ekTAACAYXfuuefW7p4p5lx99dXL008/Xa+fe+65296/War9mWee6fV58zyzzz57XRa+p+d49tlnh+AdAAAAAAAAwOhT9AkAAMCwuuyyy8phhx1WO3IeccQRZYYZZiivvPLKJEu+d9dc//LLL/f63K+++uoUPwcAAAAAAAB0CkWfAAAADGuHz3333bf+fuSRR5YVV1yx/j7zzDN3FW220xSFzjbbbL0+f56nr+eYddZZp+AdAAAAAAAAwNgxfrQ3AAAAgKnP66+/Xo466qhyxhln1I6bxxxzTFlnnXW6bp9rrrl6Xb69WZI9S7f3Js/zxBNPlIkTJ5Zx48a1fY5mmXcAAAAAAADodDp9AgAAMKTSYXPPPfesBZ9zzz13vWwt+IxFFlmkXj7wwANtnyPXp0PnAgss0Otr5XnS6fORRx6Z7LYHH3ywXi666KJT8G4AAAAAAABg7FD0CQAAwJB57bXXasHnlVdeWRZccMHyox/9qGtJ91bLLLNMXbr9tttuq11BuxdrPvzww2X55Zcv008/fa+vt/LKK9fLW265ZbLbbr755nq5wgorTOG7AgAAAAAAgLHB8u4wLciSmCedNPl1AAAwxL7zne+Ua6+9tnboPPfcc8v888/f9n4zzTRT2XDDDcv5559fzjrrrPKpT32qq2g0y8LHhAkT+ny9jTbaqJxyyinl29/+dvnwhz9c3vCGN9Tr77jjjnLZZZeVJZdcUtEnAMBAOZ8IAAAAMGYp+oRpwSyzlLLrrqO9FQAATOWefvrpWvQZKba84IIL2t4vnT9XXXXVstdee5Vf/epX5fDDD6+dOhdbbLFy0003lbvvvrust9565SMf+cgkjzvzzDPLs88+WzbeeOPaRTTe+ta31udJoWgKQNdff/3y3HPPlUsvvbTMMMMM5Rvf+MYIvHMAgKmM84kAAAAAY5aiTwAAAIbEr3/96/LCCy/U36+55pr6084uu+xSiz7nmWeect5555Xjjz++XH/99bXgM8Wc++23X9luu+3KuHHjJnlcOoJm2fcs6d4UfcZOO+1UO4qeccYZdTn52Wefvbz//e+vy8wvscQSw/yuAQAAAAAAYOQo+gQAAGBIrLXWWuW+++4b0GPmm2++cthhh/Xrvlk2vidZKj4/AAAAAAAAMDWbbrQ3AAAAAAAAAAAAAIC+KfoEAAAAAAAAAAAA6ACKPgEAAAAAAAAAAAA6wPjR3gBgBPz736UsueSk191zTylvetNobREAAAAAMFY5nwgAAAAwZin6hGnBxIn/70Rt9+sAAAAAALpzPhEAAABgzLK8OwAAAAAAAAAAAEAHUPQJAAAAAAAAAAAA0AEUfQIAAAAAAAAAAAB0AEWfAAAAAAAAAAAAAB1A0ScAAAAAAAAAAABAB1D0CQAAAAAAAAAAANABFH0CAAAAAAAAAAAAdABFnwAAAAAAAAAAAAAdQNEnAAAAAAAAAAAAQAdQ9AkAAAAAAAAAAADQARR9AgAAAAAAAAAAAHQARZ8AAAAAAAAAAAAAHUDRJwAAAAAAAAAAAEAHGD/aGwCMgFlnLeXAAye/DgAAAACgO+cTAQAAAMYsRZ8wLZhttlIOOmi0twIAAAAA6ATOJwIAAACMWZZ3BwAAAAAAAAAAAOgAij4BAAAAAAAAAAAAOoCiTwAAAAAAAAAAAIAOoOgTAAAAAAAAAAAAoAMo+gQAAAAAAAAAAADoAONHewOAEfDkk6Wsvvqk1/3f/5UyzzyjtUUAAAAAwFjlfCIAAADAmKXoE6YFr71Wyh//OPl1AAAAAADdOZ8IAAAAMGZZ3h0AAAAAAAAAAACgAyj6BAAAAAAAAAAAAOgAij4BAAAAAAAAAAAAOoCiTwAAAAAAAAAAAIAOoOgTAAAAAAAAAAAAoAMo+gQAAAAAAAAAAADoAIo+AQAAAAAAAAAAADqAok8AAAAAAAAAAACADqDoEwAAAAAAAAAAAKADKPoEAAAAAAAAAAAA6ACKPgEAAAAAAAAAAAA6gKJPAAAAAAAAAAAAgA6g6BMAAAAAAAAAAACgA4wf7Q0ARsDMM5fy+c9Pfh0AAAAAQHfOJwIAAACMWYo+YVowxxylnHzyaG8FAAAAANAJnE8EAAAAGLMs7w4AAAAAAAAAAADQARR9AgAAAAAAAAAAAHQARZ8AAAAAAAAAAAAAHUDRJwAAAAAAAAAAAEAHUPQJAAAAAAAAAAAA0AHGj/YGACPg6adL+cQnJr3uJz8pZe65R2uLAAAAAICxyvlEAAAAgDFL0SdMC159tZQbbpj8OgAAAACA7pxPBAAAABizLO8OAAAAAAAAAAAA0AEUfQIAAAAAAAAAAAB0AEWfAAAAAAAAAAAAAB1A0ScAAAAAAAAAAABABxhfOtgNN9xQzjjjjPKHP/yhjBs3riy66KJl++23L+uvv/4k93vqqafKySefXK677rry+OOPlwUWWKBssskmZYcddijjx3f0LgAAAAAAAAAAAACmER1b8XjmmWeWww8/vLzxjW8sH//4x8vrr79errjiirL33nuXRx99tOy44471fs8880zZdttty1/+8peyzjrrlIUXXrjceOON5Zvf/GYtFj3hhBNG+60AAAAAAAAAAAAATJ1Fn/fdd185+uija2fPs88+uxZ+xm677VYLQI899tiy2WablTnmmKN2+Pzzn/9cDjzwwLL11lvX+6UwdK+99qpFoldeeWUtBgUAAAAAAAAAAAAYy6YrHSiFnv/973/LwQcf3FXwGW9605tqQecnP/nJ8u9//7u89NJL5YILLihvectbypZbbtl1v+mnn7588YtfrL+fd955o/IeAAAAAAAAAAAAAKb6Tp/XX399mXfeectKK6002W2bbrpp/YnbbrutvPDCC2Xttdcu0003aX3rQgstVBZccMFy++23l9dee60WggIAAAAAAAAAAACMVR3X6fPJJ58sjz/+eHnXu95VHnvssfLVr361rLbaamW55ZarxZ5XX311133//ve/18uFF1647XOl8POVV14pDz300IhtPwAAAAAAAAAAAMA0UfSZQs947rnn6jLut956a1l33XXLeuutV+6///6y66671uXf4+mnn66Xc889d9vnmmOOOerlM888M2LbDwAAAAAAAAAAADBNLO/+/PPP18s77rijvO997yvf/va3y6yzzlqv23nnnctmm21WjjzyyLLmmmvWLp4x44wztn2u5vqXX355xLYfAAAAAAAAAAAAYJro9Dn99NN3/f61r32tq+AzFl100bLtttuWV199tVxxxRVl5plnrtfn73aaotDZZptt2LcbAAAAAAAAAAAAYJrq9NksyZ5izxR5drfUUkvVy3/84x9lmWWW6XX59meffbZezj777MO4xTAGpKvtpptOfh0AAAAAQHfOJwIAAACMWR1X9LnQQguV8ePHl//+979l4sSJZdy4cZPc3nT1nGWWWcoiiyxSf3/ggQfaPleuT/HoAgssMAJbDqNorrlKufDC0d4KAAAAAKATOJ8IAAAAMGZ13PLuM844Y1l++eXr0uy33377ZLf/4Q9/qJdLLLFE7fSZpdtvu+228vrrr09yvwcffLA8/PDD9blal4wHAAAAAAAAAAAAGIs6rugztt5663p5xBFHdC3RHvfee28577zzytxzz13WWmutMtNMM5UNN9ywPPTQQ+Wss87qut9rr71WjjrqqPr7hAkTRuEdAAAAAAAAAAAAAEzly7vHBhtsUH71q1+VSy65pP6+zjrrlOeee6784he/qAWdhx12WJl99tnrfffaa69638MPP7zccsstZbHFFis33XRTufvuu8t6661XPvKRj4z22wEAAAAAAAAAAACYOos+43/+53/KiiuuWH70ox+Viy66qC77vtJKK5XPfe5z5b3vfW/X/eaZZ57a/fP4448v119/fS34XHDBBct+++1XtttuuzJu3LhRfR8AAAAAAAAAAAAAU3XRZ4o1N9lkk/rTl/nmm692/wQAAAAAAAAAAADoVB1b9AkMwH/+U8qnPz3pdd/9bilzzTVaWwQAAAAAjFXOJwIAAACMWYo+YVrwyiulXHTRpNedcspobQ0AANOYvfbaq/z2t78tv/zlL7uuu/XWW8t2223X52MPP/zw8slPfrLX+9x///1l/fXX7/H2448/vqy77roD3GoAgGmY84nAEHr++efLaaedVq688sry8MMPlxlmmKEstdRSZfvtty9rr712v55jtdVWK//+97/b3jZhwoTy9a9/fYi3GgAAYOxS9AkAAMCwOemkk8rll19e5p9//kmuf+tb31p22223to95+umnyznnnFNmnXXWstxyy/X5Gvfee2+9TLJw8cUXn+z2xRZbbNDbDwAAwOA999xzZeutty733XdfWXrppevvzz77bC0ATUy4zz77lM9+9rO9Psfjjz9eCz5TKLrmmmtOdnt/4kYAAICpiaJPAAAAhtzLL79cDjnkkHLhhRe2vX3BBRcsu+++e9vbdtlll3p56KGH9qtg85577qmXO+20U3nPe94zRdsNAADA0Dn99NNrweeWW25ZDjrooDJu3Lh6/Z577lk22WSTrpUZ3va2t/UZ8+V+fRWIAgAATAumG+0NAAAAYOpy7bXXlvXWW68WfK6xxhoDemwec91115UNNtig/vRHOn0mcfiud71rkFsMAADAcMjKD4nX9t13366Cz8hqEFtttVV57bXXyg033NCv1R2WWGKJYd9eAACATqDTJwAAAEPqoosuKs8//3w58MADaxKvv4m5LPF37LHHltlnn7185Stf6ffrJQG48MILl9lmm20KthoAAIChtv3229dYb84555zsthlnnLFeJn7sjaJPAACASSn6BAAAYMiTekcddVQt3hyIU089tTz55JNl7733Lm9605v69ZgnnniiPP7442WFFVYoRxxxRLnmmmvKo48+WhZYYIGy0UYblc985jNdiUQAAABG1oQJE9peP3HixHLllVfW3xdffPFenyPLu88666zliiuuKBdffHH5xz/+UePND33oQ2WPPfYo880337BsOwAAwFhleXcAAACG1CqrrDLggs/nnnuu/OhHP6rdX7bZZpt+Py7Jv/jNb35TlwT8yEc+UjbeeOPyyiuvlBNOOKHstNNO9XcAAADGjnPPPbfceeedZaGFFiqrr756j/d76aWXapHnCy+8UE455ZTy7ne/u2y++eZ1efgLL7ywbLLJJuWhhx4a0W0HAAAYbTp9AgAAMGaWhP/85z8/oILRFIu+/e1vL6uuumr52te+Vqaffvp6fRKCu+66a7npppvKd7/73fq8AAAAjL7LLrusHHbYYWX8+PF1xYYZZpihx/tmZYfFFlusThA86aSTytxzz93VKfS4444rp512WjnggAPKmWeeOYLvAAAAYHTp9AkAAMCoyxJ90003Xdlyyy0H9Lh11123LvF30EEHdRV8Rpb+O/DAA+vvP/3pT4d8ewEAABhch8999923/n7kkUeWFVdcsdf7pxPoz372s3LOOed0FXzGuHHj6tLuCyywQLn55pvLY489NuzbDgAAMFYo+gQAAGBUPfjgg+VPf/pTWWmlleoSfUMlHUDTDSbPDwAAwOh5/fXXa1fPgw8+uHb4/Na3vlU23HDDKXrOPM9SSy1Vf3/ggQeGaEsBAADGPsu7AwAAMKquvfbaern++usP+LF//etfy7/+9a/y7ne/u3b37J5UfPnll8tMM800ZNsKAADAwLzyyiu1u+eVV15Zu3WefPLJfXb4bCTeS0HnggsuWN7ylrdMdvuLL75YL2eeeeYh324AAICxSqdPAAAARtXvfve7eplOnwN1+OGHl0996lPll7/85WS33XnnnbXoc7nllhuS7QQAAGBgXnvttbLnnnvWgs8Ubv7oRz/qd8FnZGn3bbbZppx++umT3fb888+Xu+++u8wyyyzlne985xBvOQAAwNil6BMAAIBRddddd9Uune94xzsG/NgNNtigXp544onlueee67r+qaeeKt/4xjfq79tvv/0Qbi0AAAD99Z3vfKeu7rDAAguUc889tyyyyCIDevxHP/rRuoz7JZdcUu67776u6//73/+W//mf/ylPP/102XLLLa3wAAAATFMs7w4AAMCodn156KGHysILL1ymm673eYlJ8j388MNlrbXWKksuuWS9bqONNqodY6655pqy3nrrlbXXXrsuHXj99deXxx9/vOywww5lzTXXHKF3AwAAQCMFmSn6jMRwF1xwQdv7pfPnqquuWm699dZy22231fsm7ovEilka/sgjjyybb755WXfddcucc85ZbrnllvKnP/2prLDCCrWTKAAAwLRE0SdMC2aYoZQ11pj8OgAAGANJwIkTJ5Y55pijz/v++Mc/rgnAt771rV1FnykUTZfPH/7wh7Uo9MILL6xdYHL7V77ylbL++uuPwLsAAJjKOJ8IDIFf//rX5YUXXqi/Z6JeftrZZZddatFn4r2TTjqpbLzxxl1Fn7HjjjuWRRddtHz/+98vV111VXn11VfL2972tloM+qlPfarMOOOMI/aeAAAAxoJxE5NdY6qR5SzW2vDjZZfjzyrTjx/9mt7X/vvfcuqe25WrL/1pTbwCAAAAAABjN8ew9sfXLnv8cI8y/fjpS6d57b+vlRMmnFCu+ulVchJ0tJf2OWq0NwEAAMasmY/9YpnW9b52HgAAAAAAAAAAAABjgqJPAAAAAAAAAAAAgA6g6BMAAAAAAAAAAACgAyj6BAAAAAAAAAAAAOgAij4BAAAAAAAAAAAAOsD40d4AYAQ8+2wp++8/6XVHHFHKHHOM1hYBAAAAAGOV84kAAAAAY5aiT5gWvPRSKaecMul1Bx3kJC0AAAAAMDnnEwEAAADGLMu7AwAAAAAAAAAAAHQARZ8AAAAAAAAAAAAAHUDRJwAAAAAAAAAAAEAHUPQJAAAAAAAAAAAA0AEUfQIAAAAAAAAAAAB0AEWfAAAAAAAAAAAAAB1A0ScAAAAAAAAAAABAB1D0CQAAAAAAAAAAANABFH0CAAAAAAAAAAAAdABFnwAAAAAAAAAAAAAdQNEnAAAAAAAAAAAAQAdQ9AkAAAAAAAAAAADQARR9AgAAAAAAAAAAAHSA8aO9AcAImH76UpZaavLrAAAAAAC6cz4RAAAAYMxS9AnTgnnmKeXuu0d7KwAAAACATuB8IgAAAMCYZXl3AAAAAAAAAAAAgA6g6BMAAAAAAAAAAACgAyj6BAAAAAAAAAAAAOgAij4BAAAAAAAAAAAAOoCiTwAAAAAAAAAAAIAOMH60NwAYAc8/X8rRR0963X77lTLbbKO1RQAAAADAWOV8IgAAAMCYpegTpgUvvFDKwQdPet2uuzpJCwAAAABMzvlEAAAAgDHL8u4AAAAAAAAAAAAAHUDRJwAAAAAAAAAAAEAHUPQJAAAAAAAAAAAA0AEUfQIAAAAAAAAAAAB0AEWfAAAAAAAAAAAAAB1A0ScAAAAAAAAAAABAB1D0CQAAAAAAAAAAANABFH0CAAAAAAAAAAAAdABFnwAAAAAAAAAAAAAdQNEnAAAAAAAAAAAAQAdQ9AkAAAAAAAAAAADQARR9AgAAAAAAAAAAAHQARZ8AAAAAAAAAAAAAHWD8aG8AMALGjSvlTW+a/DoAAAAAgO6cTwQAAAAYsxR9wrQgJ2gff3y0twIAAAAA6ATOJwIAAACMWZZ3BwAAAAAAAAAAAOgAij4BAAAAAAAAAAAAOoCiTwAAAAAAAAAAAIAOoOgTAAAAAAAAAAAAoAMo+gQAAAAAAAAAAADoAONHewOAEfDii6V8//uTXrfjjqXMMstobREAAAAAMFY5nwgAAAAwZin6hGnBc8+Vsttuk163+eZO0gIAAAAAk3M+EQAAAGDMsrw7AAAAAAAAAAAAQAdQ9AkAAAAAAAAAAADQARR9AgAAAAAAAAAAAHQARZ8AAAAAAAAAAAAAHUDRJwAAAAAAAAAAAEAHUPQJAAAAAAAAAAAA0AEUfQIAAAAAAAAAAAB0AEWfAAAAAAAAAAAAAB1A0ScAAAAAAAAAAABAB1D0CQAAAAAAAAAAANABFH0CAAAAAAAAAAAAdABFnwAAAAAAAAAAAAAdQNEnAAAAAAAAAAAAQAdQ9AkAAAAAAAAAAADQAcaP9gYAI2DeeUuZOHG0twIAAAAA6ATOJwIAAACMWTp9AgAAAAAAAAAAAHQARZ8AAAAAAAAAAAAAHUDRJwAAAAAAAAAAAEAHUPQJAAAAAAAAAAAA0AHGlw71ox/9qBx00EE93n7zzTeXeeaZp/7+1FNPlZNPPrlcd9115fHHHy8LLLBA2WSTTcoOO+xQxo/v2F0AAADQEfbaa6/y29/+tvzyl7+c7La99967XHbZZW0f9853vrNceuml/XqNPP9JJ51U7r777vLqq6+WZZddtuy6665l5ZVXnuLtBwAAAAAAgLGiYyse77nnnnr5qU99qsw+++yT3T7LLLPUy2eeeaZsu+225S9/+UtZZ511ysILL1xuvPHG8s1vfrP84Q9/KCeccMKIbzuMuJdfLuVnP5v0uo02KmWmmUZriwAAmEakEPPyyy8v888/f4+x3VxzzVXjtu6aiXx9ueGGG8rnP//5Muecc5aPfexj5bXXXqvFottvv3058cQTy1prrTXF7wMAYJrifCIAAADAmNWxRZ/33ntvmXnmmcuXvvSlMt10Pa9Snw6ff/7zn8uBBx5Ytt56665OMuk0c8UVV5Qrr7yyFoPCVO2ZZ0rZfPNJr3vssVLmnXe0tggAgKncyy+/XA455JBy4YUX9nifF198sfzjH/8o73//+8vuu+8+qNd55ZVXyle/+tU6GfCSSy4pb3nLW+r1Wdlhs802qytErLbaal0TAwEA6AfnEwEAAADGrJ6rJcew119/vfzpT3+qS/31VvD50ksvlQsuuKAm/bbccsuu66effvryxS9+sf5+3nnnjcg2AwAATCuuvfbast5669WCzzXWWKPH+yWuS3y3+OKLD/q1sjT8448/XmO+puAzssrDhAkT6m1XX331oJ8fAAAAAAAAxpKOLPr8+9//XjvCLLHEEr3e78477ywvvPBCWXnllScrDl1ooYXKggsuWG6//fa69B8AAABD46KLLirPP/98XXHhtNNO6/F+Wdo9+ortenPrrbfWy/e9732T3bbqqqvWy1tuuWXQzw8AAAAAAABjyXSdurR7jBs3ri7Vvvrqq5fllluubLrppuXSSy+dpDi06fDSTgo/sxTgQw89NEJbDgAAMPXbfvvtyzXXXFO23nrrGrf1VfT5z3/+s2y77bZlpZVWKiuuuGL57Gc/Wyfx9cff/va3evm2t72tbcwXf/3rXwf5TgAAAAAAAGBs6eiizyzd/sQTT5SNNtqorL322uX+++8v++67bzn22GPr7U8//XS9nHvuuds+zxxzzFEvn3nmmRHbdgAAgKndKqusUmafffY+73fffffVy5NPPrm88Y1vLJtttll573vfW2644YZaMHrdddf1+RxN3DfXXHNNdluzDc8+++wg3gUAAAAAAACMPeNLB5o4cWJ561vfWnbfffey8cYbd13/4IMPlq222qouH/jBD36wdvGMGWecse3zNNe//PLLI7TlAAAANGaeeebaofOEE06YZIn3FH3usssuZf/9968dQ3srIH311Vd7jPvEfAAAAAAAAExtOrLTZ7p5XnvttZMUfDZL9+2xxx7195/97Gc1gdiaBOyuKQqdbbbZhn2bAQAAmNSZZ55ZrrzyykkKPmONNdYo66+/fu3ief311/f6HL3FfU3MN+ussw7pdgMAAAAAAMBo6ciiz94st9xy9fKBBx7oWt6vp+XbmyX++rPsIAAAAKMT2/WmifvaLeH+3HPP1cs55phjWLYRAAAAAAAARlrHFX2+/vrr5a677iq33XZb29tfeOGFrm4viyyySK9Jwlyfji8LLLDAMG4xAAAA7Qoyf//735d777237e0vvvjiJJ08e9Jb3Ndct+iiiw7BFgMAAAAAAMDo67iiz9h2223LdtttV5544onJbvv1r39dL5dddtmyzDLL1KXbUyCaYtFWDz74YHn44YfL8ssvX6affvoR23YAAABK+etf/1q22GKL8oUvfKHt7bfffvskHT97svLKK9fLW265ZbLbbr755nq5wgorDMEWAwAAAAAAwOjruKLP6aabrqy77rpl4sSJ5eijj56kmDMdYk477bTavXPTTTctM800U9lwww3LQw89VM4666yu+7322mvlqKOOqr9PmDBhVN4HAADAtCyT9BZeeOHy5z//uVx00UWT3HbJJZeUX/3qV2XppZfus2DzIx/5SJl77rnLOeecUyf3tXb5PPfcc8u8885bPvrRjw7b+wAAAAAAAICRNL50oHSC+c1vflN+/OMfl/vuu6+sssoq5V//+le5+uqraxHocccdV+aff/5637322qsmCw8//PDa+WWxxRYrN910U7n77rvLeuutVxOEAAAAjPyEvsRpn/70p8tXv/rVcuWVV9Zl2DOZLzFbijWPOeaYMm7cuEmKQbNiw1prrVWWXHLJel1WdzjwwAPLvvvuWzbZZJOywQYb1Ot//vOf1yXkTzzxxDohEAAAAAAAAKYGHVn0+cY3vrFceOGF5dvf/na56qqrakeXJPrWWGONsssuu9SOMY155pmnnHfeeeX4448v119/fU0eLrjggmW//farS8S3JhABAAAYOSuuuGK5+OKLy8knn1wn6SVee9Ob3lS22mqrsuuuu9bCz1aZ+HfbbbeVt771rV1Fn7H++uuXueaaq8aIP/nJT8oMM8xQb89zNMu/AwAAAAAAwNSgI4s+Iwm9/fffv/70Zb755iuHHXbYiGwXAAAAk8oKDT1Jd89jjz22X89z9tln93jbaqutVn8AAAAAAABgajbdaG8AAAAAAAAAAAAAAFNxp09gAN74xlIee2zy6wAAAAAAunM+EQAAAGDMUvQJ04Lppitl3nlHeysAAAAAgE7gfCIAAADAmGV5dwAAAAAAAAAAAIAOoOgTAAAAAAAAAAAAoAMo+gQAAAAAAAAAAADoAIo+AQAAAAAAAAAAADrA+NHeAGAEvPJKKTfdNOl1739/KTPOOFpbBAAAAACMVc4nAgAAAIxZij5hWvCf/5Ty4Q9Pet1jj5Uy77yjtUUAAAAAwFjlfCIAAADAmGV5dwAAAAAAAAAAAIAOoOgTAAAAAAAAAAAAoAMo+gQAAAAAAAAAAADoAIo+AQAAAAAAAAAAADqAok8AAAAAAAAAAACADqDoEwAAAAAAAAAAAKADKPoEAAAAAAAAAAAA6ACKPgEAAAAAAAAAAAA6gKJPAAAAAAAAAAAAgA6g6BMAAAAAAAAAAACgA4wf7Q0AAAAAAAAApk7PP/98Oe2008qVV15ZHn744TLDDDOUpZZaqmy//fZl7bXX7tdz/POf/ywnnHBCufnmm8vTTz9d3v72t5cJEyaUzTfffNi3HwAAYKzR6RMAAAAAAAAYcs8991zZaqutatHnrLPOWrbeeuuy7rrrlnvvvbfstttu9fq+pFB0iy22KJdeemlZZZVVarHniy++WL72ta+VI444YkTeBwAAwFii0ycAAAAAAAAw5E4//fRy3333lS233LIcdNBBZdy4cfX6Pffcs2yyySbl+OOPr0Wgb3vb23p8jsMPP7w89thj5Tvf+U5ZY4016nV77LFH7RR65plnlg033LAss8wyI/aeAAAARptOnwAAAAAAAMCQu/zyy2uh57777ttV8Bnzzz9/7QD62muvlRtuuKHXLp9XX311ec973tNV8Bkzzzxz2XvvvcvEiRPL+eefP+zvAwAAYCzR6ROmBW94Qyl33TX5dQAAAAAA3TmfCAyRdON89tlny5xzzjnZbTPOOGO9fP7553t8/G233VYLO1ddddXJblthhRXKDDPMUG655ZYh3moAAICxTdEnTAvGjy9l6aVHeysAAAAAgE7gfCIwRCZMmND2+hRyXnnllfX3xRdfvMfH//3vf6+X7ZZ/T8HnW97ylvLQQw+VV155pauIFAAAYGpneXcAAAAAAABgxJx77rnlzjvvLAsttFBZffXVe7zfU089VS/nmmuutrfPMccc5fXXXy/PPffcsG0rAADAWKPoEwAAAAAAABgRl112WTnssMPK+PHjyxFHHFE7dvbk1VdfrZc9dfFsrk+nTwAAgGmFok8AAAAAAABgRDp87rvvvvX3I488sqy44oq93n/mmWeepPizu6bYc9ZZZx3ybQUAABirxo/2BgAAAAAAAABTryzBftRRR5Uzzjijduc85phjyjrrrNPn45pl3Z955pm2tz/77LNl3LhxZfbZZx/ybQYAABirFH3CtOC//y3lvvsmvW7xxUsZ718AAAAAANCN84nAEEo3znT3vPLKK8vcc89dTj755D47fDYWWWSRevnAAw9Mdlu6fz7yyCPlHe94R5luOosbAgAA0w5naGBa8NRTpSyzzKTXPfZYKfPOO1pbBAAAAACMVc4nAkPktddeK3vuuWe59tpry4ILLlhOP/30rkLO/lh55ZVrJ89bb7217LbbbpPc9utf/7oWfq6wwgrDsOUAAABjl2lvAAAAAAAAwJD7zne+Uws+F1hggXLuuecOqOAz3vzmN5fVVlut3HbbbeXqq6/uuv6ll14q3/rWt+rvEyZMGPLtBgAAGMt0+gQAAAD+f+zdB5QV9fk//md3YeklSBEEbKhgwYKiaBQjqFgSu0FREXtUFGwxiQpGsSXWoBErYgmKwZbYIihWRGOMRgFbDEUEVJAmdfd/Zn5f+LuwNN3de+/e1+ucObP7mbl3nruHY/KZed/PEwAAABVp9uzZaegz0aFDh3jkkUfKPS9p9d6lS5d0Nc8k3Jmc27179xXHL7nkkujZs2ecc845ccABB0SLFi1i1KhR8fnnn8fJJ5+cng8AAJBPhD4BAAAAAACACpW0X1+wYEH6cxLSTLbynHHGGWnoMwl8Dh48OA477LAyoc9NN900Hn744XRlz1dffTUWLVoUm2yySVx55ZVx5JFHVtnnAQAAyBZCnwAAAAAAAECFSoKbEydOXOfz+/btm27lSUKey9u5AwAA5LvCTBcAAAAAAAAAAAAAwNoJfQIAAAAAAAAAAADkAKFPAAAAAAAAAAAAgBwg9AkAAAAAAAAAAACQA4Q+AQAAAAAAAAAAAHKA0CcAAAAAAAAAAABADqiR6QIAAAAAAACAqrVs2bJ0Ky4uTn+fN29eDB8+PKZNmxYdO3aMgw8+OIqKijJdJgAAACux0icAAAAAAADkkXvuuSd23XXXGD16dPr74sWL45hjjonrr78+Hnzwwbj44ovj1FNPTUOhAAAAZBehTwAAAAAAAMgTL7zwQlx33XXpyp5z585Nxx5//PH4+OOPo1mzZnH22WfHVlttFW+88Ua68icAAADZRegTAAAAAAAA8sTDDz8chYWFcffdd8dRRx2Vjj3zzDNRUFAQl112WRr6fOCBB6JBgwbx5JNPZrpcAAAAVlJj5QGgGmrUKOLFF1cdAwAAAABYmfuJUK395z//iZ122in22GOP9Pfvvvsu3nrrrSguLo699torHatfv37ssMMO8c4772S4WgAAAFYm9An5oLg4Yu+9M10FAAAAAJAL3E+Eai1p6960adMVv48bNy6WLl0aO+64Yxr8XC75edGiRRmqEgAAgNXR3h0AAAAAAADyxIYbbhhTp05d8fvLL7+ctnbffffdV4yVlJTE+PHjo1mzZhmqEgAAgNUR+gQAAAAAAIA80aFDh7TF+4gRI2Ls2LHxxBNPpOPdunVL90uWLIk//OEP8cUXX0Tnzp0zXC0AAAAr094dAAAAAAAA8sRpp50WL774Ylx22WXp76WlpbH33nvHlltuuSL8OXPmzGjQoEF6LgAAANnFSp8AAAAAAACQJ7bddtu45557YrfddovNNtssjj322Lj++utXHG/ZsmXssssu8Ze//CU9DgAAQHax0ifkg5KSiK+/Lju2wQYRhXLfAAAAAMBK3E+Eai8Jdd57773lHhs2bFjUqlWrymsCAABg3Qh9Qj5IbtA2b152bMaMiGbNMlURAAAAAJCt3E+EvLJo0aKYMWNG1KxZMzbccMN0DwAAQPbytVwAAAAAAADIMy+99FL06tUrOnXqFPvtt1/ceOON6fhZZ50VAwcOjAULFmS6RAAAAMphpU8AAAAAAADII7fcckv8+c9/jtLS0igsLEz3yZb45JNP0kDohAkT0lbvxcXFmS4XAACA77HSJwAAAAAAAOSJMWPGxG233RbNmzePm266Kd56660yx2+44YZo165d/Pvf/44RI0ZkrE4AAADKJ/QJAAAAAAAAeSJZvbNmzZpxzz33RI8ePaJevXpljm+33XZx9913pyt8PvHEExmrEwAAgPIJfQIAAAAAAECeeP/996NTp06x+eabr/acZBXQnXfeOSZNmlSltQEAALB2Qp8AAAAAAACQJxYuXLjK6p7lSVYD/e6776qkJgAAANad0CcAAAAAAADkiVatWsWHH34YJSUlqz1n6dKl6TktW7as0toAAABYO6FPAAAAAAAAyBP77LNPfPnll3HLLbes9pxbb701Zs6cGXvvvXeV1gYAAMDa1ViHcwAAAAAAAIBq4JRTTom//e1vMWTIkHj77bdjt912S8enTZsWI0aMiFGjRsWYMWOicePGcfLJJ2e6XAAAAFYi9AkAAAAAAAB5okmTJnHPPfdE375909DnP//5z3Q8+TnZSktL07buyUqgzZo1y3S5AAAArEToEwAAAAAAAPJIu3bt0tU+//GPf8Qbb7yRrvJZUlKShjx33XXXOPDAA6O4uDjTZQIAAFAOoU8AAAAAAADIM0VFRdGjR490AwAAIHcUZroAAAAAAAAAAAAAANbOSp8AAAAAAACQJ0444YR1PregoCDuu+++Sq0HAACA9SP0CfmgYcOIRx5ZdQwAAAAAYGXuJ0K1Nm7cuHUKe5aWlqZ7AAAAsovQJ+SDWrUijjoq01UAAAAAALnA/USo1gYPHlzueElJSXz77bfxzjvvxFNPPRWHHHJI9O/fv8rrAwAAYM2EPgEAAAAAACBPdO/efY3HjzrqqOjWrVv07ds3dt999zjooIOqrDYAAADWrnAdzgEAAIAfrF+/frHXXnuVe2zSpElx8cUXx5577hnbbLNNdOnSJc4555yYMGHCOr//p59+GltttdVqt2effbYCPw0AAEB+BEM7dOgQQ4cOzXQpAAAArMRKnwAAAFRq28BnnnkmWrRoscqxJNh53HHHxdy5c6Nr166x+eabx+TJk+Mf//hHvPjii3HnnXfGbrvtttZrLA+I7rvvvmnIc2Xt2rWroE8DAACQP1q3bh2vvPJKpssAAABgJUKfAAAAVLhFixbFFVdcESNGjFjtOZdffnka+Lz++uvj4IMPXjH++uuvx8knnxy/+93v0gBoYeGam1SMHz8+3Sev2XHHHSvwUwAAAOSnZcuWxQcffBDFxcWZLgUAAICVCH0CAABQoUaPHh1XXnllTJ06NV3Bc8yYMaucM3369HjnnXdi6623LhP4TOy+++7RuXPnGDt2bHz00UfRvn37ta70WVBQEFtuuWWFfxYAAIDqZnm3hNWFPWfOnBn3339/fPHFF/Gzn/2sSmsDAABg7YQ+IR/MnBnRvHnZsRkzIpo1y1RFAABUY48++mjMnz8/BgwYEMccc0y5oc2ioqK46KKLotlq/j/p8tVkkvdZlweWbdu2jXr16lVA9QAAuJ8I1duhhx6afnFuTUpLS6NWrVpx1llnVVldAAAArBuhTwAAACpU796947rrrov69euv9pymTZum7djL89VXX8Xbb78dNWrUiM0333yN1/r666/TVWg6deoU11xzTYwaNSq+/PLLaNWqVfziF7+IU089VTtCAACA70nmS6tTWFgYdevWTb+8d+KJJ6bdGQAAAMguQp8AAABUqF133fVHvT5pDb9gwYI0tNm4ceM1njt+/Ph0/89//jNmzZoV3bp1S1/7yiuvxC233JK2iL/77rsFPwEAAP7P6NGjM10CAAAA2RT6TNo9rK0lBAAAAFUvF+ZrSeDzmWeeiQ033DB+85vfrPX8efPmxSabbBJdunSJSy+9NG0bn0iCn0kbwtdffz3uuuuuOPPMM6ugegAAAAAAAKhchRX9hl27do2bbropJk+eXNFvDQAAQDWdry1ZsiQuvvjiuP/++6NJkyZx5513pvu16dGjRzz33HMxcODAFYHPRNKOcMCAAenPTzzxRKXWDgAAkIu++uqrmDNnzorfp02bFpdffnmcccYZcdttt6VfsgMAACAPQp/JBHHIkCGx//77R58+feLpp5+OxYsXV/RlAAAAqCbzteQh40knnRSPPfZYtGzZMh544IHYcsstf/T7JiuANmzYMCtDrgAAAJl0xRVXpF8MfOWVV9Lfk4Bnz549Y/jw4fHSSy/Fn/70p+jVq1csXLgw06UCAABQ2aHPMWPGRP/+/aNNmzbxxhtvxPnnnx977rlnXHXVVTFx4sSKvhwAAAA5PF9LVpJJHiyOGzcuOnToEA8//HBsvvnm6/z6zz77LP0sSTv3lZWUlMSiRYuiVq1aFVw1AABA7ho5cmQ8+OCDUbNmzSgoKEjHRowYEdOnT4927drF1VdfHT/96U/jo48+iqFDh2a6XAAAACo79NmsWbM47bTT0vZ6yeoshxxySLpyzLBhw+LQQw+No446Kp04zp8/v6IvDQAAQA7N15KVR3v37h2ffvpp+kAxeejYokWL9XqP5GHkiSeeGC+//PIqx95777009NmxY8cKrBoAACC3JV0WatSoka7qeeCBB6ZjyTwxCYD+9re/jcMOOyxuvfXW2GCDDeLZZ5/NdLkAAABUdujz+3beeee45ppr4tVXX03bRHTp0iXGjx8fl112WbqazO9+97v497//XZklAAAAkKXztQsvvDD+97//xV577RW333571KtXb73f46CDDkr3SevBpB3hcrNmzYrf//736c9JsBQAAID/J1nBs3PnztG+ffv09zlz5qRfmqtTp046niguLo7tttsunbMBAACQXWpUxUWSB3fJijHJ6irJqjEPPfRQ2nrvr3/9a9pCIhn/9a9/HTvttFNVlAMAAECG52tJ2PT1119Pf954443T0Gd5khVIk3b0iaSeqVOnRvfu3dNW8Ilf/OIX8fzzz8eoUaPigAMOiH333TddvfSll16KmTNnRp8+fWKfffap0NoBAABy2cKFC6NBgwYrfn/jjTeipKQknfcVFRWVOXfZsmUZqBAAAICMhj5nzJgRjz/+eLr997//XfFQ8eCDD45OnTrF3//+9xgzZkwcf/zxcfPNN6cP7wAAAKh8mZyvfb8d+/3337/a85I6loc+kxaE48aNi4022mhF6LOwsDBd5TNpDZ+EQpPgatKmMDmetCVc3qoQAACA/6dly5Yr5oCJ5EtzSWv3PfbYY8VY8mW6999/Pz0XAACAPAh9JhPBF154IX0gl6zcknw7sLS0NLbffvs4+uij04duSYuIxM9//vN48skn46KLLoobbrhB6BMAAKASZWK+NnHixFXGkkBmsq2P1YVDk5VoTjjhhHQDAABgzXbYYYd44okn4qabbkq/ZJd84S+xfM43ffr0uPbaa+Prr7+O/fffP8PVAgAAUOmhz4EDB8YzzzwTc+bMSR8cNmrUKH1QmDw83HLLLct9TdKO79JLL40pU6ZUdDkAAAD8H/M1AAAAzjzzzPTLgEOGDEl/T+aHhx9++IouC4ccckjMnj07WrVqFaeffnqGqwUAAKDSQ5/Dhw9f0YIveXDYo0ePqFWr1hpfs2jRothwww1jp512quhyAAAA+D/mawAAALRt2zYeffTRuOuuu2LGjBmx6667xoknnrjieMeOHWODDTaI888/P5o2bZrRWgEAAKiC0GefPn3iyCOPjM0333ydX5M8ZHzuued+1HXHjh2bTkgPPfTQuOaaa8ocmzVrVtx6663x4osvxsyZM9NvJh5xxBFprTVqVEqHewAAgKyTqfkaAAAA2WWTTTaJK6+8stxjd9xxR5XXAwAAwLqr8MTjr3/963SfhCs/+uij2GOPPVYcmzBhQjz77LNpi4jkW4QVZd68efHb3/42bT+xsqRt4fHHHx+ffPJJ7Lffful1X3vttfjjH/8Y77//ftxyyy0VVgdkrfr1IwYPXnUMAIC8kon5GgAAOcj9RMhb7733XkybNi222WabaN26dabLAQAAoByVsszlQw89FFdddVVsueWWZR4ifvDBB3H77bfH3XffnYY0jznmmAq53qBBg2Lq1KnlHktW+Pz4449jwIABceyxx6Zj/fv3j379+qWr1Tz//PNpGBSqtTp1Is46K9NVAACQBap6vgYAQA5yPxGqvX/961/x5z//OXr37r1ibnjRRRfFU089lf5cWFgYv/rVr+Lss8/OcKUAAACsrDAq2BtvvBG///3v08ngzjvvXObYjjvuGCeccEIUFBTEFVdcEePGjfvR1xs9enSMHDky9tlnn1WOLVy4MB555JFo2bJl9OzZc8V4UVFROnFNDB8+/EfXAAAAkAuqer4GAABA9kk6PSRhz1deeSU+++yzdGzMmDHx5JNPps/Qkvli7dq104VVknEAAACqeejzrrvuSieEy1eH+b7NNtssHbvnnnvSVuzJuT/GN998E5deeml07tw5jjvuuHJbUCxYsCA9njzU/L42bdqkbSneeuutWLZs2Y+qAwAAIBdU5XwNAACA7JTM+xYvXhynnXZaHH744enYE088kX4JMFk05f77708XTUnmj0m3CAAAAKp56POjjz6KTp06xS677LLac5JvCO60007x7rvv/qhrDRw4MA11Jq0Jk4noyj7//PN037Zt23JfnwQ/k0ntlClTflQdAAAAuaAq52sAAABkp2RBlC222CL69+8f9erVi5KSknTVz+RZ289//vP0nOR4Mn9MFlgBAACgmoc+582bF40bN17reU2bNk3br/9QSYuJ5557Li644II0vFme2bNnp/vV1dOgQYN0P2fOnB9cBwAAQK6oqvkaAAAA2eurr76KzTfffMXvSbBz7ty5seWWW8ZPfvKTFePJ/DEZBwAAoJqHPjfaaKN0RZilS5eu9pyknfr7778fLVu2/EHXmD59elxxxRXRpUuXOPbYY1d7XrKKZ6K4uLjc48vHFy1a9IPqAAAAyCVVMV8DAAAguyVhzm+//XbF7y+//HK632233cqcN3ny5GjYsGGV1wcAAEAVhz67d+8eM2bMiN///vfpw8KVlZaWxjXXXBPTpk2Ln/3sZz/oGr/97W/T9x40aFC5bd2Xq127drpfsmTJGkOhSesKqNa++iqiWbOyWzIGAEBeqYr5GgAA1YD7iVCtJat8vv322/HZZ5+lHSGS7nrJ87a99957xTnPP/98fPjhh7HddttltFYAAABWVSMq2IknnhhPPPFEjBgxIl577bV0gpisEJNMFpMHh6+88kpMmjQpbRd46qmnrvf7/+Uvf4lXX301fUiZrFKzJo0aNVpj+/blLSnq16+/3nVATiktXfWmbDIGAEBeqez5GgAA1YT7iVCt/fKXv4yxY8fGL37xi6hVq1bMnz8/DYIuX+nzjDPOSOeHyVzx+OOPz3S5AAAAVHboM2kJcffdd8dFF10U//nPf+LBBx9csRpnsmpMYsstt4wbb7wxNthgg/V+/6effjrdX3bZZem2ssceeyzdDjvssDjqqKPSseShZXmS8bp160arVq3Wuw4AAIBcU9nzNQAAALLfAQcckLZu//Of/5wGPrfYYou46aabVhyfMmVKFBcXpwuw/PSnP81orQAAAFRB6DOx2WabxaOPPhr//ve/480330zbByYt1ps1axadOnWKLl26/OD3TsKcnTt3XmU8mZwmK9a0b98+bVnYoUOH2HbbbdPW7ePGjYuSkpIoLCwsc/7UqVNj9913j6Kioh9cDwAAQC6pzPkaAAAAueG0005Lu0Ek7d2bNGlS5thVV12VBkHr1KmTsfoAAACo4tDncttvv326VaTDDz+83PHXX389DX0mYc++ffuuGD/44IPj4YcfjmHDhqWT18SyZcviuuuuS3/u1atXhdYHAACQCypjvgYAAEDuSFbzXDnwmejYsWNG6gEAACALQp/ZoF+/fvHqq6/G1VdfHWPHjo127dqlAdEPPvggbV/RrVu3TJcIAAAAAAAAAAAAkJnQ59tvvx133HFHfPzxx7FgwYIoLS0t97yCgoK0nWBlSr6hOHz48Lj55pvjpZdeSgOfrVu3jgsvvDBOOOGEtAYAAIB8kU3zNQAAACrfj1kAJZkbvvDCCxVaDwAAAFkW+kweICZt1JMW6qt7eFgZdt9995g4cWK5x5o3bx6DBg2qsloAAACyUabmawAAAGTO1KlTf/BrLZ4CAACQB6HPIUOGxNKlS2O//fZLV9JMApdFRUUVfRkAAADWk/kaAABA/hk2bFimSwAAACCbQ5/vvvtutG3bNm2n7tt/AAAA2cN8DQAAIP907tw50yUAAABQgQqjgiWrxrRv394DRAAAgCxjvgYAAAAAAAC5rcJDn5tvvnlMnjy5ot8WAACAH8l8DQAAAAAAAHJbhYc+jznmmBg/fny8+OKLFf3WAAAA/AjmawAAAAAAAJDbalT0G/70pz+N/fffP84999w49NBDY4cddoiGDRuutn1gt27dKroEAAAAymG+BgAAAAAAALmtwkOfXbt2TR8YlpaWxogRI9JtTZJVZgAAAKh85msAAAAAAACQ2yo89LnLLrtU9FsCP1bduhEDBqw6BgBAXjFfAwBgnbifCAAAAJA/oc/777+/ot8S+LHq1YsYODDTVQAAkGHmawAArBP3E6Fa6dmzZ+y6667Rv3//9Pcvvvgi6tatG40bN850aQAAAPwAhT/kRQAAAAAAAED2mzhxYkyePHnF7926dYurr746ozUBAACQRSt9Lrd48eJ48sknY+zYsTFt2rS0jWC/fv3igQceiG233TZ22GGHyro0AAAAa2C+BgAAkD8KCgrik08+iZKSkigsLIzS0tJ0AwAAIDdVSujz/fffj3POOSe+/PLLdNKYTCY32mij9Nijjz4agwYNigsvvDBOOumkyrg8AAAAq2G+BgAAkF/at28f//rXv2KvvfaKZs2apWNjxoyJww47bK2vTeaMI0eOrIIqAQAAyFjoM1kl5pRTTolvv/02nTzuvffe8fvf/37F8S5duqTfJvzDH/4QHTt2jJ133rmiSwAAAKAc5msAAAD554ILLojTTjstvvrqq3RLJPPCZFuX0CcAAADVPPR5++23p5PE3/3ud3H88cenY99/iPjrX/86dtxxx3RlmXvvvddDRAAAgCpivgYAAJB/dtppp3jppZfi008/jYULF0bv3r1jjz32iNNPPz3TpQEAAJANoc9XXnklNt988xUPEMuz3377RYcOHWL8+PEVfXmgPN98E7HnnmXHXnklokmTTFUEAEAGmK8BALBO3E+Eaqd+/fqx/fbbr/h9gw02iM6dO2e0JgAAALIk9Dlz5szYZ5991npemzZt0m8UAlVg2bKIDz9cdQwAgLxivgYAwDpxPxGqtQkTJmS6BAAAALIp9NmwYcP44osv1nrelClTokGDBhV9eQAAAFbDfA0AAIDlZs2aFQ8//HCMHTs2ZsyYEcXFxekKoF26dIlDDjkkmjVrlukSAQAAKEdhVLAdd9wxPvjgg/jXv/612nPGjRsXH374Yeywww4VfXkAAABWw3wNAACA5XO/Hj16xM0335yGPj/77LN0BdDXXnstrr/++vj5z38eb7zxRqbLBAAAoCpCn3369InS0tI444wz4tFHH42pU6euOLZ48eJ4/vnn47zzzouCgoI4/vjjK/ryAAAArIb5GgAAAMlc8Mwzz4xvv/029t5777jhhhvikUceieHDh8d1110Xe+65Z8yePTv69esX06ZNy3S5AAAAVHZ7906dOsWvf/3ruPbaa+PSSy9Nx5IHhk8//XT8/e9/j5KSkvQh41lnnRW77bZbRV8eAACA1TBfAwAA4M4774x58+alX/o77bTTyhxLuj784he/iCFDhsSNN94Y9913X1x88cUZqxUAAIAqWOkzceKJJ8awYcPSbwLWrl07fWi4dOnSKCwsjF122SWdKPbt27cyLg0AAMAamK8BAADkt1deeSU23njjVQKf33f66adH27Zt48UXX6zS2gAAAMjASp/LJQ8Lky1ZKSZpAZHsGzduHDVqVNolAQAAWAfmawAAAPlrxowZ0a1bt7Wet/XWWwt9AgAAZKFKf6KXrBbTpEmTyr4MAAAA68l8DQAAIP/UrVs3vv7667Wel5yTdIgAAACgmoc+H3/88fU6/9BDD63oEgAAACiH+RoAAADbbrttvPnmmzFhwoRo3759ueckx955553Ybbfdqrw+AAAAqjj0efHFF0dBQcFazystLU3P8xARAACgapivAQAAcMwxx8Rrr70Wp556agwYMCD22WeftBNEoqSkJEaPHh2XX355+nPPnj0zXS4AAACVHfpMJoblPURctmxZzJkzJ8aPHx/fffdd9OjRI7beeuuKvjwAAACrYb4GAABA9+7d4+ijj45HHnkk+vbtm7Zwb9WqVXrsiy++iIULF6ZfBjzyyCNj3333zXS5AAAAVHbo87bbblvj8WSieOmll6bfEuzfv39FXx4AAIDVMF8DAAAg8fvf/z79st/dd98dkydPjk8//XTFsTZt2sRJJ52UrggKAABAHoQ+1yb5tuCgQYPSFWZuvvnmuOGGG6q6BAAAAMphvgYAAJA/ktbtyTZ9+vR0SzRv3jw23HDDTJcGAABANoU+E8XFxbHjjjvGG2+8kYnLAwAAsBrmawAAAPmlRYsW6QYAAEBuyEjoM/HNN9/EggULMnV5yC+1a0eceeaqYwAAUA7zNQCAPOd+IgAAAEDWykjo8/HHH49//vOf0aFDh0xcHvJPgwYRt96a6SoAAMgB5msAALifCAAAAJBHoc/DDjtstceWLl0aX3/9dcyaNSsKCgri6KOPrujLAwAAsBrmawAAAAAAAJDbKjz0OX78+LWeU1xcHMcff3wcc8wxFX15AAAAVsN8DQAAAAAAAHJbhYc+hw0bttpjhYWFUbdu3dh0002jTp06FX1pAAAA1sB8DQAAAAAAAHJbhYc+O3fuXNFvCQAAQAUwXwMAAOCKK66IzTffPI499thMlwIAAMAPUPhDXgQAAAAAAADknieffDIeffTRTJcBAABAtqz0efXVV//g1xYUFMTFF19cofUAETF7dsShh5Yde/zxiMaNM1URAAAZYL4GAMA6cT8RqrWlS5dGq1atMnb9fv36xTvvvBMvv/zyOr/m6KOPjn//+9/lHtt7771jyJAhFVghAABAnoU+77vvvvRh4HKlpaVljq/tmIeIUAmWLIkYM2bVMQAA8or5GgAA68T9RKjW9t9//3juuefik08+iXbt2lXptQcPHhzPPPNMtGjRYp1fU1JSEh999FG0bt06Dl05kB4Rm2yySQVXCQAAkGehz9tvvz0ee+yxdLKYTBQPOuigdLJVs2bNmD59eowaNSpef/312GijjeKwww6r6MsDAACwGuZrAAAA/PznP09XzUzmfbvvvnt06NAhGjduHIWFheWef8IJJ/zoay5atCiuuOKKGDFixHq/9r///W989913sccee0Tfvn1/dC0AAAC5rsJDn8uWLYvnn38+jjvuuPjtb3+7ygSxV69e6eoy11xzTbRp0yYOOeSQii4BAACAcpivAQAAcPLJJ6fdHJIOD2PGjFltm/XkeHLejw19jh49Oq688sqYOnVqdO3aNb3m+pg4cWK632qrrX5UHQAAANVFhYc+hwwZkrZXKO8B4nK9e/eOkSNHxtChQz1EBAAAqCLmawAAACQt0pMwZ1V59NFHY/78+TFgwIA45phjon379uv1+vHjx6f79X0dAABAdVXhoc+PPvoo9t5779U+QFxu0003jRdffLGiLw8AAMBqmK8BAACQdHeoSsmXC6+77rqoX7/+D3r98tDnhx9+GNdee218/PHHUVxcnLamP+ecc9I5LAAAQD5Z85O+H6BBgwbx2WefrfGcpB1EMkH7yU9+UtGXBwAAYDXM1wAAAKhqu+666w8OfCYmTJiQ7m+88cbYbLPNomfPnrHlllvG008/HUceeWS89957FVgtAABAHoY+O3funH7D7t57713tOTfccENMmjQp9tlnn4q+PAAAAKthvgYAAMByM2fOjJtvvjltuZ50hRg4cOCKcGUSqMwGCxYsiObNm6et3f/2t7+lq5T++te/jvvvvz8uv/zymDdvXlx44YWxbNmyTJcKAACQu+3df/WrX8Xo0aPTNg3JPnlQ2LJly3S1mClTpsRzzz0XH3zwQTRt2jTOOuusir48AAAAq2G+BgAAQGLMmDFx/vnnx/z589M5YUFBQRqwTCTzxTvuuCPeeeeduOSSSzJaZ926dWPkyJHlHktW/Hz88cfjX//6V7ra54477ljl9QEAAFSL0Ge7du3i1ltvTb9l99Zbb8Xbb79d5ngycdx8883jlltuiQ022KCiLw8AAMBqmK8BAADw6aefxjnnnJOujpkEJ5NVPk8//fQVx5OW6X/605/iwQcfjN133z2rO0F07NgxDX0mHSuEPgEAgHxR4aHPRDIBfPbZZ+OFF16IcePGpe0hEq1atUqPdevWLYqKiirj0gAAAKyB+RoAAEB++/Of/xyLFy9OW7vvt99+qxzv3bt3bLvttnHcccelwc9Mhj5nzZoVn332WTRp0iQ23XTTVY5/99136b527doZqA4AAKAahT4T9erVi0MOOSTdAAAAyB7mawAAAPlr7Nix0aFDh3IDn8t16tQptt9++/jkk08ik954443o379/uhrpkCFDyhwrKSlJW9Anrem32267jNUIAABQ1Qor882TVgojRoxIvyn41FNPpWNJ+8CFCxdW5mUBAABYC/M1AACA/PTtt99G69at13pes2bN4ptvvolM2muvvaJBgwbx8ssvx2uvvVbm2K233pqGUvfdd9+0ewUAAEC+qFFZk8VLL700bRdYWlqajv385z9Ptz/84Q/pw8U//elPsfPOO1fG5QEAAFgN8zUAAID89pOf/CQ+//zztZ63vK16VRk/fnw6V91oo43i8MMPT8fq168fv//97+OCCy6IU089NQ14tmzZMv71r3/Fu+++G5tttlkMHDiwymoEAAColit9fvfdd9G7d+94/vnno3HjxrH//vuveJCYKC4ujlmzZqUTs+RhIgAAAFXDfA0AAIBdd901Pv744xg1atRqz3nuuefi008/jV122aVKQ5+DBw+Oxx57rMz4gQceGA899FC66mfS7v2BBx5I566nnXZa2sFigw02qLIaAQAAquVKn/fee29MmDAhDjrooLjyyiujTp060b59+xXH77///rjuuuvinnvuibvvvjsuv/zyii4BWFlxccSRR646BgBAXjFfAwBgnbifCNVaEpZ89tlno3///nHyySdHly5d0vElS5akXwBMwqC33HJL1KhRI/r06VPh1584cWK548nqnstX+FzZDjvsELfffnuF1wIAAJCLKjz0+cwzz0TTpk3j6quvTleJKU/SgiGZTI4bN66iLw+Up1GjiBEjMl0FAAAZZr4GAMA6cT8RqrUtttgi/cLfxRdfnAYpk62goCCdCyZboqioKAYMGBDbbLNNpssFAACgstu7J98A3GmnnVb7ADG9aGFhOkmcNm1aRV8eAACALJuv9evXL23DV54FCxakK8gkreY7duwY++yzT1x//fVpK/r18c4778RJJ52UtilMPmPSxl5wFQAAoHwHHHBAPPnkk9GzZ8/YZJNNolatWlGzZs1o1apVHHroofHoo4/GUUcdlekyAQAAqIqVPpMJ4ezZs9d63jfffJOeCwAAQNXIxHxt8ODB6QqjLVq0WOXY4sWL44wzzog333wzfvrTn8Z+++0X7777btxxxx3x1ltvxbBhw9YYUF1uzJgxceaZZ0bDhg3j5z//eSxbtiz+9re/pcHPP/3pT9G9e/cK+SwAAADVycYbb5yu5gkAAECehz7bt28f77//fkyfPr3ch3qJKVOmxH/+85/YbrvtKvryAAAAZMF8bdGiRXHFFVfEiDW0BR0+fHga+DzllFPiwgsvXDE+aNCgNPD54IMPRp8+fdZ4nSQ4+rvf/S7q168fI0eOjJYtW6bjyeuSVWkGDhwYe+yxR9SpU+dHfR4AAIDqat68eTFjxoz0y3/NmzdPV/0EAAAgj9q7H3nkkWkbvrPPPjttHbiymTNnxvnnn58+mDvkkEMq+vIAAABkeL42evTotFVgEvjs2rXras9bvpLnr371q1XawSchzSQUujZPP/10WnfSknB54DPRtm3b6NWrV3rshRde+MGfBQAAoLpKvjh3+OGHR+fOneOggw5Kuy906tQpjjvuuHjxxRczXR4AAABVFfo89NBD00lhsnrM/vvvH/vss08UFBTEuHHj4thjj41u3brFv//979h9993TB44AAABUjaqarz366KMxf/78tE3gkCFDyj1n6tSpMXny5OjYsWO6Suf31atXLx3//PPP48svv1zjtZKVQhO77bbbKse6dOmS7seOHfuDPwsAAEB1U1JSkn7ZLuma8OGHH6bzwg022CDdkmNvv/12nHnmmXHDDTdkulQAAACqor174qabborbb7897rvvvvjiiy/SseRBXbIlq7WcdNJJ6WQymUQCVeDbbyNOOaXs2F13RTRqlKmKAADIkKqYr/Xu3Tuuu+66VcKc35cEOpevyFmeNm3apIHOzz77LDbccMPVvs9///vfdL/xxhuX+x6J5D0AAFgP7idCtZZ8Ue/ZZ5+NFi1axG9+85v42c9+tqKle9IdIjmWzOnuvPPO9At53bt3z3TJAAAAVHbos7CwMP0G4Kmnnpp+QzB5kFhaWhrNmjWL7bbbLmrXrl0ZlwVWZ/Hi5C5O2bHbbstUNQAAZFBVzNd23XXXtZ4ze/bsdN+4ceNyjzdo0CDdz5kzZ53ep1E5AYTlodO5c+euQ9UAAKzgfiJUa4888kg69xs2bNgqX6BLvgx42GGHRYcOHdIOEPfee6/QJwAAQHUPfZ511lmx6aabxgUXXBA1a9aM7bffPt0AAADIrGyary1ZsiTdFxcXl3t8+fiiRYt+8Pus63sAAADkk08++ST9sl55HROWa9++fXrOO++8U6W1AQAAkIHQ5xtvvBGzZs2q6LcFAACgGs3XlrcOXJysIlWO5eP16tVb4/ssX5k0CX8mQdby3qNu3boVUjMAAEB1kMyRCgoK1mnetvI8CwAAgMwrrOg3LCoqioYNG1b02wIAAFCN5mvL27qvrvX68vHlLdpXZ3lb9/LeZ968eWVaxQMAABDRtWvXGDt2bEyZMmW153zzzTcxbty42GOPPaq0NgAAADIQ+jzyyCPjtddei9dff72i3xoAAIBqMl/bbLPN0v2kSZPKPb58vF27dj/4fZaPbb755j+6XgAAgOriggsuiKZNm8aJJ54Yo0aNWuX4xx9/HKecckraeeGiiy7KSI0AAABUYXv3rbbaKlq3bh0nn3xy+mCtQ4cO6QouhYWr5kuT1hEXX3xxRZcAAABAls/XWrRoERtvvHG89957sWDBgjIt2OfPnx/vv/9+ejx5ELkmnTt3jhEjRqSr1Oyyyy6rtLNPdOrUqZI+BQAAQPZL5k0rW7x4cSxatCjOPvvsNNyZzBWTdu7Tp09Pt0SrVq3inHPOSedcAAAAVOPQZ/JQMHk4WFpaGp988km6rY7QJwAAQNXJtvlasvLo9ddfHzfddFP89re/XTGe/P7dd9/Fscceu9b36NatWxpcfeCBB+LQQw+NNm3arFjl86GHHopmzZrF/vvvX6mfAwAAIJvNmTNnjcfnzZsXEyZMWGV86tSp8cUXX1RiZQAAAGRF6POss85KHw4CAACQXbJtvpa0Enz22Wfjvvvui/Hjx8cOO+wQ7777bowbNy523nnnVUKfI0eOTB86du/ePV2lNJGsSDNgwIA4//zz44gjjoiDDjooHf/73/+ePrj805/+lK5WAwAAkK/Ka+EOAABA7qrw0Gffvn0r+i0BAACohvO14uLiGDZsWAwePDgNfyaBz5YtW8YZZ5wRp556anr8+x577LE0ELrRRhutCH0mDjzwwGjUqFH8+c9/jscffzxq1qyZHk9CruW1MQQAAMgnyRwKAACA6uNHhz6TB2jJA7aBAwdWTEUAAABUiGyZr02cOHG1x+rXr5+2kV+XVvL333//ao/tscce6QYAAAAAAADV2Y8Ofc6ZMycWLFhQ7rETTjghfeh2+umn/9jLAAAAsJ7M1wAAACjPK6+8En/5y1/i888/j0WLFq32vIKCgnjhhReqtDYAAACquL379yVt9zbccMPKvAQAAAA/gPkaAABAfhozZkycccYZUVpautZzk9AnAAAAeRT6BAAAAAAAALLHbbfdlgY+jzrqqDjooIOiUaNGwp0AAAA5ROgTAAAAAAAA8sQnn3wSW2+9dVxxxRWZLgUAAIAfQOgT8kHNmhFdu646luVKSkrSLVsUFhamGwAAAABUazl6PxFYN8XFxdGyZctMlwEAAMAPJPQJ+aBx44iXXopckoQ9e/XuE9NmfhXZomWzpvHgffcKfgIAAABQveXg/URg3e2+++7x1ltvxaJFi6JWrVqZLgcAAID1JPQJZG3oMwl8nnbDvVFYVJTpcqJk2bK447w+aV1CnwAAAAAA5KrzzjsvjjjiiLjwwgtjwIABscEGG2S6JAAAANaD0CeQ1ZLAZ1EN/6kCAAAAAICKsNFGG8X5558fl156abzwwgvRvHnz+MlPflLuuQUFBTFy5MgqrxEAAIDVq5Ak1VNPPZVu5U0EV3ds+fEPP/ywIkoAAACgHOZrAAAAfN+YMWNi4MCB6c9Jd6svv/wy3VY3NwQAAKAahj5LS0ur9HUAAACsG/M1AAAAvu/WW2+NZcuWRbdu3eLggw+OJk2aCHcCAADkU+hz1KhRFVMJAAAAFcp8DQAAgJV9/PHHsdVWW6XhTwAAAPIw9LnRRhtVTCVA5Zk7N+Lii8uOXXNNRIMGmaoIAIAqYL4GAMAP4n4iVGu1a9eOtm3bZroMAAAAMtneHchyCxdG3HZb2bGBA92kBQAAAABW5X4iVGu77757vPnmm7F48eIoLi7OdDkAAACsp8L1fQEAAAAAAACQm/r165cGPs8999yYNm1apssBAABgPVnpEwAAAAAAAPLE3XffHVtttVW89NJL6da0adNo3Lhx1Kix6mPDgoKCGDlyZEbqBAAAoHxCnwAAAAAAAJAnhg8fXub3mTNnplt5ktAnAAAA2UXoEwAAAAAAAPLEsGHDMl0CAAAAP4LQJwAAAAAAAOSJzp07Z7oEAAAA8jH0OXv27BgyZEiMHj06pk2bFhtssEF069YtzjzzzGjSpEmZc2fNmhW33nprvPjii2l7ilatWsURRxwRffr0iRo1cvZPAAAAAAAAAAAAAOSRnEw8zp07N4499tj49NNPo0uXLmnY87PPPov7778/nnvuuXjkkUeiZcuW6blz5syJ448/Pj755JPYb7/9om3btvHaa6/FH//4x3j//ffjlltuyfTHAQAAAAAAgCrxm9/8Zp3PLSgoiKuuuqpS6wEAACAPQp+DBw9OA599+/aNs88+e8X4Aw88EFdccUUa5Lz66qvTsWSFz48//jgGDBiQBkUT/fv3j379+qUB0eeffz4NgwIAAAAAAEB199hjj6016JkoLS0V+gQAAMhCORn6nDJlSjRt2jROPvnkMuOHHHJIGvr817/+lf6+cOHCFat+9uzZc8V5RUVFcdFFF6WBz+HDhwt9AgAAAAAAkNcrfZaUlMS3334b//znP+Ott96Kww8/PH75y19WeX0AAABUw9BnsnpneZLVPxPNmjVL9++9914sWLAg9t133ygsLCxzbps2baJ169bppHXZsmVpEBQAAAAAAACqs969e6/1nAcffDCuvPLKOOigg6qkJgAAANZd2SRkjkq+dZi0ak/atteoUSPOPPPMdPzzzz9P923bti33dUnwc/HixenKoQAAAAAAAEBEr169YtNNN40hQ4ZkuhQAAACqw0qf3/eXv/wlBg4cmP6crNb5hz/8Ibp06ZL+Pnv27HTfuHHjcl/boEGDdD9nzpwqqxcAAAAAAACyXbt27eK1117LdBkAAABUt5U+mzRpEqeeemoceuihUatWrbjgggvirrvuSo8lq3gmiouLy33t8vFFixZVYcUAAAAAAACQ3T799NNMlwAAAEB1XOlz//33T7dE375945e//GW62ueuu+4atWvXTseXLFlS7muXh0Lr1atXhRVDBhQVRWy99apjAAAAAAArcz8RqrV58+at9tjSpUtj5syZMXTo0Pjss89it912q9LaAAAAyIPQ5/e1bt06TjnllLjmmmti1KhRsdFGG62xffvcuXPTff369au0TqhyTZpEfPBBpqsAAAAAAHKB+4lQre2yyy5rPae0tDSKioritNNOq5KaAAAAqMbt3ZPVOV977bV4+eWXyz3epk2bdP/NN9/EZpttlv48adKkcs9NxuvWrRutWrWqxIoBAAAAAAAgOySBztVtieTZWadOneLWW2+NLl26ZLpcAAAAcn2lzyT0eeqpp6YTztdffz2Ki4vLHP/g/759vOmmm8a2226btm4fN25clJSURGHh/59xnTx5ckydOjV233339JuKAAAAAAAAUN1NmDAh0yUAAACQTyt9Jq3Yu3XrlrZmHzx4cJlj//nPf2Lo0KFpIPTggw+OWrVqpfspU6bEsGHDVpy3bNmyuO6669Kfe/XqVeWfAQAAAAAAAAAAAKDar/SZ+N3vfpcGPIcMGRJvv/12bL/99vHFF1/EqFGjoqCgIG688cZo1qxZem6/fv3i1VdfjauvvjrGjh0b7dq1S1cITVYEPeCAA9IAKQAAAAAAAAAAAEC2y8nQ54Ybbhh//etf47bbbkuDnv/+97+jYcOG0b179zjjjDOiffv2K85t0qRJDB8+PG6++eZ46aWX0sBn69at48ILL4wTTjghDYkCAAAAAABAdfSb3/zmB782eY521VVXVWg9AAAA5GHoc3mY85JLLkm3tWnevHkMGjSoSuqCrDR/fsQf/lB27MILI+rVy1RFAAAAAEC2cj8RqpXHHntsvc5fecEUoU8AAIDskrOhT2A9LFgQcfnlZcfOOstNWgAAAABgVe4nQt6u9Ll06dIYNmxYzJgxI0pLS6NNmzaVWhsAAADrT+gTAAAAAAAAqqnevXuv03kfffRRXHzxxSsCn0cddVT6OwAAANlF6BMAAAAAAADy2F133RW33HJLLF68OJo1axZXXnlldO3aNdNlAQAAUA6hTwAAAAAAAMhDkydPTlfzfOedd9LVPQ844IAYOHBgNGrUKNOlAQAAsBpCnwAAAAAAAJBnhg8fHtddd10sWLAgDXkOGDAgDjzwwEyXBQAAwFoIfQIAAAAAAECemDFjRvz2t7+N1157LV3dc6+99opBgwalbd0BAADIfkKfAAAAAAAAkAeeeuqpuPLKK+Pbb7+NunXrpq3djz766EyXBQAAwHoQ+gQAAAAAAIBqbPbs2XHZZZfFP/7xj3R1z5133jmuvvrqaNOmTaZLAwAAYD0JfQIAAAAAAEA1NXr06DTw+fXXX0dxcXH0798/TjzxxEyXBQAAwA8k9AkAAAAAAADV1JlnnhkFBQXpz/Xr148nnngi3dZF8rqRI0dWcoUAAACsD6FPAAAAAAAAqMaSlu6JZLXPZFtXy8OiAAAAZA+hTwAAAAAAAKimhg0blukSAAAAqEBCnwAAAAAAAFBNde7cOdMlAAAAUIEKK/LNAAAAAAAAAAAAAKgcVvqEfFBQENG06apjAAAAAAArcz8RAAAAIGsJfUI+SG7QzpyZ6SoAAAAAgFzgfiIAAABA1tLeHQAAAAAAAAAAACAHCH0CAAAAAAAAAAAA5AChTwAAAAAAAAAAAIAcIPQJAAAAAAAAAAAAkAOEPgEAAAAAAAAAAAByQI1MFwBUge++i7jnnrJjJ50UUadOpioCAAAAALKV+4kAAAAAWUvoE/LBvHkRZ59dduzoo92kBQAAAABW5X4iAAAAQNbS3h0AAAAAAAAAAAAgBwh9AgAAAAAAAAAAAOQAoU8AAAAAAAAAAACAHCD0CQAAAAAAAAAAAJADhD4BAAAAAAAAAAAAcoDQJwAAAAAAAAAAAEAOEPoEAAAAAAAAAAAAyAFCnwAAAAAAAAAAAAA5QOgTAAAAAAAAAAAAIAfUyHQBUNVKSkrSLRsUFhamGwAAAAAAAAAAAKyN0Cd5JQl79urdJ6bN/CqyQctmTePB++4V/AQAAAAAAAAAAGCthD7Ju9BnEvg87YZ7o7CoKLO1LFsWd5zXJ61J6BMAAAAAAAAAAIC1EfokLyWBz6Ia/vkDAAAAAAAAAACQO6TeAAAAyIitttpqreccdthhcc0116z1vD322CO++uqrco/16tUrLrvssh9UIwAAAAAAAGQToU/IB82aRZSWZroKAAAo4+yzzy53vLS0NIYOHRrz58+P3Xbbba3vM3PmzDTwufXWW8c+++yzyvGOHTtWSL0AAHnD/UQAAACArCX0CQAAQEb07du33PF77rknDXz+8pe/jEMPPXSt7zN+/Ph036NHjzj99NMrvE4AAAAAAADIFoWZLgAAAACW+/jjj+OGG26INm3axG9+85t1es2ECRPSffv27Su5OgAAAAAAAMgsoU8AAACyxtVXXx1LliyJSy+9NOrUqbNOrxH6BAAAAAAAIF9o7w4AAEBWGDNmTLz22muxxx57RNeuXdf5dUl797p168Zzzz0Xf/3rX+N///tf1K9fP/bee+8455xzonnz5pVaNwAAAAAAAFQVK30CAACQFe666650f+aZZ67zaxYuXJiGPBcsWBC33XZbbL/99nH00UdHixYtYsSIEXHEEUfElClTKrFqAAAAAAAAqDpW+oR8sGhRxJNPlh37xS8iatXKVEUAAFDGhx9+GOPGjYudd9453dbVzJkzo127dtGwYcMYPHhwNG7cOB0vLS2NG2+8MYYMGRKXXHJJDB06tBKrBwCoZtxPBAAAAMhaQp+QD+bMiTj66LJjM2ZENGuWqYoAAKCMkSNHpvtevXqt1+vatGkTT64cSIiIgoKCtLX7U089FW+88UbMmDFDm3cAgHXlfiIAAABA1tLeHQAAgIwbNWpU1K1bN372s59V2HvWqFEjtt566/TnSZMmVdj7AgAAAAAAQKYIfQIAAJBREyZMiC+++CINfNapU2e9Xjt9+vR46623Ytq0aeUe/+6779J97dq1K6RWAAAAAAAAyCShTwAAADLqnXfeSfc777zzer82ae1+3HHHxZ133rnKsfnz58cHH3yQBkm32GKLCqkVAAAAAAAAMknoEwAAgIz6z3/+k+633Xbb9X7t/vvvn7ZxHzlyZEycOHHF+NKlS+Oqq66K2bNnR8+ePaNWrVoVWjMAAAAAAABkQo2MXBUAAAD+z6RJk9J9ixYt1njem2++GePGjYsOHTpE9+7d07G2bdvG+eefH9dee20cffTR0aNHj2jYsGGMHTs2Pvroo+jUqVOce+65VfI5AAAAAAAAoLJZ6RMAAICM+uabb9J9gwYN1nheEvgcPHhwvPDCC2XGTzrppLjjjjtihx12iH/84x8xfPjwKC0tTcOgQ4cOTdu7AwAAAAAAQHVgpU8AAAAy6umnn16n8/r27Ztu5enatWu6AQAAAAAAQHVmpU8AAAAAAAAAAACAHCD0CQAAAAAAAFSJfv36xV577bVer5k1a1ZceeWV0a1bt+jYsWP06NEj7rzzzli6dGml1QkAAJCthD4BAAAAAACASjd48OB45pln1us1c+bMieOPPz4eeOCB2GabbeKEE06IOnXqxB//+Mc477zzKq1WAACAbFUj0wUAAAAAAAAA1deiRYviiiuuiBEjRqz3a2+99db4+OOPY8CAAXHsscemY/37909XDH3uuefi+eefj/32268SqgYAAMhOVvoEAAAAAAAAKsXo0aPjgAMOSAOfXbt2Xa/XLly4MB555JFo2bJl9OzZc8V4UVFRXHTRRenPw4cPr/CaAQAAspnQJwAAAAAAAFApHn300Zg/f366UueQIUPW67XvvfdeLFiwIDp37hyFhWUfa7Zp0yZat24db731VixbtqyCqwYAAMheQp8AAAAAAABApejdu3eMGjUqbc1eUFCwXq/9/PPP033btm3LPZ4EPxcvXhxTpkypkFoBAAByQY1MFwBUgQ02iJgxY9UxAAAAAICVuZ8IVKBdd931B7929uzZ6b5x48blHm/QoEG6nzNnzg++BgAAQK4R+oR8kLQ8adYs01UAAAAAALnA/UQgSySreCaKi4vLPb58fNGiRVVaFwAAQCZp7w4AAAAAAABkndq1a6f7JUuWrDEUWq9evSqtCwAAIJOEPgEAAAAAAICs06hRozW2b587d266r1+/fpXWBQAAkElCnwAAAAAAAEDW2WyzzdL9pEmTyj2ejNetWzdatWpVxZUBAABkjtAnAAAAAAAAkHW23XbbtHX7uHHjoqSkpMyxyZMnx9SpU2OHHXaIoqKijNUIAABQ1WpU+RWBqrd4ccTrr5cd2333iOLiTFUEAAAAAGQr9xOBLFGrVq04+OCD4+GHH45hw4bFiSeemI4vW7YsrrvuuvTnXr16ZbhKAACAqiX0Cfng228jfvazsmMzZkQ0a5apigAAAACAbOV+IpAB48ePjxdeeCE22mijOPzww1eM9+vXL1599dW4+uqrY+zYsdGuXbt4/fXX44MPPogDDjggunXrltG6AQAAqpr27gAAAAAAAEDGQ5+DBw+Oxx57rMx4kyZNYvjw4XHkkUfG+++/n674uXDhwrjwwgvT1T4LCgoyVjMAAEAmWOkTAAAAAAAAqBITJ04sdzxZ3fP7K3x+X/PmzWPQoEGVXBkAAEBusNInAAAAAAAAAAAAQA4Q+gQAAAAAAAAAAADIAUKfAAAAAAAAAAAAADlA6BMAAAAAAAAAAAAgBwh9AgAAAAAAAAAAAOQAoU8AAAAAAAAAAACAHCD0CQAAAAAAAAAAAJADhD4BAAAAAAAAAAAAcoDQJwAAAAAAAAAAAEAOEPoEAAAAAAAAAAAAyAFCnwAAAAAAAAAAAAA5QOgTAAAAAAAAAAAAIAfUyHQBQBX4yU8i/vOfVccAAAAAAFbmfiIAAABA1hL6hHxQo0bENttkugoAAAAAIBe4nwgAAACQtbR3BwAAAAAAAAAAAMgBQp8AAAAAAAAAAAAAOUDoEwAAAAAAAAAAACAHCH0CAAAAAAAAAAAA5IAamS4AqAJLl0ZMnFh2bKutImr4TwAAAAAAsBL3EwEAAACyVs7eoZk/f34MGTIknn/++Zg6dWrUrFkztt566+jdu3fsu+++Zc6dNWtW3HrrrfHiiy/GzJkzo1WrVnHEEUdEnz59ooabVOSDWbMitt227NiMGRHNmmWqIgAAAAAgW7mfCAAAAJC1crK9+7x58+KYY45JQ59169aNY489Nnr06BETJkyIs88+Ox1fbs6cOXH88cfHAw88ENtss02ccMIJUadOnfjjH/8Y5513XkY/BwAAAAAAAAAAAMC6ysllLu+8886YOHFi9OzZMwYOHBgFBQXp+Lnnnpuu4HnzzTenIdCNN944XeHz448/jgEDBqTh0ET//v2jX79+8dxzz6Urhe63334Z/kQAAAAAAAAAAAAA1XClz2eeeSYNep5//vkrAp+JFi1apCuALlu2LMaMGRMLFy6MRx55JFq2bJkGRJcrKiqKiy66KP15+PDhGfkMAAAAAAAAAAAAANV+pc/evXvH3Llzo2HDhqscKy4uTvfz58+P9957LxYsWBD77rtvFBaWzbe2adMmWrduHW+99VYaEk2CoAAAAAAAAAAAAADZKidDn7169Sp3vLS0NG3Xnthqq63i888/T39u27Ztuecnwc8pU6akW9IKHgAAAAAAAAAAACBb5WR799V56KGH0tU9kzDnnnvuGbNnz07HGzduXO75DRo0SPdz5syp0joBAAAAAAAAAAAA8jb0+fTTT8egQYOiRo0acc0110TNmjVj8eLFZVq+r2z5+KJFi6q0VgAAAAAAAAAAAIC8DH0mK3yef/756c/XXntt7LzzzunPtWvXTvdLliwp93XLQ6H16tWrsloBAAAAAAAAAAAAfogakcNKSkriuuuui3vvvTddtfP666+P/fbbb8XxRo0arbF9+9y5c9N9/fr1q6hiAAAAAAAAAAAAgDwLfSardCarez7//PPRuHHjuPXWW1es8LncZpttlu4nTZpU7nsk43Xr1o1WrVpVSc0AAAAAAAAAAAAAedXefdmyZXHuueemgc/WrVvHX/7yl1UCn4ltt902bd0+bty4dFXQ75s8eXJMnTo1dthhhygqKqrC6gEAAAAAAAAAAADyJPR5xx13xOjRo9MVOh966KEVK3qurFatWnHwwQfHlClTYtiwYWVCo0lb+ESvXr2qrG4AAAAAAAAAAACAvGnvPnv27DT0mejQoUM88sgj5Z6XrPzZpUuX6NevX7z66qtx9dVXx9ixY6Ndu3bx+uuvxwcffBAHHHBAdOvWrYo/AQAAAAAAAAAAAEAehD7ffvvtWLBgQfrzqFGj0q08Z5xxRhr6bNKkSQwfPjxuvvnmeOmll9LAZ9IS/sILL4wTTjghCgoKqvgTAAAAAAAAAAAAAORB6LN79+4xceLE9XpN8+bNY9CgQZVWE2S9Ro0iXnxx1TEAAAAAgJW5nwgAAACQtXIu9An8AMXFEXvvnekqqMZKSkrSLVsUFhamGwAAAAA/gPuJAAAAAFlL6BOAHyUJe/bq3SemzfwqskXLZk3jwfvuFfwEAAAAAAAAAKBaEfoE4EeHPpPA52k33BuFRUWZLidKli2LO87rk9Yl9AkAAAAAAAAAQHUi9AlAhUgCn0U1/M8KAAAAAAAAAABUFkugAQAAAAAAAAAAAOQAS7JBPigpifj667JjG2wQofU1AAAAALAy9xMBAAAAspbQJ+SD5AZt8+Zlx2bMiGjWLFMVAQAAAADZyv1EAAAAgKzla7kAAAAAAAAAAAAAOUDoEwAAAAAAAAAAACAHCH0CAAAAAAAAAAAA5AChTwAAAAAAAAAAAIAcIPQJAAAAAAAAAAAAkAOEPgEAAAAAAAAAAABygNAnAAAAAAAAAAAAQA4Q+gQAAAAAAAAAAADIAUKfAAAAAAAAAAAAADlA6BMAAAAAAAAAAAAgBwh9AgAAAAAAAAAAAOSAGpkuAAAAgPz2l7/8JQYOHLja42+88UY0adJkje/xxRdfxC233JKeO3v27Nhkk02iV69ecfTRR1dCxQAAAAAAAJAZQp8AAABk1Pjx49P9iSeeGPXr11/leJ06ddb4+qlTp0bPnj1j1qxZceCBB0bTpk3jhRdeiEsvvTQ+++yzuPjiiyutdgAAAAAAAKhKQp8AAABk1IQJE6J27drx61//OgoLC9f79VdffXXMmDEj7rjjjujatWs6ds4550Tv3r1j6NChcfDBB8e2225bCZUDAAAAAABA1RL6hHzQsGHEI4+sOgYAABlWUlISH330UWyxxRY/KPCZrPKZrOq54447rgh8JpIQaf/+/dPg58MPPyz0CQCwPtxPBAAAAMhaQp+QD2rVijjqqExXAQAAq/j888/ju+++i/bt2/+g148bNy5KS0ujS5cuqxzr1KlT1KxZM8aOHVsBlQIA5BH3EwEAAACy1vovowIAAAAV2No9UVBQkK7Mueeee0bHjh3jyCOPjL/97W/rFBpNbLzxxqscSwKfLVu2jClTpsTixYsroXoAAAAAAACoWkKfAAAAZDz0+cgjj8TXX38dv/jFL2LfffeNTz/9NM4///y44YYb1vj6WbNmpftGjRqVe7xBgwZpC/l58+ZVQvUAAAAAAABQtbR3BwAAIGOS1uwbbbRR9O3bNw477LAV45MnT45jjjkmhgwZEnvttVfsvPPO5b5+yZIl6b64uLjc48vHrfQJAAAAAABAdWClTwAAADImWc1z9OjRZQKfiTZt2sQ555yT/vzkk0+u9vW1a9cuE/5c2fKwZ926dSuwagAAAAAAAMgMoU8AAACyUseOHdP9pEmTVnvO8rbuc+bMKff43Llzo6CgIOrXr19JVQIAAAAAAEDVEfqEfDBzZkRBQdktGQMAgAwqKSmJ//znPzFu3Lhyjy9YsKDMap7l2WyzzVYbDE1W/5w2bVpsuummUVho+gsAsM7cTwQAAADIWp56AQAAkDHHH398nHDCCfH111+vcuztt99O99ttt91qX9+5c+d0Jc8333yz3Ncnwc9OnTpVcNUAAAAAAACQGUKfAAAAZESy+maPHj2itLQ0/vCHP6Qrfy43YcKEGDJkSNStWzeOPPLI1b7HhhtuGHvssUe6WugLL7ywYnzhwoVx0003pT/36tWrkj8JAAAAAAAAVI0aVXQdAAAAWMUFF1wQ//znP+Oxxx6LiRMnxq677hrTp09PA5xJCPTGG2+MFi1apOcmq3km4c4OHTpE9+7dV7zHJZdcEj179oxzzjknDjjggPT8UaNGxeeffx4nn3xyej4AAAAAAABUB1b6BAAAIGM22GCDGDFiRPTp0yfmzJkTDzzwQLz++uvRtWvXePjhh2O//fZbcW4S+Bw8eHCZFT0Tm2666YpzX3311XjooYeiTp06ceWVV8aFF16YgU8FAAAAAAAAlcNKnwAAAGRUo0aN4uKLL063Nenbt2+6lWeTTTZZ0c4dAAAAAAAAqisrfQIAAAAAAAAAAADkAKFPAAAAAAAAAAAAgBwg9AkAAAAAAAAAAACQA4Q+AQAAAAAAAAAAAHKA0CcAAAAAAAAAAABADhD6BAAAAAAAAAAAAMgBQp8AAAAAAAAAAAAAOUDoEwAAAAAAAAAAACAHCH0CAAAAAAAAAAAA5IAamS4AqAL160cMHrzqGAAAAADAytxPBAAAAMhaQp+QD+rUiTjrrExXAQAAAADkAvcTAQAAALKW9u4AAAAAAAAAAAAAOUDoEwAAAAAAAAAAACAHCH0CAAAAAAAAAAAA5AChTwAAAAAAAAAAAIAcIPQJAAAAAAAAAAAAkANqZLoAoAp89VVEhw5lx8aPj2jaNFMVAQAAAADZyv1EAAAAgKwl9An5oLT0/92oXXkMAAAAAGBl7icCAAAAZC3t3QEAAAAAAAAAAABygNAnAAAAAAAAAAAAQA4Q+gQAAAAAAAAAAADIAUKfAAAAAAAAAAAAADlA6BMAAAAAAAAAAAAgBwh9AgAAAAAAAAAAAOQAoU8AAAAAAAAAAACAHCD0CQAAAAAAAAAAAJADhD4BAAAAAAAAAAAAcoDQJwAAAAAAAAAAAEAOEPoEAAAAAAAAAAAAyAFCnwAAAAAAAAAAAAA5QOgTAAAAAAAAAAAAIAfUyHQBQBWoWzdiwIBVxwAAAAAAVuZ+IgAAAEDWEvqEfFCvXsTAgZmuAgAAAADIBe4nAgAAAGQt7d0BAAAAAAAAAAAAcoDQJwAAAAAAAAAAAEAOEPoEAAAAAAAAAAAAyAE1Ml0AAAAAAAAAUH09/vjjMWzYsPjvf/8btWvXjj322CP69+8fG2200Tq9Pjn/q6++KvdYr1694rLLLqvgigEAALKX0CcAAAAAAABQKW688ca4/fbbo127dnHsscfGtGnT4umnn45XX301RowYEW3atFnj62fOnJkGPrfeeuvYZ599VjnesWPHSqweAAAg+wh9Qj745puIPfcsO/bKKxFNmmSqIgAAAAAgW7mfCFSQCRMmpIHPTp06xdChQ6O4uDgdP+CAA+Lss8+OQYMGpcfXZPz48em+R48ecfrpp1dJ3QAAANlM6BPywbJlER9+uOoYAAAAAMDK3E8EKkjS0j1x1llnrQh8Jvbdd9/YZZdd4qWXXorp06dHixYt1hgcTbRv374KKgYAAMh+hZkuAAAAAAAAAKh+xo4dGzVq1EgDnivbbbfdorS0ND1nTYQ+AQAAyrLSJwAAAAAAAFChFi9eHF988UVstNFGZVb5XK5Nmzbp/rPPPltre/e6devGc889F3/961/jf//7X9SvXz/23nvvOOecc6J58+aV9hkAAACykZU+AQAAAAAAgAr17bffpit5NmrUqNzjDRo0SPdz585d7XssXLgwDXkuWLAgbrvttth+++3j6KOPTtvBjxgxIo444oiYMmVKpX0GAACAbGSlTwAAAAAAAKBCLVmyJN2Xt8rn98cXLVq02veYOXNmtGvXLho2bBiDBw+Oxo0bp+NJmPTGG2+MIUOGxCWXXBJDhw6tlM8AAACQjYQ+AQAAAAAAgApVu3btMuHP8tq/J5LW7auTtIB/8sknVxkvKChIW7s/9dRT8cYbb8SMGTO0eQcAAPKG9u4AAAAAAABAhapfv34UFhautn378vHlbd7XV40aNWLrrbdOf540adKPqBQAACC3CH0CAAAAAAAAFSpp356s1PnFF1+Uu9rn5MmT033Svn11pk+fHm+99VZMmzat3OPfffddmVVFAQAA8oHQJwAAAAAAAFDhOnfunAY+33nnnVWOJW3ZkzbtO+2002pfn7R2P+644+LOO+9c5dj8+fPjgw8+iDp16sQWW2xR4bUDAABkK6FPAAAAAAAAoMIdccQR6f7GG2+MhQsXrhj/xz/+EW+//Xbss88+seGGG6729fvvv3/axn3kyJExceLEFeNLly6Nq666KmbPnh09e/aMWrVqVfInAQAAyB41Ml0AAAAAAAAAUP3suOOO0atXr3jwwQfjkEMOiW7duqUt25955plo2rRp/OY3v1lx7ptvvhnjxo2LDh06RPfu3dOxtm3bxvnnnx/XXnttHH300dGjR49o2LBhjB07Nj766KPo1KlTnHvuuRn8hAAAAFVP6BMAAAAAAACoFJdeemlsttlm8fDDD8f9998fjRs3jgMPPDANa7Zp02bFeUngc/DgwXHYYYetCH0mTjrppNh8883jnnvuSVcITdrFb7zxxmkY9MQTT4zi4uIMfTIAAIDMEPoEAAAAAAAAKkVBQUEcd9xx6bYmffv2TbfydO3aNd0AAACIKMx0AQAAAAAAAAAAAADk0Uqf/fr1i3feeSdefvnlVY4tWLAg7rrrrvj73/8e06ZNi6ZNm8ZBBx0UZ555ZtSpUycj9UKVql074swzVx0DAAAAAFiZ+4kAAAAAWatahD4HDx4czzzzTLRo0WKVY4sXL44zzjgj3nzzzfjpT38a++23X7z77rtxxx13xFtvvRXDhg2L4uLijNQNVaZBg4hbb810FQAAAABALnA/EQAAACBr5XToc9GiRXHFFVfEiBEjVnvO8OHD08DnKaecEhdeeOGK8UGDBqWBzwcffDD69OlTRRUDAAAAAAAAAAAA/DCFkaNGjx4dBxxwQBr47Nq162rPW76S569+9atV2sEnrd2TUCgAAAAAAAAAAABAtsvZ0Oejjz4a8+fPjwEDBsSQIUPKPWfq1KkxefLk6NixY9SvX7/MsXr16qXjn3/+eXz55ZdVVDUAAAAAAAAAAABAnoU+e/fuHaNGjYpjjz02CgoKyj0nCXQm2rZtW+7xNm3apPvPPvusEisFAAAAAAAAAAAA+PFqRI7adddd13rO7Nmz033jxo3LPd6gQYN0P2fOnAquDgAAAAAAAAAAAKBi5Wzoc10sWbIk3RcXF5d7fPn4okWLqrQuqHJJAPrQQ8uOPf54kojOVEUAAABkQElJSbrlosLCwnQjM/zbgTyTBfcTc/m/O7ls6dKlmS4BAAAAyOfQZ61atdL94sWLyz2+fLxevXpVWhdUuSQAPWbMqmMAAADkjSQ40+ukXvHlzC8jF23YbMN48J4HhfcywL8dyEMZvp+Y6//dKS0tjalTpkbrNq0j1yR/+0mTJ6WfAQAAAMhO1Tr0ubyt+9y5c8s9vny8fv36VVoXAAAAQCZCHEl45uxhZ0dhUW6F30qWlcTgEwann0Fwr+r5twNUtVz+705iyaIlcV7X8+KsoWdFUc2iyMXaQ+YTAAAAsla1Dn1uttlm6X7SpEnlHl8+3q5duyqtCwAAACBTkvBMUY3cCqCQHfzbAaparv53Z9nSZTlb//LaAQAAgOyVe1+RXQ8tWrSIjTfeON57771YsGBBmWPz58+P999/Pz3etGnTjNUIAAAAAAAAAAAAEPke+kwceeSR8d1338VNN91UZjz5PRk/9thjM1YbAAAAAAAAAAAAwLqq1u3dEyeeeGI8++yzcd9998X48eNjhx12iHfffTfGjRsXO++8s9AnAAAAAAAAAAAAkBOq/UqfxcXFMWzYsOjTp09Mnjw5hg4dGtOnT48zzjgjhgwZkh4HAAAAAAAAAAAAyHbVZqXPiRMnrvZY/fr14+KLL043AAAAAAAAAAAAgFxU7Vf6BAAAAAAAAAAAAKgOqs1KnwDAuikpKUm3bFBYWJhuAAAAAAAAAACsndAnAOSRJOzZq3efmDbzq8gGLZs1jQfvu1fwEyDPzZ8/P4YMGRLPP/98TJ06NWrWrBlbb7119O7dO/bdd991eo899tgjvvqq/P9969WrV1x22WUVXDUAAAAAAABUPaFPAMiz0GcS+DzthnujsKgos7UsWxZ3nNcnrUnoEyB/zZs3L4499tiYOHFibLPNNunPc+fOTQOgZ599dpx33nlx+umnr/E9Zs6cmQY+k6DoPvvss8rxjh07VuInAAAAAAAAgKoj9AkAeSgJfBbV8H8DAMi8O++8Mw189uzZMwYOHBgFBQXp+LnnnhtHHHFE3HzzzdGjR4/YeOONV/se48ePT/fJeWsLiAIAAAAAAEAus6wWAAAAGfPMM8+kQc/zzz9/ReAz0aJFizjmmGNi2bJlMWbMmDW+x4QJE9J9+/btK71eAAAAAAAAyCRLfEE+KC6OOPLIVccAACDDevfunbZzb9iw4SrHiv/v/7POnz9/je8h9AkAUMHcTwQAAADIWkKfkA8aNYoYMSLTVQAAwCp69epV7nhpaWk8//zz6c9bbbXVGt8jae9et27deO655+Kvf/1r/O9//4v69evH3nvvHeecc040b968UmoHAKi23E8EAAAAyFrauwMAAJB1HnrooXjvvfeiTZs2seeee672vIULF6YhzwULFsRtt90W22+/fRx99NFpe/gRI0bEEUccEVOmTKnS2gEAAAAAAKCyWOkTAACArPL000/HoEGDokaNGnHNNddEzZo1V3vuzJkzo127dml7+MGDB0fjxo1XrBR64403xpAhQ+KSSy6JoUOHVuEnAAAAAAAAgMoh9AkAAEBWrfB5xRVXREFBQVx77bWx8847r/H8ZCXQJ598cpXx5PVJa/ennnoq3njjjZgxY4Y27wAAAAAAAOQ87d0BAADIuJKSknRVz8svvzxd4fOmm26Kgw8++Ee9Z/I+W2+9dfrzpEmTKqhSAAAAAAAAyBwrfQIAAJBRixcvjvPPPz+ef/75tD37rbfeutYVPpebPn16Guhs3bp1tGzZcpXj3333XbqvXbt2hdcNAAAAAAAAVU3oE/LBt99GnHJK2bG77opo1ChTFQEAQGrZsmVx7rnnxujRo9Pg5p133hmbbbbZOr8+ae3+xz/+MXr16hWXXXZZmWPz58+PDz74IOrUqRNbbLFFJVQPAFBNuZ8IAAAAkLWEPiEfLF4c8eijZcduuy1T1QAAwAp33HFHGvhs1apVPPTQQ9GiRYv1ev3++++ftoIfOXJk/PKXv4ytttoqHV+6dGlcddVVMXv27OjTp0/UqlWrkj4BAEA15H4iAAAAQNYS+gQAACAjkkBmEvpMdOjQIR555JFyz0tavXfp0iXefPPNGDduXHpu9+7d02Nt27ZNW8Nfe+21cfTRR0ePHj2iYcOGMXbs2Pjoo4+iU6dO6UqiAAAAAAAAUB0IfQIAAJARb7/9dixYsCD9edSoUelWnjPOOCMNfSaBz8GDB8dhhx22IvSZOOmkk2LzzTePe+65J/7xj3/EkiVLYuONN07DoCeeeGIUFxdX2WcCAAAAAACAyiT0CQAAQEYkwc2JEyeu8/l9+/ZNt/J07do13QAAAAAAAKA6K8x0AQAAAAAAAAAAAACsndAnAAAAAAAAAAAAQA4Q+gQAAAAAAAAAAADIAUKfAAAAAAAAAAAAADlA6BMAAAAAAAAAAAAgBwh9AgAAAAAAAAAAAOQAoU8AAAAAAAAAAACAHFAj0wUAAAAAAFC+kpKSdIMqtXTpKg8Pli5dmo5XzeWr5joAAAAAuUjoEwAAAAAgCyVhz14n9YovZ34Zuai0tDSmTpkardu0jlyUy/X/2NobLVocj680duTxR8a3tYqjqv7tT5o8Kf0cAAAAAJQl9AkAAAAAkIWS4FsS+Dx72NlRWFQYuWbJoiVxXtfz4qyhZ0VRzaLINblc/4+tvfirbyO2eL3M2Km3nxqLmzaKqqw/ZD4BAAAAViH0CfmgZs2Irl1XHQMAAAAg6yWBz6IauRU6TCxbuizdqz/3ai+oXRxf/XTbVcaq6u+wvH4AAAAAViX0CfmgceOIl17KdBUAAAAAQA5Y2rh+vP7MoEyXAQAAAEA5cq8nEAAAAAAAAAAAAEAeEvoEAAAAAAAAAAAAyAFCnwAAAAAAAAAAAAA5QOgTAAAAAAAAAAAAIAcIfQIAAAAAAAAAAADkgBqZLgCoAnPnRlx8cdmxa66JaNAgUxUBAAAAAFmqaO6C2HrAsDJjH15+QixrUDdjNQEAAADw/wh9Qj5YuDDittvKjg0cKPQJAAAAAKyiaOGS2PTOZ8qMTfzNMbHM7UQAAACAjNPeHQAAAAAAAAAAACAHCH0CAAAAAAAAAAAA5AChTwAAAAAAAAAAAIAcIPQJAAAAAAAAAAAAkAOEPgEAAAAAAAAAAABygNAnAAAAAAAAAAAAQA4Q+gQAAAAAAAAAAADIAUKfAAAAAAAAAAAAADlA6BMAAAAAAAAAAAAgBwh9AgAAAAAAAAAAAOQAoU8AAAAAAAAAAACAHCD0CQAAAAAAAAAAAJADhD4BAAAAAAAAAAAAckCNTBcAVIGiooitt151DAAAAABgJaVFhTGnfZtVxgAAAADIPKFPyAdNmkR88EGmqwAAAAAAcsCSJg3ipbcGZ7oMAAAAAMrhq7kAAAAAAAAAAAAAOcBKnwAAWaqkpCTdskVhYWG6AQAAAAAAAACZIfQJAJCFkrBnr959YtrMryJbtGzWNB68717BTwAAAAAAAADIEKFPAIAsDX0mgc/Tbrg3CouKMl1OlCxbFnec1yetS+gTAAAAAAAAADJD6BMAIIslgc+iGv4vGwAAAAAAAAAg9An5Yf78iD/8oezYhRdG1KuXqYoAAAAAgCxVNH9htLv5sTJjn5x7WCyrVztjNQEAAADw/wh9Qj5YsCDi8svLjp11ltAnAAAAALCKogWLYqurh5cZ+++pBwp9AgAAAGSBwkwXAAAAAAAAAAAAAMDaWekTAAAAckxJSUm65aLCwsJ0y1W5/LdfunRp5LLS0tKc/wy5Ktf/7rn8bydX6wYAAAAAKo/QJwAAAOSQJHDY66Re8eXMLyMXbdhsw3jwngdzMviZ63/7pP5JkyelAbhcrP2zTz+LHof3iIKCgsg1yd986pSp0bpN68hF/u1kTi7/7QEAAACAyiH0CQAAADkWAEpCh2cPOzsKi3IrOFmyrCQGnzA4/Qy5GvrM1b99YsmiJXFe1/MicjA7VlpSGiUFJXH2fWdHUc2iyNW//VlDz8rp+v3bqXq5/LcHAAAAACqH0CcAAADkoCR0WFQj9wJM1UGu/u2XLV0WuS7X//a5Xn8u87cHAAAAAKqL3FuWAgAAAAAAAAAAACAPCX0CAAAAAAAAAAAA5AChTwAAAAAAAAAAAIAcIPQJAAAAAAAAAAAAkAOEPgEAAAAAAAAAAABygNAnAAAAAAAAAAAAQA4Q+gQAAAAAAAAAAADIAUKfAAAAAAAAAAAAADmgRqYLAKpAQUFE06arjgEAAAAArKygIBZt0HCVMQAAAAAyT+gT8kES+Jw5M9NVAAAAAAA5YHHThvHc5/dnugwAAAAAyqG9OwAAAAAAAAAAAEAOEPoEAAAAAAAAAAAAyAFCnwAA8P+1dyfgMtftH8dvS5YSUT2WkH0rslRIpSwVLSJKKEXaUDyP0EJaST2RtKmQkrRolQo9kkpI2qRNoixFC4pTOP/rcz//3zxzNktnzvxmzrxf1+WaY2bOnN98f3PmfO/53t/7BgAAAAAAAAAAAAAgCZD0CQAAAAAAAAAAAAAAAAAAkARI+gQAAAAAAAAAAAAAAAAAAEgChcM+AABxsG2b2cSJGa/r1cusePGwjggAAAAAAABAgiq4Lc0qPz4nw3WrL2hju4oXDe2YAAAAAAAA8F8kfQKpYOtWs379Ml537rkkfQIAAAAAAADIovDW7dbgXxMyXLe24/H2J0mfAAAAAAAAoaO9OwAAAAAAAAAAAAAAAAAAQBIg6RMAAAAAAAAAAAAAAAAAACAJkPQJAAAAAAAAAAAAAAAAAACQBAqHfQAAAABAstu1a5f/SxQFCxb0f4mC8QEAAAAAAAAAAACA2CDpEwAAAMgFJTN273mxrftpoyWK8oceYlMfm5QQiY2MDwAAAAAAAAAAAADEDkmfAAAAQC6TGpXQeOndk6xgoUJhH47t2rnTJvzzYj+uREhqZHwAAAAAAAAAAAAAIHZI+gQAAABiQAmNhQozvc4J4wMAAAAAAAAAAAAAuZdSpW1eeOEF69SpkzVq1MiaN29ugwYNsh9++CHswwIAAACAlJfbeG3t2rU2dOhQa9mypR111FHWoUMHe/rpp/P0mAEAAAAAe4eYDwAAAABiJ2WSPseMGWNDhgyxtLQ069atmweUr776qp1zzjm2Zs2asA8PAAAAAFJWbuM1LRSed9559sorr1jTpk2te/futm3bNhs2bJiNGjUqLs8BAAAAAJA9Yj4AAAAAiK2U6K+4YsUKe/DBB61JkyY2efJkK1KkiF/frl0769evn912221+OwAAAAAg+eK1kSNH2o8//mgTJkzwqi9y1VVXWc+ePf0xzzjjDDvyyCPj8nwAAAAAAP9DzAcAAAAAsZcSlT6nTJnil3379o0Ek9K2bVs75phjbN68ebZhw4YQjxAAAAAAUlNu4zVVfJkzZ463CAwW/6RYsWI2cOBAS09Pt+nTp+fxswAAAAAAZIeYDwAAAABiLyWSPhcuXGiFCxf24DGzZs2aeUCo+wAAAAAAkiteW7Rokd9H7QEzUyWZ/fbbj3gPAAAAAEJCzAcAAAAAsZfvkz7//PNPW7t2rZUrVy7DDsJApUqV/HLlypUhHB0AAAAApK5YxGurVq3yy8MPPzzLbVr8K1++vH3//ff+swAAAAAA8UPMBwAAAAB5o7Dlc7/99pvvACxVqlS2tx944IF+uWXLFssPChUqZGNHj7TyFQ+0AgUKhH04Pva17xhpBQsW9K/DpuMYe0dijE9cx6ZkSSvwn/9k/PklS+ogLFEl0rlKxNdyIuFcJZdEOl+cq+Q5V8L5yhnnKvnGp87okT5vRv6I13755Re/3N1j7Nq1y7Zu3WplypSx/ECv3zEjx9hhBxxmFv6v1b5JN6s6smrCvEftKx130o69hr9Iuj0z5RmrUaJG0m0DTuZjF44/PMl87MLxhyuZjz+3x16w3E6zTJ8nHlOuju3aLz7z6GQe+2Q//mQ+9uj5JjFfYiDm+/uKXNk17EMAAAAAkMDyfdLnX3/95ZfZ7SCMvj4tLc3yAy2kN2zQwBJJ2aMaJNb4JNDxxG1sihY1O+mkDFcl+vpkop2rRHstJxLOVXJJtPPFuUqecyWcr+xxrpJwfBJsvpzKYhGv7e1j5KeqL/+N+xpasjq0waGWrJJ97OUfx/7DklUyH7tw/OFJ5mMXjj9cyXz8uTp2rRycVC7DVQdbfCXz2Cf78SfzsSf7fDO/Ieb7+wrWqBz2IQAAAABIYMm4T3OfFCtWLENQmFkQBO6///5xPS4AAAAASHWxiNeI+QAAAAAgMRHzAQAAAEDeyPdJnyVKlPD2azm1hgiuD1pIAAAAAACSJ14LWvxt3rw5x8dQdUb9LAAAAABA/BDzAQAAAEDeyPdJn2rrUKlSJVu7dm22uwDXrFnjlzVq1Ajh6AAAAAAgdcUiXqtWrZpfrl69Osttesx169ZZ1apVfaERAAAAABA/xHwAAAAAkDdSIgI69thjPfBbunRpltvee+893wHYuHHjUI4NAAAAAFJZbuM1fb/u8/7772e5bcmSJf7YTZo0iflxAwAAAAD2jJgPAAAAAGIvJZI+zznnHL8cM2aMbd++PXL97NmzPSBs1aqVlStXLsQjBAAAAIDUlNt4Tbe1aNHCFi1aZHPmzIlcr8caO3asf929e/c8fQ4AAAAAgOwR8wEAAABA7BVIT09PtxRw880329SpU61KlSrWunVr27Bhg82aNctKly5tTz31lLeXAAAAAAAkbrymyi5a6Ktbt661adMm8v3ffvutde3a1bZs2WLt2rWzsmXL2ty5c23VqlXWu3dvGzx4cIjPDgAAAABSGzEfAAAAAMRWyiR96mkqoJw+fboHgQcddJA1bdrUrr76ahI+AQAAACAJ4rV7773Xxo8fbx07drRRo0ZleAx9n6q8qD1gWlqaLyaq2kvnzp29FSAAAAAAIBzEfAAAAAAQWymT9AkAAAAAAAAAAAAAAAAAAJDMCoZ9AAAAAAAAAAAAAAAAAAAAANgzkj4BAAAAAAAAAAAAAAAAAACSAEmfAAAAAAAAAAAAAAAAAAAASYCkTwAAAAAAAAAAAAAAAAAAgCRA0icAAAAAAAAAAAAAAAAAAEASIOkTAAAAAAAAAAAAAAAAAAAgCRQO+wCQNwYMGGBLly61+fPnh30oKe3333+3hx56yN544w374YcfbL/99rN69epZz549rW3btmEfXkr79ddf/dy8+eabtm7dOjv44IOtdevWduWVV1qZMmXCPjyY2cKFC+2iiy6ys88+20aNGhX24aS0adOm2YgRI3K8/b333uP3JiRvvfWWTZo0yT755BMrUKCAVa9e3f/GtG/fPuxDS0m1a9fe4306duzIe1pIduzYYRMnTrTnn3/e1qxZY8WLF7dGjRpZ37597aijjgr78JDP5va//PKL3Xffffaf//zHfvrpJ6tQoYKdc845dvHFF1vhwoTheTFnZ8zjOx9nvMOZazPu8Z1DM97xnxsz5vGf9zLmsbF582Z74IEH7PXXX/dxLFeunJ1yyil2ySWXWOnSpTPcd+3atTZu3Dh/f9dcp0qVKta9e3c799xzQzv+/LDm8ccff9gjjzxiM2fO9HnjIYccYqeffrrPG/U7kNlXX31l99xzj3344Yf+vbVq1bLevXv7eQMAAAAAIBnwyU0+NH78eJs1a5aVLVs27ENJaVu3brVu3brZF198YUcccYR/vWXLFl8k7tevn/3zn/+0yy67LOzDTEk6Dzof33zzjTVv3twXjleuXGmPP/64fzj79NNPW/ny5cM+TEv135/rrrvO0tPTwz4UmNnnn3/ul1r0L1GiRJbbs/vwHHlv8uTJNnLkSE+A6dChg+3atcvfwwYOHGjr16+3Xr16hX2IKUd/37Oj9zKdLyWMNWvWLO7Hhf+6+uqrbc6cOXb44Yf7PEAL3Jozv/vuu/bggw/a8ccfH/YhIp/M7bXof8EFF9jXX3/ti8aVK1e2d955x+666y5PMNIiP2I7Z2fM4zsfZ7zDmWsz7vGdQzPe8Z8bM+bxn/cy5rGhxM3zzz/f5ylVq1a18847z37++Wd77LHHbPbs2f56VzKtaONQ165d/Zwo0VyJiTpXw4YN8+8fOnRo2E8nKdc8/vzzT7v88svt/fff99e3Xs/Lli2zCRMm2OLFi23KlClWpEiRyP0/++wzf+3r/ejMM8+0YsWK+WP379/fbrjhBr8NAADg79IcQxsMM38NAEDMpSPf2L59e/r111+fXqtWLf93wgknhH1IKe3uu+/28zB8+PD0Xbt2Ra5fv359eosWLdLr1q2bvmrVqlCPMVXdfvvtfm7uvffeDNc//vjjfv3QoUNDOzb8l85B8F42ZMiQsA8n5XXp0iW9QYMG6Tt37gz7UPD/VqxYkV6vXr30du3apW/cuDFy/U8//ZR+3HHHpR9xxBHpmzdvDvUY8T+PPvqov58NGzYs7ENJWQsWLPBz0KlTJ58zB9577730OnXqpLdp0ybU40P+mtsHc82pU6dG7rdjx470fv36+fWvv/56KM8hP8/ZGfP4zscZ73Dm2ox7fOfQjHf858aMefznvYx5bASfx2vc0tLSItd/8MEH/p7Tp0+fyHV9+/b1+86bNy9y3bZt29LPPffc9Nq1a6d/8skncT/+/LDm8dhjj/lto0ePznD9rbfe6tdPnDgxw/UdO3b09/zPP/88ct2mTZv896N+/fo+xwcAAIiFINZnfQ0AkBcKxj6NFGFQu7t27drZM888Yy1btgz7cGDmu4O1c+df//pXhh082o2s3d87d+70lmKIv++//9530qtlTzRV+RC19UG472czZsywVq1ahX0oMPPKN19++aXVrFnTChZk2pAoVOVMLftuuukmr1IU0HubqhR16tTJNm7cGOox4n8t4+6++26rVKmSXXvttWEfTsr66KOPIn/rixYtGrle1aWqVatmq1evtk2bNoV4hMgvc/vt27dHKlCqilOgUKFCNnjwYP/6qaeeCuU55Nc5O2Me3/k44x3OXJtxj+8cmvGO/9yYMY//vJcxjw3NAV999VXbb7/9/L0luppk48aN7ayzzvI5ot7rVeVTVT0bNWqU4fN7VZnUe5CqQE2fPj2kZ5Lcax5BJc8rrrgiSzt4VcyOfi0vWbLEK32eeuqpVqdOncj1ZcqU8WqhaWlp9vzzz+fRMwIAAPmdOtaou4Sqv+szw+HDh9u3337rMb/mjgAAxBLt3fOJZ5991tsi3XjjjT6BiP7AAuHo2bOntyQsWbJkltuCDwB1zhB/9913X44TcTn00EPjfEQIqP2VWlode+yx1qNHD/9wF+FatWqVbdu2jb8rCWbevHn+XnXMMcdkua1z587+D4lBH/D89ddf/t4WtGdF/JUuXdovtdCauQ2gWitqkfbAAw8M6eiQn+b2H3/8sf3xxx/Wtm3bLAlcSnCpWLGit5jUh7xKqkDu5+yMeXzn44x3OHNtxj2+c+hFixYx3nGeG/Maj/+8V62vGfPcUwKt5oA1atTwpMHM6tWr5xspNJb777+/J3Y2b948y/2aNGni52bhwoVxOvL8s+ah1/qaNWvs6KOPthIlSmS47YADDrAGDRp42/f169dbuXLlImOc3XkIrtN9lAAKAACwrxuwtAll69atvrkw2LSsjT/ahKgNn7R7BwDEEiW78tEi5Ny5c61bt25MFBJE9+7ds/1wSJO5N954w7+uXbt2CEeGzH777Td7/fXXfVd94cKF7corrwz7kFLWiBEjfNHh9ttv570sQaxYscIvdT70O3LCCSf4B+ZaEH3llVfCPryUTcb46aefrFatWvbjjz/a9ddfby1atIicF32AgMSgii7vvPOOnx8qsYfrtNNO84peTz75pFdt0Qdva9eutaFDh/pC7QUXXJChKg/wd+f2SuCSypUrZ/s4SqJQ0oWqWCI2c3bGPL7zccY7nLk24x7fOTTjHf+5MWMe/3kvYx4bQQyhscqONg2JxjEY88MPPzzL/ZTwqaqrul9Oj5WK9mbNY29ey7Jy5Uq/VKWtnM6DkkJ1LoL7AgAA7C1tUlbCp+YT2uymavAvvfSSdenSxX799Vff+Ka4lLVPAEAskfSZTzRt2jTLTlYkJn3oqgoG+sBJCzoI17Rp07yKzVVXXWUbNmyw0aNHZ7vTG3lPwY8W8gcNGhT5QBaJsxCttm9aIFJrMlUCUQCrFrdqzYf40iK1aPFOLShVsUILe2p5pvPSt29f3zWK8D3yyCN+yWaCxKh4pJZ+9evX9wVvVdI5+eSTbebMmZ5kE7SwBHI7t9eHuHLQQQdle/+gouzmzZvjepz5ec7OmMd3Ps54hzPXZtzjO4dmvOM/N2bM4z/vZcxjQ+On5EFVmvz0008z3LZr1y5PWAySP1VpVUqVKpXjmOt79D6FvV/z2NfXcnD/7M6Dqt6qOmiQrAsAALA3NIdThXLNIS655BI7/fTTrVixYj6Pufnmm61x48a+8WTdunVhHyoAIJ+hvTsQR9rVc9ttt3llmlGjRvnOYYRLrZf69OnjFT9UpUkLnJp0a1KO+NHi/S233OKL99q9j8ShCmaHHXaY9e/f3zp27Bi5Xgsaaq310EMP2YknnuhttBAfam0WtApp1qyZPfDAA94mTi699FLfOXrHHXdYq1at/NwhHMuXL/fWoPrd4PcjfKqWc//993s7nSOOOMLPiaoGzp4929/HypYtm+E9Dvi7c/ugMlNOlWOD69PS0uJ6rPl5zs6Yx3c+zniHM9dm3OM7h2a84z83ZszjP+9lzGNH7yGqHqz3clVw0kYVJfKPHz8+UjFS7/d//fXXXo05lT73zd6Oa/Ba3tP9Nacn6RMAAOyLnTt32rJly6xChQrWvn37SCJo0Mq9evXqtnTpUr+P5ui0eAcAxAqVPoE4VgFSpQ7RQgIJIInh1FNP9UVjnZOXX37ZF5TvvPNO++STT8I+tJRy3XXXeVCkxAkCncSi960333wzSzKUqj+p2lZQFQrxU6hQocjXWlAKFqtFHx6oXZ8WMVSpC+GZMWNGpCU0wqe/82pv2aNHD3vuuef8746uU+tcVXi59tprvVojkNu5vXbxRy8mZxYs4quCEGIzZ2fM4zsfZ7zDmWsz7vGdQzPe8Z8bM+bxn/cy5rHTuXNnT/jUBgq19FR11VNOOcXnKSNGjPD7FC9efK/HPPr9CXtWtGjR3SbLZn4t7+k86HrOAQAA2BfaXKJ/2mz1ww8/RCqIKw7VZb169fw6fe4irIMCAGKFpE8gj2knjyr/3HTTTV4FaOzYsXbGGWeEfVjIRsWKFSMVPoP2S4hPu84FCxbYkCFDqEqYZBo0aOCXq1evDvtQUkrQmkyLEFqgziz4AOG7776L+7Hhf/R3ROdIrRQR/lzsmWee8d+da665JsOHatp9PWDAAN9drRY8QG7n9kGbyJxaoQZVg/bUphJ7P2dnzOM7H2e8w5lrM+7xnUMz3vGfGzPm8Z/3Muax1a9fP08aHz58uCf0P/jgg75RJXjvOfTQQ/dqzHXOGPN9E7R1z6k6Z+bX8u7Og36HVBk6OG8AAAB7Q/OMunXr2q+//mrvv/9+ls0ommPIH3/8EblO83IAAHKL9u5AHtKkTh/0qQWhPoC67777qPCZAOdk8eLFvptKbfIyU0UV+fnnn0M4utRtjSr6YFz/MlOFCv1T9RslWSB+FIiqDZ8CUbUnyywIUIMqCYgPvU8p0WjHjh3ZtgEJqlWokgjCsWLFClu7dq2dfvrpnIcEoNaK2mldo0aNbFv41a5d2y+DXdhAbub21apV2+2GCF2vpBclXiA2c/YTTjjBv2bM4zMfVwtsYbzjO9fmvSW+c2jGO/5zY8Y8/vPeDh06+NeMeWzfZzJXs/3oo4/8smbNmrZ169Ycx1zvQevWrbOqVat6NSjsvb15/xD9XkTff82aNV6VNZrOgc5FdpsDAAAAcortNX/TZybaPKKYR7GnBLFnsAklmOcpLg3uozmikkaDxwEAYF+Q9AnkES1QXn311d6qTdVoHn744ciHSgh3AblPnz7+wfW7776b5UPwzz77zC/1ISviQ4FQdouc+vD1xRdftDp16libNm18lxziT20Ot23bZu+8844dfPDBGW5bsmSJX9avXz+ko0tNet9q2LChj78SYpo2bZrhdrWQE/3uIBxLly71SzZ6JAZVctHvzffff+/zgMx/+7/99lu//Mc//hHSESI/ze2PPPJIbx25aNGiLB/Wam6jJIvjjjsuQ5th5G7OzpjHdz7OeIcz12bc4zuHZrzjPzdmzOM/72XMY2fw4ME2b948mzNnjpUsWTJyvcb1tdde8/mM/s5qQV+L/qr+pMqg0fTepGTDzEmI2LOyZcva4Ycfbh9//LFvmIhuza7EC72/6/ZDDjnErwvmPAsXLrSzzz47w2O99957fsl5AAAAOVEMr7m2NnHqcylt1NTmcHXrUAcVVXgP5tbBZsOg0mfw+XOQ8Kk5pCrE33jjjayBAgD+FrYLAHlkwoQJviisHfFPPvkkCZ8JQrulWrdu7buqxo8fn+G2Tz/91CZPnuwfDka36UTe6tSpk/Xv3z/Lv+CDVwU6+r8WmhFfCkxPO+0034145513RgLToFrLQw895L8vnTt3DvU4U1G3bt38UtVvo1uY6bw89dRT/iEDvzPh0d8T0UIqwqfF7lNOOcV+++03u+eeezLcpiqBwXVnnXVWSEeI/DS3L1q0qM8jlWwxZcqUDEmjo0eP9q8zV4BC7ubsjHl85+OMdzhzbcY9vnNoxjv+c2PGPP7zXsY8dlRBUmP+xBNPZLj+/vvvt1WrVnmCv+Y25cqVsxYtWniirRJEA9u3b7exY8f614z536O/lUrACMYxoP/r+uD9Xxo3buxz+VdeecUTRaN/R/S3V78bfM4FAACy880339jIkSPtvPPOs4svvti7oWgzz4YNG3wuXr58eU/ozNy6XXPFzF3zFixY4J95LVu2LJIECgDAviqQnvmvDvIFtevRLtf58+eHfSgp6ddff7WTTz7ZdxdrsTKn3TmqctC8efO4H1+qW79+vZ1//vneXkw7t4866ij/eu7cub7rasyYMSRLJQBVdVLQRFv38NvD6fflu+++s3r16nlFHAWwWqDQwrR+X7SohPi79tprbcaMGf73XudAVUNURUStQbSwwftYeHr06OEVpDQP0/lB+DZu3OgLqFp0VcKBqrvowzb97de8rVevXr4TG4jF3F4LxlooVoUsfZ8SATSvUXXKdu3a+d/OzG2Fkbs5O2Me3/k44x3OXJtxj+8cmvGO/9yYMY//vJcxjw0lFWoDxcqVK61Vq1aeUKi27nrda/y1eUhtPoNqq127dvXEc42xfid0bnS+evfu7VVDse9rHqq2pXHVa1djrsrOSqBQgq3m6JMmTcpQ+VaVVfW7oNe3kp+VlPvqq6/ajz/+aMOHDyf5FgAAZKH5nRI809LSvCOHNg1++eWXXj1fm6YqV66c7fcpFWfQoEE2c+ZM38TcrFkze+utt3yuvXr1aps2bZrPcQAA+DtI+synSPoMlxZo+vbtu8f7XX755TZw4MC4HBMy0gfb2nGvD1b1gZ7aL2mBTeeElsiJgaTPxKEFogceeMBmz57ti9AKYo855hj/faGSYXg0hdOCtT4U+Prrr30BQwkxV1xxhVeuQHjat2/vu34//PDDDK3lEC4trKpyi97LtLCt3xkl2CgRQZXWgFjO7TW/VDUttWnSa08t4ZUMcOGFF2ZptYrYzNkZ8/jOxxnvcObajHt859CMd/znxox5/Oe9jHlsBJVU3377bf9a49ihQwev8hld0UmU4Kkkc7USV9JAlSpVPMlQCbgk2f79NQ8l8atalhL5talClbaUWNunTx9P6sxMbd/HjRtnS5cu9f/XrFnTE2/btm0bl+cCAACSh7pD9OzZ0ypVquTzBc0xRJs1tYlTCZ+FChXKEHdGz+uuuuoqe+ONN7wyvL7ntttuszVr1ng3IdakAQC5QdInAAAAAAAAAAAAAAAAELVRU5XytZHtuuuu8wr5QaXx6E1SqqqvTW6qAl+qVKkMj6Hv0+bDSy+91CuOf/HFFzZ16lQSPgEAuVY49w8BAAAAAAAAAAAAAAAA5A8//fSTLVu2zLugZJfwqWTQDz74wLtJ7Ny507Zv3269evXy+6pCuagVvEyYMMG7e5DwCQCIFZI+AQAAAAAAAAAAAAAAgP+nypyq4nnsscdGrgsSPqdMmWKvvfaaLV261P+vSp9//PGH3XLLLbZhwwbr37+/FSxY0I477jibOHGiVwBVwmeNGjVCez4AgPyFpE8AAAAAAAAAAAAAAADg/1WpUsUTN1XtU9U7t2zZ4tU9lbz58ssv+22VK1e2M88801q2bGlffvmlPfvss/bII49Yu3btrFatWla3bl1r06aNDRgwgIRPAEBMkfQJAAAAAAAAAAAAAACAlJSenm4FChSIXEqZMmWsUqVK9tBDD9nKlSu93fuPP/5oa9eu9ftcfvnldvzxx1vjxo39/g0aNLAdO3Z4kqiSQ5X0efDBB9s999xjhQoVCvkZAgDym4JhHwAAAAAAAAAAAAAAAAAQhrS0NPvrr79s3bp1keuUtKk27eXLl7d58+Z5MufOnTu9ZbuqfV511VWRhM9t27b5ZaNGjTL8X0j4BADkBSp9AgAAAAAAAAAAAAAAIOWoKuekSZNs+fLltmbNGjvppJM8sbNjx452xhlnWMWKFe2XX36x1atX+/Wq3qkqoEFVUCWCFi9e3B/rueeeswMPPNCOPvrosJ8WACCfI+kTAAAAAAAAAAAAAAAAKeWjjz6yvn372pYtW6xy5cpWsGBBmzlzplf2VDv3Sy+91Bo2bJjt9yrh888//7QiRYr4/+fOnWtvvvmmNWnSxEqXLh3nZwIASDW0dwcAAAAAAAAAAAAAAEDK+PDDD+3CCy+0ww47zEaPHm0vv/yyPfnkkzZ48GDbsWOHTZ8+3ZYuXRq5vyp6yu+//+5VPyVI+NT3jhs3zrZv325Dhgzxap8AAOQlKn0CAAAAAAAAAAAAAAAgpRI+69WrZwMGDLDmzZv79dWrV7dDDjnEq3w++uij9vHHH1vjxo39tkKFCtnmzZvt8ssv98RPtX8vXLiwLVy40BYvXmz777+/TZw40apWrRryswMApAIqfQIAAAAAAAAAAAAAACAlWrr37NnTjjjiCBs4cGAk4XPXrl1+WapUKWvWrFkkOTQ9PT1S5XPjxo2eFPrFF1/YqFGj7NZbb7Vly5bZ8ccfb4899pjVqlUrxGcGAEglVPoEACABKGAsUKBA2IcBAAAAAAAAAAAA5EsrVqywrl27WsWKFa1///6R5E6t0xUsWNATP3VZvHhxv16JoVq/U5VPqVatmt111102f/58++2332zr1q2e8Fm2bFkrUaJEqM8NAJBaSPoEAERol9qCBQvsxRdftOXLl9v69ev9+sMOO8yOO+44u+CCC6xy5cqW7GbMmGHXXnuttW7d2u6///64/dzatWv7pVo8lCxZ0r/etm2bTZgwwYPHSy+9NM9+9qZNm+zxxx/3IHTNmjX+cw866CCrU6eOtWnTxjp16mRFihTJs58PAAAAAHvr/fff9zZ7gVdeecVq1qy52++54oor7M033/SvR44c6TFOQLHsokWLsly/J4qdnnjiCXv33Xdt7dq19tdff1np0qXtyCOPtHbt2ln79u19MRAAAAAAkPh+/fVXmzp1qid4ak1Ml5kpxtuwYYM9+eSTvpan9u+Z6Xu1tgYAQJj4VBIAEFnM6tatmycezpo1y4oVK2YtWrSwRo0a2S+//GJTpkzxBa2ZM2eGfaj5yj333OOJp2lpaXm6YNq2bVt74IEHfNfhMcccY61atfJdjAsXLrQbb7zRzjrrLA9iAQAAACDR7CkO1cLd22+/HdOfqURTJXZOnjzZN0iq3V/Lli29jZ+SS//1r395DK2qLgAAAACAxPbJJ5/YfffdZ927d/fNgN98842NHTvW5s2bZ3/++WekG5/at0+bNs1ef/11O/fcc72KJwAAiYhKnwAAr+jZpUsXT+5U9cvBgwdblSpVIrcr2FHSp9oVXHPNNVa0aFF2sP0Nr776ql9Gt3fQ4mFe2rJli7enUGXPO+64w84+++wMtyvRU+dbyZ9XX321PfXUU3l6PAAAAACwt1RVZfPmzb4xccCAATneT4txqsKpaiuKX2OxKXLo0KHevu+hhx7yDZHRvv32W7vqqqvsww8/9E10//73v3P9MwEAAAAAeeOPP/6wMWPGeBeHE044wbsBqo37Cy+8YOPGjfP7nHTSSb6hUF3zFAd27tzZBg0a5LcFLd8BAEgk/GUCAHjQooTPU0891caPH58h4VO0cHbJJZd4uzwlKSp5cMeOHaEdb7KqXr26/4tnYDh37lyv7nnyySdnSfiUsmXLerVRJfJqwfLzzz+P27EBAAAAwO5UqFDBjjjiCFu1apV9+umnOd7v5Zdftv3339+7GsTCiy++6EmkquqSOeFTqlat6guGweY+LQwCAAAAABKT4kUlccptt93mHRsGDhzo62ZaF1MF0JdeeskmTZrkCZ+qBHrrrbf6/bUuSsInACAR8dcJAFLcRx99ZIsXL/akv+uvv363gUvv3r2tXr161rhxY/vpp58y3KZ2B0oGVeJo/fr17eijj7YePXr4Lrn09PQs7cZr165tw4cP9woqaovXrFkza9iwoVccVSsF+eGHHyK36WdqwS24LfD999/7Y51//vm2adMmGzJkiN9fbekVlD399NNZfv7u6GeqUovanx955JH+WFdeeaUnREZbsWKF366fraoy0RQAdu3a1W/TYwX0f/1TpZrg/6qgKkq21f/vvfde30WorzXe2VHlmqZNm/o472lxUedFgrYU2TnooIOsV69eHvBmd/713BX8nnjiidagQQM/xzfddFO27eD/zutArzvdrl2U+p727dv7uQx88MEH1q9fPzvuuON8zJXAqtfO2rVrd/vcAQAAACS/M888c7ct3tetW2dLliyxtm3bWrFixWLyM4N4ZHdxVI0aNTzuUwyblpaW5fb58+fb5Zdf7q0AFeuefvrpdvfdd/umvMwUFyvGCeJQxXuKB9VGPrMZM2Z4HHX//ffbww8/7G3njzrqKD8OJaoG/vOf//hjBLHjKaec4rGaNnwCAAAAQKoI1qa09nSu/IX7AAAU6ElEQVThhRfad999Z6+88ooXRbnsssusQ4cO9tlnn9moUaM84bNjx452++23R9b71AECAIBERNInAKQ4VUQRVURRgLM7akv+/PPP+0JR+fLlMyRAnnHGGTZx4kRvkRAk7ymhVEmYanuXXWXQlStXemKmWos3adLEKlWqZB9//LFXFH3mmWf8NiUGKoGzcuXK/ngKwN56661s25h369bNq6xokUzJhl999ZUNGzbMW9LvDSW/KrhTi/PChQv781DVUy206bGnT58euW+dOnW8HbrccsstGRbuHnjgAU+UrFmzpreI2N3iZbVq1fzrWrVq+f+1eHfWWWd5Eq7aTGSXWDl79mxP9tSinRI2d0dJukHFzwkTJvg4ZUetErW7UT8/mhJQu3fv7uN66KGH+pgoQH7yySf9/GhxMrevAy3QqnViuXLlfMGyVKlSdvDBB/ttkydP9p8/Z84cf81pEVQLuToXCrz1egEAAACQf2lhTpvTXnvttWw39GmxTtcHyaGxEMRR06ZN89h0+/bt2d5Pm+FuvvnmLLH0nXfeaX369PHYVbGs2gcqFtMCohJFozfvvfPOOx4DKsbRYqJiHiWUvvfeex4bB9VlMlMVGrWVVwynmLlixYq23377+W1aoFTCqeJpVSXVxjklhCpWO+ecc2z16tUxGysAAAAASGTazBfEkip+ovW4xx57zNavX+/xkmInxWSKmQ488ECPmQIkfAIAEhlJnwCQ4pR4KVok+jtUdVKVMFUtRImRSi5UtUq1QFCioJIm33jjDa9kmV2SpSp4KqkyaJ3QunVr27Vrl91www2euKkERyVRqhKkKpcEC2+ZKcFz27Ztfr9HHnnEK57o63/84x+e2Bokt+ZESZtKStRCnCqsqHqnjlkJoEp8VOsHLeYtX7488j2qmqJjVNVT7QAUJSHqeJW0qQW43VWaueuuu7zqiyiBU//XpZIeVSlT46C2gpk9++yzfhm0otgdVcfUAp8CWh2PkiovuOACb+m+YMECT87MiVpa6HkpqFXC6HPPPWfjxo2zWbNmeWVVVfXUmOT2daBWjVoQ1Vjr50ydOjXy+tDPL1mypD3xxBMZfv51113nC6X9+/fPcQEWAAAAQPJTQqXiLlX6X7p0abZJn4cccojHPrGiBT+1lVeco9hUHSAuueQSe/DBBz1O0fU5UYVNxaTaoKdETm2YU2ykjWxK6FQMPnbsWL/vzz//7HGo4rJ//vOfHocq5lFMpGRTPS/Fo/o6s2+//dZGjBjhG+X0T/GeKIbUAqaSQFUVVHGWHlM/Xx0e1N1CnRz2pSMGAAAAACQTrfVFx21B/KMNdurCoPUtrT8pFtP6lRI/tT6p79P1WreM7qQAAEAiIukTAFJcUElSi0l/hxLwtGikypeqqlmkSJHIbarcGSw8adEpu+Q8fY8SJIPddqoUGXytBazixYtH7qtALEgSzKnKSvXq1SP/19dBpc0gkTAnWkTTgpt+vipLRrfxUxVUBXyqUqnKKAFVm1HV0wMOOMAX07S4p6qiup8qW2aumrkvzjvvPL9UZdVoGmtVRlW1GC087g0t8On4NZYKUhctWuStAJW0euyxx/qlEkAzU3KtnsvFF19sLVu2jFyvJFA9P+2A1OMpcM7t66Bnz56Rr4MW80rcVSA+aNAgX+TNfH+1m9dOzD0l9AIAAABIbkEVT20oi/b11197xwFVA41lBRbFqIpdFJepC4Q2GL799ts2ZswY69Gjh8dR/fr1y7bzgDasiZI4GzRoELleMZJiJSVjBpU+lZC5detW36inrhZBLCRKOr3xxhv9a22Oy0xxaPRGwOB7g/tqg54q2AQ0PopXdd2nn37qlUQBAAAAIL9RJz7FiNpsp+4H0fGSLrXm1bBhQ+/MoPUyUeJn37597eyzz/ZW7ypgom58JH4CABIZSZ8AkOK0gCXZtd3eG0FAFLTcy0yt1pUcqN1yn3zySYbb1C5cC17RypQp45eq0Knbo6kCpmRXVUUtF6ITEwOqpKLFLbUY//3333N8HsGCV07VYbQIJ0q4jKbjv/766/1rLfopIVU/U4mjuaEkR7V+VxUYBagBJZeqAqjaS0Qnpu6OFhdVyUWJnVqkPPfcc/2ciAJWXa/ETyXZRld7CYLhNm3aZHlMJZCqvaIqyujxc/M60LnOnHS8c+fOyGOqOml21D4+u3MCAAAAIH9RRwS1LlclTMVDgWADWCxbu0fHmEqcVLLnyJEjrUOHDnbYYYf5bUoCVVcKxVZq2R5QPBXEMW3bts3ymBUqVPCuCEGlz+C+webHzFRpRl0n1I5dlU6jKXkziOcD6kKhRFhdr82LmSlWU6t5IY4CAAAAkN9og502zyk2UtcFbcZTAqe61AXrX1rTUkcHXT799NMZCpgo8VOxnzrhqXiKEkNJ/AQAJKqMnwwCAFKOEitVGWXTpk1/6/t//PHHSDCUE92m1nPBfTMncUYLEhlLly6d423ZUeXL7JIN1V5diaQK8PRP1VCys27dOr9U23D9y4keQwGeFhwDSsBUxRklTypIvO222ywWtICoNhKq9tmoUSNf3NTXSmLt2LHjPj9eiRIlPClT/0TnXDsVFfiqTaIqe6qaTJcuXfz24HxpYTIvXwdqe5hdYK6F1JySTqNlXvwEAAAAkL8oZjj++OO9u4I2pwUbw9TaXRVZoitqxpriyU6dOvm/IHZU7DdlyhT78ssv7e677/afr2NSHKNNiqoUGmxozE0cpdivfPny9s033/h9o2Oz7OKoIK7Vps769evv9mcTRwEAAADIb7SOqHUudfZTNz7FUUr6nD9/vncTVMEWbZJT0RUldyquU6fAoJBLkPip9UYVYdHtKhYTvSYIAECiIOkTAFKcFoJUuSS6muTuqP2cgiYtuKnKSXRlyJwElViiW35L5qokubG7Vn7BMe7uPsExqmV4dsmo0bSAFh3gbdy40ds9iBb4XnrpJbvooosstxRwqi26Ekq163DJkiXeQl1VR8uWLbvH79dxahHyt99+y7Za5sEHH+wVcVRVZujQofbCCy/Yiy++GEn6DKq/7k1F0dy8DrJL1g3uq9dIu3btdvu4QbUdAAAAAPmX4hYlfc6cOdPjG21c+/77761///4x/Tnbt2/3aplpaWnWpEmTLLcrCVMxk9r+9enTx7tGKJbSMe1LDLW3cZS6IOxrHFWyZMlsO2Fk7sYAAAAAAPmJ1vd69OjhcaM24l122WXefW7ixInewUHrbar+qUIrF1xwgXe007pn06ZNrUaNGh6jKfFT36fNfHosdV8AACARkfQJAClObfLUouCDDz7wHW9qtZ0TVV688847bevWrXbTTTdZ165dI/dfs2ZNjt+nVnRBkmFeWb9+fbbXq524dvQpeXB3iZKqeKoqlErWbNGixT79bLV3V2sIjeW8efO80oseo2bNmpYbCkjVElBBqBJz9djSuXPnvfp+LTiqGo2CVO1izOn5a0FSi5ZaqFRlmugxUZKpqsVkd+7UzlBVT7W4GevXgarWKLFWC5yqnKrgGgAAAEDqClqdKw4ZMWKEV/mUs846K6Y/RzGQujkUL17cFi9enGNFF12vDgxK+gziqCCOUeKoYsTsOlgo7tLz0EZKxVErV670OOqoo47Kcl/FW0H1zr2JoxTDBR0v7rrrrn1+7gAAAACQzLQepkqf2hyooioqotK7d28vLqL/a63syiuv9PW8fv36eSKobtcanJI+tZFOG+wOP/xwX/uLZfEaAABiLeuWcABASqlbt64vNqlC5e23377bSiNjx471hE8lI6rKihx77LF+qcTEoKpItI8//tiT/Q488MA8rSSihNXly5dnuf6NN97w42rWrFmWyijRtItP5s6dm+3tepzTTjvNrr322gzXT58+3ZMxtfNv9OjRHiSqIsw111zjC3R7sqcKMGrxLrNmzfJj0yLeSSedZHtDC30KbmXy5Mm7va8SXkXtLgJBVRtV08kuoXT48OE2cOBAryQa69eBFkqDlvbZ/Xy54447Iu03AAAAAORvSsJs1aqVJ1i+8847XpGlYcOGVrly5Zj+HC3uKe7Spsenn356t/dVwmZ0HKU4Jmg1n10co0TQ6667zivLSBBHBQmsmc2ZM8fjS7Ue3JtuD+qCoH+Kj1XNJjv62docqNgNAAAAAJKZ1jYDWk8K1twUO6owi9aRvvrqK6tQoYIXGAmKtjz//PO+zrlq1Sq/77hx47zjQ3THQBI+AQCJjqRPAIBXSVEynhILtftNLfKiqUrJmDFjIomDw4YNsxIlSvjX7du392BpxYoVnjQaneioaiWDBw/2r88777zdJl3Ggnbdqapn4IsvvvBETOnVq9cekysPOOAAb+MwderUDMmv33zzjd16662eGFmlSpXI9UpiHDVqlAeRul2LkNoRqETazz//3IPEvUnMFCVOZkfJqlp0VCuKTZs2eSWZfQk0r776at+VqNYVCm63bNmS5T5ajFQFVz3uxRdfHLlerS30vY8++qi9//77ketVfVPPW2OtRUqNSV68DjSWcvPNN2f4+UES7uOPP+4/j7aEAAAAQGoINh8qtlF8dOaZZ8b8ZyguClrGK7Z55JFHPCaOpsXEGTNmeJylqp3dunWL3HbhhRf6parIfPnll5Hrlbx54403ejyl56HvU3yk2Fox2cMPP5whDv3ss888zgxis70VxFGDBg3yeCnaE0884bGljksJswAAAACQrLTRTeuCWi8SrWcp3pLq1av7ZrcNGzb4hkHFdFqPO+GEE3ztTt0MdR/FXHocxWLqirh58+Y9FmsBACBRsD0BAOBVKqdNm2aXXXaZt8pTRcl69ep5hRC1R//oo4880FFApOqOSvALKIHv3nvvtT59+ngSnoIrLR6pIqha4WmXnXbJDRgwIE+fg45DwZvaoatqpwK4RYsWefKhWjXsqWW72upph5+SJJVkqMU7VWtRkuQHH3zggaKeR5A8qv8rkVHjo4U6JWcGC4TaLagkUi0OqipnUDEzO6rYIqogo7Z9LVu2jFT3FAWXaueuBcPg631x4oknetB6yy23+HPSOapfv74/Xy06ahFQP1cJq0qQjU6gVIUaVSzV9T179vTKm4cccogntCqRU9Vv9Fzz6nWgsdO5U6CthVO9JitWrOg/W8cQLGQ2btx4n8YEAAAAQHJSlwq1UNfGPMVe0bFpLCnG0ya38ePH+wY5XSqOUov133//3RMylXSqY7nnnnusXLlyke9VhwglaSou0qa9o48+2hM71f1AFTi1sBhsilN8FcShasf+zDPP+CZC/ewgDu3atWuGpNI90X21aKnKNWpTrzhKx6fqNtrIqIVQbeLTpj0AAAAASEZac9K62cKFC+2tt97y9UDFWdFFR1TkRG3bn332WV930xqn1gzVoUEx3zHHHOMFR9TlUGuK0Zv2AABIBiR9AgCc2hy89NJLHvy8+eabviCkhEAFP0oKVbJhjx49PBE0MyUKvvjii57kqFbn+n5VzVQynr4vL6qvZFa0aFFvta4gb8GCBZ4gqcU1BXVKpNzbJMMXXnjBK1u+++67Nn/+fCtZsqQnL3bp0sWfR1Blc8KECfbhhx9a+fLlIwt2AbVUV3Ko7jNkyBAfG41HdlThRYt/qrain6f7RSd9SpA0qgBUVT/3lRb6lPSqKqYKgFWhVIuACnC10Hf66af7udVzyUzPQ89n0qRJ/nx1rEoY7d69uydkapEyL18HWvxUNVG1cF+2bJm/LpVsevLJJ/u5VYIvAAAAgNSg+PTUU0/12E8xTpkyZfLsZ11xxRV2yimneIyshUC1+lNMpBhHMbKSKxUXlS5dOsv33nDDDR7HqIuEEkS1gKjYSxstL7300kjnDFG8qjhUlT4Vh2oTZqlSpXwD3/nnn7/X8WxAsbCSOhXfanPhp59+6rG92sMr/gxiPAAAAABIVkru1AY9JXyqcIm6Gmj96qKLLvIiLYoVVb1TMdXAgQO9i4M27Cmm1OY6tXFXURb9a968uX+/7qs1QQAAkkWB9Oi+QQAAJBm1om/durW3p1+yZInlR6rSqYBTCa1BO0MAAAAAAAAAAAAglX333Xd23333eVVPdbjTxjlt4qtVq5Z3o1PHOBWLUZcFbeyLtmvXrkhbeCWCAgCQTAqGfQAAACArVYIRVXpRZRlVZVFFGwAAAAAAAAAAAADmHfKGDRvmhVMaNWpks2bN8vbt6hChyp66TR0bnn/++cj3BHXRlPApJHwCAJIRlT4BAEktv1b67N27tz+fIPnzrrvu+lvt0QEAAAAAAAAAAIBUMHnyZJsxY4Z99dVX1qJFC+vatatt2LDBW7yPGDHCunTpEvYhAgAQE4Vj8zAAACCW6tevb4sXL7YKFSpYnz59SPgEAAAAAAAAAAAAshG0ar/ooos82XP27Nne9v2zzz6zunXrWrVq1WzatGnWoEEDq127dtiHCwBArlHpEwAAAAAAAAAAAAAAAElLqS8FChSI/F8d9aZOnWoLFy60X375xa8bPny4nX/++RnuBwBAMiLpEwAAAAAAAAAAAAAAAPnKxo0bbfny5fbvf//bvvjiC3vttdesSpUqYR8WAAC5RtInAAAAAAAAAAAAAAAA8qWdO3d6AmjZsmXDPhQAAGKCpE8AAAAAAAAAAAAAAADky4TPQoUKhX0YAADEFEmfAAAAAAAAAAAAAAAAAAAASaBg2AcAAAAAAAAAAAAAAAAAAACAPSPpEwAAAAAAAAAAAAAAAAAAIAmQ9AkAAAAAAAAAAAAAAAAAAJAESPoEAAAAAAAAAAAAAAAAAABIAiR9AgAAAAAAAAAAAAAAAAAAJAGSPgEAAAAAAAAAAAAAAAAAAJIASZ8AAAAAAAAAAAAAAAAAAABJgKRPAAAAAAAAAAAAAAAAAACAJEDSJwAAAAAAAAAAAAAAAAAAQBIg6RMAAAAAAAAAAAAAAAAAACAJkPQJAAAAAAAAAAAAAAAAAACQBEj6BAAAAAAAAAAAAAAAAAAASAIkfQIAAAAAAAAAAAAAAAAAACQBkj4BAAAAAAAAAAAAAAAAAACSAEmfAAAAAAAAAAAAAAAAAAAASYCkTwAAAAAAAAAAAAAAAAAAgCRA0icAAAAAAAAAAAAAAAAAAEASIOkTAAAAAAAAAAAAAAAAAADAEt//Ae6W+2MOHSB0AAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -817,7 +818,7 @@ "# Radon CC complexity distribution\n", "if not radon_cc_results.empty:\n", " axes[1, 0].hist(radon_cc_results['complexity'], bins=20, alpha=0.7, color='skyblue', edgecolor='black')\n", - " axes[1, 0].set_title(f'Cyclomatic Complexity Distribution\\n(Functions: {len(radon_cc_results)})')\n", + " axes[1, 0].set_title('Cyclomatic Complexity Distribution\\n(Score less is better)')\n", " axes[1, 0].set_xlabel('Complexity Score')\n", " axes[1, 0].set_ylabel('Frequency')\n", " axes[1, 0].axvline(radon_cc_results['complexity'].mean(), color='red', linestyle='--', label=f\"Mean: {radon_cc_results['complexity'].mean():.1f}\")\n", @@ -829,7 +830,7 @@ "# Radon MI maintainability distribution\n", "if not radon_mi_results.empty:\n", " axes[1, 1].hist(radon_mi_results['mi_score'], bins=15, alpha=0.7, color='lightgreen', edgecolor='black')\n", - " axes[1, 1].set_title(f'Maintainability Index Distribution\\n(Files: {len(radon_mi_results)})')\n", + " axes[1, 1].set_title('Maintainability Index Distribution\\n(Score higher is better)')\n", " axes[1, 1].set_xlabel('MI Score')\n", " axes[1, 1].set_ylabel('Frequency')\n", " axes[1, 1].axvline(radon_mi_results['mi_score'].mean(), color='red', linestyle='--', label=f\"Mean: {radon_mi_results['mi_score'].mean():.1f}\")\n", From 6b42ec6d008b1382087154db49e7004e6e64ebba Mon Sep 17 00:00:00 2001 From: vodkar Date: Sat, 13 Sep 2025 03:05:14 +0500 Subject: [PATCH 12/16] Applied reformat --- backend/app/alembic/env.py | 1 + ...608336_add_cascade_delete_relationships.py | 18 ++++++++++--- ...edit_replace_id_integers_in_all_models_.py | 26 ++++++++++++------- .../e2412789c190_initialize_models.py | 8 ++++-- backend/app/api/routes/items.py | 13 +++++++--- backend/app/api/routes/login.py | 3 ++- backend/app/backend_pre_start.py | 1 + backend/app/email_utils.py | 1 + backend/app/tests_pre_start.py | 1 + 9 files changed, 53 insertions(+), 19 deletions(-) diff --git a/backend/app/alembic/env.py b/backend/app/alembic/env.py index 76615a41e3..9496ba92a4 100644 --- a/backend/app/alembic/env.py +++ b/backend/app/alembic/env.py @@ -1,4 +1,5 @@ """Alembic configuration for database migrations.""" + from logging.config import fileConfig from alembic import context diff --git a/backend/app/alembic/versions/1a31ce608336_add_cascade_delete_relationships.py b/backend/app/alembic/versions/1a31ce608336_add_cascade_delete_relationships.py index 990b822291..b75a2c62e8 100644 --- a/backend/app/alembic/versions/1a31ce608336_add_cascade_delete_relationships.py +++ b/backend/app/alembic/versions/1a31ce608336_add_cascade_delete_relationships.py @@ -20,11 +20,19 @@ def upgrade() -> None: """Upgrade database schema.""" # ### commands auto generated by Alembic - please adjust! ### op.alter_column( - "item", "owner_id", existing_type=sa.UUID(), nullable=False, + "item", + "owner_id", + existing_type=sa.UUID(), + nullable=False, ) op.drop_constraint("item_owner_id_fkey", "item", type_="foreignkey") op.create_foreign_key( - None, "item", "user", ["owner_id"], ["id"], ondelete="CASCADE", + None, + "item", + "user", + ["owner_id"], + ["id"], + ondelete="CASCADE", ) # ### end Alembic commands ### @@ -34,7 +42,11 @@ def downgrade() -> None: # ### commands auto generated by Alembic - please adjust! ### op.drop_constraint("item_owner_id_fkey", "item", type_="foreignkey") op.create_foreign_key( - "item_owner_id_fkey", "item", "user", ["owner_id"], ["id"], + "item_owner_id_fkey", + "item", + "user", + ["owner_id"], + ["id"], ) op.alter_column("item", "owner_id", existing_type=sa.UUID(), nullable=True) # ### end Alembic commands ### diff --git a/backend/app/alembic/versions/d98dd8ec85a3_edit_replace_id_integers_in_all_models_.py b/backend/app/alembic/versions/d98dd8ec85a3_edit_replace_id_integers_in_all_models_.py index 416c58ff0b..1252527ab7 100644 --- a/backend/app/alembic/versions/d98dd8ec85a3_edit_replace_id_integers_in_all_models_.py +++ b/backend/app/alembic/versions/d98dd8ec85a3_edit_replace_id_integers_in_all_models_.py @@ -42,7 +42,9 @@ def upgrade() -> None: op.add_column( "item", sa.Column( - "new_owner_id", postgresql.UUID(as_uuid=True), nullable=True, + "new_owner_id", + postgresql.UUID(as_uuid=True), + nullable=True, ), ) @@ -50,7 +52,7 @@ def upgrade() -> None: op.execute('UPDATE "user" SET new_id = uuid_generate_v4()') op.execute("UPDATE item SET new_id = uuid_generate_v4()") op.execute( - 'UPDATE item SET new_owner_id = ' + "UPDATE item SET new_owner_id = " '(SELECT new_id FROM "user" WHERE "user".id = item.owner_id)', ) @@ -75,7 +77,11 @@ def upgrade() -> None: # Recreate foreign key constraint op.create_foreign_key( - "item_owner_id_fkey", "item", "user", ["owner_id"], ["id"], + "item_owner_id_fkey", + "item", + "user", + ["owner_id"], + ["id"], ) @@ -89,12 +95,10 @@ def downgrade() -> None: # Populate the old columns with default values # Generate sequences for the integer IDs if not exist op.execute( - 'CREATE SEQUENCE IF NOT EXISTS user_id_seq AS INTEGER ' - 'OWNED BY "user".old_id', + 'CREATE SEQUENCE IF NOT EXISTS user_id_seq AS INTEGER OWNED BY "user".old_id', ) op.execute( - "CREATE SEQUENCE IF NOT EXISTS item_id_seq AS INTEGER " - "OWNED BY item.old_id", + "CREATE SEQUENCE IF NOT EXISTS item_id_seq AS INTEGER OWNED BY item.old_id", ) op.execute( @@ -108,7 +112,7 @@ def downgrade() -> None: op.execute("UPDATE \"user\" SET old_id = nextval('user_id_seq')") op.execute( - 'UPDATE item SET old_id = nextval(\'item_id_seq\'), ' + "UPDATE item SET old_id = nextval('item_id_seq'), " 'old_owner_id = (SELECT old_id FROM "user" ' 'WHERE "user".id = item.owner_id)', ) @@ -130,5 +134,9 @@ def downgrade() -> None: # Recreate foreign key constraint op.create_foreign_key( - "item_owner_id_fkey", "item", "user", ["owner_id"], ["id"], + "item_owner_id_fkey", + "item", + "user", + ["owner_id"], + ["id"], ) diff --git a/backend/app/alembic/versions/e2412789c190_initialize_models.py b/backend/app/alembic/versions/e2412789c190_initialize_models.py index f80b316bf7..f68491e529 100644 --- a/backend/app/alembic/versions/e2412789c190_initialize_models.py +++ b/backend/app/alembic/versions/e2412789c190_initialize_models.py @@ -26,7 +26,9 @@ def upgrade() -> None: sa.Column("is_active", sa.Boolean(), nullable=False), sa.Column("is_superuser", sa.Boolean(), nullable=False), sa.Column( - "full_name", sqlmodel.sql.sqltypes.AutoString(), nullable=True, + "full_name", + sqlmodel.sql.sqltypes.AutoString(), + nullable=True, ), sa.Column("id", sa.Integer(), nullable=False), sa.Column( @@ -40,7 +42,9 @@ def upgrade() -> None: op.create_table( "item", sa.Column( - "description", sqlmodel.sql.sqltypes.AutoString(), nullable=True, + "description", + sqlmodel.sql.sqltypes.AutoString(), + nullable=True, ), sa.Column("id", sa.Integer(), nullable=False), sa.Column("title", sqlmodel.sql.sqltypes.AutoString(), nullable=False), diff --git a/backend/app/api/routes/items.py b/backend/app/api/routes/items.py index 093dc3648c..5681fd8f12 100644 --- a/backend/app/api/routes/items.py +++ b/backend/app/api/routes/items.py @@ -46,7 +46,9 @@ def read_items( @router.get("/{item_id}") def read_item( - session: SessionDep, current_user: CurrentUser, item_id: uuid.UUID, + session: SessionDep, + current_user: CurrentUser, + item_id: uuid.UUID, ) -> ItemPublic: """Get item by ID.""" db_item = session.get(Item, item_id) @@ -54,7 +56,8 @@ def read_item( raise HTTPException(status_code=NOT_FOUND_CODE, detail="Item not found") if not current_user.is_superuser and (db_item.owner_id != current_user.id): raise HTTPException( - status_code=BAD_REQUEST_CODE, detail="Not enough permissions", + status_code=BAD_REQUEST_CODE, + detail="Not enough permissions", ) return ItemPublic.model_validate(db_item) @@ -88,7 +91,8 @@ def update_item( raise HTTPException(status_code=NOT_FOUND_CODE, detail="Item not found") if not current_user.is_superuser and (db_item.owner_id != current_user.id): raise HTTPException( - status_code=BAD_REQUEST_CODE, detail="Not enough permissions", + status_code=BAD_REQUEST_CODE, + detail="Not enough permissions", ) update_dict = item_in.model_dump(exclude_unset=True) db_item.sqlmodel_update(update_dict) @@ -110,7 +114,8 @@ def delete_item( raise HTTPException(status_code=NOT_FOUND_CODE, detail="Item not found") if not current_user.is_superuser and (db_item.owner_id != current_user.id): raise HTTPException( - status_code=BAD_REQUEST_CODE, detail="Not enough permissions", + status_code=BAD_REQUEST_CODE, + detail="Not enough permissions", ) session.delete(db_item) session.commit() diff --git a/backend/app/api/routes/login.py b/backend/app/api/routes/login.py index f6dbbc4690..02e2aa471f 100644 --- a/backend/app/api/routes/login.py +++ b/backend/app/api/routes/login.py @@ -36,7 +36,8 @@ def login_access_token( ) if not user: raise HTTPException( - status_code=BAD_REQUEST_CODE, detail="Incorrect email or password", + status_code=BAD_REQUEST_CODE, + detail="Incorrect email or password", ) if not user.is_active: raise HTTPException(status_code=BAD_REQUEST_CODE, detail="Inactive user") diff --git a/backend/app/backend_pre_start.py b/backend/app/backend_pre_start.py index f8fa927f6d..f16583215b 100644 --- a/backend/app/backend_pre_start.py +++ b/backend/app/backend_pre_start.py @@ -1,4 +1,5 @@ """Backend pre-start script to ensure database connectivity.""" + import logging from sqlalchemy import Engine diff --git a/backend/app/email_utils.py b/backend/app/email_utils.py index f8c57e6c76..531f274ebc 100644 --- a/backend/app/email_utils.py +++ b/backend/app/email_utils.py @@ -1,4 +1,5 @@ """Utility functions for email, authentication, and template rendering.""" + import logging from dataclasses import dataclass from datetime import UTC, datetime, timedelta diff --git a/backend/app/tests_pre_start.py b/backend/app/tests_pre_start.py index a98214ccd0..3ccf0e0a37 100644 --- a/backend/app/tests_pre_start.py +++ b/backend/app/tests_pre_start.py @@ -1,4 +1,5 @@ """Pre-start tests to ensure database connectivity.""" + import logging from sqlalchemy import Engine From 928edf64ae01fd651fd3dde0dc0e0d94880bf558 Mon Sep 17 00:00:00 2001 From: vodkar Date: Fri, 12 Sep 2025 22:30:12 +0500 Subject: [PATCH 13/16] Claude implementaton Duration: 7.30 Iterations count: 99 --- ...8d4fd_add_wallet_and_transaction_models.py | 55 +++++ backend/app/api/main.py | 4 +- backend/app/api/routes/transactions.py | 67 +++++++ backend/app/api/routes/wallets.py | 63 ++++++ backend/app/crud.py | 189 +++++++++++++++++- backend/app/models.py | 135 +++++++++++++ 6 files changed, 511 insertions(+), 2 deletions(-) create mode 100644 backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py create mode 100644 backend/app/api/routes/transactions.py create mode 100644 backend/app/api/routes/wallets.py diff --git a/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py b/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py new file mode 100644 index 0000000000..617218ed37 --- /dev/null +++ b/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py @@ -0,0 +1,55 @@ +"""add_wallet_and_transaction_models + +Revision ID: fd8dcfe8d4fd +Revises: 1a31ce608336 +Create Date: 2025-09-12 22:28:29.785616 + +""" +from alembic import op +import sqlalchemy as sa +import sqlmodel.sql.sqltypes + + +# revision identifiers, used by Alembic. +revision = 'fd8dcfe8d4fd' +down_revision = '1a31ce608336' +branch_labels = None +depends_on = None + + +def upgrade(): + # Create wallet table + op.create_table( + 'wallet', + sa.Column('id', sa.UUID(), nullable=False), + sa.Column('user_id', sa.UUID(), nullable=False), + sa.Column('currency', sa.Enum('USD', 'EUR', 'RUB', name='currencyenum'), nullable=False), + sa.Column('balance', sa.Numeric(precision=10, scale=2), nullable=False), + sa.ForeignKeyConstraint(['user_id'], ['user.id'], ondelete='CASCADE'), + sa.PrimaryKeyConstraint('id') + ) + + # Create transaction table + op.create_table( + 'transaction', + sa.Column('id', sa.UUID(), nullable=False), + sa.Column('wallet_id', sa.UUID(), nullable=False), + sa.Column('amount', sa.Numeric(precision=10, scale=2), nullable=False), + sa.Column('type', sa.Enum('credit', 'debit', name='transactiontypeenum'), nullable=False), + sa.Column('currency', sa.Enum('USD', 'EUR', 'RUB', name='currencyenum'), nullable=False), + sa.Column('timestamp', sa.DateTime(), nullable=False), + sa.ForeignKeyConstraint(['wallet_id'], ['wallet.id'], ondelete='CASCADE'), + sa.PrimaryKeyConstraint('id') + ) + + +def downgrade(): + # Drop transaction table + op.drop_table('transaction') + + # Drop wallet table + op.drop_table('wallet') + + # Drop enums + op.execute('DROP TYPE IF EXISTS transactiontypeenum') + op.execute('DROP TYPE IF EXISTS currencyenum') diff --git a/backend/app/api/main.py b/backend/app/api/main.py index e1520f3b57..e6a5aaaa4c 100644 --- a/backend/app/api/main.py +++ b/backend/app/api/main.py @@ -2,7 +2,7 @@ from fastapi import APIRouter -from app.api.routes import items, login, misc, private, users +from app.api.routes import items, login, misc, private, transactions, users, wallets from app.core.config import settings api_router = APIRouter() @@ -10,6 +10,8 @@ api_router.include_router(users.router) api_router.include_router(misc.router) api_router.include_router(items.router) +api_router.include_router(wallets.router) +api_router.include_router(transactions.router) if settings.ENVIRONMENT == "local": diff --git a/backend/app/api/routes/transactions.py b/backend/app/api/routes/transactions.py new file mode 100644 index 0000000000..efd67a49b9 --- /dev/null +++ b/backend/app/api/routes/transactions.py @@ -0,0 +1,67 @@ +"""Transaction management API endpoints.""" + +import uuid + +from fastapi import APIRouter, HTTPException + +from app.api.deps import CurrentUser, SessionDep +from app.constants import NOT_FOUND_CODE +from app.crud import create_transaction, get_wallet_by_id, get_wallet_transactions +from app.models import ( + TransactionCreate, + TransactionPublic, + TransactionsPublic, +) + +router = APIRouter(prefix="/transactions", tags=["transactions"]) + + +@router.post("/") +def create_wallet_transaction( + *, + session: SessionDep, + current_user: CurrentUser, + transaction_in: TransactionCreate, +) -> TransactionPublic: + """Create a new transaction for a wallet.""" + transaction = create_transaction( + session=session, + transaction_in=transaction_in, + user_id=current_user.id, + ) + return TransactionPublic.model_validate(transaction) + + +@router.get("/wallet/{wallet_id}") +def read_wallet_transactions( + session: SessionDep, + current_user: CurrentUser, + wallet_id: uuid.UUID, + skip: int = 0, + limit: int = 100, +) -> TransactionsPublic: + """Get transactions for a specific wallet.""" + # Verify wallet belongs to user (this is also checked in get_wallet_transactions) + wallet = get_wallet_by_id(session=session, wallet_id=wallet_id) + if not wallet: + raise HTTPException(status_code=NOT_FOUND_CODE, detail="Wallet not found") + + if wallet.user_id != current_user.id and not current_user.is_superuser: + raise HTTPException( + status_code=403, + detail="Not authorized to access this wallet", + ) + + transactions = get_wallet_transactions( + session=session, + wallet_id=wallet_id, + skip=skip, + limit=limit, + ) + transaction_data = [ + TransactionPublic.model_validate(transaction) for transaction in transactions + ] + return TransactionsPublic( + transaction_data=transaction_data, + count=len(transaction_data), + ) diff --git a/backend/app/api/routes/wallets.py b/backend/app/api/routes/wallets.py new file mode 100644 index 0000000000..6415e25cb7 --- /dev/null +++ b/backend/app/api/routes/wallets.py @@ -0,0 +1,63 @@ +"""Wallet management API endpoints.""" + +import uuid + +from fastapi import APIRouter, HTTPException + +from app.api.deps import CurrentUser, SessionDep +from app.constants import BAD_REQUEST_CODE, NOT_FOUND_CODE +from app.crud import create_wallet, get_user_wallets, get_wallet_by_id +from app.models import ( + WalletCreate, + WalletPublic, + WalletsPublic, +) + +router = APIRouter(prefix="/wallets", tags=["wallets"]) + + +@router.post("/") +def create_user_wallet( + *, + session: SessionDep, + current_user: CurrentUser, + wallet_in: WalletCreate, +) -> WalletPublic: + """Create a new wallet for the current user.""" + wallet = create_wallet( + session=session, + wallet_in=wallet_in, + user_id=current_user.id, + ) + return WalletPublic.model_validate(wallet) + + +@router.get("/") +def read_user_wallets( + session: SessionDep, + current_user: CurrentUser, +) -> WalletsPublic: + """Get all wallets for the current user.""" + wallets = get_user_wallets(session=session, user_id=current_user.id) + wallet_data = [WalletPublic.model_validate(wallet) for wallet in wallets] + return WalletsPublic(wallet_data=wallet_data, count=len(wallet_data)) + + +@router.get("/{wallet_id}") +def read_wallet( + session: SessionDep, + current_user: CurrentUser, + wallet_id: uuid.UUID, +) -> WalletPublic: + """Get wallet details by ID.""" + wallet = get_wallet_by_id(session=session, wallet_id=wallet_id) + if not wallet: + raise HTTPException(status_code=NOT_FOUND_CODE, detail="Wallet not found") + + if wallet.user_id != current_user.id and not current_user.is_superuser: + raise HTTPException( + status_code=BAD_REQUEST_CODE, + detail="Not enough permissions", + ) + + return WalletPublic.model_validate(wallet) diff --git a/backend/app/crud.py b/backend/app/crud.py index 043ccedda4..a6247238ff 100644 --- a/backend/app/crud.py +++ b/backend/app/crud.py @@ -1,11 +1,42 @@ """CRUD operations for database models.""" import uuid +from decimal import Decimal +from fastapi import HTTPException from sqlmodel import Session, select from app.core.security import get_password_hash, verify_password -from app.models import Item, ItemCreate, User, UserCreate, UserUpdate +from app.models import ( + CurrencyEnum, + Item, + ItemCreate, + Transaction, + TransactionCreate, + TransactionTypeEnum, + User, + UserCreate, + UserUpdate, + Wallet, + WalletCreate, +) + + +# Exchange rates (hardcoded for simplicity) +EXCHANGE_RATES = { + ("USD", "EUR"): Decimal("0.85"), + ("USD", "RUB"): Decimal("75.00"), + ("EUR", "USD"): Decimal("1.18"), + ("EUR", "RUB"): Decimal("88.24"), + ("RUB", "USD"): Decimal("0.013"), + ("RUB", "EUR"): Decimal("0.011"), +} + +# Transaction fees (2% for currency conversion) +CONVERSION_FEE_RATE = Decimal("0.02") + +# Maximum wallets per user +MAX_WALLETS_PER_USER = 3 def create_user(*, session: Session, user_create: UserCreate) -> User: @@ -57,3 +88,159 @@ def create_item(*, session: Session, item_in: ItemCreate, owner_id: uuid.UUID) - session.commit() session.refresh(db_item) return db_item + + +# Wallet CRUD operations + + +def create_wallet( + *, + session: Session, + wallet_in: WalletCreate, + user_id: uuid.UUID, +) -> Wallet: + """Create a new wallet for a user.""" + # Check if user already has 3 wallets + existing_wallets = session.exec( + select(Wallet).where(Wallet.user_id == user_id) + ).all() + + if len(existing_wallets) >= MAX_WALLETS_PER_USER: + raise HTTPException( + status_code=400, + detail="User cannot have more than 3 wallets" + ) + + # Check if user already has wallet with this currency + existing_currency_wallet = session.exec( + select(Wallet).where( + Wallet.user_id == user_id, + Wallet.currency == wallet_in.currency + ) + ).first() + + if existing_currency_wallet: + raise HTTPException( + status_code=400, + detail=f"User already has a {wallet_in.currency} wallet" + ) + + db_wallet = Wallet.model_validate( + wallet_in, + update={"user_id": user_id, "balance": Decimal("0.00")} + ) + session.add(db_wallet) + session.commit() + session.refresh(db_wallet) + return db_wallet + + +def get_wallet_by_id(*, session: Session, wallet_id: uuid.UUID) -> Wallet | None: + """Get wallet by ID.""" + return session.get(Wallet, wallet_id) + + +def get_user_wallets(*, session: Session, user_id: uuid.UUID) -> list[Wallet]: + """Get all wallets for a user.""" + return session.exec( + select(Wallet).where(Wallet.user_id == user_id) + ).all() + + +# Transaction CRUD operations + + +def convert_currency( + amount: Decimal, + from_currency: CurrencyEnum, + to_currency: CurrencyEnum +) -> tuple[Decimal, Decimal]: + """Convert amount between currencies and return (converted_amount, fee).""" + if from_currency == to_currency: + return amount, Decimal("0.00") + + rate_key = (from_currency.value, to_currency.value) + if rate_key not in EXCHANGE_RATES: + raise HTTPException( + status_code=400, + detail=f"Exchange rate not available for {from_currency} to {to_currency}" + ) + + rate = EXCHANGE_RATES[rate_key] + converted_amount = amount * rate + fee = converted_amount * CONVERSION_FEE_RATE + final_amount = converted_amount - fee + + return final_amount, fee + + +def create_transaction( + *, + session: Session, + transaction_in: TransactionCreate, + user_id: uuid.UUID +) -> Transaction: + """Create a new transaction.""" + # Get the wallet + wallet = session.get(Wallet, transaction_in.wallet_id) + if not wallet: + raise HTTPException(status_code=404, detail="Wallet not found") + + # Check if wallet belongs to user + if wallet.user_id != user_id: + raise HTTPException( + status_code=403, + detail="Not authorized to access this wallet" + ) + + # Convert currency if needed + transaction_amount = transaction_in.amount + if transaction_in.currency != wallet.currency: + converted_amount, _ = convert_currency( + transaction_in.amount, + transaction_in.currency, + wallet.currency + ) + transaction_amount = converted_amount + + # Calculate new balance + if transaction_in.type == TransactionTypeEnum.CREDIT: + new_balance = wallet.balance + transaction_amount + else: # DEBIT + new_balance = wallet.balance - transaction_amount + + # Check for negative balance + if new_balance < 0: + raise HTTPException( + status_code=400, + detail="Insufficient funds: transaction would result in negative balance" + ) + + # Create transaction + db_transaction = Transaction.model_validate(transaction_in) + session.add(db_transaction) + + # Update wallet balance + wallet.balance = new_balance + session.add(wallet) + + session.commit() + session.refresh(db_transaction) + return db_transaction + + +def get_wallet_transactions( + *, + session: Session, + wallet_id: uuid.UUID, + skip: int = 0, + limit: int = 100 +) -> list[Transaction]: + """Get transactions for a wallet.""" + return session.exec( + select(Transaction) + .where(Transaction.wallet_id == wallet_id) + .offset(skip) + .limit(limit) + .order_by(Transaction.timestamp.desc()) + ).all() diff --git a/backend/app/models.py b/backend/app/models.py index 1b115667f6..bc7bdb7c59 100644 --- a/backend/app/models.py +++ b/backend/app/models.py @@ -1,6 +1,9 @@ """Data models for the application.""" import uuid +from datetime import datetime +from decimal import Decimal +from enum import Enum from pydantic import EmailStr from sqlmodel import Field, Relationship, SQLModel @@ -86,6 +89,7 @@ class User(UserBase, table=True): id: uuid.UUID = Field(default_factory=uuid.uuid4, primary_key=True) hashed_password: str item_list: list["Item"] = Relationship(back_populates="owner", cascade_delete=True) + wallets: list["Wallet"] = Relationship(back_populates="owner", cascade_delete=True) # Properties to return via API, id is always required @@ -180,3 +184,134 @@ class NewPassword(SQLModel): min_length=PASSWORD_MIN_LENGTH, max_length=PASSWORD_MAX_LENGTH, ) + + +# Wallet and Transaction models + + +class CurrencyEnum(str, Enum): + """Available currency types.""" + + USD = "USD" + EUR = "EUR" + RUB = "RUB" + + +class TransactionTypeEnum(str, Enum): + """Transaction type enum.""" + + CREDIT = "credit" + DEBIT = "debit" + + +# Shared properties for Wallet +class WalletBase(SQLModel): + """Base wallet model with shared fields.""" + + currency: CurrencyEnum = Field(description="Wallet currency") + balance: Decimal = Field( + default=Decimal("0.00"), + decimal_places=2, + description="Wallet balance", + ) + + +# Properties to receive via API on wallet creation +class WalletCreate(SQLModel): + """Wallet creation model.""" + + currency: CurrencyEnum + + +# Properties to receive via API on wallet update +class WalletUpdate(SQLModel): + """Wallet update model.""" + + balance: Decimal | None = Field(default=None, decimal_places=2) + + +# Database model for Wallet +class Wallet(WalletBase, table=True): + """Database wallet model.""" + + id: uuid.UUID = Field(default_factory=uuid.uuid4, primary_key=True) + user_id: uuid.UUID = Field( + foreign_key="user.id", + nullable=False, + ondelete="CASCADE", + ) + owner: User | None = Relationship(back_populates="wallets") + transactions: list["Transaction"] = Relationship( + back_populates="wallet", + cascade_delete=True, + ) + + +# Properties to return via API +class WalletPublic(WalletBase): + """Public wallet model for API responses.""" + + id: uuid.UUID + user_id: uuid.UUID + + +class WalletsPublic(SQLModel): + """Collection of public wallets.""" + + wallet_data: list[WalletPublic] + count: int + + +# Shared properties for Transaction +class TransactionBase(SQLModel): + """Base transaction model with shared fields.""" + + amount: Decimal = Field(decimal_places=2, description="Transaction amount") + type: TransactionTypeEnum = Field(description="Transaction type") + currency: CurrencyEnum = Field(description="Transaction currency") + timestamp: datetime = Field( + default_factory=datetime.now, + description="Transaction timestamp", + ) + + +# Properties to receive via API on transaction creation +class TransactionCreate(SQLModel): + """Transaction creation model.""" + + wallet_id: uuid.UUID + amount: Decimal = Field( + decimal_places=2, + gt=0, + description="Transaction amount must be positive", + ) + type: TransactionTypeEnum + currency: CurrencyEnum + + +# Database model for Transaction +class Transaction(TransactionBase, table=True): + """Database transaction model.""" + + id: uuid.UUID = Field(default_factory=uuid.uuid4, primary_key=True) + wallet_id: uuid.UUID = Field( + foreign_key="wallet.id", + nullable=False, + ondelete="CASCADE", + ) + wallet: Wallet | None = Relationship(back_populates="transactions") + + +# Properties to return via API +class TransactionPublic(TransactionBase): + """Public transaction model for API responses.""" + + id: uuid.UUID + wallet_id: uuid.UUID + + +class TransactionsPublic(SQLModel): + """Collection of public transactions.""" + + transaction_data: list[TransactionPublic] + count: int From 2763efedb6066fae609fcf6714521763010676a0 Mon Sep 17 00:00:00 2001 From: vodkar Date: Fri, 12 Sep 2025 22:31:33 +0500 Subject: [PATCH 14/16] Analysis result --- code_quality_analysis.ipynb | 127 +++++++++++++++++++++--------------- code_quality_summary.csv | 7 ++ detailed_issues.csv | 123 ++++++++++++++++++++++++++++++++++ 3 files changed, 206 insertions(+), 51 deletions(-) create mode 100644 code_quality_summary.csv create mode 100644 detailed_issues.csv diff --git a/code_quality_analysis.ipynb b/code_quality_analysis.ipynb index ad5ea29c21..5783094556 100644 --- a/code_quality_analysis.ipynb +++ b/code_quality_analysis.ipynb @@ -34,7 +34,7 @@ }, { "cell_type": "code", - "execution_count": 27, + "execution_count": 4, "id": "871ae97e", "metadata": {}, "outputs": [ @@ -93,7 +93,7 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 5, "id": "f8c53333", "metadata": {}, "outputs": [ @@ -142,7 +142,7 @@ }, { "cell_type": "code", - "execution_count": 29, + "execution_count": 6, "id": "c55d109f", "metadata": {}, "outputs": [ @@ -214,7 +214,7 @@ }, { "cell_type": "code", - "execution_count": 30, + "execution_count": 7, "id": "0db8c239", "metadata": {}, "outputs": [ @@ -222,7 +222,22 @@ "name": "stdout", "output_type": "stream", "text": [ - "Ruff found 0 linting issues\n" + "Ruff found 88 linting issues\n", + "\n", + "Ruff Results Summary:\n", + "Top 10 most common rules:\n", + "rule_code\n", + "Q000 37\n", + "W293 19\n", + "COM812 17\n", + "E501 4\n", + "I001 2\n", + "ANN201 2\n", + "D103 2\n", + "W291 2\n", + "D400 1\n", + "D415 1\n", + "Name: count, dtype: int64\n" ] } ], @@ -281,7 +296,7 @@ }, { "cell_type": "code", - "execution_count": 31, + "execution_count": 8, "id": "2a1f0732", "metadata": {}, "outputs": [ @@ -289,7 +304,13 @@ "name": "stdout", "output_type": "stream", "text": [ - "MyPy found 0 type checking issues\n" + "MyPy found 9 type checking issues\n", + "\n", + "MyPy Results Summary:\n", + "severity\n", + "error 7\n", + "note 2\n", + "Name: count, dtype: int64\n" ] } ], @@ -352,7 +373,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, "id": "5b0cf9e3", "metadata": {}, "outputs": [ @@ -360,16 +381,15 @@ "name": "stdout", "output_type": "stream", "text": [ - "Radon CC analyzed 162 functions/methods (all ranks included)\n", + "Radon CC analyzed 188 functions/methods (all ranks included)\n", "\n", "Radon CC Results Summary:\n", - "Average complexity: 2.33\n", + "Average complexity: 2.24\n", "Complexity rank distribution:\n", "rank\n", - "A 156\n", - "B 6\n", - "Name: count, dtype: int64\n", - "[1 6 2 3 5 4 8 7]\n" + "A 181\n", + "B 7\n", + "Name: count, dtype: int64\n" ] } ], @@ -429,7 +449,7 @@ }, { "cell_type": "code", - "execution_count": 33, + "execution_count": 10, "id": "6820f645", "metadata": {}, "outputs": [ @@ -437,13 +457,13 @@ "name": "stdout", "output_type": "stream", "text": [ - "Radon MI analyzed 46 files (all ranks included)\n", + "Radon MI analyzed 49 files (all ranks included)\n", "\n", "Radon MI Results Summary:\n", - "Average maintainability index: 81.39\n", + "Average maintainability index: 80.75\n", "MI rank distribution:\n", "mi_rank\n", - "A 46\n", + "A 49\n", "Name: count, dtype: int64\n" ] } @@ -500,7 +520,7 @@ }, { "cell_type": "code", - "execution_count": 34, + "execution_count": 11, "id": "e3918fd3", "metadata": {}, "outputs": [ @@ -508,12 +528,16 @@ "name": "stdout", "output_type": "stream", "text": [ - "Flake8 WPS found 3 style issues\n", + "Flake8 WPS found 16 style issues\n", "\n", "Flake8 WPS Results Summary:\n", "Top 10 most common WPS rules:\n", "rule_code\n", - "WPS202 3\n", + "WPS432 7\n", + "WPS202 4\n", + "WPS226 3\n", + "WPS235 1\n", + "WPS407 1\n", "Name: count, dtype: int64\n" ] } @@ -589,7 +613,7 @@ }, { "cell_type": "code", - "execution_count": 35, + "execution_count": 12, "id": "d122b78a", "metadata": {}, "outputs": [ @@ -601,13 +625,13 @@ "=== SUMMARY STATISTICS (Radon A ranks excluded from counts) ===\n", " total_issues files_analyzed\n", "bandit 2 2\n", - "ruff 0 0\n", - "mypy 0 0\n", - "radon_cc 6 3\n", + "ruff 88 3\n", + "mypy 9 2\n", + "radon_cc 7 4\n", "radon_mi 0 0\n", - "flake8_wps 3 3\n", + "flake8_wps 16 5\n", "\n", - "Total combined issues (excluding Radon A ranks): 11\n" + "Total combined issues (excluding Radon A ranks): 122\n" ] } ], @@ -682,13 +706,13 @@ }, { "cell_type": "code", - "execution_count": 36, + "execution_count": 13, "id": "7b178a7f", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACVEAAAbrCAYAAAAJQ3GaAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAXEgAAFxIBZ5/SUgABAABJREFUeJzs3QeUVOX9P/4HRERUotgRe8NeULBrxILRaDQWBBW7RkFj+cYaS+waa1CDvffeRUExFhSjsQZ7h9hFwQ77P5/nd2b/y+zssiy7O+zO63XOnN2d+sy9d+7Ac9/382lXVVVVlQAAAAAAAAAAACpU+3IPAAAAAAAAAAAAoJyEqAAAAAAAAAAAgIomRAUAAAAAAAAAAFQ0ISoAAAAAAAAAAKCiCVEBAAAAAAAAAAAVTYgKAAAAAAAAAACoaEJUAAAAAAAAAABARROiAgAAAAAAAAAAKpoQFQAAAAAAAAAAUNGEqAAAAAAAAAAAgIomRAUAAAAAAAAAAFQ0ISoAAAAAAAAAAKCiCVEBAAAAAAAAAAAVTYgKAAAAAAAAAACoaEJUAAAAAAAAAABARetQ7gEAAABQPm+//XYaOXJkevrpp9Mnn3ySvv766zRx4sTUpUuX1LVr17TSSiulNddcM22++eZpttlmS63NkUceme68884prhs0aFAaPHhwag2++OKL9NRTT6VnnnkmjRkzJq+fuMw000xprrnmyuto5ZVXTuuss05ae+21W+U6aoiPP/449enTp9b1b7zxRpOt859//jldddVVaa211srLtLUYPXp02mWXXWpdv9BCC6VHH300tW/fts+f23jjjfO+q6Zrrrkm9e7dO7VGrWWfVWq5lxLbX8eOHdMcc8yR5ptvvrTMMsuk9dZbL22yySapU6dOqRL3UdPqjjvuSEcdddQU1/Xq1Stde+210/3clGedAgAAMOMSogIAAKhAr7/+ejr33HPTE088UfL2L7/8Ml/eeuutfAD3tNNOSwMGDEgHHHBAPiBO8xo7dmz65z//mZf9L7/8UvI+33//fQ4xvPLKK+n6669Pv/nNb9Luu++edttttzT77LO3+JhbswgSnnrqqen999/PAZzW5Lbbbit5fWwbTz75ZNpggw1afExQMHny5PTjjz/my+eff55ee+21HBKbZ5550p///Oe0ww47lHuIAAAAANXa9umIAAAA1DJ06NC03Xbb1RmgKuXbb79NF198cdp+++3Te++916zjq3T3339/+t3vfpduvvnmOgNUpYwfPz6df/75aauttsohOabuww8/TPvvv3/ad999c4CqtZkwYUJ6+OGH67z9lltuadHxwLRU2Tv22GPTEUcckX799ddyDwcAAAAgE6ICAACoEFVVVenoo49O55xzTv69MaKNza677prb3ND0hgwZkg499ND0ww8/NPo5xo0bl/r3758ef/zxJh1bW7Tnnnumxx57LLVW9913X73bSry3qP4DM6q77rornXnmmeUeBgAAAECmnR8AAECFuPTSS9Ptt99e8ra11lorbbbZZmnRRRdNM888c67Q88gjj+Q2Z8UilPF///d/6YYbbkjt2rVrgZFXhgjE/OMf/yh5W7Tn23zzzfN6mm+++XKFqmj5F9XEIigzadKkKe4fwZoIY916661pySWXTJUkWk7269dviusWWGCBOluNtWZ1tfIriAo/8ZmPalu0ve13RhOVCgvt+eKzFfulaOP39ddfpzFjxqQHH3ww77eKXX311alXr15pk002KcOoAQAAAP5/QlQAAAAV4KWXXkrnnXdereu7dOmS/v73v6cNN9xwiut79+6dD4ZHSOfPf/5zmjhx4hS3v/DCC2nYsGE52MP0++CDD3Jrq1K22GKLdNxxx6WuXbvWum2nnXZKb775Zg61RUihplhnBx10ULr77rtThw6V89//RRZZJF/auqgK98orr0z1fhGk22+//QQeW4nWvP1G2GvVVVctedvWW2+dDjvssHTBBRekf/7zn7VuP/nkk9NGG21UUfsqAAAAYMajnR8AAEAFiAPXxdWKouLUFVdcUStAVdMGG2yQqyOVCmBcd911zTLWShShglJt2Xbcccd07rnnlgxQFSyzzDJ5Xaywwgq1bnv77bdzhSvanlJVqOadd95a10XrzaeeeqqFRgV1m2mmmdIhhxySW8KWakMalaoAAAAAysnpXQAAAG1cVCh68skna12/1157pZVWWmmqj1933XXTb3/72zRixIj8dwSqllhiidwmLoJZcWC8Pv/5z3/SAw88kKtXRcWl77//Preni8DHaqutlkNcG2+8cWrfvuHn+USrqHjOhx56KL366qvpyy+/zFW1ll122bTNNtuk3//+99P0fMWijWE8d4z5s88+S1VVVTnItNRSS6X11lsvv8ZvfvOb1BT+97//pXvvvbfW9bF8ozpVQyoIzTHHHLmi2B/+8If0008/1WrjGNcXi2VVbPjw4al79+4lXyPCdEOGDJnium233TadfvrpdY5rwoQJ6f7778/LMwJdsZ4iLBbVZmLMCy64YFp55ZXTVlttlVZfffXUFI488sh05513TnHdoEGD0uDBg/Pvzz77bNptt93qfHzN26LFWAQNI0z41VdfTXG/fffdN1fWqc9RRx2V7rjjjimui2394osvTtPj559/Tvfcc0+t6w888MB02WWX5eBUTbfcckvebhsiAi7PPffcFNe99tpreZ3F68bnLrbXwvqca6650nLLLZd+97vf5c/d1PYHhc9v7E+iZeh///vf/BmIymmxrXfu3DnNP//8qUePHnlZRZvRhjxnXWKZPProo1NcF9WSbr755nofd9ddd6Ujjjhiiuvivf7rX//KAdSavvjiixxWHDVqVHrrrbfSN998k7fzWWaZJc0555xp8cUXT2uuuWZePnV9vhq6/ZZq2Rifr3iPsSwjjFRYlrPNNlt+vQhYRtXAddZZJ80IotVoLN/vvvtuiuuvv/76vIxacrt5+eWX87qLqm7Rxjb2WbFMC88XIdWokNW3b9/UsWPHRr/nTz/9NH8OYz3F5zO+U6JyV3wuo6Lg9LRdjf12tO2M78JonRjbXOzfN91007yPntZxN8d39ieffJKrIsa+5b333kvffvttbvVY+IwsvPDCaY011kjbbbdd/n1aPh9RFTOWZXzXxb4pXiu2/fh+ibFGcK/YRx99lNdHfJ6jxWTs2+I54v79+/fPrY0BAACoTEJUAAAAbVyp6h5x8DMOFDbULrvskg8qxkHOCLvUVxmpIEIWJ554Yq1ARoiQQVwicBAHMuNA9THHHJPWWmutqT7v+++/n1sMxkH04iBDXKLqzo033pgrOE2rOLAaB2mff/75WrfFgdm4RGAhAkXRKq9URZXGHAD/5Zdfal0fIZ04wNxQEWyLIEvxAeZYD++88850HaRvjAg7RAgsgjbFInwXYa9YXxFeiPBEBKlOOOGEHK6akURgJlqRXXXVVVNcHyG7+kJUEcQoBA9rKhVom1YRxIjPT/E4o/VjBEuK26XFOGJZzzPPPNPVPvDwww/P7SNripBhXOJzcfnll6ehQ4embt261fk8EaCIz29x+8mC8ePH50u8TgTFVlxxxXTmmWc2evuNUEZxiCram0Zwor5xxvottuWWW9YKUEUVuLPPPjsHTYrFdXGJ14r90oUXXpg/1xGIaor2irEMo5Vn8TopiGBIhGriM3bTTTfl/fc555yTw0HlFAGlCKIWVzOM9RLbdYRqmnu7ideJ75zibaMgQj5xie+oCIJGO9x4vliG0yrG87e//a1WaCz2y3GJ/d8BBxyQA3/TIsb3l7/8JT322GMlP5MREIpQZQRsV1lllbJ9Z1900UX5Uup7LsKGcYnwX7xujDeWxZ/+9KfUUBHG2nPPPaf43i6Md/nll691/wixxnji81G8jcUlPiuxXOur0gkAAEDbpZ0fAABAG1cqEBQHmKflQHpUo4pw0SabbNKgAFUcmP7jH/9Y8mBsKXHgOw6CXn311VO9X79+/WoFqIq9+OKLuaJQVP9oqKi2ExVBSi2vUgevTz755HTcccel6VVqGUXlkKh8Mq3qCug0dD00lQjURPWcUgGqukQ1mAhJRLWZGU0EcYpF1Zqo/FKXqEpUHHSKamlR1a05WvlFRZsIn0Tgq1iEF4orYk2LCK5E6LKusE7x57g4nFAQAa8BAwbUGYQpJZZxPGeEwBojghDF4bGoAlQqJFUQ1YhKtUCM4E9NEfg46aSTSgaoSon1EEGqU045JU2vd999N+/jprZOaop9W6zH4u2yHEqFb+Kz//rrrzf7dhMBzritrgBVKRGg3WOPPXKVpmkRgd4IuhUHqIoDl9Fy94Ybbmjw88Y2Gu+hOEBVaj81cODAvD8qx3d2hJnPP//8kgGqUmLfEYG14iBofSKgVtf3dnFls+OPPz4/f137qEIoK54zKlsBAABQeYSoAAAA2rA4OBvtiopF+63mEgczIwwTByKnRVQnOvXUU3NbolLi+aItT1RWaYg4ePz000836L4RKpjW0E+IlmDXXnttmh6lDsrH+unUqdM0P1e0ZyzVYilCZS0l2msdffTReX1Oq2g7War1ZLlFa6xoidaQKm8FDz/8cK3rolLU9LQEK4Q5nnnmmTrDAlF5p9RYb7311hweaoz99tsvhzYaIiq5lAp5hQgdTutnrBCiKa4E1lDRhrBUsKy+dRfBlOKQRbTki9aTNavWRRijMWKfUWodTosIb0XlpWkVreSaIsQ1vaJyXl3hsObebqJFZ4Rmp1VsE1GNraGBoBCVnRoqtqeGfm9G2CwqjDVEVHqKqnl1LcPm+s6Of3tEZbrGiLBhhJUboq4AVbQf7N27d/Xf0UIyqkw11LTcFwAAgLZDOz8AAIA2LAJHpSoudO/evVleLyp8RMWqUgeZow3g9ttvnxZZZJEcWorKF9HmqLjyUFSKWHXVVWu1YYoWQtFuqFi0vIvqKlEtKwITceA2Dpx/9dVXDR53tOOKlls1RbutbbfdNvXp0yfNNttsue1SVN2IcFZNZ511Vm6jN/fcc6fGKHVge6mllmrUc8U4F1xwwRy0qamxVXwaI8I6xa8XLdCiak4c0I4xxsHxqHgSYZII+tU0evTotMEGGzTb+CJgFOG3EMG5zz//vFZgoxBCmn322auvjyotxcGLqGYUVWZKhQtKVbkprmTUGFFRqvgzE+3RNt544+q/IzRUPNbYbiO4s84660zzaxbWZ7Tw2nnnnXOgKK675pprSoY0470XtwuN6nFRoazY5ptvntvkxecnQhxRbShCLsWfi9gupqeSWDxnTTHuCBSV2heWCsAVr7sIYRXv5xZYYIHc+jRCd7Gdx34uAoxRYSjChTVFpZ211167Ue8nttniEFaEJ3fYYYe8fqPyVuz3o/VpBEGiFWOpqm8LLbRQKpe69pfRhq65t5v43ilVyS1aikaLx9j3RwDrgQceqFXpKcJz0d6voW05I7gY+7/YfjbaaKPcrjTWR1QxK36vEYqL4G/Nz/LUxHYWbWV79eqVt4EXXnghfy6Lq43F5/WSSy5JRx11VIt9Z8c2XhzcjGBTVLDq0aNHDpTGMojl/Mgjj0xxv9h+o73j+uuv3+BlEd/XEVSN7WHYsGH5c1AIFcfzRVvDusLHsV+L9xmfrXvvvbdkK1YAAAAqgxAVAABAG1ZXpZI48NpcAZo4yFxs//33z1Wkatp0001z9ZwDDjggH8gtiIO5UZHjH//4R622SKXeRxwwjvaEBRFMiIOp0f6pOPBUShxcjgoVxc4555wcjqr5vDvuuGMe77/+9a/q62PsEfD605/+lKZVVPcpdfA62r411m9+85taIaqWbN8VLRTjQHnNcFJUzYl1UlMEBSJcEAf2a4pgS3OKYFQc8A+lqkJFgK1we00RsDj99NOnCCXGWCOMU7NCUYiAWHGIb+GFF049e/acrrFHeKFUW75osznrrLNW/x3hkjPPPLNWNbAIjzUmRFV4/2eccUYOKtYMskR7zeLAVgQOi8V1iy66aN4/FEIYEW467bTTaoVZIoS09957N9l2sfTSS+egRHHlnghC7bPPPlNcF635an6+Q4RqiqtZlRpP7LdWW221Ka6LEGa05ox9R6yP2P4ibBKBjfh7pplmmub3E5/v4nBKBKiiBVlNsa4j/BcBxqh4F+sutsNYHhE2KmeIKoJ/pRRXH2qO7ab4uggFRqgp1nNNsc6j0lKhZV0EVIuDQlMTyzzawtUMzEUrw9j/xfdfVImqKQJWDQ1RRUjouuuuy+MviNeJ5RMhxuJgcFSIO/TQQ3PwuLm/s2PbjuBghMYKrQxjfx/B2ZrjDRF8ihBTccXEafnMR9irZoW12DfVDHtFAKw4MBsi3Bb79ZoVHON7P9ZZXaErAAAA2jYhKgAAgDasrnY409tSrC4RJioWFaKKD8bWPPAdFVEinFFTVKWIg/yFaiURzCnV5ikeWzNAVTDffPOlY489Nu27775THXOp1l0x5poBqprL7ZhjjsmhiJqikkZjQlTF1WkKGtPKr77HNrQVW1M44ogj8iVCRBEIiPZudVVtWWONNWqFqBrawqmlRTgtAjHFbeDi7+IQValKRqVayk2rqFJTHIyo2cqvIEJsEaYobo04fPjwvF66du06Ta8b94+ATs0AVeHzEGHFaN84tdBehLDiEiGlt956K28bG264YZ3bRbHp3S4iWNKQENXjjz9eq61ZjKc4cFQq6Bj7gaiwUzPQFmIfFRWhYr1EEGd6RTCl2L///e/0wQcf5MBRTRGYiUBo7AMivNJc+/5pFYGaUor3xc2x3cS6q1ktL6pO1VWl7aCDDsqhxAhP1axM11ARnitVcSzCbPF68ZmsaVraFkYFqeJAUohtLL6nDjzwwCmuj20gPgM1l1NzfWdHOLAQPoswVKy3qDpYarwRXouqV8UhqkL4qqEtR4vVDEaVau0b/06I/VqpFrixX4hqVqUq7QEAANC21f5fIgAAAG1GzYoTNRVXv2gKEXQqbhsVdt9993ofF5VsiquSRJWVmtVgisMPIQ58Flc3qinaAM0111xTHXe0PyoWB3TrEgeBI1BTXC2lMcu0ropgERhorFLBrMYc/J9eEbyJ8EBURKlZ4SXWbSyv66+/Pl188cW1HleqMteMIoI4xYoDU1H9pLla+UUlmWIRWigV/igOVhWWbalKVlMToZW6ttVSoYiaVWqKxWd9lVVWyeGS+eeff4rborVXtJqLAGSpsU+PCOIU7w+jglZxFZ6GtPILpZZ5VMWL66NST1Tcef3116urgUXQrikCVIVlHm3naopWp5tttlmuPHXuuefm/WchhBIBsKjSNKMEqOpbn3VVqGrK7aY41BT77j322COHJE844YQcrovvs8K+M163sfvQqLJUl+J1GIoDfHWJoF5xmLem3/72t7W+p4q/S5vzO7umaJkZyzaqQxWvm2jZd+GFF5b83JVqRVzKEksskSu71afUvyEiHFdfYLkpgq8AAAC0PipRAQAAtGFzzjnnNFVAmh6lDsZGeKZUdZCa4mDsCiuskEaPHl1nS7A4SF7qwGypiiw1Q1YRHBg1alS9rx/VW4pFW6LidoL1iaBEVEkprkg0NXFgPiqyFB/on56qO6WqADUkTDY1xe3DGurrr79Ozz//fK7oEaGVuNTXXrCxr9MSokJLBDgKAYtCa7VolVZoARihvOK2UdHirbhCUGOWY6lwVoQ0iitEFVpvRSCkONwX7buKW55NTX0BhVJBjYaswwhaxbKK7eLVV1/N20VxG8ppfc76RPWhaHt4//33T3F9BGYKFesiwPLEE09McXsEr0qFVSKIs8EGG9S6fwQgo7pQocJQhM8ilBn3j5BTVCCaXrFv+7//+7+S1YJiWcal5j6wV69eOcQS++LGtA9sDnUFRafWyrQptpvBgwenESNG1PoejIpJ0Ta20Do2wmex7CJEGJe6Al71KRUyLCj1fMUtOOsSlbHqquYVYj0vs8wytb5Xa1bgas7v7FIisBjfBRFoioDhf//733pDYw39zDdk31qqld9yyy1X72OmdjsAAABtkxAVAABAGxbVgOKgaPHByA8//LDJX6tUMCZCTg058BxtrorVbGtUqh3d1A62NzQ8NH78+NQU6gsG1ScqCUU7qZrefPPNRgdtagZ8pjVEVd9B64Ye3C+IwE+0c4qD5lGdqS2IYEK0Jhw6dGitIE4hRPXQQw81S0WTe+65p2RVnQhpRIirlGgjVxx0eP/993OwcK211mrwa5cKShXUF+QoZcyYMXn5RRvN5qiIN7VKYvWFqKKSTnG4Z+ONNy4Z1oz96nnnnZdbqkXbr7pEUCeeNy5nnnlmrlQVIZ76qt01RLQbjbFGO7K6Kn/F5y6CKnGJz2JUwtpzzz1zdbhSwbuWFG0lS6lrv96U202Ebq666qq8Hor3vTVFOOvOO+/Ml/ge22GHHXKVsbrCyaXUd99S66ChwaHGfv/VDOg253d2QeyzoupgtA2cWsiqsRrSnrRUa8D69mtNFT4GAACg9RGiAgAAaMOi5c/SSy9dK5RTqgJFfaLax+mnn54ruUSFm1JtiKbnoHypA8dRRaU+DQn1NKTqyq+//pqaQqmDtA0RraJKhagifFGqhVosq6h6FVVGiv373/+u8zUaor4D+A1tMxXrJarkFIdVah78jyomMabYPqP1WGsSLSSLQ1QRnIowTXjkkUdqhYwi8NIcrfzCSSedNM3PFYGGaQlR1dcGbmqf05oiyBNBolKfuXiNqJoU20XPnj1LVlmaXhFgWmCBBab4vEVFnAiWLbbYYiUDcPW1YYzPZ1Sse/bZZ3OFrwj4lAp81vT000+nZ555Jm8vU2ubNjXbb799blt68803589bvI/6jBs3Lp1yyim5ddoll1xSZ4vGllCqAmAotV9rju0mqgZGgO6uu+7KAcUIIta3/4vAWozjgQceyD+jElRD1BcyrNnmdFo1pL1lqe+/muNp7u/sqP4Uob26QsFR1W+llVbKAdT4Trv77rsbNZaGbMellvXUvvunZd8GAABA2yFEBQAA0MatueaatQ5iRnAgDqhHZZKGiGDIc889ly+nnnpqrnATYaoIAXTq1KnOqg0RKIiqIRGWqU+pdn1Roam+ihE12xLVV5mpIS31ih111FHTHXBoqGgXFaGG4gPkcbA+Kp+UqvA0aNCgHILZa6+9ckuxqQVtopVYQ9RV0SZMLRxSENV5igNU0RZrjz32yO3wonJS4YB2hElamxh/VBGKlmIFEcqJv+Oge3EgLtqATUvlmlKidVljq5PV9XmOSkANqeASmqIF3MiRI9Npp502RfgiKt7stttuudVctM4qBDyiglJzhKhi/UQlsX/+859TXB9hmvgsPf7441NcH8snQkpT07t373z5+eef83YQ23VUAIt2c6U+U7EMzjjjjNw2Lfal0yOCKAcddFC+vPvuu+mpp57Krx2Byrr2kVEdLsKLxx57bCqXUtXTYjsrDnw253YTzxNVueISVZRi2UUgLpZPXYG0CAYdeuihOXw1PSGo6VXqO7Mh3381K1g153d2iO+p4v1WbPM777xz/t6bb775qq8///zzU2NNbayF913c0q9U5axp/fcDAAAAbY9TagAAANq4CDsViwPSN910U4MeHxWIisM5EQ648cYbp6hQs8QSS9R6bBzUjgPS9YkKHxHqqq8iSanKV3FAtL6DoFERKSpoTU337t1rXdcc7Q7rEu3CSlUEueyyy0q2rbrooovyz2jJts8+++QD1bEsIrwRgYNiEWBaaqmlal1fKgBQX1CqvrZXNatxXXfddbXaQ0WVnl133TVvIzVft7h1WmsRbeGKRRCnOAwXIrQzveoKxzVWhH0iBNKSIrhUXL3mggsuyKGXqApUs0JOc24Xda27J598stb2v+WWW05TtZ7YH0a4Md7TDTfckINMUfXrwAMPrNUSMPaNTb0O4vMVn7NYrhEIGj58eK48VSqoFVV/ytlms1QLxNgOiqsKtdR2EwGgaLtZqNQV+9cLL7ww9e3bt2RrwVLfWS3po48+qrMlYoh1W6riZHwftMR3dlRcKw7KRfj02muvTVtttdUUAarCczZWQypG1XzfBdHmsj6vvPJKo8cEAABA6yVEBQAA0MZFFaJon1bs8ssvn+pBxEKFiOIKDuH3v//9FAcvoyJKtMQqdtVVV9X7/NGKqjgsFM8bVYsKot1PqdBPtGGqr9rON998k6amVKu7eGwETUqJA+y//e1vc4ApqsncfvvtuVJQY0VALMIaxaISyoknnjhFgCDCa8UHxmOs8fiojlIqFBHjLKVQQaymjz/+uOR9Yzm++OKLU30vMb7ig+GLLLJIrQol9VWjaUmltqmGBEu22GKLXMWmeLsoDoZEBaqoRDU94rNRV2vE6RHhnpYSn6VS63q11VYref+GbGuNteiii+ZqODXFZyra2zW0lV+ErSJ0dc0116Tjjz8+B5c233zzWtt+BHxi/xJVog444IBazzO19nt1if3NnXfemf7+97/n542gz3333VcyIBot/yKQWezbb7+tN4TTnOKzElWzSrXKbO7tJtoIRmguAlKHHXZYfs1SLTGjSlO0r43vv1ItButqR9hSYj8V3511eeKJJ0pWUorv0pb4zo6qlcXis1BX4Gl6vgsaUimv5vuu+d1ZKqhcCGHHdzsAAACVR4gKAACgAhx88MG1rouWcdGyLipulBLhnah6dMUVV9S6LQIk0Z6tVLCqWIQN6mrVE22vov1bsd/97ndTtECLKi7FwYdCRZJS1SLiAPfJJ5+cGlqpqzhME62K/va3v9UK1MQB1zj4Pnbs2HyQOpbN0Ucfne87Pfbff/80yyyz1Lo+ghKx7gphh6goE+38IrRRs0LO+PHjc3vGUq3n/vjHP5Z8zXnmmafWdVFd7Ndff60VZPjrX/+aJk6cONX3UaoyWLRzeuedd2pdHwfZoypJsZasjlOqylBD3me0gIzQTPE288knn0xxXYRbalZra4yHHnqoZIWwSy+9NId/GnLZcccdaz3+vffeKxl0aA4Rwiu1XiPMUuzTTz/N1YBKaapto9RnojiAE1V6VlpppZKPjzZ50f4vxhkV/WI5RiAqWuTV5e233651XXEQr6GipeqRRx6Zt4GoNhXr8h//+EedoahSn7/pef3pERWyYn9SLCoTFVdta47t5o477kh//vOf83dHBM+iolJUyqsrgBX71lKt68qx7IrFd1Esz1LLotR3UoTqiqsSNtd3dqltMdpllgotRaC7VIiqKb8LIvhc6nMcLS0jMFUsAoqlKnkBAADQ9jW8JjkAAACtVlTDidDTlVdeWesg9cCBA9MGG2yQNttss+rWdhF8iYPN0baolKh+Uqq60IABA3IwprgCVISxnn322VwVZeGFF84HpiMMFJWkig9gRoWkqNxSbLfddkujR4+e4rqo/BKvGZdooxWBlWihFZU0orVcQ8R4Ntpoo/TYY49NcX0cWI/gQ79+/XIroAjIxPOWOrC65557pukRgY0TTjghHXXUUSWrtsSB66h+FO9x3nnnTeuvv34+SF1fhaIIZcXB7rpCPFFdJVpC1RTLLraTnXfeOXXt2jWHM66//vr01ltvNeh9xNhKhfVi3UVFrGWXXTYHrWLdx/sqdZA82ke2lOLWYSEqEsX1cYA9gmn77rtvnW3hIuRWn7oqGU1vK79YzjWrvkzNDjvsULLyVFSU6dWrV2puEa6IqkyxLdQUldZiG4tqeT/99FNuIxZjqqu1V2wbTRFeiXBbVB+qr4VYfesuqvf07t0779NqispUsc+MtnCxL43tO7ahQrvAYtHerDFin1Qc+okQV4x5p512Ssstt1zq0qVL3objM11qO+3Ro0eTB4Gi5WdxGCZCmRECjBap8bmPwFlxe75wxBFH1AqSNsd2E5/bCO3UfM54jtjvRYgr1msETKNSV+z34nNT/H0WY4pWguUW7yH2qxEKjJBQhDujSlmEe0sFWuN7sjgw3Fzf2aW+C2Kd9e/fP/+bI6pgxfdPVHuqqwpVU34XxHdnfOfFv21qiiBdhK7jMxVVE+MzE9/90Y4QAACAyiREBQAAUCEOP/zwfKC9OCwUoqpSXBqiT58+ae+99y55W7RAigoYUT2p+EB5HMyPy9RENZFouVWqYlSEvYrHGQfA46BxXRWz6gtKFEQ1qThgXHzfCCpMrUVUHJyNKhzTKw7ux/oZOnRordvigH6EBOpr31SqTWAc7K9LtKqKKjbFIuRQqkJRPF9U4KpPtNn6zW9+kw+41xQHpk877bQGjbv4sc0pwgGvvfbaFNe99NJLuUJbiCBMXSGqNddcMz++OIhWENtwY0MyNUMHERApFtVjGtLCqiACH6UCBNF+MMITNSvINIcI8q2zzjpp5MiRtUIgEWiJS0O3jaYI/sRzRJAqgqKlRNAkglD1icBjBJZi/9OQz0+xCJkUt69rqBhbVMAq3jdFxaSoSNUQdbX5nN7AX6nQ39REUGerrbZqke0mPpfx+Y4qXjVFhaSoxBeXhuyrI2RaToXvtgg0RdBrau054/MfgamW+s6O4PaQIUNq3Tcqf0VgrhzfBRFUjiqOxSGwqGZZqqLltPwbAgAAgLZDOz8AAIAKEa3LorpEVAVqrDjQHdWNiqtZ1BRtzqKVXn0BnrrGFwc5Sx1MD/Gap59+elpyySUb9HxR6aJU26hSogJFLJtSLfXqE+3y6mvhNa0OPfTQdMYZZ0x3C7hCACcq08TzlWpHFbc1tJpKtNqK55maGHep1pH1KQ4DReWeljpovd5669V7e7TFKlU1p7A91heCmVoIpyGiSkspjQnfRDWqYtGq8a677kotIVqoTct2XarVYl1t6RqjrjaXhYBchAbrE9WeYn80rfu5MOuss6ZzzjknBw4bo3379jksFRXsGiPCNHXtZ1taVACKylItud0ccsghufJiY6y66qrpL3/5Syq3qPwU1cQaIiprxfdUXd9vzfGdHd8tEVSclucq9u6776am1LNnzxx+rO/fLzUdeOCBDV7GAAAAtB1CVAAAABUkDr4fc8wx6eqrr06rrLJKgx+34IILprPPPjtfGnJAOyqLRKWUOGjZEHGgMsYUbeTqEy0Eo71ctLObWkWk6667Li2wwAKpoaI1VDxmhRVWaND9ozJWvMemrkgSLaUeeOCBHHqZloPapSoTRcWWqNC18cYb1wpBxf2jUkiEAuoT7d6ivVGE0hoa0Bg0aFDe1uoTLaBiTMVhhmj/Fe0LW0IEyWJbqUssv1JtsWqGmep6n9MboorlUCrgFNtnVJWZVjGeUp/dqVWwaSrLL798Ov/883PLsamJoOeRRx5Z6/p//etfTTaeNdZYo2TFu2lpwxgV6GK/NS3rI/Z1sQ+b3jaKUckqKtPFNtjQUEhU1Ymqe8cdd1wqt6WXXjoHwSJAVSpA05zbTez74jkjtNrQymaxjKPyWOxPGzKW5hZjiPa88T1Un9hf3HDDDWmppZZq8e/sCBlGm8GpiXa5UQGsuAVgtCYsbjM4vaIS1ZlnnpnbXdYlwmYRtirVVhgAAIC2Tzs/AACAChQt6CI8Ee2golVStLKLqjtfffVVbnUzxxxz5AObK664Ytpoo41yxZ5paR8W4rFx8Dba5EQoKNoCffDBB2nChAlpttlmywdMo91ZBHziNRoaBIj2Q5dddlked7TjivZrEXSJlmRRHSYCEFEBI8b78ccfT9OYo3pGtKOKg+4jRozIyyda0UVboQj9RHWaGHMEF6YWPpoe0SYuKoNEFZYnn3wyr58xY8akr7/+Ol8iYBPLMMJtyy67bK6cE+35Inx00kkn5fVYHAaK0EKxCEZFcOz+++9P99xzT3rrrbfyQeuoPBXhhajWEy0UIygU666hBg8enNs+xvofPXp0+t///pe3q6i8E9VzIrAWgYQIxUVQ7MEHH5zi8RHaisc3twgVXXPNNXmcsQyiYk0s2xjXYostlltSxXKuS2wPEaCJdVNTBLOiutn0iO37888/b3TAp1h8PiKwdt99901xfbznaBkYoaLmFp/12BfE8o7PWGxTP/74Y17Gsc3HcovtIrbV2B+deuqpafLkydWPj230sMMOa5JKbSHWb6z/4gDFtFTQidBJhN2eeuqp9Oijj6ZXX301ffLJJ2nixIl5nxb70thOIswSyz+2/akFDBsqgiARVNl///3zen3hhRfy+oz9VVQZi4BQbMuxj4jX3XLLLesNjzSHWAbxGY/PfvFyKOd2E+tgv/32SzvuuGPe/zz99NO53WXs7+O5YzuIz0xUPoznjxBivNaMJAK8EYSNbS/2mRE6iqqDMe7Yf8f6jtafDd3emvo7Oyqu/fOf/8yfi/iMxPjiuym+m2PssV3G91aMMZZ3PG/NlrXxnXHnnXemPfbYIzWlWJfrrrtuDm7F9/yHH36YXyvat8Y+IbaJ6d1/AwAA0Hq1q6qrLj0AAADQ6sRB6ggR3HvvvdXXRbggggRNFd7g/4nAQoQJ4gB8TdHiampV1Si/CJm8/fbbtapLNWWLTgAAAABaD7OnAAAA0IZEhY+///3v6dprr03rrLNOrhZyyCGHCFA1g4suuqhWgCqq7myxxRZlGxMNE5V2igNU01PpCwAAAIDWTzs/AAAAaIN69eqVL9HeKtr20bSifdZNN91U6/poTxXttJhx/ec//0l/+9vfal0fn5NoXQoAAABAZRKiAgAAgDZMgKpp7LXXXun7779PHTt2TB988EEaN25cyfvtvvvuLT426hft+Z566qk0++yzpy+//DK99dZbqaqqqtb9dtlll9Shg6kyAAAAgEplZggAAACgAV544YV6b99ss83Sqquu2mLjoWFmm2229Morr9R7nwUWWCDtuuuuLTYmAAAAAGY87cs9AAAAAIAZXYRs6rPoooumE088scXGQ9NVY5t11lnTOeeck38CAAAAULmEqAAAAAAaGaKaeeaZ0zbbbJNuuumm1LVr1xYfF9MXgFtjjTXSjTfemHr27NmiYwIAAABgxtOuqqqqqtyDAAAAAJiRff7552n06NHp008/TT/88EPq3Llz6t69ew7fzDXXXOUeHvX48ccf0zPPPJM++uijNHHixNShQ4ccrIrWiwsvvHC5hwcAAADADEKICgAAAAAAAAAAqGja+QEAAAAAAAAAABVNiAoAAAAAAAAAAKhoQlQAAAAAAAAAAEBFE6ICAAAAAAAAAAAqWodyDwAAAFrayJEj05VXXpleeeWV1K5du7TkkkumgQMHpt/97nflHhoAAAAAAABl0K6qqqqqHC8MAADlcNVVV6XTTjstzT333Klv375p8uTJ6eGHH05fffVVOuKII9Kee+5Z7iECAAAAAADQwoSoAACoGG+88Ubabrvt0qKLLpquvfbaHKQKX3zxRdpmm23S+PHj0zPPPJPmmGOOcg8VAAAAAACAFqSdHwAAFSOCU7/++ms68cQTqwNUYZ555kmHHHJIevnll3OgSogKAAAAAACgsqhEBQBAxVhvvfXyzyeffLLcQwEAAAAAAGAG0r7cAwAAgJbw1Vdfpc8//zwts8wy6bPPPkvHHHNMWnfdddPKK6+ctt9++/Too4+We4gAAAAAAACUiRAVAAAVIYJTYcKECWm77bZLzz77bOrbt2/aYost0jvvvJMOPPDA3O4PAAAAAACAyqOdHwAAFeHf//536t+/f/59rbXWShdffHHq3Llz/jtCVDvssEP6+eef08MPP5wWWmihMo8WAAAAAACAlqQSFQAAFWGmmWaq/v2vf/1rdYAqLLnkkmnXXXdNv/zySw5RAQAAAAAAUFmEqAAAqAhzzDFH/hnhqQhNFVt++eXzzw8++KDFxwYAAAAAAEB5CVEBAFARFl544dShQ4f066+/plIdraMKVZh11lnLMDoAAAAAAADKqUNZXx0AKIs77rgjHXXUUdP8uF69eqVrr7220a/71ltvpaWXXjpNr48//jj16dMn/z5s2LC06KKLNuhx0a7tueeeS9tuu206/fTTp3scleLZZ59Nu+22W/79tddey0Gk1ri9duzYMa266qrp+eefT6NHj069e/ee4v6vvPJK/tmjR48W2yYBAACgLVt22WWn6f7x//UuXbrU+f/sf/zjH2nIkCFp9dVXTzfeeGOakfXt2ze99957aaaZZkqPPfZYmn/++dOMojUtx4YqzPvtv//+6ZBDDpmm7fPKK69M66yzTmpJNbfxafXGG2+klrLxxhunTz75JJ188slphx12aLHXBYByEaICgAo099xz50mSYuPGjcuXCJusuOKKtW5fZpllGvV6MWEU/9H+/vvv28zEDK1ze+3fv38OUUWI7pprrqlu8TdmzJh00003pTnnnDNtsskmzfROAAAAoDIttthiqWvXrlO9XwSO2oJ///vfeT4sTJo0Kd1yyy1p8ODB5R4WM5BZZpml5HzXhAkT0ptvvpl/j/mumPcCAFqOEBUAVKANN9wwX+o6C23eeedt0rDTfffdl5588smSEwPQktvrlltumbfFqG4Vv2+22WZ5cuqhhx7Kk5qnnHJKmn322ZvhXQAAAEDl2m+//dJ2223X4PtH1aYHHngg/96tW7fU2tx+++35Z8xnjBw5Mt16663pgAMOaDMhMaZfXfNZNSvCn3/++al79+5lGB0AVC4hKgAAKsqpp56a1lhjjTxRddttt+Uz+tZcc830pz/9SdAPAAAAZgAzzzxzWnLJJVNrFJXYH3zwwfx7zDVERexPP/00t/RT/RoAYMYmRAUAQEVp165d+uMf/5gvAAAAAE0pql1HkCoqDa266qqpT58+6Z577skncwlRAQDM2ISoAIBp9vDDD+cy5K+++mpuhTbnnHOm1VZbLfXv3z+tvfba1ff7+OOP80RRwQsvvJCWXXbZtNBCC6URI0ZUX//ZZ5+l66+/Pj311FPpww8/TBMnTkyzzTZbWmKJJXK7tXjeTp06Net7euedd9Jll12WS2bHeGaZZZa08MIL57LrUUJ77rnnnuL+0frt5ptvTvfee2968803008//ZSXwyqrrJK233779Nvf/rZk67modDS1Ut1vvPFGrdvHjBmTrrzyyny/L774Ii+fFVdcMe24445p8803L/me/vWvf+Xl+tJLL6Vvv/02t6lbZpllUt++fdMOO+yQKzBNq59//jn985//zJN/48aNS3PNNVdad91107777psWX3zx6vvddNNN6fjjj8/LJNrnxRmkxeLxG2+8cQ41xdmYUaq/nNtr8fqNln/xPmPZ//DDD2meeebJFat23333tMIKKzTLWAEAAIAp55SGDRuWFl100QY97tFHH0233HJLeuWVV9J3332X5y169eqV9txzz5L/l5/W+Z1paeUX4485j6222irPL8S810cffZTnm+qaF4rXjbmca6+9Nt11113pgw8+yHMqyy+/fL69rhDWc889l+c+XnzxxTxv9Ouvv+b3HiGu+uY/CiZPnpw22mijXDHryCOPTHvssUfJ+x177LH5dfr165dOPPHEPM/XENtuu206/fTTp2tdhZjfuuaaa3Klr08++STPdcW4Dz744DS9Yh1dffXV6e23387zkLHsYpnHvFfBu+++m7bYYov8e8wb1TXOmKt7//3307nnnpt+97vfpeYQyy2WxejRo/M679y5c14f22yzTV7edbWOfOaZZ9INN9yQt5VvvvkmL8PCHGPMwwJApWtf7gEAAK3HL7/8kgYNGpQOOuigHNDp0KFD6tGjR56YiQmtCJecdtpp1fePIFKEhhZccMH8d/ynPP6O/5gX/Oc//0lbbrllDubEZNV8882Xll566Tx5E/+ZP+OMM9Jee+2VJ7WaS7xOTIzF5EdM2sTrR6AnxhPjiomHCPwUVFVVpUMOOSRPFkUwLAJWMUkRY4wJoP333z+df/75TTa+mDzbbrvt8uTZ+PHj8/hiYiTCSbEuDjvssFrLJyZR9t577xxOKqynCF7FpNrf/va3Ri/TCEtFICzOqIxAVkxexXKLCZrYJgpigjAmnGIyZuTIkSWf6+67787rOSajmiNANa3ba0EErQYMGJAnBmN5zTHHHHn9xrYRE2qxrVx11VVNPl4AAACgceL/+ocffng68MAD8zxEhJfi//JxMth9992XTya77rrrpnhMc8zvROgp2veF3//+9/lnzHt07do1v16cdDa1uYx99tknz4fFSX7R0jDGEyGreG+lTsw7++yz06677prnLOLExDgpsVu3bumrr76qnv+IoFh92rdvn+e/CvM1pfz444/VbQoL1b1jnq+uS4yjIMYzPesqjB07Nu200055Xuq9997LwbqYa4xQV8ybxfJqrIsuuij93//9X37epZZaKi+Pxx9/PAe64qTIgnhPcWJefcsptqUIUP3mN79ptspjl156aQ49xTqP+apYfrEsYh7rmGOOyes8ri920kkn5dtiu4htLebJIqQX82aDBw9Of/7zn/P1AFDJhKgAgAaLM8YeeeSRHOCJSaQI8dx22235TLrjjjsuh1QiXFIImETZ8pjcKUysROgm/r7gggvy3zEJFBMUEcSJSYX4D3tMlkRYKM6KinBQiMmnmgGdphZBmggFxYRTvJc777wzPfDAA7mC0WKLLZbPwrv44our7x9jidtiAiwmK2LiIc4yjOVx6KGH5vsMHTo0/e9//5vuscVkUkxwxORNTILEsojxRTgqlnNM8MUyiwmkglief//73/Pv55xzTh5vjC+qf11++eU53BSTKlFeflrFRFCs68JzPvHEE/kstThTMybAYoIuxMRN4ey1WEalxPsIMdE1I2yvBfE+IlgX22+E0WK5xXuNbfKAAw7Iwa/YZmK9AwAAAOUX/++PalILLLBArjT+9NNP5//Lx884SSqCOieffHKeE2jO+Z1CFaqowt6zZ8/8e8w/FKoRxYloERaqy+uvv54rise8zqhRo/L9Y+6lUEnqvPPOyyGkgghXXXLJJXne6NRTT83vLx4T72X48OG5slNh+cR8Rn0K8zP//e9/84mFxSJYFieeRcho5ZVXztfFPF+pS6yDQlX5GHvMp0zPugpxW1SCisBQrLcIMcXcVoSo4jERXGqsqOYUJ83Fui9sAxEoCjHnFnNCBYV5zvvvv7/kCYoxrxnipNHGVIGfmnjvsX3E+ozlGmMrzPtFJa2opB7zfn/5y1+meNwVV1yRw2mxPca8WDwu5snicxDbVcyfRUguAnwAUMmEqACABokJo8LZchHqiZZwBVEeOir3FEpnxxlacebb1ESbtKhUFBMKMTkSZ2gVxFlQUfWoUOK81ORNU4lxFCZBak5uxGsfccQRuXR7TH4V3z/OPKtZtjyWw3777ZeXTVRiiqpR0yvKfseZihHsiRLiNUtxxyRUoZJStPr7+uuv8+9x1lyEmmJ5FpcMX2+99fJyjbLipVrsTU2cDRnrOianQpcuXfIZj4ssskhelzXPqCxMKkXgK4JdNUUFspjcihL5NVs+lnt7jXHFeEOE/Xr37l39uNg24jFx1mMoBNUAAACA+h111FF5DqWuS5zY1ljRyqxwglRUFFp//fWnmAOI547qOzG/EmGR5prfiVBLIUATVagKcydh6623zj8L1aHqExW1C1WsQlTIjpMQQ8y9xLxPQQRgYn5n0003zfMwEaYqiJBSYe7jyy+/zJf6RGWnNddcs84qSw09GS6CRRFCi0DY4osvnkNTEdyZnnX18ssv51BV3CfmcWq2RIxAV8xNTY8IvMXcZASJCmP505/+VL3eIkxXEHNtcb94LxG2qinm4wrVuprrpMGYKwwxPxXrt+Zc5lprrVVdOStCVYWqaDGuwgmisX3FvFjNbSVaFMb7D9HqL9ppAkClEqICABokznqLM92iOk9xMKdgl112yRM3US46zniamhVWWCGf6RWXueaaq9btcWZeIVj1ww8/pOYSk0Th+OOPz2dh1SxbvfHGG+eWfjF5VhDVqQpVomISpWarvxCTQ2eeeeYUE3CNERMWcfZfKEzaFNtwww3zsouS6oWz4rp3754np2KS78gjj6yeFCyIcukRECpUipoWMclSLCZrop1fqNm6LwJIMakV6zEqe5WaeIvJyOY4K6+x22shQBUTcFF6vpQo5V4o0d+c4T4AAABoK2Iupb7Wb1G9fHrmAGLuISokxVxTKYV5iwjjFMJETT2/E4GmqGZeah5nlVVWqX69Ui35aoqT+YpFW7+CmieqxUl3r7zySjrrrLNKPlehGlSIuaOpKZwQF5WialauilZ5Me8U802FZVmXCONEK7w4cS7m1GqeNNnYdVWYr4mwU5zIVyzCX/GcjdW/f/8pQm8F0TIvxNxlVLEPs802W/XJesVhs6j+FesntueVVlopNbU4IbEQohs4cGDJ+0QosNByMMYTIkwV44r1V2puL8T82fzzz59DcLH+AKBS/b/oNwDAVES57LDccstNcaZSTXEWVpxhFsGS+A99qUmfuiZ04vnjDLUPP/wwffTRR+ntt99Ob7zxRj5TKkyt5Pj0iLP54uyyKJceZ7vF+4jJl3XWWSdttNFG1ZNcNYNVUQ49gjfRLi8uSyyxRL5/nEEXFaJmmWWW6R7XW2+9NUXwqS6FZVRYR9Hib++9984TVXEGZFwiTBRno0Ulqg022CCXqp9W8RzzzTdfydt69OiRf77zzjvV18Xk07bbbpsDWzGp1K9fv3x9TJY191l5jd1eC4+rayIvxPYQ7QqjhH08bnomegEAAKASxMlpzTUHUJg/iarUO++8c8n7RGWjgvi/f8ydNPX8TqGVX8wp1Aw9FUR1qWgNF4GWmPeqK/QTQZb6wlDFLeRi/iUuheeNebWYX4t5tTgBrKAhc2sRDoqK3hEGi3aCsSxCtDuM1425k2gXV5doGReVjOKktZgPKp5Ta+y6KgSH6puDibmpeP+Nsfzyy5e8vhCgixP1YlnGPFMhbBZtEyOkFPNDMU8UCpXImnu+a9ZZZy25jRWsuOKK6cUXX6xeboXHxYmkhbEWi20olkOs+5rVzgCg0ghRAQANEhMChRLi9Sn8R7wh7fxCBJdOOOGEHKCqKaorRZWluL65S0hHqOi2225Ll156aT7TKsYeZyHGJdrlxVluf/vb36ont+Ksrcsvvzxdf/31ecIkQjgxGRGX6667Li+DCDHtv//+Jc9ia6iokFTwwgsvTNP9DznkkDxhEuOJSbTPP/88n0UYlxh/nF123HHHTXV91hRn2k3ttuKzGmPSKMqIx/hjEi8qU0U58aiSFRNR9YWVyrG9NvRx8X7jvg3dzgEAAIDmUZgPif+nN2T+pFDJqSnnd77++us83xFee+21qVavuummm9Kxxx5b8rYIINWnZsgofo/3EJW0alaoivHGiWNR1alUa766RDgn5oxuvfXW/LhCiKoQDipUqiol2hQWKmJFtfeoUN5U66rws9Bur5SaFa+mVV1zXjWvr1klf4011sgBsagM9fDDD+flEnNv0d4vtqu6KspPr8K8VV1BqOJxT+t817TO6wJAWyREBQA0SOE/3zWDOqUUJjXqC9wURNWi3XbbLQdvIqAUEw5x1licSVU46y6qFzV3iCrEmWRxxmG08otg17PPPpuefvrpPKHz73//O1eoismgwmRNtKDbY4898iXOnouz8+IxUZb8iy++SOedd14+SzBur2uiq6ZS7QoLrxXlz+O5p9Wmm26aLzFREmdVxiWCYTEZGGcQxrqMalUNVd8ESmG76NKlyxTXL7jggnnCLSaRIsB1wAEHVE/eNddZedOzvTb0cYXbG7KdAwAAAM0ngj9h8803z9WPpkVj53eKxTxLzClFNeyo5F3ffEK0hYu5kcMOO6x67I114YUX5upWIcJPcaJgzLFFRa2Ys4iQz7SEqELMz0WIKubBTjzxxDyPFBWk4oTHqNheSrTei0rvUe1qzz33TDvssEOTrquYG6sZBiqlIe0K61Jo1Ves5vxQcUgr5rViLjHmu2KZ3X///blaV58+fXL1rOZQmIeqbzlMz3zXtMzrAkBbVbq3CQBAkZh8Cf/973/rLP8d/4GPyZlCeeipufrqq/MERzx3VIKKSZYI3NQsWx4lpJtTTG5EOe7Ro0dXn+0XZ5NF+7w4EzEucfZenE0WoaoQVZT+85//pHHjxuW/F1hggfSHP/whV62KSlaFNoY1J6lmmmmm6lZ2pXz22We1roszBsM333yTX78uUWkqAmmFyaL4OWbMmHwpnEUWJeqPPPLI3EYvJunCY489NtXJk5pi8rDmWY01xVmWdZVVL5yl+Mgjj+RJqaeeeiov5+Y6K296ttfC4wrvp5RY1oXJtYZs5wAAAEDzKcyfFFrF1XXyWpxcFlWyC+3wGjO/U5eoZBUixBQBrLou8dwh5lcidDM9IrQVVahCzGOde+65adttt00rrbRSdQgmgmHTarXVVssnOBbmcGI+J8Q8TqkqWbFMo1pXzEfFMoswVVOvq8LjYp6nLo1t5Vez3V2xQuX8CNItssgiU9wW20rM98WcYszdFZZTc540WJi3imUU81N1efXVV0vOd8UcaF0BrJg/K7xf810AVDIhKgCgQWISKMpRR5jngQceKHmfKHX+66+/5rPKevXqVX19oeR5cRWmTz75JP+MiZlSZ97FRM3YsWPz74VJk6YWkzabbbZZGjhwYMmgUkwcFSaeCmGco48+Ou200065/V+xmEwqvPeaY46z9UJU1SoVpCpMtNQUy6UwaRHLtpSokjVgwIB8tmFM/IWbb745l2uPSatSla8KpdiLxzg18VyFScGaYvLlzjvvzL9HWKvYJptsks8YjImYW265Jf3000/5zMWuXbumGW17LUyQxhmUdZWVv+qqq6onV6dWnh8AAABoXhtuuGEOs0QQJuaS6vq//K677prnSwrVwBszv1NKnIhVOJGtvnZ3hTmSQqWqG2+8MU2PaCFYOMlrhRVWKHmfqChVEHMgDVV4H48++mgaPnx4neGgCIPtu+++6csvv8xzJGeffXauxtXU6yrm7kLMfRWCPjXF8o+5nMa6/fbbS15/7bXX5p/rr79+rQBZnAQa18dyjfmyF198MVegqqtaV1OIMFkhUBYnp5YS81mFZRHzY6Fnz565klaMNU4YLSVCfTGPFvO48b4AoFIJUQEADRJt2Xbcccf8+1//+tf00EMPVd8W4aIbbrihunx4tGybY445qm8vhJCi2lLNCZvCf/pj0iSqKRXEfe677750yCGHNElJ7vpE+8ConhQTYoceeugUZ+hF2CnO4ouQULTWiwpVISZxCmGlu+66a4qgUoSyChMsMTFUEJMVhbMc4zkLyyEmg2KCKc5GLOXggw/OPy+55JI8qVczgBXLrHD7qquumtZaa638+xZbbJEndt5888106qmnTlGS/KuvvsqvH1ZZZZXqcugNFWXKa677mCQbPHhwrhi28MILp+23375kafzf//73+ffzzz+/2c/Km57tNUJzhfV20EEHTdFGMZZ9lJqPIFj4y1/+Uh0QBAAAAMpjoYUWqm4fF3M7I0aMmGIOIIJEQ4YMyX/HiWhRsbux8zv1BXDiZLHCyVl1iRO+CmONakH1VcKemni9wrxOBI+iGlLN+Z8TTjghz681Zm4tlk2MNeZT3njjjRzSijm0mmKeJCpgRSCqW7dued5qam3gGruuIqC11VZb5XU0aNCgKSpSxbqKOZxSJxI2VATFYs6rMO8WP88444w8vphji/dZX9gs5phibjGqdcVya06FucDYbmOequZcYcxjxbIIEYQqnEgZJxBG2C3EYyJIVbNy+8MPP5yOO+64/HvMpxXmbAGgEjXvNzkA0KYcddRROSwTEwvxH/b55psvV+OJ8tpx9lvYZZdd0j777DPF45ZbbrnqylNx5lg8Ls62i/Z9MZkTj42JkcUWWyxPtkS1pggbRXApQi1xJldjyo83VISK+vXrl0uFxxmB3bt3z5MLMY44oy7OkPvb3/5WXTkp3kNMKESY5ogjjsiTKhHaibDVhx9+mCdtVl555VzKvCCCWhEkuvfee9MVV1yRS8HHsiuU0f7zn/+czjvvvFpj23LLLXPLuZiM+fvf/56GDh2al1NMhhUqecXExkUXXVT9mFi+EZ6KSlTXXHNNbpUYJcdjMifGF5WgojLWKaecMk3LKSa6YhnEuo/JsXiOmKiKyZo4i/LCCy/M66yuSaWYfIxA1zzzzFN9JtyMuL2eeeaZed3FdrfbbrtVv+/33nsvr6vYHmJ9xboBAAAAyi+qSsUcwGOPPZb+9Kc/5TmAqBQUcycxhxI233zz/P/5gsbM7xSLOZFCUKmudnfF4jVjfifmaWJ+7OSTT27Ue46wTsx3nHjiiXlOKyogxZxRjCnmm+IEvuWXXz63K4x5kJhbq6tiVbGYu4nwWH1VqCKIE68bYo4oQjhxsmC0GSylUHmrMesqHH/88blifVRailZ6Sy+9dD65LeamunTpkiuHFcYzreL1Yp1EMCnmBWPuKOYmY31GC8bC3GaxCM3FnFFh3M190mDh5MnYPmM+M+bioiJVzA3WnCuMZXHWWWdNcfLfXnvtlec6Yz3EPGfMNcYJkbFdxImvheVwzDHHNPt7AIAZmRAVANBgUVEo/nP+4IMP5rPs4oy5OPMrAjRxZlOUQO/du3etx0WFpKjaE5Mr8Z/ymMz54osvchDnnnvuyQGgZ555Jk/qREAlJqxi4ila7MV//uNnnEkVAZy6QjrTY6mllsrt6C6//PI8jpiQiYmymMTZdNNN0x577JEnZmqKCaoIeMWZinFGXlwiABYVp6K1XkyIFU+cxWRcPCaWXZylFxMeK620Ug6TxfIrFaIKcbbbeuutl0NIUX0qSpTHc8dEWIwvlk/xmX6x/CIwFC3rXnrppfTOO+/kx0R7wJjg2X333ae5nV6s/5iYiTMCYxuISlexjCJ4FhOK9T1fTDbFGYsx9pY4K296ttc4izOWdWwTsX3Guo1y5jGh17dv3xz4i2UPAAAAzBhmmWWWdPHFF+c5gGitVpgDiPmS+L9/hFtiPqK41Vxj5ndqinZ3EbZpSCu/gpj3isBTBJSihdqRRx7Z6Pfdv3//HKCJKlARJopLVG+K6uNx8leM/9hjj83vL0JLffr0afBzxzKLMcb8SlSBKhZhs4JpqajV2HUVQamYl4oQUMzZRFAsxhbBn6hqFVXcGxuiimUUrx3PHfNdsQxj/e+33361KnDVFNtGLJs4iXHFFVfMJ1G2hBjX2muvnZdHYa4wlk9cFwGzUssvAlVRnSzmEqNCe7RGjOUeAbiYK4zq8jHHBwCVrl3V9NS3BACABoizH+MMxgjPxQRhBNcAAAAAmDHFCWZRJStOKDv//PPLPZwZ1uDBg9OwYcNyJa448Q4AaN2mjCEDAEAzGDFiRA5QxdmdAlQAAAAAM7Zbb701/4xqVpQWlcujwtess86aqz8BAK2fdn4AADSLaFkYJdrfe++9XB4/RGtEAAAAAGYs33//ffroo49Sp06d0uWXX55bG0Z7unXXXbfcQ5uhfPrpp+nHH3/Myyvmu3755Ze00047pTnmmKPcQwMAmoAQFQAAzeKqq65KN998c/Xf6623Xtp8883LOiYAAAAAapswYcIU1ZTat2+fjj/++LKOaUY0evTodNhhh1X/Pe+886ZBgwaVdUwAQNPRzg8AgGaxwgorpM6dO6cuXbqk7bbbLp1//vnlHhIAAAAAJUQYaLHFFkszzzxzrkB10UUXpTXWWKPcw5rhLLHEEmnuuefOFbvWXnvtdM0116S55pqr3MMCAJpIu6qqqqqmejIAAAAAAAAApt0333yThg4dmkaMGJHGjRuXA1t9+vRJBxxwQOratWu5hwfQ6tnPMjVCVAAAAAAAAABl9N1336WddtopvfPOO7nK1fLLL5/efffd9Nhjj6X55psv3XLLLWnBBRcs9zABWi37WRqiQ4PuBQAAAAAAAECzGDJkSD6wP3jw4DRo0KDq66+77rp00kknpQsuuCCddtppZR0jQGtmP0tDtG/QvQAAAAAAAABoFh9//HGaZ5550l577TXF9dtss03++eKLL5ZpZABtg/0sDaESFQAAAAAAAEAZXXjhhSWvj6opYd55523hEQG0LfazNIQQFQAAAAAAAMAMZPz48WnUqFHp9NNPTx06dEgHHHBAuYcE0KbYz1KKEBUAAAAAAADADOLGG29MJ5xwQv59pplmSmeddVZae+21yz0sgDbDfpa6tK/zFgAAAAAAAABaVNeuXdM+++yT/vCHP6RZZpklHX744emyyy4r97AA2gz7WerSrqqqqqrOWwEAAAAAAAAoi48//jjttNNO6Ysvvki33XZbWmmllco9JIA2xX6WmlSiAgAAAAAAAJgBde/ePe2999759+HDh5d7OABtjv0sNXWY4i8AAAAAAAAAWszPP/+cRo8enSZNmpQ22GCDWrcvvPDC+edXX31VhtEBtH72szSUEBUAAAAAAABAGQ/u77PPPqlz587p6aefTh07dpzi9tdeey3/XHzxxcs0QoDWzX6WhtLODwAAAAAAAKBMZp999tSnT5/03XffpSFDhkxx26uvvpquuuqqfOB/q622KtsYAVoz+1kaql1VVVVVg+8NAAAAAAAAQJP63//+l3beeec0duzY1LNnz7TKKqvk34cPH57atWuXzj333LTJJpuUe5gArZb9LA0hRAUAAAAAAABQZl999VW66KKL8gH9zz77LHXp0iX17t077b///qlHjx7lHh5Aq2c/y9QIUQEAAAAAAAAAABWtfbkHAAAAAAAAAAAAUE5CVAAAAAAAAAAAQEUTogIAAAAAAAAAACqaEBUAAAAAAAAAAFDRhKgAAAAAAAAAAICKJkQFAAAAAAAAAABUNCEqAAAAAAAAAACgoglRAQAAAAAAAAAAFU2ICgAAAAAAAAAAqGhCVAAAAAAAAAAAQEUTogIAAAAAAAAAACqaEBUAAAAAAAAAAFDRhKgAAAAAAAAAAICKJkQFAAAAAAAAAABUNCEqAAAAAAAAAACgoglRAQAAAAAAAAAAFU2ICgAAAAAAAAAAqGhCVAAAAAAAAAAAQEXrkFqxkSNHpiuvvDK98sorqV27dmnJJZdMAwcOTL/73e/KPTQAAAAAWplvvvkmDR06NI0YMSKNGzcuzT333KlPnz7pgAMOSF27dm3Qc4wdOzZdcMEF6ZlnnsnPt9hii6UBAwakHXfcsdnHDwAAAEDjtauqqqpKrdBVV12VTjvttDyZ1bdv3zR58uT08MMPp6+++iodccQRac899yz3EAEAAABoJb777ru00047pXfeeSetvfbaafnll0/vvvtueuyxx9J8882XbrnllrTgggvW+xyffPJJ6tevX/r666/zSX7zzDNPevTRR9MHH3yQ9thjj3TkkUe22PsBAAAAoAJCVG+88Ubabrvt0qKLLpquvfbaHKQKX3zxRdpmm23S+PHj89l+c8wxR7mHCgAAAEArECfrxUl7gwcPToMGDaq+/rrrrksnnXRSnouK+9QnHvfII4+kSy65JG244Yb5uh9//DFXTn/ppZfSbbfdllZcccVmfy8AAAAATLv2qRWK4NSvv/6aTjzxxOoAVYiz+w455JA8qRWBKgAAAABoiI8//jjPLe21115TXB8n7IUXX3xxqlWoourUaqutVh2gCp06dcrzVXEe480339xMowcAAABgenVIrdDjjz+e5p133rTmmmvWum377bfPFwAAAABoqAsvvLDk9dHeL8RcVH2ee+65HJSKVoDFevbsmWaeeeY0atSoJhotAAAAAKnSK1F99dVX6fPPP0/LLLNM+uyzz9IxxxyT1l133bTyyivn8FSc8QcAAAAA02P8+PHp4YcfzlWkOnTokA444IB67//+++/nn4suumit2yJAteCCC+ZqVz///HOzjRkAAACACgpRRXAqTJgwIbfte/bZZ1Pfvn3TFltskc8MPPDAA3O7PwAAAABojBtvvDH16tUrHXTQQenTTz9NZ555ZskKUzV9/fXX+edvfvObkrfPMcccafLkyXlOCwAAAIAZT6tr5zdx4sT886WXXkprrbVWuvjii1Pnzp3zdfvuu2/aYYcd0hlnnJE23njjtNBCC5V5tAAAM47ed1xf7iHQSjy73YByDwEAyqpr165pn332ydXQhw0blg4//PA0bty4tPfee9f5mF9++SX/7NixY8nbC9erRAUAUJt5KxrCnBU03qf7/b+cBdRn/qGzpUrX6ipRzTTTTNW///Wvf60OUIUll1wy7brrrnnSKsqtAwAAAMC02nzzzXNwKk7Uu/fee3Oo6qyzzkqvvPJKnY/p1KnTFGGqYoXwVM25LAAAAABmHK0uRBWlzwsTThGaKrb88svnnx988EGLjw0AAACAtqV79+7VFaiGDx9e5/0Kbfy+/fbbkrd/9913qV27dmn22WdvppECAAAAUFHt/BZeeOHUoUOH9Ouvv6aqqqo8+VRT4Wy/WWedtUwjBAAAAKA1iSpRo0ePTpMmTUobbLBByfmo8NVXX9X5HEsssUT++eGHH9a6Learoh3g4osvntq3b3XnNAIAAABUhFY3a9OxY8e06qqrVk9uFSuUVe/Ro0cZRgcAAABAaxPzTPvss0869NBDq9vu1fTaa6/lnxGCqkuvXr3yyX7PPvtsrduef/75HKTq2bNnE48cAAAAgIoNUYX+/fvnn6effnouhV4wZsyYdNNNN6U555wzbbLJJmUcIQAAAACtRbTY69OnT55nGjJkyBS3vfrqq+mqq65KnTt3TltttVWdz7HAAgukddddNz333HPp0Ucfrb7+xx9/TOedd17+fcCAAc34LgAAAACoqHZ+Ycstt0xPPvlkuuOOO/Lvm222WZowYUJ66KGHctn1U045JU9+AQAAAEBDHHPMMTkwNXTo0Fw5apVVVkljx45Nw4cPzxWmzj333DTvvPPm+0a1qQhLLbfcclOcyHfsscemfv36pYMOOihtscUWaf7558+Pf//999Nee+2V7w8AAADAjKlVhqjCqaeemtZYY4104403pttuuy23+VtzzTXTn/70p7T66quXe3gAAAAAtCJRSer2229PF110UQ4+vfTSS6lLly45JLX//vunHj16VN83AlRRsWrbbbedIkQV7f5uvvnmXHkqTgD86aef0mKLLZZOPvnktP3225fpnQEAAADQEO2qqqqqGnRPAABatd53XF/uIdBKPLudVkMAAABAyzFvRUOYs4LG+3S/ieUeAq3A/ENnS5WufbkHAAAAAAAAAAAAUE5CVAAAAAAAAAAAQEUTogIAAAAAAAAAACqaEBUAAAAAAAAAAFDRhKgAAAAAAAAAAICKJkQFAAAAAAAAAABUNCEqAAAAAAAAAACgoglRAQAAAAAAAAAAFU2ICgAAAAAAAAAAqGhCVAAAAAAAAAAAQEUTogIAAAAAAAAAACqaEBUAAAAAAAAAAFDRhKgAAAAAAAAAAICKJkQFAAAAAAAAAABUNCEqAAAAAAAAAACgoglRAQAAAAAAAAAAFU2ICgAAAAAAAAAAqGhCVAAAAAAAAAAAQEUTogIAAAAAAAAAACqaEBUAAAAAAAAAAFDRhKgAAAAAAAAAAICKJkQFAAAAAAAAAABUNCEqAAAAAAAAAACgoglRAQAAAAAAAAAAFU2ICgAAAAAAAAAAqGhCVAAAAAAAAAAAQEUTogIAAAAAAAAAACqaEBUAAAAAAAAAAFDRhKgAAAAAAAAAAICKJkQFAAAAAAAAAABUNCEqAAAAAAAAAACgoglRAQAAAAAAAAAAFU2ICgAAAAAAAAAAqGhCVAAAAAAAAAAAQEUTogIAAAAAAAAAACqaEBUAAAAAAAAAAFDRhKgAAAAAAAAAAICKJkQFAAAAAAAAAABUNCEqAAAAAAAAAACgoglRAQAAAAAAAAAAFU2ICgAAAAAAAAAAqGhCVAAAAAAAAAAAQEUTogIAAAAAAAAAACqaEBUAAAAAAAAAAFDRhKgAAAAAAAAAAICKJkQFAAAAAAAAAABUNCEqAAAAAAAAAACgoglRAQAAAAAAAAAAFU2ICgAAAAAAAAAAqGhCVAAAAAAAAAAAQEUTogIAAAAAAAAAACqaEBUAAAAAAAAAAFDRhKgAAAAAAAAAAICKJkQFAAAAAAAAAABUNCEqAAAAAAAAAACgoglRAQAAAAAAAAAAFU2ICgAAAAAAAAAAqGhCVAAAAAAAAAAAQEUTogIAAAAAAAAAACqaEBUAAAAAAAAAAFDRhKgAAAAAAAAAAICKJkQFAAAAAAAAAABUNCEqAAAAAAAAAACgoglRAQAAAAAAAAAAFU2ICgAAAAAAAAAAqGhCVAAAAAAAAAAAQEUTogIAAAAAAAAAACqaEBUAAAAAAAAAAFDRhKgAAAAAAAAAAICKJkQFAAAAAAAAAABUNCEqAAAAAAAAAACgoglRAQAAAAAAAAAAFU2ICgAAAAAAAAAAqGhCVAAAAAAAAAAAQEUTogIAAAAAAAAAACqaEBUAAAAAAAAAAFDRhKgAAAAAAAAAAICKJkQFAAAAAAAAAABUNCEqAAAAAAAAAACgoglRAQAAAAAAAAAAFU2ICgAAAAAAAAAAqGhCVAAAAAAAAAAAQEUTogIAAAAAAAAAACqaEBUAAAAAAAAAAFDRhKgAAAAAAAAAAICKJkQFAAAAAAAAAABUNCEqAAAAAAAAAACgoglRAQAAAAAAAAAAFU2ICgAAAAAAAAAAqGhCVAAAAAAAAAAAQEUTogIAAAAAAAAAACqaEBUAAAAAAAAAAFDRhKgAAAAAAAAAAICKJkQFAAAAAAAAAABUNCEqAAAAAAAAAACgoglRAQAAAAAAAAAAFU2ICgAAAAAAAAAAqGhCVAAAAAAAAAAAQEUTogIAAAAAAAAAACpah9RK3XjjjemEE06o8/Znnnkmde3atUXHBAAAAEDrNXHixDR06NA0bNiw9Mknn6SZZ545Lb/88mngwIFp0003bdBzrLvuuumLL74oeduAAQPScccd18SjBgAAAKCiQ1T//e9/88/dd989zT777LVun3XWWcswKgAAAABaowkTJqT+/funN954I62wwgr59++++y4HqgYNGpQOPfTQtN9++9X7HJ9//nkOUEXwauONN651+8orr9yM7wAAAACAigxRjRkzJnXq1CkdccQRqX17XQkBAAAAaLxLL700B6j69euXq5+3a9cuX3/wwQenP/7xj+n8889Pffv2TYsuuuhUT/qL+00tcAUAAADAjKVVpo8mT56c3nzzzbT00ksLUAEAAAAw3R588MEcnDrssMOqA1Rh/vnnTzvvvHOaNGlSGjly5FRP+gs9evRo9vECAAAA0LRaZSWq999/P/3www8mpAAAAABoEgMHDszt+7p06VLrto4dO+afEydOrPc5hKgAAAAAWq9WGaIqTEjFWYGHHHJIev7559P48ePTMsssk3bfffe01VZblXuIAAAAALQiAwYMKHl9VVVVGjZsWP592WWXrfc5op1f586d08MPP5xuv/329MEHH6TZZ589bbTRRumggw5K8803X7OMHQAAAIDp1741h6huueWW9OWXX6att946bbrppumdd97JJdfPOeeccg8RAAAAgDbghhtuSC+//HJaeOGF0/rrr1/n/X788cccmvr+++/TRRddlFZZZZW044475naAt956a/rjH/+YPv744xYdOwAAAABtvBJVnAG40EILpcGDB6dtt922+vqPPvoo7bzzzmno0KFpgw02SGussUZZxwkAAABA6/XAAw+kU045JXXo0CGdfvrpaeaZZ67zvp9//nlaaqmlcjvAIUOGpDnnnLN6Huvcc8/N81XHHntsuuqqq1rwHQAAAADQpitRRbWpESNGTBGgCnFGYJRGD/fcc0+ZRgcAAABAW6hAFXNQ4YwzzpjqyXoxLxXzUdddd111gCq0a9cuz1d169YtPfPMM+mzzz5r9rEDAAAAUCEhqvqsvPLK+eeHH35Y7qEAAAAA0MpMnjw5V5068cQTcwWq8847L2211VbT9ZzxPMsvv3z+3ZwVAAAAwIypQ2ucyHr99dfT999/n3r16lXr9rg+dOrUqQyjAwAAAKC1+vnnn3P1qWHDhuVqUhdeeOFUK1AVfPrppzkg1b1797TgggvWuv2HH37IP81ZAQAAAMyYWmUlql133TXttttu6csvv6x12/PPP59/rrTSSmUYGQAAAACt0aRJk9LBBx+cA1QRhLrxxhsbHKAK0cpvl112SZdeemmt2yZOnJhee+21NOuss6all166iUcOAAAAQEWGqNq3b5/69u2bqqqq0llnnZUrUxWMGTMmDR06NHXu3Dltv/32ZR0nAAAAAK3HJZdckkaMGJG6deuWbrjhhrTEEktM0+M333zz3LbvjjvuSG+88Ub19b/++ms69dRT0zfffJP69euXZplllmYYPQAAAAAV184vHH744enf//53uvPOO/OkVO/evXPJ9EcffTSHqs4999w0//zzl3uYAAAAALQCEXCKEFVYbrnl0i233FLyflGZau21107PPvtseu655/J9N9lkk3zbIossklsBnnHGGWnHHXfMJwF26dIljRo1Kr355pupZ8+eudIVAAAAADOmVhmimnvuudOtt96aLr744vTII4+k6667Ls0222xpww03TPvvv39accUVyz1EAAAAAFqJ559/Pn3//ff59+HDh+dLKTHvFCGqCFANGTIkbbvtttUhqrDnnnumJZdcMl1xxRV5zuqXX35Jiy66aA5X7b777qljx44t9p4AAAAAmDbtqqIvHgAAbV7vO64v9xBoJZ7dbkC5hwAAAABUEPNWNIQ5K2i8T/ebWO4h0ArMP3S2VOnal3sAAAAAAAAAAAAA5SREBQAAAAAAAAAAVDQhKgAAAAAAAAAAoKIJUQEAAAAAAAAAABVNiAoAAAAAAAAAAKhoQlQAAAAAAAAAAEBFE6ICAAAAAAAAAAAqmhAVAAAAAAAAAABQ0YSoAAAAAAAAAACAiiZEBQAAAAAAAAAAVDQhKgAAAAAAAAAAoKIJUQEAAAAAAAAAABVNiAoAAAAAAAAAAKhoQlQAAAAAAAAAAEBFE6ICAAAAAAAAAAAqmhAVAAAAAAAAAABQ0YSoAAAAAAAAAACAiiZEBQAAAAAAAAAAVDQhKgAAAAAAAAAAoKIJUQEAAAAAAAAAABVNiAoAAAAAAAAAAKhoQlQAAAAAAAAAAEBFE6ICAAAAAAAAAAAqmhAVAAAAAAAAAABQ0YSoAAAAAAAAAACAiiZEBQAAAAAAAAAAVDQhKgAAAAAAAAAAoKIJUQEAAAAAAAAAABVNiAoAAAAAAAAAAKhoQlQAAAAAAAAAAEBFE6ICAAAAAAAAAAAqmhAVAAAAAAAAAABQ0YSoAAAAAAAAAACAiiZEBQAAAAAAAAAAVDQhKgAAAAAAAAAAoKIJUQEAAAAAAAAAABVNiAoAAAAAAAAAAKhoQlQAAAAAAAAAAEBFE6ICAAAAAAAAAAAqmhAVAAAAAAAAAABQ0YSoAAAAAAAAAACAiiZEBQAAAAAAAAAAVDQhKgAAAAAAAAAAoKIJUQEAAAAAAAAAABVNiAoAAAAAAAAAAKhoQlQAAAAAAAAAAEBFE6ICAAAAAAAAAAAqmhAVAAAAAAAAAABQ0YSoAAAAAAAAAACAiiZEBQAAAAAAAAAAVDQhKgAAAAAAAAAAoKIJUQEAAAAAAAAAABVNiAoAAAAAAAAAAKhoQlQAAAAAAAAAAEBFE6ICAAAAAAAAAAAqmhAVAAAAAAAAAABQ0YSoAAAAAAAAAACAiiZEBQAAAAAAAAAAVDQhKgAAAAAAAAAAoKIJUQEAAAAAAAAAABVNiAoAAAAAAAAAAKhoQlQAAAAAAAAAAEBFE6ICAAAAAAAAAAAqmhAVAAAAAAAAAABQ0TqUewAAAAAAAJVo4sSJaejQoWnYsGHpk08+STPPPHNafvnl08CBA9Omm25a7uEBAABARVGJCgAAAACghU2YMCHtvPPOOUTVuXPn1L9//9S3b980ZsyYNGjQoHw9AAAA0HJUogIAAAAAaGGXXnppeuONN1K/fv3SCSeckNq1a5evP/jgg9Mf//jHdP755+dQ1aKLLlruoQIAAEBFUIkKAAAAAKCFPfjggzk4ddhhh1UHqML888+fK1RNmjQpjRw5sqxjBAAAgEqiEhUAAAAAQAsbOHBg+u6771KXLl1q3daxY8f8c+LEiWUYGQAAAFQmISoAAAAAgBY2YMCAktdXVVWlYcOG5d+XXXbZFh4VAAAAVC7t/AAAAAAAZhA33HBDevnll9PCCy+c1l9//XIPBwAAACqGEBUAAAAAwAzggQceSKecckrq0KFDOv3009PMM89c7iEBAABAxRCiAgAAAACYASpQHXbYYfn3M844I62xxhrlHhIAAABUlA7lHgAAAAAAQKWaPHlyOvPMM9OVV16ZOnbsmM4+++y02WablXtYAAAAUHGEqAAAAAAAyuDnn3/O1aeGDRuW5pxzznThhReqQAUAAABlIkQFAAAAANDCJk2alA4++OA0YsSI1L1793TppZemJZZYotzDAgAAgIolRAUAAAAA0MIuueSSHKDq1q1buuGGG9L8889f7iEBAABARROiAgAAAABoQd98800OUYXlllsu3XLLLSXvF6391l577RYeHQAAAFQmISoAAAAAgBb0/PPPp++//z7/Pnz48HwpZf/99xeiAgAAgBYiRAUAAAAA0II22WST9MYbb5R7GAAAAEAN7Wv+AQAAAAAAAAAAUGmEqAAAAAAAAAAAgIomRAUAAAAAAAAAAFQ0ISoAAAAAAAAAAKCiCVEBAAAAAAAAAAAVTYgKAAAAAAAAAACoaEJUAAAAAAAAAABARROiAgAAAAAAAAAAKpoQFQAAAAAAAAAAUNGEqAAAAAAAAAAAgIomRAUAAAAAAAAAAFQ0ISoAAAAAAAAAAKCiCVEBAAAAAAAAAAAVTYgKAAAAAAAAAACoaEJUAAAAAAAAAABARROiAgAAAAAAAAAAKpoQFQAAAAAAAAAAUNGEqAAAAAAAAAAAgIrWZkJUo0aNSj169EhHHnlkuYcCAAAAQCs0ceLEdM4556S+ffumlVZaKa2++uppl112SY888kiDn2Ps2LF5fmrDDTdMq6yyStpmm23SLbfc0qzjBgAAAGD6tYkQ1YQJE9LRRx+dqqqqyj0UAAAAAFrp/NLOO++chg4dmjp37pz69++fw1RjxoxJgwYNytdPzSeffJJ22mmndN9996XevXunAQMGpB9++CH99a9/TaeffnqLvA8AAAAAGqdDagNOOeWUPEkFAAAAAI1x6aWXpjfeeCP169cvnXDCCaldu3b5+oMPPjj98Y9/TOeff34OVS266KJ1Psdpp52WPvvss3TJJZfkSlThoIMOSgMHDkxXXXVV2mqrrdKKK67YYu8JAAAAgAqqRDVixIh0xx13pI033rjcQwEAAACglXrwwQdzcOqwww6rDlCF+eefP1eomjRpUho5cmSdj48T/B599NG02mqrVQeoQqdOndIhhxySK6jffPPNzf4+AAAAAKjASlRfffVVLofeq1evtMsuu+RAFQAAAABMq6gW9d1336UuXbrUuq1jx47558SJE+t8/HPPPZeDUmuvvXat23r27JlmnnnmNGrUqCYeNQAAAABNpVWHqKK0+vfff59OPfXU9NFHH5V7OAAAAAC0UgMGDCh5fQSjhg0bln9fdtll63z8+++/n3+WavcXAaoFF1wwffzxx+nnn3+uDmUBAAAAMONote387rnnnvTwww+nww8/PC288MLlHg4AAAAAbdANN9yQXn755Tz/tP7669d5v6+//jr//M1vflPy9jnmmCNNnjw5TZgwodnGCgAAAECFVaL69NNP00knnZTLo/fv37/cwwEAAACgDXrggQfSKaeckjp06JBOP/30XFGqLr/88kv+WVeVqcL1UYmKlH489MxyD4FWotM5fyn3EAAAAKgQrbIS1dFHH50mTZqUJ7HatWtX7uEAAAAA0AYrUB122GH59zPOOCOtscYa9d6/U6dOU4SpihXCU507d27ysQIAAABQgZWobrzxxvTkk0+mv/3tb2mhhRYq93AAAAAAaEOi5d6ZZ56Zrrzyylw96uyzz06bbbbZVB9XaOP37bfflrz9u+++yycDzj777E0+ZgAAAAAqsBJVlFEPxx13XFp22WWrL3vssUe+/s4778x/H3nkkWUeKQAAAACtSVSLOvjgg3OAas4558w/GxKgCksssUT++eGHH9a6LapTjRs3Li2++OKpfftWNx0HAAAAUBFaXSWqbbfdNvXq1avW9R999FG6++67U48ePdImm2ySlltuubKMDwAAAIDWZ9KkSTlANWLEiNS9e/d06aWXVgejGiLmq6LS1LPPPpsGDRo0xW3PP/98DlL17NmzGUYOAAAAQEWGqLbbbruS1z/99NM5RBXhqcGDB7f4uAAAAABovS655JIcoOrWrVu64YYb0vzzzz9Nj19ggQXSuuuum5588sn06KOP5pP8wo8//pjOO++8/PuAAQOaZewAAAAAVGCICgAAAACa0jfffJNDVCFO0LvllltK3m+NNdZIa6+9dq429dxzz+X7FsJS4dhjj039+vVLBx10UNpiiy1yEGv48OHp/fffT3vttZfK6QAAAAAzMCEqAAAAACpatNv7/vvv8+8ReopLKfvvv38OUUWAasiQIWnbbbedIkS1+OKLp5tvvjlXnoqKVD/99FNabLHF0sknn5y23377Fns/AAAAAEy7dlVVVVWNeBwAAK1M7zuuL/cQaCWe3U6rIQCgef146JnlHgKtRKdz/lLuIQDQAsxb0RDmrKDxPt1vYrmHQCsw/9DZUqVrX+4BAAAAAAAAAAAAtKl2fpMmTcqXjh075r8nTJiQbrrppjRu3Li08sorp6222irNNNNMTf2yAAAAAAAAAAAA5a9EdcUVV6TevXunESNG5L9//vnntPPOO6ezzz47XX/99enII49M++yzTw5ZAQAAAAAAAAAAtKkQ1aOPPprOPPPMXHnqu+++y9fddddd6a233krzzjtvGjRoUFp22WXTM888kytTAQAAAAAAAAAAtKkQ1c0335zat2+fLr/88rTDDjvk6x588MHUrl27dNxxx+UQ1XXXXZfmmGOOdM899zTVywIAAAAAAAAAAMwYIapXX301rb766mndddfNf//www9p9OjRqWPHjmmDDTbI180+++xp1VVXTe+8805TvSwAAAAAAAAAAMCMEaKKNn7zzDNP9d/PPfdc+vXXX9PKK6+cg1QF8ftPP/3UVC8LAAAAAAAAAAAwY4SoFlhggfTJJ59U//3EE0/kVn7rrLNO9XWTJ09O//3vf9O8887bVC8LAAAAAAAAAAAwY4SolltuudzS79Zbb02jRo1Kd999d76+T58++ecvv/ySzjrrrDR27NjUq1evpnpZAAAAAAAAAACA6dIhNZF99903PfbYY+m4447Lf1dVVaWNNtooLbPMMtVhqs8//zzNMccc+b4AAAAA0FiTJk1K3377bZprrrnKPRQAAAAA2oAmq0S14oorpiuuuCKttdZaaYkllkj9+/dPZ599dvXtCy64YFpzzTXTjTfemG8HAAAAgKmJoNRll12WxowZU31dVELv3bt3WmedddJmm22Wnn766bKOEQAAAIDWr8kqUYUISV155ZUlb7vmmmvSLLPM0pQvBwAAAEAb9uWXX6btt98+/e9//0tdunRJPXr0SG+88UY6/vjj0+TJk9NMM82UPvzww7TffvulO++8My211FLlHjIAAAAAlV6JqthPP/2UPvroozzJFWaeeebmeikAAAAA2qCoQDVu3Lh84t5qq62Wr7vllltygGrHHXdML7/8cjr99NPTL7/8ku8LAAAAADNMiOrxxx9PAwYMSD179szl1M8999x8/YEHHphOOOGE9P333zf1SwIAAADQBj3xxBNpvvnmS5dffnlaeuml83WPPfZYateuXdp7771zJao//OEPafnll0+jRo0q93ABAAAAaMWatJ3fBRdckC6++OJUVVWV2rdvn3/GJbz99ts5YDVmzJjc2q9jx45N+dIAAAAAtDFjx45N6623XnWF83fffTdf161bt7TIIotU32/hhRdOb731VhlHCgAAAEBr12SVqEaOHJkuuuiifHbgeeedl0aPHj3F7eecc05aaqml0ksvvZRuvfXWpnpZAAAAANqoOAkvWvUVPPnkk/ln7969p7jfV199lWaZZZYWHx8AAAAAbUeThaiiulScFXjFFVekvn37ptlmm22K21daaaVcej0mv+6+++6melkAAAAA2qioNvWf//wn/fDDD/nvBx98MLfy22CDDarv8/7776cXX3wxn7wHAAAAAGUPUb3yyiupZ8+eackll6zzPlGlao011kgffvhhU70sAAAAAG3Upptumr755pu03XbbpV133TWHpbp06ZI22mijfPsll1ySBgwYkCZNmpS23nrrcg8XAAAAgFasyUJUP/74Y63qU6VEtarC2YMAAAAAUJc99tgjrb/++um9995Lo0ePzvNKJ510Upp11lnz7bfcckv68ssv0w477JB23nnncg8XAAAAgFasQ1M9Ubdu3dLrr7+eJk+enNq3L53N+vXXX/N9FlxwwaZ6WQAAAADaqAhNXXrppemFF15In376aVp99dXT/PPPX337Pvvsk5ZYYom05pprlnWcAAAAALR+TVaJauONN07/+9//0gUXXFDnfS688ML0+eefV5dcBwAAAICpifDUFltsMUWAKuy0004CVAAAAADMWJWo9t5773TfffeloUOHpueffz6ttdZa+fpx48alW2+9NQ0fPjyNHDkyzTnnnGmvvfZqqpcFAAAAoAI888wzadSoUXmuacUVV0y77bZbeuihh9Kqq66aFlhggXIPDwAAAIBWrslCVF27dk1XXHFFGjx4cA5R/fvf/87Xx+9xqaqqym38olLVvPPO21QvCwAAAEAb9tFHH6VDDz00vfrqq3l+qV27dtW3Rau/N998M51xxhnpd7/7XVnHCQAAAEDr1mQhqrDUUkvlalSPPPJIPjswzgycPHlyDk317t07T2Z17NixKV8SAAAAgDbqm2++SQMHDkxjx45NSy+9dNpggw3S5ZdfXn37oosuml577bX0f//3f2nxxRdPyy23XFnHCwAAAEDr1aQhqjDTTDOlvn375gsAAAAANNYll1ySA1R77rlnDkpFFaqaIapzzjknrb766unkk0/OFdLPOuusso4XAAAAgNarfbkHAAAAAAClDB8+PHXr1q06QFXKLrvskqtQvfTSSy0+PgAAAADajiarRLXbbrs1+L4x6XX11Vc31UsDAAAA0AaNGzcu/fa3v60zQFUQrf5GjhzZYuMCAAAAoO1pshDVc889N9X7xIRXVVXVVCe+AAAAAGDWWWdNn3322VTv97///S916tSpRcYEAAAAQNvUZCGqIUOGlLx+8uTJafz48emFF15I9957b9pmm23SIYcc0lQvCwAAAEAbteKKK+YT995555205JJLlrzPmDFj0uuvv5569+7d4uMDAAAAoO1oshDVJptsUu/tO+ywQ+rTp08aPHhwWmedddKWW27ZVC8NAAAAQBu0yy67pKeeeir96U9/SieeeGJac801p7j9tddeS4cddliaNGlS2mmnnco2TgAAAABavyYLUTU0aLXccsulq666SogKAAAA2qBvvvkmDR06NI0YMSKNGzcuzT333PmkqgMOOCB17dq13MOjlfntb3+bdtttt3TNNdekPffcM80000ypXbt2aeTIkWnDDTfMrf6qqqrStttumzbbbLNyDxcAAACAVqx9S79g9+7d09tvv93SLwsAAAA0s++++y71798/XXHFFWnBBRfMVYSWXXbZdO2116Ztttkmh6pgWh199NHpjDPOSEsssUT69ddfc2hq/Pjx6dNPP03dunVLf/3rX9Npp51W7mECAAAA0Mq1aCWqKK0eZdY7duzYki8LAAAAtIAhQ4akd955Jw0ePDgNGjSo+vrrrrsunXTSSemCCy4QdqFRIoQXly+++CKNHTs2B6nmnXfeHKICAAAAgBkqRDVmzJh6w1Off/55PvM0JrqiFDsAAADQtnz88cdpnnnmSXvttdcU10f4JUJUL774YtnGRtsQ21dcAAAAAGCGDVH94Q9/SO3atav3PnGW4CyzzJIOPPDApnpZAAAAYAZx4YUXlrw+qlOFqBwE9Rk+fPh0Pb5Pnz5NNhYAAAAAKkuThajqK5/evn371Llz59SjR4+0++67p+WXX76pXhYAAACYQY0fPz6NGjUqnX766alDhw7pgAMOKPeQmMHFiXdTO0mvPv/973+bdDwAAAAAVI4mC1GNGDGiqZ4KAAAAaOVuvPHGdMIJJ+TfZ5pppnTWWWeltddeu9zDYga35pprlnsIAAAAAFSoJgtRAQAAABR07do17bPPPunzzz9Pw4YNS4cffngaN25c2nvvvcs9NGZg1157bbmHAAAAAECFavIQ1RdffJE6duyYunTpkv+OCdJLLrkk/1x55ZXTbrvtlmafffamflkAAABgBrL55pvnSxg8eHDaaaedcjWq3r17p5VWWqncwwMAAAAAaL4Q1UknnZRuuummdOaZZ6Ytt9wyTZgwIfXr1y999tlnqaqqKo0cOTI9/PDD6eabb06dOnVqypcGAAAAZlDdu3fPFahOP/30NHz4cCEq6jRmzJj8c8kll0wzzzxz9d8N1aNHj2YaGQAAAABtXZOFqO644450/fXX53BUu3bt8nW33npr+vTTT9PSSy+d9txzz/TAAw+kJ598Ml111VVp//33b6qXBgAAAMrs559/TqNHj06TJk1KG2ywQa3bF1544fzzq6++KsPoaC3+8Ic/pPbt26f7778/Lb744vnvwjzT1MT9Xn/99WYfIwAAAABtU5OFqO68887UoUOHXImqcNZfVJ2KCayjjz46rb322rk61cYbb5weeughISoAAABoYyGqffbZJ3Xu3Dk9/fTTqWPHjlPc/tprr+WfEYyBunTr1i3/jDmmmn8DAAAAQKsJUb355pupV69e1QGqb7/9Nr388stp1llnzdeHmECNkv2jRo1qqpcFAAAAZgCzzz576tOnTxo2bFgaMmRIOvTQQ6tve/XVV3NV6ghYbbXVVmUdJzO2ESNG1Ps3AAAAAMzwIaoff/wxzTHHHNV/P/PMM2ny5Mlp9dVXTzPNNNMU943S/gAAAEDbcswxx+TA1NChQ9Pzzz+fVllllTR27Ng0fPjwXKn63HPPTfPOO2+5hwkAAAAAUEv71EQWXHDB9N5771X//fjjj+cJ0nXXXXeK0v6vvPJKvi8AAADQtiywwALp9ttvT7vuumsaN25cuuaaa9Jzzz2XNtlkk3Trrbfmn1Cf0047Ld17773lHgYAAAAAFajJKlGtuuqq6e67707nnXdeWnjhhdP999+fry9MkH766afpjDPOSF9++WXafPPNm+plAQAAgBlI165d07HHHpsvMK2uvvrqtPXWW6ff//73tW6766678pxTz549yzI2AAAAANq2JgtRHXDAAenRRx/NJftDVVVV2m677fLkVthmm23SN998k7p165b222+/pnpZAAAAACrAkUcemQNWQlQAAAAAzNAhqkUWWSTddttt6bLLLkufffZZ6t27d9p9992rb1955ZXT3HPPnQ477LA0zzzzNNXLAgAAAAAAAAAAzBghqrDYYoulk08+ueRtl1xySVO+FAAAAAAAAAAAwIwXoqrLyy+/nMaNG5dWWGGF1L1795Z4SQAAAAAAAAAAgAZp35RP9uKLL6Z99903PfXUU9XX/eUvf0k77bRT+vOf/5w233zzNGTIkKZ8SQAAAAAAAAAAgBkjRDVmzJg0cODA9K9//Su9++67+bqRI0eme+65J80000xpjTXWSJ06dUoXXnhhvh4AAAAAAAAAAKBNhaiuuOKK9PPPP+dKVNttt12+7u67707t2rXL1aiuvfbadNNNN+VA1Q033NBULwsAAAAAAAAAADBdOqQmMnr06LT00kunQw45JP89efLkXJUqQlS///3v83Vxe8+ePdPLL7/cVC8LAAAAQBvyn//8Jx111FHTfFvMQZ166qnNPDoAAAAA2qomC1F98cUXaZVVVqn+O4JS3333XerRo0eaa665qq+fc8458/UAAAAAUOzDDz/Ml2m9TYgKAAAAgBkiRBXhqPHjx1f//cQTT+Sfa6211hT3++ijj1KXLl2a6mUBAAAAaCMGDRpU7iEAAAAAUKGaLES15JJLpueffz69++67ab755kv33HNPPgNwo402qr7PsGHD0uuvv5423HDDpnpZAAAAANoIISoAAAAAWn2IaqeddkqjRo1KW2+9dZplllnSxIkTc7CqUIlq//33T//6179ysGrXXXdtqpcFAAAAAAAAAACYLu1TE9liiy3SoYcemmaeeeYcoFp66aXTBRdcUH37xx9/nDp27JjOPPPMtN566zXVywIAAAAAAAAAAMwYlajCvvvum3bfffc0YcKE1LVr1yluO/XUU3OwatZZZ23KlwQAAAAAAAAAAJhxQlQhqk0VB6jCyiuv3NQvBQAAAAAAAAAAMOO08wMAAAAAAAAAAKioSlR9+vRp9Iu2a9cuPfroo41+PAAAAAAAAAAAQNlDVJ988sl0hagAAAAAoKZ+/fql3r17p0MOOST/PXbs2NS5c+c055xzlntoAAAAALRxjQ5RXXPNNU07EgAAAAAq2htvvJG6des2RSX0rbfeOp1xxhllHRcAAAAAbV+jQ1S9evVq2pEAAAAAUNGievnbb7+dJk+enNq3b5+qqqryBQAAAABm2BAVAAAAADSlHj16pBdffDFtsMEGad55583XjRw5Mm277bYNCmDdcccdLTBKAAAAANoiISoAAAAAZgiHH3542nfffdMXX3yRL2H8+PH50pAQFQAAAAA0lhAVAAAAADOE1VdfPT3++OPpnXfeST/++GMaOHBgWnfdddN+++1X7qEBAAAA0MYJUQEAAAAww5h99tnTKqusUv333HPPnXr16lXWMQEAAADQ9glRAQAAADBDGjNmTLmHAAAAAECFEKICAAAAYIb29ddfp5tvvjmNGjUqffbZZ6ljx465QtXaa6+dttlmmzTvvPOWe4gAAAAAVGqIql+/fql3797pkEMOyX+PHTs2de7cOc0555xNOT4AAAAAKthzzz2XBg8enL799ttUVVU1xW1PP/10uuyyy9K5556bA1UAAAAA0OIhqjfeeCN169at+u8+ffqkrbfeOp1xxhmNHgwAAAAAFHzyySfpgAMOSBMmTEi//e1v0+9///vUvXv3NHny5PThhx+m++67Lz3xxBPpz3/+c7rrrrvSggsuWO4hAwAAAFBpIap27dqlt99+O09atW/fPp8JWHw2IAAAAAA01qWXXpoDVIceemjad999p7ht1VVXzSf0DR06NFeiuvrqq9ORRx5ZtrECAAAAUKEhqh49eqQXX3wxbbDBBmneeefN140cOTJtu+22DQpg3XHHHY19aQAAAAAqwL/+9a+06KKL1gpQ1bTffvul22+/PT322GNCVAAAAAC0fIjq8MMPzxNYX3zxRb6E8ePH50tDQlQAAAAAUJ/PPvss9enTZ6r3W3755XOICgAAAABaPES1+uqrp8cffzy988476ccff0wDBw5M6667bj77DwAAAACmV+fOndOXX3451fvFfTp16tQiYwIAAACgbWp0iCrMPvvsaZVVVqn+e+655069evVqinEBAAAAUOFWXHHF9Oyzz6YxY8akHj16lLxP3PbCCy+ktdZaq8XHBwAAAP8fe/cBZVV1/o97o4iIoIgKiCIWDGKv2EUFC5YoYsfYW+xdsUexYSKxRuxBsaCxRcUea8SGJRqxIRFBwYqgApb5r3d//3d+VAvOzG3Ps9Zdd7jnzJ09yfbM2Z/77r2ByjFHXb1RBFb9+vWrq7cDAAAAoMrtuuuu6fvvv0/7779/euSRR9KPP/5Yeyy+jtfiWHy9yy67FLWtAAAAAFTxSlQz88UXX6Rbb701DR06NI0bNy41adIkr1C1zjrrpG233TYtvPDCdf0jAQAAAKhA3bt3TzvttFMaPHhwOuyww/KWfe3atcvHxowZkyZNmpRqamrSDjvskDbddNNiNxcAAACAMlanRVTPP/98DrS++uqrHGBN7d///ne6+uqrU//+/XNBFQAAAAD8nDPPPDMtt9xy6ZprrkmjRo1K7733Xu2x9u3bp3322SevWAUAAAAAJVFENXr06HTwwQeniRMnpo033jhts802abHFFsvLqX/wwQfp3nvvTU8++WQ68sgj01133ZUWWWSRuvrRAAAAAFSw2KovHmPHjs2P0Lp169S2bdtiNw0AAACAClFnRVRXXXVVLqA6+uij0wEHHDDNsVVWWSX9/ve/TwMGDMgrUf39739PJ554Yl39aAAAAACqQJs2bfIDAAAAAOraHHX1Rk899VTq0KHDDAVUUzvwwAPT4osvnv71r3/V1Y8FAAAAAAAAAAAojSKqcePGpc6dO//secstt1z6+OOP6+rHAgAAAAAAAAAAlEYRVbNmzdJnn332s+fFOU2bNq2rHwsAAAAAAAAAAFAaRVQrrLBCevnll9Pw4cNneU4cGzZsWD4XAAAAAAAAAACgooqodt111/T999+n/fffPz3yyCPpxx9/rD0WX8drcSy+3mWXXerqxwIAAAAAAAAAAPwmjVMd6d69e9ppp53S4MGD02GHHZa37GvXrl0+NmbMmDRp0qRUU1OTdthhh7TpppvW1Y8FAAAAoEKdddZZaemll0677bZbsZsCAAAAQIWrsyKqcOaZZ6blllsuXXPNNWnUqFHpvffeqz3Wvn37tM8+++QVqwAAAADg59xzzz05U1JEBQAAAEBZFVGF2KovHmPHjs2P0Lp169S2bdu6/lEAAAAAVLDvv/++dqVzAAAAACirIqqCNm3a5AcAAAAAzI7NN988Pfjgg+ndd99NHTt2LHZzAAAAAKhg9VZEBQAAAAC/xTbbbJNeffXV1LNnz7Tuuuumzp07p5YtW6Y55phjpufvscceDd5GAAAAACqDIioAAAAAStK+++6bGjVqlGpqatITTzyRnnzyyZmeF8fjPEVUAAAAAMwuRVQAAAAAlKTtttsuF0cBAAAAQH1TRAUAAABASTrvvPOK3QQAAAAAqsQcxW4AAAAAAAAAAABARRRRnXXWWemmm26qq7cDAAAAgOyTTz5JF110Udp1113TRhttlM4444z8ev/+/dP9999f7OYBAAAAUAHqbDu/e+65J7Vv3z7ttttuqSF8+eWXacCAAemxxx5LH330UVpwwQVTt27d0sEHH5xatWrVIG0AAAAAoH498cQT6Zhjjklff/11qqmpSY0aNUrffPNNPha50JVXXpmGDRuWTjnllDr/2UceeWR+7yeffPIXf89OO+2UXn311ZkeiwKwyLMAAAAAqOAiqu+//z61a9cuNYQJEybkYq333nsvrbPOOrl4asSIEemGG25IDz74YBo8eHBaZJFFGqQtAAAAANSPyH4OP/zw9MMPP6RddtklFyEdeOCBtcd32GGHdMkll6RBgwalddddN22yySZ19rMvvfTSNGTIkNSmTZtf/D0//vhjevvtt9Niiy2WtttuuxmOL7HEEnXWPgAAAABKtIhq8803zwVM7777burYsWOqTxFiRYh22GGHpUMPPbT29RtvvDFvK3jxxRenc889t17bAAAAAED9+tvf/pamTJmSt/LbbLPNZji+5557phVWWCHtvvvuuZCqLoqoJk+enPOl22677Vd/7/vvv5++/fbbtN566+XcCgAAAIAqLKLaZptt8lLlPXv2zDP/OnfunFq2bJnmmGOOmZ6/xx57zPbP+vDDD9NCCy2U9t1332le33bbbXPI9fLLL8/2ewMAAABQGoYOHZozppkVUBWsvvrqaeWVV84T+36r2B6wb9++afTo0alr1655K8Ff46233srPnTp1+s1tAQAAAKBMi6iioKlRo0appqYmB0xPPvnkTM+L43Hebymiuuyyy2b6eqxOFRZeeOHZfm8AAAAASsP48ePTaqut9rPnRRb0xhtv/Oafd/vtt6evv/46nX766WnXXXdNyy677K/6/jfffDM//9rvAwAAAKCCiqi22267XBxVrEAtZiaed955qXHjxunggw8uSjsAAAAAqDsLLLBAGjly5M+eN2LEiNSqVavf/PNie8B+/fql5s2bz9b3F4qo/vvf/6bzzz8/vfPOO6lJkyZ51fbDDz88Lbnkkr+5jQAAAACUeBFVFDAVw80335zOOOOM/PWcc86ZLrjggrTOOusUpS0AAAAA1J211lor3XvvvenRRx9N3bp1m+k5Dz74YF6dfOutt66Tn/dbDB8+PD/3798/b0EYWw2+/vrr6f7778+rtl933XVppZVW+s3tBAAAAKCEi6iKJWYZ7r///umTTz5JDz30UDr22GPTRx99lPbbb79iNw0AAIAqMvbAr4vdBMpAmwHzFrsJZeWAAw5IDzzwQDrqqKPSvvvuWztx7rvvvksffPBBLq66+OKL88rke++9d1Hb+s0336TWrVunBRdcMP3tb39L7dq1qz12yy235C0CjzvuuFxQFRMBAQAAACgtjWpqamrq8g2jmOmmm27K2+tFMdNGG22UV4qKGXidOnVKW265ZaovH374Ydp5553Tp59+mm6//fa04oor1tvPAgAoN2vdMajYTaBMPLd972I3AcqSIip+CUVUv96QIUPSiSeemKZMmTLT41GQFAVKO+64Y53/7Miy2rRpk1eR+q122WWX9PLLL+eCqlVXXTVVu0lH9yt2EygTTS88vthNAKAByK34JWRWMPvkVvwSbeRWaY66fLMnnngi9ejRI11xxRU5FBo7dmyehRcee+yxdMwxx6S+ffum+rLYYovVrkAVMxEBAAAAKG+RNd1zzz25CGmJJZZIc889d5prrrnySk/bbbddnkhXHwVUda2wjV+soAUAAABABW/n995776XDDz88/fDDDznUihWoDjzwwNrjO+ywQ7rkkkvSoEGD0rrrrps22WST2fo5MevwhRdeyD9nww03nOF4+/bt8/Pnn3/+G34bAAAAAEpFhw4d8mpTpeyLL75II0aMSK1atUpLLrnkDMe//fbb/Ny0adMitA4AAACABiui+tvf/pYLnC666KK02WabzXB8zz33TCussELafffdcyHVbymi2n///VOzZs3Sv//979SkSZNpjr/xxhv5eWZhFQAAAADla+LEiWncuHF5JarWrVvnValKxbPPPpuOOuqoPLFwwIAB0xz78ccf07Bhw1KjRo3SiiuuWLQ2AgAAANAA2/kNHTo0de7ceaYFVAWrr756WnnlldO777472z+nefPmqVu3bmnChAnp0ksvnebY66+/nq6//vpcYLX11lvP9s8AAAAAoHTccccdafvtt09dunRJW221Vc6fImeKyXr/+te/UimIFdNbtGiRnnzyyfTMM89Mc+yyyy7Ledimm26atyEEAAAAoIJXoho/fnxabbXVfva8hRdeuHa1qNl18skn54KpmNX34osv5sKsMWPGpEcffTTP6Ovfv3/+OQAAAACUr1jB6eijj04PPvhgqqmpSXPOOWfeLi98/vnnORd66aWX8qrlcV5DefPNN9MjjzySFl100VzcVZj4d+aZZ6Zjjz02tycKphZZZJH08ssvp1deeSUttdRS6YwzzmiwNgIAAABQpCKqBRZYII0cOfJnzxsxYkRt2DW72rZtm/7xj3+kyy+/PBdOvfrqq2m++eZL3bt3TwcddFBadtllf9P7AwAAAFB8t99+e3rggQdSmzZtUp8+fdLGG29cu4Xft99+m4/169cvXXXVVWmllVbK2VBDFVHFCumxMlahiCpsueWWeaWpK664Im/v98033+R/H3DAAenAAw/MhVYAAAAAVHgR1VprrZXuvffeXNQU2+3NTMwafO+99+pkq70oxDrllFPyAwAAAIDKM3jw4NS0adM0cODA1KFDh2mOzTPPPKlnz56pc+fOaYcddkjXXXddnRdRvfXWWzN9PQqnpi6emtoqq6ySi6gAAAAAKC9z1NUbxYy6xo0bp6OOOipddNFF6fnnn8+vf/fdd+mDDz7IQdaJJ56Yz9l7773r6scCAAAAUKHefffdPHFv+gKqqcWK5HHOf//73wZtGwAAAACVpc6KqJZZZpm8fHqjRo3ybLs999wzfx3Lqm+++eb5WBRUnX766Wn55Zevqx8LAAAAQIVq1qxZzpd+TmzxN9dcczVImwAAAACoTHW2nV/o0aNHWm655dL111+fhg4dmj766KP0448/poUXXjh16dIlF1bF7EAAAAAA+Dldu3ZNQ4YMSR9++GFabLHFZnrO559/nldE32CDDRq8fQAAAABUjjotogqxvHqsNgUAAAAAv8Wxxx6bXnjhhbTXXnulPn36pG7duk1z/J133kknnHBCmnfeedPxxx9ftHYCAAAAUP7qvIiqYOLEiWncuHF5KfXWrVvnZdUBAAAAYFZiJfPpTZkyJU2ePDkdeuihuVgqVqSKnGns2LH5Edq1a5cOP/zwdNtttxWh1QAAAABUgjovorrjjjvSjTfemIYPH55qamrya3POOWdaZZVV0r777ps23njjuv6RAAAAAFSAr7766mcn7UXmNL3Ro0enMWPG1GPLAAAAAKh0dVZE9eOPP6ajjz46Pfjgg7l4KgqnWrVqlY99/vnn6cUXX0wvvfRS2n///fN5AAAAADC1Rx99tNhNAAAAAKBK1VkR1e23354eeOCB1KZNm9SnT5+84lRhC79vv/02H+vXr1+66qqr0korrZS6d+9eVz8aAAAAgAqw6KKLFrsJAAAAAFSpOerqjQYPHpyaNm2aBg4cmLbYYovaAqowzzzzpJ49e6brrrsur1AVzwAAAAAAAAAAABW1EtW7776b1lprrdShQ4dZnrPsssvmc4YNG1ZXPxYAAACACvbUU0+lm2++OY0cOTJNnjx5luc1atQoPfLIIw3aNgAAAAAqR50VUTVr1iyHVT8nVqiaa6656urHAgAAAFChnnjiiXTQQQelmpqanz33l+RSAAAAAFDvRVRdu3ZNQ4YMSR9++GFabLHFZnrO559/np5//vm0wQYb1NWPBQAAAKBCXX755bmAascdd0xbbbVVmn/++RVLAQAAAFDaRVTHHntseuGFF9Jee+2V+vTpk7p16zbN8XfeeSedcMIJad55503HH398Xf1YAAAAACrUu+++m5Zbbrl01llnFbspAAAAAFS42S6i6tKlywyvTZkyJU2ePDkdeuihuVgqVqSK7fvGjh2bH6Fdu3bp8MMPT7fddttvazkAAAAAFa1JkyZpkUUWKXYzAAAAAKgCs11E9dVXX/3k8YkTJ6bhw4fP8Pro0aPTmDFjZvfHAgAAAFAl1l133bzyeUzai4l6AAAAAFByRVSPPvpo3bYEAAAAAKZy9NFHp169eqXjjjsunX766WnBBRcsdpMAAAAAqFCzXUS16KKL1m1LAAAAAGC6/OmYY45Jp556anrkkUdS69at0wILLDDTcxs1apTuuOOOBm8jAAAAAFVeRAUAAAAA9emJJ55IZ5xxRv76xx9/TB9//HF+zKqICgAAAABKoojqqaeeSjfffHMaOXJkmjx58izPi1ArZg8CAAAAwKxcdtll6YcffkjdunVLW2+9dWrVqpViKQAAAABKu4gqZgYedNBBqaam5mfPFXYBAAAA8HPeeeed1KlTp1xMBQAAAABlUUR1+eWX5wKqHXfcMW211VZp/vnnVywFAAAAwGxr2rRpWnzxxYvdDAAAAACqQJ0VUb377rtpueWWS2eddVZdvSUAAAAAVWzddddNzz33XJoyZUpq0qRJsZsDAAAAQAWbo67eKIKsRRZZpK7eDgAAAIAqd+SRR+YCqiOOOCJ99NFHxW4OAAAAABWscV3ODHzhhRfS5MmT09xzz11XbwsAAABAlbrmmmtSp06d0uOPP54fCy20UGrZsmVq3HjGSKtRo0bpjjvuKEo7AQAAACh/dVZEdfTRR6devXql4447Lp1++ulpwQUXrKu3BgAAAKAK3XLLLdP8+5NPPsmPmYkiKgAAAAAoehHVoosumo455ph06qmnpkceeSS1bt06LbDAAjM918xAAAAAAH7OwIEDi90EAAAAAKpEnRVRPfHEE+mMM87IX//444/p448/zo+ZMTMQAAAAgJ/TpUuXYjcBAAAAgCpRZ0VUl112Wfrhhx9St27d0tZbb51atWqlWAoAAAAAAAAAAKieIqp33nknderUKRdTAQAAAMBv1adPn198bkzmO+ecc+q1PQAAAABUrjoromratGlafPHF6+rtoE59/fXXacCAAemhhx5Ko0ePTnPNNVdabrnl0p577pk23XTTYjcPAAAAmIk777zzJ48XVkGvqalRRAUAAABAaRRRrbvuuum5555LU6ZMSU2aNKmrt4XfbOLEiWm33XZLb731Vlp++eXz1xMmTMgFVYceemg6+uij04EHHljsZgIAAAC/cCWqH3/8MY0fPz699NJL6YUXXkjbb7992nnnnRu8fQAAAABUjjorojryyCNTr1690hFHHJFOO+20tMgii9TVW8NvctVVV+UCql122SWdccYZtbNUo69Gn73ooovSFltskTp06FDspgIAAABTiRWkf86gQYNS375901ZbbdUgbQIAAACgMtVZEdU111yTOnXqlB5//PH8WGihhVLLli1T48Yz/ogoYrnjjjvq6kfDTxoyZEjuc8ccc0xtAVVo06ZN2nXXXdPFF1+cnnjiibTHHnsUtZ0AAADAr9e7d+9cSDVgwIC03nrrFbs5AAAAAFR7EdUtt9wyzb8/+eST/JiZqQtZoCFmrcb2ffPNN98MxwpbT3799ddFaBkAAABQFzp27JieeeaZYjcDAAAAgDJWZ0VUAwcOrKu3gjqfkTozNTU16aGHHspfxypqAAAAQHl67733it0EAAAAAMpcnRVRdenSpa7eChrETTfdlF577bXUvn37tMEGGxS7OQAAAMB0Jk6cOMtj33//fV4F/frrr08jRoxIa6+9doO2DQAAAIDKUmdFVFBO7r///nT22Wenxo0bp/POOy/NNddcxW4SAAAAMJ0111zzZ8+JlabnnHPOdMABBzRImwAAAACoTHVWRNWnT59ffG6jRo3SOeecU1c/Gn71ClRnnXVW7ofnn39+WmONNYrdJAAAAGAWBVKzEuP6Zs2apWWXXTbtv//+aZ111mnQtgEAAABQWeqsiOrOO+/8yeMRbBXCL0VUFMOPP/6Y+vXrl6677rrUpEmT9Je//CVtttlmxW4WAAAAMAvDhw8vdhMAAAAAqBL1vhJVFK6MHz8+vfTSS+mFF15I22+/fdp5553r6sfCLzJlypR0zDHHpIceeii1bNkyXXbZZVagAgAAAAAAAACgbouo9txzz589Z9CgQalv375pq622qqsfCz/rhx9+SEcccUR67LHH0mKLLZauuuqqtNRSSxW7WQAAAAAAAAAAVFoR1S/Ru3fvXEg1YMCAtN566zXkj6aKXXnllbmAql27dummm25Kbdq0KXaTAAAAgF+x0vkv0ahRo3TOOefUaXsAAAAAqB4NWkQVOnbsmJ555pmG/rFUqS+//DIXUYXOnTunwYMHz/S82NpvnXXWaeDWAQAAAFO78847f3Xh1NQUUQEAAABQNkVU7733XkP/SKrYiy++mL755pv89aOPPpofM3PQQQcpogIAAIAyWonq+++/TwMHDkzjxo1LNTU1qX379vXaNgAAAAAqW50VUU2cOPEnQ61PPvkkXX/99WnEiBFp7bXXrqsfCz+pe/fu6a233ip2MwAAAIBfYM899/xF57399tvpxBNPrC2g2nHHHfO/AQAAAKDoRVRrrrnmz54Todacc86ZDjjggLr6sQAAAABUkauvvjpdfPHFacqUKWnhhRdOffv2TV27di12swAAAAAoc3VWRBUFUrPSqFGj1KxZs7Tsssum/fff37ZpAAAAAPwqo0aNyqtNDRs2LOdQPXr0SGeccUaaf/75i900AAAAACpAnRVRDR8+vK7eCgAAAABq3XLLLalfv37pm2++yUVTp59+etpyyy2L3SwAAAAAKkidFVEBAAAAQF0aN25cOumkk9IzzzyTV5/acMMN09lnn5238QMAAACAuqSICgAAAICS889//jP17ds3jR8/PjVr1ixv5bfTTjsVu1kAAAAAVKjZLqLq06fPbP/QRo0apXPOOWe2vx8AAACAyvTll1+m0047LT388MN59ak11lgjnXvuual9+/bFbhoAAAAAFWy2i6juvPPOX104NTVFVAAAAABM7bHHHssFVJ999llq0qRJOuqoo9Jee+1V7GYBAAAAUAUaZCWq77//Pg0cODCNGzcuzyA0cxAAAACA6R188MG1E/GaN2+e7r777vz4JeL77rjjjnpuIQAAAACVaraLqPbcc89fdN7bb7+dTjzxxNoCqh133DH/GwAAAACmF/lRiNWo4jG7q6ADAAAAQIMUUf0SV199dbr44ovTlClT0sILL5z69u2bunbtWp8/EgAAAIAyFSuZAwAAAEDFFFGNGjUqrzY1bNiwPHuwR48e6Ywzzkjzzz9/ffw4AAAAACpAly5dit0EAAAAAKpUnRdR3XLLLalfv37pm2++yUVTp59+etpyyy3r+scAAAAAAAAAAACUVhHVuHHj0kknnZSeeeaZvPrUhhtumM4+++y8jR8AAAAAAAAAAEBFF1H985//TH379k3jx49PzZo1y1v57bTTTnXx1gAAAAAAAAAAAKVbRPXll1+m0047LT388MN59ak11lgjnXvuual9+/Z110IAAAAAAAAAAIBSLKJ67LHHcgHVZ599lpo0aZKOOuqotNdee9Vt6wAAAAAAAAAAAEq1iOrggw9OjRo1yl83b9483X333fnxS8T33XHHHbP7owEAAAAAAAAAAEpjO7/Ywi/EalTx+KUKxVcAAAAAAAAAAABlW0Q1cODAum0JAAAAAAAAAABAORVRdenSpW5bAgAAAAAAAAAAUARzFOOHAgAAAAAAAAAAlApFVAAAAAAAAAAAQFVTRAUAAAAAAAAAAFQ1RVQAAAAAAAAAAEBVU0QFAAAAAAAAAABUNUVUAAAAAAAAAABAVVNEBQAAAAAAAAAAVDVFVAAAAAAAAAAAQFVTRAUAAAAAAAAAAFQ1RVQAAAAAAAAAAEBVU0QFAAAAAAAAAABUNUVUAAAAAAAAAABAVVNEBQAAAAAAAAAAVDVFVAAAAAAAAAAAQFVTRAUAAAAAAAAAAFQ1RVQAAAAAAAAAAEBVU0QFAAAAAAAAAABUNUVUAAAAAAAAAABAVVNEBQAAAAAAAAAAVDVFVAAAAAAAAAAAQFVTRAUAAAAAAAAAAFQ1RVQAAAAAAAAAAEBVU0QFAAAAAAAAAABUNUVUAAAAAAAAAABAVVNEBQAAAAAAAAAAVDVFVAAAAAAAAAAAQFVTRAUAAAAAAAAAAFQ1RVQAAAAAAAAAAEBVU0QFAAAAAAAAAABUNUVUAAAAAAAAAABAVVNEBQAAAAAAAAAAVDVFVAAAAAAAAAAAQFVTRAUAAAAAAAAAAFS1si2i+vrrr9OFF16Ytthii7Tiiium1VZbLe2+++7p4YcfLnbTAAAAAKgARx55ZNpwww1/1fd88cUXqW/fvqlbt25ppZVWytnVVVddlb7//vt6aycAAAAAVVpENXHixLTrrrumAQMGpGbNmqXddtstB1LDhw9Phx56aH4dAAAAAGbXpZdemoYMGfKrvuerr75Kf/jDH9KNN96Yll9++bTHHnukeeaZJ/35z39ORx99dL21FQAAAIDfrnEqQzF776233kq77LJLOuOMM1KjRo3y60cccUTq1atXuuiii3JRVYcOHYrdVAAAAADKyOTJk9NZZ52Vbrvttl/9vZdddll655130umnn54n/YWjjjoqr2j14IMPpoceeihtttlm9dBqAAAAAKpyJaqYBRiFU8ccc0xtAVVo06ZNXqHqhx9+SE888URR2wgAAABAeXnsscdSjx49cgFV165df9X3Tpo0KQ0ePDgtssgieeJfwZxzzpmOP/74/PUtt9xS520GAAAAoIpXotpzzz3ThAkT0nzzzTfDsSZNmuTnr7/+uggtAwAAAKBc3X777TlTipWkYqLesssu+4u/97XXXkvffPNN2nTTTdMcc0w7b7F9+/ZpscUWSy+88EKe/BeFVQAAAACUlrIsourdu/dMX6+pqcnLoodOnTo1cKsAAAAAKGcxca9fv36pefPmv/p7R44cmZ8XX3zxmR6PQqoPP/wwPzp06PCb2woAAABA3SrLIqpZuemmm/KsvwilNthgg2I3BwAAAIAystZaa83293755Zf5uWXLljM93qJFi/z81VdfzfbPAAAAAKD+VEwR1f3335/OPvvs1Lhx43Teeeelueaaq9hNKgmTju5X7CZQBppeeHyxmwAAAABlbcqUKfm5SZMmMz1eeH3y5MkN2i4AAAAAfpk5UoWsQHXMMcfkr88///y0xhprFLtJAAAAAFSRpk2b5ufvvvvuJ4us5p133gZtFwAAAABVsBLVjz/+mPr165euu+66PJvvL3/5S9pss82K3SwAAAAAqsz888//k9v1TZgwIT83b968QdsFAAAAQIUXUcXsvVh96qGHHkotW7ZMl112mRWoAAAAACiKpZZaKj9/8MEHMz0erzdr1iy1a9eugVsGAAAAQMVu5/fDDz+kI444IhdQLbbYYunmm29WQAUAAABA0aywwgp5q77nn38+r54+tVGjRqXRo0enVVZZJc0555xFayMAAAAAFVZEdeWVV6bHHnssz9y76aabamf6AQAAAEAxzD333GnrrbdOH374YRo4cOA0kwH79euXv+7du3cRWwgAAABARW3n9+WXX+YiqtC5c+c0ePDgmZ4XK1Ots846Ddw6AAAAACrdm2++mR555JG06KKLpu2337729SOPPDI9/fTT6dxzz01Dhw5NHTt2TP/+97/TG2+8kXr06JG6detW1HYDAAAAUEFFVC+++GL65ptv8tePPvpofszMQQcdpIgKAAAAgHoporr00ktTly5dpimiatWqVbrlllvSRRddlB5//PFcQLXYYoul4447Lu2xxx6pUaNGRW03AAAAABVURNW9e/f01ltvFbsZAAAAAFS4WWVQUTg1dfHU1Fq3bp3OPvvsem4ZAAAAAHVtjjp/RwAAAAAAAAAAgDKiiAoAAAAAAAAAAKhqiqgAAAAAAAAAAICqpogKAAAAAAAAAACoaoqoAAAAAAAAAACAqqaICgAAAAAAAAAAqGqKqAAAAAAAAAAAgKqmiAoAAAAAAAAAAKhqiqgAAAAAAAAAAICqpogKAAAAAAAAAACoaoqoAAAAAAAAAACAqqaICgAAAAAAAAAAqGqKqAAAAAAAAAAAgKqmiAoAAAAAAAAAAKhqiqgAAAAAAAAAAICqpogKAAAAAAAAAACoaoqoAAAAAAAAAACAqqaICgAAAAAAAAAAqGqKqAAAAAAAAAAAgKqmiAoAAAAAAAAAAKhqiqgAAAAAAAAAAICqpogKAAAAAAAAAACoaoqoAAAAAAAAAACAqqaICgAAAAAAAAAAqGqKqAAAAAAAAAAAgKqmiAoAAAAAAAAAAKhqiqgAAAAAAAAAAICqpogKAAAAAAAAAACoaoqoAAAAAAAAAACAqqaICgAAAAAAAAAAqGqKqAAAAAAAAAAAgKqmiAoAAAAAAAAAAKhqiqgAAAAAAAAAAICqpogKAAAAAAAAAACoaoqoAAAAAAAAAACAqqaICgAAAAAAAAAAqGqKqAAAAAAAAAAAgKqmiAoAAAAAAAAAAKhqiqgAAAAAAAAAAICqpogKAAAAAAAAAACoaoqoAAAAAAAAAACAqqaICgAAAAAAAAAAqGqKqAAAAAAAAAAAgKqmiAoAAAAAAAAAAKhqiqgAAAAAAAAAAICqpogKAAAAAAAAAACoaoqoAAAAAAAAAACAqqaICgAAAAAAAAAAqGqKqAAAAAAAAAAAgKqmiAoAAAAAAAAAAKhqiqgAAAAAAAAAAICqpogKAAAAAAAAAACoaoqoAAAAAAAAAACAqqaICgAAAAAAAAAAqGqKqAAAAAAAAAAAgKqmiAoAAAAAAAAAAKhqiqgAAAAAAAAAAICqpogKAAAAAAAAAACoaoqoAAAAAAAAAACAqqaICgAAAAAAAAAAqGqKqAAAAAAAAAAAgKqmiAoAAAAAAAAAAKhqiqgAAAAAAAAAAICqpogKAAAAAAAAAACoaoqoAAAAAAAAAACAqqaICgAAAAAAAAAAqGqKqAAAAAAAAAAAgKqmiAoAAAAAAAAAAKhqiqgAAAAAAAAAAICqpogKAAAAAAAAAACoaoqoAAAAAAAAAACAqqaICgAAAAAAAAAAqGqKqAAAAAAAAAAAgKqmiAoAAAAAAAAAAKhqiqgAAAAAAAAAAICqpogKAAAAAAAAAACoaoqoAAAAAAAAAACAqqaICgAAAAAAAAAAqGqKqAAAAAAAAAAAgKqmiAoAAAAAAAAAAKhqiqgAAAAAAAAAAICqpogKAAAAAAAAAACoaoqoAAAAAAAAAACAqqaICgAAAAAAAAAAqGqKqAAAAAAAAAAAgKqmiAoAAAAAAAAAAKhqiqgAAAAAAAAAAICqpogKAAAAAAAAAACoaoqoAAAAAAAAAACAqqaICgAAAAAAAAAAqGqKqAAAAAAAAAAAgKqmiAoAAAAAAAAAAKhqiqgAAAAAAAAAAICqpogKAAAAAAAAAACoaoqoAAAAAAAAAACAqqaICgAAAAAAAAAAqGqKqAAAAAAAAAAAgKqmiAoAAAAAAAAAAKhqiqgAAAAAAAAAAICq1jhViCOPPDINGzYsPfnkk8VuCgAAAABl6q677koDBw5M77//fmratGlab7310lFHHZUWXXTRX/T9cf6nn34602O9e/dOp512Wh23GAAAAIC6UBFFVJdeemkaMmRIatOmTbGbAgAAAECZ6t+/f7riiitSx44d02677ZY++uijdP/996enn3463Xbbbal9+/Y/+f2ffPJJLqBabrnl0iabbDLD8ZVWWqkeWw8AAABA1RZRTZ48OZ111lk5xAIAAACA2TV8+PBcQLX66qun66+/PjVp0iS/3qNHj3TooYems88+Ox//KW+++WZ+3mKLLdKBBx7YIO0GAAAAoG7MkcrUY489lkOsKKDq2rVrsZsDAAAAQBmLLfzCIYccUltAFTbddNO05pprpscffzyNHTv2ZwuxwrLLLlvPrQUAAACgrpVtEdXtt9+evv7663T66aenAQMGFLs5AAAAAJSxoUOHpsaNG+eCqemtvfbaqaamJp/zUxRRAQAAAJSvst3Ob88990z9+vVLzZs3L3ZTAAAAAChjU6ZMSWPGjEmLLrroNKtQFbRv3z4/jxgx4me382vWrFl68MEH0z/+8Y/0v//9L2dXG220UTr88MNT69at6+13AAAAAKBKV6Jaa621FFABAAAA8JuNHz8+rzQ1//zzz/R4ixYt8vOECRNm+R6TJk3KRVPffPNNuvzyy9PKK6+cdtppp9SmTZt02223pV69eqUPP/yw3n4HAAAAAKp0JSoAAAAAqAvfffddfp7ZKlRTvz558uRZvscnn3ySOnbsmOabb7506aWXppYtW+bXozirf//+acCAAemUU05J119/fb38DgAAAAD8NoqoAAAAAKhqTZs2naaYambb/YXYqm9WYsu/e+65Z4bXGzVqlLfy++c//5meffbZNG7cONv6AQAAAJSgst3ODwAAAADqQvPmzdMcc8wxy+36Cq8XtvX7tRo3bpyWW265/PUHH3zwG1oKAAAAQH1RRAUAAABAVYvt+mIlqTFjxsx0NapRo0bl59iub1bGjh2bXnjhhfTRRx/N9Pi33347zapXAAAAAJQWRVQAAAAAVL0uXbrkAqphw4bNcCy24Ytt+VZbbbVZfn9s5bf77runq666aoZjX3/9dXrjjTfSPPPMk5ZZZpk6bzsAAAAAv50iKgAAAACqXq9evfJz//7906RJk2pff/jhh9OLL76YNtlkk9S2bdtZfv/mm2+et+2744470ltvvVX7+vfff5/OOeec9OWXX6ZddtklzT333PX8mwAAAAAwOxrP1ncBAAAAQAVZddVVU+/evdOgQYPStttum7p165a36BsyZEhaaKGFUp8+fWrPfe6559Lzzz+fOnfunLp3755fW3zxxdMxxxyTzj///LTTTjulLbbYIs0333xp6NCh6e23306rr756OuKII4r4GwIAAADwUxRRAQAAAEBK6dRTT01LLbVUuvXWW9MNN9yQWrZsmbbccstc/NS+ffva86KA6tJLL009e/asLaIK++yzT1p66aXTtddem1ewiu0BO3TokIur9tprr9SkSZMi/WYAAAAAVE0R1dTLpAMAAADAr9WoUaO0++6758dPOeyww/JjZrp27ZofAAAAAJSXOYrdAAAAAAAAAAAAgGJSRAUAAAAAAAAAAFQ1RVQAAAAAAAAAAEBVU0QFAAAAAAAAAABUNUVUAAAAAAAAAABAVVNEBQAAAAAAAAAAVDVFVAAAAAAAAAAAQFVTRAUAAAAAAAAAAFQ1RVQAAAAAAAAAAEBVU0QFAAAAAAAAAABUNUVUAAAAAAAAAABAVVNEBQAAAAAAAAAAVDVFVAAAAAAAAAAAQFVTRAUAAAAAAAAAAFQ1RVQAAAAAAAAAAEBVU0QFAAAAAAAAAABUNUVUAAAAAAAAAABAVVNEBQAAAAAAAAAAVDVFVAAAAAAAAAAAQFVTRAUAAAAAAAAAAFQ1RVQAAAAAAAAAAEBVU0QFAAAAAAAAAABUNUVUAAAAAAAAAABAVVNEBQAAAAAAAAAAVDVFVAAAAAAAAAAAQFVTRAUAAAAAAAAAAFQ1RVQAAAAAAAAAAEBVU0QFAAAAAAAAAABUNUVUAAAAAAAAAABAVVNEBVCi7rrrrrT99tunVVddNa2zzjrp2GOPTaNHjy52s2CW9FmA+uMaCwAAAAAA9UsRFUAJ6t+/fzrhhBPS5MmT02677ZY/LL3//vtTr1690qhRo4rdPJiBPgtQf1xjAQAAAACg/jVugJ8BwK8wfPjwdMUVV6TVV189XX/99alJkyb59R49eqRDDz00nX322fk4lAp9FqD+uMYCAAAAAEDDsBIVQIkZOHBgfj7kkENqPygNm266aVpzzTXT448/nsaOHVvEFsK09FmA+uMaCwAAAAAADUMRFUCJGTp0aGrcuHH+YHR6a6+9dqqpqcnnQKnQZwHqj2ssAAAAAAA0DEVUACVkypQpacyYMalt27bTrDZR0L59+/w8YsSIIrQOZqTPAtQf11gAAAAAAGg4iqgASsj48ePzihLzzz//TI+3aNEiP0+YMKGBWwYzp88C1B/XWAAAAAAAaDiKqABKyHfffZefZ7baxNSvT548uUHbBbOizwLUH9dYAAAAAABoOIqoAEpI06ZNp/nQdGbb+oRmzZo1aLtgVvRZgPrjGgsAAAAAAA1HERVACWnevHmaY445ZrktT+H1wvY9UGz6LED9cY0FAAAAAICGo4gKoITEtjzt27dPY8aMmemqE6NGjcrPHTt2LELrYEb6LED9cY0FAAAAAICGo4gKoMR06dIlf1A6bNiwGY49++yzqVGjRmm11VYrSttgZvRZgPrjGgsAAAAAAA1DERVAienVq1d+7t+/f5o0aVLt6w8//HB68cUX0yabbJLatm1bxBbCtPRZgPrjGgsAAAAAAA2jcQP9HAB+oVVXXTX17t07DRo0KG277bapW7duaezYsWnIkCFpoYUWSn369Cl2E2Ea+ixA/XGNBQAAAACAhqGICqAEnXrqqWmppZZKt956a7rhhhtSy5Yt05ZbbpmOOOKI1L59+2I3D2agzwLUH9dYAAAAAACof4qoAEpQo0aN0u67754fUA70WYD64xoLAAAAAAD1b44G+BkAAAAAAAAAAAAlSxEVAAAAAAAAAABQ1RRRAQAAAAAAAAAAVU0RFQAAAAAAAAAAUNUUUQEAAAAAAAAAAFVNERUAAAAAAAAAAFDVFFEBAAAAAAAAAABVTREVAAAAAAAAAABQ1RRRAQAAAAAAAAAAVU0RFQAAAAAAAAAAUNUUUQEAAAAAAAAAAFVNERUAAAAAAAAAAFDVFFEBAAAAAAAAAABVTREVAAAAAAAAAABQ1RRRAQAAAAAAAAAAVU0RFQAAAAAAAAAAUNUUUQEAAAAAAAAAAFVNERUAAAAAAAAAAFDVFFEBAAAAAAAAAABVTREVAAAAAADwi9x1111p++23T6uuumpaZ5110rHHHptGjx5d7GbBLOmzAPXLdRaoJIqoAAAAAACAn9W/f/90wgknpMmTJ6fddtstf1B6//33p169eqVRo0YVu3kwA30WoH65zgKVpnGxGwAAAAAAAJS24cOHpyuuuCKtvvrq6frrr09NmjTJr/fo0SMdeuih6eyzz87HoVToswD1y3UWqERWogIAAAAAAH7SwIED8/MhhxxS+yFp2HTTTdOaa66ZHn/88TR27NgithCmpc8C1C/XWaASKaICAAAAAAB+0tChQ1Pjxo3zh6LTW3vttVNNTU0+B0qFPgtQv1xngUqkiAoAAAAAAJilKVOmpDFjxqS2bdtOs9JEQfv27fPziBEjitA6mJE+C1C/XGeBSqWICgAAAAAAmKXx48fn1STmn3/+mR5v0aJFfp4wYUIDtwxmTp8FqF+us0ClUkQFAAAAAADM0nfffZefZ7bSxNSvT548uUHbBbOizwLUL9dZoFIpogIAAAAAAGapadOm03xgOrMtfUKzZs0atF0wK/osQP1ynQUqlSIqAAAAAABglpo3b57mmGOOWW7JU3i9sHUPFJs+C1C/XGeBSqWICgAAAAAAmKXYkqd9+/ZpzJgxM11xYtSoUfm5Y8eORWgdzEifBahfrrNApVJEBQAAAAAA/KQuXbrkD0mHDRs2w7Fnn302NWrUKK222mpFaRvMjD4LUL9cZ4FKpIgKAAAAAAD4Sb169crP/fv3T5MmTap9/eGHH04vvvhi2mSTTVLbtm2L2EKYlj4LUL9cZ4FK1LjYDQAAAAAAAErbqquumnr37p0GDRqUtt1229StW7c0duzYNGTIkLTQQgulPn36FLuJMA19FqB+uc4ClUgRFQAAAAAA8LNOPfXUtNRSS6Vbb7013XDDDally5Zpyy23TEcccURq3759sZsHM9BnAeqX6yxQaRRRAQAAAAAAP6tRo0Zp9913zw8oB/osQP1ynQUqzRzFbgAAAAAAAAAAAEAxKaICAAAAAAAAAACqmiIqAAAAAAAAAACgqimiAgAAAAAAAAAAqpoiKgAAAAAAAAAAoKopogIAAAAAAAAAAKqaIioAAAAAAAAAAKCqKaICAAAAAAAAAACqmiIqAAAAAAAAAACgqimiAgAAAAAAAAAAqpoiKgAAAAAAAAAAoKopogIAAAAAAAAAAKqaIioAAAAAAAAAAKCqKaICAAAAAAAAAACqmiIqAAAAAAAAAACgqimiAgAAAAAAAAAAqpoiKgAAAAAAAAAAoKopogIAAAAAAAAAAKpaWRdR3XXXXWn77bdPq666alpnnXXSsccem0aPHl3sZgEAAABQpXnTmDFj0oknnpi6du2aVl555bTtttumwYMH12ubAQAAAKjiIqr+/funE044IU2ePDnttttuOdS6//77U69evdKoUaOK3TwAAAAAqixvimKrnXfeOd17771prbXWSr17907ffvttOvXUU9N5553XIL8DAAAAALOncSpDw4cPT1dccUVaffXV0/XXX5+aNGmSX+/Ro0c69NBD09lnn52PAwAAAEBD5U3nnntuGjduXLryyivzSlTh8MMPT3vuuWd+z6233jqtsMIKDfL7AAAAAFAFK1ENHDgwPx9yyCG1gVbYdNNN05prrpkef/zxNHbs2CK2EAAAAIBqyptiFapHHnkkbwNYKKAKTZs2TUcddVSqqalJt956az3/FgAAAABUVRHV0KFDU+PGjXOANb211147h1JxDgAAAAA0RN70/PPP53NiC8DpxepWc801l7wKAAAAoISVXRHVlClT0pgxY1Lbtm2nmRVY0L59+/w8YsSIIrQOAAAAgGrMm0aOHJmfO3ToMMOxKKBaZJFF0ocffph/FgAAAAClp3EqM+PHj8+z+uaff/6ZHm/RokV+njBhQgO3rDQ1OXiXYjcBACgRl2/QvdhNAKhoCxzdtNhNAIqYN33xxRf5+afe48cff0wTJ05MrVq1StVOZgUATE1uBVC/5FZQoUVU3333XX6e2azAqV+fPHlyg7arVM3RcfFiNwEAKBGrL9ym2E0AqGhNOs1Z7CYARcybful7WInq/8isAICpya0A6pfcCip0O7+mTZtOE0xNrxBENWvWrEHbBQAAAEB5qou8SWYFAAAAUN7KroiqefPmaY455pjl8umF1wvLrAMAAABAfedNhW38vvrqq1m+R6NGjfLPAgAAAKD0lF0RVSx93r59+zRmzJiZzuwbNWpUfu7YsWMRWgcAAABANeZNSy21VH7+4IMPZjgW7/nRRx+lJZdcMhdrAQAAAFB6yjK16dKlSw6fhg0bNsOxZ599Ns/qW2211YrSNgAAAACqL2+K749znnvuuRmOvfjii/m9V1999TpvNwAAAABVXETVq1ev/Ny/f/80adKk2tcffvjhHEptsskmqW3btkVsIQAAAADVlDfFsfXWWy89//zz6ZFHHql9Pd7rr3/9a/66d+/e9fo7AAAAADD7GtXU1NSkMnTmmWemQYMGpSWWWCJ169YtjR07Ng0ZMiQtsMAC6ZZbbslLsAMAAABAXedNsdpUFEt17tw5de/evfb733///bTLLrukCRMmpB49eqQ2bdqkRx99NI0cOTLtu+++6fjjjy/ibwcAAABARRZRRbMj1Lr11ltzENWyZcu01lprpSOOOEIBFQAAAAD1ljddcskl6dJLL009e/ZM55133jTvEd8XK0/FFoCTJ0/OBVmxAtUOO+yQt/sDAAAAoDSVbREVAAAAAAAAAABAXZijTt4FAAAAAAAAAACgTCmiAgAAAAAAAAAAqpoiKgAAAAAAAAAAoKopogIAAAAAAAAAAKqaIioAAAAAAAAAAKCqKaICAAAAAAAAAACqmiIqAAAAAAAAAACgqimiAigTH3zwQXr99deL3QwAAAAAmIbcCgAAqASKqOAXqKmpKXYTqHKvvfZa6t27d3ryySfTN998U+zmAAAVaOjQocVuAgAwG+RWFJvcCgCoTzIroCEpooJZmDhxYnr55Zfz140aNRJIUTSjRo1Khx9+eJpzzjnTCiuskJo1a1bsJgEAFWaHHXZI++23X15BAAAofXIrSoXcCgCoTzIroKEpooJZ+OGHH9JJJ52UbrnlltpA6tNPPy12s6hCo0ePTl988UVab7310oYbbphf+/zzz/OzkJRKCf+hUk19nXbNppT16tUrnXDCCWmBBRYodlMAgF9AbkWpkFtR6eRWVDK5FeVAZgU0NEVUMJXCTWIEUe+//35+nHHGGemRRx5J1157bTrzzDPTuHHjit1MqsRbb72V3nvvvTyDb/Lkyen+++/PffLSSy9Nf/jDH9Jnn32WQ1IoZ6+++mr64x//mGeuQiX58ccf8/N3332XH1OmTMnPUKr3v7vuumvaZZddUosWLfK1+eGHHy5202C2CP6BSia3opTIragGcisqldyKciCzohLJrcqDIiqYyvjx4/NzLD+9yiqrpHPOOSf/+9BDD039+vVLSy65ZJprrrmK3EqqwWuvvZa22267dPHFF6eVVlopHXDAAenbb7/Ny5ZGGLX++uun77//vtjNhN8sBjwvvPBCGjt27DQDeChn0Y/nmGOO9M4776RTTz01/f73v0/du3fPH2p9/PHHxW4eTGPqD7YaN26cP+yKcOqwww5LDz30UFHbBrNz/Y0+Hdfap59+Ot1www35PqMwzgMod3IrSoXcimoht6ISya0oFzIrKo3cqnwoooL/X1ykNt544zR06NDa17bffvu0zjrr5HAqRJVzYblIAybqS8waPf7449Piiy+eA6lw9NFHpxVXXDEHUvPMM09aeeWVU5s2bXLFsqplytlmm22W5p133nTRRRelSZMm5QE8lLO4Jkc//s9//pP23HPP9O9//zvNN998qV27dnmgH9dxKFUxiF9wwQXTUUcdlf99+OGHpwceeKDYzYJf9UFAXH/jg9xDDjkknX322fm+Ou4xAMqd3IpSIbeimsitqDRyK8qVzIpyJ7cqL42L3QAoFW+88UZq3br1NEujv/3222nEiBE5BHjllVfSn//859SqVascUsWFrnDBg7r00Ucf5SWiV1tttRyGhmuuuSb/Yf3d736X++W5556b++saa6xR7ObCbxIzVrt06ZIH7K+//nru066tlPuAPq7jJ510Ur5nOOaYY/KHXXF/ETNMFllkkWI3EaYRfbMws69w/d1///1TkyZN8v3GkUcemf7617+mLbbYothNhZ/9IGD48OFp3333zR/aRj9u27ZtWnTRRfO/p+ZeAyhHcitKhdyKaiK3otLIrSgnMisqhdyq/DSqMRUEao0ePTpfrML//ve/1KFDh7y/bufOndOQIUPSCSeckI/FcukRSAUXMupaDGL222+/vHxj375907PPPpsGDx6c9tlnn/SHP/whB1NXXXVVWmihhVL//v3TmmuuOcMNJZSD7777Lm81EdsA7L777nkGaywbDeXukUceybOiYmnpmFUyM3FtD4UPHaAYCvexn3/+eb4mT5kyJbVv3772+N///vccSgWhFKXuyy+/zNfdCRMm5Gtw165da4/FB71PPfVU7uNx3e3UqZNxHFCW5FaUArkV1UJuRaWSW1EOZFZUGrlVefG/PFUtBkCDBg2q/XchiIqZe5tvvnm+mYzlp6Oqedttt01nnXVWPh5V+nfccUf+ujCzD+pKy5Yt88A8gqVjjz023wxuueWWaaeddsrHYnbI3nvvnT799NP8hzaW9A9xvrpYSllU2Ud/jaWhQwRRIZaLXnXVVdPdd9+dXnzxxSK3En67l156KQ/u11577fzv+Log7hliUBTX8QsuuCB9/fXX7iMoisJA/M0338yhaa9evdLWW2+dBgwYkD+UDbG0f58+ffLXMbvPMumUsq+++iqvgBFhUyGIilVbrr/++rTDDjvkD7zOO++8tOuuu+bXBVFAOZBbUYrkVlQquRXVQm5FqZNZUYnkVuXF//pUrZgtdcQRR+SA6YYbbpjmWLNmzfJzBAEPPvhg7es77rjjNIHUPffck7+OpXzffffdBm0/lWueeebJfyQ7duyY98GN/hhfL7zwwrXnxOxSgRTl5MMPP8wz9mJWalTb33bbbenbb7/NW1DE7NTo85MnT64NowzOKSfTX3cLy+++//770wSvIQY/MWtqo402qg1mDYgohuh3b731Vr6fiIB0ySWXTE2bNs2rBcTKAbENy8xCqYceeqjILYeZmzhxYr53nnvuudOYMWPSrbfemu+ZI4CK++jo6zvvvHP65ptv0i233JLvQQBKmdyKUiW3ohLJrahkcivKjcyKSiS3Ki+Ni90AKJb5558/D4himcezzz47D3ziD244+OCDcwAQF66YPRVihl8hkAqnnnpqOv7449MTTzyR/vvf/+a9oi+//PJ88bM0NbOjsKx5PA8dOjQvmbvKKqvkyvqBAwemBRZYIHXv3j01b948n19Ypv+6667LgVT05TXWWEP/oyQttthi6eSTT87BfdwcDhs2LAf6MeMprr0xMN94443T1VdfnZfeXWKJJYrdZPjF1+3pr7vR30OsGhBL7y677LL53zHwiXMjCIgZ2rGEbwyK5p133qK0n+oVfXHOOedM//znP1Pr1q3z/W7MgIp7j5j9dPvtt+d747322iv97ne/q71HjmXSDz/88DwbdZtttin2rwHTaNu2berSpUsOVKPYIGZMh0MPPTTfW8SHu+HRRx/N2xABlDq5FaVGbkUlk1tRieRWlCOZFZVKblVeFFFR1UtBbr/99rnK/pxzzsl/YOOmMv7whniOf59//vkzDaTij3jM6rvvvvtySHDxxRfnSmj4LQOaELOaYjnHCDdjueiXX345XXrppbnKPmy66aa1A5epA6nosxFarbbaakX8TWDWYjZf4VoaN4IxMyRmo8aAqHfv3nmWUyxn+thjj+Wq+/jvwkwnSv1eImaNxHU6nqPP7rbbbvmDg5ilevPNN+frcmFQH/cOIULZWJK3c+fO+d5h6r8B0BD9ttAXX3311bTiiivWLiEd9x/xwWoobAE0dSgV3x/3xp988kkRfwuqXaEfTz2jOq6hrVq1ysv8/+tf/8r3F+utt15af/3183NBrBwQIdXyyy9f+98BQCmSW1Fq5FZUA7kVlURuRbmRWVEp5FaVQREVVSkuXrHPcwRRUZEcF6IIpGIGX3y9++675wtaDIbCzAKpCLJiCcnYwzT+SMeMPphdhUHIRRddlJ5++um8t/Mmm2xSOzNkypQpuTp5VoFUzAiJWVIRjEKpiGX7Y7ndcePGpfnmmy8HpTHQWXfdddPqq6+eDjrooDyDL2aRxMzqCKPie+Imcp999jE4p+QHQhGexhYqMfO6ID5QiPuHuJcYPXp0uvPOO/PMkRjMx38D8T2DBw9O77zzTu73LVq0KOrvQvX125EjR9Yubx73sYUZ1LFVRWzNEv30wAMPnCaUij69zDLL5OeYiR1BKhSzH48YMSLdf//9+Zoa9xbRP+ODrQif4hH3xoWtrgrig4DYliXuL3x4C5Q6uRWlRm5FJZJbUankVpQbmRWVQm5VORrV2IScKq8CfeSRR/LNYgz0YxAUTjnllHwTWRCzpSKQaty4cfrLX/5SG0hBXZowYULaf//90yuvvJI22GCDHI4uuOCC+VhUHscypVdeeWXuh7EM+tSBVIg9ygvnQ7HFzWFcS2PAHdfcECHUZpttlvd1LgRN33//fR68xx7PTz75ZJ5hEvtCx9YTcVMJpeq9997LAVN8GNWzZ8+01lpr5Zl9MUMqlkIPb775Zl5m+u67767dkiUGSHEdj61ZInQNZvRR3wp97LXXXssznmJJ/oKYyRf3uiE+/GrSpEn+OraviA/HnnnmmbTVVlvl2X1TB1FT309DQ/fj2Mbq888/z/fCcV2N5f5XWGGFtMcee+R75AhXY4wX987xYVfcb8QHvi+99FI67rjjaq+/AKVKbkUpkltRSeRWVDq5FeVCZkWlkFtVFkVUVLVYdvqSSy7J1cxxkYoZfrFUb2GWVGFG39SBVFzYzjrrrLT11lsXseVUqg8//DD17ds3Pf7443kJx379+tUGTBMnTkz/+Mc/agOpmGUas/6aN29e7GbDDBXzESS1bNky99GYlRrLk8ZNYNwMxqDmyCOPnGEQPnbs2Dwz6o9//GOeNXLZZZcV+TeBmYtBe3xgEDOeYkWALbfcMr8e/Tuuz4V+HX06Zuw98MADeXAf1/g11lgjrbLKKnnGSTCop6HEh65x/Y3AKQbrcX8RH7KOHz8+7bTTTunMM8+cIZQqbM0SodS1116bP1SAYihcV7/44ou8/UTc/0bxwMYbb5zvHeJD2yFDhuRw6ogjjki///3v0/Dhw/M2VvEcYjWWCKFii6vg+guUA7kVpUZuRSWQW1Hp5FaUG5kV5U5uVYGiiAqq0WOPPVaz0kor1Rx99NE17777bu3rQ4YMqenZs2dNp06daq699tppvue6667Lr6+77ro1EyZMqPnxxx+L0HIqwQ8//DDL10aNGlWz33775b62zz771Hz66ae150S/u/7662s23HDDmpVXXrnmvvvu0w8pOVdddVXN+uuvX/PEE0/Uvvbll1/WPPDAAzXrrLNOzYorrlhz8803z9D3C335z3/+c+7/L7zwQhFaDz9v0qRJNdtvv32+X5jVdf25556r2WijjWreeeedWZ4zs78FUJcKfeybb76pef755/P9w/333197/M0336xZc8018zX3T3/6U+3rkydPrv06vu+RRx5p4JbDjP34k08+qfnss8/ytfWmm26a5py4X77lllvyfUZcm8eNG5df/89//lPz73//O99TjBw5cob3BChlciuKSW5FJZNbUenkVpQDmRWVQm5VmZSvUbXeeOONXBkaFZ1LL710XkovbLHFFnmf6GWXXTbP4LvxxhvzeSEqoWOp3qhqjipSS5gyO6I/FaqHY3ZHzAAJ8VpUFsfsp9NPPz0vjR5V9Mcff3xe8jxEv9thhx3ybKm2bdum5ZZbTj+kZMSS5v37909jxoxJHTt2TBtuuGFtn4/loGNLiZil2rRp03TfffflvcxD4b+HwvLpsax0GDVqVNF+F/gpcU2O2XrRZ2O29dTX9RD3FLEc70cffZT3Pi+YfuaImSTUt+hjsT3Fdtttl7efiPuIHj161M7ei/vduNedb7750k033VQ7sy9m9cXxsOaaa6Zu3bpNc52Ghu7HsVpAzN6Lpf1jJmphVnRhDBezVGMcFzNU//vf/+YtKUIslR7L/8ds6g4dOuTXpr9mA5QquRXFIreiUsmtqBZyK8qBzIpKIbeqTP4foOoUgqXY93zOOefMy6FPfyyWfYwLXYglquMPdUGEAIU9o+HXihu5Qnh0ww035BvEoUOHzjKQ6tKlSw6kTj755NpAKpZ7jH5466235iX9oRR89913OaiPvchvvvnmPJAp3CBOHZjGwKZnz555mfQXX3xxmveIa3J47rnnat8TSlG7du3yhwEROMUj+nihv8e9RPTlGDTFEukxaIJiL4ke/TM+BBg5cmR6/fXX8+uxHVDcf/zud7+bJpSKe99CKDV9AGUAT0Mq9L+4rs4999x5u5URI0bk/vzee+/VHiuID7622Wab/ByB1Kz4IBcodXIrikluRaWSW1FN5FaUC5kV5UxuVdlcUag6hYvPyiuvnGeTFAZDhUFQ4YIW+0THoGmeeeZJZ5999jSBFMyOqfevve2223Lfi5vB6F8x+J5ZIBV7lscf1McffzydcMIJ+aayEEjF61AKYubdN998kw499NA8WySumx9//HF66623Zjg3biZXX331/PXnn38+w/FHHnkkDRo0KLVq1aq2Wh9KSeE+IcKmCRMm5Jn+cT8R9xFTf+AQs0/iut66desit5hqFzOZzjjjjPwBVwzi48OwmHkdfTX67dSh1AILLJCf+/Tpk79XAEUxRf+LVVguuuiiXEBw9dVX5w8DJk+enP7xj3/kcyL0j35dCK5ipZY2bdrkD3ELM1MByo3cimKRW1Gp5FZUE7kV5URmRTmTW1U2Vxgq2k8t3xiV+OHyyy+vDaTiD3MhEIibzVjOdPnll0/rrbdeWnvttRuo1VSqwk3dpZdemgcvMXiPmU2xNHosRTp9IBV/QCOQisrkWMbx6aefzjP7LEtKqQVRW221VXrooYfSMsssk/bZZ58cIsUsp7///e/TnFvou7GMdGEJ0+nFtTaWTo9AKm44odQUwqbo95tuuml67bXX0t57750++OCD2lmob775Zp7ZGrOiVlpppSK3mGoW97Pxwddaa62V9t9//7ztRCzVH7P3Ymn/6UOpwlLSheWjoZjiXviKK67Ij/fffz+vqhLbr8T9xsMPP5y3sArRhwv32a+88kr+QCw++IprMECpk1tRSuRWVCK5FdVGbkW5kFlR7uRWla1xsRsADTF7Km4Uv/jii1ztucoqq+SZIhtttFH+w3zVVVflKtGYiRJ/rOOPdnjggQfSpEmT0n777ZcHR7EXOvzWvhgzmAYPHpwHMdHnllxyyVyJHIP2CKROO+203A/jtcIf0JgVFcuf9+rVK+/vrMKeUhKD75ild88996Ttt98+D3YOPvjg3O/vvvvuPLvvqKOOykvuRt+N/hzL8y688MJpkUUWmeH9Yu/z3//+90X5XeCXiv4dffpPf/pTvld46qmn0l577ZU/6IpZUbHdRQS1xx13XN7THIodnsb9baEvxmA+ZvaFP/zhD3n2UyGUisF+9N9YfroQaFlCmmKJe+G4943g6eKLL87X3Aii/vrXv6YjjjgiXXfddenrr7/O9xmx0kVsexV9Oz7wjWICgFInt6JUyK2oZHIrqpHcinIgs6Lcya0qW6OaqTdjhAox9R/PWD4vAqfC3s5xQdt5553ThhtumC9esex0LKsXF7CoyF988cXT8OHD05AhQ/IypxEcmFVCXbjssstyGBU3eoXQKXz11Ve5n0Yg1bZt2zxrLwLQ+AMcS0TH7KYjjzwyL9UPpVhtH0voRsB04YUX1vbTt99+Owf9jz76aO7rMchp0aJFeuKJJ/Le5jGrtXfv3sVuPsy2+IArBvFxfxHX7yeffDIv3xv9PAZLO+ywQ561Pf2HElBMETrFfUiEUrF0fwRShVBq6mFh3EfrtzS0WQWgUUDw6quvpgEDBqRVV101v/bee+/l++N33nknr4AR3xsfkMV99eGHH55XGAAoZXIrSpHcikokt6Jaya0oNzIrSp3cqroooqKiXXPNNemCCy7IS5vH0nhR5Rmz+1ZYYYU846Rr1675ohXnxcUt9imNP74xAyVmUEUIEDeU8FvFH8ZddtkljRgxIv+7b9++eaBS+KMby0RHaBoDmghGowo5Zkk9/vjjuU/GXs+xpy6U0o1iYbASN4QR8scS0eeee27tuRFIXXLJJTmAitAqgv1YIjo+FIjl/qd/Pyg3hf8GIpiKe4gY4MeMvnnnnTevHjD1OVCKoVQsNR3X7z322GOms6yhoRSulbFdUNwbRH+MFS4KW03sueee+cPamNlXEPfVMbMvAqlYESA+FIvvK4zfXH+BciC3olTIragUciv4f+RWlBuZFaVKblV9FFFRUaa+4HzyySfpsMMOyzP0DjnkkLxPbvzRvfPOO9O1116bll122bwsdSyPHiKoiqr8uKjFsaWXXnqm+57D7Ip9x2M5x3//+9+5351wwgk59CyIQCqWcoyZUTGgiT/AEUDFH12hKKVi+vAoBjYxCI9ZfQ899FC+vq677rq1x2OG9OWXX56D1Xg9+n1sBzD1jCioVMJWSlVcu5977rl0/vnn5w8OBg0alD+4hWKKe4btttsub7ESH3BFWBof0k6YMCEXCdx2223pz3/+c9p6661rr6/xgVgEUnHvHK/H8RAfghW2GAIoJXIrSpncikogt4JfTm5FKZJZUarkVtVFERUVKZbhjb2eY9ATe49279699tjHH3+cbrrppjxg6ty5czrooIPy7BJoCLHXePTLYcOGpd122y398Y9/TAsvvHDt8RjURygagVVUJC+11FLTHIdievHFF/NNXixP+rvf/W6aWaYRRMUypFFxH8FUDHYKlfhxcxnbAsTe0BtvvHE6/vjjcxBrkA5QPHGdfvrpp/M2QVtttVWxmwP5PmP33XfPXy+00EJ5hnR8kLvaaqvlooJevXrlWX1/+ctfUtOmTfOHWnGvMfUS6VtssUUe/wUfegGlTG5FqZJbUc7kVgCVQWZFKZJbVRdFVFScwiC/bdu2eXZfVH7GzLxY/nyuueaaIZBabrnl8oy/WCIdGiqQOu6449Irr7yS/+AeeOCBAidKfrZ03C5EeP/UU0/la2mESbEnecxObd26dT4vwtW4Bt9xxx1p0UUXnWaWdWGJ9AikNttss1x9HzOnoZK3DDCjj1I39XXawJ1iKlwvYyWLWAlgrbXWyh/QRgjVs2fPfM8R986nnHJK/oBrk002yd8TfTj67dRLpK+//vrp6quvLvavBDBLcitKndyKciO3gp8nt6LcyKwoJXKr6mOjRSpOLIN+1FFH5UrlMWPG5NApLlQxeIo/tCGCqgis9t1333zBOuecc/IACxpCzIK64IIL0iqrrJJuvPHGNGDAgLyMP5SquIbGjV7c/N188835pjCq50877bQ8uy9m+X355Zf5xjCC/4EDB+bnqfdzjhmAsVVFVNrH7L8rrrginwPFNLO5BLMzv2Dq0CkC2ejjsbKAIIpyC6PMr6GhFMZl0z/HFipRLBBjt4MPPjhtu+226ZZbbslh1AsvvJA/ALv00kvT6NGj8zU2+m305VgFI4KsOB6zVaP4AKBUya0odXIryo3cikolt6JayawoNrkV/7deKZSpmVXKxxJ6sSdpLJEXg5277ror72MeSz7GxarwB7cQSH3zzTfpvvvuy7NToKEDqZjZF4FU9Ml99tkntWnTpthNg2lE6BQ3gd9++20O+w844IC06qqr5v2bY/nS6L9RNf/EE0+kzTffPDVr1iy9+uqreU/nuJGc+jodgVTMYI29nuN9CrOsoZiD8bFjx+al+2N56GWWWSY/fo2p+3gMgOIDrvjvIJbujWV7ob7vfWdn5mh8TyGMigB13LhxeYa2PktDiXvf//znP2nw4MH5nqCw1coaa6yRunTpkm699da8DPqZZ56ZP8CNVVruv//+fH8R2wjFPUi7du1y34++HNf0GPPFB2Lx7xjrAZQCuRXlSm5FuZBbUankVpQbmRWVRG6F7fyoiErkmA01YcKENM8886RFFlkkvxY3l/fcc09eVi+W542K0B49euQL1tRLP8Z5MSBq1apVUX8fqneJ9D59+uQ/qDEzKvbFtSwppeK1117LS6F//vnnta+tt956qV+/fnm7iRAV8//85z/TAw88kJc+jw8CIrg6/vjjc8A6M3EjGYEUFPseIgZCJ554Yg5dQ/TL888/P98v/BJTBwHPPPNM3u88lvAdNGhQnpEC5RSgxgcLLVu2rKfWw7QiUNpvv/3yLL3od7FNVSyFHh9che233z7P/I/xXPTXuMeID7v69++f70viXuT3v//9LMeHAKVAbkUlkFtRyuRWVCq5FeVGZkWlkVuhiIqyNPWFJpbojQrP//73v6lTp055yd3Y3zzEH+y77747/e1vf/vJQAqK6X//+1+uVo5QqmPHjsVuDmSxzHlsHRFh/Y477pivrzFoidkfcbMYN4GFGaiFa3JU0b/++uv5xjGq72NW9fzzz29paEpSDGximd0WLVqkddZZJ98X3HHHHbkv9+3bNw+Efk0QFdsDxPU8tmNZdtllG+i3oFoIUKlE8eHVDTfckFdXeeutt1Lnzp3TTjvtlHbdddc8e+/000/PgdOpp55a+z2xHHrca8QqAgClTG5FJZFbUYrkVlQ6uRXlQmZFpZJbVTdFVJSdqf+QXnLJJXmv89hDNJbFiz+oX331VZ4ZdfTRR880kIpq0QisDI4oJVGxbIloSsmHH36YbwhjZl5sNVGYgXr22Wenxx9/PA/ezzvvvBxITf0BQczWixvLWPb/mmuuyTMAoVRM3VcjcHryySfTaaedltZff/38WgzKY7ZIzJaK47Ek78wIoigGASqVej0eOXJkevjhh/NKLBFQxXZWG2ywQV4x4LPPPksnnHBC7vPff/99XjlgZu8BUErkVlQiuRWlRm5FJZJbUa5kVlQauRX/7/9JKBOFP6RxwzhgwID8xzf+OEcFaAyQDj300PyHNUQgFQOlbbfdNv87lnyMgVRcxDbddNOi/h4wNUEUpeKLL77I20y88847ebuI7t2714ZMse9zoao+rrcxsyRmk8QHAoWBTvTlmPEXz/fee29ac80189c+AKAUxKDljTfeSJ9++mn+8Cr6ZyGICr17986z/WOgfsopp+TXpg+kDOppSFMPtgcPHpxnSU8doC6//PI5QD355JNz3xSgUi6iXxf65RJLLJGLCeL+YciQIen2229PL7/8cpp77rlzsUF8cBBh1NRBVOE9AEqR3IpKJLeiVMitqGRyK8qJzIpKJrdCERVlKWaVxFLoccGKZXuXXnrpfDF75ZVX8n7ncYN55ZVX5ovbUUcdVRtITZo0Kf3jH//whxdgJmKZ0RjUxCAlqubjEXuYr7HGGjlQihkkMTN66kAqlvOP5dLjOlvYbmKFFVZICyywQBo/fnxethdKRfTJI444Is9YnWeeedIBBxyQX497iBj4R//dZZdd8muFQCoGOz179qw9z6CehiRApZIV+mWhj6600kq5wGC33XbL9xYffPBBPn7dddelnXfeOXXo0MGHW0DZkFsB1D25FZVObkU5kVlR6eRW1U0JHGVp3Lhxef/R2Eu3EEQNHTo0PfbYY2njjTfOM0zmm2++vCRvLNsbYqC0++67p7vuuivPSgFg2iV3I9yP5Ud/97vf5WtriC0lopo+bv5iYDR1INWtW7c8uImZ1LGMaQyKQlyD4zodg/2YCWjnYEpFzIj64x//mJZaaqncZyNsnThxYu7f0X+jf4cIpI499th8fgSuN998c369MAh66qmn0l/+8heDehosQD3wwAPzstGLLbZYfj2uq9P313nnnTeHUnfeeWft9wujKAdTB0xxLY6x2l//+te8Ncvvf//7dPjhh+dZf4IooJzIrQDqltyKaiC3opzIrKgWcqvqpIiKshLV9iEqm+MP7CeffJL/HYOeWCL9888/TwcddFDabLPN8oUrZqPceuutedn02LM0lviNWSYATCuWMI/lzS+44IJ044035rBpvfXWywOYSy+9NFfVTx9IxSA9ZphsvvnmOXgKEVyNHTs2z66OkCpm9Ll5pBTuHeKeoDDjKWbyLbLIIunBBx+s3UolTB9IHXbYYfnrCFUL3nzzzXTJJZfkrQMM6qlvAlSqTdxnxHU7lkTv2rVr6tevXzr44IOnuZ4DlDK5FUD9kFtRqeRWlCuZFdVIblU9bOdH2eypGwpfx166MQDq2LFj/vf111+f9x+NGXxt27bNry2++OL5uUWLFnm5dHuPAszotddeSyNGjMgh/4orrpj3bg6rrrpqOvHEE9O5556b7rvvvvxazCyJa2shkIrZJTHjr3nz5rXvt+SSS+YgKz4wiA8AoNj3ENFX4zmWlY57gljif7vttssD9QhfL7zwwrxf+T777JO/rzDIj+dYdjruN2KWa0G83q5du3TWWWelTp06FfE3pNL7bgSo0TcjQI1+d9FFF+UANe6DC0v6T91fI5SKr6NvzipAjW2FhFE0hKlnlP5aMxu3xfsZzwGlSG4FUL/kVlQquRXlSGZFpZBb8XMa1VirlBJS+MM7/dcxWIp9oGPGXizVu/rqq+fK5lj6PJbyjb1GYw/SqGYuXKSOOeaYNGrUqDwTJV5baKGFivq7AZSaGLDEAPzFF1/M19tdd901nXzyydOcEwOYCKT+/e9/p6222qo2kJr+JvO33HRCfQ3o33vvvTyD6Y033khjxozJ4VHcQ8Ts/8JM1tg+JcLYWH63EEiFwiB/+vcMkyZNSk2bNi3Cb0YlK/Sx7777Loemcd9bCFDD3XffnQPUn+uvcW88dYAa/7788svz7EABKvXh9ddfz9uqFD7MijHab703cF8BlCq5FUDDkVtRqeRWlBuZFeVMbsXssBIVJeM///lPuv/++9Nee+2V2rRpUxtEXXnllemqq65KEyZMqD13/fXXz8uexyMufHFTuPDCC9feJMb+u/F+ccMZS/NOfTMJwP+JJcv79u2bZ4A899xzOfiP8GmZZZapPSe+Pumkk9I555yTZ/bFoCcCqZi5NzU3jJTaoD7684EHHpjvHyJAbdasWXr66afzEtExyylCqK233jr36T//+c956d34vrgPCdPfO0w9k0QQRTEC1G233Tb3y+i70V/DzGaiFsKownvGv+N79FvqQxQAxBYqX375Zf53rAwQs6G7d+9eJ0FUzMaOcEs4BZQCuRVAw5JbUYnkVpQbmRXlTG7F7FJERcnMKokq5eeffz7/8dxvv/1yuHTrrbfm5Upjf/O4YYzzYonze+65J99kTp48OS/jG8HVsGHD0hJLLJH3zf3HP/6R/yjHPqSCKIBZi+vm6aefngOnmNl34403pkMOOSS1bt269pzYgiKO/+lPf0oPPPBAXqZ3+jAKimX6AUoMwONe4LDDDssfbp1yyil5Nmp8cDV8+PA8azWWl47vu/jii/MgP74n7jdi0B4rBsTsJ2goAlTK1d57753HZhtssEFabbXV0gsvvJBXAIjraxQPzE6/m/qaHn0/tr+Ka/Iaa6xRD78BwC8ntwIoDrkV5U5uRTmTWVHO5Fb8JrGdH5SCkSNH1vTu3bumU6dONWeeeWbNmDFjag488MCavffeu+b999+vPW/ixIk1t912W03nzp1rNtxww5pbbrml5sgjj6xZfvnl8/fGo3v37jVvv/12UX8fgHLywQcf1Oyyyy75GnrWWWfVjBs3boZz3nzzzZqHH364KO2Dn/LDDz9M83zllVfmvnzrrbfWnjNlypT8/O6779bsvPPO+Xj//v1rj99zzz01K620Us21117b4O2nuvz4448zvQ+O+9ptt9225t57782vffvttzUvv/xyzZZbbpn762GHHTZNf91oo43y65dffnmDth9CXCuXXXbZmgEDBtRMmDAhv/bxxx/XnHjiiblfvvLKK9OcX7g+/9L/Np5++umanj171qy44oo177zzTj38BgC/ntwKoHjkVpQzuRXlQmZFpZBb8Vv9v1JPKLIOHTrk/ctXWWWVNGjQoPS3v/0t74fbtWvXPOMkKpjDvPPOm3bYYYd07LHH5v11R44cmZfji2V9d9ppp3TiiSfmys+pl/UF4Ke1b98+zxCJa3DM6hswYED65JNPpjln2WWXzcucFmahQDHFUtFxr1CYvVSYGRVia5QWLVqk7bbbLv87js0111x5psjSSy+dzjjjjLwawL/+9a/afr7NNtuku+66K89QgfoUs5UK19DC80MPPZTGjh2bdttttzwDtTBLL67JMfM0nuOcv/71r7X99eijj05zzz23GXsUxeuvv577XvTF5s2b57FazKJeaqml8rZUcezdd9/NM6zjWOE6/Utm8sUy6zFzNcZ5gwcPzisLAJQCuRVA8citKDdyK8qRzIpKIbfit1JERckNhmJ59Pije/vtt+d9dT///POZLve42Wab5T13b7jhhnxD2bNnz3TmmWfm5SEXXXTRIv0GAJVxDY5A6uqrr07jxo2b6blTL7kLDe25555Ljz/+eLrqqqvSwIEDa/vkd999l77//vu8x3lspRL3EVMPcOI5jkewGkv2fvDBB+nrr7+ufd/Ccv/CVuqDAJVKEdfauM5Gnyz04ULhQCztH4899tgj7bjjjrmI4IADDsj3E3Fu4byfC6IixLrpppvy9RqglMitAIpHbkW5kFtRbmRWVBK5FXXBnSQlO6ukS5cuOYCK/XSnn1USFltssbTyyivnm8qvvvqqKG0FqNRAKvZw/vvf/55nk3z77bfFbhZMY6211koXXnhhvgfo379/7qshBvAxOIr+O3ny5PT888/nAU48YrATjzge4rV55pknz0SZnrCVuiZApZLEtbZdu3Y5dIpxW/TfL774Iv3jH/9IV155ZVpggQXSpptumnr16pVn+UXAFIHUxIkT8/gu+niBIAooR3IrgOKRW1EO5FaUE5kVlUZuRV3wl5aStPjii+fZeTGr5Mknn0y33nrrTM+Li17Lli3T/PPP3+BtBKjkQCq2qYjtJeIRA3YoNVtuuWU6++yz82A9gqnrrruu9lh8WBWh02mnnZYee+yx2tcLA5433ngjP1ZaaaW8dK/BPPVNgEqlKARJhx9+eL5HuO+++9KGG26Y9txzz3TyySenddddN/fxvn37plNOOSUvax5bqgwfPrx2af/CtVgQBZQzuRVA8citKAdyK8qFzIpKIreirrhyUdKB1HnnnZcDqUsvvTQvJRnhU0EsDRl/tDt37jzTP8wA/LZA6uabb843l2Hq6nsotkJ4tPXWW6fzzz8/D/KvvfbadM011+TXu3btmo488sj89cEHH5wHQ4Ul/ocNG5bPjW1XCnuiG8zTEASoVILok9H/Fl544TxDdaeddkrbb799Wm211fLxnXfeufbrmKnarFmz3K+jgGDUqFEzvFcQRAHlSm4FUDxyK0qZ3IpyI7OiUsitqCuNatxdUuLionXcccelV155JVdEd+zYMYdSr732Wl6KLy5Yse8uAPVj6op7KLYYBEV4FNumxDLTH3/8cQ6YQosWLdIf//jHtM8+++R/x/K8MfAPMXCKFQA+/PDDPEA65phj0r777puP6eM0VL+NvjZkyJB8b9uqVau011571fbDq6++Og/IQ6xsEaFqLCkd/XvQoEHpwQcfzOHrVlttVeTfBlL64Ycfapc4j+vnFVdckfvwo48+mq+1hT4fz3HNjUA2ZqXeddddOXwtXHNjy4DYgiWCqOjngiigHMmtAIrLmJ5SIrei3MisqERyK36r/1tnD8pgn/MTTzwxvfTSS3l/3h49eqRNNtkk7bbbbmmJJZYodhMBKppBOqUkBjexvO4ee+yRFlpoobwE7xZbbJHef//9dPvtt9cuuxuBVOxl3qFDhzxb5MUXX8yvx7mxRG88QmHABA0ZoMZA/pNPPskD+LjGRn/db7/98rkRoMYMqJkFqIUwSoBKQ5u+z0UQFaIvR7g0ceLE/PjPf/6T1l9//drrajz/97//zcUEMX6L7QAK87ji/AceeCAfj5BKEAWUK7kVQHEZG1FK5FaUE5kVlUJuRV2zEhVl44MPPkh/+tOf8g1lPMeSewBAdfn222/TUUcdlWf2xzLTG2+8ce2xZ599Nh144IF5oBPnFGb2fffdd2ny5Ml5UBQDoXgEQRQNJQLUP/zhD7UBaoSkhQA1BvixjH+hv8bsvUKAGv1zhRVWEKBSVIU+F9tJxGPEiBF5BnUs1T/vvPPmcx555JF06KGH5tD0pJNOSgsssED+nrfeeisHrzHTL2bubbTRRrXvG9fq119/Pc0333z5vwmAcie3AgDkVpQbmRXlTm5FfVBERVkZOXJkXiqyT58+aZlllil2cwCABhYDoW233TYtv/zyeYBTGCiFGPjE7P+99947zzA5+OCD80ypwjmFJXoN5mlIAlTKWaHPRWgU47CYfff999/nYxEgxVYUMYMvxMzTWH1lzTXXzNfo5s2b55AqAtnjjz++tn8DVDK5FQBUN7kV5URmRbmTW1FfFFFRduIPdOGPMgBQXUaPHp222WabtM4666TLLrtspoOm6667LvXr1y+1bds27brrrnl5dCgWASrlvhR6BFAxK3WRRRbJgeraa6+dHnvssXTfffflwDVWWolZfHHe1VdfnWeljh8/PvfppZZaKn/vjjvumN9TfwaqgdwKAKqX3IpyIrOinMmtqE+N6/XdoR4IogCgevczn3/++VOrVq3yDKmXX345rbrqqrXHCufF4Cf2Pf/oo4/ShRdemDbYYIPUuXPnorQfYrD+9ddf5z5ZUBiMx8B89dVXzzP6IkAdNGhQfi0C1MI5Bu4US1xTI1Q677zz8rL+xx13XOratWs+tuCCC6b//Oc/+VrcpUuX/Npyyy2XTj/99PTFF1/k5dAXXXTRfL1u165dPi6IAqqF3AoAqofcinIms6Kcya2oT3oCAAAlpzDraeogKsQyu/vuu2+eKXXzzTenMWPG1B4rLLAag/9Yrvf8889Pp556qiCKBjX9Qr/TB6hTm1WA+uabbzZom2FWJk6cmEOn9dZbrzaIKszciz597rnnpu7du+d/v/vuu7m/L7HEEmnzzTdPK6ywQm0QFf9dCKIAAIBKIbeiHMmsqDRyK+qLlagAACgphVkfH3zwQbr77rvT2LFj8wDnyCOPzDP7Y0nejTbaKN1zzz15EL/bbrulFVdcMX/P22+/nV//4Ycf0mabbZbmmWeead4T6kuhj80qQO3bt28OUNu0aTPNAD3OLwSoMZsvBv8CVErFyJEj88zUNdZYozaIuuaaa/KS6Keddlrq2bNnevjhh9Of//znfG7085mZ/r8LAACAciW3otzIrKhUcivqiyIqAABKblAfM0UifJp6xt7w4cPz8rxLLrlkHuBH4HTXXXelYcOGpVVWWSUHVkOHDs2B1Mknn1wbRAVBFPVJgEoliD4Y/XPChAmpRYsW+bXC8zPPPJOvvdddd10OomL581133TUf69SpU37WXwEAgEont6LcyKyoFHIrGpIiKgAASkJh2dyYMbLPPvukRRZZJB199NFpnXXWSX/961/zYOiEE07Iy52vttpqeZ/ztdZaK1177bU5BAgxG+qss85KO+64Y+17mklCfRKgUs6mDj4jiHr11VfTX/7yl3TZZZflIGq55ZZLyy67bA6gop/GEulnnnlm2mmnnWrfI14PSy+9dNF+DwAAgPomt6LcyKwod3IriqVRzfQboAIAQJF8+umn6bDDDkuTJ0/Og/sNN9wwv3799den/v3759cjgLrgggtS69at87Hx48enL7/8Mn8933zzpQUWWCB/bVYU9a0QdkaAuscee+QAdZtttpkmQF133XVzgLrwwgun9957Lz355JM5QP3kk09qA9SY5SdApSE9//zzac0118x9rRAJxEy+XXbZJYdS//znP9OUKVNSkyZN0v3335/OOeecfH2OfhqBf8G7776bLr744vTCCy+kSy65pHb5dAAAgEokt6JcyKwoZ3Irik0RFQAARTV1aBSzSfbaa6900EEHpQMPPDC/FoP9mGESvvvuuzyIWn/99fOsknbt2s30PQ3qaSgCVMpNXF/jWnvqqaemHj161F4ro/9ttdVWqU2bNrn/Fnz++efppptuSjfeeGOe5de1a9e81P/o0aPTvffem4OomJX6hz/8oYi/FQAAQP2QW1GuZFaUI7kVpcB2fgAAFE1hAB6znSZNmpQHN99++21ae+21awdBseR5LCV91VVXpd/97ndp2223TU8//XTe23z//ffPr7Vs2XKa9xVEUZ+mDo6iz8YS6DHAL4RREaA+9dRTeXZTBKjPPfdcOumkk2oD1FgSPR4z2xYA6tNXX32VOnXqlAOkv/3tb/m1QiAV1+Do29FnQzzPNddcqVWrVnmm30ILLZSuu+66HErFI0R/jlCrd+/e+d9CVQAAoJLIrSg3MivKmdyKUqGICgCAoolBy2uvvZYHMiuttFLtgOaNN95IK6+8ch7UDxw4MB1zzDG1y+3GwCmWlo5j8YhBkaV4aSgCVMpZzCKNZfznnXfeHEZdfvnl+fVNN900NWvWLDVu3Dg1bdo0vxZB1A8//JCXSY8gaocddsjX34cffjh9/fXXaYkllsjbAUR/DoIoAACg0sitKCcyK8qd3IpSoYgKAIAGVxjgxN7lsWd5DGoiiIpZURdeeGFaffXV07hx49K5556bB0n77LNP7ffGgD9mmBxyyCF5UC+IoiEJUCl3Cy64YOrVq1f+OgKpeEQgutlmm+Vlz//3v/+l22+/PXXu3DmHV+3bt89BUwRVMRs1QqnpmZUKAABUErkV5UhmRSWQW1EKFFEBANDgIoiKQf0rr7ySZ5F07949bbnllvlYDIhi0PPggw+miRMnpo033rh2kPP666+nF198MZ+z00475RknwUwS6psAlUoOpC655JI0efLkPFP1ww8/TKeccko+1rx587TqqqvmGX0bbLBBDqei7y+22GLTvJ9ZqQAAQCWRW1FOZFZUGrkVxaaICgCABheD+gsuuCDvbx4Ky0qHGPSHjz76KH3//fdpzJgx+d/Dhw9PN998c/rmm2/S+uuvXxtEBUEU9U2ASiUGUj179sxfx/Lo8fjiiy/SKquskjbZZJN8DX7mmWdyn58wYUK6884787kDBgyYIYwCAACoJHIryonMikokt6KYFFEBANDgmjRpks4666z8GDp0aF4uOgY/HTt2rJ0ZErNHCjNNnnzyyTwwillTJ554Yg4DoCEJUClnhQA0Zu1FX47rbMzWW3jhhdN2222X/3311Vfn0Klt27bpgAMOyN/31Vdf5Vl+Eaq+9957eVZq165di/3rAAAA1Cu5FeVEZkW5k1tRahrVxCaQAABQBB988EHq06dPeumll9Iuu+ySDj744NS6det8LG5TH3/88bzUdAyQFl100bT77rvngVMwK4qGNnLkyNoAdbXVVkunn356DlALYrC+2267pfHjx6eVV155mgB1r732KmrbqV6Fa+U777yTA6dXX301tWnTJodKhSX8P/7443TfffelK6+8Mp978sknpy222CLPVv2p9wQAAKhkcivKhcyKciW3ohQpogIAoKhGjRqVjj/++PTyyy/nsClmkhQCqcKMkm+//TYPfGL2STAQolgEqJSTQp+LZf3j2hrX0/nnnz/P0otHvHbUUUflc8eOHZvuueeevDx6LHv+xz/+MfXo0SPP9tN3AQCAaiW3olzIrCg3citKlSIqAABKIpA67rjj8h7mMwukQty2xqCo8AzFIkClnLz11ltpzz33TIssskh+3nDDDdO7776bDjzwwDxjL4LVY445pjaQuvvuu9NVV12VWrVqlQOpQqAKAABQreRWlAuZFeVGbkUpckUEAKDo2rdvny644IK0yiqrpBtvvDFdc801eUnpqRUCKEEUpdBf+/XrV9tfYynpqfvrfPPNl5edXmihhfK/I0AVRlEMX3/9dbriiitSixYt0hFHHJGDpQiZIjRt1qxZmjx5cl4qvX///vn86Lfbbrtt2nfffdP//ve/YjcfAACgJMitKBcyK8qJ3IpS5aoIAEBJBVJrrLFG+vvf/54uvvjiPDMKSpEAlVJyxhlnpPfee2+G1ydOnJhnSq+55pppo402yq+NHDkyL3/eqVOndNJJJ+UANWbwnX/++bWBVK9evdJtt91mNh8AAMD/T25FuZBZUWrkVpQbRVQAAJTUIP/cc89NyyyzTH7MM888xW4SzJIAlVJwwgknpFtuuSUHS9PPwvvss8/SRx99VBuKTpo0KS97/tBDD6WePXvmJdFjefQwePDgdOSRR+b3iCX9V1xxxdpl/QEAAJBbUT5kVpQKuRXlSBEVAAAlN8i/+eab8x7ohWWloVQJUCmmvffeOz311FNp6aWXTq+++mo6+uijpwmk2rZtm5ZccskcLoXnnnsuL+V/8MEHp2222Sa/1qFDhxw4RWD1wAMP5BmAU7OsPwAAwP8jt6JcyKwoNrkV5apRjb/uAACUqLhVtaw05SCWn27evHn+Wr+lIZxzzjlp4MCB6eSTT04bbLBBGjBgQLrzzjvTsssum/7617+mJZZYIp83evToNPfcc+f+udNOO6X5558/XX755fnf0U9jJt9f/vKXPCs1rLXWWkX+zQAAAMqD8T/lQGZFMcitKGdK8wAAKFkG9ZQLYRQNKWbgRcg011xz5dmkETz16tUrh1LDhw+fZmZfu3bt0kILLZSXRx8xYkRafPHFU4sWLXI/feutt9K9996bX1t++eVrgyhLoQMAAPw843/KgcyKhia3otwpogIAAKgjwigaQixVvuCCC6bvvvsuXX/99emf//xn6tOnT16qf4sttkj//e9/01FHHZUDqUKfnHPOOfP3jRs3Lh9/9tln8xLp//nPf1Lv3r1rQ9XC+wMAAACVQ2ZFQ5FbUe4aF7sBAAAAwC9TmDl63HHHpS+//DI99NBD6cknn0xLLrlk2meffVKzZs1y8HTfffflQKp///6pQ4cOqVWrVmnzzTdP999/fxo6dGgOnH744Yd07LHHpu22226a9wYAAACAX0tuRSVQRAUAAABlIsKiCI1iafPtt98+h1GxjPk888yTnyN0OvHEE/O5hUDqwgsvzEun77fffqlTp07p0UcfzeFVLKPeo0ePfG58r5l8AAAAAMwuuRWVoFFN9GIAAACgbHz77bdphx12SE2bNs0hUixvHuFSBFFLL710+uyzz9I555yTA6nllluuNpAKU6ZMSXPNNVft7D1BFAAAAAB1RW5FOVNEBQAAAGXogw8+SOPHj0+LLbZYDqGeeOKJtP7666eTTjopLbXUUtMEUiuuuGLq169fnskHAAAAAPVJbkW5UkQFAAAAZe6TTz7JIdRTTz01QyB1/vnnp3vuuSd16NAh3X777XlJdQAAAABoCHIryokiKgAAAKgAETz16dMnPfnkk9MEUp9++mk69dRT05prrpn22WefYjcTAAAAgCojt6JcKKICAACACgykunbtmo4//vi09NJLp0mTJqWmTZvmcyIGaNSoUbGbCgAAAEAVkVtRDhRRAQAAQIUFUieffHJ6/PHH06qrrpoGDBiQmjdvnuaYYw5BFAAAAABFI7ei1M1R7AYAAAAAdWfBBRdMffv2Tauttlrq1q1bmm+++XIQFQRRAAAAABSL3IpSZyUqAAAAqECWQgcAAACgFMmtKFWKqAAAAKCCCaIAAAAAKEVyK0qNIioAAAAAAAAAAKCq/d/mkgAAAAAAAAAAAFVKERUAAAAAAAAAAFDVFFEBAAAAAAD8f+zdB5icdbU/8LO7SQgl9C4d6U2aICJSrYCKBSs2roq9XdS/99rLVbwqwkWvBRBQKVKlF+k9oYcQegolkN6zuzPzf86Ls3eTbJLdZDfv7s7n8zzz7O7slPPOzGrew/d3fgAAQEMTogIAAAAAAAAAABqaEBUAAAAAAAAAANDQhKgAAAAAAAAAAICGJkQFAAAAAAAAAAA0NCEqAAAAAAAAAACgoQlRAQAAAAAAAAAADU2ICgAAAAAAAAAAaGhCVAAAAAAAAAAAQEMTogIAAAAAAAAAABqaEBUAAAAAAAAAANDQhKgAAAAAAAAAAICGJkQFAAAAAAAAAAA0NCEqAAAAAAAAAACgoQlRAQAAAAAAAAAADU2ICgAAAAAAAAAAaGhCVAAAAAAAAAAAQEMTogIAAAAAAAAAABqaEBUAAAAAAAAAANDQhKgAAAAAAAAAAICGJkQFAAAAAAAAAAA0NCEqAFiJvvnNb8YOO+wQH/nIR8oupd+48cYb42tf+1ocdthhsccee8See+4Zhx9+eHHdtddeG4PV3XffXXwW8tLe3r7Y71988cWYPXt2n9Zw6KGHdtTQ+bLTTjvFa17zmnjjG98Yn/jEJ+Lcc8+N+fPnL/Fx6ve74447eqWuJ554osf3OeWUU4oaPvCBD3R5jBdccEGsLLVaLZ566qmFrps4cWLH6zRu3LiVVgsAAACD00UXXdTlOf2yLv29J/X444/HrrvuGl//+teXedtLLrkkjj322KKXlJdjjjkm/vKXv0S1Wu21HsmSLmPGjFlqX6T+/hx00EExWC3rGLM3kj2SzvLzl/f51a9+1Wt11HtC9cvo0aO7db8jjzyy4z69Wc/yWJ4+YP0zm8cPAPSeIb34WAAA3ZahnC9+8Ytx8803Fz9vsMEGsd122xXNlQycXH755cVl7733jt/+9rex1lprRSNobW0tjvf000+Pyy67LNZYY40+f85NNtmkuNTlezB37tx44YUX4vbbby8uZ5xxRpx88smx44479lkdL730UvzsZz+LkSNHdnwuBpqHHnoofvjDH8aWW24Zv/jFL8ouBwAAgEFqvfXWi7322mux6/NcPi/Dhg0rwkiL2n777aO/mjZtWnz1q1+Ntra2Zd42z73POeec4vttttkmWlpaivBMXv75z3/G7373uxg6dOgK90iWZLXVVuvxYzeKDAP98pe/jPPOOy8efPDBGDJk5f6nyKuvvjp22WWXZS7gW55FfIOhDwgALJ0QFQBQiu9+97tFUCYbXT//+c9jt912WyjEc9tttxWTu0aNGhWf+9znOhpjg8Xuu+8eV155ZfF952ZSBolOO+20lVrLu9/97vjCF76w2PX5Ptx1113xve99L5599tk4/vjj429/+1tsvvnmC92ufhybbrrpCtWR73kG5zbaaKMe3/dDH/pQvO1tb4tVV101yvTXv/61CFJliKqzPKbeep0AAAAgp0fnZVE5lebUU08tFqvlOfxA8fzzz8cJJ5zQrWBLTkDKPtGIESOKsNQ+++xTXP/II4/EZz7zmaK/8D//8z/x5S9/udd6JEvTqOf7RxxxRDFVftGwWgbZciLYypb9tZz2niGqnHDfnfesbGX0AQGApbOdHwCw0j333HPF6qqUjb3OAarU1NQUb3jDGzpGad97771x5513xmCSYZ9tt922uPRX+T687nWvKxpfG2+8cbz88svxgx/8YLHb1Y+jzADTuuuuW9TQXxuW2VCsv07LsxIWAAAABqsMtLzrXe+Kxx57bJm3rVQqxeSelFv+1QNUKSdvnXTSScX3f/7zn2PWrFmxMvSHvkgZMsSWx73FFltEf7DTTjvFmmuuGePHj49HH310mZ+57M/058lsAEA5hKgAgJUuGxnVarUYUb20ENFrX/va2GqrrYrvc/w35Vh//fWLqWDplltuKSYtAQAAAKyo97///fGVr3wlpk+fHm9+85uLy9KMHDmyCMlkAOYd73jHYr/PxWA5HXru3Llxww039GHl9Df5mTj88MOL73Ma1ZKMGTOmmLien5W11157JVYIAAwEQlQA0E9MmjQpfvSjHxXNolw5t+eeexbbk+V1EydO7PI+ufXZxz/+8SJslPfJk/9PfvKTxZSnDCktOup8hx12iIMOOqjLx8rnyN/npavnmzBhQrGtW47qzslRudLvgx/8YFxwwQXFKsCeqE/imT17dtH8Wprf//73cc0118RHPvKRLn9//fXXx6c+9ani2PM1yAlWObI7R4cvWv+OO+5YHN/SVqPl65+3yeNakePP0FE+To7OP++88+Lggw8u7vemN70p7r777uJSf71z1HjKYzzssMM6HiNvm7/P2371q18tvs+x9EuS73ve5q1vfWv0tnxd1llnnY7XvLP6cdxxxx3L/ZnO+3/rW9/quF/9MesOPfTQ4udclZr333fffYvHO+aYY4pGa25XkL//wAc+sMRjuPXWW+PDH/5wcb98/4477rgljm9f0jHV5XuVv8/nTfX38+KLLy5+/sc//lH8XP/cdv77Gjdu3GKP98wzzxRbXObnK1+rvffeO973vvfFmWeeGfPnz1/q5ysfO1+7/NvO++bXb3/720v83w0AAADIXsvxxx8f+++/f3EueeCBBxbb2C1pEnj9nHbmzJlxySWXFJOjciu3vF/2Ku65557lquP++++PTTbZJP77v/87fvOb38Rqq6221Ns/8MADxdedd955iZOf9tprr+Lr8tbUU8vqIXQlp65/8YtfLF6/fP0POOCA+OxnP7vUSew96QMuLbSWtdaneXU2atSojmO58cYbF/v9WWedVfzu05/+9BJ7jdm/yX5L3S677LLEXuPjjz9e9Lte//rXFz2zvO/3v//9YhL68nrLW96yzBBVvRf09re/famPlf2+7Ptlbyf7UPmaZ3/v3//93xfrO9ZlDyd7mdmvyv5THtchhxxS9Crz9e1saX3AFZWLUXM7y+yT5nuQ9WefKWvLfuyK1N25L5XT4LpS/2zke9qfPv8A0B1CVADQD+QKumw+nX322fHSSy/F1ltvHZtttlkR3MnrcmXdosGfn/70p8WJbDZocqJTnpgOGTIkbrvttuJkvj45qDdce+21ceSRRxaBjaxvm222KbZPy5Po//iP/yhOWOfMmVLQwhwAAPcPSURBVNPtx8tmVr0plgGo3LbvySef7PK2uXowp1GtvvrqC12fwaM8Uf/c5z4XN998c7H1XL4Gra2txUn1e9/73jjnnHM6br/55psXJ9mpvpVgV424XImWTbjOQaQVOf58ru985ztRq9WK48hGUI4X70qOEM8mQF02OfK1yvHo7373u4vr8v2dOnVql/fPJmbKhkdva25ujte85jXdbkL29DOdx1mfOpYhu/y53vTsLJtpef8NN9ywCHUNGzasW6sG87XJ5nBO0cpa8vOXTalc7VoPb62IfI+y3vXWW6/4OT8f+XN3xsLnZ+Too4+Oc889t3it8j45/SsbXvl3np/lF198scv75muYr2UeX35u8+8lQ2h///vfi/u98MILK3xsAAAADB5tbW3x+c9/vggw5GKj7CXlorPss2T/42Mf+1hxLrokGXT6xje+UfRPXv3qVxf3y8BNBmf+9Kc/9biePM/PQFf2XbqjvjAp+zxL8qpXvar4mjX2R7/4xS+KRV553NnHyj5A9l1ycla+/vn7RfVWH7Aearn99tsX+13nENhdd9212O9vuumm4mt92lNXsq/VuRdS7++sssoqiz1X9rryNcgeykYbbRTPP/98/PWvfy36SZMnT47lkWGc7BPl5yQnTnXlqquuKupZ2nFk0OhDH/pQ0ffLPlj2ffI1zy0is4/znve8p1j41lm+l/n+ZSAwFwFuvPHGsd122xWPlb3KfLzOizaX1gdcEfl3nAs/8zjz7z3rztc4e2JZWwbpOgepelr3QP78A0B3CFEBQD+QIaIpU6YUE3vy5C+n2OQlm1C5+idPWvNEtu6pp54qTtTzhD9Xgf3zn/+MCy+8sGh+/exnPytOPC+99NKO1XkrIk+e8yR1wYIFccIJJxTBk3zsPCHPqTsZfMlVQjmlqbvWXHPNjuBKho9+97vfFau/cuVaPleGlZbV6Dr55JOL1yhP7P/4xz8WJ9H5GuTXbHBkqConFnVuCtXDRVdccUWXK5TyuOorv/KEvDeO/7777isaA/keZb3ZEMjj78p//ud/FsfV+XORr0WurszVVZtuumnR/OhqelIGZ7KOlpaWLsfZ94YMQaVsavX2ZzqPs76SMRs7+XNeuno987HzPczX9LTTTutW7TnxLFcLZuAuV8PltoQ//vGPi4ZL/pyhoxWR71HWW199maso8+d8T5cmg1L5t5BNo1wRmJ/XrCcbSRmMys9XrszM1Xj1iWWdnX/++UXTOj8TeZ98XTKMlaHDDNudfvrpK3RcAAAADC7/9V//Fdddd12xuCh7EHnOnufEeT6ai8DyPDl7TosGROpyYdNRRx1V9KCyD5P3ywlWuXjspJNOKs7beyIDHYsGbJamvrAsewdLUl9sNW3atOhv8pz9D3/4Q9EbytcrAzrZB8jXM/sd+b7k7zuHVnqzD1iffJS3XXQiUece2qIhquzfZa35XEuaLlQP2WVfrvPnJfsjG2ywwUK3y0BPTgmv98ty6vkZZ5xRLJbLBYj5/fLIhXn1Y+xqGlU+by7we+Mb39jR++tKLtzMKWlZd+fXPHtv2aPJvmIGe7I/WJe/z/tkLyePJ0NM+d7m31gGkfJvJN+v7DEuqw+4vLKuH/zgB0UPKcNFnftMWV/+3TzxxBNFWG156x7In38A6A4hKgDoBzKok3IaTeeJSzmNJrflytHLGZSoGzt2bPE1J+rst99+Cz3WO9/5zmJLs1zBl8GMFZXbleXjZBAox0APHz6843d5Up/NkQzuZMNjSdOkupKBkRwdXl8dWA8C5QqnDCRl+Ca3fssT6TxZ7yxXo9WbeRmiydenLmvJcdi5cinv9+tf/7rjd/mY+frmtJ9Fm0Gdw0mdJzmt6PHnCX6GsPI2y2ryLU02BHIlXuewV2d5XTZK8rXIKU19of7ZzO3zevsz3V3ZYMvPRV13X88tttiieK/qWxKmXDX4b//2b8X3ObK8DFlTNrZyfPkPf/jDhRp4ObEsA4L5mcsx8RmQ6qo5eOqppxb/W1BX3+Yw9bR5DQAAwOCVU44zxJDyHLS+9VnKvkUGJr70pS8VP+e5ZldTt3Obrwwu1M9f83452Sr7UNmH+Z//+Z8+PYZ58+YVX5cWvKr3bnKLsp7K465vadfVZWkBomXJ/lL2mdJPfvKTomdSl4sBs9+RwZeUt6svpurNPuC2225bTLHOPljnbeNywlIGjPL32WvJ5+wcQstFi3mfnFJen8K9IrI/k8eYE6jqcgFhHk/qagu57qpPl+8qRFXv/XXuLS0qwzj17Qyzb9P5Nc+QV/6NHHvsscXPnacm1XthucAuF0LW5Wc1JyVl7+eII47oVl9teWXIsL4dYvZe6/3I+qSrnMieE7g6T3VfWXX3h88/AHSHEBUA9APZvKifeOeKn85NnmxOZZCi85Zj9dvnSW42rhad2pQrB3PKT337uuWVJ585sSd1PrHtLBtIOfY9G2X1BkN3ZeMpVz/mtJwMPi0aqsmVRnncOQGq84lw1pQ/5+2zAdCV+jSmbADlRKSU253VmyQZeuosJxRlMyBDXfUT8t44/gxa1bcuXFEZjMmmQh7T008/vdK28qvLZlnKGnr7M91de++9dyyPDEx11WDNhlLKMe+LvqZ9be7cuR0Ny9z2oCu5PUF9vHxOMVtUjn1fdDVnyi0n601QAAAASNnjyGBCnkcuKUSSi8hywU6eT+aUmEXl+WvnYEbniVIpz3O7Cl/1lq6ee0m6079Y1CabbNKxBV1Xl87br/VUTvvJhYG52Kw+LWlR2X/KhXS50PDRRx/tkz5gV1v65ftWqVSK7fAyKJV9rs7vf30rvyXV3VP5PF1Ngso+W+eJY8sjw1gZEsrXqR4QSnlMOWUp+3SHHHLIEu9f7+/tvvvuxXvelU984hMd/aScIJ5yklPKyW456anzMWT4Kre7zOlVnYNjvS3DaWuttdZC07Q6T+PPPlgGHev9sJVZd3/5/APAsgxZ5i0AgD6XK5iyWfHMM8/E5z73ueIENafJ5JZgOV46QzqdZXAoR6dnECgDSHnJ8E82CXJ1UE75WdpI6u7Kk9J6eOn73/9+UVdX6tu7LU8IJZtfeZx5SXminq9FNmdydVg+fzYvcgVSTnRKOXa6voIyVxt1pfP0qqyrvkru3e9+dzESOsdtf/e73+1YnVif7pTTnupNtt44/q4CLiuynV4GvHKKVtabq8dShqoycJYNoqU1gVZUfcz7krYjXJHPdHct7+u5pFHoucJuxIgRRXM43796+GhlyPHx9WDa0pqw+buc0Jav5aKW1MCqf6672gIQAACAxlTvW+Tk4wwqdCUDJjnxJYMheR66aJ8hgyVdqYdf8jx34sSJHT/3tvpCtaVtLVZfyNV5mnh3Zd8otyfsC/V+Vr5GOfVrab2yDL7k+5Wvd2/3ATNEldvl5XZtdfXv999//yIYlFumZf8pp7pnjy0XH6b6Qq8VtaR+Rv39XZ4pYnW5JeWb3vSmOP/884vQVL0HldO6s5eYU4uW9tmo/50saeFmPXiUr3n2yvLvZPvtt4/3vve9RRApJ9VnHzG31cu/tXyf8j3ad999i9r6Un52MjyVWwXme5aXDFVlPzF7cgcffHBsvPHGC91nZdXdXz7/ALAsQlQA0A/kielll10W//u//1tMZsqJSBlAycsvf/nL4kQ8Az+5lVld7hufjY0MBD344IPx3HPPFSe8ecmJO7mi6MQTT1xi8Kc7Ok+xeeSRR3p0++WVI8Nz7HZecvu8T33qU0XjLldCffWrXy0CTvXnyUZFd7YrmzlzZsf3GeTJZmA2OLIhlCsvZ8yYUYS28rHrY8N76/iXNl5+eWQzL5tY2TjI1ydrrk+hyobCirzfy5JBrZSj3fviM90dy9MATZ23FOzqd/ne1bcEWFnqobSUQa4lqTeCulrJm6uDAQAAoCfnoUs7B13WeWh9ys2iOk/h7supyDlpJy1ta7H6NnS9se1cb6q/Lrlgr6f9rN7sA+aU71yIl2GpDLzlor3cri/DKxm2qW/plv2nek8st4jLifD1qUUrqi/7Vyn7ihmiyi396osQM1CVMkTVG38n2U/K29b/TvLv5rzzzitCPrkYLl/fnKaUl5zmlJ/H7OV1ngLVF/Lxc3pTBuXyfc2+Zy4mzUv2EXNxY4al6mGqlVV3f/n8A8CyCFEBQD+R23b96Ec/Klb7ZHMiR2bfeeedRegkQ0THH398cbKfY8VTnvTmFmV5qU9vyvvkCqM8kTz77LOL2/3Hf/zHEic0ddZVgKRzAyxPbpcWROmuHA2eI95zfPN//dd/LbaXfWd5rN/4xjfik5/8ZNGUyIbNhhtuWGzLl3I13G9+85se15Bb3uWY5wwiZYgqX9c8gc+xz/k+9OXxr6hcSZefkXyPR40aVYxYv+KKKzoCVn0lV3jWx2gvaZT5in6m+3rrvGU1cbqasLWkv5elPV53df48ZQ1Lau5ms2vR2wMAAEBP1c8rlxVyqocXujoPzf5RPcjUWefHzAVyfaW+sCv7IktS/11vBX56S72flZN1Lrrooh7dd3n7gF3JsFQGaXLKeU6gymk+GZzJqT8ZHMqFcfke5ySgl156qWMKVW9t5bcyZL8xP4f1Lf1yMV8GqjIEmMfbG38n9d93/jvJQNIXv/jF4pKvaX1BYW6lOWXKlGJCVAbYsr/X18efl5zoNXLkyLj33nvj1ltvjdGjRxcLST/96U8XizLr0/iXt+6e9Jn7y+cfAJal63mtAMBKkyebueorVwalHKeeTYsMmORqnwz65IlsnnzmiqGUgaIMpdTHS9enN+VknxtuuKFji7v6FnX1Bkmqb0+3qGyKdBWCqd8vRzovSW4nN3bs2C5XKC4qHy8DVLkFXp60d3f7tnxd8mQ95SSpzmOgu5KvV55M55ZpGdzqLKdNZR3ZKMrXMl/jrkJIfXH8KyonMb397W8vvs8JT9kEydWX2eDKS1/JlWj14FD9+XvzM93XlrTVZDaG6u9b560Glufvpae22GKLjnHoS5t0Vv9driIEAACA5VXfwn7MmDHFdlldyT5JBk+WdB66pF5MBlXqC9Jyq62+Ut9OMBd6Lemc/f777++YRt6f1PtZ+fq2t7cvsaeSE6DyNvXjW54+YHe29EvZG8tASsrt0eqBlZz6k/J3N954Y69u5bcyZF/niCOOKL7P8FT2z3JxZl63rKne9b+TDBwtbVp7vU9W/zvJsFEGljLkU78+JyTlQs7sge666649fp96Kj8zWVtOa6r3ETM0ltO4MriU0+Hrf6/Zy1zeuut9s9yar7t9s/70+QeApRGiAoCSZQAmJyp9/OMfj4cffrjLE8z6GO16gyunL2Xg52c/+9lit89GR73p0Tk8VF8lmFNt8uR4URnIWVQGXXI6UzrrrLO6rD9DSh/84Afj6KOPLpoS3ZG3Teeee27HCfuS1KcsHXDAAR0jmXO1XJ6s58nz7bff3uX9zjzzzPjIRz4S73jHOxZb/ZTTrN7whjcUJ+MXXnhhMdEpV43l+7Ayjn9pMnC0rNVcueqq/p5ls6A+Xauv5OflV7/6VfF9rjhb1nZ+y/OZ7nzsSzruFZGr6xYN06X6SrWdd965Y4x557+XrsJXGZpbUoiqvoKvO8eQjeV6U3Jpn6/cdjIddNBBy3xMAAAAWJI8r8zFPBkmufLKK7u8zTnnnFMEHHJqTL0n0llun9WVv/3tb8XXQw45pNheq69kMCrP37PX01VoIhd05YKp7OnUQzT9xb777ltMesrFXEuaxJMLzz760Y8WIZEXX3xxufuAy5LBmgwTZWClvgiu/jj1Ply9ngwTZS9tt91267Xe1sqQr2HKBXz1nt2yFgbWP8P1/s+Stp3LvmPKz2J9UV5O0v/Qhz4UF1988WK3z75jTpNf9H3q7dcqJ0fl1P1PfepTXYYM6+9r5zqWp+6l9c3ydvVeVn/9/APA0ghRAUDJ8qQzAz3p//2//1esFqrLgMlf/vKXYuuzPKmu3y4DO3mSmKuB/vjHPy606icnPP3ud7/rCBvV7bHHHkVzJE/If/KTnxTjnFPe989//nOcf/75Xdb3hS98oQgs5SSin/70pwtNW8q68qQ8HyNXGR511FHdOuYM1+RI9VyxlUGnDLLUtyyry9VPueLp97//fbFq6qtf/WrH7/K53vve9xbf5/WdT8zzNbvgggvi1FNPLX7OJkA2zhZVDx2dfPLJxWvylre8pWOsdF8f/9J03kIw38uuZNMqGzQ5rjpDYPm+9sZzLyqbpvkZyxVd9a0UuzMWe3k+052PPT8LucqsN2XD79vf/nbHKsGsIxte2RxOX/7ylxe6/d577118PeOMMxaqP0NhnT+Li6qPcF/Se7eoz3/+80UDO1d+5mj0zsedqwL/7d/+rdhKcccddywmqAEAAMDy2mSTTYoJMynPQTsvBsvz5L/+9a9xyimnFD9/9rOfLQIPi8pASvZS6pNksieSC6+uueaaYvFbnuf2peyHfe5znyu+zz5Nnk93Pvf/xje+UXyf/aau6i9T9j2yj5R+/OMfFz2dzovLrr/++mK6TsoQSU6wXt4+4LJkryy3e8st6fK9y+DbXnvt1fH7ejAlt0vLvllOrqovHOvOcXaurywZAlx//fWLvk4G7vL7PObuBPXqr2Vub1ef1JUymJShnnof9cQTT+x4XXIhZ8qeZIaZOstJT/XQX+f3qbdfqwxKZl8uFzjm30J+rcueUz2IlP9bsN122y133fW+WU6my4WB9QBY9vSyF5h9v/78+QeApXll/xAAoFQ/+MEP4thjjy1OMI888sjYbLPNikZPnghOmzatuE2OXX71q19dfJ9jlDP0kU2qk046Kf73f/+3uE+uwsvJNdnIyhPNb37zmx3PsdZaaxUri/LEMgNBt956a3GfDOLkCXUGZTKMNGnSpIVqy5PiH/7wh8VJbIZOcnpUTiLKMFGu7MuT5GxC5DZt9UlRy5Lb8mU4JY/pgQceiB/96EfxX//1X0U9a665ZsycObPjsddbb73id7vssstCj5En5FlrjhQ/4YQTioDPRhttVBxPffx0TkNaNBzTeVVZ1lFvJixpklNfHP+yXpsMZOVxZFMwR4h/6UtfWmwKUdabzcIMBeVx1leALY9sWtRXHaZsYOTx5WepHrbLOv7nf/6neI374jOdMhiWwaoMDWWoLd/TfF1X5Njq8jXKFXXZ7M1JWLmaLbeVzCbMv//7vy/WaMnPVP6NZHgsA2pZZ9aV48Rzm8dcAZev26LqWyrmSsU8hrxfPdC3pMZcNo4ynJYNuMsuu6z4fOX7+swzzxS32X777YvH6I3PFwAAAI3tW9/6VtFPycnW2W/Ic++cppM9gPr5+oc//OFiUU9X8hz1tNNOKwJXeX6c98veSi6Ayz5FfSu0vpQL6+65555iak32unKhXp4zZ6Aj+zTZQ+nrMNfyytc1X7PsAWRvK/t62TPJ96Q+9Tp7UdkrqFuePmB3ZDAqQ2gZSsnQVOcJYvne5nNMnDixx1v55fuRgZnsbWRoLx8njycXiJWxpV9OScs+Vy5Oq29Dtyw///nP4zOf+UyxNeRxxx1X9OpyG7ns1WQYKR8n35POk63ydtlfyyBSvs/5t5WX/LvKPl/9Na8vDO1JH7C78u8gQ475d5HT5vLvPD8b2W/Lz0q+J7mINHut9T7T8tSdfbR99tmnCFnle3v66acX/bucTJWfp1yUWg9k9tfPPwAsiRAVAPQDeWKa49AzMJLBjTwBfOGFF4oAUZ6MZ/Oq82qwlCfyGdDIk85caZdhlWxYZYgjGwS54q7zaqbOoZVsHowZM6Y48c/gSn07uq5GLacMjOTo5pxYlSfV2ZTK8EmGPQ4++OD4xCc+UdTaE7mdWwaS8mQ+LxmmyvBTNmcy8JXhkjxBz2ZL/ryobOz89re/jauuuqoYAf3II48Ux5STgHJVWYaM8pg6j8XuLBsFGY7JKVhbbrllceK/JH1x/EuTzY5sFuTxZGhn/Pjxi90mjy0bOjmqekW38svPWl46y4ZKhsOywZWfp/wc5sSrvvxM5/uQDdd8X7NJk8eWX3sjRJXvUYaasp4nn3yyeP/zvcvmTVfvff4dZf1ZS462zyZQNpXzcXI1bq5860o25PK2uUovP8vZOOq8qm5J98npYhnSq3++8m83X58MoOX2jX25FQIAAACNI8+Hc5FU9lNycVC9n7LBBhsUW33lgqilTevJ6Ta5qCx7S2PHji3O87N/c/zxxxd9kpUhezIZpsh6sy+WdWSQIifr5FSd3A4spz73R1l7LtbLxV7ZF8t+WL7+ed6fvafsA+R7sOhCquXpAy7LYYcdViyCW3Qrv7r661ufWtVd2ZvL3lZOmM8eSfZH8rKyQ1Qpt7arbzWZ33dXhpuyZ5gL8nLBW37GcqFdLi7M/lJOvt95550Xuk8Gq/JvK58v/75yAlZOGc8Fo7l9Yn42sxe56ESv7vQBeyLfq5zSnwtYR40aVTxm/j1kXyvryN5W9mVXpO7st2aPLZ/jiiuuKP43IUNN+TnKhYn5+nUVoupPn38AWJKmWpkbEgMAsFyyeZNBqmxy5mj17q6kAwAAAOipXISXMjSR4RoAABiMuh7NAABAv5YryupTsgSoAAAAAAAAYMX0z3mmAAAs5tFHHy22NrzpppuKEds52jq3YgQAAAAAAABWjBAVAMAA8ZWvfCWeffbZhX7eaKONSq0JAAAAAAAABgMhKgCAAWKvvfaK559/PtZdd9340Ic+FJ/61KfKLgkAAAAAAAAGhaZarVYruwgAAAAAAAAAAICyNJf2zAAAAAAAAAAAAP2AEBUAAAAAAAAAANDQhKgAAAAAAAAAAICGJkQFAAAAAAAAAAA0NCEqAAAAAAAAAACgoQlRAQAAAAAAAAAADU2ICgAAAAAAAAAAaGhCVAAAAAAAAAAAQEMTogIAAAAAAAAAABqaEBUAAAAAAAAAANDQhKgAAAAAAAAAAICGJkQFAAAAAAAAAAA0NCEqAAAAAAAAAACgoQlRAQAAAAAAAAAADU2ICgAAAAAAAAAAaGhCVAAAAAAAAAAAQEMTogIAAAAAAAAAABqaEBUAAAAAAAAAANDQhKgAAAAAAAAAAICGJkQFAAAAAAAAAAA0NCEqAAAAAAAAAACgoQlRAQAAAAAAAAAADU2ICgAAAAAAAAAAaGhCVAAAAAAAAAAAQEMTogIAAAAAAAAAABqaEBUAAAAAAAAAANDQhKgAAAAAAAAAAICGJkQFAAAAAAAAAAA0NCEqAAAAAAAAAACgoQlRAQAAAAAAAAAADU2ICgAAAAAAAAAAaGhCVAAAAAAAAAAAQEMTogIAAAAAAAAAABqaEBUAAAAAAAAAANDQhKgAAAAAAAAAAICGJkQFAAAAAAAAAAA0NCEqAAAAAAAAAACgoQlRAQAAAAAAAAAADU2ICgAAAAAAAAAAaGhDyi4AAAAAAOi+6pPjo/W0c8suA6AhDP/liWWXAAAArCQmUQEAAAAAAAAAAA1NiAoAAAAAAAAAAGhoQlQAAAAAAAAAAEBDE6ICAAAAAAAAAAAa2pCyCwAAWFGnnHJKnHrqqYtdv8oqq8T6668f+++/f5xwwgmx+eabl1IfAAAAAAAA0L8JUQEAg8ZrX/va4pJqtVrMmzcvnnnmmbjkkkvi2muvjfPOOy+23XbbsssEAAAAAAAA+hkhKgBg0MgA1Re+8IXFrr/88svja1/7Wpx00knxu9/9rpTaAAAAAAAAgP6ruewCAAD62tvf/vZYY4014u677y67FAAAAAAAAKAfMokKABj0mpqaoqWlJYYM8U8fAAAAAAAAYHEmUQEAg97VV18dM2bMKCZSAQAAAAAAACzKOAYAYNC455574pRTTun4ecGCBfH000/HTTfdFPvvv398/etfL7U+AAAAAAAAoH8SogIABlWIKi9dWWeddWLKlCmx2mqrrfS6AAAAAAAAgP5NiAoAGDQ+//nPxxe+8IWFJlG99NJLccUVV8TJJ58cI0eOjIsvvjg22GCDUusEAAAAAAAA+pfmsgsAAOgrq6yySmy++ebxmc98Jo477rh4+eWX4+yzzy67LAAAAAAAAKCfEaICABrCAQccUHx97LHHyi4FAAAAAAAA6GeEqACAhjBt2rTi64gRI8ouBQAAAAAAAOhnhKgAgEFv7ty5cdZZZxXfH3HEEWWXAwAAAAAAAPQzQ8ouAACgt9xzzz1xyimndPxcq9Vi8uTJcd1118XUqVPjsMMOize/+c2l1ggAAAAAAAD0P0JUAMCgClHlpa6lpaXYvm/77bePI488Mt7znvdEU1NTqTUCAAAAAAAA/U9TLUc0AAAAAAADQvXJ8dF62rlllwHQEIb/8sSySwAAAFaS5pX1RAAAAAAAAAAAAP2REBUAAAAAAAAAANDQhKgAAAAAAAAAAICGJkQFAAAAAAAAAAA0NCEqAAAAAAAAAACgoQlRAQAAAAAAAAAADU2ICgAAAAAAAAAAaGhCVAAAAAAAAAAAQEMTogIAAAAAAAAAABqaEBUAAAAAAAAAANDQhKgAAAAAAAAAAICGJkQFAAAAAAAAAAA0NCEqAAAAAAAAAACgoQlRAQAAAAAAAAAADU2ICgAAAAAAAAAAaGhCVAAAAAAAAAAAQEMTogIAAAAAAAAAABqaEBUAAAAAAAAAANDQhpRdAADAYFOrVCJmzY3a7DlRm7sgoq0toq29uNQW+v6Vr13+rrU9or09oqkpoqUlmppf+RotzRHNzQt9bcrr67/v9LumVYZGrLZqNK02/JWvq//r62rDo2n4KmW/TAAAAAAAANBvCFEBAHRDrbUtarPnRsyaU3ytzZrzSlCq+HlO1GbNjahfP29+RK2Xn793H+6VsFWGqeoBq/y6+r8CVvn9GqtF0zprRdO6a0bTumtF0xD/bAQAAAAAAGDw8l/DAADqIakp0//vMjm/zoja1OlRmzE7YkFrDCrV6iuhrwyGLSuk1RQRa6weTeut9a9gVadwVT1oJWQFAAAAAADAAOa/dgEADaNWqb4Sinppasel+vLUqL08rZgwxRJkwionbuXl2ee7DlmNWOP/wlXrrR3NG60XTZtuGE0brhtNOfUKABi0vvnNb8bFF18cZ5xxRhxwwAEL/e4DH/hA3HfffXHDDTfEZpttFlOnTo1TTjkl7rzzznj++edj1VVXjd122y0+8YlPLHbfarUaf/vb3+LCCy+Mp59+Opqbm2PnnXeOj33sY3H44YcvdNtDDz00VltttfjKV74SP/7xj+Pll1+OXXfdNf7617/GvHnz4re//W3cdNNNMWHChBgyZEjstNNORW1ve9vblnl8We+pp55aPNZdd90VF1xwQUybNi222mqr+OAHPxjHHntsx22PP/74uPXWW+Occ86Jfffdd6HHmT17dhx44IHF/S655JLlfLUBAAAA6CtCVADAoFSbOTuqEydFbcKLUX3upai9NKWYMBWVatmlDc6Q1czZxWtee/a54qpK/XdDWqLpX4Gq5k02iKZNN4jmDFetsVqZFQMAJWhtbY2PfOQj8cwzz8Rhhx0WRxxxREyePDmuvvrquP322+N3v/tdvPGNb+wIUH3hC1+I66+/PrbZZpt4z3veU1x33XXXxec+97nid5///OcXevxJkybFV7/61SJgtfbaa8daa60VTU1N8dnPfrYIbWWA6aCDDirCTNdcc00RuJo1a9ZCIail+elPfxpjx46NI488MoYPH14Ew77zne/EY489Ft/97neL27z73e8uQlQZklo0RHXVVVcVga5jjjmm115TAAAAAHqPEBUAMDgCUxNejNrESVGd+GJUJ0wqQj30A+2VqGWI7bmXYqH42ojVo3nTDaJpk3+FqjJglWGrIS3l1QoA9Kk77rgjnnzyyTjhhBPiy1/+csf1GTz60Ic+FH/+8587QlR/+ctfigDVUUcdVYSXhg4dWlyfwacPf/jDxWSoDETtvvvuHY8zc+bM+NSnPhVf+9rXOq574oknigDV0UcfHSeddNJCE6Pe+ta3xumnn97tEFWGpXIaVf05M8iVded1b3/722OfffYpwmEZ4MqQVgasVllllY7757SuPI48JgAAAAD6HyEqAGBAqc2YVUyY6hyaipm24htwZs2J6tg5EWOf/b+pVS3N0bThetG8xSbRvM1m0bTNZtG83trl1gkA9JqcJJXGjBkTc+fOLbbfSxk+uvbaa2OTTTbpuO25555bbN+XQaR6gCqNGDEivvjFLxbTpf7+978vFKJKi27PV3/O3A4wtxJcd911i58333zzYjLUBhts0O363/Wudy30fPlYGaTKYFdOnsrjGDZsWBGSOvvss4tJVfV6xo8fH6NGjYo3v/nNsc466/TodQMAAABg5RCiAgD6rVq1GrUJk6L65PioPjPhlQlTswSmBq1KNWovvByVvNz90CvXrblGNG/zqmjeerNXglWbbBhNzU1lVwoALIcDDjggttpqq7jpppvi9a9/fbz2ta8trsuJUltvvXXH7TJglROrMmSV06kWlROn0ujRoxf7XYajOtthhx2KcNPIkSOL59l7772L537DG94QO+20U4/qf93rXrfYda95zWuKr48++mjHdbn1YIaoLr300o4QVU6hSrbyAwAAAOi/hKgAgH6jVqtF7fmXovrE+FeCU09PiJjfWnZZlCm3anxgbHEpDB8WzVv9K1S19auiactNo2mof9ICwEAwfPjwOO+88+L3v/99XH311UWYKi8/+clPYpdddonvfe97xaSnWbNmdYSpctu+JZkxY0aXz7GoP/7xj3HGGWfE5ZdfHnfddVdx+e///u8i0PX//t//69hCcFk23njjxa6rT7KqB7vSjjvuWBzPbbfdFlOmTCkmVmWgKm+b4S0AAAAA+if/xQkAKFX1xcn/Ck2Ni+pTEyLmzi+7JPqz+a1RfeyZ4lJoaYmmzTfqmFTVvO3m0TR8lbKrBICG0tTUtNDWeZ3NmzdvoZ/XXnvtOPHEE4vLuHHj4o477ohrrrkm7rzzzjj++OPjn//8Z6y++urFbbfZZptiy70Vteqqqxbb/+XlxRdfLEJU119/fVx33XXxuc99rgh0bbbZZst8nPnzF/93aj3wVd8msO7d7353/OAHPygeO0NVzz33XHF8LS0tK3w8AAAAAPQNISoAYKWqvjz1/yZNZWjK9nysiEolas8+H5W83HhPREtzNG31qmjZcZto3mnraN50w7IrBIBBb+jQocXXOXMW/nddpVKJCRMmdPx86623xs033xwf+chHYsstt+y4fOADH4jjjjsu7r777nj88cdjr732Krbly/tOnTp1sYDSE088ERdddFHsscce8Za3vGWptT3wwANFkClvl1vv5TSpd77zncXlW9/6VvE4999/f7dCVA8++GCx/WBno0aNKr5mLZ0deeSR8bOf/awIiGWAKtnKDwAAAKB/ay67AABgcKtVKlF57Jlou+CamP+D30brT/8Y7X+/NqoPPCZARe+rVKP21IRov+LmaP3FmTH/e6dF27lXReXBsVGbt6Ds6gBgUMqJUenGG29c6PozzzwzZs+e3fHz888/H2effXb84Q9/WOh2CxYsiJdffjmam5vjVa96VXHde97znmhrayu2+GttbV1oGtR3v/vdOP3002Py5MnLrC2fP7fyO+WUUxaalJXbSNfDTRnY6o6zzjornn322Y6f8/l//etfF9OlcvJUZ2uttVYcfvjhMXLkyLjyyiuLkNW2227brecBAAAAoBwmUQEAva42f0FUxzwdlUeeiOqYZyLmC69Qkpmzo3LPw8Ulp1QVW/7t/Opo3vXV0bze2mVXBwCDwjve8Y4ipHTxxRcXwaLcvm706NFFgCinP+U0qHT00UfHeeedFxdccEGMHTs29tlnnyIodcsttxRb+33iE5+IjTbaqLjtJz/5yWLbvZzkNGbMmHj9618fQ4YMKbb7y/DTQQcdFO973/uWWVtOjjr44IPjpptuiqOOOqr4OUNP+dj5uG9+85uLGjsHv3KLvne9612LTafKWjMs9aY3vamYvpW1ZPjrq1/9anHMi8rbXnHFFfHCCy/EZz7zmV54pQEAAADoS021XHoHALCCarPmvBKaeviJYru+3GYN+rOmjdeP5l1eHS27bBtNW2waTc1NZZcEAAPWY489Fr/61a/i3nvvLaY87bnnnvHlL385/vGPfxQTnG644YYilDR9+vRiMtT1119fTKZKO+ywQxx77LHFFntNTU0LhZb+8pe/xGWXXRZPPfVUEaLK7f8y4JS3HzZsWMdtDz300CJcleGtvF1n8+bNi3POOaeoJZ+zvb09tt566yL89aEPfahjO8LOj5M177fffsV1GRA79dRT4z//8z+L+1966aUxd+7cIjiVYa+cONWVnHx14IEHFtsc3nbbbTFixIhee71za+zW087ttccDYMmG//LEsksAAABWEiEqAGC5VV+eWoSmMjxVG/dC7otSdkmwfEasHi27bx8te+8czVu9so0QAEDnENWPfvSjeO9739vt+2Xg6rDDDosjjzwyTjrppF6tSYgKYOURogIAgMZhOz8AoEeqE1+MyoOPRzWDU5OmlF0O9I6cpHb7/cWlad21onmvnaJlr52jeeP1y64MABiAcs1ihq9yGtUHP/jBsssBAAAAoBuEqACAZarNnB2VkaOjcu8jglMMerWpM6Jy/V3FpWnTDaMlA1V77hRN66xZdmkAQD83efLk+PjHP15sIThhwoQ45JBDiq0NAQAAAOj/hKgAgC7V2tqLaVMZnKo+/mxE1VZ9NJ7a8y9Fe16uuDmatt6smE7VsscO0bT6qmWXBgD0Q+uuu24sWLCgCFO9+c1vLrYABAAAAGBgaKrlfHEAgH+pPvtcEZyqPPBYxLwFZZcD/U9LczTvuPUr2/3t8upoGja07IoAgAZTfXJ8tJ52btllADSE4b88sewSAACAlcQkKgAgatNnRWXkI69s1/fytLLLgf6tUo3q6KeKS6wyNFp23yFaDtgzmrfcpOzKAAAAAAAAWE5CVADQoGqtbVF9+PFXtut7YnyE4ZTQcwvaXpncdu8j0bT5xtFywGuiZc+dTKcCAAAAAAAYYISoAKDBVF+eGpVb7ysmT8X81rLLgUGjNuHFaD/v6mi/7KZoee2uRaCqeYN1yy4LAAAAAACAbhCiAoAGURn7bFRuHRnVMU9HGDoFfWfe/KjcPDIqt4yM5u22ipbX7xnNu2wbTc3NZVcGAAAAAADAEghRAcAg37KvMmp0MXmq9uLkssuBxlKLqD7+bHGJtUfEkNftES377xFNI1YvuzIAAAAAAAAWIUQFAINQbfqsaL/tvqjc/VDEnHlllwPk3+RVt0X7tXdG8+7bxZCcTrXN5mVXBQAAAAAAwL8IUQHAIFJ99rlov2VUVB96PKJaLbscYFGVSlTvfyxa738smjbZIIYcul8077mjrf4AAAAAAABKJkQFAANcLUMZD4yN9ltHRW38C2WXA3RT7YWXo+0vl0fT1bdFy6H7Rcu+u0bTkJayywIAAAAAAGhIQlQAMEDVWtuicsf90X7TyIiZs8suB1hOtSnTo/2Ca6L9ujtiyBv3jZbX7RFNw4aWXRYAAAAAAEBDEaICgIEanrrx3ohZc8ouB+gt02dF+6X/jPYb7oohb9g7Wg7cK5pWXaXsqgAAAAAAABqCEBUADBDCU9AgZs+N9qtujfYb74mW1+8ZQ964TzStsVrZVQEAAAAAAAxqQlQA0M8JT0GDmr8gKjfcFZVbR0XLfrvHkENeG01rjyi7KgAAAAAAgEFJiAoA+nV46oFiGo3wFDSw/N+CW0cV/3vQss/O0XLY/tG8/jplVwUAAAAAADCoCFEBQD8jPAV0qVKJyt0PR+Xe0dHyuj1iyJsOiKYRq5ddFQAAAAAAwKAgRAUA/YTwFNAt1WpUbr8/KiNHx5CD942Wg/eNplWGlV0VAAAAAADAgCZEBQAlq1VrUbn7wWi/+nbhKaD7FrRG+zW3R/udD8SQN78+WvbbPZqam8uuCgAAAAAAYEASogKAElWeGBftl94YtedfKrsUYKCaOSfaL7g2KreMiiFvPyhadt2u7IoAAAAAAAAGHCEqAChB9eVp0X7ZjVEd/WTZpQCDRG3SlGg7/eJo32azGHrUwdG85aZllwQAAAAAADBgCFEBwEpUmzc/2q+9Iyq33R9RqZRdDjAI1Z6eGK0nnxPNe+wQQ952UDRvsE7ZJQEAAAAAAPR7QlQAsBLUqtWo3PlgtF99W8SceWWXAzSA6oNjo/WRJ6Jl/z1iyJtfH01rrFZ2SQAAAAAAAP2WEBUA9LHK2Gei/dIbo/bi5LJLARpNpRqV2++PysjRMeTNB0TLG/aJppbmsqsCAAAAAADod4SoAKCPVF+aUoSnqmOeLrsUoNEtaI32y26KyshHY+h73hTNW21adkUAAAAAAAD9ihAVAPSy2tz50X7N7cX0l6hWyy4HoEPt+Zei9ZRzomW/PWLIkW+MptWGl10SAAAAAABAvyBEBQC9qDJqdLRdemPE7LlllwLQtVpE5a4Ho/LIEzH06EOiZZ9dyq4IAAAAAACgdEJUANALqlOmR/vfr43q2GfLLgWge2bPjba/XhGVex6OIe85Ipo3XK/sigAAAAAAAEojRAUAK6BWqUblpnuj/drbI9rayy4HoMeqT46P1pPOjJZDXxtDDn9dNA11igAAAAAAADQe/4UEAJZTddzz0Xb+NVF74eWySwFYMZVKVK67M6r3jSmmUrXssHXZFQEAAAAAAKxUQlQA0EO11rZov/KWqNx6X0StVnY5AL2mNmV6tP3vBVF5zQ4x9J2HRdOaa5RdEgAAAAAAwEohRAUAPVB5cny0n3d1ETQAGKyqD4yNBY89E0OOPiSG7L9H2eUAAAAAAAD0OSEqAOiG2vwF0f6Pm6Jy14MRhk8BjWB+a7Sff01URz8ZQ9/3lmgasXrZFQEAAAAAAPSZ5r57aAAYHCpjno4FPz89KncKUAGNpzr6qVhw0hlRefiJsksBAAAAAADoMyZRAcAS1Ba0RvslN0Tl7ofLLgWgXLPnRtsZF0f1tbvFkHceGk3DVym7IgAAAAAAgF7VVKvVzNQAgEVUJ06KtrMvi9rL08ouBaBfaVp3rRj6wbdF8zabl10KAAAAAABArxGiAoBO8v8WKzffG+1X3BpRqZRdDkD/1NQULQfvG0Pe+oZoGtJSdjUAAAAAAAArTIgKAP6lNmtOtP31yqiOfabsUgAGhKZNN4yhH3x7NG+6QdmlAAAAAAAArBAhKgCIiMqjT0XbuVdFzJ5bdikAA8uQlmIiVcsb942m5qayqwEAAAAAAFguQlQANLRae3u0/+PmqNw2KsL/IwIst6ZtN49hH3hbNK27VtmlAAAAAAAA9JgQFQANqzppSrSd/Y+oPf9S2aUADA7Dh8XQ978tWnbfvuxKAAAAAAAAekSICoCG1H7nA9F+6Y0RrW1llwIw6LQc8toY8vaDoqm5uexSAAAAAAAAukWICoCGUps7P9rOvzqqDz1edikAg1rztpvH0OOOjqYRq5ddCgAAAAAAwDIJUQHQMKrjX4jWMy+JmD6r7FIAGsOaa8Swj74jmrd+VdmVAAAAAAAALJUQFQANoXLvI9F2wTUR7ZWySwFoLC3NMeSoQ2LIQXuXXQkAAAAAAMASCVEBMKjVKtVov+zGqNw6quxSABpa8547xtD3vSWaVhlWdikAAAAAAACLEaICYNCqzZ4bbWddFtUnx5ddCgB58rHRejH04++M5g3XK7sUAAAAAACAhQhRATAoVZ+bFG1nXBK1qTPKLgWAzlYZFkPf/9Zo2WOHsisBAAAAAADoIEQFwKBTuX9MtJ13dURrW9mlALAELQfvG0Pe/sZoamkuuxQAAAAAAAAhKgAGj1q1Fu1X3ByVG+8puxQAuqFpm81i2EffEU0jVi+7FAAAAAAAoMEJUQEwKNTmzY+2s/4R1bHPlF0KAD3QtO5aMfT4d0fzxuuXXQoAAAAAANDAhKgAGPCqL06OttMvitrk6WWXAsDyGL5KDP3o0dGyw9ZlVwIAAAAAADQoISoABrTKw09E218vj1jQVnYpAKyI5uYYcsxhMeSAPcuuBAAAAAAAaEBCVAAMWO033Rvt/7gxwv+TAQwaLW/cJ4YcdUg0NTeVXQoAAAAAANBAhKgAGHDy/7raL7sxKjePLLsUAPpA8y6vjqEfPjKaVhlWdikAAAAAAECDEKICYECpVSrR9rcro3rfmLJLAaAPNW2+cQw7/t3RNGL1sksBAAAAAAAagBAVAANGbf6CaDvz0qg+/mzZpQCwEjStt3YM/dR7onmDdcsuBQAAAAAAGOSEqAAYEGqz5kTrH/4etYmTyi4FgJVp9VVj2CePieatXlV2JQAAAAAAwCAmRAVAv1d9eVq0/f6CqE2ZXnYpAJRh6JAY+uGjomW37cquBAD6heqT46P1tHPLLgOgIQz/5YlllwAAAKwkzSvriQBgeVQnvBCtp/xFgAqgkbW1R9uZl0T7rfeVXQkAAAAAADBIDSm7AABYkspjzxT/0Txa28ouBYCy1WrRfvH1EQsWxJDDX1d2NQAAAAAAwCAjRAVAv1QZOTrazrsqolItuxQA+pH2K2+NWmt7DH3bG8ouBQAAAAAAGESEqADod9pvuDvar7w5olZ2JQD0R5Xr74xob4+hRx9SdikAAAAAAMAgIUQFQL/S9o+bonLjPWWXAUA/V7np3oi29hhyzOHR1NRUdjkAAAAAAMAA11x2AQBQ13bZjQJUAHRb5fb7o/38q6NWNboQAAAAAABYMUJUAPSfAFVOFQGAHqjc/XC0/fWKqFWrZZcCAAAAAAAMYEJUAJROgAqAFVG979FoO+uyqFUqZZcCAAAAAAAMUEJUAJRKgAqA3lB96PFoO+OSqLW3l10KAAAAAAAwAAlRAVAaASoAelP10aei7U8XRa21rexSAAAAAACAAUaICoBSCFAB0BeqY5+N1j/8PWoLWssuBQAAAAAAGECEqABY6QSoAOhLtacmROv/ni9IBQAAAAAAdJsQFQArlQAVACtD7dnno+30i6LW3l52KQAAAAAAwAAgRAXASiNABcDKVH1ifLSd9Y+oVatllwIAAAAAAPRzQlQArBQCVACUofrIE9F23tVRq9XKLgUAAAAAAOjHhKgA6HNtV90qQAVAaar3PhLtl/yz7DIAAAAAAIB+TIgKgD7Vfvv9UbnuzrLLAKDBVW4dFe3X3F52GQAAAAAAQD8lRAVAn6k8ODbaL7q+7DIAoJAhqvZbR5VdBgAAAAAA0A8JUQHQJ6pPTYi2v1weUauVXQoAdGi/5IaojBxddhkAAAAAAEA/I0QFQK+rvvBytJ5+UUR7pexSAGBhtYi2c6+KyiNPlF0JAAAAAADQjwhRAdCratNmRuvvL4iYt6DsUgCga9VqtJ31j6g8Ob7sSgAAAAAAgH5CiAqAXlObM++VANWM2WWXAgBL194ebX+6KKoTXiy7EgAAAAAAoB8QogKgV9Ra26L1TxdFbdKUsksBgO5Z0FqEf6v+vwsAAAAAABqeEBUAK6yW2yKd84+oPftc2aUAQM/MmRdtf7wwarPnll0JAAAAAABQIiEqAFZY+9+vi+ojT5ZdBgAsl9qU6dF65iVRa6+UXQoAAAAAAFASISoAVkjb1bdF5a4Hyy4DAFZI7emJ0f73a8suAwAAAAAAKIkQFQDLrf2uB6Ny7R1llwEAvaJyz8PRfuM9ZZcBAAAAAACUQIgKgOVSfXpCtF94XdllAECvar/85qiMtkUtAAAAAAA0GiEqAHqsNn1WtJ55aUSlWnYpANC7arVoO+fyqD7/ctmVAAAAAAAAK5EQFQA9Umtrj9bTL4qYPbfsUgCgbyxojdY/XRg1/18HAAAAAAANQ4gKgB5pu+CaqE2cVHYZANC3ps2M1jMujlp7pexKAAAAAACAlUCICoBua7/53qiOHF12GQCwUtSeea4IDwMAAAAAAIOfEBUA3VJ5fFy0/+OmsssAgJWqeu8j0X7D3WWXAQAAAAAA9LEhff0EAAx81SnTo+3syyKqtbJLgR45f9yY+PEjdyzx9zcd8aFYZ9jwLn/3nw/eEpdNfCL+uP/bYt/1NunW893+0sT47L1Lnlrz19cfHbusvUHxfbVWi5MfuzcumfB45F/W/utvGt/Y5XWx3iqrLnSfBZX2eMfNf48D1t8svrP7gd2qA+hd7VfeEk0brRstu25XdikAAAAAAEAfEaICYKlqC1qj7fSLI+bMK7sU6LGxM6cWXz+89S6xxpBhi/1+eEvX/xS68cVxRYCqpx6bOaX4+o7NtotNVl1jsd9vMHy1ju/PGzcmznz64Xjd+q+KLVZfswhTTZo/J/58wFEL3edvzz4a01sXxAnb79XjeoBeUqtF2zmXR9MXPxTNm25YdjUAAAAAAEAfEKICYKnazr0qai+8XHYZsFzGzpwSw5tb4ms77RfNTU3dus+01vnxg4dvW+7nS1/YYZ+FAlNd+fv4x2KbNdaO3772zdHU1BQbDV89fjN2ZIyZMTl2Wmv94jYz2xbEn556MD6y9a7LfDygj7W2RdufL41hX/1oNK2yeCgTAAAAAAAY2JrLLgCA/qv9+rui+uDYssuA5ZLb5T0xa1psO2Kdbgeo0g8fvj3aqtXYZ92Ne/ycj8+cWmwP2J3A08Q5M2O7EesUAaq045rrvXL93Fkdt/nDEw/EkKbm+Ni2u/W4FqD31V6eFm0XLHnLTgAAAAAAYOASogKgS5VHn4r2q24tuwxYbuPnzIj5lfbYYc11u32fyyc+GTe8+Gx8bef9YsPhq/fo+fK5xs+d2e3nW2vY8Jhbae/4eXZ7a/F1zaGrFF+fnzsrzh03Jj693Z6xehdbEQLlqN43JtrvfLDsMgCIiJtvvjmOOuqo2G233WK//faLW2+9NQ499NDYYYcdor39//6dBQAAAADdYTs/ABZTzUkb51weUauVXQost8dmTi2+NkVTnHjfP+O+qZOK7fFePWKdYnu8t75q24VuP2nenPiv0XfGGzbYLN61+fZxz+TnezyFqlKrxWotQ+P7D90ad05+LqYumB9brL5mvHuLHeP9W+7UMXUq7bHOhnHzpPHxwNRJseUaa8X548YU962HsE59fFRsvOrq8Z4tduyV1wPoPe0X3xDNW24SzZtuWHYpAA1r+vTp8aUvfSna2triXe96V6y55pqx/fbbx3HHHRezZs2K5mbrBgEAAADoGSEqABZSa69E29mXRcxfUHYpsEIy1JQunDA29l1vk3j7q7aNl+bPjZsmjY9vPnBTsdXfF3fcp7hNrVaL7zx0S/H9d3Y/cPmeb9Yrz/fPSeNil7XWjzdtsk1Ma50ft740oQhnPTTtpfjJa97YEaT6/A57x/1TJ8VH77y8+HlIU1P8x24HxtrDhsdjM6bElc89Fb/Y69AY8q//AJjbE/ZkW0KgD7W3R9tZl8WwrxwXTauYFAdQhieffDLmzZsXBx98cPzoRz/quP5jH/tYqXUBAAAAMHAJUQGwkPYrb4naxElllwErrBa12HTVNeKE7feKozfbruP6iXNnxcfuuDz+9NSDceCGm8Ve625cTIG6a/Lz8aM9DurxNn51rZVKbLbaiHjHZtvFp7bbs+P6qQvmxafuviqufP6peP0Gm8WRm726uH7L1deKCw86Jm6aNC5mt7fFfutvWkzJSr967J7Yfe0N4/BNto4X582O7z50a9w75YViUtUxW+wQX9xhn45wFVCO2ktTo+2Ca2PYh48suxSAhtTa+spWyOus88q/nwAAAABgRfmvbwB0qIx9Nio331t2GdArvrTjvnHVoccuFKBKGXQ6YftXQk6XP/dkjJ8zM3712L1x8EZbxFGL3LYnPrj1LnHFIe9bKECV1l1l1fjaTvt1PF9naw1bJd6x+fbxoa136QhQ3fHyxCLQ9eWd9i1+/vYDN8dTs6bHz/c8tAiE/eWZR+LPTz+83HUCvad636PRfteDZZcBUIrcRu+Pf/xjvOMd74jXvOY1ceCBB8anP/3peOihhxa63f333x+f/exnY7/99otdd901Dj/88PjZz34W06ZNW+h2p5xySuywww7x4IMPxumnnx5vfetbY7fddise9zvf+U5MnfrK1M906KGHxsc//vHi+4svvri43ze/+c2O3+XP7e3tHbevVqvx5z//OY488sjYY489iulVv/71r+POO+8sbpvPvSz5uG95y1viueeeK45nr732Ko7phBNOiEcffbTjdpMmTYqdd965OM6uXHDBBcVzZj0AAAAA9C9CVAAUarPnRttfr8jxPTDo7br2BsXXDFD954M3x7DmlvjPXV/f5883ce7Mpd4utxX89WP3xiEbbVFMyHpq1rQYOfXF+Pi2u8Xhm2xVhK3esOEWcc4zj/RZrUDPtF98Q1Sff7nsMgBW+hSo4447Lk466aRYsGBBvPvd7443vvGNcffdd8cHP/jBuOuuu4rbXXjhhcXPt9xyS+y///7xoQ99qJgclSGpvM8LL7yw2GP/8Ic/jJNPPrkIUH3kIx+JESNGxHnnnRfHH398EYZK+dwZ3ko77rhjfP7zn19iaCn9+7//e/zkJz8pan3ve99b1PKnP/2pCGf1xOzZs4tjeOKJJ+LYY48tQlQ333xzcYz33HNPcZuNNtqoCH5NmDAhRo4cudhjZOhr6NChcdRRR/XouQEAAADoe7bzA6DQdu6VEbPmlF0G9IpqrRaPzZwSc9vbYp/1Nlns9/P+NZlg1ZYhxTZ56bAb/tblYx1/15XF1z/u/7bYt4vHqnt85tSYsmBe7L/+ptHU1LTw81Xaiq+rtCz9n145qSqDUz/b85Di52dmz+jY+q9uqzXWihsnjYtZba0xYuiwpT4esBK0tUfbWZfGsK8cF02r+JsEGsMZZ5wR9913XzHZ6ac//WkMG/bK//69//3vL8JFed1vf/vb+N73vleEoM4888xiOlNHaPzXv47f/e538e1vf7sIVHU2fvz4uOyyy2LLLbcsfv7Sl74URx99dIwePbqYarX33nvHxz72sbjjjjvi0ksvjZ122im+8IUvLLHWG264IS6//PJiclROzlp99Ve2bv7ABz5QXHri5ZdfLqZu5RSp4cOHF9fdeOON8ZnPfCb+8z//M6666qpobm4uAmIZrsrj2GeffRY6tlGjRsWb3vSmWHfddXv03AAAAAD0PZOoAIj2W0ZF9dGnyy4DetUn77yyCEBlsGlRo6a+2DEh6jPb7dnlZbt/ba+X2wHmz5uuusZSn+8b998Yn7nn6nh0xuQlP99ar0yk6kprpRKnPX5fvHPzHWLrNdYurqvUXpm20F6rLXS71LxwTgsoUe2lqdF24XVllwGw0lxyySUxZMiQIgRVD1ClnB514oknxjHHHBMXXXRRMbHqk5/8ZEeAKmXYPENPGZK6/fbbi4lNnWUwqx6gSqusskq84Q1vKL6fOHFij2vNaVj1aVT1AFXKbf3q06x64hvf+EZHgCodcsghcdBBB8Wzzz5bhLzqW//lxK0MVeVr0HkKVcrXBwAAAID+R4gKoMFVn38p2i+/qewyoFc1NzXFEZtsVexOmdvj5WSqurEzp8TpTz0Yq7UMjXdtvn2csP1eXV62G7FuR4gqf37VaiOW+pxv3nSb4uvJj42MtuorQaf0/NxZ8ZvHRkZLU1O8f6udlnj/vz37aExrnR8nbLdnx3Xb/CtMdf+/QljpgWmTYsPhq8XqQ0y8gf6kOnJ0tN/1UNllAPS53BLv6aefLoJOXU1TyilRH/3oR+Pxxx8vfs4t7xaVAaw993zl3zxjxoxZ6HfbbPPKv6k6W3PNNYuvnQNJ3fXQQw9FS0tL7L777ov9rvOUqO7I8FROtFpUBrLSo48+WnzN7fpyetbMmTPjn//8Z8cErpyctcEGG3SEwgAAAADoX2znB9DAaq1t0Xb2PyLa/y/wAYPFl3bcN+6fOikum/hEsdVebsX30vw5ceOk8VGtVeNnex4aGw7/v2kEPXHOM48U2+llwKoervroNrvFbS9NiLunPB/vvuXieMOGm8WM1gVx06TxMau9NU7cef/Yaa31u3y8mW0L4o9PPRDHbbNbrD98tY7rt1tz3XjNOhvF2f96vknz58ToGZPjxJ0X/4+RQPnaL74+mrfcJJo3WfLUOYCBbvr06cXX3KZvaWbNmrXU22200UbF17lz5y50fU6eWtSiWyX3tN6cCpXBrSXV0F0bb7xxl9dvuOGGxdcMTdXlln657V9O7XrLW94Sd999dzz33HPFZK6uagEAAACgfCZRATSw9kv/GbVJU8ouA/rEequsGn858Oj4yNa7FgGknPR09+Tn48ANNouzX390HL7JVsv92H95ZnT87on74/l5szuuW7VlSPxp/7cVU6vyH1jnjRtTBKhyy8Df7/fW+NDWuyzx8f705IMxpKk5PrbNbov97pd7HxYHb7RlXPHck8VWgbm14Ae2WvJjASVqa4+2cy6P2r+23QQYjFZbbbWFQlKLmjdvXjF1aY01XtkKedKkSV3ebsaMGcXXDDj1pdzCb86cOUVNi8rreyKPrSv18FTnyVw77LBD7LrrrnHbbbcVx3r55Zd3hKsAAAAA6J8sfQNoUJWHHo/KnQ+WXQb0qTWHrhJf33m/4tJTP93z4OLSlasOPbbL61dpGVKEnPLSE1/Z6bXFZUlhsAxSAQND7YWXo/3aO2LoW23VBAxOOVnqVa96VYwbN66Y8rT22q9sP1z3jW98I2688cb49Kc/Hddee23cc889ccABByz2OHl92m677fq03nqQ6bHHHouddlp4a+UHHnigR4+VgbAXX3xxsYlUo0aNKr6+5jWvWej6DEx9//vfjxtuuKF4TXJLwW233Xa5jwUAAACAvmUSFUADqk2fFW3nX112GQAwKFVuuDuqE18suwyAPvPOd74z2tvb42c/+1nxtW706NFFWGizzTaLd73rXTF06NBiS7tHH310ofufdtpp8fTTT8f+++8fm266aZ/W+t73vrf4+otf/GKhSVIZqjr//PN7/Hg//elPo62trePnDEjddNNNRVhr0ZDWkUceWWxPeOqpp8bkyZPjmGOOWaFjAQAAAKBvmUQF0GBq1Vq0/eXyiLnzyy4FAAanajXa/nZVDPvKcdE0pKXsagB6XU6ZyulOF110URGc2m+//Yrt/a688spoamqKn//858W0qu9+97vxne98J973vvfFYYcdVkxwyulPecnf/+QnP+nzWt/ylrfEm970pmIq1jve8Y446KCDigla1113XcfWhM3N/7fGcOLEiXHxxRcXE7c+9rGPLfZ4t99+exGGet3rXhfPPfdc/POf/4y11lqry2NZc80144gjjii28ssw1dvf/vY+PloAAAAAVoRJVAANpnLTPVF9akLZZQDA4N/W77o7yi4DoE9kIOiss86KL37xi8VUpr/97W9x/fXXF9v25fe77bZbxxSos88+Ow488MC48847469//WsRYMoQVgaVMki1Mvzyl7+Mr3zlK0XA69xzzy223/vUpz5V1JHqYaqUwaicHJXH15VzzjknNtxww2KKVYbBMph1wQUXxA477NDl7Y866qjia4apMlQFAAAAQP/VVKvVamUXAcDKUX1parT+4syITltuAAB9pLk5hn3pw9G8+cZlVwLQsF588cUiJNVVgOlXv/pV/O53v4tf//rX8da3vnWpj3PooYcWAaucvDVkSPcHu+fWhSeffHKceeaZxfSq3lJ9cny0nnZurz0eAEs2/Jcnll0CAACwkphEBdBI2/idd5UAFQCs1G39roxae6XsSgAa1umnnx777rtvXHPNNQtdP3ny5GIa1tChQ4vf94VJkyYVk7m23nrr2H///fvkOQAAAADoPd1fOgfAgFa5/b6oPfNc2WUAQEOpvTg52q+9PYa+7aCySwFoSO95z3vivPPOi69//etx1VVXxRZbbBFTpkwpth/MrQW/9a1vxfrrr9+rz/mXv/wlLrroonj22Wdj9uzZ8Zvf/KbYShAAAACA/k2ICqABVKfOiPYrbim7DABoSJV/3h0tu20XzZtvUnYpAA1n++23jwsvvDD++Mc/xj333BM33HBDrLHGGrHrrrvGcccdF2984xt7/Tk32WSTmDBhQqy66qrxla98Jd785jf3+nMAAAAA0PuaarVarQ8eF4B+pPW350X1iXFllwEADatp4/Vj2FePi6Yh1rEAsOKqT46P1tPOLbsMgIYw/Jcnll0CAACwkjSvrCcCoBztdz0oQAUA/WFbv2vuKLsMAAAAAABgCYSoAAax2szZ0f6Pm8ouAwDIbf1uvDuq418ouwwAAAAAAKALQlQAg1jbJf+MmLeg7DIAgFStRdvfroxae3vZlQAAAAAAAIsQogIYpCpjno7qA4+VXQYA0Elt0pSo3HRv2WUAAAAAAACLEKICGIRqC1qj/cLryi4DAOhC+/V3RW3azLLLAAAAAAAAOhGiAhiE2q+5PWpTZ5RdBgDQlda2aLvsxrKrAAAAAAAAOhGiAhhkqhMnReWWkWWXAQAsRfXBsVF5YlzZZQAAAAAAAP8iRAUwiNRqtWj7+7UR1VrZpQAAy9B+0fVRq1TLLgMAAAAAABCiAhhcqqMejdr4F8ouAwDohtqkKVG5dVTZZQAAAAAAAEJUAINHrbUt2q68pewyAIAeaL/29qjNnF12GQAAAAAA0PCEqAAGifZ/3h0xfVbZZQAAPTG/Ndouv7nsKgAAAAAAoOEJUQEMArXps6Jy071llwEALIfqqNFRfWZi2WUAAAAAAEBDE6ICGATarrg5orWt7DIAgOVRi2i76PqoVWtlVwIAAAAAAA1LiApggKuOeyGq9z1adhkAwAqoPfdSVO58oOwyAAAAAACgYQlRAQxwbZfeUEywAAAGtvYrb43a7LlllwEAAAAAAA1JiApgAKvcPyZqzz5fdhkAQG+YNz/ar7yl7CoAAAAAAKAhCVEBDFC1tvZou/zmsssAAHpR5e6Ho/rCy2WXAQAAAAAADUeICmCAqtx0T8S0mWWXAQD0plot2q+6tewqAAAAAACg4QhRAQxAtZmzo/2Gu8suAwDoA9VHnozquBfKLgMAAAAAABqKEBXAANR+xS0RrW1llwEA9JH2K28puwQAAAAAAGgoQlQAA0x14otRGflI2WUAAH2o+sS4qDwxruwyAAAAAACgYQhRAQww7VfdFlEruwoAoK+1X3lr2SUAAAAAAEDDEKICGECq41+I6pinyy4DAFgJauOej8ojT5RdBgAAAAAANAQhKoABpP2a28suAQBYyRMoazUjKAEAAAAAoK8JUQEMEKZQAUDjqb3wclTvG1N2GQAAAAAAMOgJUQEMEKZQAUBjar/mtqhVqmWXAQAAAAAAg5oQFcAAYAoVADSu2uTpUbnnobLLAAAAAACAQU2ICmAAMIUKABpb+3V3Rq2tvewyAAAAAABg0BKiAujnquNMoQKAhjd9VlRuv7/sKgAAAAAAYNASogLo50yhAgBS+w13RW1Ba9llAAAAAADAoCREBdDfp1A9ZgoVABARc+ZF5Y4Hyq4CAAAAAAAGJSEqgH7MFCoAoLP2m0dGrb1SdhkAAAAAADDoNNVqtVrZRQDQ9RSq1pPPLrsMAKCfGfK+t8SQ/XcvuwwAAAAAABhUTKIC6KdMoQIAulK56Z6oVa2FAQAAAACA3iREBdAPVSe8ENXHni67DACgH6q9NDWqDz9edhkAAAAAADCoCFEB9EPtN48suwQAoB9r/+fdZZcAAAAAAACDihAVQD9TmzErqg+OLbsMAKAfq014MSpPjCu7DAAAAAAAGDSEqAD6mfbbH4ioVMsuAwDo5yo33lt2CQAAAAAAMGgIUQH0I7W29qjc+UDZZQAAA0B17NNRnTSl7DIAAAAAAGBQEKIC6Ecqox6NmDOv7DIAgIGgFlG52TQqAAAAAADoDUJUAP1I5dZRZZcAAAwglZGPRm323LLLAAAAAACAAU+ICqCfqDwxLmovvFx2GQDAQNLeHpXb7y+7CgAAAAAAGPCEqAD6icotplABAD3Xfvv9UWtvL7sMAAAAAAAY0ISoAPqB6uRpUX30qbLLAAAGotlzi239AAAAAACA5SdEBdAPVG69L6JWK7sMAGCAqtxhSz8AAAAAAFgRQlQAJavNXxCVex4uuwwAYACrTZwU1YmTyi4DAAAAAAAGLCEqgJIVAaoFrWWXAQAMcJW7Hiy7BAAAAAAAGLCEqABKVKvWXtnKDwBgBVXuGxO11rayywAAAAAAgAFJiAqgRNUxT0VtyvSyywAABoP5C6L64NiyqwAAAAAAgAFJiAqgRJW7Hy67BABgEGm3pR8AAAAAACwXISqAktRmzy0mUQEA9JbaM89FddKUsssAAAAAAIABR4gKoCSV+8ZEVKpllwEADDIV06gAAAAAAKDHhKgASlK511Z+AEDvq4wcHbX2StllAAAAAADAgCJEBVCC6vMvR+25l8ouAwAYjObMi+rDj5ddBQAAAAAADChCVAAlMIUKAOhLlbsfKrsEAAAAAAAYUIaUXQBAo6lVqlG5b0zZZQAAg1j1iXFRnTI9mtdbu+xSAOgD1SfHR+tp55ZdBgAA9Lrhvzyx7BIAaGAmUQGsZNXHno6YNafsMgCAwaxmGhUAAAAAAPSEEBXASlYZObrsEgCABlC555GoVatllwEAAAAAAAOCEBXASlSbMy+qo58suwwAoBHMnB3Vx54puwoAAAAAABgQhKgAVqLKA49FtFfKLgMAaBDVB8eWXQIAAAAAAAwIQlQAK1Hl3kfKLgEAaCCVR56ImgA3AAAAAAAskxAVwEpSnTQlauNfKLsMAKCRzFsQ1cefLbsKAAAAAADo94SoAFYSU6gAgDLY0g8AAAAAAJZNiApgJancP6bsEgCABlR55MmoVWzpBwAAAAAASyNEBbASVCe+GDFtZtllAACNaN78qD4+ruwqAAAAAACgXxOiAlgJKg8/UXYJAEADs6UfAAAAAAAsnRAVwEpQfeTJsksAABo80G1LPwAAAAAAWDIhKoA+Vp0yPWovvFx2GQBAI7OlHwAAAAAALJUQFUAfq9rKDwDoB2zpBwAAAAAASyZEBdDHKo8IUQEA5bOlHwAAAAAALJkQFUAfqs2eG7Vnniu7DAAAW/oBAAAAAMBSCFEB9KHKI09G1GpllwEAULClHwAAAAAAdE2ICqAPVW3lBwD0s22GbekHAAAAAACLE6IC6CO1Ba22zAEA+pe58201DAAAAAAAXRCiAugj1ceeiWhvL7sMAICFVB5/tuwSAAAAAACg3xGiAujD7XIAAPqb6lghKgAAAAAAWJQQFUAfqFWqUX306bLLAABYTG3ipKjNnlt2GQAAAAAA0K8IUQH0gepTEyLmzS+7DACAxdVqUX1iXNlVAAAAAABAvyJEBdAHqmOfKbsEAIAlsqUfAAAAAAAsTIgKoA9UnxxfdgkAAEtUEfgGAAAAAICFCFEB9LLavAVRe25S2WUAACzZjNlRfXFy2VUAAAAAAEC/IUQF0MuqT0+IqNbKLgMAYKlsPwwAAAAAAP9HiAqgl9nKDwAYCKpjny27BAAAAAAA6DeEqAB6WfUJISoAoP+rPj0xau3tZZcBAAAAAAD9ghAVQC+qzZkXtRdeKrsMAIBla22L6tPPlV0FAAAAAAD0C0JUAL29lV+t7CoAALqnOvaZsksAAAAAAIB+QYgKoLdDVAAAA0R17LNllwAAAAAAAP2CEBVALxKiAgAGktyGuDZrTtllAAAAAABA6YSoAHpJ/gfI2qQpZZcBANB9tYjqM8+VXQUAAAAAAJROiAqgl5hCBQAMRNVxz5ddAgAAAAAAlE6ICqCXVJ8YV3YJAAA9JkQFAAAAAABCVAC9xiQqAGAgqk2cFLVqtewyAAAAAACgVEJUAL2gNn1W1CZPL7sMAICea22L2vMvl10FAAAAAACUSogKoBfYBgcAGMiq4/1bBvqLCRMmxMUXX7xSnmvMmDFx3XXXrZTnAgAAAID+TogKoBdUJ04quwQAgOVWHfdC2SUAEfHYY4/F2972trj99tv7/LluvvnmOOaYY+KRRx7p8+cCAAAAgIFAiAqgF9Qmvlh2CQAAy61mqib0CzNmzIjW1taV8lxTpkyJarW6Up4LAAAAAAYCISqAXmASFQAwkNVenhq1ufPLLgMAAAAAAEojRAWwgmpTZ0TMmVd2GQAAy68WUR1vSz8o0ze/+c047rjjiu//8Y9/xA477BAXXXRR8fOkSZPie9/7XhxyyCGx6667xoEHHhjf+ta3YuLEiYs9zpgxY+Lzn/98x20POuig+MY3vhHPPvtsx20+8pGPFPdPv/vd74rnuvvuu3tcc9aX9/3Vr3612O/yus7HkNrb2+P3v/99vOtd74o999wz9tprr3jve98bf/3rX6NWqy32GLmt4Sc+8YnYd999Y/fdd4+jjjoq/vSnP0VbW9tir10+16hRo+I973lPcdyHHnpoTJgwofj9eeedF8cee2zxOK95zWvi6KOPjv/93//t1tSvfF3ysbPuq666qqgha8nH/+///u+YM2dOx23zNnnbU089tcvH+sAHPlDUNnXq1GU+LwAAAAArnxAVwAoyhQoAGAxs6QflOvzww4twUdp+++2LINROO+0UTz31VBxzzDFx7rnnFtd/9KMfjb333jsuvfTSePe7312EpuqefvrpIqhz1113xete97r4+Mc/XoR2LrvssiJE9NJLLxW3y+c57LDDiu/32Wef4rle9apX9fkxfuc73ymCR8OHD4/3v//9xXFNnjw5vv/97y8WxDr99NOLANWjjz4aRxxxRHz4wx+O5ubm+PnPfx6f+cxnikDWor74xS8Wj50hsTzuzTffPP7nf/6neN65c+cWz5fPW6lU4pe//GVHkKw7rr322vjyl78cm2yySXzwgx+MNddcswhN5XMtWLCguM073/nOaGlpKV7vRY0bNy7uu+++OPjgg2PdddddrtcPAAAAgL41pI8fH2DQE6ICAAaDqhAVlB6iGjFiRFx88cXFNKMvfOELxfUZ/MnJRTkxKgM4dRmUypDUiSeeWIR2mpqa4oILLoh58+bFmWeeWYSo6k477bQ4+eSTi6lQGUDKx0w33HBDEaKqP1dfmj17dlxyySXF8/3lL3/puD4DXG9961vj7LPPLuoYOnRoPPbYY3HSSSfFq1/96uL6eugop1V9+9vfjgsvvLA4xuOPP36h58jQ1FlnnVWErery/nl9Hns+dvrqV79aBMkuv/zy4vXbaKONlln/ww8/XISuPvaxjxU/Z4jr3//93+PKK68sAl8nnHBCbLjhhsXkrxtvvDHuv//+YtpWXb6vqf7aAwAAAND/mEQFsIJqE18suwQAgBVmOz/ofx566KEYPXp0MTWqc4Aq7b///sX1jz/+eDzwwAPFdfUt8XJbu87b42Xw56abbopPfepTUZasp1qtxgsvvLDQNoRrr712EYq69dZbO0JOuf1e3jbDTp2nNmVQLLcmzJBUBsYW9Za3vGWhAFX9eadNm1ZM9KobNmxYEXy69957uxWgSttss03HdotpyJAhxTaC+bUekEo5HSxlYKxzDRl0W3/99YuQFQAAAAD9k0lUACvIJCoAYFCYOz+qL02N5g1tMwX9RU4/SjmJ6pRTTlns9zNmzCi+5pZ3OfWovu1f3vZvf/tbHHDAAfH617++CO7kNnRlyilbRx99dLEN4Zve9KbYfffdi9oOPPDA2GOPPRYKP9WP+4477iiObVGrr756PPvsszFnzpzi+7qcOLWo3HovJ3HlVnu5PWK+JvmcORGrHtrqjte+9rWLBbQygLXxxhsXW/XlpK011lijCLutt956cfXVVxdTszKwlVPDnnvuuWJ7wgxdAQAAANA/6dwArIDatJkRs+eWXQYAQK+o5ZZ+QlTQb8ycObNjslRelmT69OnF1+23376Y0PSHP/yhmDyV04/y0tLSEoceemh873vfK6YhleUnP/lJEZ7KrfVyelZueXfqqacWYaScOpVBp87Hfc455yz18fJ2nUNUq6666mK3+dKXvhRbbbVVnH/++cXzZSjrj3/8YzEB69/+7d8W2xJwSZYUQttggw2KyVqzZs0qQlQZzMqw2BlnnFG8BxkYq0+lqk+pAgAAAKB/EqICWAGmUAEAg0n1hZejpewigA71gNDXvva1bm/Ft91228XPf/7zqFQqxVaAOc0ppz9dd911xeSmDPf0ltxeL3XeOrBu3rx5i12XU5g+/OEPF5ecrpUTmjJodOWVVxbb9G222WbFhKj6cd9+++29Evp6xzveUVwy6JRb+N18881FuOykk06KDTfcsAg9LUtXx5PyMdM666zTcV2GpfJ1vvzyy4vJVNdee20RHnv1q1+9wscCAAAAQN9ZeA45AD1Snfhi2SUAAPSa2otTyi4BGlo9lFS38847F18feuihLm+fU6d+85vfxNNPP138nFv5/fCHPyxCTTl9KoM7n/nMZ+LCCy+M1VZbrQgQLem5lkd9O7wMZy0qt7jr7Kmnnor//u//jhtvvLH4ed111423ve1tReAra0wjR44svua2e+nBBx9c7HEXLFhQTLTKkFJX4a3OJk2aFCeffHIx+aq+pWBO5Pr+978f3/3ud4vrOr8mS9PVe5BBsNxWcMcdd4zhw4cvFGTL1/7WW28tjnfu3Lnxrne9q1vPAwAAAEB5hKgAVkBtgklUAMDgUXtJiArKlJOaUltbW/F1r732im222aaYInX11VcvdNuHH364CEzVt6arB4JyC7x//OMfC9128uTJRfgoJz0t6bmWx7bbbtsxMaq1tbXj+tyq77bbblvots3NzfH73/8+fvWrX8X8+fMX+l1uh5c233zz4ut73vOe4msGrF566aWFbvvrX/86/vznPxdb8y0rCJYTrf70pz8Vz5mBp84mTJiw0HMuy5133lm8D3X5uv34xz+O9vb2eN/73rfY7XMaVYanfvazn8Uqq6wSRx55ZLeeBwAAAIDy2M4PYAWYRAUADCa1aTOi1toWTcNemS4DrFybbLJJ8fWWW24pwjeHHXZYseXcxz/+8fjSl74Ur3/962OHHXYogkW5RVwGeX76058WU53S5z73ueK+uTXeVVddVYScpk+fHtdcc00xtenrX//6Ys+V29plGCm3u9t+++17VG9OjNpzzz2LQFOGhg466KB48cUXi9oyAHbPPfd03HbrrbeOD3zgA/G3v/0t3vrWt8YhhxxSTG/KaVM5gSof501velNx27zvZz/72TjttNPi7W9/ezE9ar311otRo0YVAa1XvepV8a1vfWuZ9a2xxhrxhS98IX7xi18Uj3PEEUfEmmuuGWPHji2mRG255ZZx7LHHdtz++uuvjzFjxsRrX/va2G+//bp8rHxP8vkzVPX444/HG9/4xuK4FpWhqXxvnnvuueK583kBAAAA6N9MogJYTrXpsyJmzy27DACA3lMzjQrKlMGmr33ta7HqqqsWE6XuuOOO2HXXXePiiy8uph3ltn1nn312EU7KQFXepvM2cTm1Krf0O/roo4uAT05syulJe++9d3Hbww8/vOO2++yzT3z0ox8tJlTl77raOq87MuiUQaSc9HTWWWcVNeaEpnzsRf3Hf/xHsZVeBqKuuOKK4nmnTZtWhJNOP/30ju0BU4bGfvvb3xbHf8MNNxS3nTFjRnziE5+I888/vyMEtiz/9m//VkyiytcmQ1JnnnlmPPPMM0V95513Xqy11lodt83fn3rqqQuFv+oOPvjgYvJXbkuYr3GlUokTTzyxOP6csrWoDF1lwCodc8wx3X49AQAAAChPUy2XIgLQY5UxT0fbH/5edhkAAL1q6AffHi377FJ2GQD9wt133x3HHXdcHHXUUcVEq57IyVq53V+Gs7oKWq2I6pPjo/W0c3v1MQEAoD8Y/ssTyy4BgAZmEhXAcqq9PLXsEgAAel3VJCqAFZbTw8aNG1dM6ertABUAAAAAfWNIHz0uwKBXe0mICgAYfGovClFBI8ppSWPGjOn27V/72tfGfvvt16c1DUSf/OQnY/LkyTF27NjYaKON4oMf/GDZJQEAAADQTUJUAMtJiAoAGIxqJlFBw4aocnpSd33+858XourC+uuvHyNHjozddtstfvSjH8WIESPKLgkAAACAbmqq1Wq17t4YgP8z/3unRcycXXYZAAC9q7k5Vvmvr0TTkJayKwFgCapPjo/W084tuwwAAOh1w395YtklANDAmssuAGAgqs1fIEAFAAxO1WrUJk8ruwoAAAAAAFiphKgAlkPtZf9hEQAYvGovTi67BAAAAAAAWKmEqACWQ+2lqWWXAADQZ2qTppRdAgAAAAAArFRCVADLoTZletklAAD0maoQFQAAAAAADUaICmA5VIWoAIBBzCQqAAAAAAAajRAVwHKoTRaiAgAGL1M3AQAAAABoNEJUAMvBf1gEAAa11raozZ1fdhUAAAAAALDSCFEB9FCttS1i1uyyywAA6FO1GbPKLgEAAAAAAFYaISqAHqpNnRFRK7sKAIC+VZsuRAUAAAAAQOMQogLoIVv5AQCNoDbD5E0AAAAAABqHEBVAD9WmzSy7BACAvmc7PwAAAAAAGogQFUAP1WbNKbsEAIA+VxOiAgAAAACggQhRAfSUEBUA0ABq023nBwAAAABA4xCiAuih2qy5ZZcAANDnTKICAAAAAKCRCFEB9FBtthAVADD4CVEBAAAAANBIhKgAesp2fgBAI5g7P2qtbWVXAQAAAAAAK4UQFUAPmUQFADSK2ozZZZcAAAAAAAArhRAVQA/UFrRGmMgAADQIW/oBAAAAANAohKgAeqBmKz8AoJEIUQEAAAAA0CCEqAB6Ypat/ACAxlGbbjs/AAAAAAAagxAVQA+YRAUANJLaTCEqAAAAAAAagxAVQA/UZptEBQA0kPkLyq4AAAAAAABWCiEqgJ4wiQoAaCC1+a1llwAAAAAAACuFEBVAD5hEBQA0lAUmUQEAAAAA0BiEqAB6oGYSFQDQQEyiAgAAAACgUQhRAfSASVQAQENZIEQFAAAAAEBjEKIC6An/IREAaCC1+bbzAwAAAACgMQhRAfREW3vZFQAArDy28wMAAAAAoEEIUQH0QE2ICgBoJK2tUavVyq4CAAAAAAD6nBAVQE8IUQEAjSTzU7YzBgAAAACgAQhRAfSEEBUA0Ghs6QcAAAAAQAMQogLoCSEqAKDB1EyiAgAAAACgAQwpuwCAgaJWqUZUq2WXAQCwcplEBdDvNL96ixj+yxPLLgMAAABgUDGJCqC72trKrgAAYKWrLVhQdgkAAAAAANDnhKgAustWfgBAIzKJCgAAAACABiBEBdBdQlQAQCNaIEQFAAAAAMDgJ0QF0E01ISoAoAHV2v0bCAAAAACAwU+ICqC72trKrgAAYOWr1cquAAAAAAAA+pwQFUB3mUQFADQiGSoAAAAAABqAEBVAN9nODwBoSNVq2RUAAAAAAECfE6IC6C4hKgCgEdnODwAAAACABiBEBdBdVf8BEQBoQEJUAAAAAAA0ACEqgO5qbiq7AgCAlU+QHAAAAACABjCk7AIABoyWlrIrABpQrSli9lYRozdqj3nNlbLLARrQ9uvOiW3LLgIAAAAAAPqYEBVAd7UY3gesHO2rNcX0bdti2hovxNQ5o6NtwYx4fIO94rpZo8ouDWhAH1t9KyEqAAAAAAAGPSEqgG5qahaiAvrO3E2bYtqms2JqyzMxc8bYqLVWIqb+3++3mfh0DFtnWLRWW8ssE2hAzU3+DQQAAAAAwOAnRAXQXSZRAb2oOrQpZm5bianrTI6p8x+N+XMnRcxa8u2HzJ0e+27+mrh95v0rs0yAaG6ypTEAAAAAAIOfEBVAd5lEBaygBes2xfSt5sfUYeNj2qxHo9o+f6FpU8uy46SX4s5Vm6Ma1b4sE2AhJlEBAAAAANAIhKgAusskKqCHas21mLVVU0zfYFpMqTwec2Y9GzEnXrksh+HTn4/dN9olHpj5SG+XCrBEQlQAAAAAADQCISqA7mqxlQ2wbG1rNMWMbVpj2uovxJTZo6O9dWbE9N57/N2nL4gH5BmAlch2fgAAAAAANAIhKoDuam4quwKgn5r7qqaYtunMmNr8TMyc8XjUFlQiFvTNc42Y9GS8ertXx5Ozn+ybJwBYhElUAAAAAAA0AiEqgO4yiQr4l8qwiJnbVmPa2i/F1PmPxfy5kyJmrrzn33v+8BChAlYWk6gAAAAAAGgEQlQA3dTUbAoDNLL56zXF9C3nxdRh42P6zEejWlkQMbWcWtab+GhsvPWm8eK858spAGgoJlEBAAAAANAIhKgAuqvFf0CERlJrjpi1dcS0DabG1PbHY86scRFz4pVLyZpqtdg/NopLQogK6HstJlEBAAAAANAAhKgAusskKhj02kY0xfStW2Pa6s/H1Nmjo711VsS06Jc2GfdorLXZ2jGjdXrZpQCD3Cotq5ZdAgAAAAAA9DkhKoDuMokKBqU5mzXFtE1nxtSmp2PmjMcjFlQjFkS/11xpjdcN2zWubh1VdinAIDdi2FpllwDAIqpPjo/W084tuwwAAOh1w395YtklANDAhKgAuqvFVjYwGFRWaYqZ21Ri6tovxdR5j8aCeS9HzIgBaasJT8Tw9VeN+ZV5ZZcCDGJrDF2z7BIAAAAAAKDPCVEBdFPTsKERQ1oi2itllwL00IL1m2LalnNj6tDxMX3mo1GttEZMjQGvZf6s2Hf1PePWmfeVXQowiI0YtnbZJQAAAAAAQJ8TogLoiVWHR8yaU3YVwDLUmiNmbVOLaetPjSntj8fcWeMjZsegtMMLz8fta7REtSbgCfS+pmiKNYaZRAUAAAAAwOAnRAXQA02rrxo1ISrol9rWbI7pWy+Iaas9F1NnjY72ttkR02LQW2XmpNhzk91i1MyHyi4FGIRWHbJ6tDTZ0hgAAAAAgMFPiAqgJ1YbXnYFwL/Ummoxd/PmmLbxjJgaT8fMmU9EzK9GzI+Gs9vU2THKv+qAPjBi2FpllwAAAAAAACuF/9wG0ANNqw2PWtlFQAOrDI+YsU01pq01KabOezQWzJscMaPsqsq3+svPxA7bbx9jZz1edinAILPGUFv5AQAAAADQGISoAHqgabVVyy4BGs78DZpi2hZzY+rQcTF9xqNRq7RFTC27qv5nr7lDYmzZRQCDzhomUQEAAAAA0CCEqAB6wnZ+0OeqLRGztqnFtPWmxtS2x2Lu7IkRs8uuqv9bZ+KYeNW2m8dzcyeUXQowiNjODwAAAACARiFEBdADJlFB32hdqzlmbDU/pq72XEydNToqbXMippVd1cDSFBH7VdeLi0KICug9tvMDAAAAAKBRCFEB9IRJVNArak21mLNFc0zbaHpMjadi1ownI+bXIuaXXdnAttG40bHOFuvFtAVTyi4FGCRGDFu77BIAAAAAAGClEKIC6IGm1U2iguXVPrwpZm7bHlPXnBRT546O1vlTI2aUXdXg0lxtj9cN2SquFKICeskIk6gAAAAAAGgQQlQAPWESFfTIvI2aYvrmc2LqkHExfcaYqLW3RUwtu6rBbYsJY2PVDVaLeZW5ZZcCDAJrDFur7BIAAAAAAGClEKIC6IEmISpYqmpLxKxtazFt3Skxpe2xmDf7uYhZZVfVWFoWzIn9Vtszbpp1X9mlAIPACCEqAAAAAAAahBAVQA80rWY7P1hU69pNMX2r+TF11edi2qzRUWmbGzGt7Koa23YvTIhbR7REpVYpuxRggFvDdn4AAAAAADQIISqAnjCJCqLWVIs5WzTHtI2mx9TakzFr5lMR82oR88qujLphsybH3pvuHvfMfLDsUoABziQqAAAAAAAahRAVQA80rTIsYkhLRLvpLjSW9lUjZmxbiakjXoipcx+NtvnTImaUXRVLs8vk6XHPsLKrAAa6EUOFqAAAAAAAaAxCVAA91LTmGlGbKj3C4Ddv46aYttnsmNrybMyY+VjU2tojppZdFd212pTxscv2O8XoWWPKLgUYoJqiKVYfZjs/AAAAgP/P3n2A2VWX+QN/752e3nsPSSAJhARIQu8iVZQigiKooKKsndVd//a1sWtZyiq6LnYsC9hAQRFwlaZ0CL0koSQhmfQy9f/8TpyYTsrMnJm5n8/z3OfO3Hvuue+ZXA5n5nzP+wYAJUGICmAnFfr1FqKiS2oqj1g+vjlq+74SS+oeizWrXoxYkXdV7I59V0Y8kncRQKdVU949ygpleZcBAAAAAADtQogKYBdCVNBVrOtTiGVj18aS6vlRu/yRaGxYE1Gbd1W0lj4vPhaj9xgTz696Lu9SgE6od1XfvEsAAAAAAIB2I0QFsJOEqOjMmgsRK0cXYung2ljc9FSsXP50xOpYf6NLOqChdzyfdxFApzS42/C8SwAAAAAAgHYjRAWwk4So6GwauhVi6bj6qO35cixZ9UjUr1sasTTvqmgvg+Y+HANGDYxX1i3KuxSgkxnafVTeJQAAAAAAQLsRogLYSYV+vfIuAV7V6qGFWDpiZSwpPhvLlj0WzfWNEUvyroo8FJqaYnb5qPi1EBWwk4b2EKICAAAAAKB0CFEB7KRCX52o6HiaKgqxfFxTLOm7KJasmxNrV78csTzvqugoRjw/J7oP6RGrGlbmXQrQiQzTiQoAAAAAgBIiRAWws3r3jCgrRjQ25V0JJW5dv2IsHb06llTPj9rlj0RTw9qI2ryroiMqq18Ts2tmxB9W/C3vUoBOxDg/AAAAAABKiRAVwE4qFAtR6NMrmhcvzbsUSkxzIWLlmELUDloSSxqfjJUrno1YnWb35V0ZncH4F56N2/pURENTfd6lAJ1AWaE8BncblncZAAAAAADQboSoAHZBoV9vISraRUO3QiwdXx+1PV6KJaseifp1yyJ89NgFFatq44AR0+KO5ffnXQrQCQzqNjTKin5dBAAAAACgdPirOMAuKPTrlXcJdGGrhxWidviKWFJ8NpYvezya6xojluRdFV3B5IWvxJ3VhWiO5rxLATo4o/wAAAAAACg1QlQAu9iJClpLY2XE8nFNUdt3USxZOyfWrl4QsTzvquiKqmtfiL0nTY4Hlz+SdylABydEBQAAAABAqRGiAtgFhb5CVOyetf2LsWz06lhSNS9qlz0STY3rdJuiXUxbXh8P5l0E0OEN6zEy7xIAAAAAAKBdCVEB7AKdqNhZzcXmWDGmELUDl8SSxidj1YrnIlbF+hu0o14vPRnj9hgXz6x6Ju9SgA5MJyoAAAAAAEqNEBXALhCiYkfU9yzE0rH1Udv9xViy8pFoqFsesTTvqiBi//ruIUIFbM+Q7jpRAQAAAABQWoSoAHZF7x4RlRURdfV5V0IHs3p4IWqHrYglxWdi+bInonldY8S6vKuCTQ2Y+0gMHjMkFqx9Oe9SgA6ovFAeg7oNy7sMAAAAAABoV0JUALugUChEYciAaJ77Ut6lkLPGqkIsH9cYS/osjCVr58S61QsjluddFWxfobk5ZhWGxS9DiArY0qBuw6OsUJZ3GQAAAAAA0K6EqAB2UXHYwGgUoipJ6wYUo3bU6lhSOTeWLn80mhrXRSzJuyrYOcPnPhI9h/WOFfXL8i4F6GCG9jDKDwAAAACA0iNEBbCLCkMH5V0C7aS5GLF8bHMsHbgkljQ8EatWzI1YFetv0EkVG+riwKqpcVP93/IuBehghnUflXcJAAAAAADQ7oSoAHajExVdV33PQiwdVxe13V6MJSsfiYa6FRG1eVcFrWvs/Keisl9V1DWty7sUoAMZKkQFAAAAAEAJEqIC2EUFIaouZ9XIQtQOWR5LCk/H8uVPRqxtilibd1XQdsrXLI+ZPfaN/1t+X96lAB2IEBUAAAAAAKWomHcBAJ1VoaY6ok/PvMtgNzRWFWLJ5MZ4+sCX4p59/xD3dbsmnlt+Qyxf9nhEc1Pe5UG7mPTyy1F0SAhsZFgPISpgU0cddVRMmjQpGhoasu/vuuuu7PsPf/jD7VZDXV1dXHXVVdHY2Ljhscsuuyyr42c/+9k2awUAAACAHaUTFcBujvRrWroi7zLYCWsHFmPpqFWxpGJuLF3+aDQ11kUsybsqyE/1spdj2pCpcd/yh/IuBegAKoqVMaBmSN5lAB3MueeeGytWrIhiMb/g9Zvf/OZ44IEH4m1ve9uGx2bOnBnvfe97Y/LkybnVBQAAAEDXIUQFsBsKQwdFPPpM3mWwHU1lESvHRiwZsDiW1D8eq1fOi1iZd1XQsexTuzruK8u7CqAjGN1rjygWdKcDNnXeeeflXUK88sorWzw2a9as7AYAAAAArUGICmA3O1H9Y5gEHUVdr0IsHVsXtd1eiNoVj0RD/cqI2ryrgo6rx8JnYsKECfHkyifzLgXI2YQ+U/MuAQAAAAAAcuESY4DdUBg2KO8SiIjmQnOsHFWIeTOXx4Mz74u7h/4knlh7bSxactf6ABXwqvZbW5V3CUAHMLHv3nmXACVr3bp18c1vfjNOOumk2GeffeKAAw6Id7zjHXHPPfdsstykSZPioosuisceeywuuOCCmDFjRrbsP/3TP8XChQuz9XzlK1+JI444Ivbdd9943eteFzfccMMW75eW/eIXvxgnnHBCttzee+8dxx57bHzuc5+LpUuXbrLsUUcdlb1vQ0NDq23vttaZvk+Pp+eTu+66K/v+hRdeyL6fMmVKvOUtb8m+vuyyy7Lnfvazn233vebNmxeXXHJJHHPMMTF16tQ4+OCD4+KLL46HH354h2pN75d+PrW1tfHRj340GyO4//77x1vf+ta48847NyyXfvbpuenTp8eaNWu2WM9f/vKXrN7Pf/7zO/S+AAAAALQvnagAdkNhYN+I8vL0l/68Syk5jdURy8Y3xpJeC2LJmkejbs3iiGV5VwWdV795j8SwccPjxTXrT1ACpWmSEBXkIgVu0si8+++/PwsJvelNb4rVq1fH7373uzj33HPj3/7t3+INb3jDhuWfeeaZOOuss2LatGnZ/d13350t++KLL0aPHj3i2WefjaOPPjrq6uriF7/4RXzgAx+IQYMGZcGfZMGCBXHaaadloaAjjzwyCyytWLEibr311vj+97+f1fHzn/88OoLhw4fHe9/73vjud7+b1ZgCZCNHjtzh1y9ZsiT7GaXXvuY1r4lhw4Zlgaz087rtttvipz/9aey5556vup7m5uY4//zzs7GCKZi2bNmybB1ve9vb4tJLL40TTzwxqqqqsvsf/ehHcdNNN2XLbey6667L7jf+twQAAACg4xCiAtgNhWIxCkP6R/P8BXmXUhLWDipE7chVsaTi+Vi6bE40N9RHLMm7KugaChExMwbF9SFEBaWqV2WfGNpjVN5lQEn6+te/ngWXUmepD33oQ1EopP8zRxYeOvPMM+OTn/xkHHTQQTFkyJDs8RSSSoGe1BUpqa+vz7osPfTQQzF69Oj4zW9+k4WpktRB6ROf+ERcf/31G0JUV111VSxatCjriJTCVC3Wrl2bdaZK63nqqadijz32iLyNGDEi6xqVAkgpCPWe97wnytOFLDvoxhtvzIJPqcPWGWecseHxww47LOtO9cMf/jA++9nPvup60s945cqV8ctf/jL69euXPZYCbinw9pnPfCYOP/zw7Geefp4pRJWW2zhElV578803ZyG5HQltAQAAAND+jPMD2E3FoQPzLqHLaiqLWDYh4rnZr8S9+/05/tr3mnh65a+itvbBaG6qz7s86HKGPf9I9Klcf1IQKD0T+k7NuwQoSY2Njdk4uhTMSR2jWgJUyeDBg+Ptb3/7ho5SG0uBqxYVFRVZV6rknHPO2RCgSvbbb7/sfv78+RseS92SPv3pT8epp566yTqrq6uz0X7J4sWLoytoamrK7h944IEsCNUihcV+//vfZwG1HfW+971vQ4AqSaMBU2gqjT+85ZZbNjyWRvbdcccd2cjEFr/97W+zjmO6UAEAAAB0XDpRAeymwjAhqtZU17sYy8aujSU1L8SSFY9EY/2qiNq8q4LSUGisj9mVY+O3dVq8QSma2McoP8hD6iqVuhSlLlNXXnnlFs+n0XPJI488suGxnj17Rv/+/TdZrlu3btn9qFGjtghGJevWrdvw2IwZM7Jbet/HH3885s6dm93mzJkTd9111ybho87uta99bfZzTUG1NGJv9uzZcfDBB2edqHZmLGBy4IEHbvFYCp39+Mc/jkcffTROOeWU7LEUrEpdvn71q19lIbgkddKqrKyMk046qZW2DAAAAIDWJkQFsJuKwwfnXUKn1lxojlWjClE7eFksiadjxbKnItY0R6zJuzIoTaPnPRnVA2pibaP/CKHUTOwrRAV5WLZsWXb/8ssvx+WXX/6qy20cmNqaqqqqV33PFJ669NJLsxF/aYRf0qdPnywQlEJYjz32WDQ3N0dXMHDgwLj22mvjm9/8ZtZ56ne/+112S1Kg6lOf+lSMHTv2VdeTun0NGDBgq+tPli9fvuGxFKZKP9/UPSyFqObNmxd/+9vf4rjjjst+zgAAAAB0TEJUALupMGpoRFkxorFrXKndHhqqC7FsfEPU9loQS1Y/EnVrl0T845wQkKPytStiZvfpcfvye/MuBWhHxSjGROP8IBfdu3fP7g899ND49re/3S7veckll8Qf/vCHrEvTWWedFRMnTtzQ2SqNFEwhqvayecerNPKutQ0dOjQLS6XRfU888UQ2au/Xv/513HnnnfGud70rG7W38RjFrWloaMjGAaYw1cZawlMbj/nr27dvHHXUUVlY68knn8zCWymUZpQfAAAAQMdWzLsAgM6uUFkRBd2oXtWawYV4cf9V8fDsR+OusT+POQ0/j5eX/Gl9gAroUCa+9EIUC2V5lwG0o+E9x0S3ih55lwElady4cdnIvRRcqqur2+L5e+65J/793/89/vKXv7TK+6XQzy233BJjxoyJr3/969mIuo1HAz711FPZfVt3omoJI61atWqTx5977rlWfZ8bbrghC0+tWLEiC0pNmjQpzjvvvPjJT36S/QzS+y1cuPBV15N+Hg8++OAWj6cOU0nq4rWxNNIvSUGqFFgbNGhQHHLIIa22XQAAAAC0PiEqgFZQHDci7xI6nKayiGUTm+PZ2YvibzP+L/7W55p4ZsWvY2ntQ9Hc1JB3ecB2VC1fGDN6Tsm7DKAdTeijCxXkpbKyMhv/tmjRomwE3MadmWpra+P//b//F9/61rdi3bp1rRZeKhaLWZgqjfXb2FVXXZV1amrpvNSWxo8fn93/8Y9/3PBYes9vfOMb26w7Sd2gdkYKp11zzTXxgx/8YJPH0/YvXbo06wSWOkftiK985Sub/MxSqOrnP/951ukqdRLbWPp+8ODB2SjBhx9+OF73utdFWZmQOgAAAEBHZpwfQCuFqBpvvSdKXV2fQiwdszaWVM+P2hWPRmPD6ojavKsCdsXUxcvjr5tOqwG6sEl99867BChpH/nIR+L++++P733ve3HXXXfFzJkzs0DRTTfdFIsXL47TTz89jjjiiFZ5r5qamjj++OOzcXZpvNyRRx6ZPX733XfHo48+GgMGDIhXXnklC3C1pbPPPjvr0JS6RKX3TkGm22+/PdauXRvDhg3bYvkUVEpdoz784Q9nP5+3vvWtO/Q+abm0rV/72teyn+3kyZOzkYE333xzFqJKIbUUZGsJVn33u9/Nvr744ou3WNfjjz+ehaHSzyz9fNK/TwpGfeELX4iqqqpNlk1Btde//vUbQmHpawAAAAA6Np2oAFpBceyIiEKUnOZCxIrREfNmLYsHDvhr3D34J/HEmuvjldq/rg9QAZ1W91eejz17Tsq7DKCdTBSiglz16tUr65aUgjuNjY3ZqLkbb7wxRo0aFV/60pfis5/9bDaKrrWk9b3rXe/KRtT9+Mc/zt6rR48eWSesNOIvufXWW6MtpdF2l112WTZeL43cu+6662LvvffOfg7p57G5FJ5Ky952221bdJXanjSq8Ec/+lGcc8458dJLL8UPf/jDLFS1xx57xH/913/Fm9/85g3LphDV5Zdfnt225oorroipU6dm3aX+7//+Lwu2pXrTSMStOemkk7L76dOnb+i8BQAAAEDHVWhOfzEDYLet+9J/R/OCxdHVNdQUYtn4hqjt+XIsXv1I1K/Vagq6qtrhe8WPmh7NuwygjVWXdYsfnnB7FAuusQHYmre85S1Zt6zUeWr06NE7/Lpf/OIXcckll8TnPve5OOOMM1q1pqan5kbdlde06joBAKAjqP7KJXmXAEAJM84PoBW7UTV20RDVmiGFqB2xMpaUPRfLls2J5vrGiCV5VwW0tb4vzImR40fFvNVz8y4FaEN79JksQAXQylauXBn//d//Hb17997QkQoAAACAjk2ICqCVFMeNiMY7H4iuoKk8Yvn45qjt90osXjcn1q56KWJF3lUBeZjZ1C/mhRAVdGVG+QG7I43A++53v7tTr0ljC7uq3//+93HllVdmowOXLFkS//zP/xw1NTV5lwUAAADADhCiAmglhbHDozNb17cQS8esidrq+VG7/NFobFij2xQQg55/OPqNGhBL1r2SdylAGxGiAnY3RHX55Zfv1Gu6cohqyJAh8fLLL0dTU1O8+93vjvPPPz/vkgAAAADYQUJUAK2k2L9PRO8eEctWRmfQXIhYOSaidtDSWNL0ZKxc/kzE6lh/A/i7YlNjHFg+On4jRAVd1iQhKmA3jBgxIh5//PHoyr7//e/v8LJTp06Nv/zlL21aDwAAAABtQ4gKoBUVx46Ipvsfi46qoVshlo6rj9qeL8WSVY9E/bplEUvzrgro6EbMeyxqBnWPNQ2r8i4FaGUDa4ZGn+r+eZcBAAAAAAC5E6ICaEXFcR0vRLV6aCFqh6+I2rLnYtmyx6K5vtGYPmCnlK9bHbNrZsQfV/wt71KAVqYLFQAAAAAArCdEBdDKnajy1lRRiOXjmmJJv0WxZO2cWLv65YgVeVcFdHZ7vPh8/KlXeTQ0N+RdCtCK9h44M+8SAAAAAACgQxCiAmhFhaEDI6qrItaua9f3XdevEEvHrI0llXOjdsWj0dSwVrcpoFVVrlwc+w2fFnctvz/vUoBWtN+gQ/IuAQAAAAAAOgQhKoBWVCgWojhueDQ9+kybvk9zsTlWjCnE0oG1saTpyVi5/NmIVbH+BtBGpryyJO6qzLsKoLWM7TUp+tcMyrsMAAAAAADoEISoAFpZcdK4NglRNXQrxNLxdVHb46VYvPKRaKhbHrG01d8GYJtqFs+LqRMnx8MrHs27FKAV7DdYFyoAAAAAAGghRAXQyop7jY24rnXWtXp4IWqHrYglxWdj+bLHo7mu0Zg+IFfTVjTFw3kXAbQKISoAAAAAAPgHISqAVlYc0DcKA/pE8ys73yaqsTJi+fimqO2zMJasfSzWrl4QsbxNygTYJX1eejxG7zEmnl/1XN6lALuhV2WfmNh377zLAAAAAACADkOICqANFPccF43/d+8OLbu2fyGWjl4TSyrnxtLlj0ZT4zrdpoAObWZ973g+7yKA3TJj0MFRLBTzLgMAAAAAADoMISqANlDca9shquZic6wYW4jaAbWxpPGJWLXiuYhVsf4G0AkMnPtwDBwzOBatXZB3KcAuMsoPAAAAAAA2JUQF0AaK40dGlJdHNDRk39f3LMTSsXVR2/3FWLLykWioWxGx89P+ADqEQnNTzC4Oj1+FEBV0RmWF8pg+6KC8ywAAAAAAgA5FiAqgDRQqK2Ld/sNiUdMjUVt4JpYteyJiXVPEurwrA2gdI56fEz2G9YqV9cvzLgXYSZP67RPdK3rmXQYAAAAAAHQoxbwLAOiqlk8uxHPLbohlSx+LaG7KuxyAVlVsWBuzqyfkXQawC/YfZJQfAAAAAABsTogKoI0MHH1Y3iUAtKlx85+NimJl3mUAO2m/wYfmXQIAAAAAAHQ4QlQAbaS659Do0U+XFqDrqlhdGwf0mJx3GcBOGNRtWIzqNT7vMgAAAAAAoMMpz7sAgK5s4JjDYuWSJ/MuA6DN7LlwUdxRXYjmaM67lC5h/g/WxurnmmLix7tt8VzDyuZY9Lu6WDGnMfu6vHshekwqi4HHVURF7x27NqK5uTmW3t0QtXc1xLqXmyL9s1UOKETv/cqj/6EVUSgrbLL84tvqY/Ht9dFU1xzdxpTFkNdVRuWALd/rmf9cE2XVEaMvrNmNrac97GeUHwAAAAAAbJVOVABtaMDow/MuAaBN1dS+GPv0mpJ3GV3CopvrYvkDjVt9rnF1czx72ZqovbMhKvoVov8hFVE1pBhL72mIZ/9zbdQva9qh93jxp3Xx0s/romF5c/TZrzz6zCqP5oaIhb+pj3lXr4vmpn+E4VY82hALfl0XFX0K0eeA8lj9fGM8/6210dSwaWBu+QMNsXZ+Uww+0WjHzsAoPwAAAAAA2DqdqADaUK+Bk6Oy24CoW/1K3qUAtJlpy9bFA5s2MGInNNU3x8vX12UdorYldYSqX9IcfQ8uj6GnVm14fNFNdbHo5vpYdFN9DDvjH49vzconGmPZXxuiekQxRr+zOsqq1/+jpVDUvO+sjZWPNcayvzVEnwMqssdTYKtYEzH6XdVRrChEzaiyeOGH62LlnMbotff6XyOaG5tj4W/rovf08qgeXtZKPxHaSlVZdew9YP+8ywAAAAAAgA5JJyqANlQoFGLgKB0fgK6t58tPxfge4/Muo1NK3Z6evnRNFqDqsee2Q0hr5q7vUNV35vqAU4u+B63/fvVzW+9gtXnHqGTgMRUbAlRJsbwQA45Z30VqxaP/WE/d4qaoGljMAlRJ9bD1vzrULf5HJ6oUtKpf2hyDXrtpXXRMew84ICrLth+2AwAAAACAUiVEBdDGBo49Ku8SANrcfuu65V1Cp5TCU03rmmPI6ytj5Nu2HW4p674+yFRfu+nYvobl678v7/HqrcB6Ti6LAcdWRM3ILX8FKP69P22qZeP33Pj7prXrvy77+z9149rmbARhv4MroqKvXys6A6P8AAAAAABg25ztAGhj/UbMjIrqvnmXAdCmBsx7JIbUDMu7jE6n36EVscfHukW/gyqy7oXb0nd2RXbk/vIv62LV043RVNcca+Y3xos/qYsoRPQ/7NU7QfWcUh6DXlMZ5b22/BVg+YPrO1BVDf3Hc91GlcW6Bc2x/KGGLDC1+E/1WQ3dRq/vmLX41vpobooYcJQuVJ3F/oMPybsEAAAAAADosP5+zTkAbaVYLI/B446J+Y/+LO9SANpMobk5ZhUGxy/ixbxL6VS6jy/bseX2KIvRF1THC9esi+e/sXbD48WqiFFvq4oee+76Yf2aFxpjyZ/XB6T6zvpHIKr/kRXZuMH531u34bGBr6mIqsHFqF/eFItvr49Bx1VGWbf14a/m5ubtBsHI15heE2NAzZC8ywAAAAAAgA5LiAqgHQyZcLwQFdDlDXvu0eg1vE8sr1+adyldTv3Splh4Y100LGuOHnuWZUGmdYuaYuWcxnjpf+tixHmFqBm+Y4Gsja1b0BRzv70umhsiBh1fEVWD/tGJqrx7Ica9vyZWPNIYDSuao9uYYtSMWv8ei26qz0YI9j24PBrXNMeLP18XKx9pzIJYvaaVx9BTK6NYJVDVkRw24vi8SwAAAAAAgA5NiAqgHfQZMi1qeg6PNSteyLsUgDZTbKyL2VVT46b6v+VdSpeSOjzN/c66WPdSU4w4typ67f2PQ/iVTzTG3P9emwWhJnysJoqVOx5cWv1cY8z7n7XRuDqi74HlMeCoyi2WSevrPb18i+DV0nsaYtiZVVEsL8QLP18Xq55ojKGnr3/9y9fXRaEsYtjpVbu13bSeYqEsDh9xQt5lAAAAAABAh/aPS80BaFODx78m7xIA2tzY+U9GVVl13mV0KWueb8oCVN0nlW0SoEp6TCyLPvuVR+PK5qxj1I5adn9DPP/N9QGq/odXxNA37HjgacENdVE9tBi9Z5RlXaiW3dcQfQ4ojz77V6y/zSzPQlZN65p3ajtpO9MGzop+1QPzLgMAAAAAADo0ISqAdhzpB9DVla9ZEQd0n5x3GV1K/dL1YaSqwVvvMlU1dP0hfX1t0w6t75Vb6+KFH62L5saIIadWxuCTtuxAtS2rnmmMlY82xqATKqNQKETd4qaIpojKAf/4taJyYDF7LHuODuGokSfnXQIAAAAAAHR4QlQA7aRHv/HRo9+EvMsAaHN7vvxSFB1mtprynuvDU3WLtt7ZqW7R+rBSea9XH+W3+Lb6WPib+iiUR4w8tyr6HVyxU7Us/E1ddJ9YlnXAyrTkpDbKSzU3/P2Lwo6PFqTtdK/oGTOHHJF3GQAAAAAA0OE5uwXQjoZMeG3eJQC0uaplL8e+vabkXUaX0W1MMSr6FGLlY42x4tGWhNJ6a+Y2ZqPzitURPSdvOupva12kFvymLqIsYtTbqqPn1O0vv7nlDzbEmnlNMfjEik27ThUjVj/3j1GC2ddlEZX9hag6goOHvSYqy3Z8XCMAAAAAAJSqnTtzAsBuGTL+uHjqrstTn468SwFoU3vXrop7/96siN1TKCvE8LOr4vlvr415V6+LHns2RNWQYjYub8XDjRGFiOFnVkVZt3+ElpbeUx91tc3Ra0pZVA9f/w+x8Ia67H8/VYOKWaAq3TaXwlp9Z27Znaq5sTkW3lgXvWeUR/Wwf/zDltUUote0slh+X2PML6zNHlvxYGP0O7Q8ipVCVB3BkSNPyrsEAAAAAADoFISoANpRdc+h0WfIvrH05fvyLgWgTfVY+GxMnDAxnlj5RN6ldAndxpbFuPfXxCt/qI9VTzbGyscbo6wmoueUshhwVEXUjNg0sbb0rw2x+pmmqOxbyEJUjWuaY83z62furXupKbttTc2Y4lZDVLV3NUT90uYY/c4tnxt2elUUy+uyTlWpK1Xfg8pj0AmVrbbt7Lph3UfHnv2m5V0GAAAAAAB0CkJUADmM9BOiAkrBfmsqQoRq50y+tPs2n6saWIzhZ+3YWLYx767Z5PvUMWp76341/Q6qyG5bkzpODTuzKrvRsehCBQAAAAAAO664E8sC0AoGjTsmCkUZVqDr6zv/0RhWMyLvMqAkFaMYR4w8Me8yAAAAAACg03AWH6CdVVb3if4jDoxX5v4p71IA2lQhImY1D4zrYn7epUDJ2XvAATGgZkjeZQDQRop7jIrqr1ySdxkAAAAAXYpOVAA5GDLh+LxLAGgXQ55/OPpW9su7DCg5RxjlBwAAAAAAO0WICiAHg8YeGRXVvfMuA6DNFZsaYnbl2LzLgJJSU949Dhx6VN5lAAAAAABApyJEBZCDYlllDJv0urzLAGgXo+c+EdVlNXmXASXjoGHHRFW5/+YAAAAAAGBnCFEB5GT45NMiCnbDQNdXtm5lzOo+Oe8yoGQcaZQfAAAAAADsNGfvAXLSrdeI6D/iwLzLAGgXE1+cF2WFsrzLgC5vcLcRMbnfjLzLAAAAAACATkeICiBHI6acnncJAO2icsWimNFzat5lQJd35MgTo1Ao5F0GAAAAAAB0OkJUADkaMOqQqO45LO8yANrFlMXL8i4BurRCFOLIkSfnXQYAAAAAAHRKQlQAOSoUijFirzfkXQZAu+j+yvOxV8898y4DuqzJ/WfEoG7C2QAAAAAAsCuEqAByNmzPU6NYVpl3GQDtYvoqY8agrZww9o15lwAAAAAAAJ2WEBVAzipr+sagccfkXQZAu+j7wmMxqvvovMuALmdItxExe+hReZcBAAAAAACdlhAVQAcwYvIZeZcA0G4OaOiTdwnQ5Zwy/s1RLPj1DgAAAAAAdpW/sgN0AH2G7BM9B0zKuwyAdjF47sPRv2pg3mVAl9Grsk8cNeqUvMsAAAAAAIBOTYgKoIMYMfn0vEsAaBeFpqaYXT4y7zKgy3jtmDOiqqw67zIAAAAAAKBTE6IC6CCG7HF8lFf2yLsMgHYxcu7j0a3cPg92V2VZdZww9qy8ywAAAAAAgE5PiAqggyirqImhE0/KuwyAdlFWtzpmdzPGFHbXkSNOit5VffMuAwAAAAAAOj0hKoAOZOTUs6JQKMu7DIB2MX7+s1FerMi7DOi0ilGM141/c95lAAAAAABAlyBEBdCBdOs9MgaPPzbvMgDaReWq2ti/x5S8y4BOa+bQI2Joj1F5lwEAAAAAAF2CEBVABzNm+vkRUci7DIB2MXnR4ijY58EuOXX8uXmXAAAAAAAAXYYQFUAH06PfHjFwzGF5lwHQLmqWzI+pvfbKuwzodPbst29M6rdP3mUAAAAAAECXIUQF0AGNmf62vEsAaDfTljfkXQJ0OrpQAQAAAABA6xKiAuiAeg+aGv2Gz8q7DIB20fulJ2Ns97F5lwGdxvAeY2LmkMPzLgMAAAAAALoUISqADmrM9PPzLgGg3RxQ1zPvEqDTOGX8m6NQKORdBgAAAAAAdCnleRcAwNb1G35A9B68Tyxb8GDepQC0uQHzHomBYwbHorUL8i4FOrQ+Vf3jyBEn5V0GADlrempu1F15Td5lAABAq6v+yiV5lwBACdOJCqAD040KKBWF5qaYXRyedxnQ4Z0w9o1RUVaZdxkAAAAAANDlCFEBdGADRx8WPfpPzLsMgHYx/PlHo2dFr7zLgA6ruqwmXjvmjLzLAAAAAACALkmICqCDG7OvblRAaShrWBezqyfkXQZ0WEePel30rOyddxkAAAAAANAlCVEBdHCDxx8T3XqPzrsMgHYxbv4zUVk0qgw2V1Yoj5PHnZN3GQAAAAAA0GUJUQF0cIVCMUbv+9a8ywBoF+Wrl8YBPabkXQZ0OMeOfn0M7j487zIAAAAAAKDLEqIC6ASGTjghqnsMybsMgHax54KFUXSYChvUlHePN056Z95lAAAAAABAl+bsFEAnUCyriLEz3pF3GQDtonrpi7FPr8l5lwEdxqnjz40+Vf3yLgMAAAAAALo0ISqATmLYpFOie99xeZcB0C72Wbou7xKgQ+hbNSBOGf/mvMsAAAAAAIAuT4gKoJMoFMtij5kX510GQLvoueCp2KPHHnmXAbk7a9I7o7q8Ju8yAAAAAACgyxOiAuhEBo45LPoMnZF3GQDtYr+11XmXALka0WNsHD361LzLAAAAAACAkiBEBdDJTJj9vrxLAGgX/ec/GkNqhuVdBuTmzXtdHGWFsrzLAAAAAACAkiBEBdDJ9B40NQaNOybvMgDaXKG5OWbH4LzLgFxM7jc9Zg09Iu8yAAAAAACgZAhRAXRCe8x8bxSK5XmXAdDmhj7/aPSu7JN3GdDuzp2s8yQAAAAAALQnISqATqhb75ExYvJpeZcB0OaKjXVxYOX4vMuAdnXg0KNjUr998i4DAAAAAABKihAVQCc1dsYFUVbZPe8yANrcmHlPRnVZTd5lQLsoL5THm/e6OO8yAAAAAACg5AhRAXRSlTV9Y8y0t+ZdBkCbK1u7ImZ23yvvMqBdHDv6DTGsx6i8ywAAAAAAgJIjRAXQiY3a55yo6j4o7zIA2tzEl16MYqEs7zKgTdWUd48zJ12YdxkAAAAAAFCShKgAOrGy8uoYt/878y4DoM1VLV8Q03tOybsMaFOnjj83+lT1y7sMAAAAAAAoSUJUAJ3csIknR/d+4/MuA6DN7b1kZd4lQJvpWzUgThn/5rzLAAAAAACAkiVEBdDJFYplMWHW+/IuA6DNdV/0bEzqOTHvMqBNnDXpnVFdXpN3GQAAAAAAULKEqAC6gAGjDo6BY47MuwyANjdjdXneJUCrG9FjbBw9+tS8ywAAAAAAgJImRAXQRUw6+CNRVtEt7zIA2lTf+XNieLeReZcBreotk/8pygpleZcBAAAAAAAlTYgKoIuo7jE4xu3/zrzLAGhThYiY1dQ/7zKg1ew/+NCYOeTwvMsAAAAAAICSZx4KQBcyauqb4qUnboiVix/PuxS6iLV1zfG7u+vigScbYvHy5igvixgxsBhHzqiMfSesP4y445H6+MHv1r3qut53RnVMHLn9Q4+6+ua45d76+OtjDfHKsqboVlWIvcaUxfGzK2NA702z303NzfGLP9XFHQ/XZ9/vObo8Tj+iMnp133S5+obm+PT/rI7JY8ri7GOrd+GnQEcz+PlHou+o/lG7bnHepcBuqS6riQv3/mjeZQAAAAAAAEJUAF1LoVgWex36sbjnF2+LaG7Kuxy6QIDqK9esiRdeaYqRg4px2LTyWLOuOe5/qiG+9au1ccohlXHczMosVHXC7IqtrmPRsua4Z05D9O5eiCH9tt8As7GxOa68bk08Ob8pRg9J71cRS1c2x92PNsT9TzbE+8+siZGD/jHu6vb76+P3f62PvUaXxcA+xSxMVbuiKT501qZjLW+9rz5WrW2OEw+sbKWfDHkrNjXEgeVj4gYhKjq5sya9KwZ2G5p3GQAAAAAAgBAVQNfTe/DeMXzP18cLc/4371Lo5G6+py4LUB2yT3mcdXRVFAppkFrESQc1xZd/tCZ+/ee6mD6hPAs2bRxuatHQ2Bz/cc2aKBYi3nZS9RYdojZ3+wP1WYBq9pTyeMtx/+gY9dBeDfGN69fG/95alwWpWvz5wYYY0q8Q73lDdVZb356F+MX/1cW8hY0b6lm9tjluursujp5REb17mGLclYya93jUDOwWaxpX510K7JJxvfeMk8afnXcZAAAAAADA3zmbCNAF7THr4qis6Zd3GXRyf3u8IVJs6nWH/CNAlfTpWYxDp1VEU3PEI882bPP1N95ZF3MXNMUx+1fEHsO3DFltbmFtc3Svjjh+1qYdo/YeVx7dqiKefalxk8cXLWuK4QPLNtQ2fOD6w5pFS5s3LPPbu+qirKwQxxygC1VXU7ZuVczuvlfeZcAuKUYx3j3t41FWePV9IwAAAAAA0D6EqAC6oIqqnjFh9gfyLoNO7sgZFXHSwZXRrfofAaoW5X8/77+ufuuvfWVZUzZqr1+vQpywg2P03nh0VXz5oh4xoM+mhyfLVjbFmnWRjQTcWPfqQqyra95k/GDS7e9NrBYvb4rb7q+P42dXRHXllttA57fHC3OjvKCxKp3P8WPPjD36TM67DAAAAAAAYCNCVABd1NCJJ0TfYQfkXQad2OH7VsZrN+sKlTQ3N8d9T67vQDV8wNYPJX7xp7poaIw45eDKqCjftQBTCkXNea4hrrh2baR41OZhrLHDyuLxuY3xzIuNsXJNc/zpgfqoqogYMXB9wutXf66Lfj0Lccg+Fbv0/nR8lStfiRk9p+RdBuyU/tWD45y93pN3GQAAAAAAwGZcug/Qhe156Mfirp+fFU2NdXmXQhfypwca4vmXm2JA70JMHrPlKKpXljZlIatBfQqx36RdO9RIYwKvvG7thu9PPbQyZk/ZNAyVAlrPvNAY/3HNmuz7YjHiTcdURY+aQsxb2Bh/ndMQbz+pOsqK60NcTc3NUdxoLCFdw5RXlsbdpjXSibxj749ETXn3vMsAAAAAAAA2I0QF0IV17zM6Rk87N56999t5l0IX8bfH6+Nnf1yXBZbe8trqKCvbMpT0x/vqo7k54tiZlVH8e4BpZ1WWF+KY/Sti9drmeOiZxrj+T3VRu6I5zjiyMgp/D0IN6luMfz23Wzz4TEOsXdcck0aVxbAB60NdafkxQ4sxfWJ51K5oih/ctC6emNsYVZURB02tiNcdWrkhXEXn1m3x3Jgyca94ZMWcvEuBVzVzyBExe+hReZcBAAAAAABshRAVQBc3Zvrb4uWnfhdrls/LuxQ6udsfqI+f3rIuUvTora+tij2Gb9mFqrGpOe6ZUx81VREH7LnrhxkTRpZltySN6vvqT9fEbffXx4QRZVkwqkX3mkIcuFmHqjQC8LHnG+MDb6zJvv/ujWtjYW1z1pUqBaquvb0ue91xM7Uv6ir2XRnxSN5FwKvoUdEr3rnPx/IuAwAAAAAA2Ibitp4AoGsoK6/KxvrBrkpj8P73tnXxkz+si7JiZGGk/ffcNLjU4qn5jbFqbcS0Pcqjorx1Oj2l8XwnH7Q+8PTA0w3bXba5uTnrQrXP+LIs5PXS4qZ4cn5THHtARew7oTyOnFEZe48tiz/eW98qtdEx9HnxsRjdfUzeZcB2nT/lQ9GvemDeZQAAAAAAANsgRAVQAvqPmBXDJ5+Wdxl0Qg2NzfHfv1obt/ytPrpXR1x8ek0WRtqWNHov2W/SznWhSuGnJ+Y2xP1Pbj0k1b/3+kDWytXN213P3XMa4sXFTfG6Q6uy7xcsadow+q/FoH7FWLG6Odas2/666FwOaOiddwmwTfsNOiSOGnVy3mUAAAAAAADbIUQFUCImzv5AdOs9Ku8y6ESamprj279eG/c/1ZiFmD50VretjvDb2DMvNkahEDH+VZbbXKFQiP/+zbrs/ZatWh982ti8hVuGoTZX39Acv/5LXRw0tTyG9CtuGC+4flv+sVzD33NaqU66jkFzH44BVbr80PF0K+8R75r2r3mXAQAAAAAAvAohKoASUVZRE1OO/EwUCjsXbqF03XRPfTz0dGP07VmID55ZE4P/HkzalsbG5nhxUVMM7luIqoqdTyjNnFwezc0R191Wl40QbPHK0qb49Z/rstDTQXtvu8PVbffXx8o1zXHCgetH/yUtYaqnX1jfIasl6NWnRyGqK6WoupJCU1PMLhcUpeM5b8oHYkDN4LzLAAAAAAAAXsXOzdoBoFPrPXjvGDP9/Hj23m/nXQod3Ko1zfG7u+uyr0cOKsafH6rf6nJ7jCiLSaPWH07UrmyO+saIPj1ePaN9y711sWZtc8yeUhH9e69f/oTZlfHE3Ma457GGeGlxU0wcVZaN3XvgqYaob4g488iqGDFw6yHA1Wub43d31cXR+1VE7+7/eP/hA8ti3LBi/OFv9bF6XXPUrmiO5xc0xelH/CNoRdcx4vk50X1Ij1jVsDLvUiAzbeDsOHb06/MuAwAAAAAA2AE6UQGUmLH7XRC9Bk7Ouww6uKdeaIy6v+emHny6MW64s36rtyfm/aPD08rV67tH1VS9+vr/eO/61y9e/o85ezVVhfjgWTXx2lkVsa6+OW67rz4efqYhJowoi/edUROH7VuxzfWlwFdZWSGO2X/LcNSFp1THPuPL4u45DdlYwBNmV8Th07e9Ljqvsvo1MbtmUt5lQKa6rFtcNO3jubz3ZZddFpMmTcrud1Rzc3PccMMN8e53vzsOOeSQmDp1ahx22GHxlre8JX7+85/H2rVrt3jN0Ucfnb3Pc889t9V1XnTRRdnz06dPj7q69cHczR1++OGx5557xuLFi3diC4Gu6sMf/nC237jrrrt26fXpden1aT0AAAAAsLN0ogIoMcVieUw56rNx1/+eHU0N6/Iuhw5q2h7lccUHe+zUa8YMLdvh13z2Hd23+ngaA3jywVXZbWe8/rCq7LY1PbsV44JTanZqfXRe4194Nm7vUxn1TVsPbEB7OXfyP8WgbsOiM0gBposvvjj+9re/Rd++fePQQw+NIUOGxCuvvJIFEv71X/81rrrqqg3hrBYHHnhg/OxnP4t77703xowZs8k66+vr484774xisRirV6+Ov/71r3HQQQdtssy8efPi5Zdfjr322iv69+/fbtsLAAAAAABboxMVQAnq3mdM7DHrn/IuA6DVVayqjf176LZHvqYPOiheO+aM6AzWrFkT5513XhagSvd//OMf49JLL40PfehD8YUvfCFuvvnmLEQ1f/78eNOb3pQFn1q0hKJSiGpz6bFVq1bF8ccfn33/pz/9aYtl7rnnnuz+4IMPbsMtBAAAAACAHSNEBVCiRk55Y/QbMTvvMgBa3eSFr0QhCnmXQYnqXz0o3j/9s1EodI7PYOou9cQTT8Q555wTH/vYx6KmZtPOfWVlZXHuuedmQaoUikrLtJg9e3a2nSmAtbmW0NSFF14YPXv23G6IKo0PBAAAAACAvAlRAZSodNJzyhGfivKqXnmXAtCqqmtfiL176UZF+ysWyuKD+30+elX1jc5g7dq1cc0110R1dXX80z9tv0Nl6kI1bty4LPj02GOPZY/169cvG+/37LPPRm1t7SbL/9///V8MHjw49txzzyxs9eSTT2aj+zaWRvyl0NZ+++3XBlsH7KiPfvSj2X/LCxYsiC9/+ctx2GGHxT777BOnnnpq3HLLLdky6f6MM86IadOmxZFHHhmf+9znsmDlxu6777646KKLYtasWTF16tQ45phj4ktf+tIW+4ckvfbf//3f4+ijj87e65RTTokbb7xxmzWm2j71qU9l753WncKXKdSZuuTtiN/97nfxlre8JRtDmt7vta99bfzHf/xHrFix4lVfm94j/Xw+8YlPZGNKW34Ohx9+eFZTGona4oYbbsiW3ThwurEPf/jD2fMt+1EAAAAAOhYhKoASVtV9YOx5yNb/wA/QmU1bXp93CZSgN016V0zuPyM6ixR4SEGG6dOnR58+fba7bLFYjOOOOy77+qabbtpkpF9zc3O2rhaLFi3KAgItHaZa7jfuRpUCEXPnzo39998/KisrW33bgJ337ne/OwsBpYBRuj3++OPx3ve+NxvxefHFF8fw4cOzrnUVFRXx/e9/Pz7/+c9veO3//u//xtlnnx233357FpxMy/Xt2ze+853vxGmnnRYvvfTShmXXrVuXBZq+9a1vZfueFNIcOHBgvP/9789CSpt7+umn4w1veEMW+pw4cWK89a1vzcKXv/jFL7J1z5kzZ7vbdf3112dB0VTDiSeeGG9+85ujV69ecdVVV8UFF1yQ7cN2xIMPPhjveMc7sn1W2r708/jxj38cb3zjG+OVV17JlknBsbRNKbSVgqobW7lyZfz+97+PyZMnZwFTAAAAADqe8rwLACBfQ/Z4TSx6/tZY8NTv8i4FoNX0eunJGLfHuHhm1TN5l0KJmD7wwDhtwtuiM3nmmfX/fYwfP36Hlp8wYUJ2P2/evA2Ppa4uKSSRRvodddRRG7pQpVBCS3jq4IMP3hCiSh1cEqP8oONJXZl++ctfZgGjZNCgQVnQ6dvf/nYWOEqdl1rGdKaOUCnE9NnPfjbrMpc6MqXRnVdffXUWEkrSfuBrX/tafOMb38hGgqZ9RZLuH3nkkSx8lF6XQppJCiSl7zf3kY98JJYsWZKt54gjjtjweApcnX/++XHJJZdkdW9rjGoKfHXr1i0LU/Xo0WNDbW9729viL3/5SxYCnTHj1QOwKazVMt60Req0lbYnbWfqzpUCVieddFL84Ac/yAJT6esWqdPWmjVrskAYAAAAAB2TTlQAZN2oqroPzrsMgFa1f333vEugRPSrHhjvm/G5bZ7A76haxli1hApeTUu3qhRmaHHAAQdkXWnuvffeDY+lsFQKRaQuVcnIkSNjzJgxWVihsbFxkxBVS8AKyN+ZZ565IUCVtIza3GuvvTYEqFr2BSl8WV9fHwsXLswCTHV1dfH2t799Q4AqSfvE1MFq9OjR8ec//3lDADOFr9J+I422awlQJakj1cavb+n+lAJXaezfxgGqJHW8So8/8cQTcf/9929zu1JgKnWFeuihhzapLY3zu+OOO3YoQNWy3e973/s2eSx1uEqP/+Y3v8l+BknqjpWk0NbG0vdpuzcOVgEAAADQsQhRARAVVT1jypGfjkKhLO9SAFrNgLmPxODqIXmXQRdXLJTFB/f7fPSu6hudTe/evbP7zUdObUsa/ZekEV0tampqYt99942HH344CxA0NTVlYYm99957kxGBqeNUCm2lMETy17/+Nety09LdCsjf2LFjN/k+dW9KRo0atcWy6b/9ltF8jz76aPb1rFmztliuvLw8Gxna0skp7W+effbZLFi1cWBr8+BWi5bgUwpvXnbZZVvcli1blj3fUsPWpDGDad903nnnxfHHH591jLr11luz7evXr1/sqLRf2zx0mn4OkyZNitWrV2fblaQgWAqepeBoGm+apABZS8e+jfehAAAAAHQsxvkBkOk3/IAYf8C746m7L8+7FIBWUWhujlmFYfHLeDnvUujCzpr0zpjSf9OT/p1FSzCiZazfq3nyySez+xEjRmzyeBrplzpLpbBD6rKydOnSOOecczZZJnWcSuOt7rrrruz1Tz/9dJx66qmtti3A7msJTW0ujajbka52aZzf1gwevL7jbQoatYSettUBryXc2WL58uXZfQogpdu2pP3Otpx++ukxYMCAbKxf2gel+5YRf2eddVZ86EMfysJer2bo0KFbfXzgwIGb/BxaulGlsNavf/3rbOTgddddl3XEaulSBQAAAEDHJEQFwAaj9z0vli18KBY9d1vepQC0iuFzH4mew3rHivr1J22hNe07cHacNuFt0VnNnDkz6xZ19913R21t7at2R7npppuy++OOO26Tx9PYvv/8z//Mxm61dLVKnac2ljrUpIBVCkGkDjQpTGCUH3QNLYGoBQsWZGP+NtcSnEr7mJYOdS3hqM2loNXGundfP5o3BZ0uvPDCXa4xjQJMtzVr1mTjR9PY0TRe7zvf+U7WEevd7373q64jvXZrWsJTG+9DTz755Pjyl7+8IUSV7lPYavN9IwAAAAAdi3F+AGxQKBRiyhGfjppeI/MuBaBVFBvq4sCqPfIugy6oX/XAeP+Mf4tiofP+SpVCTWnMVQo+/fu///t2l/35z38ejz32WDaWK42p2tg+++yThSjSSL80pi8FEqZNm7ZFECK9Nq0jBanSMYcQFXQNaXxdkgKZW9PyeBrfWVVVFRMnToznn38+XnnllS2WTWHMra1788db/OxnP8tCnNvqqLdy5cq44oor4n/+5382jN9L+56PfvSj2TjAJHXS2xFbq6G+vj57PIXDUkC0Rfr+6KOPzvaLt912W7a9r3vd66KszPh0AAAAgI6s8/7FH4A2UV7VM6a95tIollfnXQpAqxg7/6moLFblXQZdSLFQFh+Y8fnoXbX9zk2dQeq+kkIKKST1mc98ZotOK6lj1E9+8pP41Kc+lY2++tKXvrTFOlIo4IADDogHHngg6/CSxvttLSiQOrC89NJLWQeYFMTq169fm24b0D5OOeWULJT53e9+Nx599NFNnrvyyiuzgNPs2bNj2LBh2WNnnnlmNDY2ZuPuUgipxY033pgFMTc2Y8aMGDduXNx8883x29/+dpPn0gjRz372s/Htb397Q4erzaX9VtqHpaDVs88+u8lz8+bN2+qI0m1JQairr756k/3jV7/61ayT3xve8IYtRgK2jO779Kc/nd2nZQAAAADo2IzzA2ALPfpPiL0O/Zd45I+fyLsUgN1WvmZ5zOyxb/zf8vvyLoUu4qxJ74ypA/aLju66667bZmeYUaNGxb/9279FZWVlFgpIo7J++MMfxg033BCHH354DBkyJJYuXRp33nlnPPfcc1mHla985SubdFrZfKTfH//4x+zrbY2rSo+ndTz99NNxwQUXtOKWAnkaPnx4fPKTn4xPfOITWUAqdWBK+5D7778/u6XnP//5z29YPnXAS/uLFJpK+4MUvJw/f37ccsst2T4mhZVaFIvFuPTSS7OReO973/uyLlKTJk2KhQsXZiNGUwjrC1/4wjZDmen1//zP/xwf/OAHsxBTGkeaxuql9/jDH/6QvW7j/dFdd92V7TdT0POYY47ZZF2p494Xv/jFrLNUquG+++7Ltm/KlClx8cUXb/HeqdahQ4fGCy+8EPvuu+9WRx0CAAAA0LEIUQGwVUMnnhjLFjwY8x/9ed6lAOy2SS+/HH/pVoymaMq7FDq5aQNnx2kT3hadQTpxn25bs3z58g1f9+7dO771rW/F7bffno3GSuP2FixYkD2eOsC8/e1vj5NOOinr6LItKUTVYltj+lLHqxRYWLJkiVF+0MWcccYZMXbs2Kwr1B133JF1tUudp975zndm+5C0P2mROtV985vfzJa9/vrr48c//nG2bOoqlcJU3/jGNzZZ99SpU7NQaHpN6mSXQk59+/bN9iPveMc7Yv/9999ubSeeeGLWqeo73/lO/PnPf846R/Xv3z9e//rXx0UXXbShQ1aS1n355Zdnz20eokpjCNP7pTGAKXQ6ePDgrJvfhRdeuNX9YwpwHX/88dn76kIFAAAA0DkUmlP/cQDYiqbG+vjrL98Ryxc+nHcpALvtL5Omxn3LH8q7DDqxvlUD4itHXBN9qoyhAygVKdiVumul0YIp8LUzzjvvvGzUaQp/pU5WranpqblRd+U1rbpOAADoCKq/ckneJQBQwop5FwBAx1Usq4h9jv1SVFT3ybsUgN22T+3qvEugEysWyuKD+31egAqAHZLGoabbySef3OoBKgAAAADahhAVANtV3WNITD368xEF/8sAOrceC5+JCT0m5F0GndSZEy+IqQO2PzIKAD72sY9l4/vSGMOamppspCEAAAAAnYMz4gC8qv4jZsX4/d+VdxkAu22/tVV5l0AnNG3g7Dhj4jvyLgOATmDQoEHxzDPPxNixY+Mb3/hGDB8+PO+SAAAAANhBhebm5uYdXRiA0pX+d/HA7z4Yrzx/e96lAOyydOB7/bhh8eKaF/IuhU5iZM/x8YVDvhPdK3rmXQoAbND01Nyou/KavMsAAIBWV/2VS/IuAYASphMVADukUCjElCM/E916j8q7FIBdVoiImTEo7zLoJPpWDYiPz/q6ABUAAAAAAJQAISoAdlhFVc+Y9tqvRXlVr7xLAdhlw55/JPpU9su7DDq4qrLq+JdZX4tB3YblXQoAAAAAANAOhKgA2Cnd+4yOfV5zaRSK5XmXArBLCo31MbtybN5l0IEVoxgf3O8LsUefyXmXAgAAAAAAtBMhKgB2Wr9h+8deh/1r3mUA7LLR856M6rKavMugg3rb1A/HzCGH510GAAAAAADQjoSoANglwyadEmP2PS/vMgB2SfnaFTGr+155l0EHdNK4N8WJ487KuwwAAAAAAKCdCVEBsMvGz3xvDBp3dN5lAOySiS/Oj7JCWd5l0IHMGnJknD/lQ3mXAQAAAAAA5ECICoBdVigUYsqRn4leg6bmXQrATqtcsSim95ySdxl0EBP6TI0PzPhcFAt+RQIAAAAAgFLkDAEAu6WsvDr2fe3XoqbXyLxLAdhpUxcvz7sEOoDB3YbHv8z6WlSV1+RdCgAAAAAAkBMhKgB2W2VN35h+wmVRUd0371IAdkr3V56PPXtOyrsMctSjold8fNZ/Rp+qfnmXAgAAAAAA5EiICoBW0a33yNj3+K9Fsbw671IAdsqMVWV5l0BOyosV8c8H/HuM6Dk271IAAAAAAICcCVEB0Gp6D5oaex/9hSgUBBKAzqPvC3NiZLdReZdBDt4z7RMxdcD+eZcBAAAAAAB0AEJUALSqgWMOi0mHXJJ3GQA7ZWaTUW6l5qxJ74ojRp6YdxkAAAAAAEAHIUQFQKsbMfn0GDvjgrzLANhhg55/OPpVDci7DNrJUSNPjjdOujDvMgAAAAAAgA5EiAqANjH+gHfF6H3ekncZADuk2NQYB5aPzrsM2sE+A2bGu6d9PO8yAAAAAACADkaICoA2M+HA98eIKW/MuwyAHTJi3mNRU9497zJoQ3v0mRKXHHBplBcr8i4FAAAAAADoYISoAGhTkw7+SAzb89S8ywB4VeXrVsfsmj3zLoM2DFB96sAro3tFz7xLAQAAAAAAOiAhKgDaVKFQiL0O+9cYssfxeZcC8Kr2ePH5KC+U510GrUyACgAAAAAAeDVCVAC0uUKhGFOO/HQMGnd03qUAbFflysWxX88peZdBKxKgAgAAAAAAdoQQFQDtolAsi6lH/VsMGH1Y3qUAbNeUV2rzLoFWIkAFAAAAAADsKCEqANpNsawi9jn2S9FvxOy8SwHYpprF82Jqz8l5l8FuEqACAAAAAAB2hhAVAO2qWFYZ0477j+g7bL+8SwHYpmkrmvIugd0gQAUAAAAAAOwsISoA2l1ZeXVMe+3XovfgaXmXArBVfV56PEZ3H5N3GeyCCX2mClABAAAAAAA7TYgKgFyUV3SL6cd/PXoO2CvvUgC2amZ977xLYBcCVJ888AoBKgAAAAAAYKcJUQGQm/KqnjHjxCsEqYAOaeDch2Ng9eC8y2AHCVABAAAAAAC7Q4gKgFxVVPeO/U7+ZvQZul/epQBsotDcFLOLw/Mugx0gQAUAAAAAAOwuISoAclde2T2mn3BZDBh9WN6lAGxixPNzokdFr7zLYDsEqAAAAAAAgNYgRAVAh1BWXhX7vObSGDLhhLxLAdig2LA2ZldPyLsMtkGACgAAAAAAaC1CVAB0GMVieUw58jMxYsob8y4FYINx85+NimJl3mWwGQEqAAAAAACgNQlRAdChFAqF2POQS2LsjHfkXQpApmJ1bRzQY0reZbCRiX0FqAAAAAAAgNYlRAVAhzT+gHfHxAM/lGJVeZcCEHstXBgF+6MOYdaQI+MzB35TgAoAAAAAAGhVQlQAdFij9jk7Jh/xiSgUyvIuBShx1bUvxj69dKPK20nj3hSXHHBpVJXX5F0KAAAAAADQxQhRAdChDZt0Sux97JeiWFaZdylAiZu2bF3eJZSsYhTj7VM/kt2KBb/CAAAAAAAAra/Q3Nzc3AbrBYBWteSFu+OB330oGutX510KUMJ+O2FcPL3y6bzLKClVZdXxwf2+EDOHHJ53KQAAAAAAQBfmMm4AOoV+w2fGjJP+Kyqqe+ddClDC9lvXLe8SSkrfqgHxuYO/LUAFAAAAAAC0OSEqADqN3oOmxgGnfje69RmddylAiRow75EYUjMs7zJKwsie4+KLh14de/SZnHcpAAAAAABACRCiAqBT6dZ7ZBak6jdiVt6lACWo0NwcswqD8y6jy9t7wAHxhUP+JwZ1E1gDAAAAAADaR6G5ubm5nd4LAFpNU1NDPPGX/4j5j/w071KAEtNUVhk/HF4Ty+uX5l1Kl3TkyJPjomkfj/JiRd6lAAAAAAAAJUQnKgA6pWKxPPY85J9j0iH/HIViWd7lACWk2FgXs6vG511Gl3TWpHfFP03/tAAVAAAAAADQ7nSiAqDTWzz/rnjo5n+OhroVeZcClIiGmp5xdf+6WNe4Nu9SuoQUmnrPtP8XR4w8Ke9SAAAAAACAEqUTFQCdXv8Rs+KA118d3XqPyrsUoESUr1kRM7tPzruMLqFHRa/45OwrBagAAAAAAIBcCVEB0CV07zMmDnj9d6PvsAPyLgUoEZNefjGKBeNEd8fgbsPjC4f8T0wdsF/epQAAAAAAACVOiAqALqOiqldMP/HyGL7XaXmXApSAqmULYt+eulHtqgl9psYXD/1ujOg5Nu9SAAAAAAAAhKgA6FqKxfLY67B/iYkHfyQKOsQAbWzv2lV5l9ApHTXy5PjswVdFn6p+eZcCAAAAAACQKTQ3Nzev/xIAupbF8/4SD/3+X6KhbkXepQBd2M0TJsQTK5/Iu4xOobqsJi7c52Nx5MiT8i4FAAAAAABgEzpRAdBl9R95UMw67YfRa+CUvEsBurD91lTkXUKnMLLn+PjyYd8XoAIAAAAAADoknagA6PKaGuvjyTu/FvMevibvUoAuKB1MXz9ueLy4Zn7epXRYR408JS7c+5+jqrwm71IAAAAAAAC2SogKgJKx8Nlb4tFbP2O8H9DqXhy7b1y39r68y+hwjO8DAAAAAAA6CyEqAErKmhUvxkM3fzSWL3ok71KALqSpWB7XjOwZtXVL8i6lwxjVc4/48P5fjJE9x+VdCgAAAAAAwKsqvvoiANB11PQcFvu/7r9j5N5n510K0IUUmxpiduXYvMvoMI4e9br48mHfE6ACAAAAAAA6DZ2oAChZC5+7NR699dPRsG553qUAXUBjVY+4emBDrG1cE6U8vu+d+/xLHDHyxLxLAQAAAAAA2ClCVACUtDUrXoqHfv/RWL7w4bxLAbqAhyfNiNuW/y1K0ehsfN+XYkRPHbkAAAAAAIDOR4gKgJLX1FgfT911Wcx96Id5lwJ0cnU9B8Z3ei6OxubGKCXHjDo13rH3JVFVVp13KQAAAAAAALtEiAoA/m7Rc7fFI7d+yng/YLfcPWnvuGf5g1EKqsu6xbum/UscPuKEvEsBAAAAAADYLUJUALCRtSsXxJzbPxeL5/0l71KATmrVgNFxdcVzUQrj+z5ywJdjeI8xeZcCAAAAAACw24SoAGArXnjsF/HkHV+JhrqVeZcCdEK3TJwUc1Y8Fl1RIQpx3JjT47wpHzC+DwAAAAAA6DKEqABge12pbvtsLJ5/R96lAJ1M7fA940dNc6KrSV2nLpr28Zjcf0bepQBASWt6am7UXXlN3mUAAAAAnVz1Vy7Ju4QOpZh3AQDQUVX3GBzTT7w89jr8/0VZZfe8ywE6kb4vPBajuo+OrqK8UB6nT3h7fPXwawSoAAAAAACALkmICgBexfA9T40Dz/hp9BsxO+9SgE7kgIY+0RXs0WdyXHrYD+Kcvd4TFWWVeZcDAAAAAADQJoSoAGAHVPcYEjNOvCL2Ouxfo6xCVyrg1Q2e+3D0rxoYnVVVWXWcN+WD8cVDvxtjek/MuxwAAAAAAIA2JUQFADth+F5viAPP+En0GzEr71KADq7Q1BSzy0dGZzRtwKz42hE/jdeNf3OUFcryLgcAAAAAAKDNlbf9WwBA11Ldc2jMOPHKmP/otfHknV+LxvpVeZcEdFAj5z4e3Qb3iNUNK6Mz6FHRK86f8sE4atQpeZcCAAAAAADQrnSiAoBdNGLy+q5U/UcelHcpQAdVVrc6ZnebFJ3BQcOOjcuO/F8BKgAAAAAAoCTpRAUAu9mVavoJl8XCZ/8YT9zxlVi74sW8SwI6mPHzn43b+1REQ1N9dET9qwfFhft8LGYOOTzvUgAAAAAAAHKjExUAtIJBY4+MA8/8WYzd78IollXlXQ7QgVSuqo39e0yJjqYQhXjN6NPiP4/8uQAVAAAAAABQ8nSiAoBWUlZeHeP3f2cMm3hSPHHHf8Si527LuySgg5i8aHHcVVWI5miOjmBY99Fx0b4fjyn998u7FAAAAAAAgA5BJyoAaGU1vYbHtOO+Evsef1l06z0673KADqBmyfyY2muvvMuIymJVnDbhbfHVI64RoAIAAAAAANiITlQA0EYGjDoo+g3/Scx98Afx7L3/HY0Na/IuCcjRtOUN8VBO712MYhw24oQ4Z6+LYkDNkJyqAAAAAAAA6LiEqACgDRXLKmLM9PNjyIQT4sk7vxYLnr4p75KAnPR+6ckYu8fYeHbVs+36vvsOnB3nTn5/jO09sV3fFwAAAAAAoDMRogKAdlDdY3DsfcwXYvjk0+LxP385Vi15Ou+SgBwcUNcz2itCNbbXpDh38vti30Gz2+kdAQAAAAAAOi8hKgBoR/2G7R+zTvtRzH/kZ9mIv/q1tXmXBLSjAfMeiYFjBseitQva7D0G1gyJs/e8KA4fcWIUCoU2ex8AAAAAAICuRIgKANpZsVgeo/Z+Uwzb83Ux98EfxtwHfxANdSvzLgtoB4XmpphdHB6/itYPUfWo6BWnTXhbnDj2rKgoq2z19QMAAAAAAHRlQlQAkJPyim4xbr8LYuSUM+O5+78b8x75STQ1rM27LKCNDX/+0eg5rFesqF/eKuurKFbGCWPfGKdPeHv0qOzVKusEAAAAAAAoNUJUAJCziureMWH2P2XdqdKIvxceuy6amxryLgtoI2UN62J29ZS4uf5vu7WeQhTi0OGvjXP2ek8M6jas1eoDAAAAAAAoRUJUANBBVHUfGHse+tEYPe0t8czfroqXn7wxmpsb8y4LaAPj5j8TlX0ro66pbpdev8+AmfHWKe+Pcb33bPXaAAAAAAAASpEQFQB0MDW9hseUIz8dY/Y9L56+579i4bO3RERz3mUBrah89dI4YOS+8efl9+3U68b0mhDnTn5fTB90UJvVBgAAAAAAUIqEqACgg+red2zs85ovx/JFc+Lpu6+IxfPvyLskoBXttWBB3FFTjKZoetVlh3YfFadPeHscMfLEKBaK7VIfAAAAAABAKRGiAoAOrtfAvWL6iZdH7Yv3xtN//UYsfelveZcEtIKqpS/FPoOnxP3LH97mMmlc3xsmnB8HDj1aeAoAAAAAAKANCVEBQCfRd9iM2P+Uq2LZgofiufv/JxY9d7sxf9DJ7bN0Xdy/lWzU1P77x2kTzo99Bx2YR1kAAAAAAAAlR4gKADqZ3oP3jmnHfSVW1T4bz93/3Xj5qRujuakh77KAXdBzwVOxx4Q94qmVT0UhCnHAkMPjDXucF5P67ZN3aQAAAAAAACVFiAoAOqnufcfGlCM/FeMPeFfMffBH8cKca6OxYU3eZQE76YB13WLEiJPiDRPOi5E9x+VdDgAAAAAAQEkSogKATq66x5CYeNAHY+x+78iCVPMe/kmsW7Uw77KAV1Fe2TOG7/X6OGTqWVHdY3De5QAAAAAAAJQ0ISoA6CIqqnrFmH3Pi1F7nxMLnr455j70g1jxyuN5lwVspqbn8Bi595ti2J6vi/KKbnmXAwAAAAAAgBAVAHQ9xbKKGDrxhOy25MW/xtwHfxivPP+niGjOuzQoab0HT4tR+5wTg8YeGYVCMe9yAAAAAAAA2IgQFQB0Yf2G7Z/dVi+bFy8+dn28+MSvom714rzLgpJRVtk9huzx2hi+5+uj18C98i4HAAAAAACAbRCiAoAS0K33yNhj1sUx7oB3xyvP3x4vPHZ9LJ53R0RzU96lQZftOjV8z1Nj8Phjo6yiJu9yAAAAAAAAeBVCVABQQorF8hg09qjstnbly/HiY7+MFx//RfY1sHsqqnvHkAknZuGpHv3G510OAAAAAAAAO0GICgBKVHWPITFu/wtj7H7viMXz7owXHrsu61LV3NSQd2nQiRSi77D9Y/her49BY4+MYlll3gUBAAAAAACwC4SoAKDEFQrFGDDqoOy2bvXieOmJX8eLj10fq5fNzbs06LAqu/WPYRNPiWF7vi4blwkAAAAAAEDnJkQFAGxQ1a1/jNn3rdltyYt/jRfnXB+Lnrs1GhvW5F0a5K5QLI/+Iw7MglMDRh+ajccEAAAAAACga3DmBwDYqn7D9s9ujQ1rY/Hcv8SCZ34fr8z9UzTWr867NGjX4FS/EbNi8LhjYuCYI6KiqlfeJQEAAAAAANAGhKgAgO0qK6+OQeOOym4CVZRWcOrYvweneuZdEgAAAAAAAG1MiAoA2MVA1bpYPO/P6wNVzwtU0bkVihXRf8SsGLSh45TgFAAAAAAAQCkRogIAdklZeVUMGntUdlsfqEodqm4WqKLzBafGHxsDRx8uOAUAAAAAAFDChKgAgFYKVB2Z3VoCVQuf/WMsmX9H1K1Zknd5sEFZZffoN+yAGJg+r6MPj3LBKQA6qHnz5sVf//rXeP3rX9/m7zVnzpyYP39+HHvssbv0+muvvTY+9rGPxbve9a74wAc+0GrrBQAAAID2JEQFALRZoKq5uTlWLn4iFs+/MxbPuyOWLXggmhrr8i6RElIolEXPgXtF/xGzo//IA6PXoKlRLDoEBqBje+yxx+KMM86I4447rs1DVLfddlsWfrrwwgt3Oey01157xXvf+97Yf//9W3W9AAAAANCenEECANpMoVCIngMmZbcx+741GuvXRO1L92ahqiXz74xVtc/kXSJdUHWPIdHv76GpfsNnRkVVr7xLAoCdsmzZsqira5/g+eLFi6OpqWm31pFCVOnW2usFAAAAgPYkRAUAtJuyipoYMOrg7JasXblgQ6BqyQt3Rf3aZXmXSCdUVl4TfYftH/1Gzs46TnXvMybvkgAAAAAAAOhkCs1pzg4A8Krmz58fRx99dMyYMSN+/OMf511Ol9Pc3BTLF835e6Dqnli+6NForF+Vd1l0QMWyyug5YM/oO3S/LDjVZ/C0KJZV5F0WALSKj370o3Hddddt8tgXvvCFeMMb3hALFiyI//qv/8pG5S1atCj69OkThx56aLznPe+JESNGbPKaOXPmxBVXXBGPPPJItmy/fv3iwAMPjHe/+90xZsz6wPFb3vKWuPvuuzd53fe+972YNWvWTtV87bXXxsc+9rFsfN8HPvCBV13vs88+G1deeWXccccdsXTp0hg0aFAcddRRcdFFF2V1br7eyy+/POts9f3vfz/mzp0bAwcOjLPOOisuuOCCePrpp+Pf//3f45577omKiorsWD29ZuTIkRvWs3r16uznduutt8a8efOivLw865z1pje9KU444YRX3b7LLrssq+FHP/pR3HnnnfGzn/0samtrs5/j2WefHW984xs3LPuOd7wj/vSnP8UPfvCDOOCAAzZZz8qVK+OQQw7JXnf99dfH7mh6am7UXXnNbq0DAAAAoPorl+RdQoeiExUA7KBevXrFe9/73hg6dGjepXRJhUIxeg+akt3Gznh7FqpateTpWLbwoVi28OFYtuDhWLX02YhmY2FKTU2v4dF70N7Ra9DU6D147+jZf5LQFABd1jHHHJPdpyDVxIkT4zWveU0W+ElhoXPPPTcLEx1++OFZ+CeF/H/xi1/ELbfcEldfffWGkXrPPPNMFhBKYaH0+v79+2ev/+Uvf5kFiX71q19lwaXXv/710bNnz/jDH/4Q+++/f8yePTuGDx++29uwvfWmsNOFF16YjStMFyiMGjUqHn/88SwglZZPFysMGTJkk/WlAFQKXh1//PFZECxtx3/8x3/Eyy+/nIWRpkyZkgWZHnrooWwdzz33XPZzSaGqJIWzUmArBZgOO+ywLMz0u9/9Lgt8rVixYpMQ1PakMFuq9aSTTorq6ursvT7xiU/EY489Fp/85CezZU477bQsRJXq2jxEdeONN8aaNWuyQBwAAAAAHY8QFQDsRIjq4osvzruMkgpV9eg/IbsN32v9iaaGupWxfOGj64NVC9aHq+rX1uZdKq2orLJ79B44JXoN2jt6D56ahacqa/rmXRYAtGuIKgWQUohq0qRJG44/U/BmyZIl8Y1vfCOOOOKIDcunzkjnn39+XHLJJVm4qFAoZJ2SUlgnBatS6KhF6v709a9/PevwlLpGtYR5WsJOrXWsu631puDUBz/4wWhqaoqf/OQnMXXq1A2vSdubunClUNJVV121yfpScClt0+TJk7PvUxAqdaH64Q9/GG9/+9uzbU9Ss/UUHrvvvvviwQcfjP322y+efPLJLEB1yimnxKWXXrpJx6gUyvrOd76zwyGqFJZK3aj22Wef7Pu0Xeecc0722IknnphtawqGpQ5hKaSVtqWqqmqTbUzBrpNPPnk3froAAAAAtBUhKgCg0yiv7BH9RszMbi1WL58fy7NA1fpQ1YpXnojmpvpc62QHpaBc33EbOkylwFT3vmOzAB0A8A8pEJTG8h177LGbBKiS1OUpBXduvvnmuP/++2P69OlZmCj529/+lj2fglXJeeedl3WJGjx4cC7bkUJVCxcuzOrYOECVpLrSyL80qjCNLdy4xoMOOmhDgCpJ4agWaTxhi7SdaZxfClGlLl1puRTYaunOlUJoLeMC07i/1BkqjQbcUanGlgBVktaVglSpo1XqPJVCVJWVlVlIqqWzVsu4wDSGMP17HHfccdG3r4A4AAAAQEckRAVALs4444xs3Mb//d//xYABAzY8/pWvfCW++c1vxumnnx7/9m//tuHxVatWxaxZs7KTQumERDr5kq4av/322+PFF1+MxsbGbOxHGm2SRu6lq79bHHXUUdGtW7fs5EZa56JFi7KTNumK8XTCKT337W9/OxsJkupJ4z3Gjh0bZ599dpx11lkb1pNOxKTl04mZNGYkueyyy+Lyyy+Pn/70p9lJkXSFfFqud+/e2fu+//3v33CipsVTTz0V//mf/xl//etfY/Xq1dmJmA996EPx1a9+NbtKPl1pz47r1mtEdhsy4fjs+6amhlizbF6sqn02G/+3qvaZ9fdLn4umhnV5l1uSCsXy6NZ7VBaQ6t5nbHTvOy77ulvv0VFW/o/uDADA1qXj5iSFgNLx5+aWLVuW3T/66KPZ8XLqBHXNNddky6bj1hRCOvjgg7MOTnmOpm7Zjueff36r29ESeJozZ84mIaoxY8Zsslz37t2z+3TMn7p2baympmZD16skdfNK4aZ07J22PwWr0s/i0EMP3TD+cEdt3NWrxb777rvhZ98i/S6TfmdJIwVbQlSpC1VilB8AAABAxyVEBUAujjzyyOyK+j//+c/xute9bsPj6fvkrrvu2mT5FC6qr6/PQkzpyvTTTjstamtrs/WksNKKFSvi1ltvzU5WpCvwf/7zn2/y+vSaNDokjUdJJ1tSyKnlivx00imN8Kiurs7GcKxduzZ+85vfxCc/+clYt25dvPWtb33V7fnsZz+bjQpJV5anmv74xz9mI0oefvjhrJZicX1nnfR9Wl8KT6VtGTVqVBbcestb3pLVxO4rFsvXh3X6jt3k8ebmpli74qUNoaqVtc/G6r8HrdKYQHZfsbwquvcZE937rA9JtYSmanqPzP5dAIBds3z58uw+hfbTbVuWLl2a3U+cODEL93/rW9/KjpHTmL90Kysry46dP/WpT21yIUN7b0c6Vk63V9uOFumih63ZeFTe9qQLJv7nf/4nfv3rX2fjD9MtXUCRwln/8i//kl2IsSPSRRuba+lk1bJtyZ577hlTpkzJjvMXL16cXVSRAlVp2RTeAgAAAKBjcjYLgFykkzdf//rXNwlRpZMl6QrudGX5vHnzsg5Tw4YNy55LYz1aXnfVVVdl3aQ+//nPZ2GqFin8lK70Tle4p25Pe+yxx4bn0kmNCy+8MOv4tLnU1eo1r3lN1gWroqIie+ykk07Kwk4//OEPdyhElcZzpBNTo0ePzr5/3/veF6eccko2diWNE2kZOfKJT3wi63R1xRVXZIGuJNWUxoCkcR+0nTQirqbX8Ow2YPSmJ6/WrVoUK2ufidVLn4u1KxfEulULYu2qhbEuuy2KpkYdrFo6SlV1GxBV3QdHVfeBUZ3uewyK7r1HZ92lqnsO2xBOBABaT0vnpXTcmI5pd8SECRPiy1/+ctaxNR2T/uUvf8mCPGnsX+rymkJFeW1H6sDa0qGpPaTuVBdddFF2e/nll7MQ1e9///vsZ/Ge97wnfvvb38aIESNedT3p943NpYs5ks27z6bfUz7zmc9k606hqhdeeCHe8Y53ZEE2AAAAADomISoAcpFOJKSAVDqZ0yKdzEgjPNIYvXTVfPq+ZdxFGtuXTgSlzk2pW1T6+tRTT91knamTVBqnkU5QpCu+Nw5RJds7UZNORrUEqJLZs2dno0HSaL4dkUJXLQGqlqvi01Xmzz33XLaOFKJKY0nSCaw0PqQlQJWkEykf+9jHsqvxW0aY0L5SICjd+o+YtdXn69Yu/XugamGsXZnuU9BqUaz9+336vrN3syorr4mq7oM23Kpbvu6Rvl4fmqqs6S8kBQDtYPP/306ePDm7T51ctyZ1nXrppZeyY9Jx48Zlo/xSl9SPf/zj2bFmGh+dbueee252LHrPPfds873aahuSlvF5DzzwwFaPzVPHqNQJNo3+HjRoUKvUkbrUpiDTa1/72ux3hdRNKv0ekW7pGPzaa6/NLnrYkRBVqjuNRtxYS2ewadOmbfJ4+rf40pe+FL/73e+y308So/wAAAAAOjYhKgByc8QRR8SPfvSjeOyxx7JQVQpUpVEdqfNTOoGSRvqlEw3p+XTFeEvHqhkzZmS31NHp8ccfz7pApVsKKbWMAdxaGGnkyJHbrCWdbNpcClGlK8vT1fuvdsX41l7fq1ev7L6urm6Tk17p5M3WaksndFL3LTqeyuo+2a1n/4nbXKahfnXUr10WjfWroqFu/a2xfmX2ePZ1eqx+ZTTWrY6Gvy+zYdn69PWaiOambOxgumVfR1M0Z5/lls9zMeuolW6R3ReiUChLZymjrLw6yiq7R3nF+lvL1xseq+weZX+/L9/suYqqXlFe1bPdfp4AwPaVl6//c00aZ52kY990vJk6J7UEglqkLqxptHTy5je/ObtPIak0ui4Fe1J31BavvPJKFlJKFyZs673aahuSltHa6XeANAY7bVeLW265JS699NJs5N0FF1zQanWk3xlS160UKksXarSM2W5ubt4Qbtre7wkb+973vhfHH398Ngaw5ef5ta99LftdYeMOuUka1Z22N/17pd9V0r/F+PHjW227AAAAAGh9QlQA5ObII4/MTqCkkX4pRHXHHXdkHZvSiZP0fUsgqmWU39FHH73hREg6wXL99ddvGKmRTsakcFI6IZRCV+mkyOZSp6ptSZ2jtnX1/NbWtTOvb1FbW5vdp+3bmsGDBwtRdWLlFd2yGwDA7ho6dOiGbqypm1E6Dk7Hv+eff342Njp1k5o0aVI2lvqmm27Kgkpf+MIXNoyUSyPq0mv/+Z//OW688cYsvJNGZ6euSOnY9sMf/vAW75VGU6fj13ThwsSJE1ttGzZfbxoxmEZZp8BXuqhi7NixWffW1JW1srIy295031pS56j0PrfeemucfPLJ2fcp9JS63qaLMFKYa+OLHK6++ursQorXv/71W3SnSj/nFJZKo8BTF9sU/Epjxj/4wQ9mv79sLi37m9/8JusS9q53vavVtgkAAACAtrH+8jsAyEEamZc6T6UQVRp5l67QTo8lBx54YHay4fnnn89CVCl4lEaQJJdcckk2oiSdDEknOVIHqxS4+uY3v7nVjlAdRffu3bP7dFJma1atWtXOFQEA0BGlANKHPvShqKmpiR/84AfZ8e7UqVPjuuuuizPPPDOeeeaZ+P73vx933313FqhKy6TQT4uWkX6pC9UTTzwR3/3ud7MuVumChbTsxqOl999//6wTbOpQlZ5LI+taw7bWe/jhh2fjB1NHp9SpNdX26KOPZt210uNpe1pT6jyVukWl4FgKT6WfYfrZpGBXGuf3H//xH1t0m7r88ss3dKna2Pvf//544xvfmAXUfvWrX2UdrK644op45zvfudX3Tr/T9O/fP7uYI40kBwAAAKBj04kKgNykK8zTSZJ0EiLdkpYQVbr/zne+k10tf//992dXcacTHcuXL8+u+E4jNL7+9a9vsc6nnnpqh7tHtbe99947u0/bs7lly5bFs88+m0NVAAB0RBdeeGF221jqjNQyuu/VpO5TqavTjviXf/mX7Lar0gjudNvR9aYuWpuHl3ZmvUka6701qctVum0shdHSiMAdGROYftfYXvfZdEFHuu2INJI8daM96aSTslHhAAAAAHRsOlEBkPtIv3R1+re//e3o3bt3TJ48ecOV62lExre+9a1obGyMo446Kns8PZauJk9hqjTWb2NXXXVVdqV90tDQEB1NGhOSRpikUSItobEkbV86wZXGgwAAAJ1fuqjjsssui6ampjj77LPzLgcAAACAHaATFQC5SiP5UigqjctIY0XS1y2j71LnpnvvvTcb+XfQQQdtuIo8jf749a9/nV2VnkJYSRplksaADBgwIF555ZXsiu+O6HOf+1yce+652ciPtL3Dhg3LRhGmsYXpynZBKgAA8vT73/8+5syZs8PLz5w5M2bNmtWmNXUm6XeR888/P9asWRPz5s3Lfl+ZPn163mUBAAAAsAOEqADIVf/+/WOfffbJRty1jPJrceCBB2YhqhSgSgGjFmmESRplcsMNN8SPf/zj6NOnT4wePTouvfTSLJR0zjnnZN2eTj311Ohopk2bltWcRhHecccdWWhqv/32iy9+8Yvx1re+NcrL/a8ZAIB8Q1TXXXfdDi//3ve+V4hqI/369cs67aYw1XHHHZddRAEAAABA51BoTv3FAYA2V1dXFwsWLMiCXmVlZZs8t3bt2pgxY0aMHTs2fvOb3+RWIwAA0PE1PTU36q68Ju8yAAAAgE6u+iuX5F1Ch7J+ZhIA0ObSSI/XvOY1cfrpp0dDQ8Mmz33nO9+JxsbGrPsWAAAAAAAAAO3LzCAAaCe9e/eOk08+OX7xi1/EKaecEoccckjWkerhhx+Ou+++OxtRmMahAAAAAAAAANC+hKgAoB19/vOfj+nTp8e1116bhanSGL8hQ4bE29/+9njnO9+ZBa0AAAAAAAAAaF+F5ubm5nZ+TwAAAABgFzU9NTfqrrwm7zIAAACATq76K5fkXUKHUsy7AAAAAAAAAAAAgDwJUQEAAAAAAAAAACVNiAoAAAAAAAAAAChpQlQAAAAAAAAAAEBJE6ICAAAAAAAAAABKmhAVAAAAAAAAAABQ0oSoAAAAAAAAAACAkiZEBQAAAAAAAAAAlDQhKgAAAAAAAAAAoKQJUQEAAAAAAAAAACVNiAoAAAAAAAAAAChpQlQAAAAAAAAAAEBJE6ICAAAAAAAAAABKmhAVAAAAAAAAAABQ0oSoAAAAAAAAAACAkiZEBQAAAAAAAAAAlDQhKgAAAAAAAAAAoKQJUQEAAAAAAAAAACVNiAoAAAAAAAAAAChpQlQAAAAAAAAAAEBJE6ICAAAAAAAAAABKmhAVAAAAAAAAAABQ0oSoAAAAAAAAAACAkiZEBQAAAAAAAAAAlDQhKgAAAAAAAAAAoKQJUQEAAAAAAAAAACVNiAoAAAAAAAAAAChpQlQAAAAAAAAAAEBJKzQ3NzfnXQQAAAAAAAAAAEBedKICAAAAAAAAAABKmhAVAAAAAAAAAABQ0oSoAAAAAAAAAACAkiZEBQAAAAAAAAAAlDQhKgAAAAAAAAAAoKQJUQEAAAAAAAAAACVNiAoAAAAAAAAAAChpQlQAAAAAAAAAAEBJE6ICAAAAAAAAAABKmhAVAAAAAAAAAABQ0oSoAAAAAAAAAACAkiZEBQAAAAAAAAAAlDQhKgAAAAAAAAAAoKQJUQEAAAAAAAAAACVNiAoAAAAAAAAAAChpQlQAAAAAAAAAAEBJE6ICAAAAAAAAAABKmhAVAAAAAAAAAABQ0oSoAAAAAAAAAACAkiZEBQAAAAAAAAAAlDQhKgAAAAAAAAAAoKQJUQEAAAAAAAAAACVNiAoAAAAAAAAAAChpQlQAAAAAAAAAAEBJE6ICAAAAAAAAAABKmhAVAAAAAAAAAABQ0oSoAAAAAAAAAACAkiZEBQAAAAAAAAAAlDQhKgAAAAAAAAAAoKQJUQEAAAAAAAAAACVNiAoAAAAAAAAAAChpQlQAAAAAAAAAAEBJE6ICAAAAAAAAAABKmhAVAAAAAAAAAABQ0oSoAAAAAAAAAACAkiZEBQAAAAAAAAAAlDQhKgAAAAAAAAAAoKQJUQEAAAAAAAAAACVNiAoAAAAAAAAAAChpQlQAAAAAAAAAAEBJE6ICAAAAAAAAAABKmhAVAAAAAAAAAABQ0oSoAAAAAAAAAACAkiZEBQAAAAAAAAAAlDQhKgAAAAAAAAAAoKQJUQEAAAAAAAAAACVNiAoAAAAAAAAAAChp5XkXAAAAAACl7Prrr4/vfe978eyzz0Z1dXUcfPDB8YEPfCCGDx++Q69/8cUX4z//8z/jjjvuiKVLl8aYMWPinHPOiTPPPLPNa4fd/fym5V955ZWtPpc+x5/4xCdauWLY1Pvf//6499574/bbb9/h19TW1sYVV1wRf/zjH2PRokUxbNiwOO200+L888+P8nKnXei4n910bPDAAw9s9bkjjjgivvnNb7ZihbDeqlWrss/WTTfdFC+88EJUVFTE5MmT461vfWsce+yxO7QOx7t01s+uY13ykvaV6fN7yy23xEsvvRT9+/ePo48+Oi666KLo16/fDq3jxRLd9xaam5ub8y4CAAAAAErRV7/61fjGN74Re+yxR3byMv1x87e//W306tUrfvazn8XIkSO3+/r0x/yzzjorO6F/wgknxIABA+L3v/99PP/889nJ/I9+9KPtti2Unt39/KbwySGHHJKdjDrqqKO2eH6fffaJww8/vA23gFJ3+eWXx2WXXRaDBw/e4SDK8uXL4+yzz46nnnoqXvOa18SoUaPiz3/+czz66KNx3HHHZSeaoCN+dpuammLGjBnZSdRTTz11i+fTidGTTz65DaqllK1cuTLbZz7++OMxZcqUOOCAA2LFihVZKCXdf/CDH4x3vvOd212H410662fXsS55SZ/RN77xjfH000/HgQcemH0Gn3nmmewCgEGDBsVPf/rTGDp06HbX8UIJ73uFqAAAAAAgB4899li87nWvi/322y+uvvrqqKyszB6/+eab473vfW8ceeSRWUBle9Jyafmrrrpqwx/g165dm10dnTpN/PznP4+pU6e2y/ZQWlrj85tO/F9wwQU7dBIKWtO6devis5/9bBb2S3YmiPKFL3wh+8x/8pOfzE6uJo2NjVlXoHRiNQVbUrgKOtpnN51ITSdB00nVz3zmM21cKWwauE4n4j/1qU9FoVDIHl+wYEHWwW/JkiVx4403xujRo7e5Dse7dNbPrmNd8tJyvHrxxRdn+9AWP/jBD7LjiDe84Q3ZMtvz3hLe9xbzLgAAAAAASlEagZa85z3v2RBASdJoiHSl86233pr9kX57V4amK0GnT5++yRXMaaRaGqeWrp38yU9+0sZbQana3c9vSxAr2XPPPdu4WviHNNLk+OOPz0IoO9v9IZ04arlyP51UbVFWVhaXXHJJ9vU111zT6jXD7n52k9RNJZk0aVIbVAdbl0ImKXzyoQ99aEMIpSUA+KY3vSkLod52223bfL3jXTrrZzdxrEte5s+fn3WOevvb377J4+kimOS+++7b7utfKPF9rxAVAAAAAOTgzjvvjPLy8ixwsrnZs2dnf5hMy2zL3XffnS2T2vNvLnUHqqio2O7rIc/Pb+LEEnlIV82vWrUq6yT1zW9+c6de++CDD8bq1atj5syZUSxuenolja8cMWJE3HPPPdmJVehIn91kzpw52b19Lu0pdSxJnfrSqN/NtYSw0+d6Wxzv0lk/u4ljXfJyxRVXZOOma2pqtuhKmQwcOHC7r7+7xPe95XkXAAAAAAClpq6uLl588cUYPnz4Jl18Nj4ZnzzzzDPbXMdzzz2X3W9thET6o2bqlJKuQE3vtbX3gDw/vy0n9Lt16xa/+93v4n//93/j+eefjx49esQRRxwR//RP/xSDBg1qs22gtE+KfvnLX84+azurZb87atSorT6fPvtpv5tu2xvvA+392d04RPXoo4/Gl770pXjyySezffhBBx2U7XPHjh3byhVDxDnnnLPVx9PJ+TQC9dW6oznepbN+dhPHunQUy5Yty0JPX/ziF7MLYS666KLtLv9cie97daICAAAAgBz+iJn+AN+7d++tPt+zZ8/sfsWKFdtcR21tbXa/vXU0NTXFypUrW6VmaM3PbxqLlk4kpa4+V155ZUybNi3OPPPMbERKGlV12mmnZX+Yh9Y2a9asXQ6hLF26NLvv06fPdj/7y5cv340KofU/uxt3RPnqV78a48aNy0ZSTpw4MW644YY4/fTTs05r0F5+9KMfZZ+5FD499NBDt7mc410662fXsS4dxY9//OOsi2oK7qVx6ymQvbUOUxurLfF9r05UAAAAANDO6uvrs/ttXbXZ8vi6det2ex3p6lDoaJ/fRYsWxR577JGNSLn88ss3hFJSOCud4E+jqj7+8Y/H1Vdf3SbbALuiZX+6O599yEM6iZ86nvTv3z/+67/+K4YNG7bhuWuuuSYbEfiRj3wkC1SVlZXlWitdX/qc/du//VvWDSV1RUldTbbF8S6d9bPrWJeOol+/fnHBBRdkn8nURe3DH/5wvPTSS/GOd7xjm6+pL/F9rxAVAAAAALSz6urqTf44ubmWP0am8Q9tuQ7YFa3x2UtX7//yl7/c4vFCoZBdJf2rX/0q7rjjjli4cKFRJ3S6z3737t3btS54NWl/fO211271udSR6vrrr4/77rsv664yffr0dq+P0uri89nPfjb7/30aK7n//vtvd3nHu3TWz65jXTqK4447LrslF198cbzxjW+MSy+9NOtwuffee2/1NdUlvu81zg8AAAAA2lkax1MsFrc57qzl8ZbRUFvT0lp/W2Oj0jrSH+l3Z/QPtNXnd3vS1f2TJ0/Ovp47d+5uVAqta0f2u4n9Lp3NPvvsk93b59JW0tin1Lnn05/+dPb/+a997Wtx0kknverrHO/SWT+72+NYl7yMGDFiQweqP/zhD9tcrneJ73t1ogIAAACAdpba36erk1988cXs6s7NR0HMmzcvu08jILZl3Lhx2/zDe1pnatE/duzYLOwCHe3zu2DBguyzm/6QP3To0C2eX7NmzSZXQUNHsL39bsvj6Yr8jUelQUdQW1sbzzzzTDbSJx0bbM4+l7aUOpZ86EMfysZIpZFmV1xxxat28WnheJfO+tl1rEuen9t77rknGhsb47DDDtvi+fR7XLJkyZJtrmNcie97u+ZWAQAAAEAHN3PmzOwPkPfee+8Wz6XRDunKzhkzZmz39WmZu+66a4vn/vrXv2br3m+//Vq9bmiNz28ab/LmN785vvWtb23x3KpVq+KRRx6JmpqamDBhQqvXDrtq6tSp2ai+u+++O+tMsXl48IUXXoh99903ysrKcqsRtibtl88+++ysm8rm0mc57cvTfntbY31gV6WT+O973/uyEEoKk/z4xz/e4RBK4niXzvrZdaxLniGqCy64ID74wQ9uGLu3sfTZS7YWqm4xs8T3vUJUAAAAAJCD0047Lbv/6le/GmvXrt3w+M0335z9YfKoo46KIUOGbPP16bmDDz44O5n/+9//fsPjaV1pzERyzjnntOk2ULp29/N73HHHZaNMrr322nj88cc3PN7Q0BCf//znY+nSpXHWWWdFVVVVG28J7Lj0eUwjfObPnx/f+973NjnR+uUvfzn72n6Xjih1okgjVm+//fb485//vMlzqbPKU089Fccee6wuarS6q666Km655Zbss/WjH/1oQ3eTHeV4l8762XWsS17SiL2jjz46G7l3+eWXb/Lcww8/HFdffXXWOXV7YymHlPi+t9Dc3NycdxEAAAAAUIo+85nPxA9/+MMYM2ZM9ofONPbhxhtvjL59+8Y111yzodV+ugI0/QFzr732imOOOWbD65999tnsj+/pD6THH398DB48OP7whz/Ec889F29/+9vjkksuyXHr6Op29/P7ne98J770pS9lY0xe+9rXRq9eveLOO++MJ554Iruy+b//+7+zK/ShLU2aNCnbd6ZwycbmzJmTnTQaPnx4vOENb9jweBp9cvrpp2ddp4488shsbOVf/vKX7Kr+tB9OwcJ05T50tM/uDTfcEB/+8Iezr1NgKo2Xuu++++L+++/PwgE/+MEPon///u2+HXRdKSSS9pOrV6/OjhPSccDWpO4+Bx54oONdutxn17EueXn55ZfjTW96UzZ+PX3Wpk2bln2d9p3pODUdr7Z8Vu17tyREBQAAAAA5SX+aSyGUn/zkJ9kfI/v06ROzZs3KRke0BFCSyy67LLuK9PWvf/0Wo3jS69LVoGlUz7p167JAS7oqNJ3kdyKfjv75ve2227ITTA899FA2FmL06NFxyimnxHnnnReVlZU5bBWlZltBlNQ54mMf+1g2zuT73//+Js8tXLgwvv71r8ett96anVhKY35SWOXcc8/1uaVDf3ZTYOob3/hGNr4vhQNSh5XULeWd73xn1rkCWlMK873nPe951eXe9a53xQc+8AHHu3TJz65jXfKSgv9XXnllFnxKx64pxJd+V0uf2z333HPDcva9WxKiAgAAAAAAAAAASlox7wIAAAAAAAAAAADyJEQFAAAAAAAAAACUNCEqAAAAAAAAAACgpAlRAQAAAAAAAAAAJU2ICgAAAAAAAAAAKGlCVAAAAAAAAAAAQEkTogIAAAAAAAAAAEqaEBUAAAAAAAAAAFDShKgAAAAAAAAAAICSJkQFAAAAAAAAAACUNCEqAAAAAAAAAACgpAlRAQAAAAAA0CXdddddMWnSpOz2+9//frvLXn311dlyH/3oR6OjmD9/flbT/vvvH13JvffeG2effXZMnz499t1333jjG9+4Q/+ORx11VLvVCACUnvK8CwAAAAAAAIC29olPfCJmzJgR/fr1y7uUkrZy5cq48MILY8WKFTFx4sQYP358jBo1Ku+yAACEqAAAAAAAAOj6Fi9eHJ/85Cfjsssuy7uUkvbUU09lAar+/fvHtddeGxUVFXmXBACQMc4PAAAAAACALi11n6qsrIybbropfvGLX+RdTklbt25ddj9w4EABKgCgQxGiAgAAAAAA4P+3d+9BNtZxHMe/KzOi3IZJjdoKyS0y7t3kXmK3SKRxCYWUolGYmqhsBplNyaXMoIs1hholTGRFq1wjRZRuFJIpXQi1zec785w55+zZza4920zP+zXzzJ59znPO83ue5/z5mc/3f+2CCy6wESNG+Ounn37aDh06dMafvfLKK307duxYnvfmzp3r740ePTqy76OPPvJ9Gh/43Xff2cMPP2wtW7a0q6++2nr06GHZ2dl+3IEDByLvaczgHXfcEXkvkSNHjtiYMWOsVatW1qhRI+vevbstXLjQ/vrrr4TH79mzx0aNGmXXX3+9NWjQwK677jo/n5qg4mn9WvP69ev9tdbatGlTGz9+/Bndo1WrVtnAgQOtefPmfq62bdt669f+/fvz3Mu+ffv66927d0fubfxxhbF8+XLr37+/X5/OfeONN/p179q1K8+x33zzjV9fp06drGHDhr7ePn362OLFiy03NzfmWF2D1pboe3S9ek+fjXf06FGbNGmSn+Oqq66yZs2a2YABA2zt2rUJ179z504bPny4tW/f3tev38OgQYP8HAAAoGQRogIAAAAAAAAAAMD/noI2CgYpDDV27Nikn2/fvn3WrVs3+/DDD61JkyZ2ySWX2I4dO2zo0KG2aNEif0+Bq8aNG1tqaqpt377dBg8enDBsc/LkSevZs6ctW7bMgzkK/+zdu9eDWgqHxQeAFCzS9y9dutQqVapkbdq08eant99+2/evWbMm4ZoVMFuxYoVdc801dvHFF1utWrX+9Tq1hmHDhtmGDRvsiiuu8PDROeecY1lZWZaenu7XGOjatat/t1SsWNH/11auXLki3GGz2bNn20MPPWSbN2+2mjVr+rnPO+88v26F0rZs2RI59quvvvLg2RtvvOGtZApb1atXz7Zu3eq/h6eeesrOlgJqt956q82ZM8dOnDjhwa66devaxo0b7d5777XMzMyY4zdt2mS9evWylStX+v3Q+mvUqOFhNt1TfQ8AACg5pUvwXAAAAAAAAAAAAMB/olSpUjZx4kRLS0vzkMrrr79uvXv3Ttr5FJBRUGfatGlWpkwZDzopGLN69Wp77LHHvHloypQpVrZsWT9e+xSuWrBggbVu3TrPCDx9XiEoBa6CUFC/fv08gKMmpdtvv933f/311/boo4/66xdeeME6dOgQ+R4FpNRGpU1Bq2rVqsWcR41Q+i61LMnff/9d4DUqKKU2rKpVq3qgqX79+pHPvfTSSzZ16lR74IEH/LwaqajrVagqJyfHLrroIv+/qBQsmzFjhpUuXdrefPPNmMCXzjtr1ix//+WXX/Z9CiT9+uuvHlQbOXJk5Fg1TSnIpPs+ZMgQby0ritOnT/u1quVM51C7lNYmCrypqUvrUQOWwlLy4osv2qlTp+zJJ5/0kFxg3bp13kY1ffp0b+5i7CEAACWDJioAAAAAAAAAAACEgtqggtF7kydPtm+//Tap53v88cc9QCUpKSnWpUuXyOtx48ZFAlRyyy23REJQiWiUXxCgkssvv9z3yWuvvRbZP2/ePA9dKbQTHaCSm266yUcK/v777x4ii6dRgUGAKgieFSRoSlIbVRCgCj6nIJEasH755RcPWxU3BaL++OMPb5WKDz6p9UntUgqZBYIRjvoNRFNTVEZGho/g03cV1bvvvuvtYxrNqJBWEKASNXQFvzuFy+LXFP1cRSMY1YylZrD8xjUCAIDiR4gKAAAAAAAAAAAAoaHGnxtuuMEDOGps+re2paLS+DyNxIumNiZR6EfvR9M4t6BhKZ5G1MUHokQhJY3OU5uSQkWisXpBICoRfUaix+wFNN7uTB08eNBDaAqCtWvXLuExGtUnGmlY3KpUqeLhJD3H2267zZ577jnbtm2bh47OP/98D1ApjBRo0aKF/1Xrk8JnasdSwCsIsGmtGn1YVP9239UupnCZxjYeP348Zk3333+/rys7O9uvRzSOsHPnznbuuecWeU0AAKBwGOcHAAAAAAAAAACAUJkwYYKHZrZu3erj3tRcVNyCUFQ0NVBJ5cqV830vkfgwVkABGwWzfvzxRzt8+LCVL1/efvjhB38vuoUpke+//z7PvsKEiHQ+0Vi+6NalaEHrU3BsccvMzPQRemqA0mg8bboHCk+lp6f7OMVA//797csvv7QlS5ZENoWaGjVqZB07dvTQksJXRRXcd43g01YQ3Y9LL73UxyrqOSg8pTYxbRrd17RpU7v55ps9HHY27VgAAKBwCFEBAAAAAAAAAAAgVNQEpRF0Grs2bdo0bwkqioJarPILFhVFMBIwkdzc3JjzBWvS6D4FcvJTrly5QgW58jtvQYJRdMkKAtWqVcuWLVvmrVpr1qzxxqs9e/bYO++845uCclOmTIncn2eeecaGDh3qo/dycnI8RKf2Km1z5861BQsWWPXq1c/4uqIF971Zs2Z24YUXFvj54LkotDVr1izbvXu3rV692tus1FSlv9peffVVD1ZVqFChiHcIAAAUBiEqAAAAAAAAAAAAhI5GuClMs3z5ch/r16VLl4THKVikwNDp06fzvBeMg0u2Q4cOJdyv0W9Hjx71gJCCYaIxgQcOHLARI0bYZZddlrQ1BedTA5PuTaLQmMb9SdWqVZO2DrVJaYReMEZP92Pp0qUennrrrbesT58+3jYVSE1NtYEDB/p26tQp27hxo2VkZNgXX3xhs2fPtvHjx8cEyhI992PHjuV7P9LS0rzVqjDq1Knj27Bhw+zEiRO2bt06H++nQFhWVlZSmtIAAEBepRLsAwAAAAAAAAAAAP73xo0b56GjXbt22fz58wtsbNLIvHhqMiqpENXnn3+eZ//KlSu9Aalhw4ZWtmxZ39eiRQv/q2ajRObNm+eBsalTp57VmjTGT+P6jh8/bu+9917CY9QSJS1btrTitmPHDr+OwYMHx+zXeEON7mvcuHHM2EIFkXRvDh48GNMIde2113qgKnokX1Gee/PmzQu875988ol16NDBhgwZ4sEshaV69uzpowdPnjwZM6JRxwVBrOg1AQCA5CJEBQAAAAAAAAAAgFCqVKmSTZgwocC2JzUEica9RY+w05g1tRiVlNGjR9tPP/0U+V8j4CZNmuSvgxCQ9OvXz1uhnn/+eVuxYkXMd2zZssXHF+7du9dq16591msaMGCA/1VrkoJoAd0njalbu3atVaxY0dLT0y0Zo/zUuPX+++97mCyaru/TTz/1lqoGDRr4vipVqtjPP/9sEydOjAkt6bXayERhtPjnrpF60W1Uq1at8qareJ07d/ZgWXZ2tmVmZnrLVeDw4cM2duxYb+ZSY5Wej8JSGnOo95599tmYEYG//fZbJIwVvSYAAJBcjPMDAAAAAAAAAABAaLVu3dp69OhhixYtSvj+PffcY9u2bbMlS5bY9u3bPbyjkM6+ffusW7duvj/ZqlevbkeOHLGOHTt649Gff/7pAS4FdQYNGmTt27ePCf888cQT3rL14IMPWs2aNa1GjRr++Y8//tgDTr179853fGFh3HnnnbZz505bvHixde/e3Zo0aeJNUJ999pkHhsqXL++NV9WqVbPipqYojd4bNWqUDR8+3OrVq+fNWApKKSym4NN9993n+2TkyJG2YcMGD0xt3rw5Eq7S+tU2pVCZAmgBtVkpnPXBBx/4fdfx+/fv93BWoudepkwZD6jp9zJjxgy/J1qT1rFp0yZ/Zhor+Mgjj0Q+o+fUq1cvD+hptGTdunU91KXnpJGBavAqjucEAADODCEqAAAAAAAAAAAAhJpanhSwUUgmXps2bWzOnDnerKQRchqvVr9+fRszZoxVqFChREJUasxSs5SapxTqUTBHoZ67777bOnXqlOd4jYJTIEfhHIWt1I5UuXJla9Wqld11113Wrl27YllXSkqKZWRkeBAtKyvLA0kaU6dGpr59+3oQSQGwZElLS/N788orr/i4PI08VHBL16mgWNu2bSPHamzjwoULbebMmbZ+/Xrf1AiVmprqYTDdy2CEn+gZq21s+vTpHspSq5YCdJMnT/bvT/Tc1Rqllir9XnR8Tk6Of6cCWlqrnosaqAL6Pq1Jvy0FrfQZtVMp+Na1a1dfl0YOAgCAkpGSG907CgAAAAAAAAAAAAAAAAAhU+q/XgAAAAAAAAAAAAAAAAAA/JcIUQEAAAAAAAAAAAAAAAAINUJUAAAAAAAAAAAAAAAAAEKNEBUAAAAAAAAAAAAAAACAUCNEBQAAAAAAAAAAAAAAACDUCFEBAAAAAAAAAAAAAAAACDVCVAAAAAAAAAAAAAAAAABCjRAVAAAAAAAAAAAAAAAAgFAjRAUAAAAAAAAAAAAAAAAg1AhRAQAAAAAAAAAAAAAAAAg1QlQAAAAAAAAAAAAAAAAAQo0QFQAAAAAAAAAAAAAAAIBQI0QFAAAAAAAAAAAAAAAAINQIUQEAAAAAAAAAAAAAAAAINUJUAAAAAAAAAAAAAAAAAEKNEBUAAAAAAAAAAAAAAACAUCNEBQAAAAAAAAAAAAAAACDUCFEBAAAAAAAAAAAAAAAAsDD7Bw34y1E5+xKUAAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAACVAAAAbrCAYAAADmgRqkAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAXEgAAFxIBZ5/SUgABAABJREFUeJzs3QeYVOX5P+6XIqJiQ7EgaGLFhh1sUSOKGls0VlRsUWwkoCZiib1rNBo1wRZ7jTX2XpGIJXbsBkRjb9iF/V3P+/3P/ndnZ5dl27A7931dcy07MzvzzjlnZjjv+Zzn6VRVVVWVAAAAAAAAAAAAKlDncg8AAAAAAAAAAACgXASoAAAAAAAAAACAiiVABQAAAAAAAAAAVCwBKgAAAAAAAAAAoGIJUAEAAAAAAAAAABVLgAoAAAAAAAAAAKhYAlQAAAAAAAAAAEDFEqACAAAAAAAAAAAqlgAVAAAAAAAAAABQsQSoAAAAAAAAAACAiiVABQAAAAAAAAAAVCwBKgAAAAAAAAAAoGIJUAEAAAAAAAAAABVLgAoAAAAAAAAAAKhYAlQAAAAAAAAAAEDF6lruAQAAAFA+b7zxRnr44YfTmDFj0qRJk9Jnn32Wvv766zTHHHOknj17puWXXz6tttpqaaONNkqzzTZbam9GjRqVbrrpplrXHXDAAWn48OGpPfj444/T448/np544ok0fvz4vH7i0qVLlzT33HPnddS/f/+05pprpjXWWKNdrqPGePfdd9OgQYPqXP/qq6+22Dr/4Ycf0iWXXJJWX331vEzbi3HjxqWdd965zvULLbRQuu+++1Lnzh373Ln1118/f3bVdNlll6WBAwem9qi9fGaVWu6lxPbXrVu3NPvss6f55psvLbnkkmnttddOG2ywQerevXuqxM+o6XXjjTemQw89tNZ1AwYMSJdffnmzH5vyrFMAAABmTAJUAAAAFejll19OZ555ZnrkkUdK3v7JJ5/ky+uvv54P3p500klpp512Svvtt18+GE7reu+999Lf//73vOx//PHHkvf55ptvcoDhhRdeSFdeeWWac84502677ZaGDh2aevTo0eZjbs8iRHjiiSemd955J4dv2pN//vOfJa+PbeOxxx5L66yzTpuPCQqmTp2avvvuu3z56KOP0ksvvZQDYvPOO28aMWJE2nbbbcs9RAAAAICsY5+GCAAAQB2jR49OW2+9db3hqVK+/PLL9Le//S1ts8026e23327V8VW622+/Pf3qV79K1157bb3hqVK++OKLdNZZZ6XNNtssB+SYtgkTJqR99tkn7b333jk81d5Mnjw53X333fXeft1117XpeGB6qusdccQR6ZBDDkk//fRTuYcDAAAAIEAFAABQKaqqqtJhhx2WzjjjjPzvpojWNbvssktubUPLO+ecc9KBBx6Yvv322yY/xvvvv5+GDBmSHnrooRYdW0e0xx57pAcffDC1V7fddluD20q8tqj6AzOqm2++OZ166qnlHgYAAACAFn4AAACV4oILLkg33HBDydtWX331NHjw4LTIIoukmWaaKVfmuffee3Nrs2IRyPjDH/6QrrrqqtSpU6c2GHlliDDMX//615K3RUu+jTbaKK+n+eabL1emijZ/UUUsQjJTpkypdf8I1UQQ6/rrr0+LLbZYqiTRZnKHHXaodd0CCyxQb3ux9qy+9n0FUdkn3vNRZYuOt/3OaKJCYaElX7y34nMpWvd99tlnafz48enOO+/Mn1vFLr300jRgwIC0wQYblGHUAAAAAP9HgAoAAKACPPfcc+kvf/lLnevnmGOOdPrpp6d111231vUDBw7MB8IjoDNixIj09ddf17r9mWeeSffcc08O9dB8//3vf3M7q1I22WSTdOSRR6aePXvWuW377bdPr732Wg60RUChplhnv/vd79Itt9ySunatnN3/hRdeOF86uqgG98ILL0zzfhGiGzZsmLBjO9Get98Ieq244oolb9tiiy3SQQcdlM4+++z097//vc7txx9/fFpvvfUq6rMKAAAAmLFo4QcAAFAB4qB1cZWiqDR18cUX1wlP1bTOOuvkqkilwhdXXHFFq4y1EkWgoFQrtu222y6deeaZJcNTBUsuuWReF8suu2yd2954441c2YqOp1T1qV69etW5LtptPv744200Kqhfly5d0siRI3Mb2FKtR6NCFQAAAEC5OK0LAACgg4vKRI899lid6/fcc8+0/PLLT/Pv11prrfTLX/4yPfDAA/n3CFMtuuiiuTVchLLioHhD/vOf/6Q77rgjV62KSkvffPNNbkkXYY+VVlopB7jWX3/91Llz48/xifZQ8Zh33XVXevHFF9Mnn3ySq2kttdRSacstt0ybb775dD1esWhdGI8dY/7www9TVVVVDjEtvvjiae21187PMeecc6aW8L///S/961//qnN9LN+oStWYykGzzz57riT261//On3//fd1WjfG9cViWRW7//77U58+fUo+RwTpzjnnnFrXbbXVVunkk0+ud1yTJ09Ot99+e16eEeaK9RRBsagyE2NecMEFU//+/dNmm22WVl555dQSRo0alW666aZa1x1wwAFp+PDh+d///ve/09ChQ+v9+5q3RVuxCBlGkPDTTz+tdb+99947V9RpyKGHHppuvPHGWtfFtv63v/0tNccPP/yQbr311jrX77///unCCy/MoamarrvuurzdNkaEW5588sla17300kt5ncXzxvsuttfC+px77rnT0ksvnX71q1/l9920Pg8K79/4PIk2oa+88kp+D0TFtNjWZ5111jT//POnfv365WUVrUUb85j1iWVy33331bouqiRde+21Df7dzTffnA455JBa18VrffTRR3P4tKaPP/44BxXHjh2bXn/99fT555/n7XzmmWdOc801V/r5z3+eVltttbx86nt/NXb7LdWmMd5f8RpjWUYQqbAsZ5tttvx8Ea6MaoFrrrlmmhFEe9FYvl999VWt66+88sq8jNpyu3n++efzuotqbtG6Nj6zYpkWHi8CqlEZa+ONN07dunVr8mv+4IMP8vsw1lO8P+M7JSp2xfsyKgk2p9VqfG5Hq874Lox2ibHNxef7hhtumD+jp3fcrfGdPWnSpFwNMT5b3n777fTll1/m9o6F90jfvn3Tqquumrbeeuv87+l5f0Q1zFiW8V0Xn03xXLHtx/dLjDVCe8UmTpyY10e8n6OtZHy2xWPE/YcMGZLbGQMAAFB5BKgAAAA6uFJVPeLAZxwkbKydd945H1CMA5wRdGmoIlJBBCyOOeaYOmGMEAGDuETYIA5ixkHqww8/PK2++urTfNx33nkntxWMA+jFIYa4RLWdq6++Olduml5xUDUO0D711FN1bouDsnGJsEKEiaI9XqlKKk05+P3jjz/WuT4COnFwubEi1BYhluKDy7Ee3nzzzWYdoG+KCDpEACxCNsUieBdBr1hfEVyI4ESEqI4++ugcrJqRRFgm2o9dcsklta6PgF1DAaoIYRRChzWVCrNNrwhhxPuneJzR7jFCJcUt0mIcsaznnXfeZrUMPPjgg3PLyJoiYBiXeF9cdNFFafTo0al37971Pk6EJ+L9W9xysuCLL77Il3ieCIktt9xy6dRTT23y9huBjOIAVbQ0jdBEQ+OM9Vts0003rROeiupvf/7zn3PIpFhcF5d4rvhcOvfcc/P7OsJQLdFSMZZhtO8sXicFEQqJQE28x6655pr8+X3GGWfkYFA5RTgpQqjFVQxjvcR2HYGa1t5u4nniO6d42yiIgE9c4jsqQqDRAjceL5bh9IrxHHvssXUCY/G5HJf4/Ntvv/1y2G96xPj++Mc/pgcffLDkezLCQRGojHDtCiusULbv7PPOOy9fSn3PRdAwLhH8i+eN8cay2HfffVNjRRBrjz32qPW9XRjvMsssU+f+EWCN8cT7o3gbi0u8V2K5NlSdEwAAgI5JCz8AAIAOrlQYKA4uT89B9KhCFcGiDTbYoFHhqTgo/Zvf/KbkgdhS4qB3HAC99NJLp3m/HXbYoU54qtizzz6bKwlF1Y/Giio7UQmk1PIqdeD6+OOPT0ceeWRqrlLLKCqGRMWT6VVfOKex66GlRJgmquaUCk/VJ6rAREAiqszMaCKEUyyq1UTFl/pENaLikFNUSYtqbq3Rvi8q2UTwJMJexSK4UFwJa3pEaCUCl/UFdYrfx8XBhIIId+200071hmBKiWUcjxkBsKaIEERxcCyq/5QKSBVEFaJSbQ8j9FNThD2OO+64kuGpUmI9RIjqhBNOSM311ltv5c+4aa2TmuKzLdZj8XZZDqWCN/Hef/nll1t9u4nwZtxWX3iqlAjP7r777rk60/SIMG+E3IrDU8Vhy2ize9VVVzX6cWMbjddQHJ4q9Tm166675s+jcnxnR5D5rLPOKhmeKiU+OyKsVhwCbUiE0+r73i6uaHbUUUflx6/vM6oQyIrHjIpWAAAAVBYBKgAAgA4sDsxGi6Ji0XKrtcSBzAjCxEHI6RFViU488cTciqiUeLxoxRMVVRojDhyPGTOmUfeNQMH0Bn5CtAG7/PLLU3OUOiAf66d79+7T/VjRkrFUW6UIlLWVaKl12GGH5fU5vaLVZKl2k+UW7bCiDVpjqrsV3H333XWuiwpRzWkDVghyPPHEE/UGBaLiTqmxXn/99Tk41BTDhg3LgY3GiAoupQJeIQKH0/seKwRoiiuANVa0HiwVKmto3UUopThgEW34ot1kzWp1EcRoivjMKLUOp0cEt6Li0vSK9nEtEeBqrqiYV18wrLW3m2jLGYHZ6RXbRFRha2wYKERFp8aK7amx35sRNIvKYo0RFZ6iWl59y7C1vrPj/x5Rka4pImgYQeXGqC88FS0HBw4cWP17tI2M6lKNNT33BQAAoGPQwg8AAKADi7BRqUoLffr0aZXni8oeUamq1AHmaP23zTbbpIUXXjgHlqLiRbQ2Kq44FBUiVlxxxTqtl6JtULQYKhZt7qKqSlTJirBEHLSNg+affvppo8cdLbiizVZN0WJrq622SoMGDUqzzTZbbrUU1TYimFXTaaedllvnzTPPPKkpSh3UXnzxxZv0WDHOBRdcMIdsampq9Z6miKBO8fNF27OolhMHs2OMcWA8Kp1EkCRCfjWNGzcurbPOOq02vggXRfAtRGjuo48+qnV7hDUKAaQePXpUXx/VWYpDF1HFKKrLlAoWlKpuU1zBqCmiklTxeyZaoq2//vrVv0dgqHissd1GaGfNNdec7ucsrM9o27XjjjvmMFFcd9lll5UMaMZrL24RGlXjojJZsY022ii3xov3TwQ4ospQBFyK3xexXTSnglg8Zk0x7ggTlfosLBV+K153EcAq/pxbYIEFcrvTCNzFdh6fcxFejMpCESysKSrsrLHGGk16PbHNFgewIji57bbb5vUbFbficz/anUYIJNovlqr2ttBCC6Vyqe/zMlrPtfZ2E987pSq4RRvRaOsYn/0RvrrjjjvqVHiK4Fy09GtsK84ILcbnX2w/6623Xm5RGusjqpcVv9YIxEXot+Z7eVpiO4tWsgMGDMjbwDPPPJPfl8VVxuL9ev7556dDDz20zb6zYxsvDm1GqCkqV/Xr1y+HSWMZxHK+9957a90vtt9o6fiLX/yi0csivq8jpBrbwz333JPfB4VAcTxetDKsL3gcn2vxOuO99a9//atk+1UAAAA6PgEqAACADqy+CiVx0LW1wjNxgLnYPvvsk6tH1bThhhvmqjn77bdfPohbEAdyoxLHX//61zqtkEq9jjhYHC0JCyKUEAdSo+VTcdiplDiwHJUpip1xxhk5GFXzcbfbbrs83kcffbT6+hh7hLv23XffNL2iqk+pA9fR6q2p5pxzzjoBqrZs2RVtE+Mgec1gUlTLiXVSU4QEIlgQB/VrilBLa4pQVBzsD6WqQUV4rXB7TRGuOPnkk2sFEmOsEcSpWZkoRDisOMDXt2/ftMoqqzRr7BFcKNWKL1przjLLLNW/R7Dk1FNPrVMFLIJjTQlQFV7/KaeckkOKNUMs0VKzOKwVYcNicd0iiyySPx8KAYwINp100kl1giwRQPrtb3/bYtvFEksskUMSxRV7IgS111571bou2vHVfH+HCNQUV7EqNZ743FpppZVqXRcBzGjHGZ8dsT5i+4ugSYQ14vcuXbpM9+uJ93dxMCXCU9F2rKZY1xH8i/BiVLqLdRfbYSyPCBqVM0AVob9SiqsOtcZ2U3xdBAIj0BTruaZY51FhqdCmLsKpxSGhaYllHq3gaoblon1hfP7F919Uh6opwlWNDVBFQOiKK67I4y+I54nlEwHG4lBwVIY78MADc+i4tb+zY9uO0GAExgrtC+PzPkKzNccbIvQUAabiSonT856PoFfNymrx2VQz6BXhr+KwbIhgW3yu16zcGN/7sc7qC1wBAADQcQlQAQAAdGD1tcBpbhux+kSQqFhUhio+EFvzoHdUQolgRk1RjSIO8BeqlEQop1Rrp/jbmuGpgvnmmy8dccQRae+9957mmEu164ox1wxP1Vxuhx9+eA5E1BQVNJoSoCquSlPQlPZ9Df1tY9uvtYRDDjkkXyJAFGGAaOlWX7WWVVddtU6AqrFtm9paBNMiDFPc+i1+Lw5QlapgVKqN3PSK6jTFoYia7fsKIsAWQYridoj3339/Xi89e/acrueN+0c4p2Z4qvB+iKBitGycVmAvAlhxiYDS66+/nreNddddt97tolhzt4sIlTQmQPXQQw/VaWUW4ykOG5UKOcbnQFTWqRlmC/EZFZWgYr1ECKe5IpRS7Omnn07//e9/c9iopgjLRBg0PgMiuNJan/3TK8I0pRR/FrfGdhPrrmaVvKg2VV91tt/97nc5kBjBqZoV6RorgnOlKo1FkC2eL96TNU1Pq8KoHFUcRgqxjcX31P7771/r+tgG4j1Qczm11nd2BAMLwbMIQsV6i2qDpcYbwbWodlUcoCoErxrbZrRYzVBUqXa+8f+E+Fwr1fY2PheiilWpCnsAAAB0XHX3EAEAAOgwalaaqKm46kVLiJBTcauosNtuuzX4d1HBprgaSVRXqVkFpjj4EOKgZ3FVo5qi9c/cc889zXFHy6NicTC3PnEAOMI0xVVSmrJM66sEFmGBpioVymrKgf/mitBNBAeiEkrNyi6xbmN5XXnllelvf/tbnb8rVZFrRhEhnGLFYamoetJa7fuigkyxCCyUCn4Uh6oKy7ZUBatpicBKfdtqqUBEzeo0xeK9vsIKK+Rgyfzzz1/rtmjnFe3lIvxYauzNESGc4s/DqJxVXH2nMe37QqllHtXw4vqo0BOVdl5++eXqKmARsmuJ8FRhmUeruZqivengwYNzxakzzzwzf34WAigR/orqTDNKeKqh9VlfZaqW3G6KA03x2b377rvngOTRRx+dg3XxfVb47IznbepnaFRXqk/xOgzF4b36REivOMhb0y9/+cs631PF36Wt+Z1dU7TJjGUbVaGK10206Tv33HNLvu9KtR8uZdFFF80V3RpS6v8QEYxrKKzcEqFXAAAA2hcVqAAAADqwueaaa7oqHzVHqQOxEZwpVRWkpjgQu+yyy6Zx48bV2wYsDpCXOihbqhJLzYBVhAbGjh3b4PNH1ZZi0YqouIVgQyIkEdVRiisRTUsclI9KLMUH+ZtTbadU9Z/GBMmmpbhlWGN99tln6amnnsqVPCKwEpeGWgo29XnaQlRmifBGIVxRaKcW7dEKbf8ikFfcKirauhVXBmrKciwVzIqARnFlqEK7rQiDFAf7omVXcZuzaWkonFAqpNGYdRghq1hWsV28+OKLebsobj05vY/ZkKg6FK0Ob7/99lrXR1imUKkuwiuPPPJIrdsjdFUqqBIhnHXWWafO/SP8GFWFCpWFIngWgcy4fwScovJQc8Vn2x/+8IeSVYJiWcal5mfggAEDcoAlPoub0jKwNdQXEp1W+9KW2G6GDx+eHnjggTrfg1EpKVrFFtrFRvAsll0ECONSX7irIaUChgWlHq+47WZ9oiJWfVW8QqznJZdcss73as3KW635nV1KhBXjuyDCTBEufOWVVxoMjDX2Pd+Yz9ZS7fuWXnrpBv9mWrcDAADQ8QhQAQAAdGBRBSgOiBYfiJwwYUKLP1epUEwEnBpz0DlaWxWr2cqoVAu6aR1ob2xw6IsvvkgtoaFQUEOiglC0kKrptddea3LIpma4Z3oDVA0dsG7sgf2CCPtEC6c4YB5VmTqCCCVEO8LRo0fXCeEUAlR33XVXq1QyufXWW0tW04mARgS4SonWccUhh3feeSeHCldfffVGP3epkFRBQyGOUsaPH5+XX7TObI1KeNOqINZQgCoq6BQHe9Zff/2SQc34XP3LX/6S26hFq6/6REgnHjcup556aq5QFQGehqrcNUa0GI2xRguy+ip+xfsuQipxifdiVMDaY489clW4UqG7thStJEup73O9JbebCNxccskleT0Uf/bWFMGsm266KV/ie2zbbbfN1cXqCyaX0tB9S62DxoaGmvr9VzOc25rf2QXxmRXVBqNV4LQCVk3VmJakpdoBNvS51lLBYwAAANoXASoAAIAOLNr8LLHEEnUCOaUqTzQkqnycfPLJuYJLVLYp1XqoOQfkSx00juopDWlMoKcx1VZ++umn1BJKHaBtjGgPVSpAFcGLUm3TYllFtauoLlLs6aefrvc5GqOhg/eNbS0V6yWq4xQHVWoe+I/qJTGm2D6j3Vh7Em0jiwNUEZqKIE2499576wSMIuzSGu37wnHHHTfdjxVhhukJUDXU+m1a79OaIsQTIaJS77l4jqiWFNvFKqusUrK6UnNFeGmBBRao9X6LSjgRKvvZz35WMvzWUOvFeH9Gpbp///vfubJXhHtKhT1rGjNmTHriiSfy9jKtVmnTss022+RWpddee21+v8XraMj777+fTjjhhNwu7fzzz6+3LWNbKFX5L5T6XGuN7SaqBUZ47uabb87hxAghNvT5F2G1GMcdd9yRf0YFqMZoKGBYs7Xp9GpMS8tS3381x9Pa39lR9SkCe/UFgqOa3/LLL5/Dp/GddssttzRpLI3Zjkst62l990/PZxsAAAAdgwAVAABAB7faaqvVOYAZoYE4mB4VSRojQiFPPvlkvpx44om5sk0EqSIA0L1793qrNUSYIKqFRFCmIaVa9EVlpoYqRdRsRdRQRabGtNErduihhzY73NBY0SIqAg3FB8fjQH1UPClV2emAAw7IAZg999wztxGbVsgm2oc1Rn2VbMK0giEFUZWnODwVrbB233333AIvKiYVDmZHkKS9ifFH9aBoI1YQgZz4PQ64F4fhovXX9FSsKSXalTW1Kll97+eoANSYyi2hJdq+Pfzww+mkk06qFbyISjdDhw7N7eWiXVYh3BGVk1ojQBXrJyqI/f3vf691fQRp4r300EMP1bo+lk8ElKZl4MCB+fLDDz/k7SC266j8FS3mSr2nYhmccsopuVVafJY2R4RQfve73+XLW2+9lR5//PH83BGmrO8zMqrCRXDxiCOOSOVSqmpabGfFYc/W3G7icaIaV1yielIsuwjDxfKpL4wWoaADDzwwB6+aE4BqrlLfmY35/qtZuao1v7NDfE8Vf27FNr/jjjvm77355puv+vqzzjorNdW0xlp43cVt/EpVzJre/z8AAADQsTiVBgAAoIOLoFOxOBh9zTXXNOrvo/JQcTAnggFXX311rco0iy66aJ2/jQPacTC6IVHZIwJdDVUiKVXxKg6GNnQANCohReWsaenTp0+d61qjxWF9okVYqUogF154YclWVeedd17+GW3Y9tprr3yQOpZFBDcibFAswkuLL754netLHfxvKCTVUKurmlW4rrjiijotoaI6zy677JK3kZrPW9wurb2IVnDFIoRTHIQLEdhprvqCcU0VQZ8IgLSlCC0VV605++yzc+AlqgHVrIzTmttFfevuscceq7P9b7rpptNVpSc+DyPYGK/pqquuyiGmqPa1//7712kDGJ+NLb0O4v0V77NYrhEGuv/++3PFqVIhraj2U87WmqXaHsZ2UFxNqK22mwj/RKvNQoWu+Hw999xz08Ybb1yynWCp76y2NHHixHrbIIZYt6UqTcb3QVt8Z0elteKQXARPL7/88rTZZpvVCk8VHrOpGlMpqubrLojWlg154YUXmjwmAAAA2icBKgAAgA4uqg9Fy7RiF1100TQPIBYqQxRXbgibb755rQOXUQkl2mAVu+SSSxp8/Gg/VRwUiseNakUF0eKnVOAnWi81VGXn888/T9NSqr1d/G2ETEqJg+u//OUvc3gpqsjccMMNuUJQU0U4LIIaxaICyjHHHFMrPBDBteKD4jHW+PuoilIqEBHjLKVQOaymd999t+R9Yzk+++yz03wtMb7iA+ELL7xwncokDVWhaUultqnGhEo22WSTXL2meLsoDoVE5amoQNUc8d6orx1ic0Swp63Ee6nUul5ppZVK3r8x21pTLbLIIrkKTk3xnoqWdo1t3xdBqwhcXXbZZemoo47KoaWNNtqozrYf4Z74fInqUPvtt1+dx5lWy736xOfNTTfdlE4//fT8uBHyue2220qGQ6PNX4Qxi3355ZcNBnBaU7xXolpWqfaYrb3dROvACMxFOOqggw7Kz1mqDWZUZ4qWtfH9V6qtYH0tCNtKfE7Fd2d9HnnkkZIVlOK7tC2+s6NaZbF4L9QXdmrOd0FjKuTVfN01vztLhZQLAez4bgcAAKCyCFABAABUgN///vd1ros2cdGmLiptlBLBnah2dPHFF9e5LcIj0ZKtVKiqWAQN6mvPE62uouVbsV/96le12p5F9Zbi0EOhEkmpKhFxcPv4449Pja3QVRykifZExx57bJ0wTRxsjQPv7733Xj5AHcvmsMMOy/dtjn322SfNPPPMda6PkESsu0LQISrJRAu/CGzUrIzzxRdf5JaMpdrN/eY3vyn5nPPOO2+d66Kq2E8//VQnxPCnP/0pff3119N8HaUqgkULpzfffLPO9XGAPaqRFGvLqjilqgs15nVG28cIzBRvM5MmTap1XQRbalZpa4q77rqrZGWwCy64IAd/GnPZbrvt6vz922+/XTLk0BoigFdqvUaQpdgHH3yQqwCV0lLbRqn3RHH4JqrzLL/88iX/PlrjRcu/GGdU8ovlGGGoaItXnzfeeKPOdcUhvMaKNqqjRo3K20BUmYp1+de//rXeQFSp919znr85ojJWfJ4Ui4pExdXaWmO7ufHGG9OIESPyd0eEzqKSUlTIqy98FZ+tpdrVlWPZFYvvoliepZZFqe+kCNQVVyNsre/sUttitMgsFViKMHepAFVLfhdE6LnU+zjaWEZYqliEE0tV8AIAAKBja3wdcgAAANqtqIITgad//OMfdQ5Q77rrrmmdddZJgwcPrm5nF6GXONAcrYpKiaonpaoK7bTTTjkUU1z5KYJY//73v3M1lL59++aD0hEEigpSxQcvozJSVGwpNnTo0DRu3Lha10XFl3jOuETrrAirRNusqKAR7eQaI8az3nrrpQcffLDW9XFQPUIPO+ywQ27/E+GYeNxSB1X32GOP1BwR1jj66KPToYceWrJaSxy0jqpH8Rp79eqVfvGLX+QD1A1VJopAVhzori/AE1VVog1UTbHsYjvZcccdU8+ePXMw48orr0yvv/56o15HjK1UUC/WXVTCWmqppXLIKtZ9vK5SB8ijZWRbKW4XFqISUVwfB9cjlLb33nvX2wouAm4Nqa+CUXPb98VyrlntZVq23XbbkhWnopLMgAEDUmuLYEVUY4ptoaaosBbbWFTJ+/7773PrsBhTfe28YttoieBKBNui6lBDbcMaWndRtWfgwIH5M62mqEgVn5nRCi4+S2P7jm2o0CKwWLQ0a4r4TCoO/ESAK8a8/fbbp6WXXjrNMccceRuO93Sp7bRfv34tHgKKNp/FQZgIZEYAMNqixvs+wmbFLfnCIYccUidE2hrbTbxvI7BT8zHjMeJzLwJcsV4jXBoVuuJzL943xd9nMaZoH1hu8RriczUCgREQimBnVCeLYG+pMGt8TxaHhVvrO7vUd0GssyFDhuT/c0T1q/j+iSpP9VWfasnvgvjujO+8+L9NTRGii8B1vKeiWmK8Z+K7P1oQAgAAUHkEqAAAACrEwQcfnA+yFweFQlRTiktjDBo0KP32t78teVu0PYrKF1E1qfggeRzIj8u0RBWRaLNVqlJUBL2KxxkHv+OAcX2VshoKSRREFak4WFx83wgpTKstVByYjeobzRUH9mP9jB49us5tcTA/AgINtWwq1RowDvTXJ9pTRfWaYhFwKFWZKB4vKm81JFprzTnnnPlge01xUPqkk05q1LiL/7Y1RTDgpZdeqnXdc889lyuzhQjB1BegWm211fLfF4fQCmIbbmpApmbgIMIhxaJqTGPaVhVE2KNUeCBaDkZwomblmNYQIb4111wzPfzww3UCIBFmiUtjt42WCP3EY0SIKkKipUTIJEJQDYmwY4SV4vOnMe+fYhEwKW5Z11gxtqh8VfzZFJWSohJVY9TX2rO5Yb9Sgb9piZDOZptt1ibbTbwv4/0d1btqispIUYEvLo35rI6AaTkVvtsizBQhr2m15Iz3f4Sl2uo7O0Lb55xzTp37RsWvCMuV47sgQspRvbE4ABZVLEtVspye/0MAAADQMWjhBwAAUCGiXVlUlYhqQE0VB7mjqlFxFYuaorVZtM9rKLxT3/jiAGepA+khnvPkk09Oiy22WKMeLypclGoVVUpUnohlU6qNXkOiRV5Dbbum14EHHphOOeWUZrd9K4RvoiJNPF6pFlRxW2OrqER7rXicaYlxl2oX2ZDiIFBU7GmrA9Zrr712g7dHK6xS1XIK22NDAZhpBXAaI6qzlNKU4E1UoSoW7Rlvvvnm1Baibdr0bNel2ivW14quKeprbVkIx0VgsCFR5Sk+j6b3cy7MMsss6Ywzzshhw6bo3LlzDkpF5bqmiCBNfZ+zbS0q/0RFqbbcbkaOHJkrLjbFiiuumP74xz+mcouKT1FFrDGiolZ8T9X3/dYa39nx3RIhxel5rGJvvfVWakmrrLJKDj429P+Xmvbff/9GL2MAAAA6BgEqAACAChIH3g8//PB06aWXphVWWKHRf7fgggumP//5z/nSmIPZUVEkKqTEAcvGiIOUMaZoHdeQaBsYLeWihd20KiFdccUVaYEFFkiNFe2g4m+WXXbZRt0/KmLFa2zpSiTRRuqOO+7IgZfpOaBdqiJRVGqJylzrr79+nQBU3D8qhEQgoCHR4i1aGkUgrbHhjAMOOCBvaw2Jtk8xpuIgQ7T8ipaFbSFCZLGt1CeWX6lWWDWDTPW9zuYGqGI5lAo3xfYZ1WSmV4yn1Ht3WpVrWsoyyyyTzjrrrNxmbFoi5Dlq1Kg61z/66KMtNp5VV121ZKW76Wm9GJXn4nNretZHfNbFZ1hzWydGBauoSBfbYGMDIVFNJ6rtHXnkkancllhiiRwCi/BUqfBMa2438dkXjxmB1cZWNItlHBXH4vO0MWNpbTGGaMkb30MNic+Lq666Ki2++OJt/p0dAcNoLTgt0SI3Kn8Vt/2LdoTFrQWbKypQnXrqqbnFZX0iaBZBq1KthAEAAOjYtPADAACoQNF2LoIT0QIq2iNF+7qotvPpp5/m9jazzz57Pqi53HLLpfXWWy9X6pmelmEh/jYO3EZrnAgERSug//73v2ny5MlpttlmywdLo8VZhHviORobAoiWQxdeeGEed7TgipZrEXKJNmRRFSbCD1H5Isb77rvvTteYo2pGtKCKA+4PPPBAXj7Rfi5aCUXgJ6rSxJgjtDCt4FFzRGu4qAgS1Vcee+yxvH7Gjx+fPvvss3yJcE0swwi2LbXUUrliTrTki+DRcccdl9djcRAoAgvFIhQVobHbb7893Xrrren111/PB6yj4lQEF6JKT7RNjJBQrLvGGj58eG71GOt/3Lhx6X//+1/erqLiTlTNibBahBEiEBchsTvvvLPW30dgK/6+tUWg6LLLLsvjjGUQlWpi2ca4fvazn+U2VLGc6xPbQ4RnYt3UFKGsqGrWHLF9f/TRR00O9xSL90eE1W677bZa18drjjaBEShqbfFej8+CWN7xHott6rvvvsvLOLb5WG6xXcS2Gp9HJ554Ypo6dWr138c2etBBB7VIhbYQ6zfWf3F4Ynoq50TgJIJujz/+eLrvvvvSiy++mCZNmpS+/vrr/JkWn6WxnUSQJZZ/bPvTChc2VoRAIqSyzz775PX6zDPP5PUZn1dRXSzCQbEtx2dEPO+mm27aYHCkNcQyiPd4vPeLl0M5t5tYB8OGDUvbbbdd/vwZM2ZMbnEZn/fx2LEdxHsmKh7G40cAMZ5rRhLh3QjBxrYXn5kROIpqgzHu+PyO9R3tPhu7vbX0d3ZUWvv73/+e3xfxHonxxXdTfDfH2GO7jO+tGGMs73jcmm1q4zvjpptuSrvvvntqSbEu11prrRzaiu/5CRMm5OeKlq3xmRDbRHM/vwEAAGifOlXVV4seAAAAaHfiAHUECP71r39VXxfBgggRtFRwg/8TYYUIEsTB95qirdW0qqlRfhEweeONN+pUlWrJtpwAAAAAtA9mTgEAAKADicoep59+err88svTmmuumauEjBw5UniqFZx33nl1wlNRbWeTTTYp25honKiwUxyeak6FLwAAAADaNy38AAAAoAMaMGBAvkRLq2jVR8uKllnXXHNNneujJVW00GLG9Z///Ccde+yxda6P90m0KwUAAACg8ghQAQAAQAcmPNUy9txzz/TNN9+kbt26pf/+97/p/fffL3m/3Xbbrc3HRsOiJd/jjz+eevTokT755JP0+uuvp6qqqjr323nnnVPXrqbKAAAAACqRWSEAAACARnjmmWcavH3w4MFpxRVXbLPx0DizzTZbeuGFFxq8zwILLJB22WWXNhsTAAAAADOWzuUeAAAAAMCMLgI2DVlkkUXSMccc02bjoeWqsM0yyyzpjDPOyD8BAAAAqEwCVAAAAABNDFDNNNNMacstt0zXXHNN6tmzZ5uPi+aF31ZdddV09dVXp1VWWaVNxwQAAADAjKVTVVVVVbkHAQAAADAj++ijj9K4cePSBx98kL799ts066yzpj59+uTgzdxzz13u4dGA7777Lj3xxBNp4sSJ6euvv05du3bNoapot9i3b99yDw8AAACAGYAAFQAAAAAAAAAAULG08AMAAAAAAAAAACqWABUAAAAAAAAAAFCxBKgAAAAAAAAAAICKJUAFAAAAAAAAAABULAEqAAAAAAAAAACgYglQAQAAAAAAAAAAFUuACgAAAAAAAAAAqFhdyz0AAGiuG2+8MR166KHT/XcDBgxIl19+eZOf9/XXX09LLLFEaq533303DRo0KP/7nnvuSYssskij/m6XXXZJTz75ZNpqq63SySef3OxxVIp///vfaejQofnfL730UuratWtFbK9tsU0CAAAA0HaWWmqp6br/uHHj0hxzzFHv3M9f//rXdM4556SVV145XX311WlGtvHGG6e33347denSJT344INp/vnnTzOK9rQcG6swF73PPvukkSNHTtf2+Y9//COtueaaqS3V3Man16uvvprayvrrr58mTZqUjj/++LTtttu22fMCUJoAFQDt3jzzzJN3Rou9//77+dKtW7e03HLL1bl9ySWXbNLzxY557NB88803HWYHmI67vQIAAADQsf3sZz9LPXv2nOb9ImzUETz99NN5jjZMmTIlXXfddWn48OHlHhYzkJlnnrnkHOzkyZPTa6+9lv8dc7AxFwsABQJUALR76667br7Ud6ZPr169WjTodNttt6XHHnus5A4YzGjbKwAAAAAd27Bhw9LWW2/d6PtHtaY77rgj/7t3796pvbnhhhvyz5hje/jhh9P111+f9ttvvw4TEKP56ptjrdmd4Kyzzkp9+vQpw+gAmFF1LvcAAAAAAAAAgLYx00wzpcUWWyxf4t/tSXQFuPPOO/O/99133zTbbLOlDz74ILfxAwBoDgEqAAAAAAAAYIZ311135RBVVBhaccUV06BBg/L1KroDAM2lhR8AFe/uu+/OZZ5ffPHF3AN9rrnmSiuttFIaMmRIWmONNarv9+6771bvkIdnnnkmLbXUUmmhhRZKDzzwQPX1H374YbryyivT448/niZMmJC+/vrrfCbUoosumgYPHpwft3v37q36mt5888104YUX5pLEMZ7o+d63b99c1jpKFM8zzzy17j9lypR07bXXpn/961+5B/z333+fl8MKK6yQttlmm/TLX/6yZLu5aGM4rVLIr776ap3bx48fn/7xj3/k+3388cd5+UTP+e222y5ttNFGJV/To48+mpfrc889l7788svUo0ePtOSSS6aNN944bbvttk3qV//DDz+kv//97+nWW29N77//fpp77rnTWmutlfbee+/085//vPp+11xzTTrqqKPyMon2jaXOzIu/X3/99VOnTp3yGW9RCr2c22vx+r3xxhvz64xl/+2336Z55503rbbaamm33XZLyy67bKuMFQAAAIAZT815znvuuSctssgijfq7++67L1133XXphRdeSF999VWeSxswYEDaY489Ss4vTe+c4/S074vxxzzcZpttlue8Yi524sSJeQ60vrnKeN6YX7z88svTzTffnP773//meb5lllkm377BBhuUfM4nn3wyz8c9++yzeS7zp59+yq89AlwNzckVTJ06Na233nq5UtaoUaPS7rvvXvJ+RxxxRH6eHXbYIR1zzDF57rkxttpqq3TyySc3a12FmHO97LLLcoWvSZMm5fnXGPfvf//71Fyxji699NL0xhtv5LnxWHaxzGMutuCtt95Km2yySf53zGXWN86YP37nnXfSmWeemX71q1+l1hDLLZbFuHHj8jqfddZZ8/rYcsst8/Kur13kE088ka666qq8rXz++ed5GRbmvePYAAAzNhWoAKhYP/74YzrggAPS7373uxzO6dq1a+rXr1/eAY6JgwiWnHTSSdX3jxBSBIYWXHDB/Hvs/MTvsQNU8J///CdtuummOZQTkwLzzTdfWmKJJfJOcuw0nXLKKWnPPffMkwetJZ4nJiBiJzN2juP5I8wT44lxxQ5ehH0Kqqqq0siRI/NOeYTCIlwVO4MxxtjR3meffXI/+JYSkxRbb711nqT44osv8vhiBzSCSbEuDjrooDrLJ3ZWf/vb3+ZgUmE9RegqJi+OPfbYJi/TCEpFGCzOWoswVkwSxHKLHeHYJgpiIiZ27GOn9+GHHy75WLfccktez7HT3xrhqendXgsiZLXTTjvlCZhYXrPPPntev7FtxMRFbCuXXHJJi48XAAAAgI4h5p8OPvjgtP/+++e5sQguxfxSnJx422235ZMbr7jiilp/0xpzjhF4euqpp/K/N9988/wz5uJ69uyZny9OgpzW/Npee+2V52jjpNNoYRjjiYBVvLZSJ4r++c9/TrvsskueR4sTZeMk2d69e6dPP/20ek4uQmIN6dy5c56TLcwhlvLdd99Vtyb8zW9+k3/G3HN9lxhHQYynOesqvPfee2n77bfPc6Vvv/12DtXF/HcEumIuN5ZXU5133nnpD3/4Q37cxRdfPC+Phx56KIe54iTdgnhNcaJoQ8sptqUIT80555z1Bt6a64ILLsiBp1jnMYcayy+WRcytHn744Xmdx/XFjjvuuHxbbBexrcXcbQT0Yi53+PDhacSIEfl6AGZcAlQAVKw4K+fee+/N4Z3YWY8Azz//+c98ttKRRx6ZAyoRLCmES6IsdOxEF3ZgI3ATv5999tn599jZjh3BCOHEzlvsGMVOaQSF4syTCAaF2MmvGc5paRGiiUBQ7NjHa7npppvSHXfckSsX/exnP8tnOv3tb3+rvn+MJW6LiYbYKYwdvDiTK5bHgQcemO8zevTo9L///a/ZY4ud9tiRjJ3k2NmMZRHji2BULOeYSIllFjvqBbE8Tz/99PzvM844I483xhdVvy666KIcbIqd1yjfPb1ihzvWdeExH3nkkXwmUJwNFxMNMRESYge5cIZQLKNS4nWEmFCYEbbXgngdEaqL7TeCaLHc4rXGNrnffvvl0FdsM7HeAQAAAKBYzEVFFakFFlggV70fM2ZMnl+Kn3HSXoR0jj/++DxP1ZpzjoXqU9ERYJVVVsn/jjmxQhWiODEygkL1efnll3N1+5hrHDt2bL5/zAcWKkj95S9/yQGkgghWnX/++Xku88QTT8yvL/4mXsv999+fKzoVlk/MsTWkMGf4yiuv5BNdi0WoLE6EjIBR//7983Ux91zqEuug0OEgxh5zfM1ZVyFuiwpQERaK9RYBpphvjQBV/E2ElpoqqjjFSZyx7gvbQISJQswDxzxlQWHu/fbbby95wmzMtYc4ibkpHQmmJV57bB+xPmO5xtgKc9FRQSuq+sdc9B//+Mdaf3fxxRfnYFpsjzFXG38Xc7fxPojtKuZ0IyAX4T0AZlwCVABUpNgxL5yRFIGeaANXEOV3o2JPoTRxnAUTZxdNS7RGiwpFseMWO6FxFkxBnGkS1Y4KJaRL7SS3lBhHYWez5k5kPPchhxySS2PHJEPx/ePsnpploWM5DBs2LC+bqMAU1aKaK8oqx9lgEeqJEs01Sx3Hzn6hglK09/vss8/yv+PMpAg0xfIsLsm89tpr5+UaZZtLtdWbljjjLNZ1TAKEOeaYI59VtvDCC+d1WfOstcLOe4S9ItRVU1Qei0mEKEFes81jubfXGFeMN0TQb+DAgdV/F9tG/E2cWRYKITUAAAAA2pdDDz00z+vVd4kTLZsq2pcVTtiLSkK/+MUvas1LxWNH1Z2Y84ugSGvNOUagpRCeiepThfm8sMUWW+SfhapQDYnq7oXqVSGqtcdJsSHmA2MusiDCLzHnuOGGG+a5wQhSFURAqTAf98knn+RLQ6Ki02qrrVZvdaXGnpwZoaIIoEUY7Oc//3kOTEVopznr6vnnn8+BqrhPzC3WbIMYYa6YL22OCLvFfHmEiApj2XfffavXWwTpCmL+N+4XryWCVjXFHHGhSldrncQa89ch5kxj/dacX1999dWrK2ZFoKpQDS3GVThhObavmKutua1EW8J4/SHa+0ULTQBmTAJUAFSkOLMoziaKqjz19Unfeeed8w5ylOONs0qmJXqyx9k0cYme8sXi7KdCqOrbb79NrSV2xsNRRx2Vz3SpWRZ4/fXXz238YpKiIKpSFapDxc5qzfZ+IXbCTz311FoTHU0RO4ZxhlUo7BwXW3fddfOyi5LVhTOP+vTpkycBYjJl1KhR1ZMvBVGOOsJBTekhHzuzxWKnOFr4hZrt+iJ8FJMHsR6jolepCY6Y9GmNM5+aur0WwlMx0RGlvUuJUtmFEuitGewDAAAAoHXE/F5D7d6ikn5z5qViPiwqI8X8ZymFubQI4hSCRC095xhhpqisX2pucYUVVqh+vlJt+GqKk0uLRSu/gponTsZJoC+88EI67bTTSj5WoQpUiPnMaSmcoBkVompWrIr2eDEXGnOghWVZnwjiRPu7OJEz5nlrnsTb1HVVmEOMoFOcWFosgl/xmE01ZMiQWoG3gmiTF2I+PToqhNlmm6365NHioFlU/Yr1E9vz8ssvn1panCBbCNDtuuuuJe8TgcBCm8EYT4ggVYwr1l+p+eYQc7rzzz9/DsDF+gNgxvR/kWQAqDBRjjgsvfTStc4GqSnOdImzeCJUEjtOpXau69txjsePs4AmTJiQJk6cmN5444306quv5rNRwrRKOjdHnDEVZ/BEOeo4oyheR+zkrrnmmmm99darnkyoGaqKctMRuokWeXGJfvNx/zhLKSpDzTzzzM0e1+uvv14r9FSfwjIqrKNo6/fb3/42TwjEWWZxiSBRnPETFajWWWedXAp8esVjzDfffCVvi/704c0336y+Lnbyt9pqqxzWip33HXbYIV8fkxKtfeZTU7fXwt/VN2ESYnuIFoVRIjz+rjkTagAAAAC0vThZsrXmpQpzelEhfccddyx5n6hoVBDzUTGf19JzjoX2fTHPVTPwVBBVpaIdXIRZYi62vsBPhFgaCkIVt42LOcG4FB435npjzjfmeuOExILGzPdGMCiqy0cQLFoIxrII0eIwnjfm86JFXH2iTVxUMIqTKGOOsniet6nrqhAaamheMOZL4/U3xTLLLFPy+kJ4Lk4cjWUZc5+FoFm0SoyAUsxZxtxlKFQga+052FlmmaXkNlaw3HLLpWeffbZ6uRX+Lk5sLoy1WGxDsRxi3descgbAjEWACoCKFDtehRLNDSns8DSmhV+I0NLRRx+dw1M1RVWlqK4U17d2id4IFEV/9QsuuCCfzRJjjzO94hIt8uJMomOPPbZ6EiHOjLnooovSlVdemXdMI4ATO31xib7tsQwiwLTPPvuUPFOosaIyUsEzzzwzXfcfOXJk3jGN8cRkxUcffZTP1IpLjD/O4Ine8tNanzXF2UzTuq34zLHYOY8yzTH+mCyJilRRrjmqY8UOf0NBpXJsr439u3i9cd/GbucAAAAAVIbCHF3MHTVmTq9Qwakl5xw/++yzPAcXXnrppWlWrbrmmmvSEUccUfK2CB81pGbAKP4dryEqaNWsTBXjjRMZo5pTqXZ89YlgTsxjXn/99fnvCgGqQjCoUKGqlGhNWKiEFZ0Holp+S62rws9Ci71Sala6ml71zcPWvL5mx4ZVV101h8OiItTdd9+dl0vMB0dLv9iu6utu0FyFudT6QlDF457eOdjpPdYAQNsToAKgIhV2cmqGdEop7Dw2FLYpiGpFQ4cOzaGbCCfFjl2cmRNnqxTObIqqRW3R4zzO1omzuqJ9X4S6/v3vf6cxY8bkHeenn346V6aKne7CTnG0ndt9993zJc5QijOg4m+i7HP0m//LX/6Sz8SK2+ubUKipVIvCwnNFeel47Om14YYb5kvskMaZa3GJUFhMusRZWrEuo0pVYzW0o1rYLuaYY45a1y+44IJ5YiN21iO8td9++1VPkrTWmU/N2V4b+3eF2xuznQMAAABQOSL0EzbaaKNc9Wh6NHXOsVjM/cU8Z1Rmj6ryDc1xRSu4mK876KCDqsfeVOeee26uahUi+BQnrsa8b1TSinm0CPhMT4AqxJxxBKhibvaYY47Jc5tROSpOwI3uAaVEu73oOhBVrvbYY4+07bbbtui6ivnamkGgUhrTorA+hfZ8xWrOWRYHtGKuNea3Yw42ltntt9+eq3QNGjQoV81qDYW50YaWQ3PmYKfnWAMA5VG6BwwAdHCxkxteeeWVessrx45S7AQXyu9Oy6WXXpp3JOOxowJU7MxG2KZmWego0duaYicyyh1H3/jCGVVxxk60zIuzveISZ0jFGTsRqApRPek///lPev/99/PvCyywQPr1r3+dq1VFBatC68KakwFdunSpbl9XyocffljnujgrK3z++ef5+esTFaYijFbYKY+f48ePz5fCmTpRAnzUqFG5dV5MhoQHH3xwmjupNcUkTc0zx2qKM9nqK1tdOBPs3nvvzTv/jz/+eF7OrXXmU3O218LfFV5PKbGsC5MYjdnOAQAAAKgchTm9Qnu4+k6mjJMdo2J7oQVeU+Yc6xMVrEIEmCJ8Vd8lHjvEnF8EbpojAltRfSrE3OqZZ56Zttpqq7T88stXB2AiFDa9VlpppXzCbWFeMeYYQ8wtlqqOFcs0qnTFHGksswhStfS6KvxdzD3Wp6nt+2q2uCtW6OIQIbqFF1641m2xrcQcdMxzx3xyYTm15kmshbnUWEYxZ1qfF198seQcbMzL1xe+ijndwus1Bwsw4xKgAqAixc52lPuNIM8dd9xR8j5RSjr6r8eZOwMGDKi+vlBSurj60qRJk/LP2AEudXZT7BC/9957+d+FndOWFjvHgwcPTrvuumvJkFLsoBd28AtBnMMOOyxtv/32ueVfsdhpL7z2mmOOM6JCVNMqFaIq7NDWFMulsHMYy7aUqI6100475TO6YoIlXHvttbkcdkwOlKp4VSh1XTzGaYnHKky+1BQ7uTfddFP+dwS1im2wwQb5rKzY4b3uuuvS999/n88O69mzZ5rRttfCRFScpVZf2e5LLrmkehJrWuXPAQAAAKgs6667bg6yRAgm5jfrm1/aZZdd8hxeoTJ9U+YcS4kTAwsnVjbU4q4wb1eoUHX11Ven5oi2gYWTDpdddtmS94lKUgUxL9dYhddx3333pfvvv7/eYFAEwfbee+/0ySef5Hm7P//5z7kKV0uvq5hPDjEfWwj51BTLP+YXm+qGG24oef3ll1+ef/7iF7+oEx6Lk5Lj+liuMYf77LPP5spT9VXpagkRJCuEyeJk6VJijrWwLGLONqyyyiq5glaMNU5gLiUCfTG3G8cW4nUBMGMSoAKgIkUrtu222y7/+09/+lO66667qm+LYNFVV11VXZ452rTV7F9eCCBFlaWaO8aFnavYOY0qSgVxn9tuuy2NHDmyRUoeNyRaBkbVpJh4OPDAA2udBRVBpzhTKgJC0U4vKlOF2FkuBJVuvvnmWiGlCGQVdmRjB7wgdgoLZ5LFYxaWQ+x0x458nPFVyu9///v88/zzz8+TJzXDV7HMCrevuOKKafXVV8//3mSTTfIO9GuvvZZOPPHEWiWfP/300/z8YYUVVqguN91YUQa65rqPyYjhw4fnSmF9+/ZN22yzTcnS45tvvnn+91lnndXqZz41Z3uNwFxhvf3ud7+r1Toxln2U8o4QWPjjH/9YHQ4EAAAAgLDQQgtVt4yL+cYHHnig1rxUhIjOOeec/HucGBnV45s659hQ+CZOXiycLFifOAGxMNaoEtRQVfZpiecrzDVG6CiqINWckzz66KPznG9T5ntj2cRYY47v1VdfzQGtmNetKebuovJVhKF69+6d51Kn1fqtqesqwlmbbbZZXkcHHHBArUpUsa5iXrHUia2NFSGxmIctzAXHz1NOOSWPL+Z943U2FDSLec+Y744qXbHcWlNhfjq225g7rTl/HXOrsSxChKAKJ/bGCa0RdAvxNxGiqtlF4O67705HHnlk/nfM8RaOIwAw42ndbxkAmIEdeuihOSgTO3CxYzTffPPlKjxRvjjOMAo777xz2muvvWr93dJLL11dcSrOzom/izOaomVf7DTH38YO6M9+9rO8UxtVmiJoFKGlCLTE2TJNKe/cWBEo2mGHHXIp5jjrqk+fPnknLsYRZy3FWUjHHntsdcWkeA2x4xZBmkMOOSTvvEZgJ4JWEyZMyDvH/fv3z6WiCyKkFSGi6EF/8cUX51LbsewKZYpHjBiR/vKXv9QZ26abbprbzMVO7+mnn55Gjx6dl1NMOhQqeMUO5HnnnVf9N7F8IzgVFaguu+yy3B4xSjrHTnOMLypARUWsE044YbqWU0woxDKIdR+TEPEYMSEQO8Vxptq5556b11l9O+8xyRNhrnnnnbf6bKMZcXs99dRT87qL7W7o0KHVr/vtt9/O6yq2h1hfsW4AAAAAoFhUk4p5qQcffDDtu+++eV4qKgTFfF7M64WNNtoozzEVNGXOsVjM0xVCSvW1uCsWzxlzjjF3GHO2xx9/fJNecwR1Yg7umGOOyfOsUfko5jFjTDEHGieULrPMMrlFYczNxXxvfZWqisV8YgTHGqo+FSGceN4Q85YRwImTV6O1YCmFiltNWVfhqKOOyt0TosJStM9bYokl8smWMV86xxxz5IphhfFMr3i+WCcRSoq56pjPjPnyWJ/RdrEw314sAnMxj1kYd2ufxFo4mTe2z5hjj/nhqEQV89U1569jWZx22mm1Tkbdc8898/x7rIeYe4/57zhBN7aLOBG7sBwOP/zwVn8NADSdABUAFSsqCcVO0J133pnPZIqzkuLsmgjPxNkjUWJ64MCBdf4uKiNFtZ7YiY2dn9hp/vjjj3MI59Zbb83hnyeeeCLvPEc4JSYGYgc/2urFTlb8jLNVInxTX0CnORZffPHcgu6iiy7K44gd35iQiJ3lDTfcMO2+++55B7immAiIcFecDRZnPcUlwl9RaSra6cXEQ/EERUx6xN/EsoszoWLHcvnll89Bslh+pQJUIc4oWnvttXMAKapORQnoeOyYcIjxxfIpPpsqll+EhaJN3XPPPZd70MffREvA2JHebbfdpruFXqz/2AGOs65iG4gKV7GMInQWEzcNPV7s1MdZYTH2tjjzqTnba5wpF8s6tonYPmPdRrnomDjZeOONc9gvlj0AAAAAlDLzzDOnv/3tb3leKtqpFealYg4v5qMi2BJzZMXt5Zoy51hTtLiLoE1j2vcVxFxshJ0inBRt00aNGtXk1z1kyJAcnonqTxEkiktUbYpK+HEyYoz/iCOOyK8vAkuDBg1q9GPHMosxxpxfVH8qFkGzgumppNXUdRUhqZgrjQBQzCNGSCzGFqGfqGYVHQWaGqCKZRTPHY8dc7CxDGP9Dxs2rE7lrZpi24hlEyfVLrfccvmk3rYQ41pjjTXy8ijMX8fyiesiXFZq+UWYKqqSxfx2dAuIdoix3CP8FvPX0ekg5p0BmLF1qmpOzUUAgAoUZ5jFWWIRnIuJmAitAQAAAAA0RpzwGNWx4gTHs846q9zDmWENHz483XPPPbkCV5wICgCtqXY8FgCAaXrggQdyeCrOoBOeAgAAAACmx/XXX59/RhUrSosq+lHZa5ZZZslVnwCgtWnhBwDQCNGmMEpgv/3227n8eIh2iAAAAAAADfnmm2/SxIkTU/fu3dNFF12U2xlGS7q11lqr3EOboXzwwQfpu+++y8sr5mB//PHHtP3226fZZ5+93EMDoAIIUAEANMIll1ySrr322urf11577bTRRhuVdUwAAAAAwIxv8uTJtaoode7cOR111FFlHdOMaNy4cemggw6q/r1Xr17pgAMOKOuYAKgcWvgBADTCsssum2adddY0xxxzpK233jqdddZZ5R4SAAAAANAORBDoZz/7WZpppply5anzzjsvrbrqquUe1gxn0UUXTfPMM0+u1LXGGmukyy67LM0999zlHhYAFaJTVVVVVbkHAQAAAAAAAAAAUA4qUAEAAAAAAAAAABVLgAoAAAAAAAAAAKhYAlQAAAAAAAAAAEDFEqACAAAAAAAAAAAqlgAVAAAAAAAAAABQsQSoAAAAAAAAAACAiiVABQAAAAAAAAAAVCwBKgAAAAAAAAAAoGJ1LfcAAAAAAAAAAACgvbj66qvT0UcfXe/tTzzxROrZs2ebjonmEaACAAAAAAAAAIBGeuWVV/LP3XbbLfXo0aPO7bPMMksZRkVzCFABAAAAAAAAAEAjjR8/PnXv3j0dcsghqXPnzuUeDi3AWgQAAAAAAAAAgEaYOnVqeu2119ISSywhPNWBWJMAAAAAAAAAANAI77zzTvr2229Tv379yj0UWpAAFQAAAAAAAAAANLJ9X+jUqVMaOXJk+sUvfpH69++fttlmm3TbbbeVe3g0kQAVAAAAAAAAAABMR4DquuuuS5988knaYost0oYbbpjefPPNdNBBB6Uzzjij3EOkCbo25Y8AAAAAAAAAAKDSVFVVpYUWWigNHz48bbXVVtXXT5w4Me24445p9OjRaZ111kmrrrpqWcfJ9OlUFWsWAAAAAAAAAABosqhK9ac//Sltv/326dhjjy33cJgOWvgBAAAAAAAAAEAz9e/fP/+cMGFCuYfCdNLCD6g4P/30U7r44ovTTTfdlMsozjLLLGmllVZK+++/f1phhRVq3TduP+uss9KYMWPSl19+meabb760wQYb5HKMs88+e9leAwAAAAAAAABta+rUqenll19O33zzTRowYECd2+P60L179zKMjuYQoAIqzu9///t03333pUUWWSQNGTIkffbZZ+nOO+/MIam///3vae21165OBW+77bbp888/zz1qF1988fTss8+mSy+9ND3xxBPp6quvTj169Cj3ywEAAAAAAACgjeyyyy7p22+/TY8//niaZ555at321FNP5Z/LL798mUZHU2nhB1SU+BKL8NRyyy2X/vWvf6XDDjssnXbaaenCCy9MU6ZMScccc0z1faPyVISnDjnkkHTBBRfknxGa2nrrrdNrr72WLrvssrK+FgAAAAAAAADaTufOndPGG2+cqqqq8nHmqEhVMH78+DR69Og066yzpm222aas42T6qUAFVJTnnnsu/9xyyy3TzDPPXH396quvnhZddNH0xhtvpE8++SQnhZ9//vl823bbbVd9v06dOqUdd9wx3XjjjbkaFQAAAAAAAACV4+CDD05PP/10uummm9Krr76aBg4cmD744INcyCMCVWeeeWaaf/75yz1MppMKVEBFmXvuufPPSZMm1br+hx9+yK38ZppppjT77LPXuu+7775b674ffvhh/tmzZ882GjUAAAAAAAAAM4IoxnH99den3XffPX355ZfpiiuuSGPGjEnrrrtuuvbaa9PgwYPLPUSaoFNV1BUDqBARktp0003TV199lY499ti04YYb5i+1008/Pd1+++1pjz32yK36ws0335z/veyyy+b7LrbYYrkq1aGHHpo+/vjjdOWVV+pdCwAAAAAAAADtnAAVUHEmTJiQRo0alcsq1jRy5Mg0bNiw3Kav4M4770x/+tOfcuCqoFevXulvf/ub8BQAAAAAAAAAdABa+AEVJVr1nXfeeenZZ5/NlaV23XXX9Otf/zrNNttsafTo0bnqVEH0qz3rrLPSt99+mzbaaKNcnWr11VdPH330UTrssMPqtAEEAAAAAAAAANofFaiAinLcccflHrRDhw7NIahCtan33nsvDRkyJP3vf/9L1113XVp88cVzb9rPP/88XX755WmllVaqfowbbrgh/+2SSy6Zbr311loVqwAAAAAAAACA9kUFKqBiTJ06NV1//fVp9tlnT3/4wx9qBZ969+6dRowYkSJT+s9//jM98MADudLUb37zm1rhqRDXRSWq1157Lf3nP/8pwysBAAAAAAAAAFqKABVQMT755JP0/fffp4UXXjh169atzu1LLbVU/hmt+aIiVYhKVKVE9alQuB8AAAAAAAAA0D4JUAEVY84558zBqXfffTf98MMPdW5/++2388/55psvzTvvvLWuK/bOO+/kn7169WrVMQMAAAAAAAAArUuACqgYEZ4aPHhw+uKLL9JZZ51V67ZPP/20+rotttgirbfeemm22WZLN954Y3rhhRdq3fe+++5Ljz76aOrTp0+d9n4AAAAAAAAAQPvSqaqqqqrcgwBoKx9//HHaaaedcgWp5ZZbLg0YMCAHqu6///70+eefpz322CMdcsgh+b533nlnOvjgg1OnTp3SoEGDcmDq9ddfTw8//HAOV1100UUCVAAAAAAAAADQzglQARXnq6++SqNHj0733ntvmjRpUq5Mtcwyy6Sdd945bbzxxrXu+/zzz6cLLrggjRs3Lv/d3HPPndZee+207777pkUWWaRsrwEAAAAAAAAAaBkCVAAAAAAAVLv66qvT0UcfXe/tTzzxROrZs2ebjgkAAABaU9dWfXQAAAAAANqVV155Jf/cbbfdUo8ePercPssss5RhVAAAANB6BKgAAAAAAKg2fvz41L1793TIIYekzp07l3s4AAAA0Ors/QIAAAAAkE2dOjW99tpraYkllhCeAgAAoGLYAwYAAAAAIHvnnXfSt99+m/r161fuoQAAAECbEaACAAAAAKC6fV/o1KlTGjlyZPrFL36R+vfvn7bZZpt02223lXt4AAAA0CoEqAAAAAAAqBWguu6669Inn3yStthii7ThhhumN998Mx100EHpjDPOKPcQAQAAoMV1bfmHBDqq+0avUu4h0MI2GPZ0uYcAAAAAzECqqqrSQgstlIYPH5622mqr6usnTpyYdtxxxzR69Oi0zjrrpFVXXbWs4wQAAGZ8Hwz7utxDoAXNP3q21JGpQAUAAAAAQBZVph544IFa4anQt2/f9Lvf/S7/+9Zbby3T6AAAAKB1CFABAAAAADBN/fv3zz8nTJhQ7qEAAABAixKgAgAAAAAgTZ06Nb344ovpySefLHn7N998k3927969jUcGAAAAratrKz8+AAAAAADtxC677JK+/fbb9Pjjj6d55pmn1m1PPfVU/rn88suXaXQAAADQOlSgAgAAAAAgde7cOW288capqqoqnXbaabkiVcH48ePT6NGj06yzzpq22Wabso4TAAAAWpoKVAAAAAAAZAcffHB6+umn00033ZReffXVNHDgwPTBBx+k++67LweqzjzzzDT//POXe5gAAADQolSgAgAAAAAgi7Z9119/fdp9993Tl19+ma644oo0ZsyYtO6666Zrr702DR48uNxDBAAAgBbXqSrqMQM0wn2jVyn3EGhhGwx7utxDAAAAAAAAADqgD4Z9Xe4h0ILmHz1b6shUoAIAAAAAAAAAACqWABUAAAAAAAAAAFCxBKgAAAAAAAAAAICKJUAFAAAAAAAAAABULAEqAAAAAAAAAACgYglQAQAAAAAAAAAAFUuACgAAAAAAAAAAqFgCVAAAAAAAAAAAQMUSoAIAAAAAAAAAACqWABUAAAAAAAAAAFCxBKgAAAAAAAAAAICKJUAFAAAAAAAAAABULAEqAAAAAAAAAACgYglQAQAAAAAAAAAAFUuACgAAAAAAAAAAqFgCVAAAAAAAAAAAQMUSoAIAAAAAAAAAACqWABUAAAAAAAAAAFCxBKgAAAAAAAAAAICKJUAFAAAAAAAAAABULAEqAAAAAAAAAACgYglQAQAAAAAAAAAAFUuACgAAAAAAAAAAqFgCVAAAAAAAAAAAQMUSoAIAAAAAAAAAACqWABUAAAAAAAAAAFCxBKgAAAAAAAAAAICKJUAFAAAAAAAAAABULAEqAAAAAAAAAACgYglQAQAAAAAAAAAAFUuACgAAAAAAAAAAqFgCVAAAAAAAAAAAQMUSoAIAAAAAAAAAACqWABUAAAAAAAAAAFCxBKgAAAAAAAAAAICKJUAFAAAAAAAAAABULAEqAAAAAAAAAACgYglQAQAAAAAAAAAAFUuACgAAAAAAAAAAqFgCVAAAAAAAAAAAQMUSoAIAAAAAAAAAACqWABUAAAAAAAAAAFCxBKgAAAAAAAAAAICKJUAFAAAAAAAAAABULAEqAAAAAAAAAACgYglQAQAAAAAAAAAAFUuACgAAAAAAAAAAqFhdUzv1008/pYsvvjjddNNNaeLEiWmWWWZJK620Utp///3TCiusUOu+n332WTr33HPTgw8+mD766KPUu3fv9Jvf/CbtvvvuqWvXdrsIAAAAAAAAAACASq1A9fvf/z79+c9/TlOmTElDhgxJ6623XhozZkzaaaed0mOPPVZ9vy+//DLtsssu6YorrkjLLrtsGjp0aA5bnX766enAAw8s62sAAAAAAAAAAADKq12WX3r88cfTfffdl5Zbbrl01VVXpZlnnjlfX6gqdcwxx6R77703XxeVp15//fV01FFH5aBVGDlyZBoxYkS6++670z333JMGDx5c1tcDAAAAAAAAAACUR7usQPXcc8/ln1tuuWV1eCqsvvrqadFFF00TJkxIn3zySfruu+/SddddlxZccMG0ww47VN+vS5cu6Y9//GP+9zXXXFOGVwAAAAAAAAAAAMwI2mWAau65584/J02aVOv6H374IX322WdppplmSrPPPnt6/vnn0zfffJMGDBiQOneu/VL79u2b+vTpk8aNG5fbAAIAAAAAAAAAAJWnXQaoNt544zTPPPPk9n033XRTmjx5cnrvvffSqFGjcuWpXXbZJXXr1i298847+f4LL7xwyceJEFWErt599902fgUAAAAAAAAAAMCMoGtqpxWoovVeBKYKl4KRI0emYcOG5X9//vnn+edcc81V8nGiSlX48ssv22TcAAAAAAAAAADAjKVdBqiiatR5552Xnn322bTsssumVVddNX3xxRfp3nvvTaNHj07zzz9/2mqrrfL9QlSjKqVw/ffff9+m4wcAAAAAAAAAAGYM7TJAdcopp+TWfUOHDk2HHXZY6tSpU77+97//fRoyZEg69NBD02KLLZa6d++er//xxx9LPk4hYDXbbLO14egBAAAAAAAAAIAZRefUzkydOjVdf/31uf3eH/7wh+rwVOjdu3caMWJEqqqqSv/85z/TnHPO2WCLvq+++ir/7NGjRxuNHgAAAAAAAAAAmJG0uwDVJ598klvuLbzwwiVb8y211FL556RJk9Kiiy6a/z1hwoSSjxXXzzrrrDl4BQAAAAAAAAAAVJ52F6CKqlIRnHr33XerW/DV9Pbbb+ef8803X1puueVye74nn3wyV66qaeLEiTlkteKKK6YuXbq02fgBAAAAAAAAAIAZR7sLUEV4avDgwemLL75IZ511Vq3bPv300+rrtthiizTzzDOnzTbbLIetLrvssur7TZkyJZ166qn53zvttFMbvwIAAAAAAAAAAGBG0TW1Q4ceemh68cUX04UXXpjGjh2bBgwYkANV999/f/r888/THnvskdZYY4183xEjRqTHHnssnXTSSfm+iy++eBozZkx66aWX0iabbJIGDRpU7pcDAAAAAAAAAACUSaeqqqqq1A599dVXafTo0enee+/NrfiiMtUyyyyTdt5557TxxhvXuu+HH36YK1M99NBD+e/69OmTtt566zR06ND8d0Dj3Dd6lXIPgRa2wbCnyz0EAAAAAAAAoAP6YNjX5R4CLWj+0bOljqzdBqiAtidA1fEIUAEAAAAAAACtQYCqY5m/gweoOpd7AAAAAAAAAAAAAOUiQAUAAAAAAAAAAFQsASoAAAAAAAAAAKBiCVABAAAAAAAAAAAVS4AKAAAAAAAAAACoWAJUAAAAAAAAAABAxRKgAgAAAAAAAAAAKpYAFQAAAAAAAAAAULEEqAAAAAAAAAAAgIolQAUAAAAAAAAAAFQsASoAAAAAAAAAAKBiCVABAAAAAAAAAAAVS4AKAAAAAAAAAACoWAJUAAAAAAAAAABAxRKgAgAAAAAAAAAAKpYAFQAAAAAAAAAAULEEqAAAAAAAAAAAgIolQAUAAAAAAAAAAFQsASoAAAAAAAAAAKBiCVABAAAAAAAAAAAVS4AKAAAAAAAAAACoWAJUAAAAAAAAAABAxRKgAgAAAAAAAAAAKpYAFQAAAAAAAAAAULEEqAAAAAAAAAAAgIolQAUAAAAAAAAAAFQsASoAAAAAAAAAAKBiCVABAAAAAAAAAAAVS4AKAAAAAAAAAACoWAJUAAAAAAAAAABAxRKgAgAAAAAAAAAAKpYAFQAAAAAAAAAAULEEqAAAAAAAAAAAgIolQAUAAAAAAAAAAFQsASoAAAAAAAAA2qWxY8emfv36pVGjRpV7KAC0YwJUAAAAAAAAALQ7kydPTocddliqqqoq91AAaOcEqAAAAAAAAABod0444YQ0adKkcg8DgA5AgAoAAAAAAACAduWBBx5IN954Y1p//fXLPRQAOgABKgAAAAAAAADajU8//TT96U9/SgMGDEg777xzuYcDQAcgQAUAAAAAAABAu3H00Uenb775Jp144ompU6dO5R4OAB2AABUAAAAAAAAA7cKtt96a7r777nTwwQenvn37lns4AHQQAlQAAAAAAAAAzPA++OCDdNxxx6U11lgjDRkypNzDAaADEaACAAAAAAAAYIZ32GGHpSlTpqQTTjhB6z4AWpQAFQAAAAAAAAAztKuvvjo99thj6ZBDDkkLLbRQuYcDQAfTqaqqqqrcgwDah/tGr1LuIdDCNhj2dLmHAAAAAAAAME277LJLevLJJ6d5v6222iqdfPLJbTImoGEfDPu63EOgBc0/erbUkXUt9wAAAAAAAAAAYFrBqAEDBtS5fuLEiemWW25J/fr1SxtssEFaeumlyzI+ANo3ASoAAAAAAAAAZmhbb711yevHjBmTA1QRnBo+fHibjwuAjqFzuQcAAAAAAAAAAABQLgJUAAAAAAAAAABAxdLCDwAAAAAAAIB2ac0110yvvvpquYcBQDunAhUAAAAAAAAAAFCxBKgAAAAAAAAAAICKJUAFAAAAAAAAAABULAEqAAAAAAAAAACgYglQAQAAAAAAAAAAFUuACgAAAAAAAAAAqFgCVAAAAAAAAAAAQMUSoAIAAAAAAAAAACqWABUAAAAAAAAAAFCxBKgAAAAAAChp7NixqV+/fmnUqFHlHgoAAAC0GgEqAAAAAADqmDx5cjrssMNSVVVVuYcCAAAArUqACgAAAACAOk444YQ0adKkcg8DAAAAWp0AFQAAAAAAtTzwwAPpxhtvTOuvv365hwIAAACtToAKAAAAAIBqn376afrTn/6UBgwYkHbeeedyDwcAAABanQAVAAAAAADVjj766PTNN9+kE088MXXq1KncwwEAAIBWJ0AFAAAAAEB26623prvvvjsdfPDBqW/fvuUeDgAAALSJrm3zNAAAAAAAzMg++OCDdNxxx6U11lgjDRkypNzDAQCaYeCNV5Z7CLSwf2+9U7mHANChqUAFAAAAAEA67LDD0pQpU9IJJ5ygdR8AAAAVRYAKAAAAAKDCXX311emxxx5LhxxySFpooYXKPRwAAABoUwJUAAAAAAAV7o477sg/jzzyyLTUUktVX3bfffd8/U033ZR/HzVqVJlHCgAAAC2vays8JgAAAAAA7chWW22VBgwYUOf6iRMnpltuuSX169cvbbDBBmnppZcuy/gAAACgNQlQAQAAAABUuK233rrk9WPGjMkBqghODR8+vM3HBQAAAG1BCz8AAAAAAAAAAKBiCVABAAAAAAAAAAAVSws/AAAAAABKWnPNNdOrr75a7mEAAABAq1KBCgAAAAAAAAAAqFgCVAAAAAAAAAAAQMUSoAIAAAAAAAAAACqWABUAAAAAAAAAAFCxBKgAAAAAAAAAAICKJUAFAAAAAAAAAABULAEqAAAAAAAAAACgYglQAQAAAAAAAAAAFUuACgAAAAAAAAAAqFgCVAAAAAAAAAAAQMUSoAIAAAAAAAAAACqWABUAAAAAAAAAAFCxBKgAAAAAAAAAAICKJUAFAAAAAAAAAABULAEqAAAAAAAAAACgYglQAQAAAAAAAAAAFUuACgAAAAAAAAAAqFgCVAAAAAAAAAAAQMUSoAIAAAAAAAAAACqWABUAAAAAAAAAAFCxBKgAAAAAAAAAAICKJUAFAAAAAAAAAABULAEqAAAAAAAAAACgYglQAQAAAAAAAAAAFUuACgAAAAAAAAAAqFgCVAAAAAAAAAAAQMUSoAIAAAAAAAAAACqWABUAAAAAAAAAAFCxBKgAAAAAAAAAAICKJUAFAAAAAAAAAABULAEqAAAAAAAAAACgYglQAQAAAAAAAAAAFUuACgAAAAAAAAAAqFgCVAAAAAAAAAAAQMUSoAIAAAAAAAAAACqWABUAAAAAAAAAAFCxBKgAAAAAAAAAAICKJUAFAAAAAAAAAABULAEqAAAAAAAAAACgYglQAQAAAAAAAAAAFUuACgAAAAAAAAAAqFgCVAAAAAAAAAAAQMUSoAIAAAAAAAAAACqWABUAAAAAAAAAAFCxBKgAAAAAAAAAAICKJUAFAAAAAAAAAABULAEqAAAAAAAAAACgYglQAQAAAAAAAAAAFUuACgAAAAAAAAAAqFgCVAAAAAAAAAAAQMUSoAIAAAAAAAAAACqWABUAAAAAAAAAAFCxBKgAAAAAAAAAAICKJUAFAAAAAAAAAABULAEqAAAAAAAAAACgYglQAQAAAAAAAAAAFUuACgAAAAAAAAAAqFgCVAAAAAAAAAAAQMUSoAIAAAAAAAAAACqWABUAAAAAAAAAAFCxBKgAAAAAAAAAAICKJUAFAAAAAAAAAABULAEqAAAAAAAAAACgYglQAQAAAAAAAAAAFUuACgAAAAAAAAAAqFgCVAAAAAAAAAAAQMXqmtqxhx9+OP3jH/9IL7zwQurUqVNabLHF0q677pp+9atf1brfZ599ls4999z04IMPpo8++ij17t07/eY3v0m777576tq1XS8CAAAAAAAAAACgGdpteuiSSy5JJ510UppnnnnSlltumaZOnZruvvvuNHLkyPS///0v7bHHHvl+X375Zdpll13SG2+8kQYPHpwWXnjh9Pjjj6fTTz89B6/OPvvscr8UAAAAAAAAAACgTNplgOrVV19Np512Wq44dfnll+cQVTjggANymOqMM85I2267bZp99tlz5anXX389HXXUUWnIkCH5fhGyGjFiRA5c3XPPPTlYBQAAAAAAAAAAVJ7OqR2K0NRPP/2UjjnmmOrwVJh33nlzOGrrrbdOH3/8cfruu+/SddddlxZccMG0ww47VN+vS5cu6Y9//GP+9zXXXFOW1wAAAAAAAAAAAJRfu6xA9dBDD6VevXql1VZbrc5t22yzTb6EJ598Mn3zzTdpww03TJ07186K9e3bN/Xp0yeNGzcuTZkyJYeqAAAAAAAAAACAytLuKlB9+umn6aOPPkpLLrlk+vDDD9Phhx+e1lprrdS/f/8cnLrvvvuq7/vOO+/knwsvvHDJx4oQ1Q8//JDefffdNhs/AAAAAAAAAAAw42h3AaoITYXJkyfnVn3//ve/08Ybb5w22WST9Oabb6b9998/t/gLn3/+ef4511xzlXys2WefPf/88ssv22z8AAAAAAAAAADAjKPdtfD7+uuv88/nnnsurb766ulvf/tbmnXWWfN1e++9d9p2223TKaecktZff/1cXSp069at5GMVrv/+++/bbPwAAAAAAAAAAMCMo91VoOrSpUv1v//0pz9Vh6fCYostlnbZZZf0448/prvvvjt17949Xx+/l1IIWM0222ytPm4AAAAAAAAAAGDG0+4CVIW2exGcisBUsWWWWSb//O9//5vmnHPOBlv0ffXVV/lnjx49WnHEAAAAAAAAAADAjKrdBaj69u2bunbtmn766adUVVVV5/ZCtalZZpklLbroovnfEyZMKPlYcX0EsXr37t3KowYAAAAAAAAAAGZE7S5A1a1bt7Tiiivm9nvjxo2rc/sLL7yQf/br1y8tt9xyuT3fk08+maZOnVrrfhMnTkyTJk3Kj1WzLSAAAAAAAAAAAFA52l2AKgwZMiT/PPnkk6vb8IXx48ena665Js0111xpgw02SDPPPHPabLPN0rvvvpsuu+yy6vtNmTIlnXrqqfnfO+20UxleAQAAAAAAAAAAMCPomtqhTTfdND322GPpxhtvzP8ePHhwmjx5crrrrrtyOOqEE05IPXr0yPcdMWJEvu9JJ52Uxo4dmxZffPE0ZsyY9NJLL6VNNtkkDRo0qNwvBwAAAAAAAAAAKJN2GaAKJ554Ylp11VXT1Vdfnf75z3/m1n6rrbZa2nfffdPKK69cfb+ePXvmqlRnnXVWeuihh3J4qk+fPukPf/hDGjp0aOrUqVNZXwcAAAAAAAAAAFA+7TZAFcGn3/zmN/kyLfPNN1+uSgUAAAAAAAAAAFBT51q/AQAAAAAAAAAAVBABKgAAAAAAAAAAoGIJUAEAAAAAAAAAABVLgAoAAAAAAAAAAKhYAlQAAAAAAAAAAEDFEqACAAAAAAAAAAAqlgAVAAAAAAAAAABQsQSoAAAAAAAAAACAiiVABQAAAAAAAAAAVCwBKgAAAAAAAAAAoGIJUAEAAAAAAAAAABWra0s/4JQpU/KlW7du+ffJkyena665Jr3//vupf//+abPNNktdunRp6acFAAAAAAAAAAAobwWqiy++OA0cODA98MAD+fcffvgh7bjjjunPf/5zuvLKK9OoUaPSXnvtlQNWAAAAAAAAAAAAHSZAdd9996VTTz01V5z66quv8nU333xzev3111OvXr3SAQcckJZaaqn0xBNP5IpUAAAAAAAAAAAAHSZAde2116bOnTuniy66KG277bb5ujvvvDN16tQpHXnkkTlAdcUVV6TZZ5893XrrrS31tAAAAAAAAAAAAE3WNbWQF198Ma288spprbXWyr9/++23ady4calbt25pnXXWydf16NEjrbjiiumZZ55pqacFAAAAAACgjXz++edp9OjR6YEHHkjvv/9+mmeeedKgQYPSfvvtl3r27Fnu4QEAQHkrUEXrvnnnnbf69yeffDL99NNPqX///jlEVRD//v7771vqaQEAAAAAAGgDX331VRoyZEi6+OKL04ILLph23nnntNRSS6XLL788bbnlljlQBQAAFV2BaoEFFkiTJk2q/v2RRx7J7fvWXHPN6uumTp2aXnnlldSrV6+WeloAAAAAAADawDnnnJPefPPNNHz48HTAAQdUX3/FFVek4447Lp199tnppJNOKusYAQCgrBWoll566dzG7/rrr09jx45Nt9xyS74+yraGH3/8MZ122mnpvffeSwMGDGippwUAAAAAAKANvPvuu7kbyZ577lnr+qg+FZ599tkyjQwAAGaQClR77713evDBB9ORRx6Zf6+qqkrrrbdeWnLJJauDVB999FGaffbZ830BAAAAAABoP84999yS10dVqqADCQAAqdIrUC233HK55/Xqq6+eFl100dwD+89//nP17dELe7XVVktXX311vh0AAAAAgKabMmVK+uyzz8o9DKCCffHFF+nuu+9OI0eOTF27dk377bdfuYcEAADlrUAVIiD1j3/8o+Rtl112WZp55plb8ukAAAAAADq8L7/8Ml133XVp7bXXTv369cvXXX/99emUU05JX3/9derbt286+uij05prrlnuoQIVJE6Yj8+e0KVLl3TaaaelNdZYo9zDAgCA8lagKvb999+niRMnpv/973/595lmmqm1ngoAAAAAoEP65JNP0pZbbpmr/T///PP5uldffTUdddRRafLkyalz585pwoQJadiwYemNN94o93CBCtKzZ8+01157pV//+tf5BPqDDz44XXjhheUeFgAAzBgBqoceeijttNNOaZVVVkmDBw9OZ555Zr5+//33z2cifPPNNy39lAAAAAAAHVKEEd5///1c/X+llVbK10U1qqlTp6btttsuh6pOPvnk9OOPPwouAG1qo402yqGpqIb3r3/9KweqogrVCy+8UO6hAQBAeQNUZ599dtp3333T008/nXfgq6qq8iXE2U/XXntt2mOPPdIPP/zQkk8LAAAAANAhPfLII2m++eZLF110UVpiiSXydQ8++GDq1KlT+u1vf5vbZkX1l2WWWSaNHTu23MMFKlSfPn3yZ1K4//77yz0cAAAoX4Dq4YcfTuedd17emf/LX/6Sxo0bV+v2M844Iy2++OLpueeeS9dff31LPS0AAAAAQIf13nvvpRVWWCHNNNNM+fe33norX7fgggumhRdeuPp+ffv2ze3+AFpLnBz/+OOP52BnKfE5FD799NM2HhkAAMxAAarLLrss78RffPHFaeONN06zzTZbrduXX375fJZUt27d0i233NJSTwsAAAAA0GHFfGq05yt47LHH8s+BAwfWul8EFmaeeeY2Hx9QWQGqvfbaKx144IElO4289NJL+efPf/7zMowOAABmkABV9LReZZVV0mKLLVbvfaI61aqrrpomTJjQUk8LAAAAANBhRZWp//znP+nbb7/Nv9955525fd8666xTfZ933nknPfvss7kDAEBr6dGjRxo0aFD66quv0jnnnFPrthdffDFdcskladZZZ02bbbZZ2cYIAABN1TW1kO+++65O1alSokpVYWcfAAAAAID6bbjhhumMM85IW2+9dZp33nlzUGrOOedM6623Xr79/PPPT5deemmaMmVK2mKLLco9XKCDO/zww3NYavTo0empp57KLUajrej999+fw51nnnlm6tWrV7mHCQAA5QtQ9e7dO7388stp6tSpqXPn0oWtfvrpp3yfBRdcsKWeFgAAAACgw9p9993TuHHj0qOPPprefvvtfILqcccdl2aZZZZ8+3XXXZc++eSTtN1226Udd9yx3MMFOrgFFlgg3XDDDem8887LoannnnsuzTHHHGmDDTZI++yzT+rXr1+5hwgAAOUNUK2//vrpH//4Rzr77LPTiBEjSt7n3HPPTR999FHaddddW+ppAQAAAAA6rAhMXXDBBemZZ55JH3zwQVp55ZXT/PPPX337XnvtlRZddNG02mqrlXWcQOXo2bNnOuKII/IFAAA6ihYLUP32t79Nt912W3XZ1tVXXz1f//7776frr78+n4nw8MMPp7nmmivtueeeLfW0AAAAAAAdXgSnStl+++3bfCwAAADQ0XRtyTMOLr744jR8+PAcoHr66afz9fHvuFRVVeXWfVGhSv9rAAAAAIDp88QTT6SxY8fmk1aXW265NHTo0HTXXXelFVdcMbfVAgAAAMocoAqLL754rkJ177335p352JGfOnVqDkwNHDgw/epXv0rdunVryacEAAAAAOjQJk6cmA488MD04osv5hNVO3XqVH1btPd77bXX0imnnJLnXwEAAIAyB6hCly5d0sYbb5wvAAAAAAA03eeff5523XXX9N5776UlllgirbPOOumiiy6qvn2RRRZJL730UvrDH/6Qfv7zn6ell166rOMFAACA9qhzuQcAAAAAAEBp559/fg5P7bHHHunWW2/NQamazjjjjHTEEUekKVOmpIsvvrhs4wQAAID2rMUqUA0dOrTR940S05deemlLPTUAAAAAQId0//33p969e+fgVM3WfTXtvPPO6corr0zPPfdcm48PAAAAOoIWC1A9+eST07xP7OBXVVXVu6MPAAAAAMD/7/3330+//OUvpzmnGu39Hn744TYbFwAAAHQkLRagOuecc0peP3Xq1PTFF1+kZ555Jv3rX/9KW265ZRo5cmRLPS0AAAAAQIc1yyyzpA8//HCa9/vf//6Xunfv3iZjAgAAgI6mxQJUG2ywQYO3b7vttmnQoEFp+PDhac0110ybbrppSz01AAAAAECHtNxyy+Xq/2+++WZabLHFSt5n/Pjx6eWXX04DBw5s8/EBAABAR9C5LZ8sQlZLL710uuSSS9ryaQEAAAAA2qWdd945/fjjj2nfffdNTzzxRPrpp59q3f7SSy+lESNGpClTpqTtt9++RZ7z888/T6ecckraaKONUv/+/XMLweOPPz59+umnLfL4AAAA0GErUDVWnz590qOPPtrWTwsAAAAA0O5EeGno0KHpsssuS3vssUfq0qVL6tSpU3r44YfTuuuum9v7VVVVpa222ioNHjy42c/31VdfpSFDhuSKV2ussUbuKvDWW2+lyy+/PN19993puuuuSwsuuGCLvDYAAACoyABVnAUVZ0R169atLZ8WAAAAAKDdOuyww9Kyyy6bzj///BxsCl988UW+LLTQQjlYtdNOO7XIc51zzjn5OYYPH54OOOCA6uuvuOKKdNxxx6Wzzz47nXTSSS3yXAAAANDhAlTjx49vMDj10Ucf5bOU3nvvvXzWFAAAAAAAjbPlllvmy8cff5znWKPqVK9evVLv3r1b9HnefffdNO+886Y999yzzvNHgOrZZ59t0ecDAACADhWg+vWvf51LRzckdupnnnnmtP/++7fU0wIAAAAAVIwIN8WltZx77rklry9UvorQFgAAAHQ0LRagauhMp86dO6dZZ5019evXL+22225pmWWWaamnBQAAAADoMO6///5m/f2gQYNSS4o2gWPHjk0nn3xy6tq1a9pvv/1a9PEBAACgQwWoHnjggZZ6KAAAAACAihTV+6dV6b8hr7zySouN5eqrr05HH310/neXLl3SaaedltZYY40We3wAAADocAEqAAAAAACaZ7XVVkszip49e6a99torffTRR+mee+5JBx98cHr//ffTb3/723IPDWZ4941epdxDoAVtMOzpcg8BAID2FqD6+OOPU7du3dIcc8yRf48d6vPPPz//7N+/fxo6dGjq0aNHSz8tAAAAAEC7d/nll6cZxUYbbZQvYfjw4Wn77bfPVagGDhyYll9++XIPDwAAAFpM55Z7qJSOO+64tO6666ZHH300/z558uS0ww47pGuuuSY99NBD6a9//Wvaaaed0nfffdeSTwsAAAAAQCvq06dPdeWp+++/v9zDAQAAgBmzAtWNN96YrrzyytS9e/fUqVOnfN3111+fPvjgg7TEEkukPfbYI91xxx3pscceS5dccknaZ599WuqpAQAAAAA6hPHjx+efiy22WJppppmqf2+sfv36Nfm5f/jhhzRu3Lg0ZcqUtM4669S5vW/fvvnnp59+2uTnAAAAgA4doLrppptS165dc7Wpwk763XffncNUhx12WFpjjTXSpptumtZff/101113CVABAAAAABT59a9/nTp37pxuv/329POf/zz/XjhhdVrifi+//HKzAlR77bVXmnXWWdOYMWNSt27dat3+0ksv5Z8xLgAAAOhIWixA9dprr6UBAwZUh6e+/PLL9Pzzz6dZZpklXx9ih3v55ZdPY8eObamnBQAAAADoMHr37p1/xsmqNX9vCz169EiDBg1K99xzTzrnnHPSgQceWH3biy++mDsLRLhqs802a7MxAQAAQLsKUH333Xdp9tlnr/79iSeeSFOnTk0rr7xy6tKlS637RgloAAAAAABqe+CBBxr8vbUdfvjhOSw1evTo9NRTT6UVVlghvffee+n+++/PFa7OPPPM1KtXrzYdEwAAALSbANWCCy6Y3n777erfH3roobxDvdZaa9UqAf3CCy/k+wIAAAAAMGNZYIEF0g033JDOO++8HJp67rnn0hxzzJE22GCDtM8++1R3IAAAAICOpMUCVCuuuGK65ZZb0l/+8pfUt2/fdPvtt+frY8c6fPDBB+mUU05Jn3zySdpoo41a6mkBAAAAADqMk046KS233HJp8803L9sYevbsmY444oh8AQAAgErQYgGq/fbbL9133325tHOoqqpKW2+9dQ5ThS233DJ9/vnnqXfv3mnYsGEt9bQAAAAAAB3GpZdemrbYYouSAaqbb745z7eussoqZRkbAAAAdFQtFqBaeOGF0z//+c904YUXpg8//DANHDgw7bbbbtW39+/fP80zzzzpoIMOSvPOO29LPS0AAAAAQEUYNWpUDlcJUAEAAMAMGqAKP/vZz9Lxxx9f8rbzzz+/JZ8KAAAAAAAAAABgxgpQ1ef5559P77//flp22WVTnz592uIpAQAAAAAAAAAApqlzakHPPvts2nvvvdPjjz9efd0f//jHtP3226cRI0akjTbaKJ1zzjkt+ZQAAAAAAAAAAADlD1CNHz8+7brrrunRRx9Nb731Vr7u4YcfTrfeemvq0qVLWnXVVVP37t3Tueeem68HAAAAAAAAAADoMAGqiy++OP3www+5AtXWW2+dr7vllltSp06dchWqyy+/PF1zzTU5THXVVVe11NMCAAAAAAAAAAA0WdfUQsaNG5eWWGKJNHLkyPz71KlTczWqCFBtvvnm+bq4fZVVVknPP/98Sz0tAAAAAAAAAABA+QNUH3/8cVphhRWqf4+Q1FdffZX69euX5p577urr55prrnw9AAAAAAB1/ec//0mHHnrodN8WJ7OeeOKJrTw6AAAA6HhaLEAVwagvvvii+vdHHnkk/1x99dVr3W/ixIlpjjnmaKmnBQAAAADoUCZMmJAv03ubABUAAACUOUC12GKLpaeeeiq99dZbab755ku33npr3mFfb731qu9zzz33pJdffjmtu+66LfW0AAAAAAAdxgEHHFDuIQAAAEDFabEA1fbbb5/Gjh2btthiizTzzDOnr7/+OoeqChWo9tlnn/Too4/mUNUuu+zSUk8LAAAAANBhCFABAABA2+vcUg+0ySabpAMPPDDNNNNMOTy1xBJLpLPPPrv69nfffTd169YtnXrqqWnttdduqacFAAAAAAAAAAAofwWqsPfee6fddtstTZ48OfXs2bPWbSeeeGIOVc0yyywt+ZQAAAAAAAAAAAAzRoAqRJWp4vBU6N+/f0s/FQAAAAAAAAAAwIzRwg8AAAAAAAAAAKBiKlANGjSoyU/aqVOndN999zX57wEAAAAAAAAAAMoaoJo0aVKzAlQAAAAAAAAAAADtNkB12WWXtexIAAAAAAAq3A477JAGDhyYRo4cmX9/77330qyzzprmmmuucg8NAAAAOqwmB6gGDBjQsiMBAAAAAKhwr776aurdu3f174MGDUpbbLFFOuWUU8o6LgAAAOjIOpd7AAAAAAAA/J9OnTqlN954I02dOjX/XlVVlS8AAADADFiBCgAAAACAltWvX7/07LPPpnXWWSf16tUrX/fwww+nrbbaqlHhqxtvvLENRgkAAAAdiwAVAAAAAMAM4uCDD0577713+vjjj/MlfPHFF/nSmAAVAAAAMP0EqAAAAAAAZhArr7xyeuihh9Kbb76Zvvvuu7TrrrumtdZaKw0bNqzcQwMAAIAOS4AKAAAAAGAG0qNHj7TCCitU/z7PPPOkAQMGlHVMAAAA0JEJUAEAAAAAzKDGjx9f7iEAAABAh9fkANUOO+yQBg4cmEaOHJl/f++999Kss86a5pprrpYcHwAAAABAxfvss8/Stddem8aOHZs+/PDD1K1bt1yZao011khbbrll6tWrV7mHCAAAAJUXoHr11VdT7969q38fNGhQ2mKLLdIpp5zSUmMDAAAAAKh4Tz75ZBo+fHj68ssvU1VVVa3bxowZky688MJ05pln5jAVAAAA0IYBqk6dOqU33ngjTZ06NXXu3DnvuBfvvAMAAAAA0HSTJk1K++23X5o8eXL65S9/mTbffPPUp0+fPC87YcKEdNttt6VHHnkkjRgxIt18881pwQUXLPeQAQAAoHICVP369UvPPvtsWmeddarLQz/88MNpq622alT46sYbb2zqUwMAAAAAVIQLLrggh6cOPPDAtPfee9e6bcUVV8xdAUaPHp0rUF166aVp1KhRZRsrAAAAVFyA6uCDD8477B9//HG+hC+++CJfGhOgAgAAAACgYY8++mhaZJFF6oSnaho2bFi64YYb0oMPPihABQAAAG0ZoFp55ZXTQw89lN5888303XffpV133TWttdZaeWcdAAAAAIDm+/DDD9OgQYOmeb9lllkmB6gAAACANgxQhR49eqQVVlih+vd55pknDRgwoDkPCQAAAADA/2fWWWdNn3zyyTTvF/fp3r17m4wJAAAAOppmBahqGj9+fEs9FAAAAAAAKaXlllsu/fvf/87zr/369St5n7jtmWeeSauvvnqbjw8AAAA6ghYLUBV89tln6dprr01jx47N5aW7deuWK1OtscYaacstt0y9evVq6acEAAAAAOiQdtxxx/T444+nvfbaKx111FFp/fXXT507d863TZ06NT3wwAPpmGOOyf/eYYcdyj1cAAAAaJdaNED15JNPpuHDh6cvv/wyVVVV1bptzJgx6cILL0xnnnlmDlMBAAAAANCwDTbYIG233Xbpuuuuy3Ov0aavd+/e+bb33nsvfffdd3kudptttkkbbrhhuYcLAAAAlR2gmjRpUtpvv/3S5MmT0y9/+cu0+eabpz59+uQznyZMmJBuu+229Mgjj6QRI0akm2++OS244IIt9dQAAAAAAB3Wsccem5ZZZpl00UUXpYkTJ6Y333yz+ra+ffumPfbYI1eqAgAAAMocoLrgggtyeOrAAw9Me++9d63bVlxxxbTFFluk0aNH5wpUl156aRo1alRLPTUAAAAAQIcW7fni8sEHH+RLmG+++dICCyxQ7qEBAABAu9e5pR7o0UcfTYssskid8FRNw4YNSwsvvHB68MEHW+ppAQAAAAAqxvzzz5/69++fL8JTAAAAMIMFqP4fe/cBJmV1NQ78ooCAIlhRFLEGsRfE3kXFEgsWBBV7V0RsaFQsWDDGEjUithC7fhpNREUlYkmwYTcQkRhRIhIVpARQ3P9z7vfN/imLBWZ3dnd+v+eZZ5Z3Zmfvxjfve8/Zc8/94osvUvv27X/0fdFq+vPPPy/WjwUAAAAAAAAAACh9AVWzZs3Sl19++aPvi/c0adKkWD8WAAAAAAAAAACg9AVU6623XnrzzTfTyJEj5/ueeG3EiBH5vQAAAAAAAAAAAPWmgOqQQw5J3333XTr22GPTs88+m77//vvK1+LrOBavxdddu3Yt1o8FAAAAAAAAAABYYA1Tkeyyyy7poIMOSg8++GA69dRT8zZ9rVu3zq+NGzcuTZ8+PVVUVKQDDjggderUqVg/FgAAAAAAAAAAoPQFVOGSSy5J66yzTrr99tvT2LFj00cffVT5Wps2bdJRRx2VO1UBAAAAAPDjLr300rTGGmukbt26lXooAAAAUG8VtYAqxPZ88Rg/fnx+hOWXXz6tsMIKxf5RAAAAAAD12uOPP54XpyqgAgAAgDpUQFXQqlWr/AAAAAAAYMF89913qXXr1qUeBgAAANRri5R6AAAAAAAAVG233XZLL7/8cho9enSphwIAAAD1VrV1oAIAAAAAYOHsvffe6e2330777bdf2mqrrVL79u1Ty5Yt0yKLVL029vDDD6/xMQIAAEBdp4AKAAAAAKCWOvroo1ODBg1SRUVFGjZsWHrhhReqfF+8Hu9TQAUAAAA/nwIqAAAAAIBaat99982FUQAAAED1UUAFAAAAAFBLXXnllaUeAgAAANR7ixTrgy699NJ07733FuvjAAAAAAAAAAAA6k4B1eOPP54efvjhYn0cAAAAAAD/Z8KECen6669PhxxySNphhx1S37598/Frr702DR48uNTDAwAAgDqtaFv4fffdd6l169bF+jgAAAAAAFJKw4YNS717905Tp05NFRUVqUGDBmnatGn5taFDh6Zbb701jRgxIv3qV78q9VABAACgvDtQ7bbbbunll19Oo0ePLtZHAgAAAACUtY8++iiddtppafr06alr165pwIABuYiq4IADDkiLL754uueee3IxFQAAAFDCDlR77713evvtt9N+++2Xttpqq9S+ffvUsmXLtMgiVddoHX744cX60QAAAAAA9dLvfve7NHPmzLx936677jrP6z169EjrrbdeOvTQQ3MR1U477VSScQIAAEBdVrQCqqOPPjq3jo7VT9FS+oUXXqjyfYUW0wqoAAAAAAB+2PDhw/Ni1aqKpwo23XTTtOGGG9odAAAAAEpdQLXvvvvmwigAAAAAAIpj0qRJaZNNNvnR9y233HLp/fffr5ExAQAAQH1TtAKqK6+8slgfBQAAAABASmmppZZKH3/88Y++b8yYMWnppZeukTEBAABAfbNIqQcAAAAAAEDVNt988/Thhx+m5557br7vefrpp9NHH32UNttssxodGwAAANQXRS+gmjBhQrr++uvTIYccknbYYYfUt2/ffPzaa69NgwcPLvaPAwAAAACot4477rjUsGHD1KtXr5x3ffXVV/Pxb7/9Nn3yySfpzjvvTOeee25+z5FHHlnq4QIAAEB5b+EXhg0blnr37p2mTp2aKioqUoMGDdK0adPya0OHDk233nprGjFiRPrVr35VzB8LAAAAAFAvrbXWWql///65SOqWW27Jj8i7PvXUU/kRFl100XTRRRelddddt9TDBQAAgPLuQBUtok877bQ0ffr01LVr1zRgwIBcRFVwwAEHpMUXXzzdc889uZgKAAAAAIAf17lz5/T444/nvOuqq66aFltssdSoUaPUunXrtO+++6aHH344HXjggaUeJgAAANRZRetA9bvf/S7NnDkzt5Hedddd53m9R48eab311kuHHnpoLqLaaaedivWjAQAAAADqtbZt2+YuUwAAAEAtLqAaPnx4at++fZXFUwWbbrpp2nDDDdPo0aOL9WMBAAAAAMrGlClT0hdffJE7UC2//PK5GxUAAABQSwqoJk2alDbZZJMffd9yyy2X3n///WL9WAAAAACAeu+RRx5Jd999dxo5cmSqqKjIxxZddNG00UYbpaOPPjrtuOOOpR4iAAAA1FlFK6Baaqml0scff/yj7xszZkxaeumli/VjAQAAAADqre+//z6dccYZ6emnn86FU1E0VcivfvXVV+n1119Pb7zxRjr22GPz+wAAAICfb5FUJJtvvnn68MMP03PPPTff90SQ/9FHH6XNNtusWD8WAAAAAKDeevjhh9NTTz2Vt+u77rrr0ogRI9JLL72UH1E4dcUVV6SWLVumgQMHpmeffbbUwwUAAIDyLqA67rjjUsOGDVOvXr3S9ddfn1599dV8/Ntvv02ffPJJuvPOO9O5556b33PkkUcW68cCAAAAANRbDz74YGrSpEkaNGhQ2n333dNiiy1W+VrTpk3Tfvvtl3Ov0ZkqngEAAIASFlCttdZaqX///qlBgwbplltuST169Mhfx+qo3XbbLb8WxVQXXXRRWnfddYv1YwEAAAAA6q3Ro0fn7v9t27ad73vWXnvt/J4PPvigRscGAAAA9UXDYn5Y586d0zrrrJPuuuuuNHz48PTvf/87ff/992m55ZZLHTt2zEVVEcwDAAAAAPDjmjVrlheq/pjoTNWoUaMaGRMAAADUN0UtoAqxEiq6TAEAAAAAsHC233779OSTT6ZPP/00rbzyylW+56uvvkqvvvpq2nbbbWt8fAAAAFAfFG0Lv7lNmTIljRkzJo0dOzbNmDGjun4MAAAAAEC9deaZZ6Zll102HXHEEem5556b5/UPP/wwHXPMMWnxxRdPZ599dknGCAAAAHVd0TtQPfLII+nuu+9OI0eOTBUVFfnYoosumjbaaKN09NFHpx133LHYPxIAAAAAoF7o2LHjPMdmzpyZF6mecsopuVAqOlHFln3jx4/Pj9C6det02mmnpYceeqgEowYAAIC6rWgFVN9//30644wz0tNPP50Lp6Joaumll65sIf3666+nN954Ix177LH5fQAAAAAAzOmbb7750c7/sXh1bp999lkaN25cNY4MAAAA6q+iFVA9/PDD6amnnkqtWrVKffr0yZ2mYhVU+O9//5tf69+/fxo4cGDaYIMN0i677FKsHw0AAAAAUC9UtU0fAAAAUEcKqB588MHUpEmTNGjQoNS2bds5XmvatGnab7/9Uvv27dMBBxyQ7rzzTgVUAAAAAABzWWmllUo9BAAAACg7ixTrg0aPHp0233zzeYqnZrf22mvn93zwwQfF+rEAAAAAAAAAAACl70DVrFmz1KBBgx99X2zr16hRo2L9WAAAAACAeu3FF19M9913X/r444/TjBkz5vu+yM8+++yzNTo2AAAAqA+KVkC1/fbbpyeffDJ9+umnaeWVV67yPV999VV69dVX07bbblusHwsAAAAAUG8NGzYsnXDCCamiouJH3/tTFrgCAAAA1VhAdeaZZ6bXXnstHXHEEalPnz5p5513nuP1Dz/8MJ1zzjlp8cUXT2effXaxfiwAAAAAQL1188035+KpAw88MO25556pRYsWCqUAAACgthRQdezYcZ5jM2fOzC2kTznllFwoFZ2oYsu+8ePH50do3bp1Ou2009JDDz20cCMHAAAAAKjnRo8endZZZ5106aWXlnooAAAAUG8tcAHVN99884OvT5kyJY0cOXKe45999lkaN27cgv5YAAAAAICy0bhx47TiiiuWehgAAABQry1wAdVzzz1X3JEAAAAAADCHrbbaKr322mu58390+wcAAABqUQHVSiutlGqT4cOHpyOOOCLtu+++6corr5zjta+//jrddNNN6S9/+UuaMGFC3kawS5cu6cgjj0wNGy7w/wQAAAAAANXqjDPOyLnMs846K1100UVpmWWWKfWQAAAAoN6pF9VDsV3geeedlyoqKqrcavCwww5Lo0ePTrvuumtaZZVV0ssvv5x+/etfp3fffTfdcMMNJRkzAAAAAMBPWcjau3fvdMEFF6Rnn302Lb/88mmppZaq8r0NGjRIjzzySI2PEQAAAOq6ohZQvfjii+m+++5LH3/8cW4pPT8RyEewXyz9+vVLn332WZWvReepDz/8MK/O6tatWz7Wq1evdPrpp6enn346DRkyJBdWAQAAAADUNsOGDUt9+/bNX3///ffp888/z4/55V0BAACAEhZQRSB/wgknVNkFqjoD+aFDh+ZVVTvttFP+enbTp09PDz74YFpxxRVT165dK48vuuii6eyzz87FU/fff78CKgAAAACgVooForNmzUo777xz2muvvdLSSy+tUAoAAABqawHVzTffnIunDjzwwLTnnnumFi1aVHsg/9VXX+XW1R07dkyHHnroPAVU77zzTpo2bVrq1KlTWmSRReZ4rU2bNmnllVdOr732Wk5ARFEVAAAAAEBtEt3127VrlwupAAAAgFpeQDV69Oi0zjrrpEsvvTTVlGhdHQVSl19+eRo7duw8r8dWgmGVVVap8vujiOrTTz/Nj7Zt21b7eAEAAAAAfo4mTZrMN78JAAAAFMecbZkWQuPGjfNWeTXl8ccfT08//XQ688wzcyFUVSZOnJifW7ZsWeXrzZs3z8/ffPNNNY4UAAAAAGDBbLXVVunNN99MM2fOLPVQAAAAoN5apJiB/LvvvptmzJiRqtv48eNzp6stt9wydevWbb7vKyQVorirKoXjNTFmAAAAAICf6/TTT895zp49e6Z///vfpR4OAAAA1EtF28LvjDPOSF26dElnnXVWuuiii9IyyyyTqst5552XZs2alfr165caNGjwg+2tw7fffvuDBVaLL754NY0UAAAAAGDB3X777aldu3bp+eefz49ll102d9xv2HDe1G7kSh955JGSjBMAAADqsqIVUK200kqpd+/e6YILLkjPPvtsWn755dNSSy1V5XsXJpC/77770ksvvZQuueSS/DN/SIsWLX5wi77Jkyfn5yWWWGKBxgIAAAAAUJ3uv//+Of49YcKE/KjKDy02BQAAAGqggGrYsGGpb9+++evvv/8+ff755/lR7EB+8ODB+fnCCy/Mj7k9+uij+bHffvulAw88MB/75JNPqvysON6sWbPUunXrBR4PAAAAAEB1GTRoUKmHAAAAAPVe0Qqobrrppryt3s4775z22muvtPTSS1fLiqcojOrYseM8x8eOHZsee+yxtPbaa6dddtkltW/fPq233np5e75XX301F3Utssgic7z/s88+S1tttVVadNFFiz5OAAAAAICFVVUuFAAAAKilBVQffvhhateuXS6kqk77779/lcf/+te/5gKqKJw69dRTK49HMdcDDzyQV2odccQR+VgUevXv3z9/3b1792odLwAAAAAA1BZTp05NAwYMSEOGDMmLjBs1apTWWWed1KNHj9SpU6dSDw8oA65DAEC9LqBq0qRJWmWVVVJtc/rpp6eXXnopXXHFFWn48OFpzTXXzMVW77//furcuXPumAUAAAAAUBv16dPnJ783dgS4/PLLq3U81G1TpkxJ3bp1S6NGjUrrrrtu/nry5Mm5iOGUU05JZ5xxRjr++ONLPUygHnMdAgDqfQFVbIX3yiuvpJkzZ6bGjRun2iK2Erz//vvT9ddfn55//vlcPLXyyiuns846Kx1++OHVss0gAAAAAEAxPProoz/4eiG/WVFRoYCKHzVw4MBctNC1a9fUt2/fyvOnZ8+eqUuXLjmPvvvuu6e2bduWeqhAPeU6BADU+wKq6PQUE5uY4Fx44YVpxRVXTDUpCrhiwlWV5ZdfPvXr169GxwMAAAAAUF0dqL7//vs0adKk9MYbb6TXXnst7b///unggw+u8fFRtzz55JO5WKF3795zLC5u1apVOuSQQ9INN9yQhg0blhcfA1QH1yEAoN4XUN1+++2pXbt2uctTPJZddtnUsmXL1LDhvD8iJkSPPPJIsX40AAAAAEC91KNHjx99zz333JMuu+yytOeee9bImKjb51NslbXkkkvO81phZ4mpU6eWYGRAuXAdAgDqfQFVbJM3uwkTJuRHVWybBwAAAABQHN27d89FVAMGDEhbb711qYdDLT9XqhJbQA4ZMiR/HQulAaqL6xAAUO8LqAYNGlSsjwIAAAAA4GdYc80108svv1zqYVBH3Xvvvemdd95Jbdq0Sdtuu22phwOUIdchAKDeFFB17NixWB8FAAAAAMDP8NFHH5V6CNRRgwcPTv369UsNGzZMV155ZWrUqFGphwSUGdchAKBeFVABAAAAAFBcU6ZMme9r3333XZowYUK666670pgxY9IWW2xRo2OjfnR8ufTSS1ODBg3SVVddlTp06FDqIQFlxnUIAKh3BVR9+vT5ye+NSdDll19erB8NAAAAAFAvbbbZZj/6noqKirToooum4447rkbGRN33/fffp/79+6c777wzNW7cOF1zzTVp1113LfWwgDLiOgQA1NsCqkcfffRHi6YKwbwCKgAAAACAHxf51PmJPGuzZs3S2muvnY499ti05ZZb1ujYqJtmzpyZevfunYYMGZJatmyZbrrpJh1fgBrlOgQAlGUHqqggnzRpUnrjjTfSa6+9lvbff/908MEHF+vHAgAAAADUWyNHjiz1EKhHZs2alXr27JmGDh2aVl555TRw4MC0+uqrl3pYQBlxHQIA6n0BVY8ePX70Pffcc0+67LLL0p577lmsHwsAAAAAAPwEt956ay5aaN26dbr33ntTq1atSj0koMy4DgEA9b6A6qfo3r17LqIaMGBA2nrrrWvyRwMAAAAAQNmaOHFiLlwI7du3Tw8++GCV74tttGwHCVQH1yEAoDar0QKqsOaaa6aXX365pn8sAAAAAECt16dPnwX+3gYNGqTLL7+8qOOh/nj99dfTtGnT8tfPPfdcflTlhBNOULgAVAvXIQCgNqvxAqqPPvqopn8kAAAAAECd8Oijj/7soqnZKaBifnbZZZc0atSoUg8DKGOuQwBAWRRQTZkyZb6vfffdd2nChAnprrvuSmPGjElbbLFFsX4sAAAAAEBZdqCKvOugQYPSF198kSoqKlKbNm2qdWwAAABQXxWtgGqzzTb70fdEEL/oooum4447rlg/FgAAAACg3ujRo8dPet8//vGPdO6551YWTx144IH53wAAAEAJC6giSP+hNtLNmjVLa6+9djr22GPtWwwAAAAAsIBuu+22dMMNN6SZM2em5ZZbLl122WVp++23L/WwAAAAoM4qWgHVyJEji/VRAAAAAADMZezYsbnL1IgRI/KC1s6dO6e+ffumFi1alHpoAAAAUKcVrYAKAAAAAIDqcf/996f+/funadOm5YKpiy66KO2xxx6lHhYAAADUCwqoAAAAAABqqS+++CKdd9556eWXX85dp7bbbrvUr1+/vHUfAAAAUOICqj59+izwD23QoEG6/PLLF/j7AQAAAADquz/96U/psssuS5MmTUrNmjXL2/cddNBBpR4WAAAA1DsLXED16KOP/uyiqdkpoAIAAAAAmNfEiRPThRdemJ555pncdapDhw7piiuuSG3atCn10AAAAKBeqpEOVN99910aNGhQbjcdAb9AHwAAAABgXkOHDs3FU19++WVq3Lhx6tWrVzriiCNKPSwAAACo1xa4gKpHjx4/6X3/+Mc/cmvpQvHUgQcemP8NAAAAAMCcTjrppMpu/ksssUR67LHH8uOniO975JFHFurnT506NQ0YMCANGTIkffbZZ6lRo0ZpnXXWyfngTp06LdRnAwAAQL0roPopbrvttnTDDTekmTNnpuWWWy5ddtllafvtt6/OHwkAAAAAUKfFQtQQXaji8VMVCq8W1JQpU1K3bt3SqFGj0rrrrpu/njx5ci6mOuWUU9IZZ5yRjj/++IX6GQAAAFA2BVRjx47NXaZGjBiRg/3OnTunvn37phYtWlTHjwMAAAAAqBcGDRpUsp89cODAXDzVtWvXnM8tFGT17NkzdenSJV1//fVp9913T23bti3ZGAEAAKBOFFDdf//9qX///mnatGm5YOqiiy5Ke+yxR7F/DAAAAABAvdOxY8eS/ewnn3wyF0317t17jm5WrVq1SoccckjebWDYsGHp8MMPL9kYAQAAoFYXUH3xxRfpvPPOSy+//HLuOrXddtulfv365a37AAAAAACo3Xr06JG37FtyySXnea1x48b5eerUqSUYGQAAANSBAqo//elP6bLLLkuTJk1KzZo1y9v3HXTQQcX4aAAAAAAAakD37t2rPB4LZocMGZK/bteuXQ2PCgAAAGp5AdXEiRPThRdemJ555pkcRHfo0CFdccUVqU2bNsUbIQAAAAAAJXPvvfemd955J+d9t91221IPBwAAAGpPAdXQoUNz8dSXX36Z2zf36tUrHXHEEcUdHQAAAAAAJTN48ODUr1+/1LBhw3TllVemRo0apXIw/Yz+pR4CRdTkN2eXegjws+33+CalHgJF9OgvR5R6CABAdRVQnXTSSalBgwb56yWWWCI99thj+fFTxPc98sgjC/qjAQAAAACogc5Tl156ac7nXnXVVXkHAgAAAKiPFmoLv9i2L0QXqnj8VIXCKwAAAAAAapfvv/8+9e/fP915551594Frrrkm7brrrqUeFgAAANS+AqpBgwYVdyQAAAAAAJTUzJkzU+/evdOQIUNSy5Yt00033aTzFAAAAPXeAhdQdezYsbgjAQAAAACgZGbNmpV69uyZhg4dmlZeeeU0cODAtPrqq5d6WAAAAFC7t/ADAAAAAKB+uPXWW3PxVOvWrdO9996bWrVqVeohAQAAQI1QQAUAAAAAUOYmTpyYC6hC+/bt04MPPljl+2I7vy233LKGRwcAAADVSwEVAAAAAECZe/3119O0adPy188991x+VOWEE05QQAUAAEC9o4AKAAAAAKDM7bLLLmnUqFGlHgYAAACUxCKl+bEAAAAAAAAAAAClp4AKAAAAAAAAAAAoWwqoAAAAAAAAAACAsqWACgAAAAAAAAAAKFsKqAAAAAAAAAAAgLKlgAoAAAAAAAAAAChbCqgAAAAAAAAAAICypYAKAAAAAAAAAAAoWwqoAAAAAAAAAACAsqWACgAAAAAAAAAAKFsKqAAAAAAAAAAAgLKlgAoAAAAAAAAAAChbCqgAAAAAAAAAAICypYAKAAAAAAAAAAAoWwqoAAAAAAAAAACAsqWACgAAAAAAAAAAKFsKqAAAAAAAAAAAgLKlgAoAAAAAAAAAAChbCqgAAAAAAAAAAICypYAKAAAAAAAAAAAoWwqoAAAAAAAAAACAsqWACgAAAAAAAAAAKFsKqAAAAAAAAAAAgLKlgAoAAAAAAAAAAChbCqgAAAAAAAAAAICypYAKAAAAAAAAAAAoWwqoAAAAAAAAAACAsqWACgAAAAAAAAAAKFsKqAAAAAAAAAAAgLKlgAoAAAAAAAAAAChbCqgAAAAAAAAAAICypYAKAAAAAAAAAAAoWwqoAAAAAAAAAACAsqWACgAAAAAAAAAAKFsKqAAAAAAAAAAAgLKlgAoAAAAAAAAAAChbCqgAAAAAAAAAAICypYAKAAAAAAAAAAAoWwqoAAAAAAAAAACAsqWACgAAAAAAAAAAKFsKqAAAAAAAAAAAgLKlgAoAAAAAAAAAAChbCqgAAAAAAAAAAICypYAKAAAAAAAAAAAoWwqoAAAAAAAAAACAsqWACgAAAAAAAAAAKFsKqAAAAAAAAAAAgLKlgAoAAAAAAAAAAChbCqgAAAAAAAAAAICypYAKAAAAAAAAAAAoWwqoAAAAAAAAAACAsqWACgAAAAAAAAAAKFsKqAAAAAAAAAAAgLKlgAoAAAAAAAAAAChbCqgAAAAAAAAAAICypYAKAAAAAAAAAAAoWwqoAAAAAAAAAACAsqWACgAAAAAAAAAAKFsKqAAAAAAAAAAAgLKlgAoAAAAAAAAAAChbCqgAAAAAAAAAAICypYAKAAAAAAAAAAAoWwqoAAAAAAAAAACAsqWACgAAAAAAAAAAKFsKqAAAAAAAAAAAgLKlgAoAAAAAAAAAAChbCqgAAAAAAAAAAICypYAKAAAAAAAAAAAoWwqoAAAAAAAAAACAsqWACgAAAAAAAAAAKFsKqAAAAAAAAAAAgLKlgAoAAAAAAAAAAChbCqgAAAAAAAAAAICypYAKAAAAAAAAAAAoWwqoAAAAAAAAAACAsqWACgAAAAAAAAAAKFsKqAAAAAAAAAAAgLKlgAoAAAAAAAAAAChbCqgAAAAAAAAAAICypYAKAAAAAAAAAAAoWwqoAAAAAAAAAACAsqWACgAAAAAAAAAAKFsKqAAAAAAAAAAAgLKlgAoAAAAAAAAAAChbCqgAAAAAAAAAAICypYAKAAAAAAAAAAAoWwqoAAAAAAAAAACAsqWACgAAAAAAAAAAKFsKqAAAAAAAAAAAgLKlgAoAAAAAAAAAAChbCqgAAAAAAAAAAICypYAKAAAAAAAAAAAoWwqoAAAAAAAAAACAsqWACgAAAAAAAAAAKFsKqAAAAAAAAAAAgLKlgAoAAAAAAAAAAChbCqgAAAAAAAAAAICypYAKAAAAAAAAAAAoWwqoAAAAAAAAAACAsqWACgAAAAAAAAAAKFsKqAAAAAAAAAAAgLKlgAoAAAAAAAAAAChbCqgAAAAAAAAAAICypYAKAAAAAAAAAAAoWw1THTV16tQ0YMCANGTIkPTZZ5+lRo0apXXWWSf16NEjderUaY73fv311+mmm25Kf/nLX9KECRNS69atU5cuXdKRRx6ZGjass/8TAAAAAAAAAAAA5diBasqUKemQQw7JBVTNmjVL3bp1S7vvvnsaOXJkOuWUU/Lxgm+++SYddthh6e67707rrrtuOvzww1PTpk3Tr3/963TGGWeU9PcAAAAAAAAAAABKq062Xxo4cGAaNWpU6tq1a+rbt29q0KBBPt6zZ8/cWer666/PBVVt27bNnac+/PDDdNFFF+VCq9CrV690+umnp6effjp3sNp1111L/BsBAAAAAAAAAAClUCc7UD355JO5aKp3796VxVOhVatWuTPVrFmz0rBhw9L06dPTgw8+mFZcccVcbFWw6KKLprPPPjt/ff/995fkdwAAAAAAAAAAAEqvTnag6tGjR5o8eXJacskl53mtcePG+Xnq1KnpnXfeSdOmTUudOnVKiywyZ61YmzZt0sorr5xee+21XHAVRVUAAAAAAAAAAEB5qZMFVN27d6/yeEVFRd6SL7Rr1y59/PHH+etVVlmlyvdHEdWnn36aH7HdHwAAAAAAAAAAUF7q5BZ+83PvvffmrlNRGLXtttumiRMn5uMtW7as8v3NmzfPz998802NjhMAAAAAAAAAAKgd6k0B1eDBg1O/fv1Sw4YN05VXXpkaNWqUZs6cOce2fnMrHJ8xY0aNjhUAAAAAAAAAAKgdFqkvnad69+6dv77qqqtShw4d8tdNmjTJz99++22V31cosFp88cVrbKwAAAAAAAAAAEDt0TDVYd9//33q379/uvPOO3M3qWuuuSbtuuuula+3aNHiB7fomzx5cn5eYoklamjEAAAAAAAAAABAbVJnC6iie1R0nRoyZEhq2bJluummmyo7TxWsvvrq+fmTTz6p8jPieLNmzVLr1q1rZMwAAAAAAAAAAEDtUie38Js1a1bq2bNnLp5aeeWV03333TdP8VRYb7318vZ8r776au5WNbuxY8emzz77LG200UZp0UUXrcHRAwAAAAAAAAAAtUWdLKC69dZb09ChQ3PnqHvvvbey09TcFltssbTXXnulTz/9NA0aNGiOAqzY+i907969xsYNAAAAAAAAAADULnVuC7+JEyfmAqrQvn379OCDD1b5vuhIteWWW6bTTz89vfTSS+mKK65Iw4cPT2uuuWb661//mt5///3UuXPntPPOO9fwbwAAAAAAAAAAANQWda6A6vXXX0/Tpk3LXz/33HP5UZUTTjghF1AtvfTS6f7770/XX399ev7553PxVGz7d9ZZZ6XDDz88NWjQoIZ/AwAAAAAAAAAAoLaocwVUu+yySxo1atTP+p7ll18+9evXr9rGBAAAAAAAAAAA1E2LlHoAAAAAlFZsfb7ddttV+dqsWbPSH/7wh7TvvvumDTfcMG2zzTa54+97771X4+MEAAAAAIDqoIAKAACgjN14443pySefrPK177//Pp122mnpsssuy4VU3bp1S5tvvnl66aWXUteuXdObb75Z4+MFAAAAAIBU7lv4AQAAsPBmzJiRLr300vTQQw/N9z33339/evbZZ9Mee+yRrr766tSw4f+GkAcddFA6/PDD0+WXX/6D3w8AAAAAAHWBDlQAAABlZujQoalz5865+Gn77bef7/t+//vfpxYtWqRLLrmksngqRBeqo48+Om2wwQbpu+++q6FRAwC1batfAAAAqC90oAIAACgzDz/8cJo6dWq66KKL0iGHHJLWXnvted7zz3/+M3388cdpzz33TM2bN5/n9bPPPruGRgsAlHqr31atWpV6KAAAAFCtFFABAACUmR49eqT+/funJZZYYr7vGTlyZH7+xS9+kd55553029/+No0YMSJVVFSkjh07pl69eqV27drV4KgBgNq01S8AAADUJ7bwAwAAKDOxBd8PFU+FL774Ij+/9dZbuUvVN998kw488MBcPPX888+nrl275tcAgPLc6hcAAADqEx2oAAAAmMe0adPy81/+8pd07LHHpjPPPLPytT/96U/533369ElPPPFEWmQRa3MAoJy2+gUAAID6RpYbAACAeSy66KL5efnll089e/ac47W99947bbzxxmnMmDHpgw8+KNEIAYDq2ur3ueeeS926dUsNGjQo9XAAAACgRiigAgAAYB6FLf7at2+fGjVqNM/r6667bn7+5JNPanxsAEBpt/oFAACA+kYBFQAAAPNYbbXV8vO3335b5euF402aNKnRcQEAAAAAQLEpoAIAAGAeG2ywQS6Oeuutt9LUqVPnef3dd9/N2/q0a9euJOMDAAAAAIBiUUAFAADAPBZffPG0zz77pGnTpqXLL788VVRUVL720EMPpQ8++CBtvfXWaaWVVirpOAEAAAAAYGE1XOhPAAAAoF4666yz0jvvvJMefvjh9Pe//z1tvvnm6Z///Gf6y1/+kpZddtnUt2/fUg8RAAAAAAAWmg5UAAAAVKl58+bp3nvvTSeffHLexu/uu+9O77//furSpUsuqmrTpk2phwgAAAAAAAtNByoAAIAyN2rUqPm+1qxZs3TaaaflBwAAAAAA1Ec6UAEAAAAAAAAAAGVLARUAAAAAAAAAAFC2bOEHAAAAAMDP3uoXAAAA6gsdqAAAAAAAAAAAgLKlgAoAAAAAAAAAAChbCqgAAAAAAAAAAICy1bDUAwAAAKhLxh8/tdRDoIhaDVi81EMAAAAAAKDEdKACAAAAAAAAAADKlgIqAAAAAAAAAACgbCmgAgAAAAAAAAAAypYCKgAAAAAAAAAAoGwpoAIAAAAAAAAAAMqWAioAAAAAAAAAAKBsKaACAAAAAAAAAADKlgIqAAAAAAAAAACgbCmgAgAAAAAAAAAAypYCKgAAAAAAAAAAoGwpoAIAAAAAAAAAAMqWAioAAAAAAAAAAKBsKaACAAAAAAAAAADKlgIqAAAAAAAAAACgbCmgAgAAAAAAAAAAypYCKgAAAAAAAAAAoGwpoAIAAAAAAAAAAMqWAioAAAAAAAAAAKBsKaACAAAAAAAAAADKlgIqAAAAAAAAAACgbCmgAgAAAAAAAAAAypYCKgAAAAAAAAAAoGwpoAIAAAAAAAAAAMqWAioAAAAAAAAAAKBsKaACAAAAAAAAAADKlgIqAAAAAAAAAACgbCmgAgAAAAAAAAAAypYCKgAAAAAAAAAAoGwpoAIAAAAAAAAAAMqWAioAAAAAAAAAAKBsKaACAAAAAAAAAADKlgIqAAAAAAAAAACgbDUs9QAAoL745ptv0u9+97v09NNPpwkTJqQVVlgh7brrrumYY45JSy21VKmHBwAAAAAAAEAVdKACgCKYOHFiOvjgg9Mdd9yRGjdunL9ef/310+9///v89bhx40o9RAAAAAAAAACqoAMVABTBr3/96zRmzJjcceqaa67JRVRhxIgR6bDDDkt9+/ZNt956a6mHCQAAAAAAAMBcdKACgIU0a9asNHjw4NSoUaN08cUXVxZPhU022ST98pe/TMOGDUv/+Mc/SjpOAAAAAAAAAOalgAoAFtKXX36Zpk6dmtq2bZuWXnrpeV5fZ5118vNrr71WgtEBAAAAAAAA8EMUUAHAQip0nJo5c2aVr0+ePDk/f/rppzU6LgAAAAAAAAB+nAIqAFhILVu2zN2nxo4dm9577705Xvv+++/Tc889N0chFQAAAAAAAAC1hwIqACiC4447LlVUVKRTTz01DR06NE2ZMiX961//Suecc04aM2ZMfk+8DgAAAAAAAEDt0rDUAwCA+uCAAw5In3/+ebr55pvTiSeeWHl8tdVWS3379k1nn312atq0aUnHCAAAAAAAAMC8FFABQJGccsopaZ999kkvvPBCmjp1alprrbXSNttsk1588cX8+nLLLVfqIQIAAAAAAAAwFwVUAFBEbdq0Sd27d5/j2Ntvv52fo6AKAAAAAAAAgNplkVIPAADqg9iir2PHjumbb76Z4/j333+fnnrqqdSsWbP8OgAAAAAAAAC1iwIqACiCNddcM02aNCndfffdcxy/+eab08cff5wOO+ywtMQSS5RsfAAAAAAAAABUzRZ+AFAEUSD16KOPpuuvvz69++67afXVV89b97322mu589SJJ55Y6iECAAAAAAAAUAUdqACgCJo2bZruueee1LVr1zRq1Kj89cSJE9OZZ56ZBg4cmF8HAAAAAAAAoPbRgQoAimTppZdOF198camHQR3Url27H33Pfvvtl6688soaGQ8AAAAAAACUEwVUAAAldsopp1R5vKKiIt11111p6tSpaYsttqjxcQEAAAAAAEA5UEAFAFBip556apXH77jjjlw8dfDBB6d99923xscFAAAAAAAA5WCRUg8AAIB5ffjhh+k3v/lNatOmTerTp0+phwMAAAAAAAD1lgIqAIBa6IorrkjffvttuuCCC1LTpk1LPRwAAAAAAACotxRQAQDUMsOGDUsvv/xy2nrrrdP2229f6uEAAAAAAABAvaaACgCglrntttvy80knnVTqoQAAAAAAAEC917DUAwCgvOz3+CalHgJF9OgvR5R6CPXOBx98kF599dXUoUOH/AAAAAAAAACqlw5UAAC1yCOPPJKfu3fvXuqhAAAAAAAAQFlQQAUAUIs899xzqVmzZmnHHXcs9VAAAAAAAACgLCigAgCoJUaOHJnGjRuXi6eaNm1a6uEAAAAAAABAWVBABQBQS4wYMSI/d+jQodRDAQAAAAAAgLKhgAoAoJZ477338vN6661X6qEAAAAAAABA2VBABQBQS3zyySf5uVWrVqUeCgAAAAAAAJQNBVQAALXEV199lZ+bN29e6qEAAAAAAABA2WhY6gEAAPC/Bg8eXOohAAAAAAAAQNnRgQoAAAAAAAAAAChbCqgAAAAAAAAAAICypYAKAAAAAAAAAAAoWwqoAAAAAAAAAACAsqWACgAAAAAAAAAAKFsKqAAAAAAAAAAAgLKlgAoAAAAAAAAAAChbDUs9AACAn2PzR+4p9RAoolf2717qIQAAAAAAAFDmdKACAAAAAAAAAADKlgIqAAAAAAAAAACgbCmgAgAAAAAAAAAAypYCKgAAAAAAAAAAoGwpoAIAAAAAAAAAAMqWAioAAAAAAAAAAKBsKaACAAAAAAAAAADKlgIqAAAAAAAAAACgbCmgAgAAAAAAAAAAypYCKgAAAAAAAAAAoGwpoAIAAAAAAAAAAMqWAioAAAAAAAAAAKBsKaACAAAAAAAAAADKlgIqAAAAAAAAAACgbCmgAgAAAAAAAAAAypYCKgAAAAAAAAAAoGw1LPUAoBimTp2aBgwYkIYMGZI+++yz1KhRo7TOOuukHj16pE6dOpV6eAAAAAAAAAAA1FI6UFHnTZkyJR1yyCG5gKpZs2apW7duaffdd08jR45Mp5xySj4OAAAAAAAAAABV0YGKOm/gwIFp1KhRqWvXrqlv376pQYMG+XjPnj1Tly5d0vXXX58Lqtq2bVvqoQIAAAAAAAAAUMvoQEWd9+STT+aiqd69e1cWT4VWrVrlzlSzZs1Kw4YNK+kYAQAAAAAAAAConXSgos7r0aNHmjx5clpyySXnea1x48b5eerUqSUYGQAAAAAAAAAAtZ0CKuq87t27V3m8oqIiDRkyJH/drl27Gh4VAAAAAAAAALXVH//4xzRo0KD0z3/+MzVp0iRtvfXWqVevXmmllVYq9dCAErCFH/XWvffem955553Upk2btO2225Z6OAAAAAAAAADUAtdee20655xz0owZM1K3bt3SlltumQYPHpy6dOmSxo4dW+rhASWgAxX1Utzc+vXrlxo2bJiuvPLK1KhRo1IPCQAAAAAAAIASGzlyZLrlllvSpptumu66667UuHHjfLxz587plFNOyX9njteB8qIDFfWy81Tv3r3z11dddVXq0KFDqYcEAAAAAAAAQC0Q2/aFk08+ubJ4KnTq1Cltttlm6fnnn0/jx48v4QiBUlBARb3x/fff525TF198ce48dd1116W99tqr1MMCAAAAAAAAoJYYPnx4/ntyFEvNbYsttkgVFRX5PUB5sYUf9cLMmTNz16khQ4akli1bpptuuknnKQAAAAAAAADm+LvyuHHj0korrTRH96mCNm3a5OcxY8aUYHRAKSmgos6bNWtW6tmzZxo6dGhaeeWV08CBA9Pqq69e6mEBAAAAAAAAUItMmjQpd5hq0aJFla83b948P0+ePLmGRwaUmgIq6rxbb701F0+1bt063XvvvalVq1alHhIAAAAAAAAAtcy3336bn6vqPjX78RkzZtTouIDSU0BFnTZx4sRcQBXat2+fHnzwwSrfF9v5bbnlljU8OgAAAAAAAABqiyZNmsxRSFXVFn+hWbNmNTouoPQUUFGnvf7662natGn56+eeey4/qnLCCScooAIAAAAAAAAoY0sssURaZJFF5rtFX+F4YSs/oHwooKJO22WXXdKoUaNKPQwAgFrjj3/8Yxo0aFD65z//mVdTbb311qlXr15ppZVWKvXQAAAAAABKKrboa9OmTRo3blzuQtWoUaM5Xh87dmx+XnPNNUs0QqBUFinZTwYAAIrq2muvTeecc06aMWNG6tatW+7AOXjw4NSlS5fKwB8AAAAAoJx17NgxF0+NGDFintf+9re/pQYNGqRNNtmkJGMDSkcBFQAA1AMjR45Mt9xyS9p0003To48+ms4666z0m9/8Jl1//fXp66+/Tv369Sv1EAEAAAAASi4WnBYWpE6fPr3y+DPPPJNef/31tNNOO6UVVlihhCMESsEWfgAAUA/Etn3h5JNPzm2oCzp16pQ222yz9Pzzz6fx48enVq1alXCUAAAAAACltfHGG6fu3bune+65J+2zzz5p5513zrnTJ598Mi277LKpT58+pR4iUAI6UAEAQD0wfPjw1LBhw1wsNbctttgiVVRU5PcAAAAAAJS7Cy64ID9iMeof/vCH9Oqrr6Y99tgj3X///alNmzalHh5QAjpQAQBAHTdz5sw0bty4tNJKK83RfaqgEPCPGTOmBKMDAAAAAKhdGjRokA499ND8AAg6UAEAQB03adKk3GGqRYsWVb7evHnz/Dx58uQaHhkAAAAAAEDtpwNVGZl+Rv9SD4EiavKbs0s9BACglvj222/zc1Xdp2Y/PmPGjBodFwAAAAAAQF2gAxUAANRxTZo0maOQqqot/kKzZs1qdFwAAAAAAAB1gQIqAACo45ZYYom0yCKLzHeLvsLxwlZ+AAAAAAAA/H8KqAAAoI6LLfratGmTxo0bV2UXqrFjx+bnNddcswSjAwAAAAAAqN0UUAEAQD3QsWPHXDw1YsSIeV7729/+lho0aJA22WSTkowNAAAAAACgNlNABQAA9UCXLl3y87XXXpumT59eefyZZ55Jr7/+etppp53SCiusUMIRAgAAAAAA1E4NSz0AAABg4W288cape/fu6Z577kn77LNP2nnnndP48ePTk08+mZZddtnUp0+fUg8RAAAAAACgVlJABQAA9cQFF1yQVl999fTAAw+kP/zhD6lly5Zpjz32SD179kxt2rQp9fAAAAAAAABqJQVUAABQTzRo0CAdeuih+QEAAAAAAMBPs0gqI3/84x/T/vvvn7c32XLLLdOZZ56ZPvvss1IPCwAAAACgVpFLBQAAoJyUTQHVtddem84555w0Y8aM1K1btxz0Dx48OHXp0iWNHTu21MMDAAAAAKgV5FIBAAAoN2Wxhd/IkSPTLbfckjbddNN01113pcaNG+fjnTt3Tqecckrq169ffh0AAAAAoJzJpQIAAFCOyqID1aBBg/LzySefXBnwh06dOqXNNtssPf/882n8+PElHCEAAAAAQOnJpQIAAFCOyqKAavjw4alhw4Y5wJ/bFltskSoqKvJ7AAAAAADKmVwqAAAA5ajeF1DNnDkzjRs3Lq2wwgpzrJgqaNOmTX4eM2ZMCUYHAAAAAFA7yKUCAABQrhqmem7SpEl5VVSLFi2qfL158+b5efLkyam+a3xS11IPgTpu070HlHoI1AOXbnVrqYdAHXfztruUeghAmVvqjCalHgIAQLWQS/3/5FJZWHKpLCx5VBaWPCpQG8ilUpfU+wKqb7/9Nj9XtWJq9uMzZsxI9d0ia65S6iFQxy3VukOph0A9sN6yziMWzqbLtSr1EIAy17jdoqUeAgBAtZBL/f/kUllYcqksLHlUFpY8KlAbyKVSl9T7LfyaNGkyR/BfVVvq0KxZsxodFwAAAABAbSKXCgAAQLmq9wVUSyyxRFpkkUXm21a6cLzQfhoAAAAAoBzJpQIAAFCu6n0BVbSVbtOmTRo3blyVK6fGjh2bn9dcc80SjA4AAAAAoHaQSwUAAKBc1fsCqtCxY8cc8I8YMWKe1/72t7+lBg0apE022aQkYwMAAAAAqC3kUgEAAChHZVFA1aVLl/x87bXXpunTp1cef+aZZ9Lrr7+edtppp7TCCiuUcIQAAAAAAKUnlwoAAEA5alBRUVGRysAll1yS7rnnnrTqqqumnXfeOY0fPz49+eSTaamllkr3339/bk0NAAAAAFDu5FIBAAAoN2VTQBW/ZgT9DzzwQPr4449Ty5Yt0+abb5569uwp4AcAAAAA+D9yqQAAAJSbsimgAgAAAAAAAAAAmNsi8xwBAAAAAAAAAAAoEwqoAAAAAAAAAACAsqWACgAAAAAAAAAAKFsKqAAAAAAAAAAAgLKlgAoAAAAAAAAAAChbCqgAAAAAAAAAAICypYAKAAAAAAAAAAAoWwqoAH7AJ598kt57771SDwMAAAAAoFaTSwUAoC5TQAUppYqKilIPgVronXfeSd27d08vvPBCmjZtWqmHAwC1wvDhw0s9BAAAoITkUqmKXCoAzEsuFeoWBVSUrSlTpqQ333wzf92gQQOBP3MYO3ZsOu2009Kiiy6a1ltvvdSsWbNSDwkASu6AAw5IxxxzTF5VDAAAlA+5VH6IXCoAzEsuFeoeBVSUrVmzZqXzzjsv3X///ZWB/3/+859SD4ta4rPPPktff/112nrrrdN2222Xj3311Vf5WYKI6kpEQk2Z/TrmmsbP0aVLl3TOOeekpZZaqtRDoR5yPQIAqL3kUvkhcqnUNLlUapJcKgtKLpXq5HpUPRpU+F+WMhKnewT3EfC/++67qWvXrvn4jTfemKt/33rrrfSrX/0qLb/88qUeKiUyatSo1LBhwzR16tR00EEHpaZNm6ZHHnkkPfHEE+nJJ59MgwYNSssss0yph0k98/bbb6df//rX6fLLL09t2rQp9XCox77//vu0yCKLpJkzZ86xYrhx48alHhp1ZA4Vvv3229SoUaN87friiy9Sp06dSj086tH16fPPP0+jR49O//znP9Paa6+dfvGLX6QWLVqUengAAGVJLpUfI5dKKcilUlPkUllQcqlUN7nU6tOwGj8bap1Jkyalli1b5lbCG220UZ5gx8qpU045Jb9+/PHH55sY5emdd95JBx98cNp1113T9ddfn4477rh066235habkQTo0aNH+u6770o9TOqhZ555Jr322mtp/PjxOegvTHygmArn1Ycffphuu+22fM2La1usDI374AorrFDqIVKLFQL+EMnxL7/8Mh1yyCH5vLrhhhvyvRMW9voUf5Q7//zz07/+9a80Y8aMtOKKK+YOB4J+AIDSkEvlh8ilUipyqdQEuVQWhlwq1UkutXqZUVA2YkK94447puHDh1ce23///dOWW26ZkwChefPmlW0U4+JD+Yiq77PPPjutssoqad99983HzjjjjLT++uun//73v3n11IYbbphatWqVK8c176OYYrK8+OKL52TT9OnTBfwUXVyzChPqSGD+9a9/TUsuuWRq3bp1Dt7iOgc/JwEQK4h79eqV/33aaaelp556qtTDoo5fn0aOHJmOPvro/O9jjz02XXbZZfkPdDH3mp05OgBAzZBL5YfIpVJKcqlUN7lUikkulWKSS61+OlBRNt5///3cTroQrEXr6X/84x9pzJgxObCLltPR9nXppZfOyYC4+Fi5UD7+/e9/p7Fjx6ZNNtkkJ4LC7bffnifI0e4wzpUrrrgin0MdOnQo9XCpZzbYYIPUsWPHHIi99957+Rxz/aHYQVpc52KlcNznevfunRPhcU+MFq+xMgF+atvpwvUpArNoWR73x9NPPz1dd911affddy/1UKlj4ryaOHFi6tevX05ERjJp++23r3w95mcvvvhibpcfc7R27dq5RwIA1AC5VH6IXCqlJJdKdZNLZWHJpVJd5FKrn/+lKBtHHHFEuuOOOyoDuk8//TS1b98+t0qMvdivuuqqfDwmRLFPeygE/tR/EcyvuuqqeY/YWFkXE5gbb7wxnXzyyfn8iInNhAkT8qQmVuAVWD3Fwor9r8OJJ56Yz6fHH388/9tkhupIfn/88cfpl7/8ZQ74C5Pt2QP+v/3tb/kBs4u5UJwrX331VW6P/9lnn1W+Fqvw+vTpk7+Oe6TVUyyIb775Jv+hJebphYA/rll33XVX3v7jkksuSVdeeWVudR7H3SMBAKqfXCo/RC6VUpFLpabIpbKg5FKpbnKp1cv/WtRrsSfxPffcU/nvlVZaKT/H6qjddtstPfvss7mVcFT87rPPPunSSy/Nrwv8y0/Lli3ToYcemic1Z555Zvr973+f9thjj3TQQQfl12KFwZFHHpn+85//5GreQuAf7xf483NEW804f6LVb2jUqFF+jkrxjTfeOD322GPp9ddfL/EoqY/eeOONnGTaYost5kg4hbjPxcqEuM5dffXVaerUqe59ZIXVKX//+9/Tcccdl7p06ZL22muvNGDAgLy3ehD4s7CmTJmSt11YbLHF0rhx49IDDzyQzjnnnBzoL7fccvnadPDBB6dp06al+++/P3c/AACg+ORS+ankUqkpcqmUilwqC0IulZogl1q9FFBRb02aNCn17NkzB/J/+MMf5nitWbNm+TmCu6effrry+IEHHjhH4F9YvRBtYEePHl2j46dmNW3aNFfirrnmmvmmE+dIfB03moK4+Qj8WRixWnPfffdNhx12WDr11FPTQw89lPdLj8nLsssum8/BGTNmVAb9gi4WxtzXpcLe17E6dPaEU4igrk2bNmmHHXaoTEhZlUDhPBg1alS+/0ViaLXVVktNmjRJ1157bRo4cGDelqGqwH/IkCElHjl1yQorrJC3X4hzau+9904XXXRRnnufcsopuZ15zMEuvvjifK+MFvoAABSfXCo/h1wqNUEulZokl0oxyKVSE+RSq5erOfVWixYt8qQ62gnHPqCxCqbgpJNOSueee24O7mI1zPwC/7PPPju/Hheayy+/PL9fcFe/FP57xnOh3ep6662Xq3aj3XQkfqKSd36BfyE4K+xlDD9k5ZVXTueff36u/B4xYkS64IIL8iqEW265JZ9nEXBFO+DbbrsttwcWdLEw17W5r0tx/oVYTRyr9woi6VRIMMUq0dg/O1YmQGFlyp/+9Kc8n+rfv3/+Q0oEYdEa+OGHH85tgasK/E877bT8fTC72ZPZca0qXK+WXnrpfD/s2rVr7nIQc63bb789B/3xR5gQc65Y0bnuuuumRRddtGS/AwBAfSWXyk8hl0pNkkulJsilUixyqRSbXGppNCzRz4UaaZG4//7756rwCNhjH/a4sBxxxBH5PfEc/77qqqtyYB+iFXUh8I+LSayceuKJJ9JSSy2VbrjhhlwlTP0R//0Lk+JYqRJ7xd588825/e+bb76ZbrzxxlwVHjp16pQWX3zxysA/3Hnnnfk8iuTAJptsUsLfhLokVkwVrjfPPfdcXlkQK/Bicty9e/e8ciX2Lh46dGie9MR5Kvjn597/om1rXMfiOc6hbt26pV122SWvzLvvvvvydSuuX7/4xS8qJ8+xQiH2w27fvn2+381+jaQ8z6PCufH222+n9ddfv3I/9bhfRnI8FLbpKJxPEfjH98f8asKECSX8Lait59WYMWPS4MGD870uzqO11lor3/+22Wab/IikY6HDQUFcn2KlcVyTzLkAAIpPLpWfQi6VUpBLpTrJpVIMcqlUB7nU0lFARb0UF5TYjzgC/mhdFzetCPxj78/4urA/e0yoQ1WBfyQMorXiN998k29iK664Ykl/J4qvMJm9/vrr00svvZT3IN5pp50qVxfMnDkztz+cX+AfN6XYVzaSQjA/scIuWrV+8cUXackll8yTlZjkbLXVVmnTTTdNJ5xwQl4lFSv2YoVnBP3xPX/5y1/SUUcdJejiZ0+oYyId2yoU9lQvJDbjnhf3v88++yw9+uijuXVrBGhxTsb3PPjgg+nDDz/M52Hz5s1L+rtQ+vMoVm4WWkfHXGjVVVfNX0er/NiqIc6b448/fo7AP86xCODieYsttsgJJAiFBPY777yTuxd89dVXeU4Vc6k4z4YNG5YOP/zwPNeKgD+uU7feemu+J3733Xd5nvbGG2+ks846qzL5BABA8cil8lPIpVIT5FKpKXKpFINcKtVBLrW0GlTooUs9vmGFZ599Nl84IniLiXT41a9+lSc+BbH6JQL/hg0bpmuuuaYy8Kf+mzx5cjr22GPTW2+9lbbddtucGFpmmWXya9HaMFpqxk0nzo1oMz174B9if+vC+2FuEUjF9SYCqUKrzQj2d91119x6uhDQx4QmgrL7778/vfDCC3mFQrS5j7bUUUkOP9VHH32UA/lIVO+3335p8803z6unYsVLu3bt8nv+/ve/51bBjz32WOU2DTHxjutcbNcQyaZg1VT5Kfw3j8AsWgBHC/KCWCkV86UQSfHGjRvnr6OFfiTNX3755bTnnnvm1VOzB/uzz8ko7/Pq66+/zis4l1hiiTwPj20WIjkZc60nn3wyz6969uyZfvnLX+bW+NG9oNAiP/4QF9em6GwQnFcAAMUll8pPJZdKdZJLpabJpbIw5FKpDnKppaeAinotWgj/9re/zZW+UXUZq6iizevs+6/PHfhHJfCll16a9tprrxKOnJr06aefpssuuyw9//zzaeutt877EhcC+dhL/X/+538qA/9YXRcrq+KGBT8kWmRGwB77oMc5Eyvxor10VH5HkB8T49NPP32e4Gr8+PF5EnTiiSfmVQc33XRTiX8T6ooIxCJxGStYYqXwHnvskY/H+RbXr8J5FudYrIp66qmncsAW18AOHTqkjTbaKLd8DSbU5Sv+QBLXpwjqI9Ed98P4g8ikSZPSQQcdlC655JJ5Av/CVg0R+N9xxx05uQmzX0vivIrnLl265IRStMCf/Q8o8Ue6WMW+wgor5CTScsstl9577738x5mYv8e/27ZtO8dnAgBQfHKp/BRyqVQHuVRqmlwqxSCXSjHJpdYSUUAF9dHQoUMrNthgg4ozzjijYvTo0ZXHn3zyyYr99tuvol27dhV33HHHHN9z55135uNbbbVVxeTJkyu+//77Eoyc6jJr1qz5Hhs7dmzFMccck//7H3XUURX/+c9/Kt8T58Jdd91Vsd1221VsuOGGFU888YRzgx81cODAim222aZi2LBhlccmTpxY8dRTT1VsueWWFeuvv37FfffdN8+5WDi3fv3rX+fz8bXXXivB6KmLpk+fXrH//vvne9z8rnuvvPJKxQ477FDx4Ycfzvc9VV0rqd8K/82nTZtW8eqrr+b73eDBgytf//vf/16x2Wab5WvSxRdfXHl8xowZlV/H9z377LM1PHLqgrjerLfeehVdunSp2HjjjSs++eSTfPy7776b4/547bXX5nOsf//+8/0s8y8AgOojl8rc5FKpSXKp1DS5VBaUXCrVSS619JSbUW+9//77uUI82tOtscYaadasWfn47rvvnvczXnvttfMqqbvvvju/L0SVcLR5jYrfWBWj3Wb92y82xAqBWEUQ4lhU38aKlosuuii3no6q77PPPjtX8YY4Fw444IC8AiaqeddZZx3nBvMVLaOvvfbaNG7cuLTmmmum7bbbrvIcjPa+0dY+VuY1adIkPfHEE3kP7FA4PwvtqaNNcBg7dmzJfhfqlrhmxYqoOIdixefs170Q98HYhuHf//53Gjx4cOXxuVcfWI1QfuK/ebTH33fffXP7+7jvde7cuXJ1VMyZYr605JJLpnvvvbdy5VSsmorXw2abbZZ23nnnOa5jlK/CORDXocUWWyyvIB4zZky+DkV7/MJrBXF/3HvvvfPzBx98MN/PNf8CAKg+cqnMTi6VmiKXSqnIpbKg5FIpNrnU2sVVnXqncAGJ/bIXXXTR3G567teiHWK0vAvRbjhuZAUR2BX2Nqb+3HgKN4k//OEPeVIzfPjw+Qb+HTt2zIH/+eefXxn4x16ycW488MADuY05VOXbb7/NScNomXnfffflyXAh4Tj7RCUmx7GnerShfv311+f4jLhuhVdeeaXyM+GnaN26dU5KRmAfjzjnCudf3P/i3Ip9sqMFdbQQhtlFW+A4XyIZ+fHHH+eWvyFa/sb98he/+MUcgX/MnwqB/9xBvsQRcQ7EH+CilXTMxW+77bZ8jZoxY0beziPEtSjOucL5E3+ka9WqVZ57FZJJAABUP7lU5iaXSk2RS6WU5FJZGHKpFJNcau3i/5HUO4WJ9YYbbphXIxQm1IWJdCHwj/2MY+LdtGnT1K9fvzkCf+qP2fd2feihh/L5EBOY+G8eQVVVgX/sdx1Vu88//3w655xz8kSoEPjHcahKrG6aNm1aOuWUU/Jqg7i2fP7552nUqFHzvDcqyDfddNP89VdffTXP67F/8T333JOWXnrpyn3U4YcU7m0R1Mc+17ECOO6Bce+bPfE5evTofN1bfvnlSzxiapsOHTqkvn375sR3BGKRJI/Vn3HuxHk0e+C/1FJL5ec+ffrk7xXkM7cI2m+55Zb8+Oc//5n/oBYritdaa630zDPP5M4FIc6twvnz1ltv5ftm3B8jmQQAQM2QS2V2cqnUFLlUSkkulYUll0oxyaXWLv4fSp32Q20No3I83HzzzZWBf9y4CkFeTJCi9ea6666btt5667TFFlvU0KipSYUbyY033pgnwRGUxWqVaD0dbTPnDvzjJhWBf7Q+bNu2bXrppZfy6iktNPmxgH/PPfdMQ4YMyROao446KgfrsXLl97///RzvLZxL0RY4LLPMMvN8XlyPojV1BP5RZQ4/phDUx3nYqVOn9M4776QjjzwyffLJJ5Ur7/7+97/n1Xwxmd5ggw1KPGJqk5gTRUJ88803T8cee2xuex+tyWN1VLQynzvwv+uuu/L3xX0SqhLXmUIb8htuuCF98803+f543XXX5S0Z7rzzznThhRemr7/+Ot8XY8uGSDTFPC3m5QAAVA+5VH6MXCo1QS6VUpNLZWHIpVJscqm1S8NSDwCKsRomJjdx0Ygq34022iivNNhhhx3yjWvgwIG55V2sZIibWdzUwlNPPZWmT5+ejjnmmDzBjj20qZ/nR6xKefDBB/NkOM6D1VZbLbc6jGAsAv+46cS5EccKVbqx0iXaS3fp0iXftFSE80MiqIqVUI8//njaf//984T5pJNOyufhY489lldQ9erVK7drjXMpzq9o7brccsulFVdccZ7Piz2zf/nLX5bkd6HuivMtzrGLL744399efPHFdMQRR+QkeKxyiXb7kaA666yz0pZbblnq4VILk0YxRyqcG7HCJYKwcNhhh+V2wIXAP1bAxPkUe7EXkgb2Uy9vVZ0Dsc1H3OtiK4+PPvoobbzxxrm1dMzLTz/99Dw3++tf/5q/N+6jkRg444wz0i677FKy3wMAoD6TS+WHyKVSk+RSqQ3kUllQcqksLLnU2q1BRaFPIdQhs19YYh/QCOwLexBHgHbwwQen7bbbLk2dOjW3EI79QaNdcFSQr7LKKmnkyJHpySefzC0544JjVUL9ddNNN+WgPyYnheA+xI0lzp0I/FdYYYW8MiqSPxH0R8vfWLESN6RoTw4/JlbbRfvVmNz85je/qTxv/vGPf+TJzXPPPZfPvZgoN2/ePA0bNizviR0r+bp3717q4VOPRPI7ArO4J8b17YUXXsh7Z8d5FysWDjjggLxydO7kKMwuAvu4b0bgH63KI+gvBP6zhw4xF3MeUTgHYkV6nB+RzI4/pBRWa/bo0SPPsWL1VMGYMWNSz54904cffpgT3XHvjO+L69TsnwkAQHHIpfJTyaVSE+RSqS3kUikGuVR+DrnU2k8BFXXa7bffnq6++urcOjr2+Hz33XfzCqr11lsvr1jYfvvtcxVmvG/AgAFpxowZ+SISKxhiRUwEdoWLC/VPBPZdu3bNN5Zw2WWX5QlvIWkUbX8jYRQT40gKRZvDWPny/PPP5/Mk9iRu06ZNqX8NannisTAxiYrwSDhGy98rrrii8r0R+P/2t7/NgX4kByLJGC1/I0EZ7c3n/jxYWIVzMhIAcd+LoC1WTS2++OJ5VfHs74GfEvjHvutxfTv88MOrXOkJ8Qe1WCUVq4bjPhjnS8ytJk+enOfbDz30UPr1r3+d9tprr8p7Xtw3I/CPa1Qcj9dD3CsLq9gBACguuVR+iFwq1UUuldpMLpVikEvl55BLrd0UUFGnzD5JmTBhQjr11FPzKqiTTz457x0bN6VHH3003XHHHWnttdfOLYaj/XSIhEBUkUcAGK9F27uq9sumfok9q6MFa7Q1jHPhnHPOyQmfggj8o61mrHaJm05U+UagH5W9EkLMz9xBekyOI7iKlVNDhgzJ16CtttpqjsnQzTffnBNKcTzOw2h/PvsqF6gpkkz8VHFte+WVV9JVV12VE5j33HNP/iMLzO31119Phx56aP562WWXzYnGmH9tsskmeX4e23jEyqlrrrkmb/US976Yc0XgH6vUY/XU7rvvnq677rr8Ge6NAADFIZfKzyWXSnWQS6Uuk0vlp5JL5aeSS63dFFBRJ0UL19iTOCbOcXGYfX/Pzz//PN1777150t2+fft0wgkn5NUJlK/YpzrOlREjRqRu3bqlE088Me+XXhDBWiSEIjEQ1eCrr776HK/D3BObqOw+9thj0y9+8Ys5VtZFwH/aaaflFpuRAIgJc6H1ZgT+0Qb9mWeeSTvuuGM6++yzcwJK8AXUZnEde+mll/JWHnvuuWeph0MtTiTGH0wiwR3bLMS8KoL9aHMfLcvfeuut9Ktf/SrfB3faaaf8PfHHvAjsZ29Bvc022+RtQQAAKC65VH4OuVSKSS4VKCdyqfwYudTaTwEVdU4hcIu91mMFVbSxi9VP0V66UaNG8wT+66yzTl5VFS2oKe/A/6yzzso3najqPf744wX2/CwxOYlbZiQSX3zxxXy9iaA9JjOxIm/55ZfP74ukUlynHnnkkbTSSivNsdqz0II6Av9dd901T3JiBSfUZIt0q6b4uWa/jlnNQuEcKDwXEtyRFL/88stze/uDDjooJ4sefPDB/O/tttsu/e1vf8tz9rgPxv1x9nMrEgSRMP/iiy/yCuOY5wMAUBxyqSwIuVQWllwqdZFcKsUgl8rs5FLrHhu2UudEm+levXrlC8y4ceNycB8TmJiAx8UnxIUiEgNHH310rsCMC1BM0ilfsbLl6quvThtttFG6++6704ABA3Lrcvip4joTk5uo+L7vvvtyJXi0y7zwwgvzCqpYSTVx4sRcDR5JyEGDBuXn2fdGj1VW0S4/WmvGCqtbbrklvwdmV1Vt+4LUu88e3EciKs65WHEs4GdhA37rL8pbnAOxnUvfvn3zH1UKq4M7dOiQOnbsmN544418rlxyySV5Dh5bwwwePDiNHz8+z90jOVA4h+LcinMstmKI+2ZcpwT8AADFJZfKgpBLZWHJpVJT5FKpTeRSmZtcat2jAxW12vwqu+Oi8ec//zlPmJdccsmcBIhWiPHe2at5433Rui72ZH/ggQfmaA9LeZp99VRU5x511FGpVatWpR4WtVwE9/fff3/673//mxOPxx13XD7+6quv5slLJJK++uqrtNZaa6Xddtstv3fllVdOt99+e1p88cXnuZb9/e9/T3feeWf+nDXXXLOEvxm1NcCK+1e0Ko9Wv3FexePnmP2ci5ULMfFu1qxZvie2bNmymkZPbZ4/LchqubkTR7GiJVaJxr7rlK/YruOYY45Jr732Wr6eRHeCaDUdie2w//7754T2448/ns+fWDH89ttvp2uvvTbfK/v3759++ctfzje5BADAgpNLpdjkUlkQcqnUFLlUikEuleokl1r3KKCi1pr9//yxumXy5MmpadOmeV/1EBOiuJjE/qDRuu6kk05KnTt3rjLwjxVV0fIOCoF/7KkewVqsdjn99NO10GS+3nnnndxqOiYqBVtvvXWetET7zEKr+z/96U/pqaeeypObqCCPBMHZZ5+dE0tVmTlzZmrcuHGN/R7UnfterEY499xzc7IpxHly1VVX5Xvczw3UXn755XTNNdfklq733HNP3oqB+k3iiJoQ97g//OEP+Q9ro0aNSu3bt8+tpg855JC8Quqiiy7Kgf0FF1xQ+T2fffZZeu+993JyHACA4pNLpbrIpfJzyKVSU+RSKQa5VGqCXGrdooCKWh/wR3vXhx56KH3wwQepXbt2uV1r7Isd4ob22GOPpd/97nc/GPjD3P71r3/ldogR/Fu1wvxEG+loXx+JwwMPPDBfg2LiG6sHokI8Av/CqrvCdSvaZsakJpKS0eY8Vne2aNFCq19+kkgaHXbYYal58+Zpyy23zPeyRx55JJ9bl112WV6N8HMC/miHHte72KJh7bXXrqHfglKROKKm5+kff/xxeuaZZ/If4SIREF0Mtt1225wI//LLL9M555yTr2WxXUyhPfXcnwEAwMKTS6W6yaXyU8ilUtPkUlkYcqnUBLnUukcBFbXO7Dea3/72t3mP7OWXXz61bt0633C++eabvNLljDPOqDLwj9Z3kRgwwebHREvECOZgfj799NNcBR6rn/bdd9/KVXf9+vVLzz//fJ7IXHnllTnwn30CEyuiopr86quvzq2nY5UVzM/s504E9i+88EK68MIL0zbbbJOPRaAV7Vpj9Uu83qVLlyo/R8BPkDiiJszdxjxWGD/55JPp4YcfzufeYostluftRx55ZA78AQCoPnKp1BS5VH6MXCo1QS6VYpJLpSbIpdYt/790DWqJwgUkJjkDBgzIN6e4eUU7u5hkn3LKKfnGEyLwj8n2Pvvsk/8drRBjMh5VmZ06dSrp70HtJ+Bnfr7++uvc6v7DDz/MLet32WWXymC+TZs2lW0045oUKxNiNUIkJwuToDi3YlVVPP/5z39Om222Wf5aMpKqRDD2/vvvp//85z85sR3nSyHgD927d8+rgCP4+tWvfpWPzR34C9TK2+yJowcffDCv1Jw9cbTuuuvmxNH555+fzxWJIxZW4TwpnDMbbLBBnqt369Ytry7+5JNP8ut33nlnOvjgg1Pbtm3dAwEAqolcKjVFLpX5kUulJsmlsrDkUqlpcql1iwIqaqVYlRCtpmPSHC1f11hjjXxReeutt/I+2TEpuvXWW/PFo1evXpWB//Tp09P//M//uDEBCyxaRsfEOCa60SYzHrH3dYcOHXLgHisQYoXm7IF/tC+PSU5ciwot79dbb7201FJLpUmTJuWWrzA/cY707Nkzr9Jr2rRpOu644/LxuO9FMBfnU9euXfOxQuAfAd5+++1X+T6BWnmTOKJUZg/k4xyLxPh1112Xhg8fnp544om06qqr5gcAANVLLhUoFblUappcKgtLLpVSkUutG2yWSK30xRdfpFGjRuX9ZQsBf1w8hg4dmnbccce8QmHJJZfM7Vyj5WuIyfahhx6a/vjHP+YLDsCCtGuNRGPsNfyLX/wiX39CtLWP9pkxuYnJ9eyB/84775wnyLGiM/YsjklPiOtUXMsiiIvVVnbMZX5ihcuJJ56YVl999XwORZJpypQp+XyL8ynOtxCB/5lnnpnfH4mm++67b45J94svvpj3VxeolW/i6Pjjj897qK+88sr5eFx35j5/Fl988Rz4P/roo5XfL+CnGOL+GInKaDm9/fbbp/79+6eTTjopvxbHAQCoPnKpQCnIpVIKcqksLLlUagO51NpLARW1SuGCEFW/cQOaMGFC/ndMnKMF9VdffZVOOOGEtOuuu6Zf/vKXeTXDAw88kNtSf/zxx7k9bKxSAFgQ0SI62kdfffXV6e67785B/dZbb50nwTfeeGNuozl34B/BV6xQ2G233XKAHyJBMH78+LzKM5IBsWpKu02qut/FfaywgiVWS6244orp6aefrtxeIcwd+J966qn560gmFfz9739Pv/3tb3OrdIFa+ZE4opgWJkldaH8+9+dVdRwAgIUnlwqUklwqNUUulWKSS6WY5FLrH1v4UWv2mQ2Fr2N/2ZhEr7nmmvnfd911V3rzzTfzKqkVVlghH1tllVXyc/PmzXM7ahcTYEG98847acyYMTnhuP7666ctt9wyH994443Tueeem6644orcPjPEyoS4/hQC/1idEKuqllhiicrPW2211XLCICY6kYyEue97ce7Ec7QIjvtYtDTfd999c/AVSaff/OY3qWHDhumoo47K31cI3OI5WgjHPTJW9hXE8datW6dLL700tWvXroS/ITV9LkXiKM6VSBzFeXD99dfnxFHMpQotzGc/fyLwj6/jXJlf4ii2/hDwl89WC7FSuHDPi64EcR2afSXdzzX390p6AwAUj1wqUBvIpVJT5FIpFrlUikEutTw0qNAHkxpUuDHN/XVMuGO/4lgVFW1eN91001z1GxeeaAN78MEHp27duuVK30Jw37t37zR27Ni8kiGOLbvssiX93YC6KSa9EVi9/vrr+Zp0yCGHpPPPP3+O98QkOAL/v/71r2nPPfesDPznntgszCSJ8gnSPvroo7wiJfZZHzduXA7S474Xq4ILq/diS4VIQp199tmVgX8oBG5zf2aYPn16atKkSQl+M2pS4b/5t99+m5NFMXcqJI7CY489lhNHP3b+xPxq9sRR/Pvmm2/Oq68kjspDzKVjVfDEiRPzvyPhHUnFXXbZZYE/c/b7YCQ1Yy7v3ggAsODkUoHaRi6VmiKXSjHIpVIscqnlQwcqasy7776bBg8enI444ojUqlWryoD/1ltvTQMHDkyTJ0+ufO8222yT20rHIyo5YyKz3HLLVU5sYk/a+LyYJEVb19knQAA/R7SEvuyyy/IKgldeeSUnISPIX2uttSrfE1+fd9556fLLL8+rp2LiHIF/rI6anUkNPxaoxfkVe6vHPS8SR82aNUsvvfRSbvcbq1Yi2N9rr73yORZ7p8e+1/F9ce8Mc9/vZl8xLOCv/35K4mifffbJ50mcS3H+hKpW3xUC/sJnxr/je5xH5eHII4/MXQe23XbbtMkmm6TXXnstJ7YjQI95+IKcB7MH93FNi64HkUTq0KFDNfwGAAD1n1wqUBvJpVIT5FIpBrlUikUutbwooKLGViVEBe+rr76aby7HHHNMDuIfeOCB3Foz9sWOSU68Ly5Ajz/+eJ4YzZgxI7eAjQTBiBEj0qqrrpr3kv2f//mffNM66aSTBPzAQotry0UXXZQD+1g9dffdd6eTTz45Lb/88pXviTb48frFF1+cnnrqqdzide6gHwrmXiUQQVXcv0499dSc+P7Vr36VV+BFUjv2WI+VetEqOL7vhhtuyIFbfE/cIyMQi5XEMXmmfEkcUSx33nlnGj58eOrVq1fuShDbJnTu3Dldd9116dFHH02jRo1KG2644Xy3ifmxa16sxLr22mvT6NGjU58+far99wEAqI/kUoHaTC6VYpNLpdjkUikWudTyo4CKGluVECsSYlLz+9//PrecjsD/L3/5S9pqq63y/tYx6Q5xo4rK3wsvvDC3lI7AvlOnTnmlVDxCmzZt0i233JKfAYohJs/RWjratEZCMlq4xsQ6EpSzB/5xHYs2+VFpDvMTk9/CRLnwPGTIkDR+/PicUIqAvxCAbbTRRjnQj3Mr3hMT79NPPz3tvffe+T2RIBCMlR+JI6rLe++9l68pcY2JgD8SRHFOrb766rkbQbwWAXvcB1deeeV8nfqhwH/ugD+STXGuPvjgg/m+CQDAzyeXCtR2cqkUk1wqC0suleoil1p+frj8DYqobdu2eUIdk5t77rkn/e53v8t7xG6//fY54I8LTlh88cXTAQcckM4888y85+zHH3+c9xWNpMFBBx2Uzj333NzGbvaWsADFEInEWGEQ16lYOTVgwIA0YcKEOd6z9tprV+5pHJMgmF20/Y37W5g94A+xXULsr77vvvvmf8drMamOCfMaa6yR+vbtm1cJR0K8cN7FpPyPf/xjbhFLeSaOQuG5kDiKlS5VJY7iuZA4Kpw/Z5xxRlpsscUkjsi+/fbbNHHixHytKVybCnPwWIkXj8MPPzwdeOCBeT5+3HHHpS+++CK/t/C+nxLwR1v0uF8CALDg5FKB2k4ulYUll0qxyKVSHeRSy5MCKmp8Qh3tp+Om9PDDD+e9Zr/66qsq2yDuuuuueR/aP/zhD/nCtN9++6VLLrkkt01caaWVSvQbAOV0nYrA/7bbbssTnqr8WBtOyssrr7ySnn/++TRw4MA0aNCgynMkJtmxWjgm2rG9Qtz7Zp8ox3O8HhPk2C/7k08+SVOnTq383EJ7c0mm8iBxRHWK86V169Y5uI8kd1yXvv7667yly6233pqWWmqp3K0gtlaIlVQRyEfgP2XKlDxXj3OtQMAPAFD95FKB2k4ulQUll0oxyKVSneRSy5PZCiVbldCxY8d88Yg9ZudelRCizV3sGRoToW+++aYkYwXKO/Dv0KFDbpUfqxGiZSv8kM033zy3+I37VuxZHedOYZIdgVicTzNmzEivvvpqnijHIybN8YjXQxxr2rRpbgU7N0mm+k/iiOpUCNhPO+203H3giSeeSNttt13q0aNHblseW8HEteuyyy7Lbc2jbXSsEo625oWVeIVzTsAPAFBz5FKB2k4ulQUhl8rCkkulOsmlli93D0q2P3asgIpVCS+88ELeI7sqUcXZsmXL1KJFixofI1DeIvCPVvkxMYpHBGLwY/bYY4/Ur1+/HIBFAuDOO++sfC0S2RHcX3jhhWno0KGVxwsT5/fffz8/Nthgg9wiWIBWfiSOqIlW5sstt1xOKsV2Lvvvv3/aZJNN8usHH3xw5deRXGrWrFm+XsVcfOzYsfN8VhDwAwDUDLlUoLaTS2VByKWyMORSqU5yqeXL//MpaeB/5ZVX5sD/xhtvzC0WI8gviJaJcVNr3759lTcugJoI/O+7775cUR5mb7cJcysE6XvttVe66qqrcuB2xx13pNtvvz0f33777dPpp5+evz7ppJPyioRCS/MRI0bk98ZWDNEmOO57ArTyJHFEdYrryqxZs3J76Ysvvji3Ko85eVxztthii/yeOG8aN26cn5dccskc/H/66ad59d7s98FY4XfNNdfkVXoCfgCA6ieXCtR2cqn8HHKpFINcKtVJLrU8/W95JZS4tetZZ52Vrr/++jR8+PC05ppr5uD/nXfeyRelaHu3+OKLl3qoQJkqJB1nb7EJcyvsrR5bKUTL4M8//zzfw2JbhVtuuSWfO0cddVQ65phj8nsjmIvALVYvxMrgmFDHKoXevXunPffcM3+mc658z6NIHMXWHDE/imRQHD/66KMrE0exSiUSR7ECPY7F/uqROLrnnnvmSBxBVdeSOLdCXKMiiTRlypT8ePfdd3Pb8kLCMZ4/+OCDPC/faaed8uq9QtAf73/qqafy63/84x8F/AAANUQuFajt5FL5KeRSKQa5VKqDXCoNKpSAUwtEK7tzzz03vf3227lKuHPnznki1K1bt7TqqquWengA8KNib+vDDjssLbvssnn/67Zt26Z//vOf6eGHH84T7gjWIvAPTz/9dG7X+vrrr+eJ9XrrrZf3x47H7MEf5Z04ikA+NG/ePJ144omV58+tt96aE0ehqsRRJAiCxBGF8yqSQfEYM2ZMPp9iZV3hj2rPPvtsOuWUU3LC8bzzzssrquJ7Ro0alZOWzz33XLrhhhvSDjvsUPm5cW699957eVVVXOsAAKhZcqkA1HVyqSwMuVSqg1wqQQEVtUa0rIv2dzEJiufYOxQA6oL//ve/qVevXnnFb7QM3nHHHStf+9vf/paOP/74PEmO9xQCt2jhGnuwx+Q6ViPEIwj4y5fEEcVUOAciOI8VdrHCKf64FuLcikRSrJIKkSx65ZVX0mabbZbWXXfdvOoukgFxTp599tmV5x0AALWHXCoAdZVcKsUgl0oxyaVSoICKWuXjjz/OF6U+ffqktdZaq9TDAYCfJFYj7LPPPnmyHKsMQmHP9Jh0v/HGG+nII4/MLV6jXXC0ny68J14XoCFxRDEVVsxFoB+JpBVXXDGfU1tssUUaOnRoeuKJJ/I5F39ki5VS8b7bbrstJ5ImTZqUr1Wrr756/t4DDzwwf6bzCgCg9pFLBaAukktlYcmlUkxyqcyu4Rz/ghKLFtMDBgyovGkBQF0Qk+epU6dW7ocdCpPjmChvuummOVjr379/3ls9jh133HFz7I9NeYtz6P3338/tgAsBfyFxtOWWW6Y777wzJ45uvPHGfDwSRzFfinOukDgqcD4RAX8E71deeWVehXfWWWel7bffPr+2zDLLpHfffTcnmDp27JiPrbPOOumiiy5KX3/9dW43vdJKK6Wll146tW7dOr8u4AcAqJ3kUgGoi+RSWVhyqRSTXCqz81+OWkfAD0BtN3cDz9g3PSbIMYl+880353itsG96rECIAO3f//533nM99meHH0scFQL6QuIo3heJo1tvvbXyPbM/Q8GUKVNycL/11ltXBvyF1VFxrbriiitym/L49+jRo/N1LP4At9tuu+U25oWAP653zi8AgNpLLhWA2k4ulWKTS6XY5FIp8F8PAOAnKqxMKQTyBbHH9dFHH53bT993331p3Lhx8yQIIqCLvbKvuuqqdMEFF6T27dvX8OipTSSOqIntXCJJ1KFDh8qA//bbb09//vOf04UXXpj222+/9Mwzz6Rf//rX6a677prv58x9vQMAAAD4KeRSKRa5VKqbXCoFtvADAPgJCm1XP/nkk/TYY4+l8ePH50Dt9NNPzyt+Yz/sHXbYIT3++OM5MOvWrVtaf/318/f84x//yMdnzZqVdt1119S0adM5PpPyUfhvPr/E0WWXXZYTR61atZpj1Uq8v5A4ipblsSJG4oiCuLbEdWfy5MmpefPm+Vjh+eWXX06rrbZabl3+xBNP5PbShxxySH6tXbt2+dl1CAAAACgmuVSKQS6V6iCXyg9RQAUA8BMDtVjREkH+7KuiRo4cmffGjkl1BG0x+f7jH/+YRowYkTbaaKOcGBg+fHgO/M8///zKgD+YaJcXiSOKafb/9nG+vP322+maa65JN910Uw7411lnnbT22mvnQD/On2hBfckll6SDDjqo8jPieFhjjTVK9nsAAAAA9YtcKsUgl0oxyaXyUymgAgD4AYU9q6Nl61FHHZVWXHHFdMYZZ6Qtt9wyXXfddXlFwjnnnJPbSW+yySbprLPOSptvvnm64447cmAXYnXLpZdemg488MDKz9TKtbxIHFEsr776atpss83yf/tC+/JYLdWnT58c/EfAP3PmzNS4ceO8wu7yyy/PAX9cf2YP+EePHp0TSUsttVRad911S/gbAQAAAPWFXCrFIJdKscil8nM1qJh701AAAObwn//8J5166qlpxowZOWDbbrvt8vHY6/raa6/NxyPQv/rqq9Pyyy+fX5s0aVKaOHFi/nrJJZfME+tglUv5KSR5InF0+OGH58TR3nvvPUfiaKuttsqJo+WWWy599NFH6YUXXsiJowkTJlQmjmIVlcRReTvhhBPy6qgLLrggde7cufIciOvKnnvumduVx3Wp4Kuvvkr33ntvuvvuu3MyYPvtt88r8z777LP05z//Ob322ms5kXTYYYeV8LcCAAAA6hO5VBaGXCrFIpfKglBABQBQhdmD85hkH3HEEXnCffzxx+djEcBFi9fw7bff5pUM22yzTW7rWthvfW4CtfIlccTC+uabb9Ltt9+eA/i4xpx44omVgf+0adPSfvvtl5Zddtl0zz335GtStDIvnHvPPvtsuvPOO9O//vWvys+Lz4hVet27d8//dl4BAAAAC0oulWKSS2VhyaWyoGzhBwAwl8LkN1avTJ8+Pa8w+O9//5v3VS+sRIiW0tEWeODAgekXv/hF2meffdJLL72ULrroonTsscfmYy1btpzjcwX85WX2ICrOoWgvHYmjQsAfiaMXX3wxdejQIQdpr7zySjrvvPMqE0fRbjoeVbVBp/xE4idW3S2++OLpd7/7Xbr55pvz8U6dOqVmzZqlhg0bpiZNmuRjEfBH+/JoQx2JgAMOOCAnCJ555pk0derUtOqqq+bVe3GdCgJ+AAAAYEHJpVIMcqkUk1wqC8p/WQCAuRT2V993333zntcF77//fn6OQG3QoEHp5JNPzgFbTMZjQl14LSbmsSc25Wv2xFGcNz+UOIrVLzfeeGMOwgqJo1iFV1gxNTuJo/K2zDLLpC5duuRzJs6pCP5jRVQE+NFWOlZFPfzww/mcGzduXOW5GAmBSCBF8N+jR4/cfroQ8EskAQAAAAtDLpWFJZdKdZBLZUHoQAUA8H8KqwxmzpyZg/1YWRAtWWOVy29+85u06aabpi+++CJdccUVeaXCUUcdVfm9EcQtvfTSOREQq6UiGUD5KiSO4vzZYIMNKlv7RjC24YYbViaOevfuXXmuROLojjvuyK/FI9oLO4+YX+AfIuj/7W9/m9uWxwrPTz/9NP3qV7/Kry2xxBJp4403zqumtt1225ycjGvayiuvPMfnSSQBAAAAC0IulWKRS6W6yKXycymgAgD4PxHwR6D21ltv5Tauu+yyS9pjjz3ya7vuumteefD000+nKVOmpB133LFypcF7772XXn/99fyegw46qHK/bK1cy4/EETUV+O+3337562g/HY+vv/46bbTRRmmnnXZK//73v9PLL7+cr2WTJ09Ojz76aH7vgAED5gn6AQAAABaEXCoLSy6VmiCXys+hgAoA4P9EoHb11Ven1157Lf+70CI4RCAXYjL93XffVbZ0jb3Y77vvvjRt2rS0zTbbVAb8QcBffiSOKLbCORAro+IaFaucYkXUcsstl1vjx79vu+22HNyvsMIK6bjjjsvf98033+SVVHFeRfvzSCRFu2kAAACAYpBLZWHJpVJscqksLAVUAAD/p3HjxunSSy/Nj+HDh+fWv7ECYc0116xszRrtWwutXl944YWcBIhVMOeee24O8ChvEkdUR8D/4Ycf5sD+7bffTq1atcrBe6y4W3755dPee++d33PrrbemV155Jf35z39Ou+++e24zHY9C0mnuzwQAAABYGHKpLCy5VIpJLpViaFBRUVFRlE8CAKgnPvnkk9SnT5/0xhtvpK5du6aTTjopT65DTJ2ef/753DY4VimstNJK6dBDD82rF4IJNR9//HFl4miTTTZJF110UU4cFcQKlm7duqVJkyalDTfccI7E0RFHHFHSsVN7FK4lsQovVkLFKqgWLVrklVDxiGO9evXK7x0/fnx6/PHHc/vpaCt94oknps6dO+dkpWsSAAAAUJ3kUlkYcqkUg1wqxaKACgCgCmPHjk1nn312evPNN3NQHxPsQuAfYgL+3//+N0+mo/1rMLmmQOKIYhg1alTq0aNHWnHFFfPzdtttl0aPHp2OP/743MI8zq3evXtXBv6PPfZYGjhwYFp66aVz4F84pwAAAACqk1wqC0MulWKQS6UYbOEHAFCFNm3apP79+6ezzjor3X333fnY7IF/oaVroRY9ngVqFKyyyirpyiuvzImj+++/PwdohfMnVrLsuOOOadNNN5U4Yr6mTp2abrnlltS8efPUs2fPtMMOO1QmHJs1a5YTRtGKOs6XWD0V7aj32WeffA5dd911pR4+AAAAUEbkUlkYcqksLLlUisUVBQDgBwL/2IN9o402yoH/7bffntsDzy4CuNmfYe7EUeH8iX3VZz9/ImkUgdqyyy6b/y1xVJ769u2bW5HPbcqUKemtt95Km222WWXAHy3No710u3bt0nnnnZfPoVglddVVV+XX43zq0qVLeuihh6yYAgAAAGqUXCoLQy6Vn0IulermqgIA8BMC/w4dOqTf//736YYbbsgrXeCnkDjih5xzzjl5VV0E8P/617/meO3LL79M//73vyvPi+nTp+e20kOGDEn77bdfbjkd7afDgw8+mE4//fT8GbECb/3118/HYwUVAAAAQE2RS2VhyKXyQ+RSqQkKqAAAfkLgFnusr7XWWvnRtGnTUg+JOkTiiKoceeSR6cUXX0xrrLFGevvtt9MZZ5wxR+C/wgorpNVWW62yJfkrr7ySV96ddNJJae+9987H2rZtmwP7SAw89dRTeZXV7KzCAwAAAGqaXCoLQy6VqsilUlMaVBQ2mwUA4AdFG9glllgifx1TKKtc+DnGjh2bA7YDDjgg9ejRo9TDoYQuv/zyNGjQoHT++eenbbfdNg0YMCA9+uijae21107XXXddWnXVVfP7Pvvss7TYYovl685BBx2UWrRokW6++eb877j+xGqpa665JieSwuabb17i3wwAAADgf8mlsjDkUimQS6UmKaMDAPiJBPws7Oqp++67rzLgt46hPMUqpwjmGzVqlFdhRoDfpUuXHPyPHDlyjtVTrVu3Tssuu2xuPz1mzJi0yiqrpObNm+frz6hRo9Kf//znfGzdddetDPi1mgYAAABqA7lUFoZcKkEulZqmgAoA4GcS8LOgJI6IVtDLLLNM+vbbb9Ndd92V/vSnP6U+ffrkpNDuu++ePvjgg9SrV68c+BfOkUUXXTR/3xdffJFf/9vf/pZbUL/77rupe/fuledV4fMBAAAAags5MBaUXCpyqdS0hjX+EwEAoMwJ+MtTIdlz1llnpYkTJ6YhQ4akF154Ia222mrpqKOOSs2aNcsB/hNPPJED/2uvvTa1bds2Lb300mm33XZLgwcPTsOHD8+B/axZs9KZZ56Z9t133zk+GwAAAADqEzmv8iSXSikooAIAAKgBEZRHcB6to/fff/8c9Eeb6KZNm+bnCO7PPffc/N5C4P+b3/wmt6Y+5phjUrt27dJzzz2XkwTRprpz5875vfG9VksBAAAAAPWFXCql0KDChqEAAAA15r///W864IADUpMmTXKwHu2jI4iPgH+NNdZIX375Zbr88stz4L/OOutUBv5h5syZqVGjRpUrpAT8AAAAAEB9JZdKTVJABQAAUMM++eSTNGnSpLTyyivnYH/YsGFpm222Seedd15affXV5wj8119//dS/f/+8WgoAAAAAoJzIpVJTFFABAACU0IQJE3Kw/+KLL84T+F911VXp8ccfT23btk0PP/xwblkNAAAAAFCO5FKpTgqoAAAASiwC/D59+qQXXnhhjsD/P//5T7rgggvSZpttlo466qhSDxMAAAAAoKTkUqkuCqgAAABqWeC//fbbp7PPPjutscYaafr06alJkyb5PRG+NWjQoNRDBQAAAAAoGblUqoMCKgAAgFoU+J9//vnp+eefTxtvvHEaMGBAWmKJJdIiiywi4AcAAAAA+D9yqRTbIkX/RAAAABbIMsssky677LK0ySabpJ133jktueSSOeAPAn4AAAAAgP8ll0qx6UAFAABQy2g1DQAAAADw4+RSKRYFVAAAALWUgB8AAAAA4MfJpbKwFFABAAAAAAAAAABl6383gAQAAAAAAAAAAChDCqgAAAAAAAAAAICypYAKAAAAAAAAAAAoWwqoAAAAAAAAAACAsqWACgAAAAAAAAAAKFsKqAAAAAAAAOD/sXcfYHKV5d+An02h9x6q1NC7dOkgSBMUkSIgYkEpVtTPimBFUf4gAiKCdJAqvfcaOiSEXhJIIL1ny8x3PQdn3SSbZJNscrbc93XNNTszZ2aec2YWct79vc8LAEC3JUAFAAAAAAAAAAB0WwJUAAAAAAAAAABAtyVABQAAAAAAAAAAdFsCVAAAAAAAAAAAQLclQAUAAAAAAAAAAHRbAlQAAAAAAAAAAEC3JUAFAAAAAAAAAAB0WwJUAAAAAAAAAABAtyVABQAAAAAAAAAAdFsCVAAAAAAAAAAAQLclQAUAAAAAAAAAAHRbAlQAAAAAAAAAAEC3JUAFAAAAAAAAAAB0WwJUAAAAAAAAAABAtyVABQAAAAAAAAAAdFsCVAAAAAAAAAAAQLclQAUAAAAAAAAAAHRbAlQAAAAAAAAAAEC3JUAFwGz70Y9+FH379o0vfelLZZfSYdx3333xve99L3bbbbfYZJNNYrPNNovdd9+9uO/OO++MruqJJ54ovgt5aWxsnObxIUOGxLhx4+ZqDbvuumtzDS0v6623Xmy66aax0047xTHHHBNXXnllTJo0abqvU3veo48+2i51vfbaa7P8nLPOOquo4dBDD211H6+55pqYV6rVarzxxhtT3Ddo0KDm4/TOO+/Ms1oAAAAA5oXrrruu1XGmmV06+jjpq6++GhtuuGF8//vfn+m2N9xwQxxyyCHF+GZeDjrooLjsssuiUqm027jd9C4DBgyY4Vhd7fPZcccdo6ua2T7meF2O27WU3798zp///Od2q6M2Tlm7vPzyy2163r777tv8nPasZ3bMzth07Tub+w9A99Gr7AIAoCvIQM6JJ54YDzzwQHF72WWXjbXXXrs4ic2wyc0331xctthii/jb3/4Wiy++eHQH9fX1xf5eeOGFcdNNN8Uiiywy19+zT58+xaUmP4MJEybEBx98EI888khx+ec//xlnnnlmrLvuunOtjg8//DB+//vfR79+/Zq/F53NCy+8EKeeemqsttpq8cc//rHscgAAAADmiaWXXjo233zzae7P8aW8zDfffEUQaWrrrLNOdFQjR46M7373u9HQ0DDTbXM86NJLLy1+XmONNaJnz55FcCYv9957b5x77rnRu3fvOR63m56FFlpoll+7u8gg0BlnnBFXXXVVPP/889Gr17z9U+/tt98eG2ywwUwnlM7OpNKuMDYNQOcmQAUA7eAXv/hFEZLJAYU//OEPsdFGG00R4Hn44YeLjl1PP/10fOtb32oegOgqNt5447j11luLn1uetGeI6JxzzpmntXzuc5+LE044YZr783N4/PHH45e//GW8/fbbceyxx8YVV1wRq6yyyhTb1fZjxRVXnKM68jPP0Nzyyy8/y889/PDD4zOf+UwsuOCCUabLL7+8CFFlgKql3Kf2Ok4AAAAAHU12Ms/L1LIbzdlnn11Mnsxxpc7i/fffj+OOO65NoZbsfJRjl4suumgRlNpyyy2L+1966aX4xje+UYx5/fWvf41vf/vb7TZuNyPddQxqjz32KFY4mDqoliG27AQ2r+WYb648kAGqXG2hLZ9Z2coYmwagc7OEHwDMocGDBxczWFIOoLQMT6W6urr41Kc+1dyq+KmnnorHHnssupIM+qy55prFpaPKz2HbbbctBhhWWGGF+Oijj+JXv/rVNNvV9qPM8NJSSy1V1NBRB4Zy4KZ2nGZntiEAAAAA80aGWQ488MB45ZVXZrptU1NT0bEn5TJ/tfBUyo5bp59+evHzxRdfHGPHjo15oSOM1ZUhA2y536uuump0BOutt14stthi8e6770b//v1n+p3LMcOO3JENAFojQAUAcyhPGCuVStECeEYBoq222io+8YlPFD9ne2XKscwyyxTdwNKDDz5YdFgCAAAAgK7mi1/8YnznO9+JUaNGxac//eniMiP9+vUrAjIZfjnggAOmeTwnJ2an8gkTJsQ999wzFyuno8nvxO677178nF2opmfAgAFF9//8riyxxBLzsEIAmHMCVADMFUOHDo3TTjutOCnP2UmbbbZZsSRZ3jdo0KBWn5PLnX35y18ugkb5nDzJ+spXvlJ0d8qA0tStpPv27Rs77rhjq6+V75GP56W193vvvfeKpdyyFXJ2jMrZVIcddlhcc801xUyrWVHrwJPrz+cgw4ycf/75cccdd8SXvvSlVh+/++6742tf+1qx73kMsnNVtkTO1sxT17/uuusW+zejGT95/HOb3K852f8MHOXrZGvyq666KnbeeefieXvuuWc88cQTxaV2vLOVc8p93G233ZpfI7fNx3Pb7373u8XP2fZ7evJzz2323nvvaG95XJZccsnmY95SbT8effTR2f5O5/N//OMfNz+v9po1u+66a3E7Z/7l8z/5yU8Wr3fQQQcVA1rZDj4fP/TQQ6e7Dw899FAcccQRxfPy8zvyyCOn2x57evtUk59VPp7vm2qf5/XXX1/c/s9//lPcrn1vW/5+vfPOO9O83ltvvVUsa5nfrzxWW2yxRXzhC1+Iiy66KCZNmjTD71e+dh67/N3O5+b1T37yk+n+dwMAAACgo8nxv2OPPTa22WabYnxjhx12KJaum15X+to4y5gxY+KGG24oOkbl8m35vBw/e/LJJ2erjmeffTb69OkTf/rTn+L//u//YqGFFprh9s8991xxvf7660+349Pmm29eXM9uTbNqZuNarckVAE488cTi+OXx32677eKb3/zmDFcFmJWx6RkF1rLWWhevlp5++unmfbnvvvumefxf//pX8djXv/716Y5/55hijgHWbLDBBtMd/3711VeLMdjtt9++GMfN555yyilFV/7Ztddee800QFUbn9xnn31m+Fo5Bp1j0TnemGOjecxzzPkHP/jBNGPhNTmumOPrOYaaY6K5X7vssksxfp7Ht6UZjU3PqZwcnUtY5th9fgZZf459Zm35N4I5qbvlWGl2gWtN7buRn2lH+v4DdAUCVAC0u5yllCf5l1xySbHO+Oqrrx4rr7xyEdrJ+3L20tShn9/+9rfFCUOeCGcnpzwByHXVH3744eKkqdYxqD3ceeedse+++xZhjaxvjTXWKJZMy5OVn/70p8WJwfjx49v8ejloUBt8yPBTLtX3+uuvt7ptztDKLlQLL7zwFPdn6ChPiL71rW/FAw88UCw3l8egvr6+OHk5+OCD49JLL23efpVVVilOZlJt+cDWBjxytk8OdrQMIc3J/ud7/fznP49qtVrsR55wZ/vm1mSL5jzZqsmTyTxW2X76c5/7XHFffr4jRoxo9fk5WJTyxLK99ejRIzbddNM2D/bM6nc697PWbSwDdnm7NrjUUg5a5POXW265ItA133zztWlmVh6bHITL7llZS37/8uQ/ZxTWgltzIj+jrHfppZcubuf3I2+3pe12fkf233//uPLKK4tjlc/Jrl85sJC/5/ldHjJkSKvPzWOYxzL3L7+3+fuSAbR///vfxfM++OCDOd43AAAAgLmloaEhjj/++CK8kJPfcnwzJ0Hm2F+OyR199NHF+Mj0ZMjphz/8YTGmt9ZaaxXPy7BNhmb+8Y9/zHI9OfaUYa4cC2yL2gja9XkAAQAASURBVES5HHucnpVWWqm4zho7oj/+8Y/FpMPc7xxbzbGpHAvMjll5/PPxqbXX2HQt0PLII49M81jLANjjjz8+zeP3339/cV3r8tSaHGttOT5XG3Ocf/75p3mvHH/NY5Djessvv3y8//77cfnllxdjnMOGDYvZkUGcHLvM70l2mmrNbbfdVtQzo/3IkNHhhx9ejEXn2GyOReYxz2Uhc2zx85//fDERs6X8LPPzyzBgTkpdYYUVYu211y5eK8fP8/VaTiKe0dj0nMjf45yInPuZv+9Zdx7jHKfN2jJE1zJENat1d+bvP0BXIEAFQLvLANHw4cOLTj35j+zsXpOXPNnPGRZ5cpAnDDVvvPFGcUKUJ1Y50+bee++Na6+9thhk+P3vf1/8A//GG29sngE1J/IkJU8GJk+eHMcdd1wROsnXzhOf7LaToZeciZHdmdoq136vhVYyeHTuuecWM2xydlC+VwaVZjagcOaZZxbHKE+gLrjgguJkJY9BXueJZAaqslNRy5PvWrDolltuaXUWSO5XbXZNnvi0x/4/88wzxQlYfkZZb5545f635mc/+1mxXy2/F3kscgZbzmBZccUVi5PM1romZWgm6+jZs2er7cLbQwagUg4etPd3OvezNlssT6Dzdl5aO5752vkZ5jE955xz2lR7djrLGVkZtssZR7kU4a9//evixDZvZ+BoTuRnlPXWZrjlTLW8nZ/pjGRIKn8X8uQ8Z13l9zXryRP2DEXl9ytnv+WMp1qnspauvvrqYnAwvxP5nDwuGcTKwGEG7S688MI52i8AAACAuel3v/td3HXXXcVktxwXy3GkHKfJMZKclJhjNzkOOnU4pCYn2u23337FuGiODebzsnNVTmY8/fTTi7GkWZFhjqnDNTNSm+iY41nTU5v8N3LkyOhochzp73//ezFemccrwzk5NpXHM8fg8nPJx1sGVtpzbLrW8Si3nboTUctx3akDVDmmnLXme02vq1AtYJdjxS2/Lzlmt+yyy06xXYZ5smN9bQw3O/D/85//LCZv5oTY/Hl25ETR2j621oUq3zcnnO60007N49GtyYnE2R0t6255zHM8OMcNc6w7Qz05Zl2Tj+dzcnwx9ycDTPnZ5u9YhpDydyQ/rxz3ntnY9OzKun71q18V45oZLGo59pn15e/Na6+9VgTVZrfuzvz9B+gKBKgAaHcZ0knZhaZlp6XsQpNLcWVr2wxJ1AwcOLC4zk46W2+99RSv9dnPfrZYxixnSWUoY07lEmX5OhkCyja7CyywQPNjefKUJ6EZ2skTy+l1kWpNhkWyNXNtBlYtBJSzSDKMlMGbXO4tT1jypKilnPFTGzTJAE0en5qsJdsN5+yQfN5f/vKX5sfyNfP4ZpefqU+6WwaTWnZwmtP9zxOpDGDlNjMbTJmRPPHK2U4tg14t5X15QprHIrszzQ2172Yumdfe3+m2yoGM/F7UtPV4rrrqqsVnVVuGMOXMrK9+9avFz9kSugxZUw4gZHvoU089dYqBkuxUluHA/M5lG+4MR7U2CHP22WcX/y2oqS1tmGZ1kBAAAABgXsmO2xlgSDkuUlvuLOVYWoYlTjrppOJ2jn+01gE+l/bK0EJtTCWflx2tcmw0xwb/+te/ztV9mDhxYnE9o9BVbTwxlyWbVbnftWXsWrvMKDw0MznmmWOf6Te/+U0xjleTk1NzDC5DLym3q03ua8+x6TXXXLPoqJ5jsy2XisvOShkuysdz/C/fs2UALSfR5nOyY36tI/ycyDHD3MfsPFWTE1pzf1Jry8a1VW2lg9YCVLXx6JbjnVPLIE5tCcMcS2x5zDPglb8jhxxySHG7Zbek2vhsTvjMibk1+V3NDkk5HrnHHnu0aax3dmXAsLYEYv49oDZGXutwlasDZOetlisMzKu6O8L3H6ArEKACoN3lSWLtBCdnVbQ8mc5BgAxRtFxmrLZ9nkzkAMHU3ZpydlZ296ktWTe78h/52akntTyBaClP1LOtdg5ItLYW/YzkCX7OMMsuORl6mjpQk7M5cr+z81PLE46sKW/n9nmi1ZpaF6Y80c5OSCmXOKudjGbgqaXsTJQnXRnoqp34tMf+Z8iqtlzhnMpQTJ685T69+eab82z5vpoclEhZQ3t/p9tqiy22iNmRYanWBrLyxD1lG+2pj+ncNmHChOaBoWwr35ps/15r353dy6aWbbWnnjGXcpnJ2mATAAAAQEeU424ZSsixjekFSHJSY04gyzGO7A4ztRxTaRnKaNlJKuXYS2vBq/bS2ntPT1vG1KbWp0+f5mXnWru0XHJtVmWXn5yompMfa12SppZjojmxMye+9u/ff66MTbe2jF9+bk1NTcUSeBmSyrHXlp9/bfm+6dU9q/J9WusAlWO/LTuNzY4MYmVAKI9TLRyUcp+yu1KOHe+yyy7TfX5tzHnjjTcuPvPWHHPMMc1jnNnNPmUHp5Qd3bLDU8t9yOBVLnGZXatahsbaWwbTFl988Sm6aLVcGSLHZjPkWBujnZd1d5TvP0Bn16vsAgDoenKWSJ4UvvXWW/Gtb32rOBHILjK5DFi2782ATksZGsrW1BkCyvBRXjL4kydjOQMju/vMqOVvW+U//mvBpVNOOaWoqzW1Jd1mJ4CSgwy5n3lJeUKUxyJPgnMGTr5/niTmLI/s5JSyrW9tllrO6GhNy65VWVdtJlKuZZ8td7Od8S9+8YvmGWC1rk7Z5ak2mNEe+99auGVOltDLcFd2z8p6c4ZOykBVhs3yRHxGJ9tzqtZGe3pLEM7Jd7qtZvd4Tq/VdM5iWnTRRYtBuPz8asGjeSHbc9dCaTMa7MrHsjNbHsupTW+goPa9bm3ZPwAAAICOoDaWll24M6TQmgyXZKeXDIXk2MjUY18ZKmlNLfiSYy+DBg1qvt3eahMnZ7ScWG1iYcvO9m2VY5m5JOHcUBtjzWOU3b5mNH6boZf8vPJ4t/fYdAaocom8XKKtpvbzNttsU4SCcpm0HBPNFQZy3Dcnw6baxMM5Nb0xttrnOzvdw2pyGco999wzrr766iIwVRsXzc7xOb6d3Ypm9N2o/Z5MbyJxLXSUxzzHb/P3ZJ111omDDz64CCHlqgk5tp1L6eXvWn5O+Rl98pOfLGqbm/K7k8GpXB4wP7O8ZKAqx7hznHjnnXeOFVZYYYrnzKu6O8r3H6CzE6ACoN3lCcBNN90U5513XtGRKTshZfgkL2eccUZxwpNhn1y+rCbX5M4TyAwDPf/88zF48ODixCIv2WknZ22cfPLJ0w39tEXL7jUvvfTSLG0/u7Ilc7Y1zksumfe1r32tGCDJ2Sbf/e53i3BT7X3yhLAtS5SNGTOm+ecM8eSgS55I5ol3zm4bPXp0EdjK1661ZW6v/Z9R++7ZkYMmOViQJ2h5fLLmWvepPHGbk897ZjKklbJ19tz4TrfF7Aw0pZbLCLb2WH52tZbr80otkJYyxDU9tRPu1mZL5gxMAAAAgM6oNjYyo3GRmY2N1LrbTK1lR/i52aE7O+ykGS0nVlt6rj2WmmtPteOSE0hndYy1Pcems+N8TgzNoFSG3XISaS7Rl8GVDNrUlnHLMdHaOG0uC5erE9S6Fc2puTmmmnKsOwNUuYxfbVJshqlSBqja4/ckxzhz29rvSf7eXHXVVUXAJydn5vHNLkp5yS5O+X3M8eWW3Z/mhnz97NqUIbn8XHMsPic35yXHtnOybQalakGqeVV3R/n+A3R2AlQAzBW5VNdpp51WzKjIk8BsSfzYY48VgZMMEB177LHFSVW2bU55cpHLkuWl1rUpn5OzOPIf7Jdcckmx3U9/+tPpdmZqqbXwSMuBhjyJmFEIpa2y9XK20M72uL/73e+mWSe8pdzXH/7wh/GVr3ylOPnLE+PllluuWIov5YyjXPd9VuUyd9lGN0NIGaDK45onStlWNz+Hubn/cypnK+V3JD/jp59+umhhfcsttzSHq+aWnEVXa1M8vVbRc/qdntvL5c3sZLm1zlrT+32Z0eu1VcvvU9YwvUG0HFSYensAAACAzq421jGzgFMtuNDa2EiOadZCTC21fM2csDm31CYa5ljd9NQea6+wT3upjbFmR53rrrtulp47u2PTrcmgVIZosuN+dp7KLj4ZmsluPxkayoma+RlnB6APP/ywuftUey3fNy/kGHh+D2vL+OXk0gxTZQAw97c9fk9qj7f8Pckw0oknnlhc8pjWJrjm8pnDhw8vOkNleC3HnOf2/uclO3n169cvnnrqqXjooYfi5ZdfLiY2f/3rXy8mCddWhpjdumflbx8d5fsP0Nm13kMUAGZT/qM+Z9bk7IuU7arz5DDDJTmjIkM+ecKQ/8jPWRkpw0QZSKm17611bcqOPvfcc0/zsna1ZelqJ6KptiTd1PLks7UATO152TJ3enIJuYEDB7Y6C2xq+XoZnspl72pr1bdlybY8LnlSlLKDVMs2u63J45UnLblMWoa2WsouU1lHnpDnscxj3FoAaW7s/5zKDkz77LNP8XN2dsqTzZzhlgMJeZlbcrZPLTRUe//2/E7PbdNbXjJPwGufW8tW7rPz+zKrVl111eZ20zPqcFZ7LGdqAQAAAHQVa6yxRnE9YMCAYoms1uTYXYZOpjc2Mr3xwQyp1CZI5vJac0ttCcGceDi9caRnn322uTN+R1IbY83j29jYON1xvuz8lNvU9m92xqbbsoxfyvHaDKOkXBKtFlbJbj8pH7vvvvvadfm+eSHHGvfYY4/i5wxO5ZhuThbO+2bWYb72e5JhoxmtHFAbu639nmTQKMNKGfCp3Z+dkXJicY7Lb7jhhrP8Oc2q/M5kbdmlqTa2nYGx7MKVoaVcqaD2+5rj67Nbd20sN5fja+tYbkf6/gN0ZgJUALSrDL9kJ6Uvf/nL8eKLL7b6D/lam+LaQEJ2Xcqwz+9///tpts8TytrJZcvgUG0mVnazyZOQqWUYZ2oZcsmuTOlf//pXq/VnQOmwww6L/fffvzj5a4vcNl155ZXNJ0bTU+uutN122zW3vM0ZSXlSlCcpjzzySKvPu+iii+JLX/pSHHDAAdPMMMkuVrkWeZ70XHvttUUnp5yZk5/DvNj/Gcmw0cxmzOTMltpnlidlta5ac0t+X/785z8XP+esnpkt4Tc73+mW+z69/Z4TOYNp6iBdqs0GWn/99ZvbRLf8fWkteJWBuekFqGqzpNqyDzmAVxv8mdH3K5eaTDvuuONMXxMAAACgs8ixjpxclkGSW2+9tdVtLr300iLckN1iauN0LeWSWa254ooriutddtmlWFJrbslQVI4p5fhja4GJnGCYE/hynLEWoOkoPvnJTxYdnnJy4fQ68OREyKOOOqoIiAwZMmS2x6ZnJkM1GSTKsEptUmbtdWpjw7V6MkiU47sbbbRRu423zgt5DFNOKK2NI89somrtO1wbk5zeUnM5Fp7yu1ibJJqrOhx++OFx/fXXT7N9joXnygZTf07tfayyY1SuAPG1r32t1YBh7XNtWcfs1D2jsdzcrja+2lG//wCdmQAVAO0q/3GfYZ70//7f/ytmZNRkuOSyyy4rljvLk5fadhnWyX+M54yLCy64YIqZFdnZ6dxzz20OGtVssskmxUlonvj85je/KdrlpnzuxRdfXKzB3poTTjihCCtlB6Lf/va3U3RZyrry5CdfI2dy7bfffm3a5wzWZMvqnBWTIacMsdSWKavJGSY5q+T8888vZqZ897vfbX4s3+vggw8ufs77W54A5THLtcfPPvvs4naebOUAxdRqgaMzzzyzOCZ77bVXc9veub3/M9Jy2cD8LFuTgwN5IpztgDMAlp9re7z31HJwKr9jOWumtnxiW9oOz853uuW+53chZ/K0pxxY+clPftI8EyvryIGFHIRL3/72t6fYfosttiiu//nPf05RfwbCWn4Xp1ZrkT29z25qxx9/fDFQmLPrsvV0y/3OmVdf/epXi+UT11133aJzGgAAAEBX0adPn6KzTMpxkZaTE3Ps5vLLL4+zzjqruP3Nb36zCDtMLcMoOb5X6yCT43Q5EfCOO+4oJmPm2MvclGO03/rWt4qfc+wwx3hajkf98Ic/LH7OMdDW6i9TjsXl2Gb69a9/XYwztpzsePfddxdddVIGSLKb+uyOTc9Mjt/mEm+5DF1+dhl623zzzZsfr4VScom0HMvNjlW1iYxt2c+W9ZUlA4DLLLNMMdaYYbv8Ofe5LSG92rHMJe1qHbpShpIy0FMb2z/55JObj0tOLE45Tp5Bppayw1Mt8Nfyc2rvY5UhyRwrzgm3+buQ1zU5DloLIeV/C9Zee+3Zrrs2lpsd6XKiai38lePMOT6dY9Ed+fsP0Jl9vM4KALSjX/3qV3HIIYcU/5Dfd999Y+WVVy5OqPMf3CNHjiy2yba2a621VvFztqnNwEcOBpx++ulx3nnnFc/JmU7ZsSYHDPIf9D/60Y+a3yPXU8/ZG/kP+AwD5Rrj+ZwM4eSJS4ZkMog0dOjQKWrLk49TTz21OFnIwEl2jcoORBkkytlTeTKSJ3u5NFutQ9TM5FJ8GUzJfXruuefitNNOi9/97ndFPYsttliMGTOm+bWXXnrp4rFci7ylPPHJWrNl83HHHVeEe5Zffvlif2rtfbML0tTBmJYzd7KO2knb9Do4zY39n9mxyTBW7kcOvmSL5pNOOmma7kNZbw7KZCAo97M2y2Z25MlhbWZXyhPF3L/8LtWCdlnHX//61+IYz43vdMpQWIaqMjCUgbb8TPO4zsm+1eQxyllLOaiWHbByxlAuJZknuz/4wQ+mOaHN71T+jmRwLMNpWWfWle2ac2nHnGWUx21qtWUUczZY7kM+rxbmm94ASJ6gZzAtBzpuuumm4vuVn+tbb71VbLPOOusUr9Ee3y8AAACAjuTHP/5xMcaXXdZzDCzHg7KLTo5L1caQjjjiiGKSWWty3OScc84pwlY5ZpPPy/G+nJCZY2e15c/mppzo+eSTTxbdanL8NSeO5jhOhjly7DDH9eZ2kGt25XHNY5bjUjnemmPNOY6Xn0mtA3uOj+b4Vc3sjE23RYaiMoCWgZQMTLXsHJafbb7HoEGDZnn5vvw8MiyT420Z2MvXyf3JCYtlLOOX3dFy7DUnS9aWnpuZP/zhD/GNb3yjWA7yyCOPLMaPc+m4HD/MIFK+Tn4mLTta5XY55pshpPyc83crL/l7lWPPtWNem6g8K2PTbZW/BxlwzN+L7DKXv+f53cgx4Pyu5GeSk5pz/L829jk7defY7pZbblkErPKzvfDCC4sx5exIld+nnCRdC2N21O8/QGclQAVAu8sTgGw3nWGRDG3kP7Q/+OCDIjyUJz05SNByxk3KE6YMZ+Q/7nM2UwZVcmAgAxx5IpazmlrOGGkZWMmTtAEDBhQnWBlaqS1B11or25RhkWyNm52q8uQlT/4zeJJBj5133jmOOeaYotZZkUu4ZRgpT5rykkGqDD7lSXCGvTJYkidCeVKbt6eWJ9B/+9vf4rbbbita7Oa647lP2QEoZ+5kwCj3qWXb4ZbyhCyDMdn9KtdRzxOs6Zkb+z8jeVKZJ2W5PxnYeffdd6fZJvctT5yzFfCcLt+X37W8tJQnrhkMy4GE/D7l9zA7Xc3N73R+DjmwlZ9rngznvuV1ewSo8jPKQFPW8/rrrxeff352eZLc2mefv0dZf9aSrcPzZDsH7/J1csZjzi5qTQ585LY5Eyq/y3mC3nLm0vSek13FMqBX+37l724enwyf5ZKNc7PVPAAAAEBZcowmJ+3lGF9OVquN8S277LLF8l45QW9GXXqyq01OcszxzoEDBxZjTzmmeOyxxxZjd/NCjhNmkCLrzbHarCNDFNlRJ7vp5BJg2YG8I8rac/JoTj7Msdoco83jn2NROR6aY1P5GUw9sW92xqZnZrfddismZU69fF9N7fjWulW1VY4X53hrrnaQ43Y5ZpeXeR2gSrmcXW15yfy5rTLYlOPYOUE0J2DmdywnfuZk1xzzzFUY1l9//Smek6Gq/N3K98vfr+x8lR3vcwJzLpmY380cH5+6k1dbxqZnRX5WuWJETqh++umni9fM34cca806crw1/1YwJ3Xn3wBy3Dff45Zbbin+m5CBpvwe5UTZPH6tBag60vcfoLOqq5a5QC4AQERxkpwhqhxMytbVbZ2tBAAAAACdXU4KTRmYyGANAADzXuttLAAA5qGctVPrjiU8BQAAAAAAAMxLHbPHJgDQ5fXv379YzvD+++8vWhhn6+BcfhEAAAAAAABgXhKgAgBK8Z3vfKdYI77l7VznHgAAAAAAAGBeEqACAEqx+eabx/vvvx9LLbVUHH744fG1r32t7JIAAAAAAACAbqiuWq1Wyy4CAAAAAAAAAACgDD1KeVcAAAAAAAAAAIAOQIAKAAAAAAAAAADotgSoAAAAAAAAAACAbkuACgAAAAAAAAAA6LYEqAAAAAAAAAAAgG5LgAoAAAAAAAAAAOi2BKgAAAAAAAAAAIBuS4AKAAAAAAAAAADotgSoAAAAAAAAAACAbkuACgAAAAAAAAAA6LYEqAAAAAAAAAAAgG5LgAoAAAAAAAAAAOi2BKgAAAAAAAAAAIBuS4AKAAAAAAAAAADotgSoAAAAAAAAAACAbkuACgAAAAAAAAAA6LYEqAAAAAAAAAAAgG5LgAoAAAAAAAAAAOi2BKgAAAAAAAAAAIBuS4AKAAAAAAAAAADotgSoAAAAAAAAAACAbkuACgAAAAAAAAAA6LYEqAAAAAAAAAAAgG5LgAoAAAAAAAAAAOi2BKgAAAAAAAAAAIBuS4AKAAAAAAAAAADotgSoAAAAAAAAAACAbkuACgAAAAAAAAAA6LYEqAAAAAAAAAAAgG5LgAoAAAAAAAAAAOi2BKgAAAAAAAAAAIBuS4AKAAAAAAAAAADotgSoAAAAAAAAAACAbkuACgAAAAAAAAAA6LYEqAAAAAAAAAAAgG5LgAoAAAAAAAAAAOi2BKgAAAAAAAAAAIBuS4AKAAAAAAAAAADotgSoAAAAAAAAAACAbqtX2QUAAAAAANB9VF5/N+rPuXK2n7/AGSe3az0AAACgAxUAAAAAAAAAANBtCVABAAAAAAAAAADdlgAVAAAAAAAAAADQbQlQAQAAAAAAAAAA3ZYAFQAAAAAAAAAA0G0JUAEAAAAAAAAAAN2WABUAAAAAAAAAANBtCVABAAAAAAAAAADdlgAVAAAAAAAAAADQbQlQAQAAAAAAAAAA3ZYAFQAAAAAAAAAA0G0JUAEAAAAAAAAAAN2WABUAAAAAAAAAANBtCVABAAAAAAAAAADdlgAVAAAAAAAAAADQbQlQAQAAAAAAAAAA3ZYAFQAAAAAAAAAA0G0JUAEAAAAAAAAAAN2WABUAAAAAAAAAANBtCVABAAAAAMxDDzzwQOy3336x0UYbxdZbbx0PPfRQ7LrrrtG3b99obGwsuzwAAADodnqVXQAAAAAAQHcxatSoOOmkk6KhoSEOPPDAWGyxxWKdddaJI488MsaOHRs9epjzCgAAAPOaABUAAAAAwDzy+uuvx8SJE2PnnXeO0047rfn+o48+utS6AAAAoDsznQkAAAAAYB6pr68vrpdccsmySwEAAAD+S4AKAAAAAOg2cum8Cy64IA444IDYdNNNY4cddoivf/3r8cILL0yx3bPPPhvf/OY3Y+utt44NN9wwdt999/j9738fI0eOnGK7s846K/r27RvPP/98XHjhhbH33nvHRhttVLzuz3/+8xgxYkTztrvuumt8+ctfLn6+/vrri+f96Ec/an4sbzc2NjZvX6lU4uKLL4599903Ntlkk6Jr1V/+8pd47LHHim3zvWcmX3evvfaKwYMHF/uz+eabF/t03HHHRf/+/Zu3Gzp0aKy//vrFfrbmmmuuKd4z6wEAAICuxhJ+AAAAAEC36f501FFHxTPPPBOrr756fO5zn4tJkybFLbfcEo888kgRrNpmm23i2muvjZ/+9KfRs2fP2G233WKFFVYonpMBqTvuuCMuu+yy6NOnzxSvfeqpp8Zrr70Wn/70p2OXXXaJ++67L6666qp46aWX4t///nf06NEjjjzyyCK0dOONN8a6665bhJXWW2+96db7gx/8IG6++eZYddVV4+CDD45x48bFP/7xj6LeWZHPO/zww6N3795xyCGHFGGqu+++uwhinX/++bHVVlvF8ssvX4S+HnjggejXr19sueWWU7xGBr7y+fvtt98sHnUAAADo+ASoAAAAAIBu4Z///GcRhMqOTr/97W9jvvnmK+7/4he/WASL8r6//e1v8ctf/jIWXXTRuOiii4quTKlarRbdn84999z4yU9+UoSpWnr33XfjpptuitVWW624fdJJJ8X+++8fL7/8ctHNaosttoijjz46Hn300SJAlcGpE044Ybq13nPPPUV4KjtGZbBr4YUXLu4/9NBDi8us+Oijj4puW9k9aoEFFijuy4DXN77xjfjZz34Wt912WxHwykBZBqhyP1oGqHLfnn766dhzzz1jqaWWmqX3BgAAgM7AEn4AAAAAQLdwww03RK9evYoAVC08lXLJvZNPPjkOOuiguO6664pOVV/5yleaw1Oprq6uCDxlQCq7Vb333ntTvHaGsmrhqTT//PPHpz71qeLnQYMGzXKt2QWr1oWqFp5KuZRfLj84q374wx82h6dSdsnacccd4+233y4CXrXl/pZccskiUJXHoGX3qZTHBwAAALoiASoAAAAAoMubPHlyvPnmm0XIqbUuStkdKpf3e/XVV4vbW2+99TTbZPhqs802K34eMGDAFI+tscYa02y/2GKLFdctw0ht9cILLxRLCG688cbTPDb18nozk8Gp7GQ1tQxjpVxWMOUSfdk1a8yYMXHvvfc2d97KjlnLLrtscyAMAAAAuhoBKgAAAACgyxs1alRxnUvzzcjYsWNnuN3yyy9fXE+YMGGK+7Pj1NSya9Wc1JvdoDK0Nb0a2mqFFVZo9f7llluuuM7AVE0u41fr1pWeeOKJGDx4cBGsaq0WAAAA6AoEqAAAAACALm+hhRaaIiA1tYkTJxbdlhZZZJHi9tChQ1vdbvTo0cV1hpvmply2b/z48UVNU8v7Z0XuW2tqwamWHbn69u0bG264YTz88MPFvt58881TBKsAAACgKxKgAgAAAAC6vOwotdJKK8U777zT3I2qpR/+8IfFcnkZIEpPPvlkq69Tu3/ttdeeq/VmiCmDT6+88so0jz333HOz9FoZBhsyZMg09z/99NPF9aabbjrF/RmWamhoiHvuuSfuu+++4risueaas7wPAAAA0FkIUAEAAAAA3cJnP/vZaGxsjN///vfFdc3LL79cBIVWXnnlOPDAA6N3795x8cUXR//+/ad4/jnnnBNvvvlmbLPNNrHiiivO1VoPPvjg4vqPf/zjFB2kMlB19dVXz/Lr/fa3vy1CUTUZjrr//vuLoNZ66603xbb77rtvsSTh2WefHcOGDYuDDjpojvYFAAAAOjqL1gMAAAAA3cLXv/71Ymm66667rghNbb311sWSfrfeemvU1dXFH/7wh6JL1S9+8Yv4+c9/Hl/4whdit912ixVWWKHo+pSXfPw3v/nNXK91r732ij333DPuvPPOOOCAA2LHHXcsOmfdddddzcsR9ujxv/mxgwYNiuuvv77otHX00UdP83qPPPJIEYTadtttY/DgwXHvvffG4osv3uq+LLbYYrHHHnsUy/dlkGqfffaZy3sLAAAA5dKBCgAAAADoFjIM9K9//StOPPHEohvTFVdcEXfffXdst912xc8bbbRRc/enSy65JHbYYYd47LHH4vLLLy/CSxnAypBShqjmhTPOOCO+853vFOGuK6+8slhy72tf+1pRR6oFqVKGorJjVO5fay699NJYbrnliu5VGQTLUNY111zTvGTh1Pbbb7/iOoNUGagCAACArqyuWq1Wyy4CAAAAAID/GTJkSBGQai289Oc//znOPffc+Mtf/hJ77733DF9n1113LcJV2XGrV6+2L0iQyxWeeeaZcdFFFxVdq9pT5fV3o/6cK2f7+QuccXK71gMAAAA6UAEAAAAAdDAXXnhhfPKTn4w77rhjivuHDRtWdMHq3bt38fjcMHTo0KIj1+qrrx7bbLPNXHkPAAAA6EjaPuUIAAAAAIB54vOf/3xcddVV8f3vfz9uu+22WHXVVWP48OHFkoO5nOCPf/zjWGaZZdr1PS+77LK47rrr4u23345x48bF//3f/xXLBwIAAEBXJ0AFAAAAANDBrLPOOnHttdfGBRdcEE8++WTcc889scgii8SGG24YRx55ZOy0007t/p59+vSJ9957LxZccMH4zne+E5/+9Kfb/T0AAACgI6qrVqvVsosAADqHaqUaMXFSVCdMjJiQ15MiJkyM6qT6iKZKbhGR/7Qo/nXx3+vaPzWaf5728eZ/jrTctkdd1C24QNQttEDEgvP/93qB4r5YaIGom693WYcBAACAOVB5/d2oP+fK2X7+Amec3K71AAAAgA5UANCNVSdNjuqoscUlxo4vglEfh6KmDkn99/akyf8NP3UAvXp+HKiqBasW+m+wasH/Ba6aw1a1bRZfNOoWnL/sygEAAAAAAIAORIAKALqoalNTVIePjuqoMR8HpEZ+fF1cRuf1mIjsHNVZNTZ9HPoaO7642eZc18ILRt3SS0TdMktG3TJLRI//Xhe3F1loblYMAAAAAAAAdEACVADQyZfUq44cHdUPR0T1o7yMjOqwkR9fZ0Aql9xjSuMnRjUv735Q3Gxq+dgC8/0vXPXf6x7/DVfF4otEXV1dWVUDAAAAAAAAc4kAFQB0EtWRY6Ly/odRff/DqHzwUVSHfhyYisbGskvrOibVR3Xwh8VlGr17/TdUtcT/QlbLLRU9Vl7BsoAAAAAAAADQiQlQAUBHXHpvyPCPg1IZmBr88XVMmFR2ad1bQ2NUhwwrLlOoi6hbdqmoW7VP9MjLan2ibsXloq5nz7IqBQAAAAAAAGaBABUAlKySy+29PTgqbw2KyntDivBUNE2xsBwdWTU+XkLxwxFR6ffyx/f16hl1Ky3/caBq1T4fh6uWXbLsSgEAAAAAAIBWCFABwDxUbWyK6qChUXl7UFTeGhyVt9+PGDu+7LJob/k5v/N+NOWldt9CC/wvTFULVi2yULl1AgAAAAAAAAJUADA3VcdPjErRXerjS/W9IRGNjWWXRRkmTIrKK29FvPJWc6iqbuklom7VFaLHqit+HKhaefmo6+2fZwAAAAAAADAv+QsdALSjyojRUXn93ajmcnwZmPpoRLHEG7SmOnxUcak8+8rHd/TsET1WXzl6rLfGx5cVlim7RAAAAAAAAOjyBKgAYA5UK9WovjM4ml5+Iyr934jqkGFll0Rn1lQpAnh5if/cH3VLLR491l394zDV2qtF3Xy9y64QAAAAAAAAuhwBKgCYRdVJk6My8O1oevn1qAx4M2L8xLJLoouqjhgdTY8+V1yiV6/osWatO9Wa0WPZJcsuDwAAAAAAALoEASoAaOvSfBmYyk5Tb7wX0dRUdkl0N42NRXAvL3HDvVG3zBIfB6kyULXWKlHXyz/rAAAAAAAAYHb4SxsATHdpvvc/7jJlaT46oOqwUdH00NPFJebrHT3WWrUIU/Vcf82oW3KxsssDAAAAAACATkOACgCmXpqv/xsfL803bkLZJUHb1DcUQb+8NF57V9Qtv/T/wlRrrBJ1PerKrhAAAAAAAAA6rLpqtVotuwgAKEt19NhoeuFVS/PRdS22SPTcfL3oueUG0WPF5cquBgAAAAAAADocASoAup1qY1NUXnotmp58KSqvvhVR8b9Cuoe6PstGzy3Wj56brx91SyxadjkAAAAAAADQIQhQAdBtVAYNjaYnX4ymZ/pHTJhUdjlQnrq66LHWqtEjw1QbrxN1C8xfdkUAAAAAAABQGgEqALq06rgJRWAqu01V3/+w7HKg45mvd/TYYM3oucUG0aPv6lHXs0fZFQEAAAAAAMA8JUAFQJdTrVSi8spbRbepystvRDQ1lV0SdA6LLBQ9N1svem65fvRYpU/Z1QAAAAAAAMA8IUAFQJdR+XB40Wmqqd9LEWPGl10OdGp1yy8dPbfbNHpuuWHULWiJPwAAAAAAALouASoAOrXqpMnR9Owr0fTUi1F9+/2yy4GuZ77eH3el2n7T6LHyCmVXAwAAAAAAAO1OgAqATif/11V5/d1oeuqlqLzwakR9Q9klQbdQt2qfj7tSbbpu1M3Xu+xyAAAAAAAAoF0IUAHQaVQbGotOU033PxXVYaPKLge6rwUXiJ5bbRg9t900eiy3VNnVAAAAAAAAwBwRoAKgw6tOnBRNjzwbjQ89EzF2fNnlADV1ET3WWT167rxl9Oy7etnVAAAAAAAAwGwRoAKgw6qOGhuNDzwVTY+/EDG5vuxygBmoW2GZ6LnTltFzi/WjrlevsssBAAAAAACANhOgAqDDqQwdHk33PhFNz/SPaKqUXQ4wKxZdOHrtsFn03H7zqFtogbKrAQAAAAAAgJkSoAKgw6i8NTga730iKv1fj/B/J+jc5usdPbfeOHrttGXULbV42dUAAAAAAADAdAlQAVCq/N9Qpf8bRXCq+tbgsssB2luPHtFj03Wj1x7bRo/lly67GgAAoAOovP5u1J9zZWnvv8AZJ5f23gAAAHRMvcouAIDuqdrUFJVnBkTjfU9GdciwsssB5pZKJSrP9I/6ZwdEj037Rq89toseKyxTdlUAAAAAAADQTIAKgHmqOrk+mh57Phof7BcxamzZ5QDzSnabe/aVqH9uYPTYZJ3otef2glQAAAAAAAB0CAJUAMwT1XETovHBp6PpkWcjJk4quxygzCDVcwOj/vmB0WPjvtFrz+2iR59ly64KAAAAAACAbkyACoC5qlrfEE0P9ovGe5+ImFRfdjlAR1GNqDw/MOpfGBg9NsqOVNtFjxWXK7sqAAAAAAAAuiEBKgDmimp2men3cjTc9pCl+oAZB6leeDXqX3w1emy6XvTaZ8fosdTiZVcFAAAAAABANyJABUC7a3rtnWi86b6oDv6w7FKAzhSkenZAEaTqucPm0Wv3baNuoQXKrgoAAAAAAIBuQIAKgHZTGTIsGv9zf1QGvFl2KUBn1dgUTfc/FU1PvliEqDJMVderZ9lVAQAAAAAA0IUJUAEwx6pjx0fjbQ9H05MvRFSqZZcDdAUTJhWd7JoefiZ6feZT0WOz9aKurq7sqgAAAAAAAOiCBKgAmG3V+oZouu/JaLz/yYjJDWWXA3RB1RGjo+HSm6PugX7Re7+do8daq5ZdEgAAAAAAAF2MABUAs6xaqUbTUy8WXadizLiyywG6gep7Q6L+nCujxwZrRq99d44eyy9ddkkAAAAAAAB0EQJUAMySpoFvF8tqVT/4qOxSgG6o8vIbUT/gzei51cbRa6/to26xRcouCQAAAAAAgE5OgAqANqm8/1E0/uf+qAx8q+xSgO4uu+A9/nw0Pds/eu2ydfTcdeuo69Wz7KoAAAAAAADopASoAJih6phx0XjrQ9H01EsR1WrZ5QD8z+SGaLz94Wh6dkD0/sKno8fqK5ddEQAAAAAAAJ2QABUA09X4+PPReNP9EZMml10KwHRVhw6P+rMvj57bbhq99t0p6haYv+ySAAAAAAAA6EQEqACYRmX4qGi8+vaovPZu2aUAtE01ounR56Lp5dej9+f2iJ4brl12RQAAAAAAAHQSAlQANKtWqtH00NPReNtDEfUNZZcDMOtGj4uGC6+Ppk36Ru8Dd4u6xRYpuyIAAAAAAAA6OAEqAAqVocOj4arbovr2+2WXAjDHKs8PjMmvvh299ts5em69cdTV1ZVdEgAAAAAAAB1Uj7ILAKiZPHlynHfeebHvvvvGxhtvHJ/85Cfj2GOPjaeeemqK7fr27Rtf//rX46qrrortt98+Ntlkk/jud78708fSa6+9Ft/73veKxzbccMPYaaed4mc/+1m8//6UoaHrrruueK28/va3v13Us+2228btt98eXU21qRKNdz0a9X+6SHgK6FomTo7Gq++IhnOujMpHI8quBgAAAAAAgA5KByqgQ5g4cWIcffTR8dxzz8UGG2wQhx56aEyYMCHuuOOOOPLII+PXv/51HHTQQc3bv/jii/HYY4/FAQccUNxeb731ZvrYww8/HMcdd1w0NjYWwalPfOITMWDAgLj66qvjzjvvjIsuumiK10l/+tOfYqGFFoojjjgiXn311dhss82iK6kMGhINV94e1fc/LLsUgLmm8sZ7UX/6RdFrz22j5y5bR11PcwgAAAAAAAD4HwEqoEM488wzi/DUV7/61aJDVG2ppeOPPz6+8IUvxC9+8YvYbrvtYoUVVijuHz58eJxyyinxxS9+cZrXau2x8ePHxw9+8IOoVqvx97//PXbYYYfmxzJAlV2oslPVLbfcEj169Jgi2PWf//wnllpqqbl8BOatakNjNN7xSDTd/1REpVJ2OQBzX2NjNN76UDQ9+0r0PmSv6LFqn7IrAgDokt57773o169fHHjggXP9vXJS1KBBg2KPPfaY6+8FAAAAdG2m3wOla2pqimuuuaYIKX3nO99pDk+l5ZdfPr7yla9EfX193HjjjVM8b++9957ua0792L333hsjRowouli1DE+lDGhttdVW8eabb8aTTz45xWPbbLNNlwtPVd4cVCzX13TvE8JTQLdT/eCjqD/z0mi44Z6oTq4vuxwAgC7llVdeic985jPxyCOPzPX3euCBB4pz/JdeemmuvxcAAADQ9elABZTurbfeinHjxhXdpc4555xpHh88eHBx/fLLLzfft/jiixeX1rT2WP/+/YvrrbfeutXnfPKTnyzCUzl7NUNTNausskp0FRkUaLzlwWh65JmIatnVAJSoWo2mB5+OykuvR6/P7RE911uj7IoAALqE0aNHFxOg5oXsPl0xKQgAAABoJwJUQIcYYE1DhgyJs88+e6bbpQUWWGC627X22NixY4vrRRZZpNXnZKerNGHChJm+VmfUNPCtaLj6joiRY8ouBaDDqI4YHQ1//3c0bb5+9D5wt6hbeMGySwIAAAAAAKAElvADSrfwwgsX15/61Kdi4MCB071cfPHFs/0eteDUhx9+OMNw1hJLLBFdSXXCpGi44tZoOO8a4SmA6ag80z8m/+miqLz1ccdDAABm3Y9+9KM48sgji5//85//RN++feO6664rbg8dOjR++ctfxi677BIbbrhh7LDDDvHjH/84Bg0aNM3rZGfo448/vnnbHXfcMX74wx/G22+/3bzNl770peL56dxzzy3e64knnpjlmrO+fO6f//znaR7L+1ruQ2psbIzzzz8/DjzwwNhss81i8803j4MPPjguv/zyqFanbfWcSxkec8wxRdfrjTfeOPbbb7/4xz/+EQ0NDdMcu3yvp59+Oj7/+c8X+73rrrvGe++9Vzx+1VVXxSGHHFK8zqabbhr7779/nHfeeW3q9pXHJV87677tttuKGrKWfP0//elPMX78+OZtc5vcdnqT2w499NCithEjRsz0fQEAAKCzEaACSrfGGmsUnZ5eeeWVVgf/nnrqqfjjH/8Yjz766Gy/x/rrr19c5zJ9rakNtOZAYVfR9No7MfkP/4imp14quxSAjm/U2Kj/6xXReM8Trf7xCwCAGdt9992LYFFaZ511ihDUeuutF2+88UYcdNBBceWVVxb3H3XUUbHFFlvEjTfeGJ/73OeKwFTNm2++WYR0Hn/88dh2223jy1/+chHYuemmm4oAUW1SVL7PbrvtVvy85ZZbFu+10korzfV9/PnPf16EjnIM44tf/GKxX8OGDYtTTjllmhDWhRdeWISn+vfvH3vssUccccQR0aNHj/jDH/4Q3/jGN4ow1tROPPHE4rUzIJb7vcoqq8Rf//rX4n2zY3a+X75vU1NTnHHGGc0hsra4884749vf/nb06dMnDjvssFhsscWKwFS+1+TJk4ttPvvZz0bPnj2L4z21d955J5555pnYeeedY6mllpqt4wcAAAAdmSX8gNLNN998xezJq6++Ok4//fRiADAHFdPIkSPjZz/7Wbz11lvFAOvsyoHV7C518803F7MtcwZrzQ033BAPP/xwrLbaasXs0c6uWqlG012PRuOdj0YIAQC0XaUSjbc8EJU33o3eh+0TdYssVHZFAACdKkC16KKLxvXXX19MTjrhhBOK+zP0kx2LslNUhm9qMiSVAamTTz65COzU1dXFNddcExMnToyLLrqoCFDVnHPOOXHmmWcW3aAyfJSvme65554iQFV7r7lp3LhxxfhBvt9ll13WfH+Gt/bee++45JJLijp69+5dTBDL8Y211lqruL8WOMqg/k9+8pO49tpri3089thjp3iPDEz961//ah4TSfn8vD/3PV87ffe73y1CZDnGkcdv+eWXn2n9L774YjHecvTRRxe3M8D1gx/8IG699dYi7HXcccfFcsstV4yX3HffffHss88WXbZq8nNNtWMPAAAAXY0OVECHkIN2ORM1BwpzxuNpp51WtPffZ599ivBUtrBvOdA6O8sE5izPXr16xde//vViwPX3v/99MVibSwFkuCpnb7YcpOyMqmPHR8N5V0fjHY8ITwHMpsorb8XkP14UlTc+XjIFAIDZ88ILL8TLL79cTGqa+px+m222Ke5/9dVX47nnnivuq3UCzaXsWnYFzdDP/fffH1/72teiLFlPpVKJDz74YIqlB3M8IQNRDz30UHPAKZfcy20z6NSyW1OGxHIMIsceMiw2tb322muacYl835xclp28Wk5Ey9BTduxuS3iq1v27tsRiyvGRXDowr2vhqJRdwVKGxVrWkCG3ZZZZZooJaQAAANCV6EAFdAjZOj7b+f/zn/+M2267rRhsXGihhWL11VcvZlNmh6ocaJwTO+20UzFAed555xVL9mXXqZxdefjhhxeDsCussEJ09iX7Gi69OWLs+LJLAej8xoyL+r9dGb323D567r5t1PWYs/8HAQB0R9n1KGUHqrPOOmuax0ePHl1c5zJ32e2ottRfbnvFFVfEdtttF9tvv30R2sml58qU3bVybCKXHtxzzz1j4403LmrbYYcdYpNNNpki+FTb70cffbTYt9Ymeb399tsxfvz44uea7DQ1tVxuLztw5WSzXBIxj0m+Z3bCqgW22mKrrbaaJpyV4ascC8nl+bLD1iKLLFIE3ZZeeum4/fbbi25ZGdbKbmGDBw8uliTMwBUAAAB0Rc54gQ4jBw2z9X1eZmTgwIGz9Vhad911489//vNMa8lB287Slj6X7Gu885FouusxXacA2lP+9/X2h4tOVL0P3yfqFluk7IoAADqVMWPGNHeUysv0jBo1qrjOztQ58envf/970XEqux7lpWfPnrHrrrsWnaqzC1JZfvOb3xTBqVxOL7tm5TJ3Z599dhFEym5TGXJqud+XXnrpDF8vt2sZoFpwwQWn2eakk06KT3ziE3H11VcX75eBrAsuuKDofPXVr351mmUAp2d6AbRll1226Kg1duzYIkCVoawMiuUEt/wMMixW60ZV604FAAAAXZEAFUBnX7Lv0v9E5bV3yy4FoMuqvPZOTP7TxdH78H2j5zqrlV0OAECnUQsHfe9732vz8ntrr712/OEPf4impqZi+b/s4pRdn+66666iY1MGe9pLrdN1y+UCayZOnDjNfdl96Ygjjigu2VUrOzNlyOjWW28tluZbeeWVi85Qtf1+5JFH2iXwdcABBxSXDDnlsn0PPPBAESw7/fTTi87aGXiamdb2J+VrpiWXXLL5vgxK5XG++eabi45Ud955ZxEcW2utteZ4XwAAAKCjmrJvMwCdasm+yX+8SHgKYF7IwOp5V0fDbQ9FtVIpuxoAgA6pFkiqWX/99YvrF154odXts9vU//3f/8Wbb75Z3M7l+0499dQi0JRdpzK0841vfCOuvfbaWGihhYrw0PTea3bUlsDLYNbUclm7lt54443405/+FPfdd19xe6mllorPfOYzRdgra0z9+vUrrnOpvfT8889P87qTJ08uOlllQKm14FZLQ4cOjTPPPLPoeFVbRjA7cZ1yyinxi1/8oriv5TGZkdY+gwyB5VKC2a17gQUWmCLElsf+oYceKvZ3woQJceCBB7bpfQAAAKCzEqAC6GRyyb6G2x+OhnOvLv6gD8A8Uq0Wy6XW/+2qqI7+eKY+AABTdmhKDQ0NxfXmm28ea6yxRtE96vbbb59i2xdffLEIS9WWo6uFgXLZu//85z9TbDts2LAieJQdnqb3XrNjzTXXbO4UVV9f33x/Ls/38MMPT7Ftjx494vzzz48///nPMWnSpCkeyyXw0iqrrFJcf/7zny+uM1z14YcfTrHtX/7yl7j44ouL5fhmFgLLTlb/+Mc/ivfMsFNL77333hTvOTOPPfZY8TnU5HH79a9/HY2NjfGFL3xhmu2zC1UGp37/+9/H/PPPH/vuu2+b3gcAAAA6K0v4AXQi1THjouGym3WdAihR9Y33Pl7S79DPRM/11ii7HACADqNPnz7F9YMPPlgEb3bbbbdimbkvf/nLcdJJJ8X2228fffv2LUJFuSxchnh++9vfFt2c0re+9a3iubkc3m233VYEnEaNGhV33HFH0a3p+9///jTvlUvZZRApl7hbZ511Zqne7BS12WabFWGmDAztuOOOMWTIkKK2DH89+eSTzduuvvrqceihh8YVV1wRe++9d+yyyy5F16bsMpWdp/J19txzz2LbfO43v/nNOOecc2KfffYpukYtvfTS8fTTTxfhrJVWWil+/OMfz7S+RRZZJE444YT44x//WLzOHnvsEYsttlgMHDiw6A612mqrxSGHHNK8/d133x0DBgyIrbbaKrbeeutWXys/k3z/DFS9+uqrsdNOOxX7NbUMTOVnM3jw4OK9830BAACgKxOgAugkKq+/G/WX/EfXKYCOYNyEaLjg31HZZevotfenoq6nxq4AABlq+t73vhcXXXRR0UlqwQUXjBNPPDGuv/76OO+884rQT4aSllxyySJMdeyxx8aWW27Z/PzsVpXL+GWnpwwlZReoXLpviy22iK9+9avFdU0+76ijjipeO9/rE5/4xCwHqFKGnLIr1D333BP/+te/Yq211io6M+X7tgxQpZ/+9KfFcnf//ve/45ZbbomJEycWXbEymHTMMcc0LwmYMjC20UYbxSWXXFK8dna4WnHFFYvtvvKVr8QyyyzTpvpyvzPwdNlllxUBqTFjxsQKK6xQ7HsuHbj44os3b5uP5/E4/vjjpwlQ7bzzzsV92dEqP4es++STTy5eJ7trTS0DVxmuyvDaQQcdNMvHFQAAADqbumpO3wKgQ2t8+JlovOHeiEql7FIAmErdJ1aK+b60X9QtaVY+AAAdyxNPPBFHHnlk7LfffkUnq1mRHbVyib8MZrUWsprjSWLnXBllWeCMk0t7bwAAADomU+UBOrBqU1M0XH17NF53t/AUQAdVfXtwTD7j4qi8NajsUgAAoF1kJ6t33nmnWCKwvcNTAAAA0BFZwg+gg6qOHR/1F90YVX+QB+j4xk+M+r9dFb0P/Uz03Gy9sqsBAOh2skvSgAED2rz9VlttNc0yd0SxvOCwYcNi4MCBsfzyy8dhhx1WdkkAAAAwTwhQAXRAlUFDo/6f10eMHFN2KQC0VWNTNFz6n6gOGxW99ti27GoAALpdgCq7JrXV8ccfL0DVimWWWSb69esXG220UZx22mmx6KKLll0SAAAAzBN11Wq1Om/eCoC2aHrulWi48raI+oaySwFgNvXcaqPodfCeUdezZ9mlAABAh1N5/d2oP+fK0t5/gTNOLu29AQAA6Jh0oALoIDLP2njbQ9F09+NllwLAHGp68sWojhwTvY/+bNQtOH/Z5QAAAAAAADADPWb0IADzRrW+IRouukF4CqALqbz2TtT/36VRHTG67FIAAAAAAACYAQEqgJJVx44v2tZXXnyt7FIAaGfVocNj8pmXRuXdD8ouBQAAAAAAgOkQoAIoUWXo8Kg/89Ko+sM6QNf136Bsk6AsAAAAAABAhyRABVCSypvvRf3/XWZpJ4Du4L9LtTbe/1TZlQAAAAAAADCVXlPfAcDc1/TcK9Fw+S0RjU1llwLAvFKtRuNN90V1+KjodeBuUdfDXAYAAAAAAICOQIAKYB5rfLBfNN54X/GHdAC6n6ZHni26D/Y+cv+om3++sssBAAAAAADo9kx7B5hHqtVqNNx0XzTecK/wFEA3VxnwZtSfdXlUR40tuxQAAAAAAIBuT4AKYB6oVirRcMWt0XT/U2WXAkAHUX3/w5h85iVRGTy07FIAAAAAAAC6NQEqgLms2tgUDRffFJV+L5ddCgAdzehxUX/25dH0yltlVwIAAAAAANBtCVABzEXV+oZo+Me1UXnx1bJLAaCjmtwQDRdeF0393yi7EgAAAAAAgG5JgApgLqlOnBz1510TlYFvl10KAB1ddiu86AYhKgAAAAAAgBIIUAHMBdVxE6L+b1dG9a1BZZcCQGcKUf3zhmh6+fWyKwEAAAAAAOhWBKgA2ll19Nio/+sVUR00tOxSAOhsmrIT1Y1CVAAAAAAAAPNQXbVarc7LNwToyirDR0XD366K6ojRZZcCQGfWs2f0Pmr/6Lnh2mVXAgAAAAAA0OUJUAG0k8qwkUXnqRg9ruxSAOgKevaI3kcdIEQFAAAAAAAwl1nCD6AdZMep+r9dJTwFQPtpqkTDxTdG04uvlV0JAAAAAABAlyZABTCHqqPGRv05V0aMHFN2KQB0xRDVv26MphdeLbsSAAAAAACALkuACmAOVMeMi/q/XVl0oAKAuReiukmICgAAAAAAYC4RoAKYTdWx44tl+6ofjSy7FAC6usp/Q1TPDyy7EgAAAAAAgC5HgApgNlTHT4z6c6+O6tDhZZcCQHcKUV3yn2h67pWyKwEAAAAAAOhSBKgAZlF1wqSoP/eqqH7wUdmlANAdQ1SX3ixEBQAAAAAA0I4EqABmQXXS5Kg/7+qoDv6w7FIA6O4hqmcHlF0JAAAAAABAlyBABdBG1cn1UX/+v6P63pCySwGgu8sQ1WVCVAAAAAAAAO1BgAqgDar1DVF/wbVRfXtw2aUAwMcq1Y9DVC+9VnYlAAAAAAAAnZoAFcBMVBsao+HC66L6xntllwIA04aoLr05Ku9+UHYlAAAAAAAAnZYAFcAMVHOJpItvjMqr75RdCgC07r9dEivDR5VdCQAAAAAAQKdUV61Wq2UXAdBRNVx7VzQ98mzZZQDATNUtt1TMd+IRUbfQAmWXAgAAM1R5/d2oP+fK0t5/gTNOLu29AQAA6Jh0oAKYjsYH+wlPAdBpVD8cEfW55GxjY9mlAAAAAAAAdCoCVACtaHr59Wi88b6yywCAWVJ9c1A0XHFbaDILAAAAAADQdgJUAFOpDB4aDZf+J8IfnwHohCrPDojGWx8quwwAAAAAAIBOQ4AKoIXq6LFRf8G1EZMbyi4FAGZb0z2PR+Njz5ddBgAAAAAAQKcgQAXwX9XJ9VH/j+siRo8ruxQAmGON194VTQPeLLsMAAAAAACADk+ACiDDU5VqNFx2c1QHDS27FABoH5VKNPzrpqgM/rDsSgAAAAAAADo0ASqA7NLxn/ui8tLrZZcBAO0ruyte8O+ojhpbdiUAAAAAAAAdlgAV0O01PvpsND3Qr+wyAGDuGD0u6v/+76hOmlx2JQAAAAAAAB2SABXQrTUNfCsar7un7DIAYK6qfvBRNFx0Y1SbKmWXAgAAAAAA0OEIUAHdVmXIsGi4+MaIij8mA9D1VV59OxqvuaPsMgAAAAAAADocASqgW6qOHV8sZxST6ssuBQDmmaYnX4zGOx8tuwwAAAAAAIAORYAK6Haq9Q1R/4/rIkaOKbsUAJjnGm9/OJr6vVx2GQAAAAAAAB2GABXQrVSr1Wi44taovvtB2aUAQGkarr49KoOGlF0GAAAAAABAhyBABXQrjbc+FJXnB5ZdBgCUq7EpGi6+KaoTJ5VdCQAAAAAAQOkEqIBuo+nZAdF0z+NllwEAHUJ1+KhouOK2sssAAAAAAAAonQAV0C1Uho2MhmvuKLsMAOhQKi+9Fo33P1l2GQAAAAAAAKUSoAK6vGpTUzRc8p+ISfVllwIAHU7jzQ9G5a3BZZcBAAAAAABQGgEqoMtrvPmBqL43pOwyAKBjqlSi/pKbojpuQtmVAAAAAAAAlEKACujSmvq/EU0P9iu7DADo2EaNjYbLbo5qpVp2JQAAAAAAAPOcABXQZVXzj8FX3Brhb8EAMFOVgW9H012Pll0GAEC723XXXaNv377R2NhY3H7iiSeK29///vfnWQ319fVx/vnnR1NTU/N9Z511VlHHNddcM91aAQAAgHmj1zx6H4B5Kjto1F92c8T4iWWXAgCdRuOdj0bd6itFz3U+UXYpAADt5sgjj4yxY8dGjx7lzSU94ogj4vnnn49jjjmm+b6tttoqjj/++Fh//fVLqwsAAAD4mAAV0CVlB43qG++VXQYAdC7VajRcenP0+N5RUbf4omVXAwDQLo4++uiyS4hhw4ZNc9/WW29dXAAAAIDyWcIP6HIqb7wXjZYgAoDZM25C1P/rP1FtqpRdCQAAAAAAwDwhQAV0KdXxE6P+0v9EVKpllwIAnVb1rUHReOuDZZcBAHQikydPjvPOOy/23Xff2HjjjeOTn/xkHHvssfHUU09NsV3fvn3jm9/8Zrzyyivx1a9+NTbffPNi2xNPPDE+/PDD4nXOOOOM2HnnnWPTTTeNAw44IG699dZp3i+3/d3vfhef+cxniu022mij2GOPPeK0006LUaNGTbHtrrvuWrxvY2Nju+3v9F4zb+f9+Xh64oknituDBw8ubm+wwQbxpS99qfj5rLPOKh675pprZvhe7733Xpx88smx++67x4Ybbhjbb799nHDCCfHSSy+1qdZ8vzw+I0eOjB/96EfF0oFbbrllHHXUUfH44483b5fHPh/bbLPNYuLEidO8zqOPPlrU+5vf/KZN7wsAAACdiQAV0KU0XHFrxOhxZZcBAJ1e031PRlP/N8ouAwDoBDJsc+SRRxbBp/nmmy8OPfTQ2GuvveKFF14o7r/uuuum2P7NN9+ML37xi1FfX19cr7baanHHHXcUwaqvf/3rceONNxYBpAxj5bbf+c53ol+/fs3PHzp0aBx00EFxySWXxBprrBFHHHFEcTtfL+/L4FZHsdJKK8Xxxx8fiy768fLIuY8HHnhgm58/YsSI4hjdfvvtRVDsmGOOiW222Sbuu+++OOyww4ogWltUq9X48pe/HA8//HARSsvj+9xzzxWvd8sttxTbzD///LHPPvvEhAkT4s4775zmNa6//vriOo81AAAAdDW9yi4AoL00PvBUVPyhFwDaTcNVt0ePH3w56hZZqOxSAIAO7MwzzyzCONlR6nvf+17U1dUV92dw6Atf+EL84he/iO222y5WWGGF4v633nqrCPNkN6TU0NBQdFd68cUXizBVBnoWWWSR4rHsnPTzn/88brjhhqJrUjr//PPjo48+Kjohfe5zn2uuY9KkSUVHqnyd119/PdZaa60o28orr1x0i8rw0dixY+Nb3/pW9OrV9iHZ2267LYYNG1Z01jr44IOb799xxx2LrlSXXXZZnHrqqTN9nTzG48aNi5tuuimWWmqp4r4Mt2XY7Ve/+lXstNNOxTHP43n55ZcX22XQqiafe9dddxUdtNZdd91ZPg4AAADQ0elABXQJlfeGROPNlhoCgHY1dnw0XHNH2VUAAB1YU1NTsQRdhnKyU1QtPJWWX375+MpXvlJ0hsquUi1l2Kqmd+/esckmmxQ/H3744c3hqbTFFlsU14MGDWq+L7sknXLKKfHZz352itdcYIEFii5Nafjw4dEVVCqV4vr5558vQlA1GRS7++67i3BaW5100knN4amUywFmYCqXPLz33nub78tl+h577LFimcSa7ICVncZ0nwIAAKCr0oEK6PSqkyZHw79uylHbsksBgC6n8uJr0fjki9Frq43KLgUA6ICym1R2J8ruUuecc840jw8ePLi4fvnll5vvy+Xsll566Sm2W2ihjzterrrqqtOEotLkyZOb79t8882LS77vwIED49133y0uAwYMiCeeeGKK4FFnl0sh5nHNkFouq5fL922//fZFB6pVVlllll5r2223nea+DJxdccUV0b9//9h///2L+zJUld29/vOf/xQBuJQdtHJ5xlxWEQAAALoiASqg02u45s6oDh9VdhkA0GU1Xn9P9Fhzleix9BJllwIAdDCjR48urocMGRJnn332TLdrGZZqzfzzzz/T98zg1Omnn14s65fL9qUllliiCANlAOuVV16JarUaXcGyyy4b1113XZx33nlFx6k77rijuKQMU/3yl7+M1Vdffaavk12+lllmmVZfP40ZM6b5vgxS5fHNrmEZoHrvvffi6aefjk9/+tPFcQYAAICuSIAK6NQaH38hKs8OKLsMAOjaJtdHw+W3xHzfOizqevxvWR4AgIUXXri4/tSnPhUXXHDBPHnPk08+Oe65556iO9MXv/jFWGeddZo7WuUyghmgmlem7nSVy9y1tz59+hRBqVyu79VXXy2W17v55pvj8ccfj2984xvF8notl05sTWNjY7EEYAapWqoFp1ou7bfkkkvGrrvuWgS1XnvttSK4lYE0y/cBAADQlfUouwCA2VUZOjwab7in7DIAoFuovjU4mu79eEkcAICaNdZYo1hmL0NL9fX10zz+1FNPxR//+Md49NFH2+X9MvBz7733xic+8Yk488wzi2XpWi4H+PrrrxfXc7sDVS2INH78+Cnuf/vtt9v1fW699dYiODV27NgiJNW3b984+uij46qrriqOQb7fhx9+ONPXyePxwgsvTHN/dpZK2b2rpVzGL2WIKsNqyy23XOywww7ttl8AAADQ0QhQAZ1StVKNhitujahvKLsUAOg2Gu94OCqDhpZdBgDQgcw333zFkm8fffRRsexby45MI0eOjJ/97Gfx97//PSZPntxuwaUePXoUQapcyq+l888/v+jQVOu4NDetueaaxfV9993XfF++57nnnjvdulN2gZoVGUy78sor49JLL53i/tz/UaNGFR3AsmNUW5xxxhlTHLMMVP373/8uOlxlB7GW8vbyyy9fLB/40ksvxQEHHBA9e/acpdoBAACgM7GEH9ApNT3yTFTf/aDsMgCge2mqRMNlN8d83z0q6no7lQAAPvaDH/wgnnvuufjXv/4VTzzxRGy11VZFmOjOO++M4cOHx+c///nYeeed2+W9Flxwwdh7772LJexySblddtmluP/JJ5+M/v37xzLLLBPDhg0rwltz02GHHVZ0ZsruUPneGWJ68MEHY9KkSbHiiitOs32GlLJb1Pe///3i+Bx11FFtep/cLvf1L3/5S3Fs119//WKZwLvuuqsIUGVALUNstVDVxRdfXPx8wgknTPNaAwcOLIJQeczy+OTnk6Go3/72tzH//PNPsW2G1A488MDmQFj+DAAAAF2ZDlRAp1MdNTYab32o7DIAoFuq5hK6tz9cdhkAQAey2GKLFV2SMrTT1NRULC932223xaqrrhq///3v49RTTy2Wn2sv+Xrf+MY3imXprrjiiuK9FllkkaIDVi7rl+6///6Ym3I5u7POOqtYUi+X2bv++utjo402Ko5DHo+pZXAqt33ggQem6SY1I7k84eWXXx6HH354fPDBB3HZZZcVgaq11lor/va3v8URRxzRvG0GqM4+++zi0pq//vWvseGGGxZdpR5++OEi1Jb15jKIrdl3332L680226y54xYAAAB0VXXVHGkA6ETqL7wuKi+9XnYZANB99aiL+U46Inqs0qfsSgAAmIkvfelLRZes7Di12mqrtfl5N954Y5x88slx2mmnxcEHH9yuNVVefzfqz7myXV9zVixwxsmlvTcAAAAdkw5UQKfS9MKrwlMAULZKNRquvD2qTU1lVwIAwFwwbty4+Mc//hGLL754cycqAAAA6Mp6lV0AQFtVJ02OhuvuLrsMACD/v/zBR9F09+PR69Pbl10KAMBsy2XvLr744ll6Ti5V2FXdfffdcc455xTLBY4YMSJ++MMfxoILLlh2WQAAADDXCVABnUbjLQ9GjBlXdhkAwH813v1Y9Nikb/RYYZmySwEAmO0A1dlnnz1Lz+nKAaoVVlghhgwZEpVKJY477rj48pe/XHZJAAAAME/UVavV6rx5K4DZV3l7cNSfdXmE/2QBQIdS94kVY77jD4+6HnVllwIAQCdRef3dqD/nytLef4EzTi7tvQEAAOiYepRdAMDMVJuaouHqO4SnAKADqr79fjQ9+mzZZQAAAAAAAMw2ASqgw2u678moDhlWdhkAwAyW2a2OGlt2GQAAAAAAALNFgAro0CofjYzGOx8ruwwAYEYm10fDtXeVXQUAAAAAAMBsEaACOrTGf98R0dhYdhkAwExUXn49mvq/UXYZAAAAAAAAs0yACuiwmp56KSqvvVt2GQBAGzVef09UBZ8BAAAAAIBORoAK6JCq4yZEw033lV0GADALqsNHRdN9T5ZdBgAAAAAAwCwRoAI6pIYb740YP7HsMgCAWdR49+NRHTG67DIAAAAAAADaTIAK6HCaXn07Kk/3L7sMAGB2NDRGw426SAIAAAAAAJ2HABXQoVTrG6LxmjvLLgMAmAOVF1+NpoFvl10GAAAAAABAmwhQAR1K4z2PR3X4qLLLAADmUOP1d0e1qansMgAAAAAAAGZKgAroMKpjxkXTA/3KLgMAaAfVD0f4/zoAAAAAANApCFABHUbjnY9G1DeUXQYA0E4a73o0qqPHll0GAAAAAADADAlQAR1C5aMR0fT4C2WXAQC0p8kN0XjHI2VXAQAAAAAAMEMCVECH0HjrQxGVStllAADtrOnJF6MydHjZZQAAAAAAAExXXbVarU7/YYC5r/LeB1H/l0si/NcIALqkHhuuHfMdc2DZZQAAAAAAALRKByqgdI03Pyg8BQBdWOWl16Ly9uCyywAAAAAAAGhVr9bvBpg3mga+HZXX3im7DGbTJrf8Y6bb7L/y2nHqJjs2335x1Edx3mvPxoDRw2J8Y0OsscgS8flV140DV1kn6urq2vzeDw59N/7xxgvx+tgR0aOuLjZfaoX41jpbxDqLLTXFdpVqNc585am44b1Xi5zeNsusGD/cYNtYev4Fp9huclNjHPDAv2O7ZVaOn2+8Q5vrAKBtGm5+IOY//rCyywAAAAAAAJiGABVQmlxBtPGWB8ougznwjbU3a/X+DCpd+tZLRUBqq6X7NN//yIeD4oR+d8Z8PXrGp/usEYv07h0PfzgoTnnx4Xh6xJD49aY7tel9r333lfjVi4/EigsuEget0jfGNNTH7e+/EY9/NDgu2Haf2GiJZZu3veqdAXHRmy/GtsusFKsuvFgRpBo6aXxcvN1+U7zmFW/3j1H1k+O4dTaf7eMBwPRV3xwUTS+/Hj03WKvsUgAAAAAAAKYgQAWUpvLcK1EdNLTsMpgD0wsbXfzmi0V4KjtL7bfy2sV9jZVK/PT5B6J3j55x2fb7x5qLLlnc/+11m+Irj90aNw9+vehCtWWLwFVrhk+eGL9/+fEiDHX59gfEor3nK+7/3Kp945jHb4lfvfBwXP2pzzZ3s/r3u68UXa7+ttWni/uWX2Dh+L+B/YoOWOstvkyxzZiGyfGPN56PL62+YSy7wELteowA+J/GWx6MHuutEXU9rCQOAAAAAAB0HP5yAZSi2tQUjbc9VHYZzAWvjx0ZZw3sFysvtGh8f/2tm+9/a9yoWKz3/LFXnzWaw1MpA1WfXnH14ufnR34409fPQNTkSlMcvcZGzeGptPGSyxWv/erYEVO8zqDxY2LtRZdsDlStu9jSH98/YWzzNn9/7bnoVdcjjl5zoznefwCmrzpkWDQ99VLZZQAAAAAAAExBgAooRdPjL0R12Kiyy2AuOL3/49FQqcSPN9g2Fuz5v0aHay+2VNy48+fjlE0+Nc1z3hw3urhuS/enJ4d9UFxvvcyK0zxWu+/J4e8337f4fAvEhKbG5tvjGuuL6wxzpfcnjI0r3xkQX197s1i41/8CWQDMHY13PBLVhv/9dxkAAAAAAKBsAlTAPFedXB+Ndz5adhnMBQ9/+F48Puz92GaZFWOH5VaZ4bZN1UrRBersgU/Hte++EmsuskTs2efjTlQz8s740dGrri76LLjINI+ttNCixfVb/w1kpU2WXC6eHPZ+PDdiaIysnxRXvzMgFurZO/outlTx+NmvPh0rLLhwsdwgAPPAqLHR9NDTZVcBAAAAAADQ7H+tQQDmkaYH+0WMHV92GcwF/3zjheI6uznNzFGP3hwvjvqo+HnVhReLc7feKxZo0bFqekY3TI5Fes0XPeumzQAv+t8OUmP/22UqHd93i3h2xNA46rGbi9sZvvrpRjvEEvMtEK+MHh63Dn4j/rj5rtGrx8evV6lWo8d/l/sDYO5ovOeJ6LnNJlG30AJllwIAAAAAACBABcxb1XETovG+J8sug7lgwOhh0W/EkNh8qeVj86VWmOn2Wy7dJ7ZYaoXoP3pYPDn8gzjs4Zvib1t9uljqb0YaKk3R+7/L702td4+exXV9U1PzfastvHhcu+NBcf/Qd2JcY0OxzN9aiy5ZPPbnV56MjZdYLnbvs3oMmTgufvHCQ/HU8A+KDlUHrdo3Tuy7ZXOwCoB2NHFSNN79WPTef5eyKwEAAAAAABCgAuat/GNpTPpfdyC6jhsHvVZcH7La+m3a/tvrfrL551xW79cvPRr/77kH4upPfTbqZtABav6evaKxWpluuCot1GvK/70tPt/8ccAq60xx36MfDSqWG/zntvsUt3/y3APxzvgx8YfNdo2hk8bHGQOeiMV7zx9fWWuTNu0PALOm6eFno9entoi6JRcruxQAAAAAAKCb01YDmGeqI0ZH06PPlV0Gc0l2eFqwZ6/YaflVZ/m5X1htvVh70SXj1bEjYtCEsTPcNkNN4xrro1qtTvNYbem+XOJvRvK5f3nlqdhl+VWLbllvjB1ZdM/68pobxe59PhGHr75BfGq5VePSt16a5X0BoI0aG6PxrkfLrgIAAAAAAECACph3Gm5/OKLxf0ur0XUMHDM8Ppg4vghPZYiqNR9MHBf3DHk73hk/utXHV15o0eJ6ZP2kGb7X6ossHg2VSgyZNH6ax2rhqzUWXWKGr3Hz4NeL0NRJ/+2C9da40c3L/dV8YpHFY0T9pBjboGMawNzS1O/lqI4ZV3YZAAAAAABANydABcwTlSHDovJ0/7LLYC55fuSHxfUWS60w3W0eHPpufPfpe+LSN6ft6tRUrcTAMSOiR9Q1B6mmZ8ul+hTXTw57f5rHnvjvfZstOf066pua4pxXn4nPrtI3Vl9kieb3T40tulrldqnH9FcTBGBONTZF40PPlF0FAAAAAADQzbXeJgSgnTXe+0Sum1Z2GcwlL48aVlyvt/gy091mtxU+EWe88lTcOOi1+Pxq60bfxZZuXk7v7IFPx/sTx8XuK3wilpp/wRm+1z4rrRnnv/5c/P3154qOV0vMt0Bx/wsjP4w7Pngz+i62VGy21PLTff4Vb/cvulwdt/Zmzfet8d8g1bMjhsTO/12C8LmRQ2O5BRaKhWeyHCAAc6bp0Wej1+7bRN38/nsLANBdVF5/N+rPubK091/gjJNLe28AAAA6JgEqYK7LpXkqz75SdhnMRe9NGFNcZ+BoepZZYKH4fxtsG7984eH40iP/iT36rB5LzDd/PDtiaLw8elisucgS8dONtp/iOZe+9VKxhN7+K68dK/23M9WKCy0ax6+zRZzxypPx+Qevj0+vuHqMb2yI2wa/Eb3qesTPN9phujWMaZgcF7zxXBy5xkZFPTVrL7ZUbLrk8nHJf99v6KTxRU0nr791OxwdAGZo4uRoevyF6LXTlmVXAgAAAAAAdFMCVMBc1/jwMxH/XQ6Nrik7OqVFZ9Kt6YBV1imW6PvHGy/EA0PfjUmVxlhpwUXja2ttGl9ec+NYqFfvKba/7K2Xi85UWy7dpzlAlY5ac6MirJWBp2veeSUW7tU7tll2pfjmOps3d7ZqzT9ef74IWR29xkbTPHbGFrvFr196NG4Z/HpRxzfW3iwO/cQGs3E0AJhVjQ/2i547bB51Pa0wDgAAAAAAzHt11Vw7CWAuqdY3xORf/S1iwscBGwCA1vQ+fJ/ouYXgKgBAd2AJPwAAADoaU7yBuarpqZeEpwCAmWq876mySwAAAAAAALopASpgrqlWqtH0YL+yywAAOoHq+x9G08C3yy4DAAAAAADohgSogLmm0v/1qH40suwyAIBOoum+J8suAQAAAAAA6IYEqIC5pvF+S/EAAG1XefXtqAweWnYZAAAAAABANyNABcwVlfc+iOqbg8ouAwDoZBp1oQIAAAAAAOYxASpgrtB9CgCYHZXnBkZ15JiyywAAAAAAALoRASqg3eUfPSvPv1p2GQBAZ1SpROMDgtgAAAAAAMC8I0AFtLvGh54u/vgJADA7mp54IaoTJ5VdBgAAAAAA0E0IUAHtqjppcjQ9/kLZZQAAndnkhmh65NmyqwAAAAAAALoJASqg3TtGxKTJZZcBAHRyjQ89E9XGxrLLAAAAAAAAugEBKqDdVCuVaHrombLLAAC6grHjo6nfy2VXAQAAAAAAdAMCVEC7qbzwalRHjC67DACgi2i6/6moVqtllwEAAAAAAHRxAlRAu2m8/6mySwAAupDqhyOi8spbZZcBAAAAAAB0cQJUQLuovDU4qu9+UHYZAEAX0/TUS2WXAAAAAAAAdHECVEC7aHywX9klAABdUOWl16M6cVLZZQAAAAAAAF2YABUwx6rjJkTlpdfKLgMA6IoaG6Pp2QFlVwEAAAAAAHRhAlTAHCv+qNlUKbsMAKCLanrq5bJLAABotuuuu0bfvn2jsbGxuD1o0KDi9qGHHjpHrztgwIC466672qlKAAAAYFYIUAFzrOmpl8ouAQDowqrvvB+VD4eXXQYAwFzzwAMPxEEHHRQvvWSMBQAAAMogQAXMkcqQYVEdNLTsMgCALq7pSX9MBAC6ruHDh0elors3AAAAlEWACpgjuk8BAPNC09MvR7VSLbsMAAAAAACgCxKgAmZbtVKJpqf7l10GANAdjB4XldfeLrsKAKCDOvjgg2PdddeNYcOGTXH/GWecEX379o2f/OQnU9w/fvz42HDDDeNLX/pScfvDDz+M3/3ud/GZz3wmNt1009hoo41ijz32iNNOOy1GjRo123Xdeuutcdhhh8Vmm21WvO7nP//5uOaaa6bYJmv48Y9/XPx87rnnFvU+8cQTxe0RI0bEKaecEnvttVdsvPHGsfXWW8exxx4bjz76aJve/0c/+lHxeu+991785je/ie22266o5ZBDDok77rhjim1z3/MYDh48eJrXeeedd4rX+da3vjXbxwIAAAA6MgEqYLZVXn0nYsy4sssAALoJy/gBANOzyy67RLVajUceeWSK+2u3a4GkmsceeywaGhpit912i6FDh8ZBBx0Ul1xySayxxhpxxBFHFLfr6+uL+zKwNDsyfPWd73wnPvjgg9hvv/2K0NKYMWPipz/9afy///f/mrc78MADizrSlltuGccff3ystNJKxftnuOqqq66KtddeO4466qjYdddd4+mnn46vfOUr8cADD7S5lqzjuuuuiz333DP22WefeOutt+LEE0+MCy64oHmb3Oc8hjfeeOM0z7/++uubtwEAAICuqFfZBQCdl+X7AIB5qfLSa1GdODnqFpy/7FIAgA4mg0VnnnlmEZg64IADivuyc1T//v1j4YUXLjowvf/++7HiiisWj9XCR/m8888/Pz766KOiQ9PnPve55tecNGlS0ZXpxRdfjNdffz3WWmutNtdz7733FuGr7BiVXaUWWmih4v7vfe97cdxxx8W1114bn/rUp2LvvfduDiXdc889RYDqhBNOKG7ff//9xfvm9t/+9rebXztrPPzww+Piiy+OnXbaqU31vPvuu0WAatVVVy1uf/3rX48vfOEL8Ze//CU+/elPxyqrrBKf/exn489//nMRoPrmN7/Z/NxaqGqZZZZp8/sBAABAZ6MDFTBbqpMmF3/EBACYZxoao+m5V8quAgDogHLpuQxHtVza7vHHH49KpVIsoVe7XfPggw8WXZ0yUJQdmXKZvAwQtbTAAgsUy+6l4cOHz1I9V155ZXGdnaZq4ak033zzxQ9+8IPi53//+98zfI2sPQ0YMCAmTJjQfH+GrO68884imNVWxxxzTHN4KmVgKu/LLlw333xzcV8GpHbcccd4++234/nnn2/eNo9bhs/233//6NXLfFwAAAC6Jme8wGwp/njZ0Fh2GQBAN+yA2WvbTcouAwDogHbeeee4/PLL45VXXikCVRmmyvBSLn2XS9XlMn7Z7SkfHzJkSHOnqs0337y4jBs3LgYOHFh0a8pLBpdqS//VwkxtlV2r0u233x533XXXFI/la9XV1cXLL788w9fYbrvt4hOf+ETRiWr77bePrbbaqrgvQ06rr776LNWz7bbbTnNfLRyWXbpadrfK7lnZcWqTTT7+N5fl+wAAAOgOBKiA2dL01IwH+QAA5obq24Oj8tGI6LHsUmWXAgB0MLvssksRoMpl/DJA9dhjj8UWW2wRyy67bHG7FoaqLd+32267FdcZnDr99NPjhhtuKJbtS0sssUQRMMquTRm4ymXsZsWYMWOK67/97W/T3Wb06NEzfI3sgHXVVVcVSwxmECuDVHnJpQY32GCD+OUvfxkbb7xxm+pZYYUVprkvj0vLWmshtOxEdcstt8SPf/zjqK+vLwJgG220UdGxCwAAALoqASpgllWGj4rq24PKLgMA6MZdqHp8ZseyywAAOphtttmm6DiVAapPf/rTRRepQw45pLkD04UXXhjvvPNOEaDK8FAtfHTyySfHPffcE3vttVd88YtfjHXWWSeWXnrp4rHvfOc7RYBqVi288MJF+OjZZ58tuk3NrgxyZX15ydqzq9Ydd9xRhMOOPfbYolvUIossMtPXqQXDWqoFp5Za6n/B9FyiL5fqy2OVxzG3yeUDdZ8CAACgq+tRdgFA5/yjZczaxEsAgHbT1O/lqFb8YwQAmNJ8881XLHXXr1+/ePDBB5tDVS2vM3z03HPPFd2qMtiUAaEMIeVSeWeeeWYRtKqFp9Lrr79eXM9qB6r11lsvJk6cWCwJOLVhw4bFr3/967jmmmua72stZPXQQw/FaaedVgSn0mqrrRaHHnpoXHTRRbH11lsXHaxeffXVNtXz/PPPT3PfM888U1zXluqr+fznP998rDJYlsd13333bdP7AAAAQGclQAXMkhwwrPSzfB8AUKJRY6Py+sd/SAQAaCmDUZMnT44LLrggFl988Vh//fWL+7fccsvo3bt3/P3vf4+mpqbYddddi/vzvh49ehRBqlzKr6VcOq8WUGpsbJylOmohpFNOOSXGjh3bfH+lUilCUf/617/izTffnKLzU2poaGi+7/33349LLrmkqLml3L+PPvqoqHullVZqUz3nnHNOEdyqyVBWHqPslLXPPvtMse2aa65ZLF+YwbIMce2+++6x2GKLzdL+AwAAQGdjCT9gllTffj+qI0aXXQYA0M01PflS9FznE2WXAQB0MDvvvHMRLBo8eHAR/MmfUwaFNtpoo6LrUi7zt9122xX3L7jggrH33nvHzTffXCxTlwGs9OSTT0b//v1jmWWWKYJHI0eOnKU69ttvv3j44YfjhhtuKF4/68ql9nJZvAxlbbDBBvHNb36zefs+ffoU1zfddFPRjeqAAw4oltK76qqrik5V2ckqQ2AZsMruWhmAOuaYY2L55Zdvfo2zzjqruD7qqKOmCTzlPuRr7rbbbsVr3HnnnUWHrN/+9rfFcoZT+9znPhc/+9nPip8t3wcAAEB3oAMVMEuaXpi29TwAwLxWeem1qE6aXHYZAEAHk8vvbbzxxlMs21eTy/OlDE/NP//8zfefeuqp8Y1vfKPoun3FFVfEbbfdVoSdTj/99GJZv3T//ffPci2/+93visvKK68ct9xySxGGSieddFLRgWrRRRdt3jbDURl8yu5Sl156abHkXoa7LrzwwqK2CRMmxJVXXhnXXnttLLXUUsXrnnzyyVO839lnn11cspvW1HIfMxyWy/LdddddRYepiy++uAhVteYzn/lMET5bYYUVimURAQAAoKurq+bIAEAbTTr13IiR0w7EAQDMa72+uHf02mqjsssAAOiwfvSjH8X1118f//znP5u7brVFv3794vDDD4/jjjsuvv3tb7d7XZXX3436c66MsixwxpThMwAAANCBCmizynsfCE8BAB1G5cXXyi4BAKDLqa+vj7/97W/Rq1evOOSQQ8ouBwAAAOaJXvPmbYCuoOkFf6QEADqOymvvRLWxMep6Oa0BAJhTL730Uvz0pz+NESNGxNChQ+OII46IPn36lF0WAAAAzBM6UAFtVnlhYNklAAD8T31DVF57t+wqAAC6hOWWWy5GjhwZ48aNKzpP/fCHPyy7JAAAAJhn6qrVanXevR3QWVU++CjqT/9n2WUAAEyh5w6bR++Ddi+7DAAAZkHl9Xej/pwrS3v/Bc44ubT3BgAAoGPSgQpok8oLr5ZdAgDANCr93yi7BAAAAAAAoJMToALapEmACgDogKojRkdlyLCyywAAAAAAADoxASpgpiofjYzqBx+VXQYAQKt0oQIAAAAAAOaEABUwU5WXXiu7BACA6WoSoAIAAAAAAOaAABUwU7o6AAAdWfXt96M6cVLZZQAAAAAAAJ2UABUwQ9VJk6Py9uCyywAAmL5KJSqvvFV2FQAAAAAAQCclQAXMUGXg2xFNlbLLAACYIcv4AQAAAAAAs0uACpihyoA3yy4BAGCmsgNVtVItuwwAAAAAAKATEqACZqjpFQEqAKATGD8xqu+8X3YVAAAAAABAJyRABUxX5f0PI8aML7sMAIA2aRpgGT8AAAAAAGDWCVABM1wKBwCgs6i8LEAFAAAAAADMOgEqYLoqA98uuwQAgDarfvBRVEeOKbsMAAAAAACgkxGgAlpVnVwflbcGlV0GAMAssYwfAAAAAAAwq+qq1Wp1lp8FdHlNA96Mhr//u+wyAABmSY/114z5jv1c2WUAAAAAAACdiA5UQKsqb7xXdgkAALOs8to7Ua1vKLsMAAAAAACgExGgAlpVeVOACgDohBoaBcEBAAAAAIBZIkAFTCO7NlTfG1J2GQAAs6Xy9uCySwAAAAAAADoRASqg9T86NlXKLgMAYLZU3/mg7BIAAAAAAIBORIAKmIZlbwCAzqzy7gdRrVbLLgMAAAAAAOgkBKiAaQhQAQCd2qTJUf1wRNlVAAAAAAAAnYQAFTCFakNjVN+17A0A0LlV3nm/7BIAAAAAAIBOQoAKmEI1/9jY2FR2GQAAc6T6tgAVAAAAAADQNgJUwBQs3wcAdAU6UAEAAAAAAG0lQAVMofLWoLJLAACYY9Whw6I6ub7sMgAAAAAAgE5AgAqYQuW9IWWXAAAw5yrVqLz7QdlVAAAAAAAAnYAAFdCsMmxkxMTJZZcBANAuqu8IUAEAAAAAADMnQAU0q+o+BQB0IZV33i+7BAAAAAAAoBPoVXYBQMdRGTS07BIAANqNJfwAADqmyuvvRv05V5b2/guccXJp7w0AAEDHpAMV0EwHKgCgSxk7PirDR5VdBQAAAAAA0MEJUAGFarWqAxUA0OVULeMHAAAAAADMhAAVUKgOGxkxaXLZZQAAtKvKO5bxAwAAAAAAZkyACihYvg8A6IoqOlABAAAAAAAzIUAFFCoCVABAF1Qd/GFUGxvLLgMAAAAAAOjABKiAQmXQ0LJLAABof01NUR30YdlVAAAAAAAAHZgAFRDVajWqAlQAQBdlGT8AAAAAAGBGBKiAqH40ImJyfdllAADMFZV3BagAAAAAAIDpE6ACovrekLJLAACYa6pDhpddAgAAAAAA0IEJUAFREaACALqw6vBRxZLFAAAAAAAArRGgAqIyaGjZJQAAzD31DRGjx5VdBQAAAAAA0EEJUAFR/Whk2SUAAMxVlWH+vQMAAAAAALROgAq6uWp2ZBg7vuwyAADmKoFxAAAAAABgegSooJurDh9VdgkAAHNdVQcqAAAAAABgOgSooJsToAIAugMdqAAAAAAAgOkRoIJuToAKAOgOdKACAAAAAACmR4AKurnq8NFllwAAMNdVh42KarVadhkAAAAAAEAHJEAF3ZwOVABAt9DYGDFqbNlVAAAAAAAAHZAAFXRzAlQAQHdR+cgyfgAAAAAAwLQEqKAby2VsqiMs4QcAdA/VYSPKLgEA6MK+//3vR9++feOJJ56Yrefn8/L5+ToAAADAvCVABd3Z6HERjU1lVwEAME9UdaACAAAAAABaIUAF3Zjl+wCA7qQ6TIAKAAAAAACYlgAVdGMVASoAoBvRgQoAAAAAAGiNABV0YzpQAQDdSXX46KhWKmWXAQC0ox/96EfRt2/fGDp0aPzhD3+IHXfcMTbeeOP47Gc/G/fee2+xTV4ffPDBsckmm8Quu+wSp512WowfP36K13n22Wfjm9/8Zmy99dax4YYbxu677x6///3vY+TIaQPY+dw//vGPsdtuuxXvtf/++8dtt9023Rqztl/+8pfFe+dr77DDDvHjH/84Bg0a1KZ9vOOOO+JLX/pSbLvttsX77bXXXvGnP/0pxo4dO9Pn5nvk8fn5z38ejz/+ePNx2GmnnYqahg8f3rztrbfeWmybtbXm+9//fvH4K6+80qa6AQAAoDMRoIJuTIAKAOhWmpqiOnJM2VUAAHPBcccdVwSAMlyUl4EDB8bxxx8fp59+epxwwgmx0korxeGHHx69e/eOSy65JH7zm980P/faa6+Nww47LB588MHYZpttiu2WXHLJuPDCC+Nzn/tcfPDBB83bTp48uQgz/f3vf48lllgiDj300Fh22WXj29/+dhFQmtobb7wRBx10UFx55ZWxzjrrxFFHHRVbbLFF3HjjjcVrDxgwYIb7dcMNN8SJJ55Y1LDPPvvEEUccEYsttlicf/758dWvfjWq1Wqbjs8LL7wQxx57bMw333zF/uXxuOKKK+KQQw6JYcOGFdtkaCz3KQNbkyZNmuL548aNi7vvvjvWX3/9WHfdddv0ngAAANCZ9Cq7AKDcLgwAAN1JddjIiKWXKLsMAKCdZTemm266qQgXpeWWW64IOV1wwQVF2Cg7LqWvfe1rRSeoDDCdeuqpMWTIkKIT06KLLhoXXXRRERBKGUz6y1/+Eueee2785Cc/KcJUKa9ffvnlIniUz+vR4+P5qRlGyttT+8EPfhAjRowoXmfnnXduvj/DVl/+8pfj5JNPLuquq6trdb8y7LXQQgsVQapFFlmkubZjjjkmHn300aJz1uabbz7T45NBrSOPPLLYl5rssJX7k/uZXbkyXLXvvvvGpZdeWoSl8uea7LA1ceLEIgwGAAAAXZEOVNCN6UAFAHQ31Y+mXYYHAOj8vvCFLzSHp1J2eUrrrbdec3gqZYelNddcMxoaGuLDDz8swkv19fXxla98pTk8lTLQlJ2rVltttXjkkUfivffeK+7P4FV2scrl7GrhqZSdqFo+v9b1KcNWudRfy/BUyk5Xef+rr74azz333HT3K8NS2Q3qxRdfnKK2XMLvsccea1N4qrbfJ5100hT3ZWervP+WW24pjkHKrlgpA1st5e3c75ahKgAAAOhKdKCCbqo6uT5i3ISyywAAmKcEqACga1p99dWnuJ1dm9Kqq646zbYLLrhg83J8/fv3L37eeuutp9muV69esdlmm8U777xTdHDKpfreeuutWGuttaYIa7UMbdVeL9VCT9mB6qyzzppm+9GjP+4Mns/J92lNLi2YXaOOPvroWGONNWL77bePHXbYoQhgLbDAAtFWG220UXMHq5bHoW/fvvHEE08U+5U/ZwgsQ2fZ3eqjjz4q9jnDY08//XTsueeexdKGAAAA0BUJUEE3pfsUANAdVUdawhgAuqJaYGpquSzdzJb+S7mEX2uWX3754nrChAnNgaepg0g1iy+++BS3x4wZU1xn+Cgv0zNq1PTHaD7/+c/HMsssUyzll0GnvK4t6/fFL34xvve97xVBr5np06dPq/dnQKrlcah1ocol/W6++eZimcHrr7++6IRV604FAAAAXZEAFXRT1eH+eAgAdD/VcRPLLgEA6EBqYaihQ4cWS/tNrRaays5Ludxdy2DU1DJk1dLCCy9cXGfI6Wtf+9ps15jL/+Vl4sSJ8cwzz8RDDz1ULKl34YUXFp2wjjvuuJm+Rj63NbXgVMvOUvvtt1/84Q9/aA5Q5XUGrbLzFQAAAHRVPcouAChHdbjlawCAbmi8JYwBgP/JJevSk08+2erjtfvXXnvtmH/++WOdddYplvQbNmzYNNu+8MILrb721PfXXHPNNfF///d/8eabb7b6+Lhx4+Kvf/1r/POf/2xeci+X8PvRj37UvCTgU0891ab9bK2GhoaG4v4Mhq222mrN9+ft3XbbLV566aV44IEHiv094IADomfPnm16LwAAAOiMBKigm6qO+l9rdgCA7qI6XgcqAOB/9t9//+jdu3dcfPHF0b9//ykeO+ecc4pw0zbbbBMrrrhicd8XvvCFaGpqKpa4ywBSzW233Rb9+vWb4vmbb755rLHGGnHXXXfF7bffPsVjL774Ypx66qlxwQUXNHe2mlou03fVVVcVIau33nprisfee++94nrllVdu035mCOqiiy5qvp1L8v35z3+OkSNHxkEHHTTNMoC15fpOOeWU4jq3AQAAgK7MEn7QTVUnTi67BACAeW/i5KhWKlHXw1wSACBipZVWil/84hfx85//vAhHZeelFVZYIZ577rniko//5je/ad7+sMMOi/vuu68ITL3xxhux7bbbxqBBg+Lee+8tujhlUKmmR48ecfrppxfL4J100klF96i+ffvGhx9+GHfeeWcRwPrtb38bSy21VKu15fN/+MMfxne/+90iwPTpT3+6WEov3+Oee+4pnvfVr361efsnnnii6Ji13nrrxe677z7NUoW/+93vio5SWcOzzz5b7N8GG2wQJ5xwwjTvnbX26dMnBg8eHJtuummryxsCAABAV+KvBtBdTZxUdgUAAPNetRoxwb+DAID/Ofjgg+OSSy6JHXbYIR577LG4/PLLY9SoUfH1r389rr/++iJEVZPL2J133nnx7W9/O+rr6+OKK64oglTZTWrvvfee5rU33HDD4jUynJXdrPJ9MuSUAaVLL700/j979wEex0GtffydrerVvffeHdupTu+993ZDSyBALiEQuBf4IFx6AgRCvSGUFC6QAOlxei+OE6e5xzWJu2Wrbd/vOaOsLNmSLdmSZqX9/55nWWt2d/bM7OzIYV6fc+aZZ+6xtpNPPlm33367283qhRdecMf5LVy40H3dP/7xDw0ePLjxubbeX/ziF3r88cd3W4+NHrRxgNZx6s4779SWLVt09dVXuzVYp6uWwluZ7aH7FAAAAAAgFzhp69cMIOdEf3m30isa2r0DAADkktBXrpKvb6XXZQAAAHQ6645lXbUsgGVhr/a44oor3LDWc88953aw6kip5WsUu+0eeSXv5hs8e28AAAAAQHaiAxWQqxjhBwAAclVtndcVAAAAZLWXX37ZvZ166qkdHp4CAAAAACAbBbwuAIBHIgSoAABAbkrX1HtdAgAAQFa68cYbtWTJEveWn5/vjjEEAAAAACAX0IEKyFHp+ojXJQAAAHgiXUuACgAAoCV9+vTR+++/r+HDh+vXv/61Bg4c6HVJAAAAAAB0CTpQATkonU5LkZjXZQAAAHiDABUAAMgRgwYNcrtJtdV1113n3gAAAAAAyDV0oAJykYWnLEQFAACQg9K1dV6XAAAAAAAAAAAAsggBKiAXMb4PAADkMEb4AQAAAAAAAACApghQATkoHYl6XQIAAIB3CFABAAAAAAAAAIAmCFABuaieABUAAMhddKACAAAAAAAAAABNEaACclCaEX4AACCXEaACAAAAAAAAAABNEKACchEdqAAAQA5LR2NelwAAAAAAAAAAALIIASogB6UJUAEAgFwWj3tdAQAAAAAAAAAAyCIEqIBcxAg/AACQy+IJrysAAAAAAAAAAABZhAAVkIPSETpQAQCAHJZKK51Mel0FAAAAAAAAAADIEgSogFzECD8AAJDrYnShAgAAAAAAAAAADQhQATkoTYAKAADkunjc6woAAAAAAAAAAECWIEAF5KJIxOsKAAAAPJWO04EKAAAAAAAAAAA0IEAF5CA6UAEAgJxHgAoAAAAAAAAAAHyMABWQi5IprysAAADwFiP8AAAAAAAAAADAxwKZPwDIIT7H6woAAAC8RQcqAAAAz/hGDVHezTd4XQYAAAAAAI3oQAXkIocAFQAAyG3pRNLrEgAAAAAAAAAAQJYgQAXkIgJUAAAg16XTXlcAAAAAAAAAAACyBAEqIBcRoAIAALkuRYAKAAAAAAAAAAA0IEAF5CIfASoAAAAAAAAAAAAAAABDgArIRQ5ffQAAkOMY4QcAAAAAAAAAAD4WyPwBQA6hARUAj70zJ6SVBQMUTw9QMl2oeCqsGH8tQSd58K4f6MNVi/TJr93R5tck4lHNf/Y+LXnzGW3ftkH5haUaOGyCDjr2YpX3GtDsuRvWLdcT/7xNm9evVmlFX80+8jyNn37Ebutc+NKDeuaB3+vyL/1KpRX9OmTbsO9OKCjXMK+LAAAAAAAAAAAAWYErlUAOcnw+0XMBgJdq6+9XumiAngpsVtrXV0XhyUpqgGLJ3qpPFCjsFCjoFMhJ5ymRDCma8Ksm5lNVVIokvK4e3Unts7er7q3n5Svurb/UVrbpNel4RFV/uVGJde8oMGiyQrMOV2zrWi1Z+JyWLnlD5Vf9r/wVgxqem4hq6x//x31N3swztWPt23rkrz/RS4HBCo2YvXOdsTptefz/lHfA2bo/PFGq7bRNRhtNDRYRoAIAAAAAAAAAAC4CVEAucmhBBcA7ybCjeLRKFeuqdE4wX++NGKjnq+5WSin3cb8TVkHBDAWD4xRL99XmZEAfRiNKWfQzJBXk56k8VKpif7Hy/IXyK19OOqxYIqh6C1pFHW2LSEmSojnNgk01j9ysyBv3t/u1tc/8rxueyj/wQhUde23j8sjCh1T975tU+9RvVHL2d9xlsWUvKlW9ScVnfVt5E49xg1Rbfnq66l/7e7MAVd2Ld0nJuAoOu7KDthD7i78OAQAAAAAAAACADAJUQC7yccUQgHeiTZoA+eP1mrzkDQ3vM1xPFie0tm6NkumoNtS+JMluDYaGy1RZcICCgVGqTYb1UV2VFtdsaPkNHMmX56gkVKSyYIkK/cUK+QrcoFUqGVIsGVBtzK8dUWlHrAs2GF0uuvR51Tx6i1JVHyk06iDFlu88ltoSvIq8fp/8FUNUePTVzR4LTzlB8TUL5SuqaFyW3PaBex/oO8q9d4J58lcOaVxuUjVbVPfy3Sqce6V8+SUdsIXoCH7+OgQAAAAAAAAAAD5GgArIRbRcAOChaGlSHzebalS0caVO2ezTqpEz9UTd24qlmieboskqfVj9uCS7SUFJYwoGqixvhhz/MFUnSrWuJqEd8bj7eMpJqype7d5aFZCCQb/bzaokUKx8f5FC7tjAsJKpkCJxC1r5tI2xgd2OdZ1KR+tUdOL17li9zTcd0ubXxle/6Y7bC407XI6v+V+VHcen4lNvbL4sv9S9T8fqG5elo7WNyzMdrSw4lT/73P3YKnQ0x9KWAAAAAAAAAAAABKiAHEUHKgAeihREpZrdl/tSKY1YtkADy/rr+T7FWly9ZI/rqYl94N4yiiQNKhqrkvAUpXyDtS1aoLW1MUWSyVbXEU8ntTG61b21apexgWF/oYLKl9JhxZNB1cf9qo46qopKiV2CYfBG/pzzVXzGN+QLF7b7tYkNy937QJ+Rii1/WXUv/lnxDxfLCQQVGjFHhUd9Rv6y/o3PDw6c4EZx6l++R/6Tb1B85XwlN69S/iGXNaxv82pF3rxfxafcKCcQ7sCtxP7ir0MAAAAAAAAAACCDABWQi+hABcBDkWAL6akmwlUf6eiqjzR++HQ9lliu2sQeukjtoiqyxL1lVDoBVRZPUWF4ouLqp83RsNbWRJRMp9tVc10yorr6iKTWxwY6YakkVKzyYIkK/EXK8xXKpzylU2FFEwHVxT8eGxiV2vfuaK/QsBn7/NpUzWb3PrroScWWPKvg8FnKn3m6EuuXKvruPMVWvqbyK38rf8WgxqBV/oEXqP7lu93H3WV9R6vgkEvdP9c++Sv5e49wx/9lpNMpt5sVvMVfhwAAAAAAAAAAQAYBKiAXcdEWgIeizvY2PW/Ayjd1cUG5Xh88Ra/veGuf3iuthDbXL3BvGQODhepVMEPhwFhF0r21vt6n9XWR/Q41pR1pe7zavbXKLwULG8YGFgeK3aBV0CmQT2ElkyE3aFUT9bndrOoZG+gJG99nLDxVdNKXlT/zzMbHap//o+qe+o2qH/6Ryi7+WePyomOvVXjsXMU/fE/+kr4KjT1Mjj+o+Nq33fWUXnSzG5iqf+3vqn3uDqVrtynQf6w7YrChgxW8QAcqAAAA76SWr1HstnvUneXdfIPXJQAAAAAAOhABKiAX0XIBgIfq41va/Nxg3TYduGSbxgyaoHmBTdoc3bTf759I1Wp9zXOSnss0j9LwvEpV5h8gf2CkahPl+rAurS3RqDpDW8cG5ueHVREqU5G/SPn+IgWUr3Q6pEQyxNjAzuT43bvAgPHNwlOm4OBLFHn9n4q/P1+puir5CsoaHwsOmeremqp5/BcKDj9AoZEHKrZqgWoeuVl5M89UeOxhqn3uj9p+z/Wq+Nzf9mnUIPZfqAcmqGKxmO644w5dddVV8vsbjmUAAAAAAAAAALB3BKiAXNQDLxgC6D4i9Rvb/ZqKdYt0TjBfi0bM0HM73lRKHZsaiiS26IPqRxt/DksaWzBEZfkzJGeodiSKtbY2oZp4XF2lPhnVB/Ub2jQ2sCxYoqJAkUJOofzKUyoVVjwRUC1jA9vN+TjMZAGq3R7z+RXoO0qxHRuU3PZBswDVrqKLn1Fi3Tsq+8Tt7s+R+ffKKShT0QnXyfEF5Cus1LbfXa7o248q/4CzOnGL0Jq8HvhfQpdccokWLlyo//iP//C6FAAAAAAAAAAAupUeeNkAwF7RgQqAR+LFjpKJhhFp7eWP12vSkjc0rM9wPVmc0Nq6NepM1bE17i2jJO1oWNEEFYUnK+UM1JZYvtbWRBVLedcCqj1jAy1kVRoscbtZhZwCOemwkqmQovGAauI+VUUYG2j8vYY2/CHZclgu/fFyJ5DX6jrSqYRqn/yVwpOOVbD/WHdZYstq+csGuOGphvcZ0vA2W9d29CagjfIDPe/vQ5s3b/a6BAAAAAAAAAAAuiUCVEAuIkAFwCPRiv3vg1S0caVO3ezTypEz9UTd24qlYuoSTlpbI++6t4y+vpAqi6cpPzhesXQ/bYoG9UFtRMl0dvV7srGBm2Lb3NvexgaWB8tUHChSnq9QQSdfSocVT4YUcbtZ9fyxgaEh09z72KrXlU6n5Di+ZuGp5MYVUjBf/opBra4j8sb9SlatV+lFt+xcmEo23DLrSnx83PI72TN5PTBABQAAAAAAAAAA9g0BKiAXMcIPgEeixQmpA6bgOamURixboAGl/fRC3xItrl4iLyQV08baVyXZrcHgYLEqC2YqFBij+lSlPqr3aUN9RN2BjQ2sT7ZlbGCRyoKlKvQXKewrlD+dp3Q6rGgioLpuPjbQglHBkXMUX/GK6p77owrnXtn4WN2ztytVs0V5M06XE7RBj7tLx+rc5+XPOkv+sv4719trmGLLX1Kqbrt8BaWKr32rcTlyqwPVV7/6Vd133316+umndc899+iBBx7Qhg0b1KdPH5144on67Gc/q4KCgsbnf/TRR/rVr36lZ5991u0wVVpaqgMPPFCf+cxnNHr0aPc5r7zyii677LLG10ycOFGzZ8/Wn//8Z/fnVCqlu+++W//4xz/0/vvvy+fzacKECbriiit0zDHHeLAXAAAAAAAAAADILgSogBzk+HZ20wCArhTJj3RIgCojb/t6Hb19vcYPn6Z5yfdVE98hr8VS1fqo5mlJT2cm6GlUfl+V58+U3z9c1YkyfVCbUlWsizpndcrYwBr31iq/FCjwqzxUopJgiQr8hQo5hTvHBiYCqon5tD0i1Xk4NjCxfqmiS551g055U09uXF588ldU9cdrVPfM7xRfNV+BAeOV+HCx4qsXyF8xRIVHXd3qOuteutvtLlVw6BXNlufPPEOxxU+r6s+fU2j4AYq8/ah8xb2VN+m4Tt1GtJ4lD3vcgeraa6/VmjVrdNxxx6mwsFCPPvqofv/732vVqlX65S9/6T5n0aJFuvzyy7V9+3bNmTNHJ5xwgvv4Qw89pMcff1y/+MUvdNhhh2ngwIH63Oc+pz/+8Y+qrq7WNddco8GDBzeGp+y97PkjRozQOeec4y6bN2+eG9ayx+y1AAAAAAAAAADkMgJUQC4qyPO6AgA5KhLYQ+hmPwxYuVAXF5Tp9cFTNH9HQ2efbFIX36C6+EONP1tvmf6FI1WSN01yBqsqXqS1tXHVJTxME3WwhNozNrBUxcFi5TkNYwOtm1UiGVJ93K+amKMqy911wtjAxIZlbreo4NDpzQJU/tJ+Kv/E7ap77g43YBVf9458RRXKn3O+Cg67Ur78khbXl6rdqvqX727xOaERs1V82n+r9tn/Vf38exUcOEFFJ1wvJ8jvZC+ELdnosaqqKj388MOqrKx0f/70pz/tdqCyoJN1pOrdu7e+/OUvu+Gp//mf/9HZZ5/d+FrrRmXPv/766/XEE09o0KBBbhDKOltZgMqCUYFAw3/q3Xnnne46Tz31VH3ve99TMBh0l1933XW65JJL3BDW3LlzNWXKFI/2BAAAAAAAAAAA3iNABeQgp3DnWBgA6EqRdFWnrTtQV6U5S6o0etAEzQtu1ubIRmWz7dEV7i2jPO3TyJLJKgxNUlIDtDka1rraqOKpTkgOZd3YwI3SHj4vGxtYGipSSbBURe7YwAL5la9UKqR4IuiODdy+h7GBvf/7xRbXa6GppsGppnwFZSo6/ovura18hRXq9ZXHW308b+qJ7g3eK/C4+5S58MILG8NTpqKiQjNmzNCTTz6ptWvX6oMPPtCyZct06KGHNgtPGQs8nXHGGbr33nvdzlW7Pt6UjQm0kX3f+MY3GsNTpri4WJ///OfdblV///vfCVABAAAAAAAAAHIaASogFxXme10BgBwViW3u9PeoWLdI5wby9N7ImXpuxxtKqXsEkNJOSlvqFrq3jP7+PFUUz1B+cJwi6T7aFAnog9r6FkNCPZmNDayK17i3vY0NLAuVqDRYonx/ocK7jA2sjfncblZejg1EdigMeR+gsnF6uyopaehcFo/HtWJFQ8DSRve15IADDnADVDbmrzV1dXVavny5CgoK3PF+u9qxo2Hs6bvvvrvP2wEAAAAAAAAAQE9AgArIQU4RHagAeBOCidR3TVcoXyKiSUsWaFjv4XqqNKk1tavVHSXSEW2ste5JOzsoDQ+Xq6JgpoKBUapLVujDOmlTJOppndk0NnBzbJt72/vYwBIVBUpU4C90u1lZ0CqeDCkS96u6E8cGIjsUBn1el6BwOLzbMsdpCHal02l3FJ8pKipq8fV9+/ZtDEm1JrMOe46N6muNjQkEAAAAAAAAACCXEaACcpBTRAcqAF0vVu4onYp36XsWbVqpU7b4tHLkTD1R945iqe4fNIokt+nDahsT1zAqzgZyjSkYqLK8GfL5h2tHvFhra5Oqjnftvs5WtXf9XYnVa1V643W7jA3cJMluu0vH44q+8JISb72n5NatChaVqGzkBI069Url9RqueDKoupjfHRm4edViVT/0IyU2rpC/bKAKDr1MeZOP322d9fP/oZrHfq6Kq++Wv3xAp24z9q4oCzpQ7U0mOLVhw4YWH890jyorK2t1HYWFhY3drh5++OFOqRMAAAAAAAAAgJ6AABWQiwrpQAWg60XLvRk856RSGrFsgQaU9tMLfUu0uHqJepqa2AfuLaNY0uCisSrJm6qUBmlbrEBra2OKJJOe1tnVIk88o/jb78kpsT3SNulYXDX/+2cl16yTf+gghQ6epdTmrdq44Hltem++iq75hPy9Khqem0qo+v9+IcUT6nPoXNWvXKnqf/4/jRqUp7KxBzWODdy6o06bn/2D8g84i/BUligKZn+AasKECe79a6+91uLjL7/8sns/ZsyYPYawBg8erLVr12rr1q2qqGg4djOWLVvmjgGcOnWqTjjhhA6tHwAAAAAAAACA7oQAFZCDGOEHwAuRopgU8e7987av19Hb12vC8Gl6LPm+auIN3Vt6qqrIEveWUekE1KtkqgpCExRXf22KhLSuNqJk2ptgW2dKxxOqv/9hxV57Y59CVxaeCh92oPJPOq5xeez1har7+78UeexJFV50jrssvmSZUjt2qODCsxWbMlG+2Cw5379Fbz/xBxUNrG98bf1LT0upOg0+dbrKSpcp31+ooPKVToeVTAZVHw8wNrCLdYcOVNOnT3c7R73++uv661//qvPPP7/xsRdffNENPpWWluroo49uXB4MWk86KR6PKxBo+E+9c845R7fccou+9a1v6cc//rFCoZC7PBKJ6Jvf/Ka7/v/+7//u8u0DAAAAAAAAACCbEKACclF+WPL5pBRXaQF0nWi43tMAVUb/lQt1cUGZXh88RfN3vKVckVZCm+pel+z2sYHBQvUqmKFwcKzqU721od6v9XX16s6RqviiJaq//1GltlUpMHaUEkuWtyt4FX1lvny9KpV3/DHNHgtOn6LQqjVyihtGopnUlq3uvb9fX/feCQXd16a2btv5nOoaRZ9/SXlHzdVGf5021qxovYA8qTRQpNJQiYr8RQr7CuVXntKpsGJNxgbuiEmp7vwhZYHu0IHK5/O5gacrrrhC3/jGN/TQQw+5XalWrVqlp59+WuFwWD/60Y9UXLyzw1r//v3dx6+//nrNnj1bl19+ua666iq3W9Wjjz6qRYsW6ZBDDnHDVU8++aQ++OADzZ07V+edd56n2woAAAAAAAAAgNcIUAE5yHEcqTBfqq71uhQAOSTir1a2CNRVac6SKo0eOEHzQpu1ObJRuSiRqtX6muck2U2ySMmIvF6qKJgpv3+kahPl+qAura3RqLqL6Pw3lY5GlX/6SQrNmantX/tOm1+bWLlaisYUPHCcHL+v2WOOz1HB2ac2X1bQ0NExHYs1LrP3dgryG3+OPP6MnPx8hQ+e06Yatidq3Fur/JI/36fyUKlKgsUq9Bcp5BTISecplQop8vHYwO1RqTbe1i3PPYXdoAOVmThxou677z796le/0nPPPed2i7IxfKeffro++clPauTIkc2eb8Gpr33ta3rmmWe0dOlSN0BlXal+97vf6c4779S///1vd30WoBo6dKiuvPJKt7NVpisVAAAAAAAAAAC5ykmne+DcFgB7Ff3h7Uqv3+x1GQByyNtz3tb2qveUbVKBPL03coKeq35TqXTS63KyUkloqErzp8vxDVVVvFhra+KqTSSUjeLvr1JgYH854bD7c9WN35ZTUqzSG6/b62sjz76oyMOPq+D8M93QU+SZF5T84EM5/oACY0Yq//ij5Csva3x+cv1GVf/81wpOmaSCM05WfMVK1f3l/xQ+4hDlH3+0kps2q/qnv1bBWacqNHOqulqeL+QGrYoDxcr3FymgfDnpsOLJoBu0qo7m7tjA62cX6owxeV6XAQAAkLNSy9codts96s7ybr7B6xIAAAAAAB2IDlRAjnKKCrr1iCYA3U8kmp1dnnyJiCYtWaDhvYfrydKk1tSu9rqkrLMjttq9ZZSmHQ0vmqCivMlKaqC2xvK1tiaqWBaMhg2OGLbPr03vaOiSFn/7PcXfW6LAqOEKz56p5IfrFV/4jhLL31fR1f8hf2WF+zx/vz4KH3qgos+9rO0L32lY1r+f8o441P1z5JEn5Ovb2x3/1/geqbTbzaorRFIxfRTZpI+0qfUn5UklgSKVBUtUFGg+NtCCVrUxv6pjcjta9aSxgZX5zTuMAQAAAAAAAACA3EaACshVNsIPALpIKiBF67comxVuWqlTtvi0cuRMPVH3jmKp7jO2rss5aW2NvOveMvr6Qqosnqa84ATF1Vcb64P6oDaiVDeK62ZG8Vl4Kv+MkxSec0DjY5GnnlPksadU/8+HVHTVJY3L8086TsEJ45RY+4F8ZaUKjh8rJ+BXYvVadz2FV17kBqaiL77qriNdWyv/gP7uiMHA4IHKBjsSNe6tVb7M2MASlQRL3LGBQadAviZjA+viPrebVXcZG1iR3z1G+AEAAAAAAAAAgK5BgArI4Q5UANBVopUWVsj+II2TSmnEsgUaWNpPL/Qt1aLqxV6X1G0kFdPG2lcl2a3BkFCxKgsOUCg4WnXJSq2v92lDfURZy2noSuQfNKBZeMqEDz9E0VdeV2LF+0rV1slXuPP3aGDYEPfWVP3D8xQYOVzBMaPcsYL19z+i0JyZCk4Y6wapav94t0quv1ZOXsOowWyXVEqbY1XurVVBKS8cUlmwVCXBYuX7ChVwCtyxgYlkUPXxgGpijrZlwdjAyjw6UAEAAAAAAAAAgJ0IUAG5ig5UALpQtMz70W7tEd6+XkdtX6/xw6fpseT7qonv8LqkbimWqtZHNU9JspvklzQqv68q8g+Qzz9MNYkyratNqerjzk9ey4SZLEC122M+n/z9+yqxfYdSW7Y2C1DtKvbuYiXXrFPR5z7Z8PPL8+UUFij/1BPl+H3yFRep+ue/VezNtxU+sHlQq7uzsYHro5vcW6vypOJAgcqDpSr0FyvPXyifLUyFFXODVn7tiHbu2MAKRvgBANCp1q5dq/nz5+vMM8/s9PdatGiR1q1bp2OPPXafXn/vvffqxhtv1Gc+8xldd911HbZeAAAAAADQvRCgAnIUHagAdKVoYVSqVbfTf+VCXZRfqjeGTNVrOxZ6XU6PUBffoLr4g40/22+j/oUjVZI3TfINUVWsUGtq4qpPJrq8Nl/vyoY/JJMtP+Hj5U4o2Oo60smUIo8+oeDUyQoM6N/wsk2b5Ssvc8NT7vv06uXepzZn91jLzlSdqHNv0kd7HBtYFipWabBUBb5ChXyF7tjAZCqkWCKg2rhP2yNSTTvHBhaHHIX8jPADAKCzLF68WOeee66OP/74Tg9QPfPMM27w6VOf+tQ+B53Gjx+vz33uczrggAM6dL0AAAAAAKB7IUAF5CiHDlQAulAkVNstA1QmWL9ds5e8pdEDJ+ix0GZtjmz0uqQeZ3t0hXvLqJBPFSWTVRSapLgGaGs0T2trI4qnOreTWWD4UPc+sWKV0qm0HN/OkE06kVRy/UYpFJSvsqLVdcTmL1BqW5WKrrx450Kru0krpXTi43CYQ4hnb2MDt8S2u7dWBaVwOKjyUJlKAruPDYwkAqqOOqqKSrGPc3GVdJ8CAKBTbd++XbEu6jC6ZcsWpfbz74gWoLJbR68XAAAAAAB0LwSogFxFByoAXSjidP8ReOUfLNK5gTwtGjlTz1a/qVS6lS5F2G9pJ6UtdQvdW0Z/f54qi2cqLzhW0XQfbYgE9GFtvTpywpu/skKB0SOVWLZC0aeeU97Rcxsfizz5jNLVNQrNniEn2HIHqnQ0psgTzyp84Cy341Tjenv3UnzpcqVq69zRf8nVa9zlvj4Nnaiwf6KpuNZHNmm99jA2MNwwNrAsWKoxlX0l7fx8AAAAAAAAAAAA+OfXQI5yCglQAeg6kcRW9QS+REQTlyzQZfGhGlLY0K0IXSORjmhD7QtaXXW71m//vtLRmzQ8fLtmli/UQb1rNaUirN554bav78P1qn/8aUVff7PZ8oKzTpFTVqrI40+r+rd/VP1D81Tzuz8q+tTz8vWqVN4JR7e6zuhzL0nxhMJHHtZseWjOTHd5ze//pPoHHlXd3/8tp6RYoamT92FPYF/ZyMC19R9Jvu4f6AQAIFt99atf1WWXXeb++f7779fYsWN17733uj9v2LBB3/rWt3TkkUdq0qRJOvTQQ3XjjTdq3bp1u61n0aJF7li9zHPnzp2rr3zlK1q1alXjcy699FL39ebXv/61+16vvPJKu2u2+uy1t9xyS5vWu3LlSn35y19267fajjrqKN10003aunVri+udN2+e7rnnHp188smaPHmy+/zf/va3SqfTWr58uTsqcObMmTrwwAN1zTXXaO3atc3WU1dXp5/85Cc69dRTNW3aNHfUoNX40EMPtWn7br31VreO119/Xb/85S91xBFHaOrUqTr99NP117/+tdlzP/GJT7jPfe2113ZbT01Njfv+Z5xxRjv2LgAAAAAA3QcdqIAc5RQxwg9A16nvYWPvCjet1ClbfFo1YqYer39HsVTU65JyUiS5TR9VPy7p8cw0N43JH6Ty/OlyfMO1I1GiF1t5bfKj9Yo+8az8w4cqPHNa43JfWamKP/dJRZ58TvH3Fiu6Zp2c4iKFD5mj8NFz5ctv+fdnqqZWkedecrtW+QqaPyc4eqQKzj1dkcefUfTl+fIPHqiC00+UE2q5kxU6V598QuQAAHSWY445xr2/7777NGbMGB133HHueLwVK1a4wSobjXf44YfrpJNOcoNT//rXv/Tkk0/qjjvuaByj9/777+vCCy9UIBBwX19ZWem+/t///reefvppN5jVp08fnXnmmSouLtYTTzzhhoosgDRw4MD93oY9rdeCRZ/61KfcEYVHH320hgwZoiVLlujPf/6z+/y7775b/fr1a7a+X/3qV27o6sQTT9RBBx3kbocFotavX69//vOfmjhxos4//3y9/fbb7josJGb7Jfhx11MLVb300ktuYMuCZBZkevTRR3XdddepurrafW1bfO9733NrPeWUU5SXl+e+1ze+8Q0tXrxY3/zmN93nnH322XruuefcumbNmtXs9Q8//LDq6+t11lln7fc+BgAAAAAgGxGgAnKVdaBybN6Q14UA6OkS+VIi1vM6vjiplIYvX6DLSvvqhb5lWlS92OuSYP8yPr7OvWVM+FGhyvNGqzhvrVIapG2xAq2tjUkzpzULTjVlY/YKTj1eslsb+YoKVfb/vtrq46EZU90bvEeACgCAzg1QWfjIAlTWyejaa691l1voxjo0WUcn64CU8fLLL+vKK6/UDTfc4AaLHMfR3/72NzeoY6EqCxxl3HbbbfrZz37mdnayrk2ZIE8m6JR5r/3V2notNPWf//mfSqVSbucm6z6VYdtr3bcskGTdpZqy0JJt04QJE9yfLQT1yU9+Unfeeaeuuuoqd9uNdaSy4Ngbb7yht956y+1KtWzZMjc8ddppp+lHP/pRs05RFsi6/fbb2xygsqDUXXfdpSlTprg/23ZdfPHF7jLrjmXbaqGwsrIyN6Bl2xIOh5tto4W6rBMWAAAAAAA9ESP8gBzl+H0NISoA6GTRSktr9lzh7Rt01NIlOitvmoqDJV6XgxZsiyzRmqr/07qqm1Vbd5MqnZs1teRpHdRrkw6o9GtYUb78Ts8+TrFT3wL+/gMAQFeyMNC7777rhnOahqeMdXey5UuXLtWbb77ZGCQyNnIu82dzxRVXuB2orAOUFyxQtXHjRl1wwQXNwlOZrlUWkHrmmWfcUYVNHXzwwY3hKWPBqIyrr7668c8WHpsxY4b758xYQwtrZbpyNR0ROHjwYLcjlHWqaiurMROeMhUVFY3hMOs4ZUKhkBuQss5Wtr0Za9ascT8PGz9YXl7e5vcEAAAAAKA7oQMVkMOc3hVK19R5XQaAHi5ampAS6vH6r1yoC/NL9caQqXptx0Kvy8EepJXQprrXJbt9bGCwUL0LZioUHKNIqrfW1/v0UV3E0zrROfrSgQoAgC5lo+mMBYBuvfXW3R7fvn27e//ee+9p+vTpbgeoe+65x32ujcSzANIhhxzidm7q37+/vN6O1atXt7gdmbDTokWL1Ldv38blw4YNa/a8wsJC9946PVm3rqbyPx4Xbd2ujHXxss5Q8+fPd7ffwle2Lw477LDGkYdt1bSbV8a0adMa933GOeec444ktHCWjVrMdJ8yjO8DAAAAAPRkBKiAHObrU67kyp1jjgCgM0TyI1K1ckKwfrtmL3lLowdO0LzQFm2KNP/X58heiVStPqp5VpLdGqbcjszrpfKCAxT0j1B1olwf1qW1NRr1ulTsp775DRctAQBA19ixo2Gct3Uwsltrqqqq3PsxY8a4I+9+97vfuR2nbLSf3fx+v9sB6Vvf+pZ69eolr7bjqaeecm97246Mgla6XzYdj7cnv//97/WHP/xBDzzwgDvy0G4/+clP3GDW1772NR1++OFtWk+/fv12W9a7d+9m22bGjRuniRMn6vnnn9eWLVvcTlUWprLnWnALAAAAAICeigAVkOMdqACgs0UDtco15R8s0jmBPC0aMUPP1ixUKp30uiTsg/rEZtXveKTx5zy7oFQwTKX50yTfUO2IF2tNTVy1iRxosdZDFAQCKg6FvC4DAICckum49KUvfanN4/dGjx6tH/7wh0omk+74vxdffNEN8cybN0+1tbVuoMir7bjlllsaOzN1BetKdc0117i39evXuwGqxx9/3N0Xn/3sZ/XII49o0KBBe11PJLJ7d1Ub1WcsJNXU2WefrW9/+9vuui1Q9cEHH+gTn/iEG2IDAAAAAKCn8nldAADvOH0rvS4BQA6IOA0jOXKNLxHRxKVv6LLYEA0tbD62A93Xjtgqrd3+T63d9jNtr7lJpekfalLxozqw1wea3cvRyOJ8hXz8FTtbDSxsPiYHAAB0PMexXp47TZgwwb1/6623Wny+dZv6+c9/rvfff9/92cb3fec731E6nXYDO1OmTNFnPvMZ/eMf/3C7Ob322mutvldnbYPJjMxbuHBhq52ifvnLX2rjxo0dVsebb76p73//++59povUGWecoV/84hfuOL14PK433nijTetqqe5MR7CpU6c2W37KKae4HbIeffRRPfHEE+4yxvcBAAAAAHo6ru4AOYwOVAC6QiS+WbmscPMqnfz+Wp1UOFMhX9vGdKAbcdLaWv+O1lTdo3VVP1Z9/U3q6/uZppU+p4N6bdGMyoAGF+bL5w4FhNcGFxGgAgCgswUCDQ3vLdxjZsyYoREjRrgdk6yjUVNvv/22G5ay8FFZWZm7zAJSf/nLX3T//fc3e+7mzZsVjUabdVva9b06axvMMccc49Z41113acGCBc2e/+STT+pHP/qR7r777sbt6Ag1NTVut61bb71VqVSqcbmFy6wrlBk8eHCb1vWnP/1Jq1atarY/f/rTn7ohNes41VRpaam7vfPnz9dDDz3kBqxGjhzZYdsFAAAAAEA2YoQfkMOcyjLJ75OSO/9POADoaPX1HfcvsLsrJ5XS8OULdFlpX73Qt0yLqhd7XRI6UVIxbax9VZLdGgwJlajSQnSB0apP9tKH9Y421u8+RgWdawgBKgAAOl3//v3d+2effVY/+MEPdPTRR7vhoiuvvFJf+MIXdMghh2js2LFup6bHHnvMDSl973vfaxwjZ2Pp7LVf+cpX9PDDD7vBnaqqKrcbkgWHrr/++t3e69///rfbNer000/XmDFjOmwbdl2vjRW89tprdckll+iII47Q8OHD3VDSU089pVAo5G6v3XeUgw8+2H2fp59+Wqeeeqr7swWebIzfokWLdPzxx2vatGmNz7/jjjvcsXxnnnnmbmP9bD9bUOq4445TMBh0Q1+bNm3Sf/7nf7pj+nZlz33wwQf10UcfuR3AAAAAAADo6ehABeQwx+9rCFEBQCeJlTpKJQiJZIS3b9BRS5forPA0FQdLvC4HXSiW2qGPqp/S6m2/1cYd/6NA/LsalX+XZlUs1oG9o5pYnqfSDrzYhuzqQGVdI+xCsd23lV0gto4PV199tQ499FBNmjRJc+fO1aWXXqq///3vikR2P7faBWp7n6bdJZq65ppr3MenT5+uWCzW4nMOP/xw9yLqli1b2rGFAAA0Dx996UtfUn5+vttJ6sUXX3R/j913330677zz3FF9f/7zn/Xqq6+6YSp7jgV+MqxblY3xO+2007R06VL98Y9/dLtXzZw5032udUbKOOCAA3T55Ze7nanssdbG67VXa+u135M2cvDEE090RxJabe+9955OOOEEd7ltT0fy+XxulygLjVlwyvah7RsLdd144436yU9+sluXKRvvl+lO1dQXv/hFnX/++W44zbp7WecqGzn46U9/usX3Puigg1RZWam8vDydfPLJHbpdAAAAAABkIydt/888gJwVu/1epd5Z7nUZAHqo6uHSwtBfvS4jKyXyS/TGkGF6dUfHXORBz1AaHqXS/GlKabC2xwu1piau+mTC67J6jN8dfpymVPbu8ve14JRdzPzc5z7ndq3YGwsv2fNef/11lZeX67DDDlO/fv3cUTuvvPKKe1F06NChjcGsjP/6r/9yL95aF4+zzjprt64Tc+bMUX19vTsCyMYBWReLptauXetelB4/frz++c9/duAeAAAAXsn8PeSmm27Sueee2+bXffjhh244+5RTTnE7iHW01PI1it12j7qzvJtv8LoEAAAAAEAHYoQfkOOc3g0t8gGgM0SL41LU6yqyU6B+h2YteUujBo7XvNBWbYps8LokZIHt0eXuLaNCPlWUTFFRaKISGqDN0bDW1kSVSDN+t6eO8LOA0xVXXOF23LB76xZhHTwyksmk7rzzTn3/+9/XhRdeqH/9619uBwljgSgLUC1YsGC3AJUtq62tdTtI2Die5557brcA1Wuvvebed3T3DAAA0L3Yv7e14JWFri+66CKvywEAAAAAoEsQoAJynNO30usSAPRgkbwIAaq9KP9gsc4OhLVk5Ew9U/2mUumk1yUhi6SdlLbUveneMgYE8lRZMFN5obGKpPpoYySgD2vrRVvZPSsJhlQWzlO2s4uVFp66+OKL3dE8u7LxPZdddpl7/+1vf9t9jo0WMgceeKA70sc6V+3KAlPmU5/6lDu6x37+yle+0mKAykYGAgDQHT3++ONatGhRm58/e/Zst0MjGli3yyuvvNINdFtnyiOPPNId/QsAAAAAQC4gQAXkOB8dqAB0ooi/2usSugV/IqoJSxZoaK+heqpMWl27yuuSkMUS6Yg21L4g2e1jw8IVbqgqEBipumSFPqyTNkdILzY1pLhE2S4Sieiee+5RXl6ePv/5z+/xudZ9yoJTFnpavHixxo0bp4qKCnek35IlS7Rt2zZ3/F/G888/r759+7rPs6DVvHnztH79enc0YMb8+fPdblczZ87s1O0EAKAzA1T33Xdfm59v43UJUO1kf5eIRqNukOr44493x/4BAAAAAJArCFABOc7pQ4AKQOeJpKu8LqFbKdy8Widv8Wn1yJl6PPKuosmI1yWhm4gmt+rD6nmS7CaFJI3JH6Sy/Bny+YdpR7xEa2sTqo7HlauGF5cq273xxhvumL2DDjpIZWVle3yuz+dzL2z+6le/0mOPPeYGo4yN5bNAla3rqKOOcpdt2rTJXZYZ62cdpixAZV2ozj33XHfZhg0btGbNGh122GEKhewIAgCg+7ERt3bDTtdee617awv7+4X9vQIAAAAAgFzk87oAAN5yCvMluwFAJ4hEN3ldQrfjpFMatnyBLq0u04TihkAEsC9q4uu0bse/tWbbz1VVc5OK09/XhKIHdWCvtZrdK63RJQUK+/3KFcNLsj9A9f7777v3I0eObNPzR48e7d7biJ0MC1+ZpmP8rPtUOp1uHM13yCGHNBvrZxjfBwAAAAAAAADIZXSgAuB2oUqv/MDrMgD0MGmfFK0nQLWvwts36MjtGzR+2DQ9llqp6vh2r0tCD1AVWezeMno7QVWWTFV+aIIS6qdNkZDW1UaUTKfV0wzvBiP8qqsbxp4WFRW16fmZLlVbt25tXDZr1iwFg0EtWLCgcZkFpayjhHWnMoMHD9awYcP04osvKplMyu/3NwaoMuEqAAAAAAAAAAByCR2oAMjXmzF+ADperMJROp30uoxur9+qhbpokzS7ZKrXpaAHSimuTXXztabqT/qw6oeKR27SwOCvNKPsNR3Ue7umVYTUvyBPPUF36EBVWtpQYyTStvGdNu7PlJeXNy7Lz8/XtGnT9M477ygWiymVSumFF17Q5MmTm40FtE5TFth699133Z/nz5+vPn36NHa1AgAAAAAAAAAglxCgAuB2oAKAjhYpT3ldQo8RqN+hWUve0kW+8eqd19frctDDJVK1Wl/zrFZv+7027vienNh3NTLvz5pV8a4O7F2vyeV5Kg+H1J0UBALql1+obDdkyJBmo/z2ZtmyZe79oEGDmi23MX4Wnnr77bfdIFVVVdVuo/kynaZeeeUVt4PVihUr6D4FAAAAAAAAAMhZjPADQIAKQKeIFsakeq+r6FnKP1isswNhLRk5U89Uv6kUHb7QReoTG/XBjkcaf86X1LdguEryp8nxDdX2WJHW1sZVm0goGw0rLpXjOMp2s2fPdrtEvfrqq9q2bVuzzlIteeyxx9z7448/vtlyG9X385//XG+99VZjN6tdA1Rz5sxxR/29/vrrGjp0qNLpNAEqAAAAAAAAAEDOogMVAAJUADpFJEx6qjP4E1FNWLJAl8UGa2jhMK/LQQ7bEVupddvv09ptP9WO2ptUmv6hJhU/poN6fahZvRyNLClQyJcd/7kxvDj7x/cZCzRddNFFbujpxz/+8R6f+/e//12LFy/W9OnTNX78+GaPTZkyRUVFRW73KRvNV1JSoqlTm48BLSwsdF9r67AQlQXMCFABAAAAAAAAAHIVHagAyKksl/w+Kcm4LQAdJ+rb4XUJPVrh5tU6eYtPq0fO1OORdxVNNnSZATzjpLW1/m33ltHXF1Jl8XTlB8crlu6rjZGgPqiNKKV0l5Y2rrz7hMWvvvpqPf30025AKhwO68tf/rLy863nVwPrFPV///d/+s53vqOCggL94Ac/2G0dfr9fs2bN0sKFC7VlyxYddthh7rJdWVeqm2++Wc8995wbwqqo6D77CQAAAAAAAACAjkSACoAcv09OZZnSG7d6XQqAHqQ+yTmlsznplIYtX6BLS/rqpX7lerd6kdclAc0kFdPG2lck2a3BkFCJKgsPUCgwSnXJXvqo3tHG+s4NAI4vy45g0H333eeO52vJkCFD9N3vflehUEh33HGHvvSlL+nOO+/UQw89pMMPP1z9+vVTVVWVXn75Za1atcodu2fhJ7tviY3xe+qpp1oc37drgGrFihX65Cc/2YFbCgAAAAAAAABA90KACoDLGdSPABWADhWJbvK6hJwR3rFBR+zYoHHDpuqx1CpVx7d7XRLQqlhqhz6qflLSk43/QTIqv78q8mfI5xuu6mSZ1tUmtT0W65D38zuORpeWKxt88MEH7q0lO3bs7NpXWlqq3/3ud3r22Wf1t7/9zR2xt2HDBnf5iBEjdNVVV+mUU05xO1C1xgJUGa2N5pswYYLbdWrr1q2M7wMAAAAAAAAA5DQnbTMgAOS8xHMLlLjvca/LANBDJMOOXhp2j9dl5KREfoneGDJMr+5Y6HUpwH4pzRutkvBUyRmsbfFCra2Jqz6ZaPd6RpaU6q5jTumUGgEAALBvUsvXKHZb9/5vxrybb/C6BAAAAABAB6IDFQCXb9gAr0sA0INEs2NaVk4K1O/QrCVvafTAcZoXqtLGyHp1d1tfimv9va13IxrzrQIFCp0WH9v4WEyb58X3+h6jbsxXqMLn/rlmSUIb7o8ptiWtcF+f+pwYVNHY3f/avOGBmKrmxzXqqwXy57X8/th32yPL3FtGhXyqKJmiotAkxdVfW6Jhra2JKpFO7XE948oqu6BaAAAAAAAAAADQnRGgAuByBvSRQkEptveLzACwN9GypLTnTAM6WdkHS3RWIKwlI2bqmZo3lUon1V1FP2w4mCoOC8jXQlDJF2z9tYUj/a0+FlmXUs2ipMJ9HQWKG9abqE5r7R+j8hc6Kj84oJrFSa25PaqR/+lzw1QZ8aqUtr4QV5+TQ4SnukjaSWlL3ZvuLWNAIE+9CmcqHByraKqP1tcH9FFdvZq22B1XTqITAAAAAAAAAADsGQEqAC7H75MzqK/S76/zuhQAPUC0ICbVeF0F/ImoJixdoKG9huqpMml17Sp1R5EPU3KCUt9TQnJ87QsrWYCqpRBVsi6t92+ply8sDbo8T75gw3q3L0goHZcGXRpWwRC/4nNTWvbdem17Oa5+p4cbX7/xkbgCpY4qDuKv015KpCNaX/OCJLs1GBauUGXBTAUDo1SbKNeEsjJPawQAAAAAAAAAANmPKz4AGvmGDVSSABWADhAJ1npdApoo3LxaJ2/xafXIGXo88p6iyYi6i3QqrchHKYX7+dodntqT9f+MKl6VVv+zQgr33tlZKralodtVXv+GZcFSn9uNysb5NQ10WdBq4MVhOX66T2WbaHKrPqyeJ2meAk5Ao8tO8bokAAAAAAAAAACQ5QhQAWjkGzZA3XfAE4BsElGV1yVgF046pWHL39ClJX30Ur/herd6kbqD2Oa02xEqE2jqCHUrk9r+RlL5Q3wqO7D5X4f9BQ2BqFSsYTRgOp1WKpaWP3/nczY8GFPeIJ9KprQ+HhDZYWjJaIX9eV6XAQAAgF34Rg1R3s03eF0GAAAAAACNCFABaOQbOsDrEgD0EJHkVq9LQCvCOzbqiB0bNX7YVD2WWq0d8ewOu1m3J5cjrftLRHUrU+74vXB/nyoPC6p0evv/Orv+/ph73/fUkByneQep/KENQa0tT8XV+9igtr2WUDomFQxvCEvVLEuqdmlSQz+Tt9trkX1Gl0/yugQAAAAAAAAAANANdNw/5QfQ7TnFhXIqSr0uA0APUF+/wesSsBd9V72lCzelNKdkmrKZje8zVa8klKhJq3RGQMWT/YptTOmDu6La8HBDGKqtalckFVmbUsEonwqG7d5Bqnh8QMVT/NryTFyL/6tOG/4VU+EYv8pmB9xuVBsfjKlovF+FI/3NxgwiO40tn+x1CQAAAAAAAAAAoBugAxWAZpxhA5Teut3rMgB0Y/EiR8l4rddloA0C9dU6YMlCjRo4TvNCVdoYWa+sk5aC5Y56HxdU2QHBxsWxrSmt+mVEW56Mq3icv7FD1N5seTbu3vc+OtTqcwZfmqeaxQlFN6QV6u24gSnrNrX9jYQb6Bp5Yb4bptr0aFxbX4wrFbUOVT71PzuscG/+fUI2GU2ACgAAAAAAAAAAtAFXeAA04xs60OsSAHRz0QqvK0B7lX2wRGetrdKRxTPld9oWROoqfU8KafTXCpqFp0yowueGqkzV64k2rStRm1bN4qRCfRwVjtrzdhaNC6jy8KCKJwTc8FQ6kdbGh2MqOyCgcF+fts9PaPMTcVUcGtTgK8JKVKe17o8RulFlkaJgqQYUDvG6DAAAAAAAAAAA0A0QoALQjG/YAK9LANDNRUvaFmZBdvEnopqwdIEujQ3WsMLh6g7yBzf8VTa+pWHM395Uv5uQUlLptPY3Yd36YsMIwUxoa+tLCeUN8KnPcSF37F/fE0Nux6qapcl2rxudY2zFZDf8BgAAAAAAAAAAsDcEqAA04wzoIwWZ7glg30XzI16XgP1QuHm1TlqxRicXzlCeP9/TWqybU/26pGpXtBxKSsUa7p1g20IyNe81rKdkavt+zyXr09r8REyVc4MKljb89Tm2MeWO98sI9fl4+SY6UGWLyZWzvC4BAAAAAAAAAAB0EwSoADTj+H1yBvfzugwA3VgkUO11CdhPTjqlYcvf0CU7SjSxeLyntaz+dUSrfxNxuz/tqu79ZLNOVHtTtzolf5Gj8Mdhp7ba/FRccqTKI3aOEUynpHSTXFc63lAfDY+yx+TeBKgAAAAAAAAAAEDbEKACsBvfUMb4Adh3kfR2r0tABwnv2Kgjli7WOeEpKgmWdfn7Oz5HJVMCUlra8EDM7UiVEfkw6QabfGGpbPbeO0rFq1JK1qSVP6h9f/211219Lq7ex4Tkz9uZjrIQVv3alNLJhprqVqWadaKCt4qCpRpeMtbrMgAAAAAAAAAAQDfBnC4Au/GNHKzkU696XQaAbioS3+x1CehgfVe9rQvzi/XmkGl6ZcebXfrefU4KqW5lUttfTyi6PqWCkT4ltqdV/W7S7QI16JJw41g9G/Vnt7wBPpVMav7X3NjmhqBToKR9LaI2PhpXsMxR+UHN12c/f/T3mFb9OqK8gT5VvZpw7wtHE6DKBpN6zZRDOzAAAAAAAAAAANBGXOEB0GKASn5ODwDaL+2kFanf6HUZ6ASB+modsGShLnbGq29e1416DRQ5Gn5tvirmBpSsT2vrCwnVLkuqaJxfw6/NU8nkncEmC09tnhdX9TtNZut9LFHbEKDy57c9VBP5KOUGt/qcEJLjb/668jlB9Tk5qPjWtKpeSahwlF+DLw8T2skSk3sd4HUJAAAAAAAAAACgG3HS6fTOWSgA8LHorXcpvXKd12UA6Gai5Y5e63OP12Wgk6UCIS0ZMUnP1LypZHr3sBLgtZ8f+XcNLh7hdRkAAAAAAAAAAKCboMUMgBb5xwz1ugQA3VC0nFx2LvAlYhq/dIEujQ3W8MLhXpcDNFMe7kV4CgAAAAAAAAAAtMvOmScA0ITPAlSPvuB1GQC6mWhxXIp4XQW6SuHm1Tpxi09rRs7U45H3FEnWe10SoIm9ZnpdAgAAAPYitXyNYrfRvTgb5N18g9clAAAAAEBWoAMVgBY5QwZI4ZDXZQDoZiLhOq9LQBdz0ikNXb5Al+wo0aTiCV6XA2hyr1lelwAAAAAAAAAAALoZAlQAWuT4ffKNGux1GQC6mai/xusS4JHwjo06fOkinROeopJgmdflIIcRoAIAAAAAAAAAAO1FgApAq3yjh3ldAoBuJpLa5nUJ8FjfVW/roo0pHVgyzetSkIN65/dT/0IC4AAAAAAAAAAAoH0IUAFolW/MUK9LANDN1Mc2eV0CsoA/Uq2ZSxbqEmec+ub187oc5JBJdJ8CAAAAAAAAAAD7gAAVgFb5+vWSSoq8LgNAN5HyS9H6zV6XgSxS+uESnbV2m44qmSm/4/e6HOSAmX0O8boEAAAAAAAAAADQDRGgArBH/nHDvS4BQDcRq3SkdMrrMpBlfImYxi9ZoEtjgzW8kN8p6DwBX1DT+xzsdRkAAAAAAAAAAKAbIkAFYI98E0Z6XQKAbiJaRngKrSvcvFonrlijUwpnKs+f73U56IEmVs5UQZDOmQAAAAAAAAAAoP0IUAHYI9/YYZKfsUsA9i5SGPW6BGQ5J53S0OULdOn2Yk0qnuB1OehhZveb63UJAAAAAAAAAACgmyJABWCPnHBIvpGDvS4DQDcQCdV7XQK6iVD1Jh2+dJHOCU9RaajM63LQQ8zqe7jXJQAAAAAAAAAAgG6KABWAvWKMH4C2iPq2e10Cupm+q97WhRtSOrBkmteloJsbVjJGvQv6e10GAAAAAAAAAADopghQAdgr36RRXpcAoBuoT271ugR0Q/5ItWYuWaiLNU598wnAYN/M6kf3KQAAAAAAAAAAsO8IUAHYK19FqZwBfbwuA0CWi0Q2el0CurGyj5borDVbdXTxTPkdv9floJuZTYAKAAAAAAAAAADsBwJUANqELlQA9iSZJ8WjjPDD/vElYhq3dIEuiw3S8MIRXpeDbqIyr49Glo73ugwAAAAAAAAAANCNEaAC0Cb+yaO9LgFAFotWOl6XgB6kYPManbhilU4pmKE8f77X5SDLzex7mByHcxAAAAAAAAAAANh3BKgAtIlvYF85FaVelwEgS0VKEl6XgB7GSac1dMUbunR7sSaXTPC6HGQxxvcBAAAAAAAAAID9RYAKQJv5pozxugQAWSpaEPW6BPRQoepNmrtkkc4NTVVpqMzrcpBl8vwFmtJrttdlAAAAAAAAAACAbo4AFYA2808b53UJALJUJFjrdQno4fqsfksXbkjpwJJpXpeCLDKj7yEK+kNelwEAAAAAAAAAALo5AlQA2sw3pL+cSrp/ANhdxNnudQnIAf5ItWYuWahLNFZ98/t7XQ6ywNyBJ3hdAgAAAAAAAAAA6AEIUAFoF990ulAB2F0kvsXrEpBDSj9aqrNWb9XRxTPld/xelwOPFAVLNKPvoV6XAQAAAAAAAAAAegACVADaxT99vNclAMhCkfoNXpeAHONLxjRu6QJdFh2kEYUjvC4HHjiw/9EK+oJel4H9sHDhQp133nmaOnWqZs2apb/97W+tPnfu3LkaO3bsbssXLVqka665RnPmzNGkSZN0/PHH6xe/+IVisVib67j++uvddb/yyiv7tB1btmzR5z73Oc2cOVPTpk3T1772tX1az9atW/XNb35Thx9+uLsthx56qLuuDRva/jvW9qFty6233rrH57388ssaN26cvvrVr7b4+G9/+1sdccQRjXVUV1e3uq4XX3zRfc/W1tWV2rr9GRdeeKH7/HXr1inb2f61Wm1/Zxx11FHuskQisc/rteP3zjvvVHfU2nkhV7a/s9h5dd68ec2W2X62/Y2OPw+1hP0NAAAAAIA3CFABaBdf/95y+vXyugwAWSRe4lMyUe91GchRBVvW6IQVq3RKwQzl+fO9Lgdd6PBBJ3pdAvZDKpVyQ0cWojrmmGN0/vnna8qUKe1ax5tvvum+7qmnntKBBx6oSy65RKFQyL1o/clPflLJZFJd4aabbnLDBnbB+7LLLtORRx7Z7nVUVVW5YbJ77rlHAwcO1KWXXuqu7x//+IfOOeecdoWo9qampsYNZqXT6RYff/bZZ/WTn/xEkUjErePss89WcXFxh70/soeFh4477jg98MADykW5vv0teeaZZ3TWWWfpnXfeabbcztdXXnmlZ3UBAAAAAAB0hUCXvAuAHsU/fZwSDz/vdRkAskSkPOV1CchxTjqtoSve0KXFvfVy/+F6u/o9r0tCJ6vM66uJlTO9LgP7wQJBGzdu1OjRo92wzr74/ve/r2g0qp///Odu5yljnXg+9alP6YUXXnBDEaeffro629tvv+3eW+erioqKfVrHH/7wB61du9YNgf33f/9343JbpwXCbBu/+93vdki9tp4PPvhgr9tjIbSrrrqqQ94T2am+vt4N1OWqXN/+1kJlFnDd1bXXXutJPQAAAAAAAF2JDlQA2s03jTF+AHaKluz72BigI4WqN2nu0kU6NzRFpaFyr8tBJzps4PFyHMfrMrAfMiP2ysv3/btqQZ/S0tLG8JQJBAI699xz3T+/8cYb6spt2dfwlLFOXCZTe8ZFF13Uodvy5JNP6t5773VHv3XmZwMAAAAAAAAA3Q0BKgDt5utdLmdQX6/LAJAlonkRr0sAmumz+m1dsCGpg0qmeV0KOsncQSd5XQL2g42Fs7FZ5tVXX3VH1dkys2bNGl1//fU65JBDNG3aNHdk1OLFi1tcT1lZmds9Zvv27c2WW2erlgJNtbW1+vGPf6yjjz7aHRd42mmn6eGHH261zk2bNrndmmzEoD3fXmfdodavX+8+bp2hrPbMeD37s90yrIvLnXfe6Y7Dsm2ZMWOG22Hq8ccf3+29MmGlXTtDtbYtxsb9WYetqVOnumMDb7vtNrcDV2u2bt3q1j979my3jl2tW7fOrf/Xv/61+/ONN97o/myBq4xHHnnEHZs4ffp09zP63ve+p7q6OnWEl19+2R0Tduihh2rSpEmaOXOm+15N339ft3/z5s361re+pblz57qfpa3X3m9//OhHP3L3z0MPPdRs+fPPP+8uP/bYY3d7zQUXXODWa52PjHVQs+5jVs8BBxzgbrdt/xe/+EUtXbp0n2t766239NnPftYdbWnrtJDhT3/6U/c7kGHHrx3TZsGCBW7Ntmxf2LH+t7/9zf0ez5kzRxMnTnTf+9Of/rRef/31Zs/NfG8sNHj77bfrxBNP1OTJk93t/sY3vuEep7tqz3mhrfa0/bYddoxbcPGkk05y67M6M/vv3Xffdes54ogj3P1rzz3jjDPc7WnavSnznfr2t7/t7ocrrrjCPQ/Y823c5yuvvLJbXbbsE5/4hLs/7H2txv/3//5f47lgf74zL730kvuZHHTQQY012zkqM+7Uttu+98bOA1Z7pkb7s31/dvWvf/3LPa5tfXZsn3nmmfrjH/+423cxs0/tfG3747DDDms8Nu299mfkqm2v1WejVO28cPLJJ7v7zoKiv/3tb91xpcuXL9dnPvMZdx/ZsXnNNde4Xf929dFHH7nHYeaztWPuS1/6kpYtW7bf5yH7vv/mN7/RKaec4p6HZs2a5X7Wr732Wpu2c9GiRe7nbe9jtdnn8ZWvfEWrVq1q0+ttf5xwwgnu7xnbfjsW7ft69dVX6733dnZvtd9pEyZMcH/3tcS+67a/7XMGAAAAAKCnYYQfgH3inzFeiXUNF4sA5LZIoNrrEoDdBCLVmrFkoUb2H6vH86u1vv5Dr0tCBxlcPFLDS8d4XQb2g11gt4uvf/7znzVw4ED3Z7tfsWKF23HJLrDbxeshQ4a4F+8vvvjiFkdK2XNttN11112nr3/96+rfv79efPFF/fKXv3TDVeecc06zC9d2Ad+CD3bh2S4M2wV1C6r07t17t3WvXr3afV8LUdlFbgvD2EVqu3BsAZm//vWvbhDJLmZbAMaCFfbnDKvXRl5ZWGrEiBFuLbbMLvBbsMUea/p8Cz08+uij+p//+R8VFxe7F/9tf/zXf/2XfD6fGxhpygIVd911lwYMGKCzzz7b3WcWQigpKWl1v1uAyMJO9h4tBQfstVaThTLmz5/vBjfGjx/v3szvf/97NzRkYS4LAFhI4L777tODDz6o/fX3v//d3dZevXq5F/mtFgvNWMcsC3RY4Mg+j33ZfhtJZvvXwiz2mVkQxgJGFlwoKira55otxGD7xMZFWsgmw342Vr+FMey4NFVVVW5oyI7t/Px893iwMYl2jFuQwbqP2T61MI8F+5577jn3vk+fPu2qywJdX/7ylxUKhdzjvG/fvu46f/WrX+mpp55yAzO23bYvLMTzpz/9ya3R9qMt2xf2Gf3zn/90v9cWTLROcO+8846efvppd3/Y5ztu3Lhmr/nOd77jhlIsQGP70mqz75W9zp5vx71p73mhrfa2/fF43A3cWOjHgip2DBYWFrrff1tun6HtXztmLVRp3/Uf/OAHbljvhhtuaPZetv//7//+zw1/2bFox4Y935bbcWxhGmPbZd91C1TaOcc+Jztn2XPsfe+//37l5eXt03fmL3/5i2666Sa3bnu+HVf2+ViYyYI59pidi+3888QTT7iBPgsa2bm5JRZKsvPuP/7xD7cG+17ZMWfHrZ1jnn32WTcsZMdChh3fdh6274KdX/x+vztq9ZZbbnGDc1/72te0P+wYX7lypVuLhcT+/e9/uyNi7fOx49OCfbb/rXuhbaOd0y0AFgwG3dfbfrj88svdY82CRRY2sufYd8o+LxupasGvfTkP2edhAbo333zTrePCCy90z8d23rfj0MK6FrZtzfvvv+++xvanBZArKyvd74Zto32Odmy05VxhoWM7LmybbV9YmMq2zcJ1Fjaz74CdMyyU98wzz7i/C+xYaMrO+/b6U089tZ2fEAAAAAAA2Y8AFYB94p8xQYkHnrWrQ16XAsBjkXSV1yUArSr9aKnO9Ie0bORMPV2zUIk0Iye7u8MHneh1CdhPdpHYuoBkAlQWJjIWHLAL6z/84Q/djh6ZC+4WBrCLxLuyIJKN8Pv+97/fLMAyatQotwuIXdTOsM4wFkSwC8YWJMqEM+6++273511ZqMDCUxZQyHTHMnfccYfbdel3v/udGx6wi+wWqrIAVWY7jIVU7KK0XWC252cu0FvYy7o/2YX4TDckY0EFq9GCF03fzwIbFkJo2vnFOtnYRXsLgll4K3Ox3oInTV/blO0/u1BvnVUGDx7caoDKtsH2uV00t3BI5oK+Pd86GNnnZe/dr1+/xuWZMYP7yoIqFsyy0IiFGSwYkGEhDAsZ2QX7TBikvdtv4QwLT1lYzjqtZFiwwgID+8qCNRbUs9BeUxZEsM/NjgkLxFiXH2PBEgv8ZMYnWpgu87gFb5qy48RCG/acpiGYvbHwjoVQrC7rjGOfdYYdc9Zhybb7m9/8pnvs2ueZCRA1PX7bw/a7hVNsffZ5WCgmwzq+2XfFjr9dA1QW9rHlQ4cOdX/+whe+4Iav7HtqnZ/sHGEs2NOe80Jb7W377bi07kM333xzs+WZz8rCXhaOzLBApgUL7VjdNUBlwRzrFPQf//Efjcss/GlhTwtWZc4DmW5Qdl6yoFiGnWssMGXHg51T2vudsePf6ragk513hw8f3nic2XPsHGb3me97JkC1p2PCwn0WnrLvoX3GmS55Fgqy11ngywKGFjZrOh7UAly2ffYdMXY+tP1m+8GCf5lz5b5YsmSJuy3WPcnYedP2he3Xq666qvFzsfCXhZHsOLMwpR1r9t2097cQlAXALBDVdJ9a5y7rOmb7xoJt7T0P/exnP3PDU1aPdbTKjCG20Op5553nficPPvjgxnPrrmy7LIRlv4MsHJZhv+ts3daFq+m+bo39XrMgn3WPyoTxLLxor7UOhfa52u9H234LUNl3rGmAyr63tu0W4tqfsbUAAAAAAGQrRvgB2CdOSZF8E3b+H8YAclckttnrEoA98iVjGrt0gS6LDtCIQn53dWeOHB028ASvy0AnsPFUFjyxi9GZkISxbhsWCGnporp1SrIAjD3HQgXW3cPGKFmQwQIHFrrIyHQZsQvgmfCUsYvomYvtTWuxrjkW+Nj1QriFhaxzkYVn9sTCK/Y+FlhqWrt1d/n85z/vXsC3QESGdSqyoIaNTjr88MPdoIV15bEwgl1YbzpeybbFWEihaacT23d2IX5Xtk7r9mMX3fc17GQX1S20YSGEphf4LaBjgYD9YYER6+RiAZmmQZBMsMw0HevWnu23mi2IZMGRT33qU80es8DOru/XHhYUss/qww8/dDvBZOq00XI20sw+/6ZjAi2MYMsyASrr1mRBDTseWgr37LrdbWFBJgtZWNijaXjKWEDCAg/2HNsvHcU6uFk4x75zTcNTe9sOC81kwlMmHA43dvexwM++nhc6UtNgprHvrR03FgxrGp7KBDftOGtpW+17b12GmsqMR8tsa2b9xgKMTVn4ygJ4ts/25Ttj3wELL9m5KxOeMtYxytZt36WmnaLaInP+spBp0yBNQUFBY0jVQma7sqBsJjxlrJ6RI0e6x611i9sfFkBqej7PhPBM0/CkhZes61vT/W/hJuuIZp2XmoanMkEsCzra7xQLorb3PGSflwWgbD9ZaC0TnjLW7cnOq/b5ZNbZksyxYeGlzJ+N/d6zDlS7nt/2xD7zTHjK2O8a20brtmWhMmPnKQvo2bnfasuwYJ7ZU7csAAAAAAC6MzpQAdhn/jlTlHpnuddlAPBQ2pEi9Ru9LgNok/wta3XCVkdrR8zQvOgiRZL1XpeEdhpXMVV9CnZ2FULPYR1a7KJwphNLU3YR1y6yL126tHGZjWSykIhdBLZAyLBhwxofsy471m3HLhJb96ZIJOKOdbKAQ0ujlewie9OAkgVgrJaWQlIWOLAuJXtioScLcVmQwLp87GrHjh3uvXXaMfZeti3WPcVqt84eGdbdyAJKdrOOVta9xfaVaWlf2bZYh5KmLGhiF/BtRFTTC/ftkdk/NlqwpffcH/YZ2qgsY+OkbN9ZqME+s8zFfKs/oz3bb91SrBOUdVDZNdxjgRFbh3Vf2VcWPLDQgwXuLARiYR/7PG38mnXgsQ5Txrrb2M8W8MsEXuyYtZuFmWz/WnjBttuO80zwqul2t4WNJsvc27G0Kzt+LFhj7zV69Gh1BAuAWLjEttECKDZqzLbDPsdXX3211e3YNYBkMt/PTGCjveeFjjZo0KBmP9v3JxN8sk4+9t7Whc32p+3zTADItrfp8WbdpHYNKFmoyjQNp1jwzr7n1l3LzmHWActCQRbqaTqebV+/M5nQUFP23dh1RFtb2PnL6rBjelcW3rOgpYULLXRkHdHa87nvq6a/B0wmqGXvn9nfTb8LTd8zc47LhP52ZfvIujxl9mV7zkP2udjoPNsn1jFqV/YZNv2d0BILLFkw177X1sHLjgs7Piz4lBkT2hb2mbV0HNjnaJ22bD9Y/RZOtI5w9jvMxkLa8WbfRTvfWWiy6ShDAAAAAAB6EgJUAPaZb/wIqbRI2l7jdSkAPBKtcJROMRIN3YeTTmvIijd0aXFvvdx/uN6u3hmaQPabO6h5NxD0HJlQkY1GaknTC/DGLuJaMMrG+O160dxGIt1///1uVw7rYJPp1tHaum0MYFOZzlW7XnBvq+rq6sYglYUgWmOjojKdTyw8ZRekm4anjF0kt847NirLRkdZB5o97atdt8UutFtwx0YS2riyfdWe99wXFvqwbjoLFixoDKpYdyILM9hIrKYdV9pTS2Yft/W4ai/7zCxoYAEq6zBkgTcLbVjQzDoBWfjAAjY2Wm/btm3NRrjZNtnor//93/91H8+EOqyDzvjx492ATtPtbovMvtnbaLvMfuko1pXGxtFlRkPaPrEOWxMnTnSDPS1th3Wc2tWuAb/2nhc6WiZk05R1G7OOWxY2yWyXfbcsYGMBMtu3u27vnra16XMtEGPj5uy4sO+tjbWzWybMYt2eLJjZ3u9M5pzW2n7cFxYIsu9b045+uwbrLEBlnaWafk5t3Rf7IrNvdtXSe7Z23m5tH9n2ZM7r+3oesuBvW34ntGTMmDFuFysbl2i/2+w7bjcL6lm3KOv6ZR3Q9qa1EYGZgF5mu4x14rJzmIWULUBlgVALe1nHrPZ2LAMAAAAAoLvgv3gB7DPH55N/9mQl573kdSkAPBIrT3ldArBPQtWbNLd6k8YPmaJHnbXaHtvmdUnYi7A/T4cNPN7rMtBJMhfYm168bcq6CLXUscO6SrV0Md6Wr1692r2Ab2GUPa07c0F814vwmQvqLT2/tQv1TbueWKcVG3+0N1Zja9uSuXDe9HlN99WuF8x33RYb3WVslKDdWgq+2O3MM8/U97///VZrzLxnS/tk1/dsLxtfaMEiC09Y1zALjVkozjqlRKPR3caAtWf793Zc7W/tFp6YNWuW22nJOtlYByoL0li4wEYmWvjAuklljtejjz668bX2mAVx7Pi0cWw2MnLAgAFuIMWCbxbQaa/MsWehm5Y6A3UG65j01a9+1Q0R/eQnP3FDU9aByPaBbUNm5FlXnBc6mx0vNjLNOk1Z1zj7PO17ngnRWABqf1l3ILvZ8fTWW2+5QSoLsFiI0o6Nm266qd3fmcz5ykJPu7JOVYlEok0ho6Zsmy0UaHVaZ77WwkCdHXLrKJnP0EaetiRzDGa2pz3nocz30gKXv//97/e5RusaZ6E5+8ysW5UFNi1MPG/ePPe7YMG7vbFA2562r+k4RgtB2khCOwbt83zggQfc5buOOAQAAAAAoCdp+Z+KAUA7xvhp3yaBAOgBokVxr0sA9kvvNW/rgg1JHVSy+6guZJdDBhyrwuC+dQRC9rPQhXXSyHRTacouDFvXl6ZshFBmNFJLLDyVeZ4FAyyEZMsynX6aspBCUxZkaWm5scCChSZsRNueLsRbgMS68di4tF1ZlxoLzjzyyCPuz5mL761ti40Ha7rNmTF68+fP3+u2WDDKOnLterOuVplttZ8zY8la0573bK/HHnvMDRxcffXVbijEarIgSGZf7dqZpj212Og0CzrYeLVdx4PZOjMj7/aHjfGz+i1cYEEp6zxlLFhlx7QFqJ555hk34GJj/jIsFGN++9vfuvvfxsVluvnYSLZ9kQkLLly4sMXHb775ZnesZSbgsa8jHZuyAJ6x8JR1SLOxepnuNJnt2NfOQu09L7RXe7ffAivW1e6cc87Rdddd545vywRv7Lue+b7vy/baCEQ7Fm655Rb3ZwslWRjvi1/8ou666y532WuvvbZP35nMOa2l48JCbha2y3RGaus+sU5pVvPrr7++22MWQrLzlp0HW+rilY1se5ru411lxmpmAq3tOQ9ZyM4+HxsP29KYQnvPH//4x+7x1Rob3/ed73zH/VztO2HH3mc+8xk3WGcBudbqbumzsU5Yu8p8jtOmTWu23MJSNmbUOiDauFN736bnMQAAAAAAehoCVAD2i6+iVL7RzcemAMgdkXDL/4oZ6E4CkWrNWPKmLtEY9csf4HU5aMWxQ8/yugR0Iut6YcGkpUuXup15MuxisYU+bFxfUyeeeKIbNrn99tsbx4Zl/OlPf3KDGzNnzmwcW3feeee5XTuse4tdDM6wDlG7XgC3IIuFX6zDx9///vdmj1mQwUIS1vFlTyxgYe9jY5WaXjC37fjmN7/p1p0Jc1m3Ges8ZEEGu0C964V4u0Bu4wQtqJO5oG3b/vOf/9wd85bx/vvvNwYtMs466yxde+21u93OOOOMxsCN/by3ANXJJ5/sXqS3cXNNg14WJrHQx/7IBD8yXZoyrOOJfV7GOuRktGf7LchjITIbYWbHUdNQiW1LpqvX/sh8LpkASiZAZcEaC1lYeOq9995zx2y1tN271mBjsqyDlGl6rLaFBeNs3JuN07P90dRf/vIXNzxlHaEyHYkyQaf2vk9btsO+y5ljo+nn15nnhfZq7/a3tq3W9em///u/3UDRvm6vHdNPPvmk+xntek7KnOPs3LQv3xkb/2ehGzvmbaRihp2b7DOy/WndkdqzTzJdiKxzXdOgqHU4snOc7Qv77nUX06dPd4NOFiTatYOXBZvuvfdedzRfpotce85DFoazz8Ce96Mf/ajxODHWxcuOHRvNZ8dRaywgZd9hG0/blP0esddljo22+N73vtfs87VwlI0FtG5TmRBmhoUiLYRs5zd7L/udAgAAAABAT8YIPwD7zX/gFKWWNvzLeAC5JeJreaQK0B2VfrRMZ/pDWjZypp6uWahEet8u+KLjDS0epXEVXTOOCt75r//6L73zzjv6n//5H/dirnX6sM4zFp7o06ePG9bJsHF3N9xwg3vx3i5MH3fccW7Ywl5v49SsW5OtJ+Oiiy5yw0kWmLKuNTZezYIEFlgYOnRoY8eqjG9/+9u6+OKL9fWvf90dg2ejjOzCuNVlz//Sl760x2256qqr3I4lFlZZtGiRO9rLggn2fhZ6mDt3rhvqMhZ4sYvqn/zkJ3XNNdfo8MMPd7dvzZo17oVt6whj25IZGWUXuK1rlF24tyCUXdC3i+H2XtbNysJCHc32v40A/NrXvuaGw2x/W902vi3TgWd/Aki2bRZasM4otq/tQr3tKwtj2PptdKAFQmwftnf7LSBmo/VsvJUdTxZYs04wFlTKdArbH7YOG61lnX9sO5oGECxM9eabb+42vs9YEOGNN95wP3cLBJaUlLh1WVijvLzc3Qft/SwtRGHhFfusbN9YMK5///7uMfjCCy+4AZCm3wv7zlg4wgJe1t3GgoG71rk3FpJ58MEH3WPDQoB2rFjIzoJjtk1mf47J9pwX2qu922+hTOsk9txzz7nnBwvd2Ogz21YLx9jnZoEY29596bx0/fXXuyMC7WZd7uzztO+EdZyy0NQXvvCFffrO2DnLzpcWnLHPy7bRPhur2zpFWRerzMhHO17Mv//9b/fcY6G8TNelXYM1th+sk9qpp56qI444wg0K2TL7Ttk571Of+pS6CwtDWRco2/f2/bHzvnWlsv1jx50dJ3aetjCrae956Mtf/rJ7LrCAr517Zs+e7X4+9tnaSEg7r9o+bM1nP/tZ9/tlIxvt95h1gbL3sPezAJwdOxn2u806w1mttj27snOBnX/s96D9PrLjZtdzQ4YdJ3YsWoc92wcWpgUAAAAAoCejAxWA/eabNFoqavhXzABySyS1zesSgA7lS8Y0dukCXRYdoBGFjCjJFnSfyg19+/Z1AwHnn3++20Hq7rvvdrumWLemlrprXHnlle5jFoixC8B//vOf3YvBl1xyiXvx2IIOGbYe6+xi47Cs64qt24JUFpqw8MqurBOJdRzJ1GIXva0jlf1sr80EQ1pj4SLrKHLjjTe6F7GtHrtZ6MECIdYhyMIGGTaqy97PwmAWFrGwj3UcsYvytk8ssLTrxXQb9WWdqyzoYKEFq83er7NY8MI62FiowC7a282CHDa6bX9YCMb2r63Ltt0+RwvIWMjM9skJJ5zgBhPsov++bH9hYaHuvPNON9RmIRP7s4Vcbr311t3GVe1vFyoLRTQdgWYBBWPBGgvbNGUBuu9+97vuNlhXmb/97W9uJx8LZVhAwgI4Fpiwzmntce6557r70AIsts9s31qgxd7PupllxrlljlMLC9pnYMeZBeLa69BDD3WPZ1uvBf7s+2Hhv0svvdQNodgYRfs8LWjUFeeF9mjv9ttnYu9r4SHbp7ZvLfBmncbsuLrsssvc5+3aSa6t7Dxg3YssSGNhGzsP2PrtPGDd8Gx82r5+ZyxIY92m7Ps7b948930sEPP//t//c8NVTWu4/PLL3a5G1vGotXGQxgKsFrqxz8FCdBamsnOcBZB+//vfu/u3O7GRkXaetjCThQBtv9p530Jk9t2xcGtT7TkP2e8MG8NngU77TtvxZt9z+37YSFf7XbSn8Yn2O8leb78jMh3Z7HO0UJ99Tk27CNrvQesYZcdIS+z5dgxZpzs7zmz77PxjQbyWWEDOWJBqb7/7AAAAAADo7px00x72ALCP4v9+SsmnX/O6DABd7LVpTyha3zCCCOhp0o6jtSOmaV50kSJJxlV6JeTP0+3HParCYEPXBwAAALSPjRG1cJWFwjKjGtvitttu089+9jPdcccdjaHQjpJavkax2+7p0HVi3+TdvDNICQAAAAC5jA5UADqEf07Dv4YFkDtSQUfR+i1elwF0Gied1pAVb+jS7UWaUjLR63Jy1qEDjiM8BQAA0MU2bNjgdn0bPny4O5IUAAAAAICeru3/5AgA9sDXt1LO8EFKr1zndSkAuki00v6XRpbo+ULVm3XYks0aN2SKHnXWanuM0ZVd6aTh53ldAoA2sjFtNlqqPWykVTaw8W2LFi1q8/NtXN+cOXPUk9j2t2eM38CBA3XWWdkxYtVG11l3nbaykWfjx4/v1JrQfnwPs4ONpLTv1KpVq1RTU6Of//znexwxCAAAAABAT0GACkCHCRw4RXECVEDOiJamvC4B6FK917ytC/KK9fbQ6Xppx5tKEyDsdKPLJmlk2YQuf99bb71Vv/jFL3ZbHg6H1atXL7cLw9VXX63Bgwd3eW1AtgeoWvrudJcA1X333dfm53/uc5/rccENC6605/Oz8Eq2BKjss3v11VfbFf4iQJV9+B5mh/79+2vt2rXKz8/Xddddp+OPP97rkgAAAAAA6BJOOp3myg+ADpGOxRX91m1SJOp1KQC6wPoZES2v/ZfXZQCe2N5/jB7Pr9b6+g+9LqVHu3ba/9NRQ071LEBl4QC7GfvPpvr6eq1cuVLPPvusCgoK9Ne//lUjR47s8voAAAC6u9TyNYrddo/XZUBS3s03eF0CAAAAAGQFOlAB6DBOKCj/AROVfH6B16UA6ALRUK1U63UVgDdKP1qqM/0hLRs5U0/XLFQinfC6pB6nOFSmQwce52kNFp5qqTvOAw88oC996Uv60Y9+pF//+tee1AYAAAAAAAAAADqOrwPXBQDyH36A5HO8LgNAF4g4O7wuAfCULxnT2KULdGm0v0YW0YWoox09+DSF/GFlo5NPPllFRUV65ZVXvC4FAAAAAAAAAAB0AAJUADqUr7JMvmnjvC4DQBeIJLZ4XQKQFQq2rNPxy1fq1IIZyvcXeF1OjxBwAjp5xAXKVo7jyO/3KxQKeV0KAAAAAAAAAADoAASoAHS4wFEHSjShAnq8+shGr0sAsoaTTmvIijd0SVWhphRP9Lqcbu/QgcerV34/ZatHHnlE27dvdztRAQAAAAAAAACA7i/gdQEAeh7fgN7yjR+h1Hvve10KgE6SKHCUiFV7XQaQdUI1m3XY0s0aN3SKHtM6VcW2el1St3TGqMuUDV599VXdeuutjT9Ho1G9//77evrpp3XggQfq+uuv97Q+AAAAAAAAAADQMQhQAegUgaMPVIwAFdBjRSu9rgDIbr1Xv60LwkV6a9h0vbTjTaWV9rqkbmN6n4M1tGS0siVAZbeWlJeXa8uWLSooYGwjAAAAAAAAAADdHQEqAJ3CN3yQnOGDlF65zutSAHSCaElCSnhdBZDd/NEaTV/ypkb0H6Mn8mv0Uf0HXpfULZw56nJli8997nO69tprm3Wg2rhxox588EH97Gc/0/z583Xfffepd+/entYJAAAAAAAAAAD2j28/Xw8ArQocPcfrEgB0kkh+xOsSgG6j9KOlOnP1Jh1TPFMBh3+/sCejyiZqcq9ZylbhcFiDBw/WZz7zGV122WXatGmT/vznP3tdFgAAAAAAAAAA2E8EqAB0Gv+EkXL605EB6IkiwVqvSwC6FScZ19ilC3RptL9GFo30upysdcaoy7wuoc0OPvhg937x4sVelwIAAAAAAAAAAPYTASoAnSpwFF2ogJ4okq7yugSgWyrYsk7HL1+p0wpmKN9f4HU5WaVfwSAd1P9odRfbtm1z74uLi70uBQAAAAAAAAAA7CcCVAA6lW/6ODmVZV6XAaCDReKbvS4B6LacdFqDV7yhS6oKNbVkktflZI3TRl4in9M9/vOkrq5Of/rTn9w/H3vssV6XAwAAAAAAAAAA9lNgf1cAAHvi+HzyHzFLiX/M87oUAB0k7aQVqd/odRlAtxeq2axDl2zW2KGT9Zg+UFVsq3JVSahcRw05Tdnm1Vdf1a233tr4czqd1ubNmzVv3jxt3bpVRx99tI4//nhPawQAAAAAAAAAAPuPABWATuefPVmJx16Uqmu9LgVAB4iX+pRKRr0uA+gxeq9+RxeEi/TWsOl6acebSiutXHPS8PMV9ucpGwNUdsvw+/3uyL4xY8bolFNO0TnnnCPHcTytEQAAAAAAAAAA7D8nbf+MGgA6WeKJl5V48FmvywDQAaqHO1oYusfrMoAeaUf/0Xo8v1Yf1X+gXJHnz9dvjn1QJSFG/gIAAOSK1PI1it3Gf1dmg7ybb/C6BAAAAADICgSoAHSJdCSq6Ld/LUXoWgN0d5umJLQk+g+vywB6rLQ/qGUjJ+upmoVKpBPq6c4adaUunXCt12UAAAAAAAAAAIAc5vO6AAC5wckLy3/wNK/LANABonn1XpcA9GhOMq4xSxfoskh/jSwapZ6sIFCkM0dd7nUZAAAAAAAAAAAgxxGgAtBlAocfIAUCXpcBYD9F/Du8LgHICflb1+n45e/rtIIZyvcXqCc6beQlKgqVeF0GAAAAAAAAAADIcQSoAHQZp7hQ/tmTvC4DwH6KpKq8LgHIGU46rcEr3tAlVYWaWtKzfocWh8p02siLvS4DAAAAAAAAAACAABWAruU/crbkc7wuA8B+iMQ2eV0CkHNCNZt16JJ3dX5wsspDFeoJzhx5mfIDhV6XAQAAAAAAAAAAQIAKQNfyVZbJP3Oi12UA2EdpnxSt3+x1GUDO6rXmHZ2/Pq5DSqbLUfcNJJeHe+mk4ed7XQYAAAAAAAAAAICLABWALhc48TApFPS6DAD7IFrpUzqd9LoMIKf5ozWatuRNXZIerf75A9UdnTX6SoUD+V6XAQAAAAAAAAAA4CJABaDLOWXF8h8xy+syAOyDaFnK6xIAfKxk/TKduXqTji2eqYCv+wSTe+X30/FDz/a6DAAAAAAAAAAAgEYEqAB4InDkbKmk0OsyALRTtDDqdQkAmnCScY1ZukCX1ffTqKJR6g7OHX2Vgv6Q12UAAAAAAAAAAAA0IkAFwBNOONQwyg9AtxIJ13ldAoAW5G9dp+OWrdBp+TOUH8jegHK/gkE6esjpXpcBAAAAAAAAAADQDAEqAJ7xz5osZ0Afr8sA0A4R3w6vSwDQCkfS4Pff0CXb8jWtZJKy0XljPyW/L+B1GQAAAAAAAAAAAM0QoALgGcfnKHDakV6XAaAdIsltXpcAYC9CNVt0yJJ3dV5wsspDFcoWQ4pH6fBBJ3ldBgAAAAAAAAAAwG4IUAHwlH/MUPkmjPS6DABtVB/d6HUJANqo95p3dP76mA4pmS7H7U/lrasmfUk+h//8AAAAAAAAAAAA2YcrGAA8Fzj1CMnH6QjIdsmwo3iEDlRAd+KP1mrakjd1SXq0BuQP9KyO2f2O0JTeczx7fwAAAAAAAAAAgD0J7PFRAOgCvr6V8h80VckX3vC6FAB7EK30ugIA+6pk/TKd4Q9q2YiZeqruLSVS8S5774AvqCsmfLHL3g8AAADZL7V8jWK33eN1GQCyVN7NN3hdAgAAAHIQLV8AZIXA8YdIeWGvywCwB9HSpNclANgPTjKuMcsW6LL6fhpVNKrL3veU4Reqf9GQLns/AAAAAAAAAACA9iJABSArOEUFChxzoNdlANiDSH7U6xIAdID8ret03LIVOr1ghvIDhZ36XmXhSp039pOd+h4AAAAAAAAAAAD7iwAVgKzhnztTTkWp12UAaEU0VOt1CQA6iCNp0Io3dMm2fE0rmdRp73PxuM92ekgLAAAAAAAAAABgfxGgApA1nEBAgVMO97oMAK2IONu9LgFABwvVbNEhS97VeYFJKg9Xdui6R5SO01FDTuvQdQIAAAAAAAAAAHQGAlQAsop/2jg5wwZ6XQaAFkQSW7wuAUAn6b32XZ3/UVSHlkyX4/an2n9XTbpePof/3AAAAAAAAAAAANmPKxoAsk7w9CMbZgsByCr19Ru8LgFAJ/JHazV1yZu6ND1KA/IH7de6Dh5wrCZUzuiw2gAAAAAAAAAAADpToFPXDgD7wDd0gHzTxin1xmKvSwHwsXixo2S8zusystL/PhDR+x8m9d1PFe72WHVdWg+8GNU77yfdPxflO5owzK9TDgmprKjtOXZb/4MvxbR2Q1LJlDSkr18nHRjS6MH+3Z77+PyYnnw9rmg8rRED/Dr3yLD6lO/+Xj+8q075YUfXnp2/D1uNnqx4/XKd7gtoxciZerLuLSVS8Xa9PuQL6/IJX+i0+gAAAAAAAAAAADoaHagAZKXgyYdLATKeQLaIVnhdQXZ66KWYFixNtPhYbX1aP767Ts+/lVBlqaMjpgc1oJdPL72b0A/vrFdVdapN7/HuyoRu+b96rduY0gHjgpo9Pqi1G5P62d/rtXB58/d++/2E7ns2pvJiRwdNCmrVR0n98t56xRPpZs+zmtdsSOmMw0L7sfXoyXyphEYvW6DL6/pqdNGodr329FGXqk/BgE6rDQAAAAAAAAAAoKORTgCQlZyKUvmPnKXkvJe8LgWABaiK41L7mtD0aBZI+r8no3rxnZbDU+aJ12PavD2tw6cFdd5R4cbl1knKgld2f/FxeXt9nzsfiyo/JH31knyVFzdk34+aGdSP7qrTPU9ENX6oX6Fgw9zT59+KqyAsfeHcfHfZsH4+/eGhqN5dmdS00Q1/7Usm0/r381HNGhfQ4D67d7ACmsrb9oGO3SZNGDldj8WWqj5Ru8fn9ysYpLNH/0eX1QcAAAAAAAAAANAR6EAFIGsFjj1YTt9Kr8sAICmSH/G6hKzx9oqEvnNHnRuemji89QDSqvUNHaYOmdw8rz53arBxLN/eWKeo7bVpHTol2BieMr3LfJo7LagdtelmXag2V6XccX2ZQNWgjwNSm7fv7Hb13FtxbatO69RD6D6FtrGjadCKN3Xp1jxNK5m0x+d+esqNCvv3HAwEAAAAAAAAAADINgSoAGQtJ+BX8IKTJF9DEACAdyKBGq9LyBovvhNXJJbW+UeHdfUZrQdFivIbzl1bdjQfn7e9NtXs8T1ZurYhZDV2yO5BrbFDAs2eYwrzHUWbdAqLRBveuyDc8F5W98Mvx92uWBUl/DUQ7ROs3apDlryr8wOTVR7ePeB82MATNK3PQZ7UBgAAAAAAAAAAsD+4cgYgq/mG9pf/8FlelwHkvEi6yusSssaRM4L69icK3U5SjtN6COrQyQE3//n3p6NatjapWDytNRuS+vMjUdnLjj5g7x2gNm5LNXac2lWv0ob3Xr91Z3ep4f39+mhLSm8uS6g+mtaTC+JuDSMGNASw5r0WUyqV1glz6D6Ffddr7Ts6/6OoDi2ZLsftTyUVBUv0H5Ou97o0AAAAAAAAAACAfdJ8pgwAZKHACYcq9c4ypTdt87oUIGdF4pu9LiFrjBnctr8+jRkS0LVn5+mPj0T107/VNy7PC8ntXDVx+N7XU1v/cQepvN2DWvkfd5Wqj+5cduyskDti8Hf37xy5ePJBIfWr9Gl7TUpPvh7XyQeHGteXTqf3GAIDWuOP1mrqkjc1vN9IPVEQ0eljrlBZuMLrsgAAAAAAAAAAAPYJASoAWc8JBhS84ETFfnG3Xe33uhwg56QdKVK30esyup1t1Sn96/mYqmrSmjjcr34VPrej1DvvJ3X341F9+nRHg/vsPpqvqcTHzaWCLTwt8PGyeGLnedHGAn71kgItXJ5QdV3a7Tw1rH/DEx98KaaiAscd32fdqe58LKK330+6HapmjA3o3CPDygsRpkL7lKxfoSsGzNIBQ870uhQAAAAAAAAAAIB9RoAKQLfgGz5I/kNnKPnc616XAuScWLlP6VTc6zK6Fevs9Kv7Ivpgc0qfPDVP00bv/CvX4tUJ/fK+iH55b0TfvqpAoWDroaVgwB5Lu0Eq/y4hqkSy4T68S+jJ1jdrfLDZsvVbUnrpnYQuPT7srvPuxyNatDqpi44Nu7nUvz0Vld8nXXRsXodsP3KHLxDWxLlfp5MZAAAAAAAAAADo1nxeFwAAbRU4ea6cyjKvywByTrT84zZIaLOVH6Xc8NSEYf5m4SkzbmhAc8YH3A5Rb61I7HE9hR/nmeoju3ffsy5SJj+093r++XxUA3v7NGt8wH3da4sTOmhSUHMmBHXgxKD7ZwtYRWJ0+UP7jDzgMyooHex1GQAAAAAAAAAAAPuFABWAbsMJBRU4/wSJJhdAl4oU0X2qvbbuaAid9ats+a9aA3o3LN+6Y8+Bpb7lDc/btH33522uSu/xPTKWr0vq7RVJnXFYyO0StKkqpVRK6vPxujPvk0pLm7cTlkPblfSeqCGTL/a6DAAAAAAAAAAAgP1GgApAt+IfNUT+g6Z5XQaQU6LhOq9L6HZKChuSnhu3thxI2rgt1ex5rRk9uGFu39I1u3eqWvLxspEDd5ntt4t/PhfV+KF+t/OVsfBUw/3OUFY82fBn8qloK8cX1IQjviHHt+fjDwAAAAAAAAAAoDsgQAWg2wmceoRUXuJ1GUDOiPqrvS6h2xk5wK/yYkfvrkrq7febh59WfZR0x+Xlh6XJI5qP99vVlJEBd4zfM2/GtblqZxjLukg9uzDuBrCm7zIisKkFSxNatT6lM+bunPNnnad8jrTig53re/+DpPw+qXcZfzVE2wyf/h8qqhjldRkAAAAAAAAAAAAdYs9X7QAgCznhkILnHa/4b/7mdSlATqhPbfO6hG7H73d0xUl5+uW99frNvyKaONyv/pU+NwS1cEXS7fR0yXF5Kszf2fPppXfj2ro9pSmjAhrcp6GrT17I0flHh/WHh6L6wZ11OmBc0F0+f3FckZj0ydPCCgZa7huVTKV1//NRzR4f0KDeO7sEFeQ5mjE2oPmLE/I9GJH1nnpjWVJHzggqFKQHFfauqGK0hk2/0usyAAAActr111+v+++/X3/60580Z84cr8sBAAAAAKDbI0AFoFvyjx2u1JzJSr7yttelAD1eJLrJ6xK6pVED/frqJQV69JWYFq9O6r1VSRWEHU0Z6dfxs0Ma0rf56LNX3o1r2bqUKkp9jQEqM3Ns0A09PfJyTC+/F1fAJw3q49dJB4YaR/y15IW3EtpWndbnD9nZfSrjomPDCvotOJWQ40hzpwZ1+qG7Pw/YleP43dF9Pn9DmA8AAAAAAAAAAKAnIEAFoNsKnHaUkotXSttrvC4F6LFSfika2eJ1GVntl/9Z1Opjfct9uuyEvDat54vnFbT62PihAffWHnOnBd1bS8JBR5ccn6dLjm/XKgENmXKJSnpP8LoMAAAAAAAAAACADuXr2NUBQNdx8sMKnsvVf6AzRXs5UjrldRkAskBxr/EaOetqr8sAAAAAAAAAAADocASoAHRr/gkj5TtgotdlAD1WtIzwFADJHyrU5GO+x+g+AACQ8+LxuH7/+9/r9NNP17Rp03TooYfq05/+tN566y338XXr1mns2LH69re/rV/84heaNWuWZsyYoR/+8IeNj1144YW7rffFF190H/vqV7/abHltba1+/OMf6+ijj9aUKVN02mmn6eGHH25Xzbbeq666SosXL9bll1/u1n3IIYfo+uuv15o1axqft3DhQve5l112WYvrueWWW9zHH3/88Xa9PwAAAAAA3QEj/AB0e8EzjlZ0ySqputbrUoAeJ1oYk/hqATlv/GH/pYLSwV6XAQAA4KlYLOYGkBYsWKDhw4fr7LPPViQS0YMPPqgXXnjBDVYNGjTIfe6jjz7qPnbmmWeqqqrKDVG1VzQa1aWXXqp3331XkyZN0jHHHKPly5fri1/8onr37t2udVl465JLLtHAgQN10UUXadmyZbr//vv1/PPP684779TIkSM1depUjR49Wq+++qo++ugj9e/fv/H16XRa//73v1VZWakjjjii3dsCAAAAAEC2I0AFoNtzCvIUPPc4xW+/z+tSgB4nEqolQAXkuIHjzlS/Ucd5XQYAAIDn/vCHP7jhqVNOOUXf+973FAqF3OUXXHCBzj//fHfZL3/5S3fZ5s2b3UDVYYcd1izE1B633367G56ydX/rW9+Sz9cwTODuu+92f26PVatW6dhjj9XPfvYz+f1+d9lf/vIXfec739FNN93kbps566yz9IMf/MANS1lnrYyXX35ZH374oa688koFAvxfygAAAACAnocRfgB6BP+k0fIfNtPrMoAeJ+Ls8LoEAB4qrBipMYdc73UZAAAAWeGf//ynGx76+te/3hieMpMnT9YNN9zgho8SiYS7rKSkxB3vtz/+9a9/KRgMuqP2MuEpYyMAJ0yY0K512XpuvPHGxvCUufjiizVq1Ci99NJLWr9+vbvMRhPac+29m7rvvoZ/tGbbCAAAAABAT0SACkCPETjtCDlDB3hdBtCjRJJbvS4BgEd8gTxNOeYH8gfyvC4FAADAczZO7/3339fQoUNVUVGx2+NXXHGFO94v053JRvk5jrPP72fj/1auXOm+n4WxdjVzZvv+EdngwYPd8X1NWX1Tpkxxx/O999577jIb0Xf44YdrxYoVevvtt91ltbW1mjdvnjtGcMyYMfu8TQAAAAAAZDMCVAB6DMfvV+iy06TCfK9LAXqMSGSj1yUA8Mi4Q76iwvLhXpcBAACQFaqqqtz74uLiNj0/L2//Qujbt29374uKilp8vLS0tF3r69+/f4vL+/Tp497v2LGz+/DZZ5/t3me6UD3yyCOqq6uj+xQAAAAAoEcjQAWgR3HKSxS8+BT7Z5RelwJ0e4l8KR5t+D/tAeSWfqNP0oBxp3ldBgAAQNYoKChw76urq1t8vL6+3u3ktCeZjlQtPc8CSk2VlZXtFmza0/P3xuprSWb9TbtqzZ07V71799ZDDz2kVCqlBx54wB1ZeMopp7TrPQEAAAAA6E4IUAHocfzjhst/7EFelwF0e9FKgohALiooHapxh93odRkAAABZxTpP2Qi81atXN3ajauorX/mKOw4vmUy2uo5gMNg4Em9Xtt6mwuGwOy7Plm/evHm357/11lvtqn/JkiXuWMBdvf766/L7/e54vgwbQ3j66adry5Ytevrpp/Xaa6/p6KOPbnfXKwAAAAAAuhMCVAB6pMBxh8g3dpjXZQDdWrSk9f/jH0DP5POHNfnY7ysQbOiwAAAAgJ3OOOMMJRIJ/eAHP3DvM95991099dRTGjRokBtGak1lZaXbWWrFihXNAlNbt27VXXfdtdvzzzvvPDeQddNNNykejzcuf/jhhzV//vx21W6hrVtuuaVZ96u//OUvbrDqmGOOadaBqukYv8x7M74PAAAAANDTBbwuAAA6g+Nz3FF+0Zv/KFW13F4fwJ5FCyISXx8gp4w+6IsqrhzjdRkAAABZ6dOf/rSef/553XvvvW5oas6cOe5IPxt1Z+P5fvjDH+7x9RauuuCCC/TrX/9aF154oU466SQ3iPXoo49q1KhRWrduXbPnX3TRRW4wywJTFro66KCD3Oc8+eSTGjp06G5dqxYtWqTHH3/c7ZS1a+DJOlpZSOuNN97QjBkztHTpUr3wwgtu6OvrX//6brWOGDFC06dPd5/ft29fHXLIIfu17wAAAAAAyHZ0oALQYzlFBQpddprk51QH7ItIcPexEgB6rj7Dj9bgied5XQYAAEDWshDSn/70J33+8593uzLdfffdbmDp4IMPdv88efLkva7DXvuf//mfKioq0j333KNnn33WDUr99Kc/bTFw9Zvf/EZf/OIXFYvF3PewINV3vvMdnXjiibs93wJUv/jFL3Tfffft9ph1vrrjjjvk8/ncIJWt59JLL9Xf/vY3NyDVklNPPbWx89aeOmsBAAAAANATOOmmfZsBoAdKPDNfiX896XUZQLez6MBl2rJtgddlAOgCecUDdODZdykQLva6FAAAAHSwsWPHuiEpC2u1h3Wm+sc//uF2yLKOVx0ptXyNYrfd06HrBNBz5N18g9clAAAAIAfRlgVAjxc4/AD5po71ugyg24kktnhdAoAu4PgCmnz0/xCeAgAAQKPly5frwQcfdEf3dXR4CgAAAACAbBTwugAA6ArB809Q7MONSm/a5nUpQLdRX7/B6xIAdIFRsz+r0r57HzcDAACAnu+WW27R888/7waobEzhF77wBa9LAgAAAACgS9CBCkBOcPLCCl5xhhQKel0K0C3ESn1KJSJelwGgk1UOOURDplzqdRkAAADIEv369dPKlSvVq1cv/eQnP9GUKVO8LgkAAAAAgC7hpNPpdNe8FQB4L/naO4rf/ZDXZQBZr3qYo4Xhe7wuA0Anyi8eqFln/lGh/HKvSwEAAECOSS1fo9ht/DcngJbl3XyD1yUAAAAgB9GBCkBO8c+aJP8c/vUksDfR4rjXJQDoRIFQsaad+DPCUwAAAAAAAAAAAASoAOSiwFnHyBnYx+sygKwWya/3ugQAncTxBTTl2B+qsHy416UAAAAAAAAAAABkBQJUAHKOEwwoeMUZUn7Y61KArBX113hdAoBOMu6wr6li0GyvywAAAAAAAAAAAMgaBKgA5CRfZZmCl50m+TkNAi2JpKu8LgFAJxg27QoNHHe612UAAAAAAAAAAABkFZIDAHKWf+xwBc87wesygKxUH9vkdQkAOlifEcdo5OzPeV0GAAAAAAAAAABA1iFABSCn+WdNUuDEw7wuA8gqaV9a0bqNXpcBoAOV9pmsiUd+W47jeF0KAAAAAAAAAABA1iFABSDnBY49SP6DpnpdBpA1YhV+pdNJr8sA0EHyiwdq6gk3yx8Ie10KAAAAAAAAAABAViJABQAWojr7WPkmjvK6DCArRMtSXpcAoIMEQsWaduLPFMqv8LoUAAAAAAAAAACArEWACgAkOT6fgpeeKmdIf69LATwXKYp5XQKADuD4Appy7A9VWD7c61IAAAAAAAAAAACyGgEqAPiYEwoq9Imz5fQu97oUwFPRcJ3XJQDoAOMOu1EVg2Z7XQYAAAAAAAAAAEDWI0AFAE04RQUKfupcqajA61IAz0R81V6XAGA/DZt2hQaOO8PrMgAAAAAAAAAAALoFAlQAsAtfZZlCnzxbCgW9LgXwRH1yq9clANgPfUYco5GzP+d1GQAAAAAAAAAAAN0GASoAaIFvcH8FLztN8nGaRO6JRDd6XQKAfVTaZ7ImHvltOY7jdSkAAAAAAAAAAADdBskAAGiFf8JIBc45zusygC6VDEmxCB2ogO4ov3igpp5ws/yBsNelAAAAAAAAAAAAdCtOOp1Oe10EAGSz+CPPK/nYi16XAXSJ+v6OXi+5x+syALRTIFSkWWfcocLy4V6XAgAAAAAAAAAA0O3QgQoA9iJ4wqHyz5nsdRlAl4iWJr0uAUA7+YOFmnbirYSnAAAAAAAAAAAA9hEBKgBog8A5x8s3boTXZQCdLlIQ87oEAO3gDxZo+kk/V1m/KV6XAgAAAAAAAAAA0G0RoAKANnD8PgUvP03O4H5elwJ0qkio1usSALSRP5CvaSdaeGqa16UAAAAAAAAAAAB0awSoAKCNnHBIoU+cLadXmdelAJ0m4mz3ugQAbeAL5GnaiT9Tef/pXpcCAAAAAAAAAADQ7RGgAoB2cIoLFbrmQjm9y70uBegUkcQWr0sAsBe+QFjTTrhF5QNmel0KAAAAAAAAAABAj0CACgDaySkrVuiaC+T0qfC6FKDDReo3el0CgD3w+cOaevwtqhg42+tSAAAAAAAAAAAAegwCVACwD5xSQlToeRIFjhLxGq/LALDH8NRPVDlojtelAAAAAAAAAAAA9CgEqABgHzklRQp99kI5fSu9LgXoENFeXlcAoDU+f0hTjvuxKgcf5HUpAAAAAAAAAAAAPQ4BKgDYD05xYUMnqn4kT9D9RYoTXpcAoAWOL6gpx/5QvYYc7HUpAAAAAAAAAAAAPRIBKgDoqBBV/95elwLsl2h+xOsSAOzC8QUawlNDD/O6FAAAAAAAAAAAgB6LABUAdACnqKAhRDWgj9elAPssEqzxugQAu4SnJh/zffUeNtfrUgAAAAAAAAAAAHo0AlQA0EGcwnyFrj5fzkBCVOieIukqr0sA8DHH59fko7+nPsOP9LoUAAAAAAAAAACAHs9Jp9Npr4sAgJ4kXRdR7Nd/VXrdBq9LAdplwcwXVFezzusygJxn4alJR31XfUce63UpAAAAQKdILV+j2G33eF0GAADIYXk33+B1CQCALEMHKgDoYE5BXkMnqsH9vC4FaLO0k1akfqPXZQA5z3H8mnjkTYSnAAAAAAAAAAAAuhABKgDoBE5+nkKfOV/O0AFelwK0SazUp1Qy5nUZQE5zfAFNPOo76jfqOK9LAQAAAAAAAAAAyCkEqACgkzj5YbcTlW/cCK9LAfYqWsFEX8BL/lChpp94q/qNOt7rUgAAAAAAAAAAAHIOASoA6EROKKjgVWfJd8BEr0sB9ihaFPe6BCBnhQv7atZp/6uKQbO9LgUAAAAAAAAAACAnEaACgE7m+H0KXniS/EfM8roUoFWRvDqvSwByUlHFKM064w8qqhztdSkAAAAAAAAAAAA5iwAVAHQBx3EUPO1IBU49QnK8rgbYXdRf43UJQM6pGDhbB5z+v8or6ut1KQAAAAAAAAAAADmNABUAdKHAkbMVvOAkycfpF9klktrmdQlATuk3+mRNO/HnCoSKvC4FAAAAAAAAAAAg5wW8LgAAco1/1iSpMF/xP/1bisW9LgdwRWKbvS4ByBnDpl+lUbOv8boMAAAAAAAAAAAAfIwWKADgAf+EkQp95jw3SAV4LeWXIvWbvC4D6PEcn1/j536d8BQAAAAAAAAAAECWIUAFAB7xDRuo0BcukdO73OtSkONiFY6UTnldBtCj+QOyWAmlAABYQElEQVT5mnr8LRo4/iyvSwEAAAAAAAAAAMAuCFABgId8vcoV+vwlckYO9roU5LBoOeEpoDOF8is187TfqdeQQ7wuBQAAAAAAAAAAAC0gQAUAHnMK8xX69HnyHTDR61KQoyKFMa9LAHqsgrJhmnXmHSrpPd7rUgAAAAAAAAAAANAKAlQAkAWcgF+hi05W4KS5kuN1Ncg10VCd1yUAPVJZv+madfrtyi8e4HUpAAAAAAAAAAAA2AMCVACQRQLHHKjg5WdIoaDXpSCHRHw7vC4B6HH6jjhWM065TcG8Uq9LAQAAAAAAAAAAwF4E9vYEAEDX8k8ZI6eyVLH/vVeqqva6HOSASHKr1yUAPcqQKZdo9IFflOPQUhAAAAAAAAAAAKA7oAMVAGQh38C+Cn/xUjnDB3pdCnJAfWSj1yUAPYIvkKcJR3xTYw66jvAUAAAAAAAAAABAN0KACgCylFNSpNA1F8h/6AyvS0EPlgw7ikervC4D6PYKyoZq9pl/1ICxp3ldCgAAAAAAAAAAANqJABUAZDHH71fwrGMUvOhkKcjUVXS8aKXXFQDdX9+Rx2n2mX9WUcUor0sBAAAAAAAAAADAPuBqPAB0A/4DJsrp31vxO/6p9Ba6BaHjREuTUsrrKoDuyfEFNebg/9Tgied5XQoAAAAAAAAAAAD2Ax2oAKCb8A3so9B1l8k3foTXpaAHiRREvS4B6Jbyigdo1hm3E54CAACAJ66//nqNHTtWr7zyitelAAAAAADQIxCgAoBuxCnIU/ATZ8t/3MGS43U16AkiwRqvSwC6nV5D52rO2XeqpPcEr0sBAAAAAAAAAABAB2CEHwB0M47jKHjCofIN6a/4nQ9K9RGvS0I3FnW2e10C0G04Pr9Gzvqshk69zD0XAwAAAAAAAAAAoGegAxUAdFP+CSMVvv4KOSMGeV0KurH6+BavSwC6hXBBb8045TcaNu1ywlMAAAAAAAAAAAA9DAEqAOjGnPISha65QIETDpV8nNLRfv+/vfsAj6Jc2zj+bEISeqhSpUmXXsUCCAg2ioCCIKLHXlCxl2PFgqIgigXkeDgqxYNdERsKSFG6iICIgIgCCkgngZTvul/P5Ns0yIYkk2T/v+vas8nsZPedmXdmPc7t88Qd+sPvIQD5Xrlq7ax9/ylWtkpLv4cCAAAAnx05csQmTpxovXv3thYtWtjpp59u11xzja1cudK9vmXLFmvQoIE98sgjNm7cOGvbtq21atXKnnrqqZTXLr744nTvu2DBAvfa3XffnWr5gQMH7Omnn7auXbtas2bNrFevXjZz5syQxqz3veKKK2zt2rU2dOhQN+7TTjvNbr/9dtu8eXPKet99951b99JLL83wfcaMGeNe/+KLL0L6fAAAAAAACgJa+AFAAReIiLAi3U+1iPo17cgbH1nyLlqyIWuOlApYYsJBv4cB5F+BCKvd8gqr0+ZqCwQIqQIAAIS7w4cPuwDSsmXLrHbt2tavXz+Li4uzGTNm2Pz5812wqnr1v6tEf/rpp+61Cy64wHbv3u1CVKGKj4+3IUOG2A8//GBNmjSxbt262fr16+2WW26xihUrhvReCm9dcsklVq1aNRs0aJD99NNP9uGHH9q8efNs8uTJdtJJJ1nz5s2tXr16tmjRItu6datVqVIl5e+Tk5Ptgw8+sPLly1vnzp1D3hYAAAAAAPI7AlQAUEhE1Kpm0bddZkfe+sySlq/xezgoAOLL+T0CIP+KKlrGmnR51Mqf2MHvoQAAACCf+Pe//+3CU+eff7498cQTFh0d7ZYPHDjQBgwY4Ja98MILbtmOHTtcoOqMM85IFWIKxauvvurCU3rvhx56yCL+V3l66tSp7vdQbNq0yc466ywbO3asRUZGumVvvPGGjRgxwh599FG3bdK3b1978sknXVhKlbU833zzjf3+++92+eWXW5Ei/CtlAAAAAEDhw39KDwCFSKBYjEUP6WlRF59rFvP3v8gFMhNX6ojfQwDypdjKza19vymEpwAAAJDKe++958JD9913X0p4Spo2bWp33nmnCx8lJCS4ZaVLl3bt/Y7H+++/b1FRUa7VnheeErUAbNy4cUjvpfe55557UsJTMnjwYKtbt64tXLjQtm3b5papNaHW1WcHe/fdd92zthEAAAAAgMKIABUAFEKRbZtY9G1DLXBiZb+Hgnwsvlic30MA8pVAINJqtbjMWvecYEVLVvJ7OAAAAMhH1E5vw4YNVrNmTStXLn0538suu8y19/OqM6mVXyAQyPbnqf3fxo0b3ecpjJVW69atQ3q/E0880bXvC6bxNWvWzLXnW716tVumFn2dOnWyn3/+2b7//nu37MCBA/b555+7NoL169fP9jYBAAAAAJCfEaACgEIqokJZi75psEV2aa9/K+r3cJAPxRXZ7/cQgHyjZLm61vaCSVa3/TCLiKAlCQAAAFLbvXu3ey5VqlSW1i9atOhxfd6ePXvcc8mSJTN8PTY2NqT3q1KlSobLTzjhBPe8d+/elGX9+vVzz14Vqk8++cQOHjxI9SkAAAAAQKFGgAoACrFAZKRFnd/Joq69yCw243/pivAVl/z3DQAgnAUiiljt1ldbu75vWOmKobVBAQAAQPgoXry4e963b1+Grx86dMhVcjoaryJVRuspoBSsTJky6YJNR1v/WDS+jHjvH1xVq2PHjlaxYkX7+OOPLSkpyT766CPXsvD8888P6TMBAAAAAChICFABQBiIrFfTYm6/3CKa1PN7KMhH4g7v8HsIgK8UmGrf9w07qc01FhEZ5fdwAAAAkI+p8pRa4P3yyy8p1aiC3XXXXa4dXmJiYqbvERUVldISLy29b7CYmBjXLk/Ld+xI///dVq5cGdL4f/zxR9cWMK2lS5daZGSka8/nURvC3r17286dO2327Nm2ePFi69q1a8hVrwAAAAAAKEgIUAFAmAiUKGbR/7jAoob0NCtVwu/hwGfJAbO4Q9v9Hgbgi4jIGKvb/iZr22eSlSxPsBQAAABZ06dPH0tISLAnn3zSPXt++OEH++qrr6x69eoujJSZ8uXLu8pSP//8c6rA1K5du2zKlCnp1r/oootcIOvRRx+1I0eOpCyfOXOmLVmyJKSxK7Q1ZsyYVNWv3njjDRes6tatW6oKVMFt/LzPpn0fAAAAAKCwK+L3AAAAeSuyZSOLaFjbEj6aY4nffGd29A4DKKTiy0VYctL//wt/IFyUqdzCGnV6wEqUqen3UAAAAFDAXHPNNTZv3jx75513XGiqffv2rqWfWt2pPd9TTz111L9XuGrgwIH28ssv28UXX2znnnuuC2J9+umnVrduXduyZUuq9QcNGuSCWQpMKXTVoUMHt86XX35pNWvWTFe1as2aNfbFF1+4SllpA0+qaKWQ1vLly61Vq1a2bt06mz9/vgt93XfffenGWqdOHWvZsqVbv1KlSnbaaacd174DAAAAACC/owIVAIShQLGiFnVhD4seNtgClSv4PRz4IL5Mkt9DAPJUZJFiVv+0O6x1r4mEpwAAAJAtCiG99tprdtNNN7mqTFOnTnWBpVNPPdX93LRp02O+h/721ltvtZIlS9q0adNs7ty5Lij17LPPZhi4Gj9+vN1yyy12+PBh9xkKUo0YMcLOOeecdOsrQDVu3Dh79913072myleTJk2yiIgIF6TS+wwZMsSmT5/uAlIZ6dmzZ0rlraNV1gIAAAAAoDAIJAfXbQYAhJ3kxCRLnL3YEj5fYHb4/1sCoHD7s/lh+zEu/b9UBwqjctXaW6NO/7Ripar6PRQAAAAgzzVo0MCFpBTWCoUqU7399tuuQpYqXuWkpPWb7fCL03L0PQEAAEJRdPSdfg8BAJDP0MIPAMJcIDLCinRtbxEtGljC259b0tqNfg8JeSAu5pBZnN+jAHJXkeiSVq/DcKvWsI/fQwEAAAAKlPXr19uMGTNc676cDk8BAAAAAJAfEaACADgR5ctY9NUXWuLyNXbkvS/N9h3we0jIRXGR+/weApCrKtTsaA3PuMeKljjB76EAAAAABcaYMWNs3rx5LkClNoU333yz30MCAAAAACBPEKACAKQS2bKRRTSsYwkz5ljiwhVmNHotlOKS/vJ7CECuiCoaaw1OvcMq1zvH76EAAAAABU7lypVt48aNVqFCBbv99tutWbNmfg8JAAAAAIA8EUhOTubWOAAgQ0mbfrcj0z+15K1/+j0U5LDFLWZZ/KEdfg8DyFGVTuphDU673aKLlfN7KAAAAACOImn9Zjv84jS/hwEAAMJY0dF3+j0EAEA+QwUqAECmImpVtehbh1rinMWW8NkCs8NH/B4SckBSVMDiD+30exhAjok9oanV6zDcylRu7vdQAAAAAAAAAAAAUAARoAIAHFUgMsKKdGlvES0aWsLbn1vSmg1+DwnHKb68/pcClCj4ipaqanXbDbPKdbv7PRQAAAAAAAAAAAAUYASoAABZElEu1qKv6m+JK9bakfdmme094PeQkE3xsUl+DwE4LkWiS1qtlldYjaYDLSIy2u/hAAAAAAAAAAAAoIAjQAUACElki4YW0aiOJc5daglfLTKLi/d7SAhRfIl4M/JvKIACEZFWvXF/q936aosuWsbv4QAAAAAAAAAAAKCQIEAFAAhZICbaipzVwSJPbWEJX35rifOWmR1J8HtYyKK46AMEqFDgVKzVyeq2v9lKlKnp91AAAAAAAAAAAABQyBCgAgBkW6BEMYvq2dmKnNHaEj5bYImLvjdLoj1cfhcX2Ov3EIAsK1WhkdXvMNzKVm3t91AAAAAAAAAAAABQSBGgAgAct0CZUhZ1UQ+LPLOtJcycZ0nfrTVL9ntUyExcwk6/hwAcU0yJSla33Q1Wud65FggE/B4OAAAAAAAAAAAACjECVACAHBNRsZxFX9rLkra0t4SP51rS2o1+DwkZOBT3h99DADIVGVXCarW4zGo0G2SRRYr6PRwAAAAAAAAAAACEAQJUAIAcF1G9kkVffaEl/fyrHZkx15I3/eb3kPA/CcUClnB4n9/DANIJBCKtasM+VqfNNRZTvLzfwwEAAAAAAAAAAEAYIUAFAMg1ESedaDE3DbbEH9ZbwsdfW/LWP/0eUtiLr+D3CID0KtQ43eq2v8lKljvJ76EAAAAAAAAAAAAgDBGgAgDkusiT61pEo5MsadlqS/hkniXv2uP3kMJWfOkEswS/RwFIwCrWPtNqt/yHla7YyO/BAAAAAAAAAAAAIIwRoAIA5IlARMAi25xsES0bWuLC7yzh84Vm+w74PaywE1cszowOfvC5VV+lk7pbrZaXU3EKAAAAAAAAAAAA+QIBKgBAngpERlqR01tZZLumljh3qSXMXWK2/6Dfwwob8UUIrcEfgYgoq1L/PKvV4jIrHnui38MBAAAAAAAAAAAAUhCgAgD4IhAdZUW6nWKRndtY4rI1ljhniSVv/dPvYRV6h2y330NAmIkoEmPVGvaxms2HWtGSlfweDgAAAAAAAAAAAJBOIDk5OTn9YgAA8l7iul8sce5iS1qzwYxvp1yxrM1CO7hvs9/DQBiIiom1ao3724lNBlhM8fJ+DwcAAAAAAAAAAADIFBWoAAD5RmT9mu6R9MdO194vcckPZoeP+D2sQiXu4Ha/h4BCrljpalaj6WCr2qCXRUYV83s4AAAAAAAAAAAAwDFRgQoAkG8lH4yzxIXfWcL8ZWa79/k9nALvcGzAFlWe5vcwUEiVPuFkq9lsiJ1Qu4sFIiL9Hg4AAAAAAAAAAACQZQSoAAD5XnJikiV9t9YS5iyx5F+3+T2cAmtfbbPvot/0exgoVAJWoWZHq9l8iJWt0tLvwQAAAAAAAAAAAADZQoAKAFCgJG3c4oJUSat+MkviKywUO5odsbXx7/g9DBQCRWJKW+W6Z9uJTQZYiTK1/B4OAAAAAAAAAAAAcFyKHN+fAwCQtyJqV7fo2tUtadceS/x6qSV+u9Is7rDfwyoQ4orGmcX7PQoUXAErV62dVW3YyyrWOtMii8T4PSAAAAAAAAAAAAAgR1CBCgBQoCXHxVviou8t8etllrxzt9/DydfWd/jdtu362u9hoIApWrKKVWnQ06o26GXFSlXxezgAAAAAAAAAAABAjiNABQAoFJKTki3p582WtHS1Ja5cZxZHqaW0VrX/wXbvXuX3MFAARETGWMVana1qw96u6lQgEPB7SAAAAAAAAAAAAECuIUAFACh0ko8kWNLqny1x6WpLWrPBLDHR7yHlC0tazrG4g9v8HgbysVIVGlrVBr2tcr2zLSqmtN/DAQAAAAAAAAAAAPIEASoAQKGWfDDOElestcRlqy154xazMP3WS44wW1D/LUtOJkyG1KJiYl1gSsGpUhUa+D0cAAAAAAAAAAAAIM8RoAIAhI3kXXtckEqVqZK377RwEl8hYIvLT/N7GMgvAhGuNZ9CUyfU7mwRkdF+jwgAAAAAAAAAAADwDQEqAEBYStqy3RKX/mCJy9eY7T1ghd2eesn2fcR//R4GfFasdDWrUv98q1q/pxUtVcXv4QAAAAAAAAAAAAD5AgEqAEBYS05KtqT1v7iqVEkr15nFH7bC6I8W8bbu0Ht+DwN5LmClT2hsFWt2soo1O1rJ8vX8HhAAAAAAAAAAAACQ7xCgAgDgf5IPH7GkH9a7Nn9JazeaJSZZYbG5/V+2efdnfg8DeSCiSIyVq9rOKtbqaBVqdrSY4hX8HhIAAAAApJK0frMdfpE28wAAAABQEBQdfaeFgyJ+DwAAgPwiEB1lkS0buUdyXLwl/bTZktZusKQfN1nyrj1WkMVF7PN7CMhF0cXKWYUaZ1iFWh2tfLX2FhlVzO8hAQAAAAAAAAAAAAUGASoAADIQKBpjkU3ruYck/bHTktZucpWpkjb8anb4iBUkcYm7/B4CcliJsnVcW74KNTtZbKUmFghE+D0kAAAAAAAAAAAAoEAiQAUAQBZEnFDePaxja0tOSLCkDVv+DlOt3WjJ23ZYfhcX/6ffQ8BxCkREWpnKLVxgSsGp4rEn+j0kAAAAAAAAAAAAoFAgQAUAQIgCRYpYZP1a7mG9zrTk3fss8ce/w1RJ634xOxRn+UliTMAOx1GBqiAqElPaylVrZxVrdrIKNU6zqKKxfg8JmdiyZYt17drVWrVqZVOnTvV7OAAAAAAAAAAAAAgBASoAAI5ToEwpK9K+mVn7ZpaclGTJm7daoled6tdtZsnJvo4vvpyvH48QFI+tabGVmlmZys0ttnJzK1GmtgUCAb+HhSwoXbq03XjjjValShW/hwIAAAAAAAAAAIAQEaACACAHBSIiLFCrmkXUqmZ29umWfOCQJa3bZEk/bbakX7da8tYdZklJeTqm+DKJZnn7kciCiMhoK1WxkZWp1MJiKzezMpWaW3Sxsn4PC8cRoBo2bJjfwwAAAAAAAAAAAEA2EKACACAXBUoUs8iWjdxDkg8fseTftlvS5m2WtHmrq1aVvHN3ro4hvni82f5c/QhkQXSxchZbqbmVqdzMYiu1sNIVG1lEZJTfwwIAAAAAAAAAAADCHgEqAADyUCA6ygK1q1tE7eopy1yVql+3uTCVQlX62fYdyLHPjIvKufdCVgWsRLk6qapLFY890e9BFRgXXnihff/99zZv3jyrUKFCyvLRo0fb+PHjrX///vbYY4+lLD9w4IC1b9/eWrZsaa+//rr98ccf9uqrr9rcuXPt999/t8TERKtcubJ16tTJtdkrU6ZMyt926dLFihcvbsOHD3fv+eeff1qTJk1sypQp1rVrV/faxIkT7ZlnnnHj2b9/v9WuXdsGDRpkAwcOTHmfLVu2uPVbtWplU6dOdcuef/55GzdunP33v/+1pUuX2vTp0916sbGx7nNvueUWK1cudY/N9evX23PPPWdLliyxgwcPWrNmzey2226zMWPG2MKFC+3HH3/M5b0PAAAAAAAAAAAQfghQAQCQH6pUNaxtpsf/JP+19+8wlSpU/brNkrbtMNt/MFvvHxfYm4OjRVqR0SWsRGwtK16mlpUoU9NKVWhksZWaWlRMKb+HVmCdeeaZtnLlSps/f7717t07Zbl+l2+//TbV+goWHTlyxAWYtm/fbv369bO//vrLvY+CSvv27bPZs2e7cNWKFSvsrbfeSvX3+ptbb73VunXr5sJVCjgFAgH32p49e2zAgAFWtGhRO++88ywuLs5mzJhhDz74oMXHx9vQoUOPuT0jRoywn376yXr06OHG9NVXX9mbb75pq1atcmOJiIhw6+l3vZ+CU9qWGjVquNDWkCFD3JgAAAAAAAAAAACQOwhQAQCQDwXKlrZIPZo3SFmWvP+gJW/bYUnbd7pn7+djBaviEnbmwYgLu4DFlDzBSriQlBeW0qO2xZSo6PfgCh2FnsaOHZsqQLV7925bvXq1lShRwn799VdXWapq1arutTlz5qT83YQJE1wVqccff9wFqTwKPp177rmuspWqPNWtWzfltb1799rVV1/tKj2lpWpW3bt3d9WvoqL+brl4/vnnu6DT5MmTsxSg2rx5s33wwQdWs2ZN9/vNN99svXr1sh9++MGWL19urVu3dssfeOABV+HqhRdecGEu0ZiGDRtms2bNOq59CgAAAAAAAAAAgMwRoAIAoIAIlCxugbo1LKJujVTLXbBq+05XpSp5x1+WvHO3Je/Ybcm79pgdPmKHDm33bcwFTUSRGCteusb/h6TK/u85tqZFRhXze3hho2HDhi4ctWDBgpRl33zzjSUlJbnWea+88or7vW/fvu41teqrV6+eq9ikKlH6uU+fPqneUxWkWrRoYb/99pvt3LkzVYBKFK7KjMJVXnhKTjnlFCtVqpRrx5cVClx54SmJiYmxM844wzZt2uTeQwGqNWvWuEDVaaedlhKeksjISLvnnntc1SptPwAAAAAAAAAAAHIeASoAAApDsKpkcYs46cR0ryXvO2CtDp5jcfu32qF92yxu//8/4vdvsyPxeyxsBCIsKibWoouVdY+oonoub8VLV7fiZWq60FTRUlUsEPi7nRr81blzZ5syZYqtXbvWBaoUpipevLir+DRx4kTXxk8BKr2+bdu2lEpVrVq1cg9Vcvrxxx9d9Sc9FFDyWv9lFEQ68cT054+nTp066ZYpQKXWgImJiS7kdDQZ/X3p0qXd8+HDh92zWhaKQl4Zja1y5cqu6hYAAAAAAAAAAAByHgEqAAAKsUCpEhZbqqnFVmqa4euJRw79L1C11eIP7LCEw/v/fhz533PK40Cq35MS4sx/AYuKKW1RCkS5MFQ5iypWxqKLlvv/kFSxcv//WtFYwlEFyJlnnukCVGrjpwDVwoULXaWmihUrut+9MJTXvq9r167uWcGpUaNG2Xvvvefa9kmZMmVcMEkVqhS4Sk5OTvd5qlCVGVWMSisQCLjnjN4rlL/3/PXXX+5Z25eRSpUqEaACAAAAAAAAAADIJQSoAAAIY2pLV6JsbfcIRVJSgiV6oaojBywhfn+G4StLTrZAINICERFm7jnShZgCmf5cxCwiIuXnQJqfIyKj/1c5ShWkylhEBP8oU1ipTZ4qTilA1aNHD1dFasCAAe61Dh062Kuvvmq//PKLC1ApdNSsWTP32p133mmzZs2ys88+2wYOHGj169e38uXLu9eGDx/uAlT5UYkSJdyzqlpl5MCBA3k8IgAAAAAAAAAAgPDBXUcAABAyBZciisa6qk5AboiOjrbTTjvN5s6d6x5eqMp7VoDq008/tRUrVli/fv1cRae9e/fal19+abVq1bKxY8eme8/169dnuWpUXmva9O8qcdqetPbs2WMbN270YVQAAAAAAAAAAADhgT42AAAAyLdt/OLj423ixIkWGxtrjRs3dsvbtGljUVFR9sorr1hiYqJ16dLFLdeyiIgIF6RSK79gEyZMsHXr1rmfExISLL9Ri0FVy5o9e3ZKYEy0fU8++aQdOXLE1/EBAAAAAAAAAAAUZlSgAgAAQL7UuXNnF4j67bffrFu3bu5nr92dKjYtW7bMtfk79dRT3fJixYrZOeecYx999JH17dvXBbBk0aJFtnr1aqtQoYLt2LHD/vrrL8uPHn30Ubv00kvtmmuucdtbtWpV+/bbb12rwpiYGEJUAAAAAAAAAAAAuYQKVAAAAMiXypcvb82aNUvVvs/ToUMH96zwlMJFnhEjRti1117r2vRNnTrVZs6caSVLlrRRo0altPVTlaf8qHnz5m7MHTt2tIULF9q0adOsXLlybpnCYXoAAAAAAAAAAAAg5wWSdXcJAAAAgG8OHz5s27dvd1WnIiMjU70WFxdnrVq1stq1a9uMGTN8GyMAAACQU5LWb7bDL07zexgAAAAAgCwoOvpOCwdUoAIAAAB8dujQIevevbv179/fEhISUr326quvWmJiYkrVLaCw+O677+yiiy5y1dfatm1r06dPz3RdVWZr0KBBuuVr1qyx66+/3tq3b29NmjSxHj162Lhx41woMatuv/12995qmZkdO3futBtvvNFat25tLVq0sHvvvTdb77Nr1y578MEHrVOnTm5bTj/9dPdeCldmlfahtuX5558/6nrffPONNWzY0O6+++4MX58wYYJro+qNY9++fZm+14IFC9xnZvZeeSmr2++5+OKL3fpbtmyx/E77V2PV/vZ06dLFLUv7vRHq/J08ebIVRJldF8Jl+3OLrquff/55qmXaz9rfyPnrUEbY3wAAAAAA+KOIT58LAAAA4H9iY2OtZ8+e9v7771uvXr1cYEGVqFatWmWLFi2y6tWru4AGUFgkJSW5Of3HH3/Y+eefb1WqVElp2ZlVK1assEsvvdSOHDniAoh6j/nz57ub1osXL3bhw7QV3XLDo48+6sIGClC1adPGmjZtGvJ77N6924XJfv31V/c+5557rq1bt87efvtt+/rrr+2tt96ySpUq5ch49+/f74JZmRWjnjt3rj3zzDNWtmxZGzJkiEVHR1upUqVy5LORvyg8pHOnfv36NnjwYAs34b79GZkzZ45rhXz11VfbWWedlbJc12u1RAYAAAAAACjMCFABAAAA+cDjjz9uLVu2tHfeeccFqdS6r3LlynbFFVfYNddc40JWQGGhqkoKT9WrV8+FdbJj5MiRFh8fb88995yrPCWqxKMb/wpSffTRR9a7d2/Lbd9//717VuWrcuXKZes9/v3vf7vw1CWXXGL3339/ynK9pwJh2sbHHnssR8ar9/ntt9+OuT1XXXWVu/6gcFc/VKAuXIX79mcWKlPANa1hw4b5Mh4AAAAAAIC8RAs/AAAAIB8oUqSIayel1i9qJab2Zp9++qndeeedhKdQ6Hgt9lTlKLsU9NG54YWnvPPowgsvdD8vX77c8nJbshueEp3v4o3dM2jQoBzdli+//NKFNNX6LTePDQAAAAAAAAAUNASoAAAAAAB5Rm3h1DZL1KKyQYMGbpls3rzZbr/9djvttNOsRYsWdvnll9vatWszfJ8yZcq46jF79uxJtVyVrTIKNB04cMCefvpp69q1q2sXqHaZM2fOzHScf/75p6vW1K1bN7e+/k7VobZt2+ZeV2UojV3VtEQ/6+FRFZfJkydb37593ba0atXKVZj64osv0n2WF1ZKWxkqs22RadOmuQpbzZs3tzPPPNNefPFFV4ErM7t27XLjb9eunRtHWlu2bHHjf/nll93v99xzj/tdgSvPJ598YgMGDHDV8nSMnnjiCTt48KDlhG+++ca1CVML0yZNmrhWhvqs4M/P7vbv2LHDHnroIevYsaM7lnpffd7xGDVqlNs/H3/8carl8+bNc8uD2595Bg4c6MarykeiCmqqPqbxqP2jtlvbf8stt7gWjtm1cuVKu+GGG+yUU05x76mQ4bPPPuvOAY/mr+a0LFu2zI1Zy7JDc13hX53H7du3t5NPPtl9tqonLl26NNW63nmj0KDabJ5zzjmu7aW2+4EHHnDzNK1QrgtZdbTt13Zojiu4qHaaGp/G6e2/H374wY2nc+fObv9q3T59+rjtCa7e5J1TjzzyiNsPl112mbsOaH21H1VYOi0tu/LKK93+0OdqjA8//HDKteB4zpmFCxe6Y9KhQ4eUMesalZiYmLLdOu9F1wGN3Rujftb5k5YqZmpe6/00ty+44AL7z3/+k+5c9PaprtfaH2eccUbK3NRneWPIDm2vxqdWqrounHfeeW7fKSg6YcIE1650/fr1rjWh9pHm5vXXX++q/qW1detWNw+9Y6s5d9ttt9lPP/103Nchne/jx493bWt1HWrbtq071mo5mxVr1qxxx1ufo7HpeNx11122adOmLP299sfZZ5/tvme0/ZqLOl+vu+46W716dcp6+k5r3Lix++7LiM517W8dZwAAAAAAChta+AEAAAAA8oxusOvm6+uvv27VqlVzv+v5559/dhWXdINdN69r1Kjhbt4PHjw4w5ZSWlet7YYPH2733XefValSxRYsWGAvvPCCC1f1798/1Y1r3cBX8EE3nnVjWDfUFVSpWLFiuvf+5Zdf3OcqRKWb3ArD6Ca1bhwrIPPmm2+6IJJuZisAo2CFfvZovGp5pbBUnTp13Fi0TDf4FWzRa8HrK/SginNq5VmqVCl381/745///KdFRES4wEgwBSqmTJliVatWtX79+rl9phBC6dKlM93vChAp7KTPyCg4oL/VmBTKWLJkiQtuNGrUyD1k4sSJLjSkMJcCAAoJvPvuuzZjxgw7Xm+99Zbb1goVKrib/BqLQjOqmKVAhwJHOh7Z2X61JNP+VZhFx0xBGAWMFFwoWbJktsesEIP2idpFKmTj0e+i8SuMoXkpu3fvdqEhze1ixYq5+aA2iZrjCjKo+pj2qcI8CvZ9/fXX7vmEE04IaVwKdN1xxx0WHR3t5nmlSpXce7700kv21VdfucCMtlv7QiGe1157zY1R+1HLskPH6L333nPntYKJqgS3atUqmz17ttsfOr4NGzZM9TcjRoxwoRQFaLQvNTadV/o7ra95L6FeF7LqWNt/5MgRF7hR6EdBFc3BEiVKuPNfy3UMtX81ZxWq1Ln+5JNPurCeKkcG0/7/73//68JfmouaG1pfyzWPFaYRbZfOdQUqdc3RcdI1S+vocz/88EMrWrRots6ZN954wx599FE3bq2veaXjozCTgjl6TddiXX9mzZrlAn0KGunanBGFknTdffvtt90YdF5pzmne6hozd+5cFxbSXPBofus6rHNB15fIyEjXanXMmDEuOHfvvffa8dAc37hxoxuLQmIffPCBaxGr46P5qWCf9r+qF2obdU1XACwqKsr9vfbD0KFD3VxTsEhhI62jc0rHSy1VFfzKznVIx0MBuhUrVrhxqOKorse67mseKqyrsG1mNmzY4P5G+1MB5PLly7tzQ9uo46i5kZVrhULHmhfaZu0Lham0bQrXKWymc0DXDIXy5syZ474LNBeC6bqvv+/Zs2eIRwgAAAAAgPyPABUAAAAAIM/oJrGqgHgBKoWJRMEB3Vh/6qmnXEUP74a7wgC6SZyWgkhq4Tdy5MhUAZa6deu6KiC6qe1RZRgFEXTDWEEiL5wxdepU93taChUoPKWAglcdSyZNmuSqLr3yyisuPKCb7ApVKUDlbYcopKKb0rrBrPW9G/QKe6n6k27Ee9WQREEFjVHBi+DPU2BDIYTgyi+qZKOb9gqCKbzl3axX8CT4b4Np/+lGvSqrnHjiiZkGqLQN2ue6aa5wiHdDX+urgpGOlz67cuXKKcu9NoPZpaCKglkKjSjMoGCARyEMhYx0w94Lg4S6/QpnKDylsJwqrXgUrFBgILsUrFFQT6G9YAoi6LhpTigQoyo/omCJAj9e+0SF6bzXFbwJpnmi0IbWCQ7BHIvCOwqhaFyqjKNj7dGcU4UlbfeDDz7o5q6OpxcgCp6/odB+VzhF76fjoVCMRxXfdK5o/qUNUCnso+U1a9Z0v998880ufKXzVJWfdI0QBXtCuS5k1bG2X/NS1YdGjx6darl3rBT2UjjSo0CmgoWaq2kDVArmqFLQP/7xj5RlCn8q7KlglXcd8KpB6bqkoJhH1xoFpjQfdE0J9ZzR/Ne4FXTSdbd27dop80zr6BqmZ+989wJUR5sTCvcpPKXzUMfYq5KnUJD+ToEvBQwVNgtuD6oAl7ZP54joeqj9pv2g4J93rcyOH3/80W2LqieJrpvaF9qvV1xxRcpxUfhLYSTNM4UpNdd0burzFYJSAEyBqOB9qspdqjqmfaNgW6jXobFjx7rwlMajilaBQMAtV2j1oosucufkqaeemnJtTUvbpRCWvoMUDvPou07vrSpcwfs6M/peU5BP1aO8MJ7Ci/pbVSjUcdX3o7ZfASqdY8EBKp232naFuI6nbS0AAAAAAPkVLfwAAAAAAL5SeyoFT3Qz2gtJiKptKBCS0U11VUpSAEbrKFSg6h5qo6QggwIHCl14vCojugHuhadEN9G9m+3BY1HVHAU+0t4IV1hIlYsUnjkahVf0OQosBY9d1V1uuukmdwNfgQiPKhUpqKHWSZ06dXJBC1XlURhBN9aD2ytpW0QhheBKJ9p3uhGflt5T1X500z27YSfdVFdoQyGE4Bv8CugoEHA8FBhRJRcFZIKDIF6wTILbuoWy/RqzgkgKjlx99dWpXlNgJ+3nhUJBIR2r33//3VWC8cap1nJqaabjH9wmUGEELfMCVKrWpKCG5kNG4Z60250VCjIpZKGwR3B4ShSQUOBB62i/5BRVcFM4R+dccHjqWNuh0IwXnpKYmJiU6j4K/GT3upCTgoOZovNW80bBsODwlBfc1DzLaFt13qvKUDCvPZq3rd77iwKMwRS+UgBP+yw754zOAYWXdO3ywlOiilF6b51LwZWissK7filkGhykKV68eEpIVSGztBSU9cJTovGcdNJJbt6qWtzxUAAp+HruhfAkODyp8JKqvgXvf4WbVBFNlZeCw1NeEEtBR32nKIga6nVIx0sBKO0nhda88JSo2pOuqzo+3ntmxJsbCi95P4u+91SBKu317Wh0zL3wlOi7RtuoalsKlYmuUwro6dqvsXkUzJOjVcsCAAAAAKAgowIVAAAAAMBXqtCim8JeJZZguomrm+zr1q1LWaaWTAqJ6CawAiG1atVKeU1VdlRtRzeJVb0pLi7OtXVSwCGj1kq6yR4cUFIARmPJKCSlwIGqlByNQk8KcSlIoCofae3du9c9q9KO6LO0LaqeorGrsodH1Y0UUNJDFa1UvUX7SjLaV9oWVSgJpqCJbuCrRVTwjftQePtHrQUz+szjoWOoVlmidlLadwo16Jh5N/M1fk8o269qKaoEpQoqacM9CozoPVR9JbsUPFDoQYE7hUAU9tHxVPs1VeBRhSlRdRv9roCfF3jRnNVDYSbtX4UXtN2a517wKni7s0KtybxnzaW0NH8UrNFn1atXz3KCAiAKl2gbFUBRqzFth47jokWLMt2OtAEk8c5PL7AR6nUhp1WvXj3V7zp/vOCTKvnos1WFTftT+9wLAGl7g+ebqkmlDSgpVCXB4RQF73Seq7qWrmGqgKVQkEI9we3ZsnvOeKGhYDo30rZoywpdvzQOzem0FN5T0FLhQoWOVBEtlOOeXcHfA+IFtfT53v4OPheCP9O7xnmhv7S0j1TlyduXoVyHdFzUOk/7RBWj0tIxDP5OyIgCSwrm6rxWBS/NC80PBZ+8NqFZoWOW0TzQcVSlLe0HjV/hRFWE03eY2kJqvulc1PVOocngVoYAAAAAABQmBKgAAAAAAL7yQkVqjZSR4Bvwopu4CkapjV/am+ZqifThhx+6qhyqYONV68jsvdUGMJhXuSrtDfes2rdvX0qQSiGIzKhVlFf5ROEp3ZAODk+JbpKr8o5aZal1lCrQHG1fpd0W3WhXcEctCdWuLLtC+czsUOhD1XSWLVuWElRRdSKFGdQSK7jiSihj8fZxVudVqHTMFDRQgEoVhhR4U2hDQTNVAlL4QAEbtdb766+/UrVw0zap9de//vUv97oX6lAFnUaNGrmATvB2Z4W3b47V2s7bLzlFVWnUjs5rDal9ogpbJ598sgv2ZLQdqjiVVtqAX6jXhZzmhWyCqdqYKm4pbOJtl84tBWwUINO+Tbu9R9vW4HUViFG7Oc0Lnbdqa6eHF2ZRtScFM0M9Z7xrWmb7MTsUCNL5FlzRL22wTgEqVZYKPk5Z3RfZ4e2btDL6zMyu25ntI22Pd13P7nVIwd+sfCdkpH79+q6Kldol6rtN57geCuqpWpSqfqkC2rFk1iLQC+h52yWqxKVrmELKClApEKqwlypmhVqxDAAAAACAgoL/xwsAAAAA8JV3gz345m0wVRHKqGKHqkpldDNey3/55Rd3A19hlKO9t3dDPO1NeO+GekbrZ3ajPrjqiSqtqP3RsWiMmW2Ld+M8eL3gfZX2hnnabVHrLlErQT0yCr7occEFF9jIkSMzHaP3mRntk7SfGSq1L1SwSOEJVQ1TaEyhOFVKiY+PT9cGLJTtP9a8Ot6xKzzRtm1bV2lJlWxUgUpBGoUL1DJR4QNVk/Lma9euXVP+Vq8piKP5qXZsahlZtWpVF0hR8E0BnVB5c0+hm4wqA+UGVUy6++67XYjomWeecaEpVSDSPtA2eC3P8uK6kNs0X9QyTZWmVDVOx1PnuReiUQDqeKk6kB6aTytXrnRBKgVYFKLU3Hj00UdDPme865VCT2mpUlVCQkKWQkbBtM0KBWqcqsyXWRgot0NuOcU7hmp5mhFvDnrbE8p1yDsvFbicOHFitseoqnEKzemYqVqVApsKE3/++efuXFDw7lgUaDva9gW3Y1QIUi0JNQd1PD/66CO3PG2LQwAAAAAACpOM/1MxAAAAAADyiEIXqqThVVMJphvDqvoSTC2EvNZIGVF4yltPwQCFkLTMq/QTTCGFYAqyZLRcFFhQaEIt2o52I14BElXjUbu0tFSlRsGZTz75xP3u3XzPbFvUHix4m702ekuWLDnmtigYpYpcaR+qauVtq3732pJlJpTPDNVnn33mAgfXXXedC4VoTAqCePsqbWWaUMai1mkKOqi9Wtr2YHpPr+Xd8VAbP41f4QIFpVR5ShSs0pxWgGrOnDku4KI2fx6FYmTChAlu/6tdnFfNRy3ZssMLC3733XcZvj569GjX1tILeGS3pWMwBfBE4SlVSFNbPa86jbcd2a0sFOp1IVShbr8CK6pq179/fxs+fLhr3+YFb3Sue+d7drZXLRA1F8aMGeN+VyhJYbxbbrnFpkyZ4pYtXrw4W+eMd03LaF4o5KawnVcZKav7RJXSNOalS5eme00hJF23dB3MqIpXfqTtCd7HaXltNb1AayjXIYXsdHzUHjajNoX6zKefftrNr8yofd+IESPccdU5obl37bXXumCdAnKZjTujY6NKWGl5x7FFixaplisspTajqoCodqf63ODrGAAAAAAAhQ0BKgAAAACAr1T1QsGkdevWuco8Ht0sVuhD7fqCnXPOOS5s8uqrr6a0DfO89tprLrjRunXrlLZ1F110kavaoeotuhnsUYWotDfAFWRR+EUVPt56661UrynIoJCEKr4cjQIW+hy1VQq+Ya7tePDBB924vTCXqs2o8pCCDLpBnfZGvG6Qq52ggjreDW1t+3PPPefavHk2bNiQErTw9O3b14YNG5bu0adPn5TAjX4/VoDqvPPOczfp1W4uOOilMIlCH8fDC354VZo8qnii4yWqkOMJZfsV5FGITC3MNI+CQyXaFq+q1/HwjosXQPECVArWKGSh8NTq1atdm62MtjvtGNQmSxWkJHiuZoWCcWr3pnZ62h/B3njjDReeUkUoryKRF3QK9XOysh06l725EXz8cvO6EKpQtz+zbVXVp/vvv98FirK7vZrTX375pTtGaa9J3jVO16bsnDNq/6fQjea8Wip6dG3SMdL+VHWkUPaJV4VIleuCg6KqcKRrnPaFzr2ComXLli7opCBR2gpeCja98847rjWfV0UulOuQwnA6Blpv1KhRKfNEVMVLc0et+TSPMqOAlM5htacNpu8R/Z03N7LiiSeeSHV8FY5SW0BVm/JCmB6FIhVC1vVNn6XvFAAAAAAACjNa+AEAAAAAfPfPf/7TVq1aZY8//ri7matKH6o8o/DECSec4MI6HrW7u/POO93Ne92Y7t69uwtb6O/VTk3VmvQ+nkGDBrlwkgJTqlqj9moKEiiwULNmzZSKVZ5HHnnEBg8ebPfdd59rg6dWRroxrnFp/dtuu+2o23LFFVe4iiUKq6xZs8a19lIwQZ+n0EPHjh1dqEsUeNFN9auuusquv/5669Spk9u+zZs3uxvbqgijbfFaRukGt6pG6ca9glC6oa+b4fosVbNSWCinaf+rBeC9997rwmHa3xq32rd5FXiOJ4CkbVNoQZVRtK91o177SmEMvb9aByoQon0Y6vYrIKbWempvpfmkwJoqwSio5FUKOx56D7XWUuUfbUdwAEFhqhUrVqRr3ycKIixfvtwddwUCS5cu7calsEbZsmXdPgj1WCpEofCKjpX2jYJxVapUcXNw/vz5LgASfF7onFE4QgEvVbdRMDDtOI9FIZkZM2a4uaEQoOaKQnYKjmmb5HjmZCjXhVCFuv0KZaqS2Ndff+2uDwrdqPWZtlXhGB03BWK0vdmpvHT77be7FoF6qMqdjqfOCVWcUmjq5ptvztY5o2uWrpcKzuh4aRt1bDRuVYpSFSuv5aPmi3zwwQfu2qNQnld1KW2wRvtBldR69uxpnTt3dkEhLdM5pWve1VdfbQWFwlCqAqV9r/NH131VpdL+0bzTPNF1WmFWCfU6dMcdd7hrgQK+uva0a9fOHR8dW7WE1HVV+zAzN9xwgzu/1LJR32OqAqXP0OcpAKe549F3myrDaazanrR0LdD1R9+D+j7SvEl7bfBonmguqsKe9oHCtAAAAAAAFGZUoAIAAAAA+K5SpUouEDBgwABXQWrq1KmuaoqqNWVUXePyyy93rykQoxvAr7/+ursZfMkll7ibxwo6ePQ+quyidliquqL3VpBKoQmFV9JSJRJVHPHGopveqkil3/W3XjAkMwoXqaLIPffc425iazx6KPSgQIgqBCls4FGrLn2ewmAKiyjso4ojuimvfaLAUtqb6Wr1pcpVCjootKCx6fNyi4IXqmCjUIFu2uuhIIdatx0PhWC0f/Ve2nYdRwVkFDLTPjn77LNdMEE3/bOz/SVKlLDJkye7UJtCJvpZIZfnn38+Xbuq461CpVBEcAs0BRREwRqFbYIpQPfYY4+5bVBVmenTp7tKPgplKCChAI4CE6qcFooLL7zQ7UMFWLTPtG8VaNHnqZqZ187Nm6cKC+oYaJ4pEBeq008/3c1nva8Cfzo/FP4bMmSIC6GojaKOp4JGeXFdCEWo269jos9VeEj7VPtWgTdVGtO8uvTSS916aSvJZZWuA6pepCCNwja6Duj9dR1QNTy1T8vuOaMgjapN6fz9/PPP3ecoEPPwww+7cFXwGIYOHeqqGqniUWbtIEUBVoVudBwUolOYStc4BZAmTpzo9m9BopaRuk4rzKQQoParrvsKkencUbg1WCjXIX1nqA2fAp06pzXfdJ7r/FBLV30XHa19or6T9Pf6jvAqsuk4KtSn4xRcRVDfg6oYpTmSEa2vOaRKd5pn2j5dfxTEy4gCcqIg1bG++wAAAAAAKOgCycE17AEAAAAAAAAAhYbaiCpcpVCY16oxK1588UUbO3asTZo0KSUUmlOS1m+2wy9Oy9H3BAAAAADkjqKj//8/wCrMqEAFAAAAAAAAAEixfft2V/Wtdu3ariUpAAAAAACFXdb/kyMAAAAAAIBMqE2bWkuFQi2t8gO1b1uzZk2W11e7vvbt21thou0PpY1ftWrVrG/fvpYfqHWdqutklVqeNWrUKFfHhNBxHuYPakmpc2rTpk22f/9+e+65547aYhAAAAAAgMKCABUAAAAAAMiRANW4ceMKbIDq3XffzfL6N954Y6ELbii4EsrxU3glvwSodOwWLVoUUviLAFX+w3mYP1SpUsV+/fVXK1asmA0fPtx69Ojh95AAAAAAAMgTgeTk5OS8+SgAAAAAAAAAQLhLWr/ZDr84ze9hAAAAAACyoOjoOy0cRPg9AAAAAAAAAAAAAAAAAADwCwEqAAAAAAAAAAAAAAAAAGGLABUAAAAAAAAAAAAAAACAsEWACgAAAAAAAAAAAAAAAEDYIkAFAAAAAAAAAAAAAAAAIGwRoAIAAAAAAAAAAAAAAAAQtghQAQAAAAAAAAAAAAAAAAhbBKgAAAAAAAAAAAAAAAAAhC0CVAAAAAAAAAAAAAAAAADCFgEqAAAAAAAAAAAAAAAAAGGLABUAAAAAAAAAAAAAAACAsEWACgAAAAAAAAAAAAAAAEDYIkAFAAAAAAAAAAAAAAAAIGwRoAIAAAAAAAAAAAAAAAAQtgLJycnJfg8CAAAAAAAAAAAAAAAAAPxABSoAAAAAAAAAAAAAAAAAYYsAFQAAAAAAAAAAAAAAAICwRYAKAAAAAAAAAAAAAAAAQNgiQAUAAAAAAAAAAAAAAAAgbBGgAgAAAAAAAAAAAAAAABC2CFABAAAAAAAAAAAAAAAACFsEqAAAAAAAAAAAAAAAAACELQJUAAAAAAAAAAAAAAAAAMIWASoAAAAAAAAAAAAAAAAAYYsAFQAAAAAAAAAAAAAAAICwRYAKAAAAAAAAAAAAAAAAQNgiQAUAAAAAAAAAAAAAAAAgbBGgAgAAAAAAAAAAAAAAABC2CFABAAAAAAAAAAAAAAAACFsEqAAAAAAAAAAAAAAAAACELQJUAAAAAAAAAAAAAAAAAMIWASoAAAAAAAAAAAAAAAAAYYsAFQAAAAAAAAAAAAAAAICwRYAKAAAAAAAAAAAAAAAAQNgiQAUAAAAAAAAAAAAAAAAgbBGgAgAAAAAAAAAAAAAAABC2CFABAAAAAAAAAAAAAAAACFsEqAAAAAAAAAAAAAAAAACELQJUAAAAAAAAAAAAAAAAAMIWASoAAAAAAAAAAAAAAAAAYYsAFQAAAAAAAAAAAAAAAICwRYAKAAAAAAAAAAAAAAAAQNgiQAUAAAAAAAAAAAAAAAAgbBGgAgAAAAAAAAAAAAAAABC2CFABAAAAAAAAAAAAAAAACFsEqAAAAAAAAAAAAAAAAACELQJUAAAAAAAAAAAAAAAAAMIWASoAAAAAAAAAAAAAAAAAYYsAFQAAAAAAAAAAAAAAAICwRYAKAAAAAAAAAAAAAAAAQNgiQAUAAAAAAAAAAAAAAAAgbBGgAgAAAAAAAAAAAAAAABC2CFABAAAAAAAAAAAAAAAACFsEqAAAAAAAAAAAAAAAAACELQJUAAAAAAAAAAAAAAAAAMIWASoAAAAAAAAAAAAAAAAAYYsAFQAAAAAAAAAAAAAAAICwRYAKAAAAAAAAAAAAAAAAQNgiQAUAAAAAAAAAAAAAAAAgbBGgAgAAAAAAAAAAAAAAABC2CFABAAAAAAAAAAAAAAAACFsEqAAAAAAAAAAAAAAAAACErSJ+DwAAAAAAAAAAULi999579tprr9nGjRutaNGidtppp9nw4cOtWrVqfg8NYeaWW26xZcuW2dy5c9O9dvDgQZs4caLNmDHDtm7dahUqVLDzzjvPrr/+eitWrJgv40XhdeDAARs/frx99tln9ttvv1lUVJQ1btzYhg4dameddVaqdf/66y974YUX7KuvvrI///zTqlatav369bPLL7/cihThVh9yzu7du928/PLLL911sHz58ta1a1d3HSxXrlyqdZmX8Ms333xjl112mfXp08dGjhyZ6jXmJfLS1KlT7aGHHsr09YULF6ZcO5mbBUMgOTk52e9BAAAAAAAAAAAKpzFjxtjLL79sdevWtc6dO7sbsp988omVLl3apk+fbieeeKLfQ0SYGDdunD3//PNWqVKldAGqw4cP25VXXmnffvutnX766S7IsmLFClu0aJG1bNnSBQCjo6N9GzsKl/3799ugQYPsxx9/tJNPPtnatm1r+/btc2EqPd966612zTXXuHX37t3r1l2/fr11797datSoYfPnz7fVq1dbjx497LnnnvN7c1BIaO4NGDDAfv75Z+vQoYO7Dm7YsMHd7D/hhBPsv//9r1WpUsWty7yEn9fPXr16ueDpBRdckCpAxbxEXnvggQfszTffdIG+kiVLpntd/2ypED5zs+AgygYAAAAAAAAAyBVr16514anWrVvbpEmTUgIo55xzjt1444322GOPudeB3BQfH28jRoxwgb3MTJs2zYWndKPrjjvuSFmuOarw1OTJk12FACAnvPLKKy48NXDgQFe5IhAIuOU333yzq0YxduxYO/vss61mzZquWsVPP/1kDz74oLv5Kqrgp2pqn376qQtd6WYskBMhU4Wnhg0b5r6jPW+88Ya7huoG/xNPPOGWMS/hF30vKzyVEeYl/Pj/Oqque9ddd1lERESm6zE3C47MjyIAAAAAAAAAAMdBwRO54YYbUlXvUXsqVVyZPXu2bd++3ccRorBTGyoF9hSe6tSpU6breRWmrrvuulTLdWNLlQMUsAJyysyZM11o6rbbbksJT4mqo1188cWWmJhoc+bMsbi4uJSqPwpbeSIjI+3OO+90PzM3kVO2bNniWpdeccUVqZb37t3bPS9fvtw9My/h53f6O++8Y126dEn3GvMSeS0pKcnWrVtn9erVO2p4irlZsBCgAgAAAAAAAADkim+++caKFCniwlJpnXLKKZacnOzWAXLLW2+9ZQcOHHD/xf/48eMzXEeVLH799Vdr1qxZuvYrJUqUcMs3bdpk27Zty6NRo7AbOnSoC+eplWlaXthU83blypV28OBBa9euXbqbs2p/Wr16dVu8eLELXAHHSxVS1FJKodFgqkolFStWdM/MS/hh165ddv/997t5d8kll6R7nXmJvKZ/Njx06JA1bNjwqOsxNwsWAlQAAAAAAAAAgBx3+PBh+/33361y5cqpqk8F3zCQDRs2+DA6hFNQZdasWa5dSnCln7Q3wKRGjRoZvs5cRU4bPHiwXXvttemWK1SqNj7SoEGDLM1NXWtVOQjIaXv27HGtpdRmSmHo66+/3i1nXsIPaneqEMrjjz+e4fc58xJ+tO8TzUddJ8844wwXuu/fv7999NFHKesxNwsWAlQAAAAAAAAAgFy58aowQGxsbIavlypVyj3v27cvj0eGcNK+fft0VaXS2r17t3suU6bMUefq3r17c2GEwP+bMmWKq1Shm6m6EcvchF+mTp3qqqXcdNNNrtXuU089ZR06dHCvMS+R1z744AMX5rv99ttTQs1pMS/hV4BK7fl27txpvXr1cm3KVbVPLXpHjx7tXmduFixF/B4AAAAAAAAAAKDwOXLkiHvOqPpU8PL4+Pg8HReQFnMV+cHHH39sjz32mKv0M3LkSIuKinIVKYS5ibxWrlw5u+qqq+zPP/90VdEUXNm6datdeeWVzEvkKQX4RowY4QJ8qiaZGeYl8pr+Q5Fq1arZsGHD7IILLkhZrrbQF198sWsd3bFjR+ZmAUMFKgAAAAAAAABAjitatGiqcEpa3s2E4sWL5+m4gLRiYmJSzcm0vOUlSpTI03EhvCpPqVqFPPnkk9amTZuQrqPMTeS0Hj16uNCU5uOHH37oAlWjRo2y77//nnmJPHXvvfdaYmKiC5hm1opXmJfIa/re/vLLL1OFp0RV0lS9z6uextwsWAhQAQAAAAAAAABynNqmRUREZNqiz1vuta0A/OK1VDnWXD1WK0AgVElJSa7a1MMPP+wqTz377LN2/vnnp7zutUDNrK0PcxN5oXr16q7ylMyaNYt5iTxtJTlv3jy76667XKWfo2FeIj9p1qyZe968eTNzs4ChhR8AAAAAAAAAIMepHYX+C+zff//d/RfXakcVTO0tpG7duj6NEPhbnTp1Um5yZcRbzlxFTlLFCVWvUHs0hfheeOGFlMpTocxNVfGrWrVqnowZhXs+Ll682FX6UcuptPR9Lrt27bIzzjjD/cy8RF60NpUHHnjAPdJ699133UMVgC688EK3jHmJvApAr1692g4ePGjt2rVL97qWi6pP8V1esBCgAgAAAAAAAADkCt1QmD59ui1btszat2+f6rWFCxe6ViytWrXybXyAVKpUyWrWrGkrV650N7yC20oeOHDAtazS6xUqVPB1nCg8FFK5+eabXesfVfd55ZVXUm6wBmvSpIlr6bNo0SJ3s1ZV/YJDqL/99pudeuqpFhkZmcdbgMIYoLrqqqvc9W/BggUuBB3shx9+cM+1a9dmXiLPKBiVUThF8+z999+3hg0bWrdu3axRo0bMS+S5IUOG2KFDh2z+/PlWvnz5VK8tWbLEPTdt2pS5WcDQwg8AAAAAAAAAkCv69evnnseMGWNxcXEpyz///HN3Y6FLly5WuXJlH0cI/K1///7uJphaqAXT71o+aNAg38aGwmfChAkuPKVqE1OmTMkwPCUxMTGupd+WLVvstddeSxXAeuqpp9zPgwcPzrNxo/BS66iuXbu6VlLjxo1L9dqqVats0qRJLlyl+ci8RF7p27evDRs2LN2jT58+7nUFp/S7QlTMS+QlhaDOPvtsS05OtlGjRrlglGft2rU2fvx4d83UP18yNwuWQLKOKgAAAAAAAAAAueCRRx6xyZMnW61atdzN2e3bt9vMmTOtbNmyNm3atJS2QEBeaNCggas4NXfu3HTVVwYOHOiqrKjaRYsWLWzFihWuWoDaqv373/9OV5EFyI7du3fbmWee6aqd6ZqoAEBGNO86dOjgWqbpBqwqVOjv1EpSFYI0V8855xwXUFU1P+B4bdu2zS6++GLXerd169bWvHlz9/OsWbPcHNNcU1BFmJfwk+ba5Zdf7ipUjRw5MmU58xJ5aefOne6a+csvv1jjxo1dtV39/5wvvvjCBao037p37+7WZW4WHASoAAAAAAAAAAC5Rv8KWgGqN9980zZt2mRlypRxNxjUvorwFPJLgEr279/vKq988skn7qZYlSpV3E0ttbVSdRYgJ+jG6g033HDM9a699lobPny4+/mPP/6wsWPH2uzZs12FILX9U2WWSy+9lGAfcpRu8r/44osuNKV5V7p0afedrfmodmnBmJfIbwEqYV4iL+3Zs8deeuklV11X4Sm16mvbtq27Zqp1XzDmZsFAgAoAAAAAAAAAAAAAAABA2IrwewAAAAAAAAAAAAAAAAAA4BcCVAAAAAAAAAAAAAAAAADCFgEqAAAAAAAAAAAAAAAAAGGLABUAAAAAAAAAAAAAAACAsEWACgAAAAAAAAAAAAAAAEDYIkAFAAAAAAAAAAAAAAAAIGwRoAIAAAAAAAAAAAAAAAAQtghQAQAAAAAAAAAAAAAAAAhbBKgAAAAAAAAAAAAAAAAAhC0CVAAAAAAAAAAAAAAAAADCFgEqAAAAAAAAAAAAAAAAAGGLABUAAAAAAAAAAAAAAACAsEWACgAAAAAAAAAAAEDIvv32W2vQoIF7fPHFF0ddd9KkSW69u+++2/KLLVu2uDG1adPGCpNly5bZoEGDrGXLltaiRQsbMGBAlo5jly5d8myMAADkN0X8HgAAAAAAAAAAAACAgu2BBx6wVq1aWbly5fweSljbv3+/XX311bZv3z6rX7++nXTSSVajRg2/hwUAQL5HgAoAAAAAAAAAAADAcdm5c6c9+OCD9vzzz/s9lLC2fv16F54qX768vfPOOxYVFeX3kAAAKBBo4QcAAAAAAAAAAAAg21R1Kjo62j777DN7//33/R5OWIuPj3fPFStWJDwFAEAICFABAAAAAAAAAAAAyLYTTjjBhg8f7n5+9NFHbfv27Vn+2wYNGrjH3r170702adIk99rdd9+dsuzbb791y9Qy8Ndff7XbbrvNTjnlFGvRooVdeOGFNnv2bLfeb7/9lvKaWgtedNFFKa9lZMeOHXbPPfdYhw4drHnz5tavXz978803LTExMcP1161bZ3fccYedccYZ1qRJEzv99NPd56kCVFoav8Y8b94897PG2qZNG3v44YeztI+++OILu+KKK6xdu3bus7p06eKqfW3ZsiXdvrz00kvdz2vXrk3Zt2nXC8XMmTPtsssuc9unz+7cubPb7jVr1qRb95dffnHb16NHD2vWrJkb75AhQ+ztt9+25OTkVOtqGzS2jN5H26vX9Ldp7dq1y5566in3GU2bNrW2bdvaP/7xD5szZ06G41+1apXddNNN1q1bNzd+zYcrr7zSfQYAAMEIUAEAAAAAAAAAAAA4LgrZKBSkINS9996b65+3YcMG69u3r33zzTfWunVrO/HEE23lypV23XXX2fTp091rClu1bNnSatSoYd99951dc801GQZtDh8+bAMGDLAZM2a4UI6CPz/99JMLaSkYljb8o1CR3v+DDz6wMmXK2JlnnukqPn300Udu+VdffZXhmBUu++STT+zUU0+16tWrW926dY+5nRrDDTfcYAsXLrR69eq54FFkZKRNmzbNevfu7bbR07NnT/feEhsb637Xo3jx4tnYw2YTJkywW265xZYsWWInnXSS++wSJUq47VYgbenSpSnrbty40YXO3n33XVeNTEGrxo0b27Jly9x8GDFihB0vhdP69Olj//rXvywuLs6Fuho1amSLFi2yq6++2p599tlU6y9evNgGDhxon376qdsfGn+dOnVckE37VO8DAICnSMpPAAAAAAAAAAAAAJANERERNnLkSOvVq5cLqEyZMsUGDRqUa5+ncIxCOs8995zFxMS4kJNCMbNmzbJ//vOfruLQ008/bcWKFXPra5mCVVOnTrVOnTqla3unv1cASmErLxA0dOhQF75RBaX+/fu75Zs2bbK77rrL/Txu3Dg766yzUt5H4ShVodJDIatKlSql+hxVgtJ7qbqSJCUlHXUbFZJSFawKFSq4MNPJJ5+c8nevvPKKjR492oYNG+Y+V20Utb0KVC1YsMCqVKnifs8uhcpeeuklK1KkiL333nupwl763PHjx7vXJ06c6JYpjLRv3z4XUrv11ltT1lWFKYWYtN+vvfZaV60sOxISEty2qrqZPkNVpTQ2UdhNFbo0HlW+UlBKXnzxRTty5Ig98sgjLiDn+frrr10VqhdeeMFV7KLVIQBAqEAFAAAAAAAAAAAA4LipCpTXbm/UqFG2efPmXP28+++/34WnJBAI2Pnnn5/y80MPPZQSnpLzzjsvJQCVEbXv88JTUrt2bbdMJk+enLL8P//5jwtcKbATHJ6Ss88+27URPHDggAuQpaX2gF54ygudHY1XIUlVqLzwlPd3ChGp8tWePXtc0CqnKQx18OBBV00qbehJ1Z5UVUoBM4/XtlFzIJgqRD3++OOu7Z7eK7s+//xzV3VM7RgV0PLCU6LKXN68U7As7ZiCj6uo7aIqYqkiWGYtGgEA4YcAFQAAAAAAAAAAAIAcoUo/HTt2dOEbVWo6VpWl7FLLPLXBC6YqTKLAj14PphZuXmWltNSWLm0YShRQUrs8VVFSoEjUSs8LQ2VEfyPBrfU8ammXVdu2bXMBNIXAunbtmuE6as8namOY08qXL++CSTqOF1xwgY0dO9aWL1/uAkclS5Z04SkFkTzt27d3z6r2pOCZqmIp3OWF1zRWtTvMrmPtd1UVU7BMrRoPHTqUakw33nijG9fs2bPd9ohaEJ577rlWtGjRbI8JAFC40MIPAAAAAAAAAAAAQI557LHHXGBm2bJlrsWbKhblNC8QFUyVp6Rs2bKZvpaRtEEsj8I1CmX9+eef9scff1ipUqVs69at7rXg6ksZ+f3339MtCyVApM8TteILrrYUzKv25K2b05599lnXNk+Vn9QOTw/tAwWnevfu7Vooei677DL7+eef7Z133kl5KNDUvHlz6969uwssKXiVXd5+V9s9PY5G+6NmzZqulaKOg4JTqiKmh9r1tWnTxs455xwXDDueqlgAgMKFABUAAAAAAAAAAACAHKMKUGo7p1Zrzz33nKsOlB1Hq16VWagoO7w2gBlJTk5O9XnemNSuT2GczBQvXjykEFdmn3s0Xvu53AoB1a1b12bMmOGqaX311Veu0tW6devs448/dg+F5J5++umU/fPEE0/Ydddd59rtLViwwAXoVLVKj0mTJtnUqVOtWrVqWd6uYN5+b9u2rVWuXPmof+8dFwW2xo8fb2vXrrVZs2a5KlaqUKVnPd544w0XqipdunQ29xAAoDAhQAUAAAAAAAAAAAAgR6ltm4I0M2fOdK38zj///AzXU6hIYaGEhIR0r3kt4HLb9u3bM1yudm+7du1y4SCFwkStAX/77TcbPny41apVK9fG5H2eKi9p32QUGFOLP6lQoUKujUNVpNQ2z2udp/3xwQcfuODUhx9+aEOGDHFVpjw1atSwK664wj2OHDliixYtsscff9zWr19vEyZMsIcffjhVmCyj4753795M90evXr1cNatQNGzY0D1uuOEGi4uLs6+//tq19FMYbNq0ablSIQ0AUPBE+D0AAAAAAAAAAAAAAIXPQw895AJHa9assddee+2olZrUJi8tVTDKqwDVjz/+mG75p59+6iofNWvWzIoVK+aWtW/f3j2rolFG/vOf/7iw2OjRo49rTGrdpxZ9hw4dsi+//DLDdVQdSk455RTLaStXrnTbcc0116RarpaGatfXsmXLVK0KFULSvtm2bVuqSlCnnXaaC1MFt+HLznFv167dUff7999/b2eddZZde+21LpSloNSAAQNcu8HDhw+nasuo9bwQVvCYAADhjQAVAAAAAAAAAAAAgBxXpkwZe+yxx45a5UmVgUQt3oLb1qm1mqoX5ZW7777bdu7cmfK72r499dRT7mcvACRDhw511aCef/55++STT1K9x9KlS13Lwp9++snq169/3GP6xz/+4Z5VLUkhNI/2k1rTzZkzx2JjY613796WG+37VGlr7ty5LkgWTNv3ww8/uOpUTZo0ccvKly9vu3fvtpEjR6YKLOlnVSETBdHSHne10QuuQvXFF1+4CldpnXvuuS5UNnv2bHv22WdddSvPH3/8Yffee6+ryKVKVTo+CkqptaFee+aZZ1K1Bdy/f39KECt4TACA8EYLPwAAAAAAAAAAAAC5olOnTnbhhRfa9OnTM3z9qquusuXLl9s777xj3333nQvuKKCzYcMG69u3r1ue26pVq2Y7duyw7t27u0pH8fHxLrylkM6VV15p3bp1SxX8efDBB111rZtvvtlOOukkq1Onjvv7FStWuHDToEGDMm1ZGIqLL77YVq1aZW+//bb169fPWrdu7SpArV692oWFSpUq5SpdVapUyXKaKkSp3d4dd9xhN910kzVu3NhVxFJISkExhZ6uv/56t0xuvfVWW7hwoQtLLVmyJCVYpfGrypQCZQqfeVTFSsGs+fPnu/2u9bds2eKCWRkd95iYGBdO03x56aWX3D7RmDSOxYsXu2OmVoJ33nlnyt/oOA0cONCF89ROslGjRi7QpeOkNoGq3JUTxwkAUDgQoAIAAAAAAAAAAACQq9WdFK5RQCatM8880/71r3+5ikpqG6eWaieffLLdc889Vrp06TwJUKlSlipKqeKUAj0K5SjQc/nll1uPHj3Sra/2bwrjKJijoJWqIpUtW9Y6dOhggwcPtq5du+bIuAKBgD3++OMuhDZt2jQXRlJrOlViuvTSS10ISeGv3NKrVy+3b15//XXXIk9tDhXa0nYqJNalS5eUddWq8c0337SXX37Z5s2b5x6qBFWjRg0XBNO+9Nr2iY6xqoy98MILLpClaloKz40aNcq9f0bHXdWiVJ1K80XrL1iwwL2nwlkaq46LKk959H4ak+aWQlb6G1WlUuitZ8+eblxqMwgAgASSg2thAgAAAAAAAAAAAAAAAEAYifB7AAAAAAAAAAAAAAAAAADgFwJUAAAAAAAAAAAAAAAAAMIWASoAAAAAAAAAAAAAAAAAYYsAFQAAAAAAAAAAAAAAAICwRYAKAAAAAAAAAAAAAAAAQNgiQAUAAAAAAAAAAAAAAAAgbBGgAgAAAAAAAAAAAAAAABC2CFABAAAAAAAAAAAAAAAACFsEqAAAAAAAAAAAAAAAAACELQJUAAAAAAAAAAAAAAAAAMIWASoAAAAAAAAAAAAAAAAAYYsAFQAAAAAAAAAAAAAAAICwRYAKAAAAAAAAAAAAAAAAQNgiQAUAAAAAAAAAAAAAAAAgbBGgAgAAAAAAAAAAAAAAABC2CFABAAAAAAAAAAAAAAAACFsEqAAAAAAAAAAAAAAAAABYuPo/97+a/xIPykoAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -766,13 +790,13 @@ }, { "cell_type": "code", - "execution_count": 43, + "execution_count": 14, "id": "f8c74802", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACn0AAAcACAYAAAAfNBQwAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAXEgAAFxIBZ5/SUgABAABJREFUeJzs3Ql4XHW5P/A3acu+K/siuyAgCAoiKDuIiisq4oYbchVF9KJeN1yvylVRQRQXQBAB2Soi+77vIPtOoS1CgVK60TaZmf/zHjz5pyFJkzbJySSfz/PkJk0yM+85M/HOy+973l9Lo9FoBAAAAAAAAAAAAADDWmvVBQAAAAAAAAAAAACwYEKfAAAAAAAAAAAAAE1A6BMAAAAAAAAAAACgCQh9AgAAAAAAAAAAADQBoU8AAAAAAAAAAACAJiD0CQAAAAAAAAAAANAEhD4BAAAAAAAAAAAAmoDQJwAAAAAAAAAAAEATEPoEAAAAAAAAAAAAaAJCnwAAAAAAAAAAAABNQOgTAAAAAAAAAAAAoAkIfQIAAAAAAAAAAAA0AaFPAAAAAAAAAAAAgCYg9AkAAAAAAAAAAADQBIQ+ARbCpEmT4tWvfnW3H5tssklst9128e53vzt+8YtfxNSpU6MZfP3rXy/q/+///u/5vr/rrrsW3z/99NNfdpv29vZ47LHH+vU4Rx11VHF/eb/0T/kau+6662I4uPzyy+MrX/lK7LbbbrHlllvG6173uth9992L71100UUxUt14440dz0X+DXT11FNPxcyZMyupDQAAAAAAAAAY2YQ+ARbRxhtvHFtvvXXHx2tf+9pYYYUV4qGHHopjjz023va2t8UDDzwQI80111wT73jHO2L8+PFVl8IQmzNnThx44IFx0EEHxbnnnhtz586NjTbaKNZff/2YMWNG8b0vfOELsf/++8cLL7wQo8W8efPiV7/6Vey1117x3HPPVV0OAAAAAAAAADACja26AIBm961vfauY7NnV888/X0zPvOKKK+KLX/xinH/++dHa2nxZ+xNOOCHa2tpilVVWme/7GWjt75RPRobDDz88rrzyyiLkecQRR8QWW2zR8bNGo1EEgvO1f+utt8bnP//5+Mtf/hIjSQa7zzvvvOLrsWP//1upKVOmxDHHHFNhZQAAAAAAAADASNd86SOAJrHiiivGT37yk1hsscViwoQJRRCuGa2zzjqxwQYbxLLLLlt1KQwDkydPjnPOOaf4+uijj54v8JlaWlrizW9+cxx55JHFv2+++ea4/vrrYyRZcskli7+J/AAAAAAAAAAAGEpCnwCDHPzMba9TbvcOze7ee++Ner0eyyyzTK+hx2233TbWXXfd4ut//etfQ1ghAAAAAAAAAMDIJfQJMMja29uLz0svvXS3Pxs/fnwcdNBBxXTEnJr4ute9Lvbaa6/4zne+0+326R/96Efj1a9+dVx11VVx//33xyGHHBJvetObYvPNN4/ddtst/vd//zemTp3abS1z586NP//5z/Ge97yneJzclv7QQw8tJpH2ZNdddy0e7/TTTy/+fdZZZxX/vummm4p//+53vyv+ndt5L6oXXnihmBC5zz77FFtob7nllrHHHnvEN7/5zXjggQe6vc3VV19dnL/tt98+Nttss+KY8hydfPLJMW/evPl+98YbbyxqzY/yeemq/Hn+blfPPvtssZ352972tqK2PIfve9/74rjjjivObXceeeSR+J//+Z/iPOZztM0228S73/3u4jife+65WFg5bTMfO+vIY/7sZz8b11577Xy/8+ijj3Yczz333NPjfeXrLX+n3LK8N+PGjSs+z5w5M2655ZZef/f3v/99XHjhhcXz0Z1LLrkkDjzwwOK5y3OTfwNf+cpXXlbrxIkTY5NNNilqzNDpgo6jfK12vv13v/vd4rWUf2Ovf/3rY//99y9+r1arvex+8rWc93PKKafEaaedFjvvvHNxuz333LN4XXT3OspjzL+/Uv5u+Tr68pe/XHydr9Pens/8nb333ruXMwoAAAAAAAAAjHZjqy4AYCR74oknigmfra2tRaCtszlz5hSBtzJcuOaaa8bGG29cBAEzhJkf//jHP4rw4mte85qX3XeGPk899dRoNBrFRMUMlebjZajziiuuKMKZOY2xNH369OLxbr/99uLfG264YVHXBRdcEFdeeWXHVMYFecUrXhFbb711PPjgg0Xwb/XVVy8++nr7nkybNi0+8IEPxOOPPx6LLbZYsa18Bgzz32eccUb8/e9/j2OOOSbe8pa3dNzmxBNPjB/96EfF16usskoRDHz++eeLQGp+5LGdcMIJMWbMmFhUt956a3zuc58r6sy68njz3GdA8e677y7q++Mf/xgrr7xyx23yXH/yk5+M2bNnx3LLLVdMfc1waJ67++67L84+++wiVJjnrz/yPOS26fmc5/P45JNPFs95fnzhC1+Igw8+uPi99ddfvwimZh1ZX4Ziu7rtttuK19ryyy8fu++++wIfO5/7pZZaqjimfD1l2DFDullHV6961au6vY8MSmawMl/f5WsqA4+TJk2Kc889N84///z4xje+ER/5yEeKn6+99trF5ND8W8lwZHd/D3fccUdxHLn1eufg5EUXXRSHHXZY8fe2xBJLFOfkxRdfLJ7P/PjnP/8Zv/nNb7oNZedj5flZbbXViuc769t0002L566r/NvNc5KvhZTnevHFF49ll122COfm41xzzTVFIHullVZ62e0z/J3e+9739nr+AQAAAAAAAIDRzaRPgAGWkwMzeHjZZZfFZz7zmWIr7AzHZaizsz/84Q9FiC23gM+Jg/n7Z555ZhHcy39neDBDZDlJszsnnXRS7LDDDnH55ZcXgbKLL764CANmwLEMSnaWEyoz/JcBtgwb5m0ydJfTHddYY41eJ0F2ttNOOxUTEMvg3bve9a7i371NMeyLDExm3RkqzBBq1pdBuAy35tTEtra2Yopp5xDrz372s+LrX/ziF8XEzzx/eR7/9Kc/FQG/Mvi5qJ5++umOwGcGU6+77roinJg1Zqgwp23m1NUvfelL893uxz/+cfEcZjAyp3Dmec/zndMvM0SY9/vb3/623/Vk4HPfffctQoR5zPm5fOyjjjoqrr/++o7fzcBhylq7m2pZhg3f/va3F2HbBcnwak4uTbNmzSpen3nbDOPmlM58LfQ2OTb96le/Kl57+VrM5z3PZx5Hfv7Wt74VLS0t8cMf/nC+yaVlGDKPI/+muspQa8rXShl2zucka8qg7X/9138Vf2/5e/mc5XORz0Geq5wC2p0MfGbwNF9TWe+ll15aHH93vv3tbxfHVcpJruXfSU4yzb+xfA13N001XwdZR/7t5t8TAAAAAAAAAEBPhD4BFtHHPvaxjq2e8yNDXm984xuLkFmG3zL42TUMmDLglpM2cypjbmXeWf77Qx/6UPF1ToXsTk5H/PWvf11MuCzl9tLlJMwMrJWeeeaZIlSX/u///m++SYnrrbdeERYtt+2uSgb0yi26O09CzEmJGQTMLezf8IY3FBMb02OPPVaE+XJCZW633tmOO+5YBG3zvgbiuDJEmoHP3KL9Bz/4wXzBv5xImucvg4a53XkGVrseUwYvOwcqc3Ll1772tdhll11eFgbui9wiPkOROXEzZVgwX2/vfOc7i38fe+yxHb+b5yZ/L7emz3BoZ3n+cqpmfydMZvA1w6qda8/gYgZhM0CZ5z0fN6fN5jTUzrKOnL6a8rx1noCbx5EB2QMOOKC43S9/+cuOn+V95jTOKVOmxA033DDffXYOU3Y+jgzAzps3rwhu5t9gBoFL+TeQfz/5mBnofPjhh192nDmpM0Oj5aTY7iZ09kX+nb/nPe+ZL5zaWX4vg6x5Ljr/PQMAAAAAAAAAdCX0CbCIclvnnE5Zfmy11VbFNt5lyC8DbhnQ6zplMacA3nnnnbHffvt1e7+5TXUqQ45d5fTADKV1tcEGGxSfZ8yY0fG9DCJmqCxDerlNdlcZXMxQZZXK7eFz8mNuq925/lVXXTWOP/74InBZBvfWWmutGDt2bLzwwgvFVuFlwLL0+c9/vgj15eTHRXXJJZcUn8tQZVevfOUri6mrKSevdt3e/PDDDy8mOWY4sZQB0pyS+dnPfrbf9ey///7FNMzuwpjlJNCcMJoyKPnWt76128BhTq7Mian5Gt5iiy36VUPWn9NljzvuuCKo2XV790ceeaSYCJph1AxelnJya/47f7+77eZTOe0y/z6ee+65jr+HMtxbbgvf+fWdodx8fW+33XbF9/Ix8rF6e94ypL3JJpsUAdPOz1vnYGgZrF1UGUbN5yyP6dFHH53vZ7Z2BwAAAAAAAAD6amyffxOAbuUUyjJo1lmGznIL6Qwq/uUvfylCn123kc4plBlavOOOO4qpoBMnTiw+33fffcVExNTdVtZlELI7ZSiyvb2943s5FTNluK8nm2666XxTKofapz71qWIr9pxKethhhxWBzgwiZhg1p5fmFuqdg4456fTTn/50EZzM0Fx+rLzyysWU1Zz0mbdZ2MmMneUW5pMnT+6YTHniiSd2+3vl73QO9OVxZOjxX//6VzG9MgOEOa00j2nnnXfuCLr2V+dJrV1DjOVz//jjjxfPaTlpNKduZshz5syZHdufL2rYMCdgZti1DLxOnTq12EL9iiuuKCZv5t9Ahilz4mZOzEwPPfRQ8fmpp57qmGbbVefpoHk+87kuj+P0008vtmfPIG35Wi/DrDlNs3yN5N9RGTb93ve+1+PW9U8++WTH43SVr6eBkiHl/N+JnFKa9R566KHF9zMEmgHZFVZYoZj8CgAAAAAAAADQG6FPgEGSIbMPfvCDRYgxQ29/+9vfiqmOq6++evHzDN/96Ec/KqYWdp4AmUHQnICYgb2rr766x/vvz7blOc0x9Ta1sPOW5VXI85JhuNyaPMOfuV347bffXnz85je/KaY4fuMb34jdd9+94zYZnNt8882LUG1urZ7nOs9nfmRoNCdDfuc73ym2iF9Y+TyVHnzwwQX+fucJpRk8PeOMM+IPf/hDEYTMAGkGa/Pjxz/+cbFN+/e///2XTclckJzeuaDvv/jiix1fv/71ry8CphmEvPDCC4vwZJ6r3O49z1NPkzD7K0O2e++9d/GR26kfeOCBxTn761//Gl/+8peLQGZ5fvK83nbbbX1+7abXve51sd566xUh5ssuu6x4fjM0nec27/vd7353t8/D3XffvcDH6fz7pe4m6S6KPO8Z+szXZ56frLkM3u6zzz49BlMBAAAAAAAAAEpCnwCDbLfdditCnznp89577+0IfX7uc58rpiLmtMKPfOQjxSTL3BY+twTPQGeGRHsLffZHThHsGmDsqqdt5IdSTnTMYGd+PPDAA3HTTTcVIbkMJ+YkzS9+8Ytx6qmnxmtf+9qO2+yxxx7FRx5b/n5+ZKgyJzeW28TnNNDepkmWyi3RO8ttxUsZ1uttWmp3Mrz7i1/8ogj25sTPfM6vu+66IvB46623FhNAc3Jlf7YR767OrsHF5Zdffr6f5TTPrCOPIcOH//znP4vXZL4+y0maC5K/v99++xVTaH/yk590O+G2lK/zr33ta8UE13xuMmS6yiqrdJzPvfbaK37961/38YjnP46f//znxXFk6PP8888vJnpuu+22sfbaa3f8Xufzmee6p6DsUNpzzz2LkG++lvO532qrrYrnIeVzAgAAAAAAAACwIK0L/A0AFknnLcnLoGFu557hv5STLb/+9a8X0xFz4mM5wTO3vx4oOR0x3X///d2GHdPDDz8cVcrJnhnwLMOnuVX5Rz/60WLKZ25LnpM+M3R47rnnFj/P38vjyY+UW5bvuuuuxbnMIGC5nXhuL16GIXM78lK59XdnU6ZM6XYC6itf+coFnqMMqd53333F5MmUteYW6zfffHPx73xec+Lm5z//+Tj55JOLj3xtZBgyQ6D90d1W5ClDxSmDxOuss858P8spmHn8Wc+0adPi4osv7vfW7nn7DHzmlug5XXNByu3RW1tbO4LH5Wux3Oa9OzmlNMO7EydOLM5jd8eRQeAMk2b4s7vQZAZAy+e7t+ctt1fP5y6nsA62fF7e/va3F1/n+S+fiwwG5wcAAAAAAAAAwIIIfQIMspw6mTLgl1uRp0mTJnX8vPxe19BbOQGwa+htYWQYMkOHGazMAGVXGTzsS4ivpzDrompvby/CfB//+Me7rSNDl+WEzXq9Xnw+7bTT4l3velccdthh3QZZ3/SmN3V8XZ7DFVdcsdfgZBmE7GrnnXcuPuc28uXjd5ah0o997GPFMfz5z3/uCDXmZMc8pjy/XeVW5eX0ye7uszdnnnlmt98/6aSTis9vfvObO8LDpVVXXbX4fp7rs846K26//fZiwmd5bH1VbgWfE1czLNmb8jWcz0W5dflOO+1UhDHz/F977bXd3u6EE04oAr/5/Hbepj7ltNA8jgzt5nnIiZl5HnNyaGcZAs7pn+nEE0/s9nEyVLr//vsXx3TBBRfEospwa6mncPW+++7b8Vor/xb7E7wFAAAAAAAAAEY3oU+AQZKhr9y2u9xaPENpq622WvH1+uuv3/F7Ockyt/4u5VTCz3zmMzFhwoTi311Dbwsjpyx+8pOfLL7+5je/Gddff33Hz3JqY24139OW4T0pt8/OraoX1dixYzsmIP7oRz8qpi92lucxJzumt7zlLcXnnIyawcYHH3ww/vd//3e++qdOnRpHHnlk8fWWW24535TJcivzI444IqZPn97xXOXEyHwuunPggQcWx5sBwwyZ5v2X8vjz5zmxcdlll40Pf/jDxfc32WSTIqiagdMvf/nL801uzcBi1peTKvN+cwJof2RYMLdqL6eV5uef/vSncdlllxXnJKeJdqechnnUUUcVdWXYMc99f3ziE5+IddddtzjfGczMoGk53bSU5ye3YP/9739fTLfM4y/lxNb3v//9xdf5/ay5lOHX008/PY4++uji33kuM7zZVRmS/NWvflU8d29961s7to3v7Atf+EIRMM3psD/+8Y/nm+aZr5t83vJvL2vaZ599YlF13lI+/666s8UWWxRTbPN1k6HVfL4G4rEBAAAAAAAAgNGhf0kPAF7mhz/84cuCaTlNMUNdzz33XPHvzTbbLL773e92/Pw1r3lNEVrMbciPO+64YvLiWmutVQQHyymgO+ywQzEJMYNqGQ7sLvzWHwcffHA89thjRYDygAMOKIJ7GVLL8FtOKMwJjOVU0r7IY8it0zMsmRMfM7h4+OGHL3R9hx56aBGqzC3KMxSYQbyczJlbrpfbrn/oQx/qCH3mxMcMe2YIMyc5nnHGGcWW5hlmfOKJJ2Lu3LnF7TNEWsrj/NKXvhTf/va3i+3D85gzCJr3n9M4d9lllyKw+K9//Wu+2l71qlfFL3/5y6LGDBBeeOGFseGGGxaBwQzn5vOd5zJDjmWoNGWwc7/99isea/fddy+e4wwn5nOcgdMMJH7/+9+PlVZaqV/nKgPExx57bDHtNO8zJ1Zm8DIDhBlu7Gmr8Dy+fKwytLowEyYzQHv88ccX5+KOO+4oXv8/+clPijqWW2654rhyW/sMY+a5yJ/l67+zb3zjG8XU2Xz9/Nd//VfxXOYk0vybKWvLY8znqqfjyDry76W349hmm23iBz/4QfG6zOmhOZ10gw02KP6myhpziuyf/vSnjkmkiyJrytdtHkcGbzPcfcghh3S8ZktZbz5PGZzN4+w8gRYAAAAAAAAAoDdCnwCLKEOTXS2++OJFuC7DabnFd3cTFXMSYm57/be//a0IKWZwMsNfeZsMCua22/l1TgzMaYjlttoLK0NtORlx/PjxxWPm9uO5Rfv2229fhOuuuuqqfoU+cxpphiVzm+oMPuaUy0WRW3Tn1MjcHj0nWeZ9ZjAwz8luu+0WH/jAB162FXmek5yemtuuZ1DzkUceKYKPGdLMc5fh1q6ByryfvE2GAHOiaN4mg5+f/exni8mS5aTOrjIgmtuV5+2uvvrqIkCbAdMM+WVANyeprr322vPdJoOhZ599dhEqzOmq+Vxm0DBDjnvssUcxNXOjjTbq97n61re+Fdttt12ccsopxesvA8Fve9vbimPICaM9yXPzjne8owjJbr755sUk0oWxxhprFAHKfJ7yI8OfGdbMMOvyyy9fbF2/6667Fuc6/93d38dvf/vbIvScgee777477rvvvuI1kMeVoch8bjtvl971tZzTMfP1ks91b5NSc7rpVlttVbyurrvuuo7XfYY/8/WUz1vnoO6iyr+xDBrn8eRrOP+2u8pjy0mz+fqxtTsAAAAAAAAA0B8tjUyfAACjQm55ntNev/Od7/QYcGVwZcA7g58rr7xyEbTOia8AAAAAAAAAAH3R/QgtAGDEyS3sc0v13GJ+USfHsvBOP/30jimkAp8AAAAAAAAAQH/Y3h0ARrCnn3465syZE7Nnz47vfe970dbWFh/84Adj2WWXrbq0UeXee+8ttrq/4oor4pRTTim2qN9///2rLgsAAAAAAAAAaDJCnwAwgt18883xla98pePfuaX4wQcfXGlNo9Ghhx4aEyZMmO/fq666aqU1AQAAAAAAAADNx/buADCCrb/++vGKV7willhiidh+++3jxBNPjBVXXLHqskadrbfeupjuudpqqxUh3IMOOqjqkgAAAAAAAACAJtTSaDQaVRcBAAAAAAAAAAAAQO9M+gQAAAAAAAAAAABoAkKfAAAAAAAAAAAAAE1A6BMAAAAAAAAAAACgCYytugAA6K+f//znccIJJ8S5554br3rVq+LVr371Qt3PpZdeGmuttdZC3fapp56KZZZZpvhYVB/96EfjpptuioMOOigOPfTQGAjTpk2LP//5z3HZZZfFE088Ee3t7bHaaqvFDjvsEJ/61Kdi7bXXnu/3H3/88Xj7298en/zkJ+PLX/7ygNQAAAD0bkG9zNixY2PppZcu+pY3v/nNxXv55ZZbbsAev9FoFL3VaaedFpMnT46llloqdt999/jRj34Ujz76aPzf//1f3HbbbTF79ux4xSteEccee2yvNR911FFx9NFH9/jzlpaWWGyxxeKVr3xlbLrppvGhD30odtxxxwE7nl133bU4jh/+8Ifx/ve/P4bKzJkzY/z48UX/9cADDxT9WB5n9l3bb7997LfffrHeeusN+OO++OKL8dxzzy10Xzucla+lrbfeOk455ZSqywEAYJSYNGlS7LbbbvOt33zrW99a4O3+9Kc/xRFHHFF8veqqq8ZVV101IL1NT33ikksuGauvvnpst9128fGPf/xlaz4D7cYbb4yPfexji7y2NhoNxhrgorj//vvjjDPOiOuvvz6efvrpmDt3bqy00kqx0UYbxc477xz77rtvLLHEEjESlf894/jjj483velNo6a/BkYuoU8Amsott9wSf/zjH+MTn/hEEfhMuQjU1bx58+Luu+8uvt544427DWcuvvji/X78vN/f/va3cdxxx8U555wzIKHPgfbII48U5yebtVxUXXPNNYsGLYOduViWdefiWeeGJs9l/oeBP/zhD7HTTjvFNttsU+kxAADAaLLuuusWiyzd9R8TJ06Me+65p/g466yz4m9/+1uxuDcQcqHjpz/9afF19g0rrLBCscAxa9asoj+YMmVK0Uvk4k8ugPR18SMDj5tvvnm3IdMMRGZvkguYl1xySfzXf/1XfOlLX4pmdfnll8f//M//xPPPP1/8O89h9qAvvPBCPPzww0UI9OSTT46DDz64WOQbKP/4xz+KUO4XvvCFIQ24AgDAaHLhhRfGN7/5zWKtpTfnnXfeoDx+9n5d+79arRYzZswoLtR78MEHi4v4fvWrXxVBUejNr3/962KNs16vF+ub66yzTowbNy6eeeaZuPrqq4uPXIP9zW9+E5tttlmMFvproFkJfQLQNHJa5Xe/+91isk3nxbLupn50vhozr8LMqx0HQi56HnPMMTGcz1E2JRn43GKLLYompZwok1eoffvb3y6uwvziF79Y/MeKnNZTysXWvLrv8MMPj7PPPrto9AAAgMH32c9+Nt773vd2+7NcjMkFiFxozH4kA4Y5nXMgnH/++cXnnPr/i1/8ouP7V155ZfFYubCZQdMNNtigX/e78sor9zqdMXdO+NrXvhY33HBDseCU0z5f//rXR7PJiwHL0Ozee+8dn//854uAbCnPYR7fX//61zjyyCNjzpw5AxZwzfvLvm+k+vCHPxxve9vbiglGAABQhZyome/pb7311l77lbxQrxxCMtDe9773FWs+PT1uXlyWkxuzv8o1n+4uJoR05plnFmHO3OHjxz/+ceyxxx4xZsyY+QbKfOMb34g77rij2GUkg8wj7fVUhrPXWGONUdVfAyNXa9UFAEBfnX766fHQQw8VW0gM5JaGI8kVV1xRNGbZtOV2eJ23EMyAZzYuOdUzrwLNqz87y6v68tzmOc5zDQAAVK+1tTXe9a53xWc+85ni37kF24QJEwbkvsvplNtuu223389t2Psb+OyL1VZbLX75y1/G8ssvX/y7Gbfvzl0ofvaznxVfZ9gzj6dz4DOtssoqxUV1n/vc54p/H3vssYO2GDzS5OJivva6LsYBAMBQeeMb31h8vuCCC/oUJHvNa14TQym3dC97kunTp8f48eOH9PFpLr/73e+Kz1/96lfjrW9963yBz5T9V160mGuJ+d8ETjzxxBhp8hjzw8WFwEgh9AlAU2hrayuajWxC9t1336rLGbZyUk655X13Wz7mlvY5RSfdddddL/t5bluQV69m85fnHAAAGB522WWXjq/zQq2BkFNEy+3Y+/L9gbTiiivGVlttNaDHM1Rym/rvfOc7xbaKeQy5k0JvcleF7M/yvB5//PFDVicAALDwMhiXLrrooqIH6C30mRfr5fT/oZYXnq277rrF1zmhEbrzwgsvxBNPPFF8veWWW/Z68d3uu+9efH3nnXcOWX0ALByhTwCaQjbVOVp/++23j1VXXXXA7vexxx4rJq/kNgabb755bLPNNvGBD3yg2C4xt97r7KMf/WjHlvFpzz33jFe/+tVx4403zre9el5NmdvPv/nNby62WH/d614Xe+21V7EomI/XVzmpM+8/P/oqa88rO3PrhZ6U/3GiXMjtOokmz3Ge64svvrjPjwsAAAyuXEQsdV5wzH6k7BuyH+lO+fOyd8neJv89efLk4t+5ZXz+e9dddy0+579T/ry8bW7zPljH1HUBtawvdyrorVfK3+urmTNnFlvZvfvd7y56tAxr7rPPPvHrX/+6mIrTH7m9Y+6wkMoJrL3J8Oz//u//FoHPH/zgBy/7+X333Rff/va3i0XivIAve9M3velNxX13nSpUHnv53H3rW98q/p3f7+zZZ5+NI444otgiPRf18phza8jckn7u3Lk91nrdddfFgQceWFws+NrXvraYMnvyyScX/WNv/WlOoM1tJ/N2WX9ORfr0pz9d9PLdKV9ruRXlD3/4w3jDG95Q1Pje9743pk2b1nGcH/rQh7q9/SWXXFLUmf1rPl7231/5ylfinnvu6fb3M6D717/+tbi/7PvzNllrTmm9/PLLezwfAACMXrml+8orr1ysl9x2223d/s6jjz5avKfN3RNyp4SuvvzlLxfva3PNqCfnnHNO8TsLGxpddtlli8+zZs0qPv/85z8v7i/7nd56mvydfB/eW3/QFwvzXjv7qew7sy8o1+ayV8se8LnnnnvZ75e9SPYr3Sl7yK59UZo3b178+c9/jg9+8IPF42Sfk2t2ucX5lClTegxJZi15DvP3s6fKdcRvfvOb8cADD8TCyiBl9klZR/Y/uaZ36qmnFuewlL3XW97yluJ4ertosOwFc41zQXLYS2lB/U/2df/85z+L11F38vX+ta99LXbeeefiudtuu+2KNckLL7xwvt/LPj/XVLPGXHNd0HEcdthhi9TD53+zyPs59NBDi9d39rLla7F8/K6vo97663xe8us8vp6G5Pz73/+OTTfdtJjya3t4oApCnwA0hXJ7jJ122mnA7jMb6Xe+853FG/ds7DbeeOOiKf/Xv/5VNHs59fKpp57q+P38eTYIpc0226xYkCsb6gyJfvKTnyyanWyaxo0bV9wmtyzM7RdzO/VcwLr33ntjsOTjZdOTC4Tdyeb2sssuK77ecMMNu/2dXCxL2dQBAADDqyfKoGQuOi1q35C9TDnJMyfD5L9f9apXFZ/LSTH58/x3fuQWbwNp6tSpHSHUXMAZTLmgmL1fLg49+OCDxcVueay5QFsuIpUhzr4oF4hyJ4pyy8cFyR4tP5Zaaqn5vp+Lo9kn/u1vfysWN7Ou3KZxxowZcdVVV8UhhxwyX/g1J4Z2fu7K56zzTg+5wPX2t789/vSnPxXTXPL+cpv0DET+9Kc/LRYWn3nmmZfVmOfiE5/4RFx55ZXFAl1ODZo0aVJ8//vfL+roSQZZDzjggCLgmYthm2yySdEPX3311cWC4Ze+9KUeF8m+973vxUknnVQ8Jzn9NY9rhRVW6PGxMtj83//938UCctbZ0tJSLMRlr3vuuecWffxf/vKX+W6Tx5ILf/lYuVifr+W8TS6sZng0F+B/9atf9fiYAACMTtl7ZTiwty3eyz4t3393Jy+8Stdcc03RA3Wn3JY9+4L+yve65QTHsicoHzN7nwzo9faYWXfuELewFua99u23317s6Jchvex7su/IYS9Zb+5C9573vKcI0w2EXPvL/icvwsu1v1yvy7WxvP8MAuZ6WvZPneVFaNlXZC25tpf91HrrrVdcWHfGGWcU5zd7tYXZqW///fcvLphbZ511inOVNWVoMy9oy56mfN3lOUh///vfu72vXI88//zz53u+e7P00ksXfWPKQOPXv/71uPnmm+cLm5Yy6JznKPuzrvKCwHyd5usng7H53GWPm6/v3AEjL8Qr7zN7tfI4cj22Oxk4Lv+2Or/+F6WHz9/JYG0GObO+DIj2tB7aW3/9jne8I5ZYYoni9ZC9Z3fy+cmQ7g477DCgA4sA+kroE4BhLxuEcjEwr34bCNlI5VWE2URlw3fttdcWDWZeiZbNSi5yZiPxuc99rmNaTk5e6dyc5sLbKaecUlzBlf7whz8UdWYjdPrppxfhyjPPPDOuuOKK4t/ZKM2ePbtoFPviwx/+cPEfDMr/aDAQshnKIGs2W9kwdac8x3ks3TV8AADA0MlFkBNPPLFjMkUu6Ky22mqLdJ/Z22Qvkz1K+uxnP1v8O6eI5Of8d8qf57/zYyAvwMvt3HPxL/ujJZdcsggaDpZ8jNxePRd8cspIXqCXfV8uzmSvltNJ8mfZ+3Xd7aEnuYiU1lxzzVhmmWUWurZcQMzFx1wkymBk9qVnn312sXiXgcly0k+GN3NBLeXiaOfnLqeB5r/z+ymni+Sx5MJU9roZUM0wZF7Ul6HMnFCTC7/5eJ3lIl0uqOUCY043ycfPfjZr+shHPtLjxM6cHJohy5wck7tb5AJmLoTm7X/5y18WC4B5PBk27U4uDGdvnfVlD33MMcf0es6yJ//HP/5R/A388Y9/LI4v68zPWXf2ujk5NOsuZS35nOdWhbnYmMeSt8ljzslL6dhjj53vok8AAEjle/KetnjP97p5wVPuDNednEyfF2DlRVDdrfXk+/d8D50XlOVkwv7Kda2yV8jeJuX6VrnO011oMHvMMjC4MEHTzhbmvXYOXck+Ladzlj1Qnpu8n6w9z8lvf/vbWFT5fGUQMXdWyPORj5E9R56zfNzsrbNvygvKOl8Ul33G448/XoT/MuyXvUquG2bQM5/nfC6zj+uvO+64o5gKmecojzlDsXluMpCZ56vzMZfPS9aea5Vd5W1zEmaGGft6UWj+d4Dsz/K85ONnn5cTajNw+vvf/75YN+1uh8BSnou84C97xpx4essttxT3kz12/veKDLFm79l52mqGPrNHywsQuwtp5vORwd/srcsLKhe1h89+Ny90zdtlfVl3hjK701t/nb1++XfdU2g1738g/o4AFpbQJwDDXk7GzDf92Uj0dDVWf+ViVoY5c6x/NimdF+qy6cqmLq/gykakrxMvc5Epazz44INf1mTlv8tt6bpr0LqTTfIGG2xQfAyEbEqzgUy5jUVP2/LlOc7/wJDnvKet8QAAgIGT79OzX+j8sd9++xWTJXJLwR/96EfFBVm5VXcG24a7XDDrejz5kQshuU1dHlcuKOUFc3lhWk5NGSx5AV4u2OVODbn41Hn6Ri7sZIgwF5gygNnXLezLRdXs2RZFLjRm75W15aJWLhaXctpl7iKRclHxscce69N9ZkA0Fy5zm8TsdZdbbrmOn+U0mQxVZv+bC3Sdp5WUFzjmxM5cfM3eNmVfnIuD+bx1t1hcLkzmYmpeuFjerlwgzwBmOdE0p4Z2la/vfF2XejunOVmnDD/ncZS7VKQ8j1l31p+LmBk4LZXTjXKibOc+OG+TAee3vvWtxWuyfF4BAKCUYcGcMpihxZxQ2Vlu8/3www8XE/17mla/oKmN5aTAfG+bj9MX2R9MnDixeO9fvt/O97oZkCuV0x/zgqmuwz0yMFhO2FzUXSQW5r12eZussZywmHKiZvZAu+yyS9GjLapLL720eM7yvOaa3/rrr9/xs9zBL/vsvCju+eefn2/78bK+nPLauT/J22Q/ns/3G97whj5fNFjK3ix7/87HlgHGHFCTcgeEDDyWEyfzMXp63SxM2DAH2GR/3Hm4TgZHsy/MrdzzosFcM82L8l588cWX3T6/n71W7rzwsY99rHiOO4ebM8yb8mLSPKepc5izu+BkeWw5uTPDoQPVw+dFjuUujfnfHcr77q/y7ygDpF23lM8Qb9aQf/ud//YAhpLQJwDDXrkwlG/sF2WbiVI2TeXk0GxMupPN5e67797RGPZFXv115513Fouz3ckJNqm/jeBAyEkr3/jGN4qGbIsttii+7kku6pWTg/I/HAAAAIMrFwpy4mHnj1ycyomYORUmw2ynnnpqsciS79eHu9xRoevx5EdeVJZbmOeCSE6FzMXGniZuDJR8jJTBws6LUqU8n+WWjbmQ0xdlb9fTluV9lSHJDL9mILI7nZ/r7hbdejvennZ2eOUrX9lxzsvjzUk6d911V/F1bjfYnY9//OMv+14GR3PhK6d85rF0J8979vK50JxTWbrqz24eOVknX1t5oWIuAHannI6UvXm+1lJOC0q5mJmLrF23isxFwyOOOKLHCyMBABi9MiyWwcXutngvJ3d2voipOxnMy/vJ96jlrgF93dr96KOPLt6ndv7YfPPNi/WrfA+b610ZuMxBJ52DbXkBVk51zAvycmDJYE0nXJj32hloTLmteU457dxX5cVruVteufvEoih7ozxXeS666rwjXudesDymDIpmUDEDsqXsbTLUmBfY9bc3z+eku4vcsofJ+8rH6bzVfOfgbucJnLllfZ637MP6Ox02e6nsP/N1lwNs8rXT+eLD7KHy/Od56TydNddpc+pob71m7g6SActcA836SuXrLKeAdjZ16tRiwmnnbeAHoofPoHUe10DYbrvtivXi7EO7Tuot/44y1Nw5vAwwlMYO6aMBwELIN/6pvCprUWWQsWwisznuSf4sm5C+TlRJ2RzlFYvlFV75WPk5m6GcSpJ62x5hMOTknGz4yyv5chv6BYVn84rD3B6hXCQDAAAGT07EKBdCsl/I9+K5wJRBz1zQyUWngVq0GAo5dSO3aSvlok8uAuYW33ls5STKRdkava/KnRZyWkhPF/SVvVrXBdielFu/5XEMhOwjcwE4a80e8oknnii+7lxPd1tJdjVr1qzi/JaTME888cRuf6/8nfL+M1yc958Lobmg1Z3ueufy9rlo29NzmQt42YdmsLS73ro8l32RdaZcfCx30uiq83nK+nKLwXyt5baFN910U/ziF78oPnLKT07oyYlKOZVmIC4wBQBgZMqwXr63zi2mcypjGa7MLdLzfWQ5QKQna621VhEeu+GGG4rJhoceemjx/ewBcsvrnBSY0y27s/rqqxcfXfuHXC8r39Pm+9mu8r191p1bredjllPyyxBoBgZ7Cu/1x8K81z7ssMOKnQ7yAric1J+15lTLvE1OvixDlwPVC2YwsJze2VU5vTHX8bKXyOf2U5/6VBHwzXOVtea5ymEqWV/ugJDTQRdmcmT2Rd3JwGAec9aYr4fyucqwcYZLs5fK104+fsogal5Ul6+ZvKhvYeSOh/nxhS98objAMC/SzABmvlZyXTB70kMOOSROO+20+Xqx9PnPf77H+83dIFLnXja3SP/+979fBEcz1Fpe+Je7LOZabb5+Ovehi9rD5/rmQF0sWwZSc401z0059CdDoPn3n2ztDlRJ6BOAYa/c9qGcprKocruCUm9B0nLRKhfO+nq/uR1EXnXX+crEbMBzCkk2UFdffXUMlWw6cquJcnuEbJxy4a8v4dnyXHfdrgAAABhcOZUiFzy+973vFQs4OdklF3py8SQXn5pROYljq622ive///3FQk/uupATRvoT+luU/i8X8fKjN50nuPSm3I4+w4d5m770WHkxY07hyQXfrtNBciu9XFDsLH9v3333jb/97W+xML1uuVDWl+Mtt95beumle/zd7kKd5eMt6Ph76637sxhX1puPm4uSC1L2s7lIm1tfnnzyycX2f2WgNj/+8pe/FPV9+tOfjoMOOmiht/0DAGDkygvwMniZUyxz4Ef+O3cxyC2os8/py8VsObUxg3u5fpRbT+f7znLK5z777NPjpMC8XQbzFkbeNkOfOTkx34vn+/0yMJhhzYUNDHa2MO+1MziZu9PlgJLcDSBry4sE8yMviMxQYIYEcyrloij7lXzeuk4g7SrPSdaR9eZznetqObk0w58ZusydOPIjh6zkRY65m96Cwr5d9dZvlT/rvFNgrtPltMsMP2Y9ZeizfN2Uk0AXVT5O7gaRHxn0zGPLQGa+1vN1nuubnXvlvvRinX8/e748jgyQ5uu/DH2Wa5ddQ5OL2sMP9AV9WV/+d5k87rxIM/97TV7kmmvXOcG2p10oAIaC0CcAw175Bn2gAoidG6tsCHLyR29h094asc4+97nPFdvGZwPzkY98pLjab6ONNiqmnmTwMxfrhir0mecqr7bLqyvL7QWyWe7rFgPluTbtBAAAqpPbreXC0rXXXhs/+9nPiskg3U1x6W0aZAYNh4vcCi8Djhn4zMkhX/nKV+KEE04ogq790Z9jygWs7Ptyi7qepuf0V25Pn/1VLgzmwu0ee+yxwNvkQl1OvckJLrnQlb1ZBj6//vWvFz/PaS55P9lDbrDBBrH88ssXFxP2J/TZ+ULJfIyNN964X7frHBrtqrvAZtkrLygsW/aXfe2tF1RnLqyXu1n0VZ7vT3ziE8VHhnXzecv+PbeMzykxv/zlL4tePn8OAACdZVgx34Nm75IhwAx99nVr967TDnPqfl4ElxfEZbBuIMN7XWW4Li9Yy4n7GfzMrcDLoN1APubCvNfOISnZH2XPkxM/8/dzAmkG6/L85ATQiy666GXbsve0A0J3PWLZP3z7298u1uz6I9cNM/yYHw888ECx1pbHldMw8zn84he/WOzM8drXvnZA+tiyp8oplZ3l85S9ZJ6LvDA0w7Q5dTO3Uc+pqH31ne98p6g/p1bmlNWe5POUr9N8vHxu8rWTocbyeciptPlc9VceR4Y+czrmN7/5zSI8eddddxX3W27VPpg9/KLIEHAGbvO5zz4714J7CqwCDLX+/RdVAKhAebVhOX1kUa2zzjrF1Yfp7rvv7vH3yp9laHNB8oq3stHJq/9y4S63zsgrETPwmbLZHQq5UJdXTpaBz7yCMhdW+xr47HyuB+JKTwAAYOEXFzNcmJMUc9v3r33tay8L5o0ZM2a+af9d5fbww0lu25cLeCl7qFw47ao8pu6Op7/HVE7l7LwdXVc5PSQXnHIaZ1/kZI+8yC/lVJsFbb2ex1GGN3Orw7I3y94xvfvd744//vGP8cEPfjC23nrrIvC5MD1kLhCWPdzDDz/c4+/louV9993XcaFjTidJua1fhnG70912iHksKScc9RQYzdftvffe2+feelGfyzyG7IVzETFDuSmPM3v2crrPaqutVpzz/NvKyULlQmK5cAcAAF3lek/KMFy+/8/wWl7U1NfgXYbp3v72txdfX3zxxXHzzTfHtGnTOrbZHixlKC0fM98jZy+w0korxU477TQg99/f99r5Hj37hzz+lOtnr3/964shJjktND+yDy63oV+UHrEv/UM5vTWneZbK7dTLqZvZL330ox8tpnzmduM56TOP49xzz+3XuepuK/IyDJrhytT1wr0MGOdFgfk7eTFoPo/pne98Z8faY1/kziF53jP8uyA57bS8YC9fK53PZb5mu+5S0dktt9xSbFHfeWJpyv4510vz9tmvZXiy3MK+a7B3MHr4RVWGpPP8l89Fnv98HgCqJPQJwLBXvsHP6SC5gLOosoF44xvfWHx94okndvs72fzmeP5yq4lS5wk0nRf2Jk2a1PH15ptv/rL7y7rLqzbLhafB8t///d/FlZHZGOcVjIceemi/bp/NWDZenRfxAACA6qZjZtizXHw64ogj5vt5TvjobRGpXBQaTnI7wzIAmBMbs//q7pi6O56cOHn99df3+bHKRcbcPrDrwlNqb28vJnXkVuo//elP+3y/OfEle66cxPrb3/6219/NKa3ZM2Y/mY/VtY/saTu4rLlznZ2VWyN2DZyWi865lWIGLrvKiSk5aTUXYv/85z93hFg32WSTlz1mZzmVpbvJQRlQzdpycbY72QfnomDWm9NMF0UuTOdib74ucpGtOxkizgXZnGJU/veDfK4yUJvbR3aVC3XbbrvtkPTqAAA0r5zMucYaa8STTz5ZvPfNaY+5RXqGOfsqe46yR8vw4FBMCszJjjkEJacUliHF/gYGe9Pf99oZ5Muppx//+Me7DQ9myLEMHHbuZ3rrEe+8885uQ59lL5hTWZ977rle689dKFL2NtkrZX0ZWu0qL7Irg5nd9Vu9yaBwdzso5AWCOVVz5ZVX7nZyaBk4zMDmwr5uynBiDrs566yzev3dfK3kGmFO9SwvdszgadnDZ6/ZnZzQ+uEPf7iYfptB2t4CyDkxt/OxDUUP35ue+uvS7rvvXpyPvKAxn68M0WbvXYZiAaoi9AnAsJdXOWZQMxuo7hqFhd0msWx0MxjZeSpJTjD5zGc+U7xpz4WvbPBKna84y+a+1DkcmVf7ZYNWygkreX955Vnqa3A1r1DLK+Lyo6/Gjx8fl19+efH1Zz/72X5vWZEyMJoNeG6hMJhXmAIAAH2Tixk5ITPlAkNOz+h8kVxuPZcyEFpupZ2LFTk9I/uT4WbxxRcvtqYr+6Pcaq5rmDBdffXVxSSdUi7k5TZ6PS3YdScXnXLxLKea5DZ2nfu47LkygJo9Vy5IfvKTn+zXom/2XOlXv/pVsUjYdRJJhjrzorwyXJnTa7bYYouX9ZEZqOw8WSb706OOOip+//vfd3yv62JX2ZvmYnNnBx54YPGzXHA77LDD5pt8kr+bP88FvJwem+em9IUvfKFjcmm+xsrFruxts5byIsbOsmfM+yvDu7n43Xnh88ILL+x4bj/wgQ90XNC5sHKizvvf//7i6y9/+csdF2qmfNzc9vDoo48u/p3HlhNqUgZAy/OcPXPnhbx8zk466aTi64GadgQAwMiUUwlTbkueysmdfZW9QE6NzPflZ555ZtGD7LPPPjGYshfKi6+y7yr7i4EMmvb3vXauuWVoMteg8j19590NcornkUceWfRD2dPkBNCuPeLxxx8/35pZTnvM++lOhg/zsbJH/tSnPjVfv5aP8d3vfreYJpqBv7KvyXXD8nn90Y9+VARKO8v+NNcVuw6M6Yvs+bKf7dyjZRA3d+pLGWTsbse+PMdZVwYlc1JrXjRYXrTXVzvssEPHNurf+ta3imPrPMwm5Zpovi6zR075uQzgpkMOOaT4nK+jDPl2nrqa/42i/Hn2yuXgne6O45xzzinCu7krY+fneLB7+N701F+X8nkp/1az/0+2dgeGg5f2tgWAYSzfuGeDkAs6uXC1/fbbL/J95tWC2dRkc5MLWtlklFskdN5GIReMOjdZeSVXLjTlG/9csMtFumxksrnL7T3ySr3jjjuuuFJurbXWKhbTysYpm6qcRpJX8mVDWS5A9SQXzMoFq2zk+iK3BCzlVokf+tCHevzd17zmNUXgtas8xynPc3+2hAcAAAZHLkJ9//vfLxZJcmEl+5jsYfL9ek6PzEWPfG+f26TlYlqG6zIgmZNTckpGLozkxV3DSfYbOXXm7LPPLhbacnGpnPKR38/pIdmbZRgxF4NyESYXdnLS40EHHRS/+93v+vQ4OYkyJ3HmYlE+zm677VZsK5fnNO8/z2cuPOXCbbnNeV/lrgrZI/7f//1fsViXH7k4lVsa5sJiLlKVPW32jXkxYNfb58JeXiiYdZWhyLxdLrjlBM6sM7dc77rVe/ZzDz74YNEDXnnllcW0nLyvnL7yy1/+srjvrCeDl3m8Gd7MCxFzKkqey1yoK8PC5eSST3/608X95WspQ5yrr756UUtu2ZgTXvI1VG6rWMrF0+x5TznllOI1mgHRrDvrLaft5OLiN7/5zRgIOYknF0vzYsd8TldZZZViGm726OXiaT5euVCZ8txk6DR7/5yam9Ng8tiyL89zmwvTOVEnX1cAANCTXAPK9Z9c48k+Y8cdd+z3fWRQLLc+z7WofN/aeeeGwbyIMN8/52NmYLC/fU9vFua9dgY799tvv6J/zT4k19LygrLsK7KPyp4je4vOUxTzvX9eFJg9bobvssfJnil7nOw/spfMnrKz7MOOOeaYos+577774h3veEfRc+Vj5e3yfKT/+Z//mS/Amb1UrpPlVMe86CzXBPN5yv6m7HFy7a2/oc98vjM0mhMis/7sX3J7+ZQDXPbff/9ub5fTRbPPX9TpsLkDRfaCGc7NXRDzI6fXZl9Ynsvsj/O85UWNXdcXMwybv5M9X97XscceG+uuu25xHGVYMs9vnvOejiMDyOXgmuz7h7qH70lP/XVn+RrLEHO+bvJY+vv8AwwGkz4BaArl1YLZ1A2UnOD597//vWhI8w16XuX3/PPPx9Zbb11MI8mtA7JZ7Cqv4srQaE4SyQYnG9eUV+P94Ac/KK7WzEY2g5rZfOQiazY/+R8DsoFKnSeSDJSsvfOVirnN4G233dbjRzYw3bnqqqvmO+cAAED18oKzcqEsFzo6T/DMniYnbeSFZrlAluHI7HEyHJoLLl2DesNFLgqWC3k5pfTZZ58tvs5pIjkpJhfnMsSYC2H5s1wky5Dodttt16/HyR4tp57mhXu5KJSLiTlZJM9R9oW5OJiLOgvjE5/4RLFdYIYf83FysSwXB7Pe3DkhJ4/kz7sGPlP2itl35kJnhkWzpjzWvAAxF9myXy2niZQLY53PXZ6PXLDM10PnaTe5IJiTOQ844IAiMJs/z/BmLlbmQmIGhrPv7Song+brKgO5eRy5C0beJvvcfLzUdfvKXHjLCTnZ7+Zx5GstF1TL48v7ywBpTncdCHk/uQCYC8W5YJhh1ny8nBSUr4tcZM7Qa9fXfE6WzcX1/J3s5bNfz4s0c2JQ9v9//etfF3hhJgAAo1uGFzOgmPbYY4+F2iI9t9ku36sO1aTADBmW4dLuttNeVP19r50BvuzrMlSY/UZOcswL4ZZbbrmivs59UCl7q+yd8vvZQ2bvlD1A9lt5X9lPdSfX+PLnX/3qV4sL2TI0mmtj2XNmP5UXG+ZW7p3lzzLcl1M5MySbx5K9Ua77ZQAx1/uyB+qvfLycVJqvo+zRMuCa5yx7pu4GtHRWvlbyws8Mry6MvO1PfvKTYoeEPG95bLmGmceWF+1lYDP72uwXy8mnXWVPnb16Pg/5nOZtc20yQ5N5oWP21p0vLuyqfP3lxaudd1kcyh6+O731151fg+WE1fw7zuApQNVaGp1nbAPAMJXNW15FmQtVOa1ko402qrqkESkb67xaLxdWc2rpcF0cBgAAYOhcccUVxXb2Ocklp4cCAAD9l4HIDIxlSDEnCg7FGkyG8vKCqbxgK7cmz0mKNJcMof7whz+Mt771rR3bizO0cteMvMAyL/DMiywzvAxQNZM+AWgK5RZ+KbeJYHDkFXopt00Q+AQAABgdclrMBz/4wbjnnnu6/XkuSKec4AIAACycnLJYTjwcqjWY3M47J+TnZESBz+Z+3eQuH1Qjd3DMwGfuBCnwCQwXQp8ANI28+jG3NDzrrLNi6tSpVZcz4uQ5zW0u8hx33ToDAACAkSsneN5xxx3Fdn9TpkyZb5pJXhyYHzkZKLdgBAAA+u7ee++NyZMnx8knnxynnHJKsc32/vvvP6iPmVuY57bp5513Xvz6178uvnfAAQcM6mMycGbPnl1Mhc3dD7/zne8UX2+88caxww47VF3aqJJbyuffbk7I/d73vld87xOf+ETVZQF0GPv/vwSA4W3s2LHFAlQuMv3mN7+Jb3/721WXNKLkOc1GMs9xnmsAAABGh6985Stx6623xk033RS77rprrLPOOrHEEksUC1zTpk2L1tbW+OpXvxrbbrtt1aUCAEBTOfTQQ2PChAnz/XvVVVcd1Mf86U9/WgTVSjkhcostthjUx2TgzJw5sxiEU8p+7PDDD6+0ptHohBNO6NghMe24446x1157VVoTQGcmfQLQVLbccsv4zGc+U7zJ7twks2jyXOY5PfDAA4tzDAAAwOix3nrrFVOADjnkkGKCzHPPPRcPP/xwLLPMMvHud787Tj311PjkJz9ZdZkAANB0tt5662K652qrrVZcbHXQQQcN+mO+9rWvLS7iWmmllYr38Tktkuax8sorF7sxjBs3rujPjjnmmHj9619fdVmjzmabbRZLLbVULLfccvHe9743fvWrX1VdEsB8WhqNRmP+bwEAAEA1vvSlL8Vtt90WV111VZ9v8/zzzxcTqy+//PJ45plnYo011oj3ve99xXY7plcDAAAML/o+AACARWPSJwAAAMPC0UcfHeeff36/bjN9+vT46Ec/Gn/5y1+Kq68/9rGPxZJLLhk/+9nP4stf/vKg1QoAAED/6fsAAAAWnUvfAAAAqNTcuXPjBz/4QZx++un9vm1OennooYfi8MMPj/3337/43qGHHlpMjrnwwgvjoosuij333HMQqgYAAKCv9H0AAAADx6RPAAAAKnPZZZfF3nvvXSz87bTTTv267Zw5c+Jvf/tbrL766rHffvt1fH/MmDHx1a9+tfj61FNPHfCaAQAA6Dt9HwAAwMAS+gQAAKAyZ5xxRsyaNauY2HLsscf267Z33nlnzJ49O7bddttobZ2/vV177bVjrbXWiptvvjlqtdoAVw0AAEBf6fsAAAAGltAnAAAAlfn4xz8el156abFFX0tLS79uO2HChOLzOuus0+3PcwFw3rx5MWnSpAGpFQAAgP7T9wEAAAyssQN8fwAAANBn22233ULfdtq0acXnFVZYodufL7vsssXn6dOnL/RjAAAAsGj0fQAAAAPLpE8AAACaUk5zSYsttli3Py+/P3fu3CGtCwAAgIGh7wMAAHg5oU8AAACa0hJLLFF8bmtr63VxcOmllx7SugAAABgY+j4AAICXE/oEAACgKS2//PK9buM3Y8aM4vMyyywzpHUBAAAwMPR9AAAALyf0CQAAQFNaf/31i89PPPFEtz/P7y+11FKxxhprDHFlAAAADAR9HwAAwMsJfQIAANCUNt9882ILv5tuuinq9fp8P5s4cWJMnjw5ttpqqxgzZkxlNQIAALDw9H0AAAAvJ/QJAABAU1p88cXjHe94R0yaNClOPPHEju/XarU44ogjiq8//OEPV1ghAAAAi0LfBwAA8HJju/keAAAADCv33XdfXHLJJbHmmmvGe9/73o7vf+lLX4prrrkmfvzjH8cNN9wQG264YVx33XVxzz33xN577x277bZbpXUDAADQN/o+AACAvjHpEwAAgKZY/Dv66KPj7LPPnu/7K620Upx66qmx7777xl133VVMfpkzZ04cdthhxdSXlpaWymoGAACg7/R9AAAAfdPSaDQaffxdAAAAAAAAAAAAACpi0icAAAAAAAAAAABAExD6BAAAAAAAAAAAAGgCQp8AAAAAAAAAAAAATUDoEwAAAAAAAAAAAKAJCH0CAAAAAAAAAAAANAGhTwAAAAAAAAAAAIAmIPQJAAAAAAAAAAAA0ASEPgEAAAAAAAAAAACagNAnAAAAAAAAAAAAQBMQ+gQAAAAAAAAAAABoAkKfAAAAAAAAAAAAAE1A6BMAAAAAAAAAAACgCQh9AgAAAAAAAAAAADQBoU8AAAAAAAAAAACAJiD0CQAAAAAAAAAAANAEhD4BAAAAAAAAAAAAmoDQJwAAAAAAAAAAAEATEPoEAAAAAAAAAAAAaAJCnwAAAAAAAAAAAABNQOgTAAAAAAAAAAAAoAkIfQIAAAAAAAAAAAA0AaFPAAAAAAAAAAAAgCYg9AkAAAAAAAAAAADQBIQ+AQAAAAAAAAAAAJqA0CcAAAAAAAAAAABAExD6BAAAAAAAAAAAAGgCQp8AAAAAAAAAAAAATUDoEwAAAAAAAAAAAKAJCH0CAAAAAAAAAAAANAGhTwAAAAAAAAAAAIAmIPQJAAAAAAAAAAAA0ASEPgEAAAAAAAAAAACagNAnAAAAAAAAAAAAQBMQ+gQAAAAAAAAAAABoAkKfAAAAAAAAAAAAAE1A6BMAAAAAAAAAAACgCQh9AgAAAAAAAAAAADQBoU8AAAAAAAAAAACAJiD0CQAAAAAAAAAAANAEhD4BAAAAAAAAAAAAmoDQJwAAAAAAAAAAAEATEPoEAAAAAAAAAAAAaAJCnwAAAAAAAAAAAABNQOgTAAAAAAAAAAAAoAkIfQIAAAAAAAAAAAA0AaFPAAAAAAAAAAAAgCYg9AkAAAAAAAAAAADQBIQ+AQAAAAAAAAAAAJqA0CcAAAAAAAAAAABAExD6BAAAAAAAAAAAAGgCQp8AAAAAAAAAAAAATUDoEwAAAAAAAAAAAKAJCH0CAAAAAAAAAAAANAGhTwAAAAAAAAAAAIAmIPQJAAAAAAAAAAAA0ASEPgEAAAAAAAAAAACagNAnAAAAAAAAAAAAQBMQ+gQAAAAAAAAAAABoAkKfAAAAAAAAAAAAAE1A6BMAAAAAAAAAAACgCQh9AgAAAAAAAAAAADQBoU8AAAAAAAAAAACAJiD0CQAAAAAAAAAAANAEhD4BAAAAAAAAAAAAmoDQJwAAAAAAAAAAAEATEPoEAAAAAAAAAAAAaAJjqy4AAJpdo97I/xPRaEQUX5cf+cP8PxHR0hLRUn5uiWht/c/nlmjJzwAAAAAAAAAAsABCnwCMWo0MZM56MRrTZ0ZjxuyIOXOjMXdeRPHR1unref/5uvvvRXv7wheRec9x4yIWXyxaFn/p80tfL9bL9176HEsuHi3LLh0tyy0TLUsuPpCnBgAAAAAAAACAYailUSReAGDkaNTrETNnvxTmnD4rGi/MjCiCnbNe+t4LL30d+VGrx4iw2LgiABoZAF3uP0HQ/3w93/eWXrLqSgEAAAAAAAAAWEhCnwA0pUZO5ZwyNRrPTI36M88XnxvPTovGCzOKwGexzTovN3ZMRE4HXXG5aH3litGy8krRsvKK0bLKStHyyhWiZawh4AAAAAAAAAAAw5XQJwDDVqO9/aUgZxHufH6+gGcR7GRgtbQUYdAiBFqGQcvPKy4fLa25Fz0AAAAAAAAAAFUR+gSgco1646VJnZOeivqkp6Px1LMvhTyfnx7h/00ND2PHRMsrVnhpIujqK0frWqtG61qrRcsKy1ZdGQAAAAAAAADAqCH0CcDQBzynPBeNSU9HfeJ/Qp5PPh0xt63q0lgYyy4drWuuGi1rvxQCzTBoTgsFAAAAAAAAAGDgCX0CMGga9fpLW7P/J9xZn/RUNCZPiZgn4DmiLbPUS+HP/4RAW9deTRAUAAAAAAAAAGAACH0CMGAac+ZG/dFJUX9kYtQfmxyNJwU8+Y+llyzCn63rrxWtG6wTLeusFi1jxlRdFQAAAAAAAABAUxH6BGBgQp4PPxGNyU9H1P2/FfpgsXHRuu6a0brhOtG64drRsvbq0TKmteqqAAAAAAAAAACGNaFPAPoX8nxschHwzKBnY1KGPOtVl8VICYGut2YxBVQIFAAAAAAAAACge0KfAPSoMXfeS5M8hTwZaov/ZxJoGQJdZ/VoaRUCBQAAAAAAAABGN6FPAObTeH561O55OOr3PBL1R56IaK9VXRJELLlEtG66XozZbMNo3XT9aFli8aorAgAAAAAAAAAYckKfAKNc/r+BxqSnonb3w1G/95FoTJ5SdUnQuzGt0br+2tGaAdDNN4zWlZavuiIAAAAAAAAAgCEh9AkwCjXa2qP+0ONRv/vhqN37SMT0mVWXBAutZbVXFuHPnAJabAPf0lJ1SQAAAAAAAAAAg0LoE2CUaMyYVQQ867l1+4OPR8xrq7okGHjLLh1jXrP+S1NAN143WhYbV3VFAAAAAAAAAAADRugTYARrzJwdtdvvj9rt90Xj8SdzL/eqS4KhM25stL56vRiz9aZFCLRl3NiqKwIAAAAAAAAAWCRCnwAjTGNeW9Tveihqt90b9QcmRNTrVZcE1VtisRjz2ldH6zavidYN1omWVlvAAwAAAAAAAADNR+gTYARo1OvFlu21W++J+t0PRcy1dTv0aPllYszrNo0xGQBdc9WqqwEAAAAAAAAA6DOhT4AmVp/476jdcm/U7rg/YsasqsuBptOy2itjzNavKQKgLSsuV3U5AAAAAAAAAAC9EvoEaDL156ZF/dZ7i+3bG1OmVl0OjAwtES3rrVWEP8dsuUm0LLVE1RUBAAAAAAAAALyM0CdAE2jMayumedZuuDMaEyZXXQ6MbGPGROtmG8SY7beM1o3XjZaWlqorAgAAAAAAAAAoCH0CDGP1p56N2vX/itotd0e8OLfqcmDUaXnFCjHmjVvGmG03j5Zll666HAAAAAAAAABglBP6BBhmGu3tUf/XA9F+/b+i8eikqssByumfW2xUTP8cs9Grqq4GAAAAAAAAABilhD4BhonG89Oj/drbo3bjnRGzXqy6HKAHLausFGN22DrGvGGzaFli8arLAQAAAAAAAABGEaFPgIrVHno8atfcFvV7Ho6o+59kaBqLLxZj3rB5jNnxddG6yiuqrgYAAAAAAAAAGAWEPgEq0Jg7L2q33BO1a2+PxlPPVl0OsChaIlo3WjfGvHnraN10g2hpbam6IgAAAAAAAABghBL6BBhCjZmzo/3qW4vJnvHi3KrLAQZYyytXiDG7bFdMAG0ZO6bqcgAAAAAAAACAEUboE2AINJ6fHu1X3By1G++MmNdWdTnAYFtumRi78+tjzPZbRcvii1VdDQAAAAAAAAAwQgh9Agyi+tPPRe2yG6N2270RtXrV5QBDbaklYsyOW8fYN28TLUsvWXU1AAAAAAAAAECTE/oEGAT1if+O9ktujPrdD0X4n1lgsXExZvstY+xOb4iWFZatuhoAAAAAAAAAoEkJfQIMoNpDj0ft0hui/uDjVZcCDEdjxsSY178mxuy6XbSuvFLV1QAAAAAAAAAATUboE2AR5f+M1u95ONovuSEaT/y76nKAZtDSEq1bbhxjd3tjtK65atXVAAAAAAAAAABNQugTYFHCnv96INovui4aTz1bdTlAk2rdZL0Yu/eO0br26lWXAgAAAAAAAAAMc0KfAAuh9uCEaP/nVdGY+FTVpQAjQUtE62tfHWPf9mbbvgMAAAAAAAAAPRL6BOiH+sSnov2fV0b9wcerLgUYiVpbY8x2W8TYvXaIluWWqboaAAAAAAAAAGCYEfoE6IP6M1Oj/byro37nAxH+VxMYbIuNizE7bh1jd9suWpZcoupqAAAAAAAAAIBhQugToBeN6TOj/cJro3bjXRH1etXlAKPNUkvE2F23izFv3iZaxo2tuhoAAAAAAAAAoGJCnwDdaLw4N9ovuzFqV98aMa+t6nKA0W6FZWPsnjvEmG03j5bW1qqrAQAAAAAAAAAqIvQJ0EmjrT1q19wW7ZfeEDF7TtXlAMynZdVXxNi93xxjXrtx1aUAAAAAAAAAABUQ+gT4j9ot90TbeVdFTJtRdSkAvWp51Rox7l27Ruu6a1RdCgAAAAAAAAAwhIQ+gVGv/uSUaDvzkmg8NqnqUgD6riVizBu2iLHv2Clallmq6moAAAAAAAAAgCEg9AmMWo0X50b7+VdH7brbI+r+pxBoUksuEWP33jHGvOl10dLaUnU1AAAAAAAAAMAgEvoERp38n716buV+7pURM2ZVXQ7AgGhZc5UY9749onXdNasuBQAAAAAAAAAYJEKfwKhSnzwl2s66OBqPTa66FIDB2fL99ZvH2H12tuU7AAAAAAAAAIxAQp/AqGArd2BUWXLxGPvWN8eYHbaKltbWqqsBAAAAAAAAAAaI0CcwouX/xNVuvjvacyv3mbOrLgdg6Ld8f+8e0bqeLd8BAAAAAAAAYCQQ+gRGrPrkp6PtzEuiMcFW7sAoVm75/o6domXZpauuBgAAAAAAAABYBEKfwIjTaGuP9guuidqVN9vKHaDzlu/v2jXGbrtF1ZUAAAAAAAAAAAtJ6BMYUeoTnoy2U8+LxpSpVZcCMCy1vmb9GPf+vaJl+WWrLgUAAAAAAAAA6CehT2BEMN0ToB+WXDzGvXu3GPOGzauuBAAAAAAAAADoB6FPoOnVH8/pnudH4+nnqi4FoKm0vmaDGPeBvaJluWWqLgUAAAAAAAAA6AOhT6BpNdpzuue1UbviJtM9ARbWkkvEuPfsFmNev1nVlQAAAAAAAAAACyD0CTSl+uP/jrZTzzPdE2CAtG62QYx7v6mfAAAAAAAAADCcCX0CTcV0T4BBZOonAAAAAAAAAAxrQp9A06g/8e9oO8V0T4DB1rrZhjHu/Xua+gkAAAAAAAAAw4zQJzDsNer1aL/w2qhdeoPpngBDZakliu3ex2z56qorAQAAAAAAAAD+Q+gTGNYa02bEvJP+EY3HJlVdCsCoNOZNW8XYd+0aLePGVl0KAAAAAAAAAIx6Qp/AsFW75+FoO/X8iFkvVl0KwKjWsvrKMe7j74zWVV5RdSkAAAAAAAAAMKoJfQLDTqNWi/Zzr4zalbdUXQoApcXGxbh994wxr9+s6koAAAAAAAAAYNQS+gSGlfpz06LtxHOiMfGpqksBoButb9g8xr1392hZfLGqSwEAAAAAAACAUUfoExg2av96INpOuyBiztyqSwGgFy2rviLGffSd0brGylWXAgAAAAAAAACjitAnULlGW3u0//2yqF13R9WlANBX48bG2HfvGmO336rqSgAAAAAAAABg1BD6BCpVn/JctJ34j2g8OaXqUgBYCK1bbRLjPrBXtCyxeNWlAAAAAAAAAMCIJ/QJVKZ2yz3RduZFEXPbqi4FgEXQ8ooVYtzH3hmta69WdSkAAAAAAAAAMKIJfQJDrtFei/YzL47ajXdWXQoAA2XMmBj7nt1i7Jts9w4AAAAAAAAAg0XoExhSjRmzYt4J46Px2OSqSwFgEIx501Yx9j27R8uY1qpLAQAAAAAAAIARR+gTGDL1SU/HvOPOipg2o+pSABhErRuuE+M+/q5oWXrJqksBAAAAAAAAgBFF6BMYErU77o+2U8+PmNdWdSkADIGWlZaPcZ96b7SuvnLVpQAAAAAAAADAiCH0CQyq/J+Y9guuidrF11ddCgBDbfFxMe7D74gxm29UdSUAAAAAAAAAMCIIfQKDpjF3XrSd/M+o3/1Q1aUAUJWWiLFv3THG7vGmqisBhrnx48fHiSeeGI899lgsscQSscMOO8Shhx4aa665Zp9uf99998VRRx0Vt956a8yaNau43T777BMHHnhgLLbYYoNePwAAAD3T8wEAAAwcoU9gUNSnvhBtfzorGv9+pupSABgGWrfaJMbtt3e0LDau6lKAYejII4+M3/3ud7HhhhvGzjvvHP/+97/jggsuiOWWWy5OP/30WHvttXu9/R133BEf+9jHoq2tLfbcc89YffXV49prr40HH3ww3vjGN8Zxxx0XY8aMGbLjAQAA4P/T8wEAAAwsoU9gwNUffiLm/fnvEbNerLoUAIaRlrVWjcU++d5oWWHZqksBhpH7778/3vWud8U222wTJ5xwQseElosvvjgOPvjg2GWXXYrFwd7st99+cfvtt8evf/3r2GuvvYrvtbe3FxNfciHwiCOOKB4DAACAoaXnAwAAGHitg3CfwCjWft3tMe/Yvwl8AvAyjUlPx9wjT4z6hMlVlwIMI7m9X/r85z8/35Z8e+yxR7zhDW+IK664Ip5++ule7+Ouu+6K5ZdfvmPxL40dOzbe//73F1/n4iAAAABDT88HAAAw8IQ+gQHRqNWj7YyLov2MiyNq9arLAWC4mjEr5v3m1Gi/6a6qKwGGiRtuuKFYrMvFvq5ym77cnCJ/pzcrrLBCzJw5M1544YX5vj9lypTi80orrTTAVQMAANAXej4AAICBJ/QJLLLGvLZoO/6sqF13R9WlANAMarVoP/X8aL/w2qorASo2b968ePLJJ2O11Vabb+JLae211y4+P/roo73ez/777x+1Wi0OPfTQeOSRR2L27NlxySWXxG9+85ticXDfffcdtGMAAACge3o+AACAwTF2kO4XGCUas16MeX86MxoTnqy6FACaTIY+GzNnx9j37B4trS1VlwNUIKe05FSX3KavO8suu2zxecaMGb3eT24TmPfxk5/8JN72trd1fH/DDTeMY445JtZYY40BrhwAAIAF0fMBAAAMDpM+gYXWeH56zDv6rwKfACy02rW3R9tJ50Sjvb3qUoAKtLW1FZ+7m/jS+ftz587t9X5yK8Df//73xZaB++yzTxxwwAGx5ZZbxsMPPxzf/OY3Y9q0aYNQPQAAAL3R8wEAAAwOkz6BhVJ/6tmY9/vTI6b1fgUuACxI/V8PRNusF2PcJ98TLUssXnU5wBBaYokl5lsI7G4rwLTUUkv1eB9PPfVUfPazny3ua/z48bHuuut2/Oyoo46Ko48+Or72ta/FscceO+D1AwAA0DM9HwAAwOAw6RPot/pjk2PeUX8V+ARgwNQffiLm/eaUaEyfWXUpwBBaZpllorW1tcet/Mrvl1v+defvf/97zJkzJz71qU/Nt/iXDj744HjVq14VV1xxRUyZMmWAqwcAAKA3ej4AAIDBIfQJ9Evtnodj3u9Oi3hxTtWlADDCNCZPKS4qqD/zfNWlAEMkt/Jbe+2148knn+x28svEiROLzxtuuGGP9zF58uQef6elpaXj+/kYAAAADB09HwAAwOAQ+gT6rP2mu6Lt+PERbe1VlwLACNV4blrMO+rkqE98qupSgCGy7bbbFot/t91228t+dv311xeLeFtvvXWPt1955ZWLz4899li3P3/88cfn+z0AAACGjp4PAABg4Al9An3Sfsn10X7q+RH1etWlADDSzZwd8445JWoPTqi6EmAIvO997ys+H3nkkcWWfaWLL744brnllth1111jtdVW6/H2e++9d7Fd4HHHHdcxJaZ04oknxsMPPxzbbLNNrLnmmoN4FAAAAHRHzwcAADDwWhqNRmMQ7hcYIfJ/ItrHXxa1q2+tuhQARpsxY2Lc/m+LMa/btOpKgEH2/e9/P04++eRYd911Y7fddounn346zj///FhxxRXj1FNPLbYDTDfeeGPcdNNNsemmm8buu+/ecfvjjz8+fvKTn8RSSy0Ve+65Z6y00kpx9913F7+b017+8pe/FPcNAADA0NPzAQAADCyhT6BHjVot2v76z6jffn/VpQAwWrVEjH3XbjH2LdtUXQkwiLItzQXA0047LSZMmBArrLBCbLfddnHIIYd0LP6lo446Ko4++uh4z3veUyz4dXbttdcWk1/uvPPOePHFF2OVVVaJXXbZJQ466CDb/AEAAFRIzwcAADCwhD6BbjXaa9H25/FRv+eRqksBgBj79rfE2N3eWHUZAAAAAAAAAFApoU/gZRrt7dF2/Pio3/do1aUAQIexe+8YY/d4U9VlAAAAAAAAAEBlhD6B+TTa2qPtuLOj/sBjVZcCAC8zZs83xbi37lh1GQAAAAAAAABQCaFPoENjXlu0HXdW1B98vOpSAKBHY/bYPsbt/eaqywAAAAAAAACAISf0Cfz/wOcfz4z6w09UXQoALNCYXbeLce/YqeoyAAAAAAAAAGBItQ7twwHDNvD5hzMEPgFoGrXLboy2f1xRdRkAAAAAAAAAMKSEPmGUKwKffzoz6o9MrLoUAOiX2uU3Rdt5V1VdBgAAAAAAAAAMGaFPGMUabe3RdtzZUX/IhE8AmlPtkhui7YJrqi4DAAAAAAAAAIaE0CeMUo329mg7fnzUH5xQdSkAsEhqF10X7RddV3UZAAAAAAAAADDohD5hFGq016LthL9H/f5Hqy4FAAZE+wXXRPslN1RdBgAAAAAAAAAMKqFPGGUa9Xq0nXhO1O99pOpSAGBAtZ93VbRfcXPVZQAAAAAAAADAoBH6hFGm/fQLo373Q1WXAQCDov0fl0ftlnuqLgMAAAAAAAAABoXQJ4wibeddFbUb76q6DAAYPI2ItlPPj9p9j1ZdCQAAAAAAAAAMOKFPGCXar741apfcUHUZADD46vVo+/Pfo/74k1VXAgAAAAAAAAADSugTRoHa7fdF+/jLqi4DAIbOvLaY98czo/70c1VXAgAAAAAAAAADRugTRrjag49H21/Pi2g0qi4FAIbWrBdj3u9Pj8a0GVVXAgAAAAAAAAADQugTRrD6pKei7fizI2q1qksBgGo8P/2l4OeLc6quBAAAAAAAAAAWmdAnjFD1Z5+PeX84M2LuvKpLAYBKNZ56Nub96axotLVXXQoAAAAAAAAALBKhTxiBGjNmRduxp0fMmFV1KQAwLDQenRRtJ50TjXq96lIAAAAAAAAAYKEJfcII05gz96VtbJ+bVnUpADCs1O9+ONrPuKjqMgAAAAAAAABgoQl9wgjSaK9F2/FnR2PylKpLAYBhqXbDndF2/tVVlwEAAAAAAAAAC0XoE0aIRqMRbX/9Z9QfeqLqUgBgWKtdfH20X3t71WUAAAAAAAAAQL8JfcIIUbvouqjfcX/VZQBAU2g/+9KoPfR41WUAAAAAAAAAQL8IfcIIULvzwWi/6NqqywCA5lGvR9uf/x7156ZVXQkAAAAAAAAA9JnQJzS5+pNTim3do1F1JQDQZGbPibY/nRWNOXOrrgQAAAAAAAAA+kToE5pYY+bsmPensyLmtVVdCgA0pcZTz0bbyedGo+7qCQAAAAAAAACGP6FPaFKNWi3mnTA+4vnpVZcCAE2tfs8j0X7+1VWXAQAAAAAAAAALJPQJTar9zEui8eikqssAgBGhdukNUbv9vqrLAAAAAAAAAIBeCX1CE2q/5rao3fCvqssAgBGl7dTzoz7xqarLAAAAAAAAAIAeCX1Ck6k99Hi0j7+s6jIAYORpa495x58djekzq64EAAAAAAAAALol9AlNpP7ctGg78ZyIer3qUgBgZJo2I+YdPz4a7e1VVwIAAAAAAAAALyP0CU2iMWdutP3prIhZL1ZdCgCMaI3Hn4y2v11YdRkAAAAAAAAA8DJCn9AEGvVGtJ18bjSeerbqUgBgVKjfck+0X3FT1WUAAAAAAAAAwHyEPqEJ1C69Pur3PFJ1GQAwqrSfe2XUH36i6jIAAAAAAAAAoIPQJwxz9UcmRvuF11ZdBgCMPvVGzPvLudGYObvqSgAAAAAAAACgIPQJw1iGTOb95R9F6AQAqMD0mdH21/Oi0fD/iwEAAAAAAAContAnDFMZLmk75byIF2ZWXQoAjGr1+x+N2uU3VV0GAAAAAAAAAAh9wnBVu+LmqN/3aNVlAAAR0X7e1VGf8GTVZQAAAAAAAAAwygl9wjBUf/zJaD/vqqrLAABK9XrMO+mcaLw4p+pKAAAAAAAAABjFhD5hmMkwSdtJ/4io1asuBQDo7Pnp0Xbq+VVXAQAAAAAAAMAoJvQJw0zbqRdEY+oLVZcBAHSjftdD0X71rVWXAQAAAAAAAMAoJfQJw0j71bdF/a4Hqy4DAOhF+z+uiPqkp6ouAwAAAAAAAIBRSOgThon6pKej/R+XV10GALAg7bVoO/GcaMyZW3UlAAAAAAAAAIwyQp8wDGRopO2kc4oQCQAw/DWenRZtp19YdRkAAAAAAAAAjDJCnzAMtJ1xUTSeeb7qMgCAfqjffn+03/CvqssAAAAAAAAAYBQR+oSK1W69N+q33Vd1GQDAQmgff1nUXbgBAAAAAAAAwBAR+oQKNabPjLazL6m6DABgYc1ri7ZTz49GvVF1JQAAAAAAAACMAkKfUKG20y+KmD2n6jIAgEXQeGxS1K6+teoyAAAAAAAAABgFhD6hIrVb7on6PQ9XXQYAMADaz7sq6s9MrboMAAAAAAAAAEY4oU+obFv3S6suAwAYKG3ttnkHAAAAAAAAYNAJfUIF2k6/MOJF27oDwEjSeGxy1K6+peoyAAAAAAAAABjBhD6hkm3dH6m6DABgELSfd3XUp9jmHQAAAAAAAIDBIfQJQ8i27gAwwtnmHQAAAAAAAIBBJPQJQ6jtb7Z1B4CRrjFhctSuss07AAAAAAAAAANP6BOGSO3mu6N+r23dAWA0aD/fNu8AAAAAAAAADDyhTxgCjRdmRNt427oDwKhhm3cAAAAAAAAABoHQJwyBttNzW/e5VZcBAAz5Nu83V10GAAAAAAAAACOI0CcMstot90T93kerLgMAqED7eddE/RnbvAMAAAAAAAAwMIQ+YRA1XpwbbedcXnUZAEBV2tuj/exLq64CAAAAAAAAgBFC6BMGUfsF10TMnF11GQBAher3Pxa1ux6qugwAAAAAAAAARgChTxgk9SenRO3a26ouAwAYBtrGXxqNeW1VlwEAAAAAAABAkxP6hEHSduYlEfVG1WUAAMPB89Oj/dIbqq4CAAAAAAAAgCYn9AmDoHbz3dF4bFLVZQAAw0jt8pui/szzVZcBAAAAAAAAQBMT+oQB1nhxbrSde2XVZQAAw017LdrPvrTqKgAAAAAAAABoYkKfMMDaL7gmYsasqssAAIah+v2PRu2uh6ouAwAAAAAAAIAmJfQJA6j+5JSoXXtb1WUAAMNY2/hLozGvreoyAAAAAAAAAGhCQp8wgNrOuiSi3qi6DABgOHt+erRfekPVVQAAAAAAAADQhIQ+YYDUbrknGo9OqroMAKAJ1C6/KerPPl91GQAAAAAAAAA0GaFPGACNOXOj7R9XVF0GANAs2mvRfvalVVcBAAAAAAAAQJMR+oQB0H7+NREzZlVdBgDQROr3PRq1ux+qugwAAAAAAAAAmojQJyyi+tPPRe3a26suAwBoQu3jL4tGe63qMgAAAAAAAABoEkKfsIjaz7sqol6vugwAoAk1pr4QtevvqLoMAAAAAAAAAJqE0CcsgvqEJ6N+l21ZAYCF137x9dGYO6/qMgAAAAAAAABoAkKfsAja/nll1SUAAM1u5uyoXXFz1VUAAAAAAAAA0ASEPmEh1e57NBqPTKy6DABgBGi/4uZozJxddRkAAAAAAAAADHNCn7AQGo1GtP/zqqrLAABGirnzim3eAQAAAAAAAKA3Qp+wEOq33ReNJ6dUXQYAMILUrrsj6lNfqLoMAAAAAAAAAIYxoU/op0atFu0XXFN1GQDASOM9BgAAAAAAAAALIPQJ/VS77l/ReG5a1WUAACNQ/dZ7o/7kM1WXAQAAAAAAAMAwJfQJ/dCYOy/aL76u6jIAgJGq0Yj2866sugoAAAAAAAAAhimhT+iH2hU3R8ycXXUZAMAIVr/30ag/OrHqMgAAAAAAAAAYhoQ+oY8aM2dHe4Y+AQAGWdu5pn0CAAAAAAAA8HJCn9BH7RdfHzF3XtVlAACjQGPCk1G7+6GqywAAAAAAAABgmBH6hD5oPD89atfdUXUZAMAo0n7e1dFoNKouAwAAAAAAAIBhROgT+qDY1r1Wq7oMAGAUaTz1bNTvfrjqMgAAAAAAAAAYRoQ+YQEaM2dH7cY7qy4DABiF2i+9oeoSAAAAAAAAABhGhD5hAdqvvjViXlvVZQAAo1DjiX9H7aHHqy4DAAAAAAAAgGFC6BN60ZgzN2rX3FZ1GQDAKFYz7RMAAAAAAACA/xD6hF7Urrsj4sW5VZcBAIxi9Qcfj/rEf1ddBgAAAAAAAADDgNAn9KDR3h7tV91SdRkAANF+yY1VlwAAAAAAAADAMCD0CT2o3XR3xPRZVZcBABD1ux+M+tPPVV0GAAAAAAAAABUT+oRuNOr1qF1+U9VlAAC8pBHRfplpnwAAAAAAAACjndAndKN++/3ReG5a1WUAAHSo33ZvNJ6fXnUZAAAAAAAAAFRI6BO6aDQaJmkBAMNPrR7tJpEDAAAAAAAAjGpCn9BF/d5HovHvZ6ouAwDgZWo33hmNmbOrLgMAAAAAAACAigh9Qhftl5ryCQAMU23t0X7VrVVXAQAAAAAAAEBFhD6hk/ojE6MxYXLVZQAA9Kh27W3RmDO36jIAAAAAAAAAqIDQJ3TSfsXNVZcAANC7F+dG7ca7qq4CAAAAAAAAgAoIfcJ/1Ke+EPV7H6m6DACABapdd3s0Go2qywAAAAAAAABgiAl9wn/Urr09QngCAGgCjWeej/r9j1VdBgAAAAAAAABDTOgTMjgxry1qN95ZdRkAAH1Wu+a2qksAAAAAAAAAYIgJfUKGJm67L2L2nKrLAADos/r9j0b9meerLgMAAAAAAACAIST0CcXW7iZlAQBNpuE9DAAAAAAAAMBoI/TJqFd/dFI0Jk+pugwAgH6r3XR3NObOq7oMAAAAAAAAAIaI0CejXvu1t1ddAgDAwpkzN2q33Vd1FQAAAAAAAAAMEaFPRrXGzNlRv/PBqssAAFhotevvqLoEAAAAAAAAAIaI0CejWu3muyNqtarLAABYaI1JT0d94lNVlwEAAAAAAADAEBD6ZNRqNBpRu+FfVZcBALDIateZ9gkAAAAAAAAwGgh9MmrVH3oiGs88X3UZAACLrHb7fdGYM7fqMgAAAAAAAAAYZEKfjFq1603EAgBGiHltUbv13qqrAAAAAAAAAGCQCX0yKjVmzIr63Q9VXQYAwICxxTsAAAAAAADAyCf0yahUTMKq1asuAwBgwDT+/UzUJz1ddRkAAAAAAAAADCKhT0al2m22PwUARh7vcQAAAAAAAABGNqFPRp36089FwxQsAGAEqt12XzTqjarLAAAAAAAAAGCQCH0yOrd2BwAYiabPjPrDT1RdBQAAAAAAAACDROiTUaXRaETdtqcAwAhWv/WeqksAAAAAAAAAYJAIfTKqNB6bHI2pL1RdBgDAoKnd9WA05rVVXQYAAAAAAAAAg0Dok1GlZsonADDSzZkX9XsfqboKAAAAAAAAAAaB0CejRqNWi9od91ddBgDAoKvZ4h0AAAAAAABgRBL6ZNSo3/doxOw5VZcBADDo6vc/Fo1ZL1ZdBgAAAAAAAAADTOiTUaN2q63dAYBRolY34RwAAAAAAABgBBL6ZFRozJkb9XseqboMAIAhU7vNBS8AAAAAAAAAI43QJ6NC7c4HI9rbqy4DAGDINCZMjvpz06ouAwAAAAAAAIABJPTJqFC/9Z6qSwAAGFqNiLppnwAAAAAAAAAjitAnI17jhRlRf3hi1WUAAAy52q1CnwAAAAAAAAAjidAnI17trociGo2qywAAGHKNKVOj/tSzVZcBAAAAAAAAwAAR+mTEq9/zcNUlAABUxnshAAAAAAAAgJFD6JMRrTFnrq3dAYBRrSb0CQAAAAAAADBiCH0yotUfmBBRq1VdBgBAZRqP/zsaM2dXXQYAAAAAAAAAA0DokxHNZCsAYNRrNKJ27yNVVwEAAAAAAADAABD6ZMRq1OtRv+/RqssAAKhc/W4XwgAAAAAAAACMBEKfjFiNCZMjZr1YdRkAAJWrPzghGu3tVZcBAAAAAAAAwCIS+mTEqploBQDwknltUX/w8aqrAAAAAAAAAGARCX0yYtXvEfoEACh5bwQAAAAAAADQ/IQ+GZHqU6ZG45nnqy4DAGDYqN37SNUlAAAAAAAAALCIhD4ZkUyyAgDo4oWZUZ/4VNVVAAAAAAAAALAIhD4ZkWpCnwAAL+M9EgAAAAAAAEBzG1t1ATDQGrNejMaEyVWXAQAwPKehv3XHqsuAbo0fPz5OPPHEeOyxx2KJJZaIHXbYIQ499NBYc801+3T7F154IX73u9/FRRddFFOmTIlVVlmluI+DDz64+BoAAIDq6PkAAAAGTkuj0WgM4P1B5Wq33BNtf/1n1WUAAAxLi3/nv6JlhWWrLgPmc+SRRxaLdxtuuGHsvPPO8e9//zsuuOCCWG655eL000+Ptddeu9fbP/vss/HhD384JkyYEDvuuGO8+tWvjnvvvTeuv/76YgHxzDPPjBVXXHHIjgcAAID/T88HAAAwsIQ+GXHmnfSPqN9+X9VlAAAMS2Pfv1eM3X7LqsuADvfff3+8613vim222SZOOOGEWGyxxYrvX3zxxcXEll122aVYHOzNl770pTj//PPj29/+dnzkIx/p+P7RRx8dRx11VHz605+Oww47bNCPBQAAgPnp+QAAAAae7d0ZceqPPFF1CQAAw1b94ScihD4ZRnJ7v/T5z3++Y/Ev7bHHHvGGN7whrrjiinj66adj1VVX7fb2Tz31VDEhZrvttptv8S99/OMfjyeeeCJWXnnlQT4KAAAAuqPnAwAAGHitg3CfUJn6lOcips+qugwAgGGr/sjEqkuA+dxwww0xduzYYrGvqze+8Y2Rm1Pk7/TkyiuvLH7nbW9728t+tuyyy8YRRxwRBxxwwIDXDQAAwILp+QAAAAae0CcjSv1hIQYAgF5Nnxn1KVOrrgIK8+bNiyeffDJWW221+Sa+lNZee+3i86OPPtrrVoFpo402inPOOSf23Xff2HLLLWOHHXaIww8/PKZO9XoHAACogp4PAABgcAh9MqLY2h0AYMG8Z2K4eOGFF4qJLcsvv3y3P8+pLWnGjBk93seUKVOKz8cdd1x87WtfK7YE3G+//WL11VePU089NT70oQ/FtGnTBukIAAAA6ImeDwAAYHCMHaT7hUrYrhQAoI/T0bffquoyINra2orP3U186fz9uXPn9ngfs2fPLj5feumlceyxx8ZOO+1U/DsXFnPqy2mnnRY///nP4wc/+MEgHAEAAAA90fMBAAAMDpM+GTHqU56LmD6r6jIAAIY9F8owXCyxxBLzLQR2txVgWmqppXq8j9bWl9ravfbaq2PxL7W0tMRXv/rVWHzxxeP888+Per0+wNUDAADQGz0fAADA4BD6ZGRNrAIAYMGmz4z6lKlVVwGxzDLLFAt4PW3lV36/3PKvO+XPtthii27v/1WvelVxP1Ones0DAAAMJT0fAADA4BD6ZMSoP/JE1SUAADQN750YDnIrv7XXXjuefPLJbie/TJz40oVdG264YY/3sd566/Vpckw5YQYAAIChoecDAAAYHEKfjBi2KQUA6DtT0hkutt1222Lx7rbbbnvZz66//vpiy76tt96619un66677mU/y0kvkydPjrXWWquYAAMAAMDQ0vMBAAAMPKFPRoT6lOcips+qugwAgKbhghmGi/e9733F5yOPPDLmzJnT8f2LL744brnllth1111jtdVW6/H22223XTEV5qabborx48d3fL9er8dPf/rTYnHxAx/4wCAfBQAAAN3R8wEAAAy8lkaj0RiE+4Uh1X7dHdF+xkVVlwEA0FQW+/qno3WVlaouA+L73/9+nHzyybHuuuvGbrvtFk8//XScf/75seKKK8app55abAeYbrzxxmKhb9NNN43dd9+94/b33ntvHHDAATF9+vTYaaedYv311y9+95577onXve51cdJJJ8W4ceMqPEIAAIDRS88HAAAwsIQ+GRHmnXhO1O+4v+oyAACayth994yxb9qq6jIgsi3NBcDTTjstJkyYECussEIxzeWQQw7pWPxLRx11VBx99NHxnve8J37yk5/Mdx+5pV/+7Oqrr44XXnghVl999dhnn33iwAMPjMUXX7yCowIAACDp+QAAAAaW0CcjwpzDfxMxw/buAAD90fq6TWKxj76z6jIAAAAAAAAA6KPWvv4iDFf1KVMFPgEAFkL9kYlVlwAAAAAAAABAPwh90vQaT/y76hIAAJrT9FnRmDaj6ioAAAAAAAAA6COhT5pefdJTVZcAANC0vJcCAAAAAAAAaB5CnzS9+qSnqy4BAKBpeS8FAAAAAAAA0DyEPmlqjXojGpMFFQAAFlbDpE8AAAAAAACApiH0SVNrPDM1Ym5b1WUAADSt+kQX0AAAAAAAAAA0C6FPmprJVAAAi2jGrGi8MKPqKgAAAAAAAADoA6FPmlp9kslUAACLynsqAAAAAAAAgOYg9ElTq0806RMAYFF5TwUAAAAAAADQHIQ+aVqNRiMak6dUXQYAQNNrmPQJAAAAAAAA0BSEPmlajWemRsydV3UZAABNrz7JpE8AAAAAAACAZiD0SdNqTDSRCgBgQEyfFY3pM6uuAgAAAAAAAIAFEPqkadUnC30CAAyUui3eAQAAAAAAAIY9oU+aVmOibUgBAAaK91YAAAAAAAAAw5/QJ02p0WiY9AkAMIBM+gQAAAAAAAAY/oQ+aUqNqS9EzJlXdRkAACNG/ckpVZcAAAAAAAAAwAIIfdKUGlOmVl0CAMDIMm16NOa1VV0FAAAAAAAAAL0Q+qQpNZ4R+gQAGFCNiMazz1ddBQAAAAAAAAC9EPqkKTWeEUgAABho3mMBAAAAAAAADG9CnzQlkz4BAAae91gAAAAAAAAAw5vQJ02pbgoVAMCA8x4LAAAAAAAAYHgT+qTpNNraI6ZNr7oMAIARx6RPAAAAAAAAgOFN6JOm08gJVI2qqwAAGKHvswAAAAAAAAAYtoQ+aTomUAEADJJZL0Zj1otVVwEAAAAAAABAD4Q+aTomUAEADB7vtQAAAAAAAACGL6FPmo5JnwAAg8d7LQAAAAAAAIDhS+iTplM3fQoAYNB4rwUAAAAAAAAwfAl90nRMnwIAGDzeawEAAAAAAAAMX0KfNJXG7DkRs16sugwAgBGrYdInAAAAAAAAwLAl9ElTMXkKAGBwNZ59PhqNRtVlAAAAAAAAANANoU+aSmPqC1WXAAAwss1ri5g5u+oqAAAAAAAAAOiG0CdNpTF9VtUlAACMeN5zAQAAAAAAAAxPQp80lcb0mVWXAAAw4nnPBQAAAAAAADA8CX3SVAQQAAAGn/dcAAAAAAAAAMOT0CfNxVajAACDz3suAAAAAAAAgGFJ6JOmYuoUAMDg854LAAAAAAAAYHgS+qSpNEydAgAYdN5zAQAAAAAAAAxPQp80jUZbe8SLc6ouAwBgxDPpEwAAAAAAAGB4EvqkaQgfAAAMDe+7AAAAAAAAAIYnoU+ah21GAQCGxgzvuwAAAAAAAACGI6FPmoaJU8D/Y+8+wOwq6/yB/869M5OQHtIhgZAEQkgoSSBFeicgHaQKKq4NLKwuiu7q/m1rWQ0Ksqi7iCgKoi7rroBSBFGpgvQOAUJCaCGEkjYz/+c9YcZJmEmdmXPvzOfzPPPc5JZzf3dyMnPe837P7wWgk6yoj8bX3yy6CgAAAAAAAABWI/RJ1RD6BADoPI69AAAAAAAAACqP0CdVo9Hy7gAAncaxFwAAAAAAAEDlEfqkeug2BQDQeRx7AQAAAAAAAFQcoU+qhm5TAACdx7EXAAAAAAAAQOUR+qRqNL7xZtElAAB0G469AAAAAAAAACqP0CfVY+myoisAAOg+HHsBAAAAAAAAVByhT6pGo+ABAECncewFAAAAAAAAUHmEPqkeS5cXXQEAQPfh2AsAAAAAAACg4gh9Uj2W6TYFANBpdPoEAAAAAAAAqDhCn1SFxmXLIxoaiy4DAKDbsLw7AAAAAAAAQOUR+qQ6CB0AAHQux18AAAAAAAAAFUfok+rp9AkAQKdx/AUAAAAAAABQeYQ+qQ5LdJoCAOhUjr8AAAAAAAAAKo7QJ9XB8qIAAJ1rmeMvAAAAAAAAgEoj9ElVaBT6BADoXPUN0bhiRdFVAAAAAAAAANCC0CfVQegTAKDzWeIdAAAAAAAAoKIIfVIVGpctL7oEAIBuxzEYAAAAAAAAQGUR+izIueeeG+PHj89v11VjY2NceeWV8eEPfzh22223mDRpUuyxxx7x7ne/O375y1/GkiVL3vaafffdN3+fOXPmtLrNj3zkI/njkydPjmXLWu/ktOeee8a2224bL730UhRGl6lO9093Xh/7X/fzVh97Y8XyOP+RO+PQGy6PaVddFLOuvyy+89Dt8WZ960vAPrZ4YZx5x7Wxz7U/ixlX/zje/effxLXzW98n27KioSEuefK+OOrGX8X0qy6K/a79eXzl3j/HK8vevt8vXLYk/vGv18X0q38cB153aZz70B2xvKH+bc97dPHLMfm3F8aVzz6+XrUAQLfhGAwAWINf//rX+XmldJ5q0aJFaz0Pdvnll7d7Dfvss0++7da+0vmu/fbbL84+++x4+umnN/q90vm1U089Nd/ulClTms/r/eAHP4i99torP1eXvheLFy9e4/dr9uzZG10LAABAVxnXtRzHPfvss2t87le+8pXm5956660b/X4tv5rGdClDsaHbbsvcuXPz9zjhhBPadbsAdF81RRfAukmBy49+9KPx17/+NQYOHBi77757DB8+PF588cX8gONzn/tcfoK56WCrycyZM/MDrzvvvDNGjx69yjaXL18et9xyS5RKpXjjjTfijjvuiHe84x2rPOeZZ56J5557LiZMmBCDBg2KwrQRSKVjXPDoXfH7+U/G0J693vZYCk9+7I5r4vaX5sfMwZvHfsNHxz0Ln48LH78n/vrSc/GfMw6OunK5+fkPLnoxTrvlymhsjJi1+ZjYpFwTv5v3ZHzyzuvi09vNiBO3mrhOgefP3/PH+O2zj8cOA4bkr0lB0l88/VDc8uK8+Omuh0X/uh7Nz//yvX+OGxY8Fe/cfFweUP3Px++Oxoj42LY7r7Ld7zx4e2zbf1DM2mzMRn/PAKBLWuoYDABYuxdeeCG+/OUvxze/+c3CajjllFOiX79+q9yXzpvdfvvt+STmddddF7/61a9i1KhRG/weZ511Vtx99935BdLp/Nu0adPij3/8Y3zrW9/Kz9elC7Pr6uqib9++rb4+nV8744wzYuedVz0/AQAAULRKGNclV199dZx22mmtPtbQ0BBXXXVVu71XGp+tnp9I4czf//73cf3118fXv/71OPzww9vlvdJ4Nb3fiBEj2mV7ACD0WQXefPPNeM973hOPPPJIfvuJT3wiNtlkk+bH6+vr45JLLomvfe1r+ZUh//M//9N8AjuFOJtCn0cdddQq2033vf7663HIIYfEb3/727jpppveFvpMJ8aTXXfdNYrUuOLtXRppf0vrV8TX7r85fv3MI20+5xdPPZQHPt8zZvs4c8K05vu/cf8tccmc++PSpx6IU8Zs33z//7vnT7G0vj5+ttthMb7fyuDw+8ftlHf7POeh22PfEaNjWM/ea6zrxuefzgOfB47YKr4+ee/Isiy//6dP3hfffODW+I9H74zPTJyZ3/fy0jfjuufmxDFbbBv/vP3K/fbDt10dv3jqwVVCn+kz3PTC3PjB9FnN2wMAVtVY7xgMAFg3v/nNb+Kggw7KV50pQurAOXLkyLfdn86bpU6f6XzZd7/73Y2awLzvvvvyQOd//Md/RPmtC16/973v5bf/8A//0ObEZMvQZ/oCAACoREWO61IocunSpXmos62x1W233ZaHU3v37p3nHDZWarrVmptvvjnPZaQQ7IEHHhg9e/Zsl8/X1vsBwIawvHsVSN07U+DzpJNOyk9Stwx8Jukkc+pmkLp9poOb9JwmM2bMyANtqUPo6lLIM/nABz6Qn7Bu+ntroc/UxrxQqU0kHeqGBU/HETf+Kg987j7k7ZMkTX425/6oK5XjA1vvtMr9Z4yfGj3LNXH50w8133fny8/Fg6++FAeM2Ko58JkMrOuZBz+XNtTH/859dK21XfLk/fnt6eOnrhLQPHH0xNhskz7xm7mP5oHV5Nk3X8u7em7Tb9Pm56X3XrxiWb7se1Pn0NkP3ha7DRkZ0wdvto7fIQDohhyDAQDrYOLElat4fOELX4hXXnklKkk6b9Y0sfbnP/95g7ezYsWKPECaJuqaAp/JsrdWp0mdPgEAAKpV0eO6lIHYY4894t577827bbbmyiuvjF69er2tkVV7S6up7rTTTvHqq6+2mrMAgEog9FnhlixZEpdeeml+9cjHPvaxNT43dfkcM2ZMHtR86KGVwbtNN900X27qySefjIULF67y/D/96U8xbNiw2HbbbfNw6KOPPpov5d5SWvI9HWBNnTo1CiVw0OGueObhfCn0z016R5y7ywGtPmfeG4tj7huLY9KAwdG7pm6Vx3rV1Mb2A4bE06+/GgveXHll1W0vzstvp7USrGwKW9724vw11rW8oSHuWrgghvfsHVv27r/KY6Usi10GjYjXVyyP+xe9mN83oHblMu9vrlgZAk1eX74sylkWfWpq879fPf+JeHDRS/GJbXdZh+8MAHRjjsEAgHWw++67xxFHHNG8HOC6SiHKn/zkJ3HkkUfGjjvuGJMnT47jjz8+rrjiinatb9CglReiLl68uPm+NImYzpml82mr+8tf/pI/9pnPfCb/e7ptmgB99tln88f22Wef/PaCCy7I708XYae/p6Xk25IeS8+ZPXv2KmHSH/zgB/n3IH3+KVOmxLHHHhs/+9nP8otWW3rwwQfz5QD33nvvmDRpUj4h+ulPfzrmzJmzyvPSMvPpfZ566qm31ZBekx5b3T333BOnn356fo4wbTt1sznnnHNa7Z7zu9/9Ln+PNBG6ww475J2A0hL3Lb+/AABAdamEcd3BBx+c37a2hHsaO6WxSBqLrd55MwVV0zintfdMS8KnMVQav6Tl29dV0zLsKWNx991359tPjbhak8Z46fFrr722ze21NQZd1/HVyy+/HP/v//2//PH0vOnTp8f73//+fPy6ekOx9D5pNdjVfepTn8ofu/XWW1e5f8GCBfGv//qvzWPN1BAsjXFbC9+u67gUgI4n9Fnh7rrrrvzkajo4GjBgwBqfWyqV8hOyye9///vm+9OVLukkcdpWk3SwloKhTR08m25bdvtMv9yffvrp2HnnnaOubtWAX6drEDjoaCdtNSmu3Odd8a4tJ7S53PlTr7+a347q1a/Vx0f26pvfPvn6K6s8f4u37m8pLelek5Wan9uWeW8uzoOfo3qv+T3nvLYovx2xSZ8Y0qNXXDH3kXjuzdfi8cUL49rn5sSk/kOitlSO5Q31cd7Df413jhwXW7foBgoAtELoEwBYR5/97GdjyJAh8b//+79x3XXXrfX5qUNmWn0mTSYuWrQon1ycNWtWPPPMM/mEUdpee2k637WhS6vvt99+8ZGPfCT/c1otJ01wpcm+dJvOmyVp+cP09/V9j89//vP5hF6atEwTo0cddVS8+OKL+WRey3DoE088kU8O3nLLLflk4Hvf+958gi0tv3jcccfF888/HxsqdctJ206ThWmiNy1jmIKyaRn7E088MV577bXm56ZJ1HRh+vz58+OQQw6Jk08+Oe9+moKraYn71YOqAABA9Sh6XLfXXnvlDalaC32mlRtSB9I0Dlnd0Ucfnd+2FvpMAcd58+bFYYcdFrW1KxsErYumEOPw4cPzMOvWW2+dLy+fxkItpTFQGpelMVSqf32s6/gqfZ9TMPSyyy7L6zj11FPz8GvqQnraaafFjTfeGBvq8ccfz8ehqRHZNttsk287NQT7n//5n/z7mkKenTEuBWD91WzAa+hE6RdnMnbs2HV6fvoln6QDqSbpF+6FF16Y/9JPv/ybunymg4SmsOeuu+7afBI8dROoqKXdEyeMO1zqmLk2ryxfuTx6/7e6aa6uz1vdPxcvX7bK8/vVvf35qUtn75ra5ue2ZdGypev1njWlUnxm4ow4+283xoHXX9a8nPzZk2bmf/7FUw/Gi0veiDO2+Xv32obGxrweAGA1LrwBANZR//7940tf+lJ86EMfyruspEmiNV3AfNFFF+Xnp9KkWAo3piX6mrqXpImjX/3qV/k5rUMPPXSD6kndZtKEYHqPr371q/l9TcHNDQl9pjrPP//8fAKuabn4pm4zaaWc9Jw0UbY+UpgyTfKl4Ogll1zSfH8Kj6aJ0tQtJ71XmphMXVrefPPN/PuWvi9NUk3f+c538i6i6Xu/vlLANE3Epn+rNMk3atSo5sfOO++8vEtMCqWmf9Mk1ZT+rVLdffr0ye9L5xjf97735aHRdNF56lYKAABUn6LHden1e+65Z1x99dV53qHl+CRdrJbqS9mF9OeWUufLFFhMAc/U2CqtdtqkaTWG9Rmvpe2nsGNT4LPp9V//+tfzgOMHP/jB5uemAGQKlabPW1OzfvGbdR1fpT8/9thj8eEPfzg+8YlPNL8+hTJPOumk+PGPf5x/3zbEP/3TP+X/XmkVi5ah1fS50mc666yz8s+cmkZ11LgUgA2j02eFa2rb3fRLfm2aDrrSL+Ymu+yyS35y+M4772y+L4U7U2fQ1AU0SQdMo0ePzg8Y0knxlqHPpkBooYQ+K8KKhob8tq5UbvXxpvuXvrUPLV+H5y9rWPnctqTOnGvcRvmt92z4+3Lu+43YKi7f/cg4e+LM+ML2u8Wv9jgqJvQfHK8tXxY/fOzuOHGriTFsk95xx0vz48gbfxVTrrwwDrr+0vjN3EfX+j0AgG7FMRgAsB7S8m7ruhxgmvxL56a++MUvNk8MJptuuml87nOfy/+cupisq9RpMy1T1/S13Xbb5ee90gRVjx498gnI9e260tHSZF5aajB1dWm5bF46v5e+P+n8XVMnmqYOL+mi7pbdNFNXzhtuuCHvrrMh0uRimrRLk5YtJ1STNFmX/j3Sc5qWQUzvvWTJkrj33nubn5cm/1Iw9Oabbxb4BACAKlfkuK6tJd6XLl2aL52+//77t7lCaQpApvFV6lDZ8kK7a665JiZOnJiPE1eXLnJr+fXNb34zD1x+8pOfzMdiKQDbNCY7/PDD8z+33H7y3//93/nt+l4EuD7jq/S5khREfeONN5qfmy4gTCvApsDmhrjnnnvi/vvvz8fTq4+XZ8yYkd//yCOPxN/+9rfmejtiXArAhtHps8Klq1WS9Mt+XaSl4JOBAwc235daoO+0005x9913562/0xUmqf359ttvv8qVOemqmJ/+9Kf5L/Z0NUzqUjB06NDm7qGFEjioCD3KK39kLG9ceWC5uqYAZ6+3rmLq+VZQsyn82drze5Vr1+092wiHLnsrYNqrZtXtjO7TP/9q6cLH71l5ddTYHfPOoJ+449rYpt+m8alpB8b1zz0V/3L3H2PL3v1ix4F/v/oLALo1x2AAwHpKE3vpouK0HOBBBx2Ud8Bs7fxVWipvq622WqUDS5M0sVUul+OBBx5Y5/dNy62nLpxp3J9ClKkzTDqfdvrpp+fdUNL2Kk1aKj4tMZgmDQ844ID8fFy6+Dqdo0vdZNLkaZOm5fbSROTPf/7zPNCanrvHHnvEiBFrX72lLU2Ti+k2bXt16bxiurg8/Xulc4Rpuff0b5wm9caMGdNcb5oQTEvUAwAA1a+ocV2SOlamAGka0zWFCNPy5SnA+c53vrPN16Wx1b//+7/nXSmbXpe2kS5ya1r+fXVpdYOW0pgmLW+ftpXGPBMmTGh+LC3fnmpL4dM0fkpZi/Q9SKHStMR56jS6vtZ1fJXGf6mBVwpWpudMmzYtvy+NB9P3f2PHg2nM19p4cNGiRflt+jecPHlyh41LAdgwQp8Vbosttlhlmfe1efTRlZ0KR44cucr9qb126tyZfnGnK1DS8lap1XdL6RdyCn2mtufp9Y8//nh+FQ80aVpiffHylUuur+61FctWWXK9aVn31pZwT0uqv75ieQzpucm6vedb217be7ZlwZLX45In74uPbrtz9K2ti8vmPJBv89MTZ8T4foNi+qDN4rrn5sRPn7xf6BMAmgh9AgDrKQUvU5eX1CXyX//1X/POI6tLk3VNocfWpAuWU2eYl156aZ3f99RTT13lfFhayj1NoKXJqFRTCoVWorT0fAp7pmXwUveUtHxfmnhMk6b/+I//2HxuLk0gpqX0fvjDH+YTfWkiM32lSdR99tkn/14PHjx4vd//1VdfzW/TttakabLvmGOOyd8nLUOYziGm26YlCY8//vi8I876LmkIAABUlqLGdUkKO6Yxzv/93//F008/neclfvvb3+bjkBR2bEt6r9SlNHW+TE2uUnfPtGpB6gzaVlj04YcfXq/aUng0hT7ThXsp9JlCpanz5oZ0+Vyf8VX6nqSOqT/4wQ/y90xjwvSVxpPpc6Z/ozSu3NDxYOrcmb7akrIlHTkuBWDDOANX4dKBS+rGedttt8XChQtX6eDZmnQQkxx44IGr3J+usvjud7+bt+hu6hqarhJpafr06XkgNP1C33LLLfPOCBWxtDsVo6lz5jNvLG718WdeX3n/2L4r99Oteq/sJDv3jVdj8qarBimfe/O1WNHYEGP6rHmf3qxXn+hRKjdv+23v+VYtY/r8vWtta85/+M4Y3LNXHLflyiuynnx95WTFlr1XfqaaUilG9uobT711PwCQryVTdAUAQBUvB5gm2NJygOk8U0u9e/fObxcsWNDq69PSdWkCseUKNesrLVWezoWdfPLJ+URY6prS8lxYWjIvabkkXZOWy+V1tDSBl2pMX6m7yi233JJPnl155ZXx6U9/Og+yNk2wpk6b3/jGN6K+vj6fxEydd9JkY+oskzrM/OhHP1pl201LALaUuty09m/xi1/8Iu8uui7Ssn/pK23rzjvvzJehT//WF154YT45nDqrAgAA1a3Icd2sWbPy0GcKOKaxUur0mQKSa1vBIYUyU14ivTZ15kwrm6ZOpU2rq26s1NEydQJN47XPfvaz+fusKVTanuOr9H0866yz8q+nnnoqHw/+7ne/y5eBf//73x/XX3999OnTp3msuz7jwRQuXdel2dd3XApAx/n7GkFUpBTCTF0JUlAztSNfk1/+8pfx0EMP5a21W7YaT9KVHemX/H333Zcf3KQDhNVP5KZf6um1aRsp+JkOCCom9ClwUBGG9ewdW/TqF/e+8kK8sWL5Ko+lv9+36IX88UE9Vnbv3HnQyjbut700/23buvWt+yavpatmOSvlgdFn31wcc1cLm6ZuoXe8ND82KdfEhP6D2tzGY4sXxv8++2icMX5q1L615Hz9Wwe69S2Wqk/LzZfCvgYAzRyDAQAbKC1RN3To0Hw5wBRibCmdo0oThs8//3y+HODq0kXLaTJqQ5bHaymd50oTVynY+ZnPfKa5i0nTObckTUqtLk2gdYa0ys63vvWt+MMf/tDcmebggw/OJ9BSR50kncdL0hJ6X/rSl/LPkiY607m+9Jxf/epXeReYtMJPkzTp2NpnS6HSxYtXPbfSdA7x7rvvbrXGb3/72/H9738/D8KmCdvvfe97zZN4aen3dO4wfW+blgJsWQcAAFDdihrXpXBl2n4KNab3Tds55JBD1vq63XffPa83BRCvu+66fPx05JFHRntetHf44Yfn3UtTXWn8s++++25QqHR9xlcpCJqCt01j1fR9P+GEE+Kiiy7KG3ullRkeeeSR9R7rbrfdds3/Vq1JXT3TxZRNq9Kuz7gUgI4n9FkF0tUb6RduCnWmNuqrX4GRfqmmdt6pXXb6Zfr1r3/9bdtIv3R32WWX/ARuukIkLffe2pUwqePB/Pnz8wOHdNI3nWyuCAIHFeOIUdvEkvoV8b1HVm3xft7Df83vP2703wPHOw0cGlv17h9XzXs8D4o2WbhsSfzXY3/LO3geOWqbdXrP5NsP3rZKSPNnc+6PeW++FkeNGt8c5mzNOQ/dHtv2GxQHjRjTfN9Wb3UGvevllVefvbJsScx5bVHz/QCAYzAAYOOXA0zSRcitdWBJ57TSc1p21kwr3XzlK1/J/9wek3PpvFrqRPLCCy+scs4sdX1JnVJS8LLlxFcKRv7sZz+LzlAqlfLl+WbPnt28Mk+TuXPnNncsTdLk2U9/+tN8srWlF198MZYuXbrK0vapq2nSFCZtkiYUV+9smiYs06RgeqxpIq9Jer8U+EwTremcY/pK5yDTpN+TTz65ynOfeeaZ/LZlHQAAQHUralyXLmTbb7/98ve8+OKLY/PNN88v6lublH9I3UnT+OS//uu/8gDo6qufbqz0mZMUwly+fPkGL+2+PuOrefPm5cu+p2XVW0pjwTTWTWPL9D1Kxo4dm9+mUGrL8V/qmvroo4+u8vopU6bk48cUkk2Pt3TvvffmAc///M//bO7Wuj7jUgA6nuXdC/bf//3f+dLtrdliiy3yg6F0UJOu0khttS+55JK8Xfiee+4Zw4cPj1deeSVf9ildPZOu6EhX36/eWr3lEu9NJ3vbOrhJ96dtpBPe//AP/xAVQ+CgYrx7q0lx7XNz4qdP3h8PLXo5dhg4JO5Z+Hzc8fJzMWXTYfGuLf4e+kzdYj+/w27xoVuvjvff/NuYtfnY6F1TG7+b92S8sPSN+OzEmfmS601eXb40Lnny/vzPH95mSvP9szYbG1c++3hc99ycOOlPv4kZQzaPJxa/Ejc+/3QeKv3g1m0f5KdOoDc9/0z8cPqs5nb2yYGbjYnzH7kz/vnuP8Yhm4+NW1+cF8sbGuKUMZM64LsGAFWq5BgMANi45QDTBF86/7W6973vffkydH/+85/zpfBSJ5cVK1bkE1Np0ipNnKXJuo2Vzqul82vHH398fkH1oYceGjNmzMgnA9N9F1xwQd4hJXXYTO+fAo7jxo1rDl12pK222ip/75///Of58oXp+9WzZ8/8ou3U4TNNah5wwAH5c08//fT44x//mC/5ftVVV+UTeem8YKo3TeR96lOfat7ucccdl2/z/PPPj8ceeyyfeEuTcyncmrrsNHWASdJjX/jCF+Lzn/98/v1OE6sjRoyIBx98MP+3SR1rvvrVr+bPTROJ6f3/8R//Mf/3OfDAA/OlDdN2UxeddPF4RZ1PBAAAqnZcl8ZoaZnzu+66a73GGSmUmS6ue/bZZ/OVH9a2JPz6SiHJNFZLdQ0bNmyDV05dn/HVYYcdlgdEU+fNhx9+OHbeeec8cJrGiOn56d8h1ZKkHEkKgN566635irJTp07NL/C78cYb8yZhLbtxphq++c1vxnvf+974+Mc/nn+W8ePH591bf//73+fv8W//9m/NjcLWZ1wKQMcT+ixYOthIX61pueRUOsGartxIv0TTL/O0/PqCBQvy+9OBxWmnnZYfSKUrQtqSQp9N2jr4SB1F0y/t1NWgYpZ2T0qa0laKunI5D1Be8Ohdcc38J+OeV56P4T17x/vH7hjvG7dD/nhLUzYdHj+aeUgesEzPT8b2GRhnT5oZ+w4fvcpzFy9flm939dBn8q0p+8aPnrgn/m/uY/HTJ++LIT16xXFbTsgDn/3rerRZ7+yHbo/dh4yMaYM3W+X+tAT9BdMPin+7/+a47KkHY7NN+sY3p+wdE/oP3ujvEQB0GZljMABg43z2s5/NJwDTpFFLqbtkOteVLnBOE3lpAjHdt+222+bL2aXzXO1lxx13jHe/+93x4x//OA83/uY3v8nDlR/72Mfyc2lpKbq0TF3qApMmxdJXy/NoHemf//mf88+cAqm//e1v8xV+UhDzox/9aD5x17Q0Xzr/l2pMk5cpEPqnP/0prz1N4KWJwHTbJIVWL7zwwnxJwDSxl7aRlvxLy8anr5ahz+TYY4/NA6ipE076t0odetLF5u9617vySdKmbqNJWlIxdXlJ20/PTR18UtfUNAn8kY98JDbbbNXzLwAAQPUrYlyXxmQpC5GWLl+Xpd2bjB49OiZNmpR3CW3Ppd1bShcTptBnCrRuTKh0XcdXaen39Jy0FPy1116bjw2TFNBMq1u0DNam73/qjpoafaVx4wMPPJCv8JoueEyNv1Zfgj19r9K/W1rlIa0GmxqWDRw4MM+KvP/9788Dpk3WZ1wKQMfLGldf0wcq0PKrbor6a24uugwAgG6l9sPHRXnr1rvIAwAAAABAJUkX0qXVTVMg8mc/+1mHvMfnPve5/OLB1OGyrVVYAaCjad1DVch0+gQA6HRZZnl3AAAAAACqQ1rB4LXXXstXcOgIjz32WL5KQ+qEKfAJQJEs7051qLGrAgB0ureWEwUAAAAAgEqUFrdNS5wvX748X8I8LWc+a9asdn2P2bNn58uZp9Bnep+Pf/zj7bp9AFhf2idSHXoIHAAAdDrHYAAAAAAAVPiKVf369Ytnn302Zs6cGf/xH/8R5XK5Xd9j+PDh8eSTT8bgwYPjW9/6Vuywww7tun0AWF9ZY7rsASpc/e33xfKfX1l0GQAA3UqPf/lQZAP7FV0GAAAAAAAAAG/R6ZPq0KOu6AoAALqfno7BAAAAAAAAACqJ0CfVQegTAKDz1TkGAwAAAAAAAKgkQp9UhUzoEwCgc9XURFY2XAAAAAAAAACoJGZxqQ49aouuAACge3H8BQAAAAAAAFBxhD6pCjp9AgB0LsdfAAAAAAAAAJVH6JPqIHQAANC5HH8BAAAAAAAAVByhT6qD0AEAQOdy/AUAAAAAAABQcYQ+qQpZTTmiXC66DACAbsPy7gAAAAAAAACVR+iT6tGjtugKAAC6D8deAAAAAAAAABVH6JPqodsUAECn0ekTAAAAAAAAoPIIfVI1BA8AADqRYy8AAAAAAACAiiP0SfXoKXgAANBphD4BAAAAAAAAKo7QJ1Uj692r6BIAALqNrI9jLwAAAAAAAIBKI/RJ1cj69S66BACAbsOxFwAAAAAAAEDlEfqkamT9+hRdAgBAt+HYCwAAAAAAAKDyCH1SPXSbAgDoPI69AAAAAAAAACqO0CdVQ7cpAIDO49gLAAAAAAAAoPIIfVI1BA8AADpJj7rIetQVXQUAAAAAAAAAqxH6pGpklhgFAOgUjrsAAAAAAAAAKpPQJ9Wjb++ILCu6CgCArk+HdQAAAAAAAICKJPRJ1chKpYg+vYouAwCgy9PpEwAAAAAAAKAyCX1SVQQQAAA6XqbTJwAAAAAAAEBFEvqkqgggAAB0PMdcAAAAAAAAAJVJ6JOqotMnAEDHc8wFAAAAAAAAUJmEPqkuuk4BAHQ8x1wAAAAAAAAAFUnok6piqVEAgI7nmAsAAAAAAACgMgl9UlWy/gIIAAAdTegTAAAAAAAAoDIJfVJVsk0HFF0CAEDX1nuTyDbpUXQVAAAAAAAAALRC6JOqkg0ZGJEVXQUAQBc/3gIAAAAAAACgIgl9UlWy2pqIAf2KLgMAoMvKhmxadAkAAAAAAAAAtEHok6pT0n0KAKDDONYCAAAAAAAAqFxCn1Qd3acAADqOYy0AAAAAAACAyiX0SdXJdJ8CAOgwjrUAAAAAAAAAKpfQJ1VH9ykAgA6SRWSDhT4BAAAAAAAAKpXQJ1VH9ykAgA7Sv29kdbVFVwEAAAAAAABAG4Q+qTrZpv0jyuWiywAA6HJKOqoDAAAAAAAAVDShT6pOVipFNqh/0WUAAHQ5OqoDAAAAAAAAVDahT6pSpgsVAEC7c4wFAAAAAAAAUNmEPqlKulABALQ/x1gAAAAAAAAAlU3ok6qkCxUAQPtzjAUAAAAAAABQ2YQ+qUolXagAANpXuRTZoP5FVwEAAAAAAADAGgh9UpWyYYOKLgEAoEvJBg+MrGR4AAAAAAAAAFDJzOpSlbK+vSP69ym6DACALiMbOazoEgAAAAAAAABYC6FPqlZp5PCiSwAA6DIcWwEAAAAAAABUPqFPqlZJNyoAgHbj2AoAAAAAAACg8gl9UrUsQQoA0E6yiGzzoUVXAQAAAAAAAMBaCH1StUqjLEEKANAesiGbRtazR9FlAAAAAAAAALAWQp9Uraxfn4h+vYsuAwCg6umgDgAAAAAAAFAdhD6paqWRun0CAGwsx1QAAAAAAAAA1UHok6qmKxUAwMYrOaYCAAAAAAAAqApCn1S10ihdqQAANkrmQhoAAAAAAACAaiH0SVXTlQoAYONkgwdG1rNH0WUAAAAAAAAAsA6EPqlqWf++EX17F10GAEDVykbqnA4AAAAAAABQLYQ+qXqlUbp9AgBsKMdSAAAAAAAAANVD6JOqpzsVAMCGcywFAAAAAAAAUD2EPql6pZG6UwEAbJDMsRQAAAAAAABANRH6pOqVttys6BIAAKpSNnRQZD17FF0GAAAAAAAAAOtI6JOql/XtHdmwQUWXAQBQdUrjtii6BAAAAAAAAADWg9AnXUJp7KiiSwAAqDqOoagkV1xxRRx11FExefLkmDlzZnzqU5+KZ599doO21djYGKecckqMHz8+5s6d2+61AgAAsH6M+QAAANqP0Cddgi5VAADrzzEUlWL27Nnx6U9/OpYuXRonnnhiPgF45ZVXxtFHHx3PPPPMem/v4osvjltvvbVDagUAAGD9GPMBAAC0r5p23h4UQpcqAID1kw0bFFmfXkWXAfHQQw/FBRdcEFOnTo2LLroo6urq8vtnzZoVZ5xxRnzlK1/JH19XTzzxRHz729/uwIoBAABYV8Z8AAAA7U+nT7qErG/vPLgAAMC60eWTSpE6tCSnn3568+Rfsv/++8cuu+wSN9xwQyxYsGCdtlVfX593jxk0aFC+zB8AAADFMuYDAABof0KfdBm6fQIArDvHTlSKW265JWpqavLJvtXNmDEjGhsb8+esi+9///tx77335p1ievfu3QHVAgAAsD6M+QAAANqf0Cddhm5VAADrzrETlWDZsmUxb968GD58+CodX5qMGjWqefm+tXnggQfi/PPPj+OPPz5mzpzZIfUCAACw7oz5AAAAOobQJ12GblUAAOsmGz44sj69ii4DYtGiRXlXl/79+7f6eN++ffPbxYsXr3UiMS3xN2zYsPinf/qnDqkVAACA9WPMBwAA0DFqOmi70Omyvr0jGzYoGhe8VHQpAAAVzcUyVIrly5fnt611fGl5/9KlS9e4nXPOOSceffTRuPjiiy3xBwAAUCGM+QAAADqGTp90KZYpBQBYO8dMVIqePXuuMhHYWjeXpFevtjvT3nHHHfGjH/0oTj755Jg2bVoHVQoAAMD6MuYDAADoGEKfdCm6VgEArEXmmInK0adPnyiVSm0u5dd0f9OSf6t744034uyzz45Ro0bFJz/5yQ6tFQAAgPVjzAcAANAxLO9Ol6JrFQDAmmXDBkfWp+0OGtCZ0lJ+afJu3rx5eeeX2traVR5/5pln8ttx48a1+vp77703nn766fzPO+20U6vP2XffffPb6667LkaOHNnOnwAAAIC2GPMBAAB0DKFPupQUYMiGDYrGBS8VXQoAQEXS5ZNKk5bnu/zyy+POO++M6dOnr/LYzTffHFmWxZQpU1p97eabbx5nnHFGq4/96le/ivnz58cpp5wS/fr1y78AAADoXMZ8AAAA7S9rbGxs7IDtQmGW//raqP/TnUWXAQBQkWrfc0SUd9im6DKg2V133RXHH398TJ48OS666KLo2bNnfv8111yTT+6lri3nn3/+em/3hBNOyCcVdXsBAAAojjEfAABA+9Ppky6nNGGM0CcAQGvK5Shts2XRVcAq0sTfSSedFJdcckkcfvjh+YTfggUL4qqrrorBgwfH2Wef3fzcW2+9NW677baYMGFC7LfffoXWDQAAwNoZ8wEAALS/UgdsEwpV2nrLiB51RZcBAFBxSuNGRdazR9FlwNv8y7/8S/5VV1cXP/nJT/JJvoMPPjguvfTSGDVqVPPz0v3nnXdeXHvttYXWCwAAwLoz5gMAAGhflnenS1p20RXRcM8jRZcBAFBRao7aL2p2m1J0GQAAAAAAAABsIJ0+6ZLKE8cVXQIAQMVxjAQAAAAAAABQ3YQ+6ZJKE8ZElLKiywAAqBjZZkMjG9iv6DIAAAAAAAAA2AhCn3RJWZ9ekW25edFlAABUjNLEsUWXAAAAAAAAAMBGEvqkyyoLNgAANLO0OwAAAAAAAED1E/qkyyoJNgAArNSvT2SjhhddBQAAAAAAAAAbSeiTLqs0bFBkQwYWXQYAQOHK242NLMuKLgMAAAAAAACAjST0SZdW2s4S7wAApYmOiQAAAAAAAAC6AqFPurSyJd4BgO6urjZK24wuugoAAAAAAAAA2oHQJ11aNmZkRK+eRZcBAFCY0jZbRlZbU3QZAAAAAAAAALQDoU+6tKxUitK2Y4ouAwCgMKXtdD4HAAAAAAAA6CqEPunyypMEHQCAbirLojxxbNFVAAAAAAAAANBOhD7p8koTxkTU1RZdBgBApyuNHRVZ395FlwEAAAAAAABAOxH6pMvLetRFadLWRZcBANDpSlO2K7oEAAAAAAAAANqR0CfdQnmqwAMA0M3U1ER5x/FFVwEAAAAAAABAOxL6pFsojR8dYWlTAKAbKU0cG9kmPYouAwAAAAAAAIB2JPRJt5CVSlHeaduiywAA6DRlS7sDAAAAAAAAdDlCn3QblngHALqNTXpGacKYoqsAAAAAAAAAoJ0JfdJtlLYYEdmQgUWXAQDQ4co7jo+splx0GQAAAAAAAAC0M6FPuhXLnAIA3UF5Z8c8AAAAAAAAAF2R0CfdSskS7wBAVzewX2RbjSy6CgAAAAAAAAA6gNAn3Upp8MDIttys6DIAADq0s3mWZUWXAQAAAAAAAEAHEPqk2ynr9gkAdGGOdQAAAAAAAAC6LqFPup3yTttGlOz6AEDXk20+NErDBxddBgAAAAAAAAAdRPKNbifr0ytK244uugwAgHanyycAAAAAAABA1yb0SbdUnjqx6BIAANpXlkV58oSiqwAAAAAAAACgAwl90i2VJm0d0atn0WUAALSb0rZbRda/b9FlAAAAAAAAANCBhD7plrLamijvMqnoMgAA2k35HTsVXQIAAAAAAAAAHUzok26rPHPHoksAAGgfA/pGacKYoqsAAAAAAAAAoIMJfdJtlYYOitLYUUWXAQCw0Wqm7xBZyaE9AAAAAAAAQFdnZphuzTKoAEDVK5WiPGOHoqsAAAAAAAAAoBMIfdKtlbbfJqJPr6LLAADYYKXtxkbWv2/RZQAAAAAAAADQCYQ+6daymnKUp21fdBkAABusPHPHoksAAAAAAAAAoJMIfdLt5UGJLCu6DACA9ZYNHhClbbcqugwAAAAAAAAAOonQJ91eadCAKG03pugyAADWW3nXyZG5eAUAAAAAAACg2xD6hBSY2G1q0SUAAKyfutooT9uh6CoAAAAAAAAA6ERCn5D+I2yzZWRDNy26DACAdVaeul1km/QougwAAAAAAAAAOpHQJ0Tky6KWd51SdBkAAOusvJtjFwAAAAAAAIDuRugT3lLeZWJEj7qiywAAWKvS2FFRGjGk6DIAAAAAAAAA6GRCn/CWrGePKO8yqegyAADWqrz71KJLAAAAAAAAAKAAQp/QQnnPnSNKWdFlAAC0KRsyMEqTti66DAAAAAAAAAAKIPQJLZQGDYjSThOKLgMAoE3lvadH5iIVAAAAAAAAgG5J6BNWU7Pv9Ag5CgCgEvXvE+WdJxZdBQAAAAAAAAAFEfqE1ZRGDInSdmOLLgMA4G1q9tolsppy0WUAAAAAAAAAUBChT2hFzb4ziy4BAGBVvTeJ8owdi64CAAAAAAAAgAIJfUIrSqM3i9LYUUWXAQDQrGa3KZH1qCu6DAAAAAAAAAAKJPQJbSjvN6PoEgAAVupRG+XdpxZdBQAAAAAAAAAFE/qENpTHbxXZyGFFlwEAEOWZO0XWq2fRZQAAAAAAAABQMKFPWIOafXX7BAAKVi5HzZ47F10FAAAAAAAAABVA6BPWoLT9NpEN3bToMgCAbqy8y8TI+vctugwAAAAAAAAAKoDQJ6xBVsqivPe0ossAALqr/FhketFVAAAAAAAAAFAhhD5hLco7T4wYoLsWAND5SjuOj9KQgUWXAQAAAAAAAECFEPqEtcjK5ajZa5eiywAAuqGafWYUXQIAAAAAAAAAFUToE9ZBecaOEX17F10GANCNlCaOi9LmQ4suAwAAAAAAAIAKIvQJ6yCrq42aA95RdBkAQHeRZVFz8O5FVwEAAAAAAABAhRH6hHVUnrFDZIMGFF0GANANlHaeGKURQ4ouAwAAAAAAAIAKI/QJ6ygrl3XcAgA6Xk05ag/aregqAAAAAAAAAKhAQp+wHko7bRvZyGFFlwEAdGHlXSdHNrBf0WUAAAAAAAAAUIGEPmE9ZFkWNYfsUXQZAEBX1bMuavabWXQVAAAAAAAAAFQooU9YT+XxW0Vp6y2KLgMA6IJq9poWWe9Nii4DAAAAAAAAgAol9AkboObgPYsuAQDoavr2jvKeOxddBQAAAAAAAAAVTOgTNkBpyxFR2mGbossAALqQmv1nRtajrugyAAAAAAAAAKhgQp+wgWoO3j2ilBVdBgDQBWSDBkR55o5FlwEAAAAAAABAhRP6hA1UGjooytO2L7oMAKALqJm1W2TlctFlAAAAAAAAAFDhhD5hI9QcuGtEbU3RZQAAVSzbfGiUJk8ougwAAAAAAAAAqoDQJ2yErH/fKO82pegyAIAqVnPwHpFlWdFlAAAAAAAAAFAFhD5hI9XsOyOi9yZFlwEAVKHS1ltEecKYossAAAAAAAAAoEoIfcJGynr1jJqDdy+6DACg2pRLUXPkfkVXAQAAAAAAAEAVEfqEdlCevmNko4YXXQYAUEXKu0+N0vDBRZcBAAAAAAAAQBUR+oR2kJWyqD16/4gsK7oUAKAa9OsTNQfuWnQVAAAAAAAAAFQZoU9oJ6UtRkR5+vZFlwEAVIHaw/aKrEdd0WUAAAAAAAAAUGWEPqEd1RyyZ0SvnkWXAQBUsNLYUVGesl3RZQAAAAAAAABQhYQ+oR1lvTeJmoP3KLoMAKBSlUpRc/T+RVcBAAAAAAAAQJUS+oR2Vp6xY2SjhhddBgBQgcp7TI3S8MFFlwEAAAAAAABAlRL6hHaWlbKoTR28sqzoUgCAStKvT9Qc8I6iqwAAAAAAAACgigl9QgcobTEiytO3L7oMAKCC1B62V2Q9exRdBgAAAAAAAABVTOgTOkjNIXtG9OpZdBkAQAUojR0V5SnbFV0GAAAAAAAAAFVO6BM6SNZ7k6g5ePeiywAAilYqRc3R+xddBQAAAAAAAABdgNAndKDyjJ0iGzms6DIAgAKVd58SpeGDiy4DAAAAAAAAgC5A6BM6UFbKovbYA/MOXwBANzSwX9QcuGvRVQAAAAAAAADQRUiiQQcrjRoe5X2mFV0GAFCA2ncdFFnPHkWXAQAAAAAAAEAXIfQJnaDmgF0js6wrAHQr5Rk7Rnn86KLLAAAAAAAAAKALEfqETpDVlKP2hIMt8w4A3WlZ98P2KroKAAAAAAAAALoYCTTo1GXepxddBgDQCWqPs6w7AAAAAAAAAO1P6BM6Uc0B74hsxJCiywAAOlB55o5R3say7gAAAAAAAAC0P6FP6PRl3mdZ5h0AuvKy7oda1h0AAAAAAACAjiF5Bp2sNHJ4lPe1zDsAdDlZWtZ9lmXdAQAAAAAAAOgwQp9QgJr9LfMOAF1NeeZOUd5my6LLAAAAAAAAAKALE/qEAljmHQC6lmzT/pZ1BwAAAAAAAKDDSZxBQSzzDgBdRBZRc9xBkfWoK7oSAAAAAAAAALo4oU8oUM0BlnkHgC6xrPvWlnUHAAAAAAAAoOMJfUKBsnJa5v3giHK56FIAgA1gWXcAAAAAAAAAOpPQJxSsNHJY1Lxzj6LLAADWV7kUtaccZll3AAAAAAAAADqN0CdUgJo9d4nSxLFFlwEArIeaQ/aI0hYjii4DAAAAAAAAgG5E6BMqRO3xB0cM6Ft0GQDAOihtNzbKe+5SdBkAAAAAAAAAdDNCn1Ahst6bRN27D40o+W8JABVtQN+oPeHgyLKs6EoAAAAAAAAA6Gaky6CClLYaGTUH7Vp0GQBAW0pZ1J18aH6xBgAAAAAAAAB0NqFPqDDlfWdEafzoossAAFpRc+BuURozsugyAAAAAAAAAOimhD6hwqSlYmtPPCSib++iSwEAWihtMzq/OAMAAAAAAAAAiiL0CRUo69s7ak9+Z0qAFl0KAJCk380nHRJZye9mAAAAAAAAAIoj9AkVqrz1llHeTzcxAChc6sJ90jvzizIAAAAAAAAAoEhCn1DBag7cNbIxI4suAwC6tbSke3mbLYsuAwAAAAAAAACEPqGSZaVS1J18aETvTYouBQC6pXTxRc1BuxZdBgAAAAAAAADkhD6hwmUD+kbtiYfkS8sCAJ2o9yb5xRfpIgwAAAAAAAAAqARmsKEKlCeMiZpZuxVdBgB0H+VS1L3niPziCwAAAAAAAACoFEKfUCVq9psZpcnbFl0GAHQLNUftF6Wxo4ouAwAAAAAAAABWIfQJVaT2uFmRjRxWdBkA0KWVd50cNTN3KroMAAAAAAAAAHgboU+oIlldbdS976iIvr2LLgUAuqTSuC2i5oh9iy4DAAAAAAAAAFol9AlVJhvQN+ree2RETbnoUgCgS8kGDYjaUw+PrOwQGQAAAAAAAIDKZEYbqlBp9GZRc8wBRZcBAF1Hj7qoPe2oyHpvUnQlAAAAAAAAANAmoU+oUjXTto/ynjsXXQYAVL8sovakQ6I0fHDRlQAAAAAAAADAGgl9QhWrOXSvKG27VdFlAEBVq5m1e5QnbV10GQAAAAAAAACwVkKfUMWyUilq331YZEM3LboUAKhKpcnbRs1+M4suAwAAAAAAAADWidAnVLlskx5R+74jIzbpUXQpAFBVspHDova4WUWXAQAAAAAAAADrTOgTuoDS0EFRe/KhEaWs6FIAoDr07R117zsqsrraoisBAAAAAAAAgHUm9AldRHnCmKg5fN+iywCAyldXuzLwOaBv0ZUAAAAAAAAAwHoR+oQupGb3KVHeb0bRZQBA5SqVovbUw6O05YiiKwEAAAAAAACA9Sb0CV1M7cF7RHn69kWXAQCVJ4uoPX5W3h0bAAAAAAAAAKqR0Cd0QTXHHhilieOKLgMAKkrNO/eK8s4Tiy4DAAAAAAAAADaY0Cd0QVlauvbdh0a21ciiSwGAilDea5eo2Xta0WUAAAAAAAAAwEYR+oQuKqurjbrTjops+OCiSwGAQpV2nhg1h+5VdBkAAAAAAAAAsNGEPqELy3r1jLoPHBsxsF/RpQBAIUrbjona42ZFlmVFlwIAAAAAAAAAG03oE7q4bEDflcHP3psUXQoAdKpsixFRe+phkZUd8gIAAAAAAADQNZgBh26gNGxQ1L3/6Ii62qJLAYBOkQ3dNOr+4ZjIetQVXQoAAAAAAAAAtBuhT+gmSltuFrWnHh5R8t8egC6uf5+o++C7ItPlGgAAAAAAAIAuRvoLupHyhDFRe9xBEVnRlQBAB9mkR9R94NjIBvYruhIAAAAAAAAAaHdCn9DNlHeZFDWH7VN0GQDQ/nrURt37j47SiCFFVwIAAAAAAAAAHULoE7qhmj13jppD9yq6DABoP3Up8HlMlLYaWXQlAAAAAAAAANBhhD6hm6rZe1rUHLJH0WUAwMarrYna046K0thRRVcCAAAAAAAAAB1K6BO6sZp9Z0TNrN2KLgMANlzNysBneesti64EAAAAAAAAADqc0Cd0czX7vyPKB7yj6DIAYP3VlKP2fUdGeZvRRVcCAAAAAAAAAJ1C6BOI2oN2i/J+M4suAwDWL/D5niOivO1WRVcCAAAAAAAAAJ0ma2xsbOy8twMq2fKr/xT1v/9L0WUAwNqXdH/vEVGeMKboSgAAAAAAAACgUwl9AqtY8bs/518AUJFqa1Yu6T5eh08AAAAAAAAAuh+hT+BtVlx7c6y48qaiywCAVdXVRu37joryNlsWXQkAAAAAAAAAFELoE2jViutvjRX/d2PRZQDA3wOf7z86yuO2KLoSAAAAAAAAACiM0CfQphU33B4rfvOHossAoLvrURt1/3BMlMaMKroSAAAAAAAAACiU0CewRituuSdW/PJ3EQ1+VABQgD69ou4fjo7SqBFFVwJ0sCuuuCIuvvjiePLJJ6Nnz56x6667xplnnhmbb775Or3+lltuif/8z/+Me+65J954440YOnRo7L333nH66afHpptu2uH1AwAA0DZjPgAAgPYj9AmsVf19j8byn/xvxPIVRZcCQDeSbdo/aj94bJSGOHEPXd3s2bPjggsuiHHjxsVee+0V8+fPj6uvvjr69esXl19+eYwateZOv7/+9a/js5/9bD5xuP/++8fgwYPjb3/7W9x55535BOJll10WQ4YM6bTPAwAAwN8Z8wEAALQvoU9gnTQ8MTeW/devI95cUnQpAHQD2WZDo+4Dx0TWr0/RpQAd7KGHHorDDz88pk6dGhdddFHU1dXl919zzTVxxhln5J1b0uRgWxYtWpQ/J/nlL38ZY8aMaX7sO9/5Tpx//vlxxBFHxNe//vVO+DQAAAC0ZMwHAADQ/kodsE2gCyqNGRl1Hz0xor/wDQAdKxs7KupOP0HgE7qJtLxfkpbka5r8S1L3ll122SVuuOGGWLBgQZuvv/HGG+P111+PY489dpXJv+QjH/lIvs0//OEPHfgJAAAAaIsxHwAAQPsT+gTWWWn44OjxsZMjG2qZXQA6RmmHbaLug8dGtkmPoksBOsktt9wSNTU1+WTf6mbMmBFpcYr0nLaMHTs2zjzzzDjwwAPf9li5XM63/cYbb7R73QAAAKydMR8AAED7q+mAbQJdWDawX9R99KRY9p+/isan5hVdDgBdSPkdO0XNUftHVsqKLgXoJMuWLYt58+bF5ptvvkrHlyajRo3Kb5944ok2tzFx4sT8qzU33XRTPvnX1uMAAAB0HGM+AACAjqHTJ7Dest6bRN2Hj4vShFWXUgGADVVz4K5Re8wBAp/QzSxatCjv6tK/f/9WH+/bt29+u3jx4vXednrNV7/61fzPJ5xwwkZWCgAAwPoy5gMAAOgYQp/ABsnqaqP2fUdFaWdX0AKwEbIsao45IA99At3P8uXL89vWOr60vH/p0qXrtd3XXnstPvCBD8ScOXNijz32iGOOOaYdqgUAAGB9GPMBAAB0DKFPYINl5VLUnnBwlPeeVnQpAFSjmnLUnnp41Lxjp6IrAQrSs2fPVSYCW1sKMOnVq9c6b/OFF16IU045Je68887YcccdY/bs2ZFluggDAAB0NmM+AACAjiH0CWyUdDKl9tC9oubwvSOcVwFgXfXsEXUfODbKO2xTdCVAgfr06ROlUqnNpfya7m9a8m9tHn744Tj22GPj/vvvjxkzZsSFF16YvwcAAACdz5gPAACgYwh9Au2iZs9dovbUIyLqaosuBYAKlw0eEHUfPzlK47YouhSgYGkpv1GjRsW8efNa7fzyzDPP5Lfjxo1b67ZuvvnmOPHEE2P+/Plx2GGHxQ9/+EOTfwAAAAUy5gMAAOgYQp9Au0nd2uo+dlJkm/YvuhQAKlRpmy2j7hOnRGnYoKJLASrEtGnT8sm/tDRfa5N6qbP8lClT1riNO+64Iz70oQ/Fa6+9lt9+85vfzCcXAQAAKJYxHwAAQPsT+gTaVWmzoVH3iXdHNnZU0aUAUGHKu0+N2g8cG1mvnkWXAlSQo48+Or+dPXt2LFmypPn+a665Jp/Y22effWL48OFtvn7hwoXxiU98In/txz/+8TjzzDM7pW4AAADWzpgPAACg/WWNjY2NHbBdoJtrrK+PFb++NupvvrvoUgAoWrkcNUfvHzUzdii6EqBCffGLX4xLLrkkRo8eHfvuu28sWLAgrrrqqhg4cGBceuml+XKAya233hq33XZbTJgwIfbbb7/8vm9/+9vx/e9/P/r16xennHJKm+9x+umnR6nkukcAAIDOZswHAADQvoQ+gQ614s93xYr/vi6ioaHoUgAoQp9eUffeI6K01ciiKwEqWBqWpgnAyy67LObMmRMDBgyI6dOn511cmib/knPPPTfOO++8OPLII+NrX/taft8RRxwRDz744Frf4/7774+ampoO/RwAAAC8nTEfAABA+xL6BDpc/aNPxfKLfxPx+ptFlwJAJ8o2Hxp17zsqsoH9ii4FAAAAAAAAALoEoU+gUzS89Eos/69fR+NzLxZdCgCdoLTj+Kg94eDI6mqLLgUAAAAAAAAAugyhT6DTNC5dFssv+b9ouO+xoksBoKNkETUH7hY1B7yj6EoAAAAAAAAAoMsR+gQ6VfqRs+KqP0X9tTcXXQoA7a1HbdSe+M4ob7910ZUAAAAAAAAAQJck9AkUov5vD8Xyy66OWLqs6FIAaAfZkIFRe+oRUdpsSNGlAAAAAAAAAECXJfQJFKbhhYWx/Ce/ica5C4ouBYCNUJq6XdQec0BkPeqKLgUAAAAAAAAAujShT6BQjSvqY8Vv/hD1f7qz6FIAWF91tVFz1H5RM237oisBAAAAAAAAgG5B6BOoCPX3PhrLL70q4s0lRZcCwDrIhg+O2lMOi9LwwUWXAgAAAAAAAADdhtAnUDEaX14Uy37yv9H41LyiSwFgDcrTd4iaI/eNrK626FIAAAAAAAAAoFsR+gQqSmN9Q6y48o9Rf8NtEX46AVSWHnVRe+wBUZ6yXdGVAAAAAAAAAEC3JPQJVKT6B5+I5T+/MuK1N4ouBYB00DhyWNS++7AoDRlYdCkAAAAAAAAA0G0JfQIVq3HR4lj20/+LxsefKboUgG6tvNuUqDls78hqykWXAgAAAAAAAADdmtAnUNEaGxpixe//EvXX3BzhxxVA59qkZ9Qed1CUd9im6EoAAAAAAAAAAKFPoFo0PPZ0LL/0qmh8eVHRpQB0C6VxW0Tt8bMi27R/0aUAAAAAAAAAAG8R+gSqRuPSZbHi/26M+r/cFeEnF0DHqKuNmkP3ivI7doosy4quBgAAAAAAAABoQegTqDr1jz4VKy67WtdPgHZWGjsqao6fFaVBA4ouBQAAAAAAAABohdAnUL1dP//3hqi/+W+6fgK0R3fPd+4Z5V0n6+4JAAAAAAAAABVM6BOoavWPPBXLL7sqYuGrRZcCUJWysaOiVndPAAAAAAAAAKgKQp9A1dP1E2ADu3sesmeUd9PdEwAAAAAAAACqhdAn0GXUPzInll92ta6fAGuRjRkZtSccrLsnAAAAAAAAAFQZoU+gS2lcsjRW/OaGqL/l7qJLAajQ7p57RHm3Kbp7AgAAAAAAAEAVEvoEuqT6h+fEil/+PhpfeqXoUgAqQmncFlHzrgOjNHhg0aUAAAAAAAAAABtI6BPoshqXr4j662+NFdfdGrFiRdHlABSjX5+oPXzvKE+eUHQlAAAAAAAAAMBGEvoEuryGl16JFVdcFw33P150KQCdp1yK8u5To+bAXSPrUVd0NQAAAAAAAABAOxD6BLqN+gcejxX/fZ0l34Eur7T1FlFz1P5RGjao6FIAAAAAAAAAgHYk9Al0zyXfr781Yrkl34Eupn+fqD3MUu4AAAAAAAAA0FUJfQLdeMn366Ph/seKLgWgfZZy32PnqDngHZZyBwAAAAAAAIAuTOgT6NYs+Q5UO0u5AwAAAAAAAED3IfQJdHuNK1ZE/XWWfAeqjKXcAQAAAAAAAKDbEfoEeEvDy4tixZU3RcNdD0T4yQhUqh61K5dy32e6pdwBAAAAAAAAoJsR+gRYTcOzz8eK3/4xGh56ouhSAP6uXIryzJ2iZv+ZkfXtXXQ1AAAAAAAAAEABhD4B2tDw2NOx/P9ujMan5xddCtCdZRGlyROiZtbuURo0oOhqAAAAAAAAAIACCX0CrEX9PY/Eiiv/GI3Pv1x0KUA3U9p2q6g5ZI8obT6s6FIAAAAAAAAAgAog9AmwDhobGqL+9vtixe/+HPHK4qLLAbq4bIsRUfPOPaM8bouiSwEAAAAAAAAAKojQJ8B6aFy+Iur/dGesuO6WiDeWFF0O0MVkQzeNmoP3iPIO2xRdCgAAAAAAAABQgYQ+ATZA45tLY8X1t0b9TX+NWLa86HKAajegb9QcsGuUp02KrFQquhoAAAAAAAAAoEIJfQJshMZXX1sZ/rzlHuFPYMPCnnvuEuV37BRZbU3R1QAAAAAAAAAAFU7oE6AdNL7+Zqy46a9Rf9OdEW9a9h1Ys2zIwCjvMz3KUydGVlMuuhwAAAAAAAAAoEoIfQK0o8aly6L+5r/FihvuiHj1taLLASpMtvnQqNl3RpR2GB9ZKSu6HAAAAAAAAACgygh9AnSAxhUrov72+6L++tui8aVXii4HKFg2dlQe9ixvu1XRpQAAAAAAAAAAVUzoE6ADNTY0RMPdD8eK626NxnnPF10O0JmyiNJ2Y1d29hy9edHVAAAAAAAAAABdgNAnQCepf+DxleHPJ+cWXQrQkUpZlHbaNmr2mRGlzYYUXQ0AAAAAAAAA0IUIfQJ0soYn5saK62+JhgefiPATGLqOutoo7zwxyntPi9KgAUVXAwAAAAAAAAB0QUKfAAVpeGFh1P/5zqi/7b6IJUuLLgfYQNmgAVHedacoT9shsl49iy4HAAAAAAAAAOjChD4BCta4dFnU//X+qP/TXdH43ItFlwOsiyyitM1WUd5tcpQmjI2slBVdEQAAAAAAAADQDQh9AlSQ+kefivo/3xUN9z0W0dBQdDnA6jbpEeWdJ0V518lRGrpp0dUAAAAAAAAAAN2M0CdABWp89bWov/XeWHHL3RELXy26HOj2si1GRPkdO0V5p20jq6stuhwAAAAAAAAAoJsS+gSoYI0NjdHw0BNRf/PfouHBJyIa/MiGTtOjNspTtsvDnqXNhxVdDQAAAAAAAACA0CdAtWhc+GrU33Zv1N/5QDS+sLDocqBryiKy0SOjvPN2eeAz61FXdEUAAAAAAAAAAM2EPgGqUMNT86P+r/dH/d8einjtjaLLgaqXDRsU5anbRWnKdlHatH/R5QAAAAAAAAAAtEroE6CKNdY3RMMjc6L+rw9Ew32PRixbXnRJUD369Y7y5Akrw54jhxddDQAAAAAAAADAWgl9AnQRjUuXRcO9j+bLv6cgaDT48Q5v06MuSjtsszLoOW7LyEpZ0RUBAAAAAAAAAKwzoU+ALqhx8etRf9dD+RLwjc88V3Q5UKxyKUrjt1oZ9Jw4LrK62qIrAgAAAAAAAADYIEKfAF1cw/MvR8NdD0b9/Y9F49wFRZcDnaNcjtLYUVHafuso77RtZL03KboiAAAAAAAAAICNJvQJ0I00vrI4D3823P94NDz2VMSK+qJLgvbTq2eUJoyJ8sRxUdp2q8h69ii6IgAAAAAAAACAdiX0CdBNNS5dFg0Pz4mG+x+L+gefiHjtjaJLgvWWDRmYL9megp7ZVptHVioVXRIAAAAAAAAAQIcR+gQgGhsao/GpZ6M+dQBNy8AveKnokqB1pSyy0ZtHebuxUZo0LkpDBxVdEQAAAAAAAABApxH6BOBtGl5YGA0PvLUM/JPPRtRbBp4CbdIjStuMXhn03G5sZL03KboiAAAAAAAAAIBCCH0CsEaNy5ZHw1PzouGxp6Ph8Wei8an5QqB0fMhzzMgojd0iSuNGRbbZsMhKWdFVAQAAAAAAAAAUTugTgA0PgT72TDQ+LQTKRhLyBAAAAAAAAABYJ0KfAGx8CHTOvGh4XAiUddTzrZDnuFF50DPbXMgTAAAAAAAAAGBdCH0C0CEh0MYn50bD3AXRMPe5iEWvFV0WRcmyyIYMjGzksCiNGh6lMaOEPAEAAAAAAAAANpDQJwAdrnHx69HwzHPR+FYINIVB45XFRZdFRwQ8h266MuA5cniURg1bGfDsUVd0ZQAAAAAAAAAAXYLQJwDFBUHnLojGt0KgeRB04atFl8W6KqWA56C3Ap4rQ57Z5kMFPAEAAAAAAAAAOpDQJwAVo/G1N1YGQZ97MRpfeDkaX1gYDS+8HPHqaxF+WxWjVIpsUP+VS7QP2TS/LY0YujLgWVdbdHUAAAAAAAAAAN2K0CcAFa9x6bJofHFhHgJNYdCGdPv8ylBovLmk6PKqXxYR/fpE6a1QZ9bydtCAyMqloisEAAAAAAAAAEDoE4Cu0B20qSNo44uvRCxaHI2vvhaNr76e38Ybb+oSWsoi+vSOrF/vyPr3iaxvn8gG9v17uHPwQMuyAwAAAAAAAABUAaFPALq0xhX1EYtfXyUImodBV/n76xGvvRFRbb8Sy+WIFOTsmwKdfVYGOvv1jkihzqaAZ78+Eb17RZaCnwAAAAAAAAAAVDWhTwBI4dD063Dpsohly6NxSbpdFrFkWTQuW57fv8b70t8bGlduo+VXw1u3SZat7LiZbrMssqa/l0oRdXURPesiq6uN6FG3sutmjzbu61Hb/Of8MQAAAAAAAAAAug2hTwAAAAAAAAAAAIAqUCq6AAAAAAAAAAAAAADWTugTAAAAAAAAAAAAoAoIfQIAAAAAAAAAAABUAaFPAAAAAAAAAAAAgCog9AkAAAAAAAAAAABQBYQ+AQAAAAAAAAAAAKqA0CcAAAAAAAAAAABAFRD6BAAAAAAAAAAAAKgCQp8AAAAAAAAAAAAAVUDoEwAAAAAAAAAAAKAKCH0CAAAAAAAAAAAAVAGhTwAAAAAAAAAAAIAqIPQJAAAAAAAAAAAAUAWEPgEAAAAAAAAAAACqgNAnAAAAAAAAAAAAQBUQ+gQAAAAAAAAAAACoAkKfAAAAAAAAAAAAAFVA6BMAAAAAAAAAAACgCgh9AgAAAAAAAAAAAFQBoU8AAAAAAAAAAACAKiD0CQAAAAAAAAAAAFAFhD4BAAAAAAAAAAAAqoDQJwAAAAAAAAAAAEAVEPoEAAAAAAAAAAAAqAJCnwAAAAAAAAAAAABVQOgTAAAAAAAAAAAAoAoIfQIAAAAAAAAAAABUAaFPAAAAAAAAAAAAgCog9AkAAAAAAAAAAABQBYQ+AQAAAAAAAAAAAKqA0CcAAAAAAAAAAABAFRD6BAAAAAAAAAAAAKgCQp8AAAAAAAAAAAAAVUDoEwAAAAAAAAAAAKAKCH0CAAAAAAAAAAAAVAGhTwAAAAAAAAAAAIAqIPQJAAAAAAAAAAAAUAWEPgEAAAAAAAAAAACqgNAnAAAAAAAAAAAAQBUQ+gQAAAAAAAAAAACoAkKfAAAAAAAAAAAAAFVA6BMAAAAAAAAAAACgCgh9AgAAAAAAAAAAAFQBoU8AAAAAAAAAAACAKiD0CQAAAAAAAAAAAFAFhD4BAAAAAAAAAAAAqoDQJwAAAAAAAAAAAEAVEPoEAAAAAAAAAAAAqAJCnwAAAAAAAAAAAABVQOgTAAAAAAAAAAAAoAoIfQIAAAAAAAAAAABUAaFPAAAAAAAAAAAAgCog9AkAAAAAAAAAAABQBYQ+AQAAAAAAAAAAAKqA0CcAAAAAAAAAAABAFRD6BAAAAAAAAAAAAKgCQp8AAAAAAAAAAAAAVUDoEwAAAAAAAAAAAKAKCH0CAAAAAAAAAAAAVAGhTwAAAAAAAAAAAIAqIPQJAAAAAAAAAAAAUAWEPgEAAAAAAAAAAACqgNAnAAAAAAAAAAAAQBUQ+gQAAAAAAAAAAACoAkKfAAAAAAAAAAAAAFVA6BMAAAAAAAAAAACgCgh9AgAAAAAAAAAAAFQBoU8AAAAAAAAAAACAKiD0CQAAQOGuuOKKOOqoo2Ly5Mkxc+bM+NSnPhXPPvvsOr9+3rx58ZnPfCb23HPP2HHHHePwww+PX/ziFx1aMwAAAOvGmA8AAKD9ZI2NjY3tuD0AAABYL7Nnz44LLrggxo0bF3vttVfMnz8/rr766ujXr19cfvnlMWrUqDW+Pk0UHn/88bFw4cI4+OCDY/DgwXHttdfGU089Fe9973vziUEAAACKYcwHAADQvoQ+AQAAKMxDDz2Ud2iZOnVqXHTRRVFXV5fff80118QZZ5wRe++9dz45uCbpeen5P/jBD/KuL8mSJUvi1FNPjbvvvjt++ctfxqRJkzrl8wAAAPB3xnwAAADtz/LuAAAAFObiiy/Ob08//fTmyb9k//33j1122SVuuOGGWLBgwRo7vqQOL2mJwKbJv6Rnz55x5plnRrrO8bLLLuvgTwEAAEBrjPkAAADan9AnAAAAhbnllluipqYmn+xb3YwZM/IJvPScttx22235c2bOnPm2x1Inmdra2jW+HgAAgI5jzAcAAND+hD4BAAAoxLJly2LevHkxfPjwVTq+NBk1alR++8QTT7S5jTlz5uS3W2655dseS5N/I0aMiLlz5+bvBQAAQOcx5gMAAOgYQp8AAAAUYtGiRXnHlv79+7f6eN++ffPbxYsXt7mNhQsX5rdr2kZDQ0O89tpr7VIzAAAA68aYDwAAoGMIfQIAAFCI5cuX57etdXxpef/SpUs3ehu6vgAAAHQuYz4AAICOIfQJAABAIXr27LnKJN7qmibtevXq1aHbAAAAoP0Z8wEAAHQMoU8AAAAK0adPnyiVSm0u5dd0f9OSf61pWuLv1VdfbXMbWZbl7wUAAEDnMeYDAADoGEKfAAAAFCItwzdq1KiYN29eq11bnnnmmfx23LhxbW5jzJgx+e3TTz/9tsfSNufPnx9bbbVVPtEIAABA5zHmAwAA6BhGQAAAABRm2rRp+UTdnXfe+bbHbr755rxjy5QpU9b4+vScW2+99W2P3XHHHfm2p06d2u51AwAAsHbGfAAAAO1P6BMAAIDCHH300fnt7NmzY8mSJc33X3PNNfkE3j777BPDhw9v8/XpsV133TVuu+22uPbaa5vvT9s655xz8j+fdNJJHfoZAAAAaJ0xHwAAQPvLGhsbGztguwAAALBOvvjFL8Yll1wSo0ePjn333TcWLFgQV111VQwcODAuvfTSfDnAJHV2SRN9EyZMiP3226/59U8++WQcf/zxsXjx4pg1a1YMGzYsrrvuupgzZ06cdtppcdZZZxX46QAAALo3Yz4AAID2JfQJAABAodKwNE0AXnbZZfmk3YABA2L69Onx8Y9/vHnyLzn33HPjvPPOiyOPPDK+9rWvrbKN9LrU5SUtD7h06dJ8MjF1eznmmGPypQABAAAohjEfAABA+xL6BAAAAAAAAAAAAKgCpaILAAAAAAAAAAAAAGDthD4BAAAAAAAAAAAAqoDQJwAAAAAAAAAAAEAVEPoEAAAAAAAAAAAAqAJCnwAAAAAAAAAAAABVQOgTAAAAAAAAAAAAoAoIfQIAANAtXXHFFXHUUUfF5MmTY+bMmfGpT30qnn322XV+/bx58+Izn/lM7LnnnrHjjjvG4YcfHr/4xS86tGa69z53yy23xPvf//6YNm1aTJo0KfbZZ5/40pe+FC+//HKH1k333u9aamxsjFNOOSXGjx8fc+fObfda6Ro2dp9btGhRfP3rX4999903tt9++/z285//fDz//PMdWjfde7978MEH4yMf+UhMnz49/x174IEHxnnnnRfLli3r0LrpGj7xiU/EHnvssV6vWbhwYXz5y1/Of8btsMMOcdBBB8UPf/jDWLFiRYfV2V0Z99HZjPvobMZ8FMG4j85mzEeRPlGhY76sMf3mBgAAgG5k9uzZccEFF8S4ceNir732ivnz58fVV18d/fr1i8svvzxGjRq1xtenE0rHH398PnA/+OCDY/DgwXHttdfGU089Fe9973vzSUFoz33u17/+dXz2s5+Nnj17xv7775/vc3/729/izjvvjM033zwuu+yyGDJkSKd9HrrHfre6H//4x/HVr341//N1110XI0eO7KDK6a773IsvvhgnnXRSzJkzJ3bbbbd8svmBBx6Im2++Of9Z96tf/SoGDhzYaZ+H7rHfpd+nKdywfPnyOOCAA2LEiBHx5z//OR555JGYMWNGXHjhhVEulzvt81Bd0kTxueeeG8OGDYs//vGP6/SaV199NU488cR47LHH8n1uiy22yPe59PMuTT5/97vf7fC6uwvjPjqbcR+dzZiPIhj30dmM+SjSeZU85kuhTwAAAOguHnzwwcZtttmm8YQTTmhcunRp8/2///3v8/s/+MEPrnUbp59+ev7cG264ofm+N998s/Fd73pX4/jx4xvvvffeDquf7rfPvfLKK42TJ0/Ovx5//PFVHjvnnHPybZx11lkdVj/d92ddS2nf22GHHfLXpq9nnnmmA6qmu+9zH//4x/Pn/uQnP1nl/nPPPTe//xvf+EaH1E733u+OO+64/LlXX311833Lly9vfO9735vff8UVV3RY/VSvJUuWNH7uc59r/r24++67r/Nrv/rVr+avueSSS5rvW7FiReMZZ5yR3/+73/2ug6ruXoz76GzGfXQ2Yz6KYNxHZzPmoyhLqmDMZ3l3AAAAupWLL744vz399NOjrq6u+f7URWOXXXaJG264IRYsWLDGbi+pu0taSiYt8dckdeI488wz86WwUvcNaK997sYbb4zXX389jj322BgzZswqj6VlidI2//CHP3TgJ6A77nct1dfXx6c//ekYNGhQ3oEDOmKfe+655/JOHWmptZNPPnmVx0499dR8OV2dreiIn3X33ntv9O/fP++20aSmpib/vZvcddddHVY/1en666+PWbNm5V2FWo4H1sWSJUvypcFTd6HUQbJJ6ix01lln5X++9NJL273m7si4j85m3EdnM+ajCMZ9dDZjPopwfZWM+YQ+AQAA6FZuueWW/KROOim0urScS5q8S89py2233ZY/Z+bMmW97bOrUqVFbW7vG19P9bOw+N3bs2HxiueWJyZYni9K233jjjXavm+6937X0/e9/Pz9B/pWvfCV69+7dAdXSFWzsPpeCDuk5afnc1fXt2ze+8Y1vxHve8552r5vq1h4/6wYMGBCvvfZaLFq0aJX7n3/++fx20003beeqqXa//OUv82DWF77whfx35Pq455578uO2adOmRam06hRdWpYyLaN7++235+EbNo5xH53NuI/OZsxHEYz76GzGfBThl1Uy5hP6BAAAoNtYtmxZzJs3L4YPH77KlcEtB93JE0880eY25syZk99uueWWb3ssTfylKzjnzp2bvxe0xz43ceLE+NCHPhRTpkx522M33XRTfhJpm222aefK6e77XZMHHnggzj///PzK9NZCD9Be+9xDDz2U32699dbxm9/8Jo455pjYcccdY9ddd81Psr/88ssd+Anozj/rTjzxxHyyJQVtHn/88fz3auru973vfS+fHEz7Iqzeheq6667L950sy9brtU1jiS222KLVx9N+m/btNJ5gwxn30dmM++hsxnwUwbiPzmbMR1FOrZIxX81GbwEAAACqRLqaN139m5ZzaU26ojxZvHhxm9tYuHBhfrumbTQ0NORXD7tKmPbY59qSXvPVr341//MJJ5ywkZXSlbTXfpdOQKYl/oYNGxb/9E//1CG10jW0xz7X1GHjwgsvzJfR2mefffJOan/961/zZa9S5460jG6akIH2/FmXlglM2/ja1762SsehcePG5QGIzTbbrJ0rp9ql5Ug31CuvvJLftvWzrGm/ffXVVzf4PTDuo/MZ99HZjPkognEfnc2Yj6JMr5Ixn9AnAAAA3cby5cvz29auDG55/9KlSzd6Gzq+0F77XGvS5PIHPvCB/MrhPfbYwxXpdMh+d84558Sjjz4aF198sSX+6PB9rmm50tRJIS2dteeee+Z/TxM8qeNLmvj71re+FV/60pc64BPQnX/WpYnlH/zgB/mSgQcddFAMGjQo7rrrrrj77rvjc5/7XJx33nkmnWk3TWOE9j42ZFXGfXQ24z46mzEfRTDuo7MZ81GNlnXimM/y7gAAAHQbPXv2XOWEUVsD8l69enXoNug+OmJ/eeGFF+KUU06JO++8M18Ca/bs2eu9zAxdW3vsd3fccUf86Ec/ipNPPjmmTZvWQZXSVbTHPlcqrTxVfeCBBzZP/CXp59tZZ50VPXr0iKuuuirvqgbttd8999xz8cEPfjCfbLniiivi3//93+Pss8+OX/ziF3HGGWfE7bffnne/gs7ebwVvNo5xH53NuI/OZsxHEYz76GzGfFSjnp045hP6BAAAoNvo06dPfnKxrSVfmu5vWmKjNU3LybS1/EbaRjpRmd4L2mOfa+nhhx+OY489Nu6///6YMWNGvhyWfY323u9S5410AnzUqFHxyU9+skNrpWtoj591TY9tv/32rW5/yy23zLfz8ssvt1vdVLf22O/+53/+J5YsWRKnnXZajB49epXH0gRg2u9uuOGG5mUoYWOty1gicXy3cYz76GzGfXQ2Yz6KYNxHZzPmoxr178Qxn+XdAQAA6DbS0hnphPa8efPyKy1ra2tXefyZZ57Jb8eNG9fmNsaMGZPfPv300297LG1z/vz5sdVWWzVfuU731h77XJObb745PxmZlvg77LDD4itf+Uqby8TQvW3sfnfvvfc2/4zbaaedWn3Ovvvu27wk28iRI9v5E9Adf9al353r0gmhqWMCtMd+9+yzz7b5nBTmSvc/9dRT+XsMHTq03T8D3c+axhJN96dORZtttlknV9a1GPfR2Yz76GzGfBTBuI/OZsxHNRrTiWM+IxEAAAC6lbRkVTpJlJZIa21yJZ3smTJlyhpfn55z6623tro0Vtr21KlT271uuu8+17RvfehDH8on/tLtN7/5TRN/dNh+t/nmm+cTza19jRgxIn9OWmoy/b1fv34d/lnoPr9fk7/85S9veyx1eUkTNWmyWZcr2nO/GzJkSH775JNPtvp4mvxr+TzYWJMmTcqX8bvtttvetmxpmrROP+tS+KZcLhdWY1dh3EdnM+6jsxnzUQTjPjqbMR/VZlInjvmEPgEAAOhWjj766Px29uzZ+dIuTa655pp8gmWfffaJ4cOHt/n69Niuu+6aD9qvvfba5vvTts4555z8zyeddFKHfga61z63cOHC+MQnPpG/9uMf/3iceeaZnVI33Xe/SxMsH/3oR1v9apoAPPXUU/O/mwCkvX7WTZ8+Pe+wkX6/XnHFFc33pxPkX//61/NJnne9610d/CnobvvdrFmz8i59adncpi4xTS6++OJ47LHH8lBXCkZAe+jRo0e8853vjLlz5+b7WJP6+vr4xje+kf/ZWKJ9GPfR2Yz76GzGfBTBuI/OZsxHtenRiWO+rLGxsbFdtgQAAABV4otf/GJccsklMXr06Hy5qgULFsRVV10VAwcOjEsvvTRfNiZJXV3SScgJEybEfvvt1/z6dGXw8ccfH4sXL85PHA0bNixf7mrOnDlx2mmnxVlnnVXgp6Or7XPf/va34/vf/34+0ZI6bbTl9NNPt7wk7fqzrjUnnHBC3l3BEn90xD73wAMPxHve85549dVXY88998yXxErPvf/++2Py5Mnxk5/85G3LucHG7nc/+tGP4mtf+1q+vNoBBxwQm266adx33335c1O3l5/+9Kf5tqEt48ePz8cDf/zjH1e5/8EHH8zDgmkC+aijjlqli9UxxxyTd3jZe++98+BD6naVftalsUWa0E4di9h4xn10NuM+OpsxH0Uw7qOzGfNRtPEVOuYT+gQAAKDbSUPhdKLosssuyyfsBgwYkF9pnrppNJ0kSs4999w477zz4sgjj8xPDLWUXpc6vKRlZJYuXZqfGEpXaKbBvEla2nOfO+KII/ITSGuTThrV1NR06Oeg+/2sW50JQDp6n0snxNNjN910UyxatCjvNHTooYfGBz7wgbxbAnTEfvfnP/857/xyzz33xJtvvhlDhw7NJ2bS0rqW+WNDJwB//etfx9lnn50vSZnCCy09//zz8Z3vfCduuOGGPFCYfqemScIU9LKUc/sx7qOzGffR2Yz5KIJxH53NmI+ija/QMZ/QJwAAAAAAAAAAAEAV0PsdAAAAAAAAAAAAoAoIfQIAAAAAAAAAAABUAaFPAAAAAAAAAAAAgCog9AkAAAAAAAAAAABQBYQ+AQAAAAAAAAAAAKqA0CcAAAAAAAAAAABAFRD6BAAAAAAAAAAAAKgCQp8AAAAAAAAAAAAAVUDoEwAAAAAAAAAAAKAKCH0CAAAAAAAAAAAAVAGhTwAAAAAAAAAAAIAqIPQJAAAAAAAAAAAAUAWEPgEAAAAAAAAAAACqgNAnAAAAAAAAAAAAQBUQ+gQAAAAAAAAAAACoAkKfAAAAAAAAAAAAAFVA6BMAAAAAAAAAAACgCgh9AgAAAAAAAAAAAFQBoU8AAAAAAAAAAACAKiD0CQAAAAAAAAAAAFAFhD4BAAAAAAAAAAAAqoDQJwAAAAAAAAAAAEAVEPoEAAAAAAAAAAAAqAJCnwAAAAAAAAAAAABVQOgTAAAAAAAAAAAAoAoIfQKFeO211+KnP/1pvO9974tdd901Jk6cGJMnT47DDjss/u3f/i2efPLJwmq79dZbY/z48fnXihUroit69NFH33Zf02f+y1/+0ml13HXXXfGFL3wh3vnOd+b//pMmTYrddtstPvjBD8YVV1wR9fX10RXNnTu3+fv91FNPVdz7v/LKK/HCCy90aA3vfve7m2to+bXtttvGjjvumO8HJ510UvzoRz+KV199tc3t7LPPPvnrLr/88nap6/HHH4/Gxsb1es2vf/3rvIY99tij1c84e/bs6I7/vwEA1vfYNH19+ctfXqfX/dd//Vfza1Y/DttQHXH8lsaU7TW+beu4s7NtyLFlW2OQc889N7/vhBNOWOfj/Pb8nq5JU73p+94ZPvOZz+Tv96lPfSoqTcvzJKt/pXH81KlT4+CDD46zzz47br/99k7bhzd0X2ht/yrqXFBr4++2/l8AANB+2jq+beuraZ6ived3Onsc8Oabb8b5558fhx56aD4Xs9NOO8WRRx4ZP/zhD2PZsmXrvJ00l5vqPvDAA9f4vNNOO635+5Xmhdvy0EMPNT/v4YcfXuW4uLWvCRMm5PWnY/uPfvSjce21166xjpdeeinOO++8eNe73hUzZszIxzFpfvq4446L7373u7FgwYLYEGvbb9L897Rp0+Koo47KzzWsab6rms4RzJ8/P773ve/FySefHO94xzuax4UHHXRQfPazn42bbrqp02sC6I5qii4A6H7+8Ic/5BMBCxcuzP8+YMCA2GabbWLRokXx2GOP5Qfzl1xySZxxxhnxoQ99qOhyu5Q0GZImUd944434+c9/Xlgdixcvjs9//vNx5ZVX5n+vra2NESNGRO/eveOZZ56JG264If+68MIL80HdlltuWVit3c1FF12UD/jPOeecGDJkSIe/36BBg1b5902ByyVLlsRzzz0Xd9xxR/6VJvT//d//PR+Id2QQ/dvf/nZcdtllcffdd0dNTfUdIlXK/28AgI3xu9/9Lj73uc9FlmVrfF7TWKKS/elPf8qPz9Ik2Jlnnll0OV2C72nx0mReXV1d89/TxZrpfE6a8E4X0aWJx8MPPzz/d2r5vPbWFfaFzh5/AwDwdqNHj45NN910rc8rl8tR7VLgMF3smAKWacyd5mbSnMyDDz4YDzzwQD4eT8eoffr0Weu2Zs6cmT93zpw58fLLL7f6PUxzPS0vCktBwBQSbM1tt92W36bj4hRkbCmNK9I4pKWmuaQUwv3973+ff6Ug6ze/+c23nU+4/vrr46yzzsrnJtN8ZPo3T589fT/uvffe+Nvf/pbPR6Z5yxTO/P/s/Qm8rWP9P/5fh2MeUyihQpmlTElSQqaUzI4hlJSZlEohfEwhY6QiJHPDR2SmT+YmIlQaDBEZMg9x/o/X9f3d+7/OPmuPZ0/rnOfz8diPtfca73Wve+3H9b7f7+t9DeVxlELa5D3vvvvu+pN46YILLqg50U706quv1uLVH/zgB12T5eabb76a589tea8XX3xx/Umxa2Kd5AEBGB6dV9EAdLQMmo888sj6+3rrrVd23XXX8s53vrPr9scee6x8+9vfLueee24dNGbAvtdee43iFk9dLr300poYee9739tj0nSBBRYY1m3IbLrMnMvAP8FbjoFNNtmkKxmUQC0z8o466qhaAJxujxdddFF585vfPKzbNS2Zf/75e/y8MztzJGUG4hFHHNH2tgTb3/jGN8qdd95ZPve5z5WzzjqrLLvsspPcJycVEkgmqJwSCbZTbD4Ya6+9dp1RmpMF0/r3GwBgSmTiTWLC3/zmN2XFFVfs8X6JJe66664hf/3Equl68oY3vGFInu+0004b0o6UY2XcOdQxSDs9jfOHep8ycMcff3xZcMEFJ7v++eefrzFVuuT89Kc/rQnAY445ZpKE61Aew1NyLAxVHDmleoq/cx4knVNnmWWWEd8mAIBpTVaeG2yhX6dJLiYFnxkHZ/JRk2/57W9/W3N1ycnkPv1ZgWOllVaq4/qMq7Oq30c+8pG2hZwvv/xyWWyxxWrTn/ydIsh2k8PSACTSfbO75BJ7anSR50thYZqH/O///m8tNEw3z0YmpiXPnO1IR9AddtihNqBppGA1cUvykJmAmlxkOlcO5XH0+uuv123L8+ecRxojJSbpNInxkqtL8e50001Xtt566/KpT31qksYu2c8pHk4jl3zeKTL+8Y9/XGaaaaZR3XaAqZXl3YERkwF7BnmR4CGD8NaCz0igkeW+P//5z3edxB+OZB6TW3TRRevPcCYVUtD5pS99qSZp3/rWt9YgLcuVtQZ4SQglEZRkUWZ/ZZmzgw8+eNi2aVqUQLz5vMdywjgnHDJbMMt0pHtlAuEEx60WXnjh+j7mmGOOUdvOvHa2IdsyLX+/AQCmVNPZ/Re/+EWv92uKB5daaqkhff0UI2bM1J8uL6OhE8adQxWDjIVxPgOTxOnOO+9c/ud//qf+/fOf/7xcfvnlY/IYHuvHV/4HZftM2gMAYKikODJj9EjXy9YGG2kk0Swvn+LE/izznvF/a9FoO2lSEVkJIGPw5Hma4s6BFH32JvnFvJ/llluu/n322WdP1owohYiZVJUVJlsLPpux9yGHHFI7lyb/lCXgh1oKJLMPPvOZz9S/b7755tohtdNkgl8KPtP1Nr8nn999pcYUd2600UY1/5sJtSm6Pf3000dtmwGmdoo+gRGRYr+0xc+yX8svv3zZY489er1/ZgqltX0G2GecccaIbSfDKwmfBARx0EEHlYUWWqjH+6YAOLPumqUXOjEAYsrNOuustdtn/PnPf+6zAAAAgM617rrr1sssy5YYsreizyRNsnoEMLYkwbfGGmvU34cjYQoAAAzc008/XVdXjCWWWGKy25sCztwn3S/7o+mI2VPRZ5MPTEHl6quvPsl1rVIYmFUC0xRmoEWfjbXWWqte/ulPf6rFpY10L42sONCTnF/YdNNNu+7fvfnIUPnwhz/c9XvyXZ3kkUceqQW08elPf7o27+lNGv80DZ4uvPDCYdunANM6RZ/AiMjyfBm0RzOTqa+ZWekOkYLPzLBqAoHFF1+8LL300nXw306CkRVWWKHe74477phslti+++5bB9XLLLNM7SKzyy671BlVA5EB/3777Vc+9KEP1efJUgFpT5/W/ylq7S63ZXtuuummrmWqV1lllVr8uvHGG5ef/OQn9X5Jambgm/b/uS3vY8cddyy///3v227HM888U77zne/UZb/yfNkvWQIxjz/xxBPLf/7zn677PvTQQ3UbmoRLArD8veaaa3bdJ38329ldum1mCbePfexj5T3veU/Xtn/3u9/t14y/xvnnn98VUGZZ7/4kiw477LBa6Pf2t799stvz2aUw9AMf+EDXZ5pgI0nidvJ+8x7/8Y9/1BmGWXYg+yyzGLfccsty/fXXdy1RkPe24YYb1tmB2b+ZAdgcw62a/ZbPI59l9kuCx2xTjq8sXzBQ6YSaotgETQm0s41ZJiHHR/djLK/ZbEOW0OvulltuqZ0yc3tmaLYeD82+iP3337/+3cgSF/n7kksuqUtb5Pd8/r19x3OfLOmRWZNDKZ9B08XpmmuuafuZZt+0yvF/3HHH1W3O4/OZZH9m+Yz77rtvsufYbrvtuv7OdynPmf3U+h2+4YYbysknn1xPZOT5cnzkmMg+yu29HdP57ufYzPc636EsL3Leeee1/Z/R03tqNJ9VLofi+/2vf/2rLmWama55X9m+zDrN8+W47i7/X/Jc6dyckz9Z6iWvle9g9s3ee+892T4GAOiPjHuzbFvGJz0ljf7617/W5egSh73pTW/q8bkyps9YOWPyJJcyrs4456Mf/WidkNhuWehm3JdxZKMZayXx1MRsm222WX2u/GyxxRbl4osvnqRItRkfNrHAqaeeOsn4rXHPPfeUr33ta7V4NTFJM55KzNxuslNP485mu3/5y1/WfbPnnnvW58nzZYm9xNY9Je0GEle287Of/axssskmdRyZx2dJuxtvvHGy+7WLQXrTfUzc2z6d0nMFAzUl+zuxUlYzSNyY4yf7LOPn/kxyvPrqq2snzSRM81o5rnOO4+67757kfjkWt99++67jNsnd7rKKQm7Pc/Q3oTsQ+V5E4qXW71pvsVM+x3xf8/7yWWbfZF9nFZDW8w59fb9uvfXW+ndirrx+VhfJ9z/Pm7inPzFXXi/x0DrrrFMfm+3NPmv3f6OveLD12G9izN7i79aYK9veTpZLTHyZcyA5FnL+IedGejq/1bx+jr+rrrqq7td8z/O9/cQnPtG13D0AAFMmY/HkMNL4JrnI5Cbyk/Fn8opNAWJ/JHeQ8X7GcRm7dc8VZsya2CJj78Q6eZ3Eu4cffnhdQry7rKzXLLH9xz/+cbLbm3P6uU9vsXarjLEjKzZ2zxU+/PDDNX5Pt8eM75sC0XZFn7fffnu9zHvNdg7G7LPP3vX7888/3/V7s9JE8n+9TS7NZ5QcW8bLKQIdDq3P27otTQyTn5zLaKe5Pfftr+zXHItNDjWfQQoxB5oXjwsuuKDGDMnf9yfPH8kz5fjMeY9250wSCye3mPs1cU3rsvf5DiRmS/yS3GPuk9x8vkvd4+D+nndoYsEm9mrd/9mOHMdZqTSxfWLB3P+AAw7o8fly/io5snz3sn2J85Nry3VN/AcwnBR9AiOiKTRKy/dmyb6+ZPCZn3T6iyQr0v0zA95LL7207WMyGH/uuefqMlits7aOPfbYss0229THZYZXBm8ZXF933XW18K8pRuxLWtAncZDE1rPPPlufJ4FEkg0pJstz5fp2krTLCfsU4WWJrgROCayy3Pm5555bB6kZOD766KPlHe94Rz0Zn2RZBrNJJLVKQigFkSnGS6CX5QeyLdm/GegmOZGBdBPY5LWSRMz+i2xzk1TsSzPgPuWUU2qAlu6cb37zm2uC8uijjy477bRTvwo/c588VzTBXV+yzEJm12V/dJdi4OzvFHgm0EghaYK3BIxJduy11149Ji0SCGe7s6+abqO/+93vaoIpx1CKbfPekgDNa+cy16fwMgP4drKUQT7LfDaLLbZYPU5zfKWY8Hvf+17pr7yfFBNm6YME5ossskj9fLPvcnxku1sD1iRoEkxEkov//ve/u25Lci/blBl0Sdr2VrSZotocE413vetd9e8E2EniNjMkux+LjaZ4eYMNNug6cTCUctIi+hPQ5n0nEZ/kXz6PfMb5HLNvUpyd95MEbSPfg7zfRt53frq/jzxfPuccl/kO5H9Nu2Lk7vKdz7GTQDpLmGSfJtGcpS+StB1I4XQ7U/L9zjblM8sMzQceeKDup8zAzGedRGP+z/RUwPnPf/6zHn/nnHNO/Tv/d5966qnaeSv/f9oF3QAAvUmM1oxte+rw3iztnjFMT1LglzF9xsIZkydOyHhvrrnmquPDxH8ZH7dLdPUkCYo8X8bkeY6Mm8aPH1/jsa985Ss1NmtkvJfxWJN0yjgtf7eOHRMDZhuSOEmhYpZEy7g18WTGqikkbC0+7Y88LvFTigOTWMvrJsmQ+CeT3DJ+nZK4srvEiIljUwiXGCifXxJp2fdD3eGxt306JecKpsRA93fiyhRjJm7LsZfzAlnhIsd6joWMwdvJ+8pSi7vuumudiJbuN/mcEkfk/Sb2acbkkdtT3JjjPTFQkk3dv0NJcOXzStybz3244rfoz0TIs846qxYx5vua71Xi+8RdeWxWfkgc3EyY68/3K1LMmv2dcxc5PnOOpT/xWyROSzyU80f535HPLvss50baJakHqrf4uzc5x5EJqUncZjuafZVjJOcSco4kSf6eJHmZxycpv+CCC9Z9nP2Tx2RJTAAABi8xY8btKarLJJ2MX9/5znfWiY3pkpi8YuKEjOn7kpxOJh1lvD/33HPXQrg0Y2kkd5RcZWKL5Boy9s+YN6+T+yYX1OTjGonzmslZiQFbz98nPklsEMmlZpzZH4mtksNNbJIxZqtm3Jx4LbFHcsOJzdPhMnnQdkWfg+3yGU1R3swzz1zjs0YKCZtcSPKt+WxaO4E28j4ytk7uZ7g05zOyP5rl6IdLmnbks8z7zeeTmCOvm6LkxA25fSCapjmZgDvHHHP06zE5LhPPpQtrjr/uknNOHJgC4XxXEnflOI7E05mcmnMwiQvzmomDc84k36XE4q0FokMhcVViwW9/+9s1fsw25XxN07Apub5WyallQufZZ59dv5M5T5Q4K419cl3ix4GcdwIYDEWfwIjIwC1STNQ622ogMhhNgVG062jYWniWwVfj5z//eTnttNPq45OMSwFqOrEk4EhhYBx88MFtuzi2ysA4g+AEW81MqDxPlh5PUicz3zLw7OlEeRKLmRmUxNCPf/zjetkEGylgzAn6o446qm5fbs/rJXnRzNZrlVlRCd4S5CUpkmXTk4DIgDPJnbzXJN6a/ZGgMkWETfFeBvf5OwVsvUlXlyQbM6hN14oM6jOYTlIqg9wkh/Ke0/2wLxnkNkWY7ZaOGIgUqCWplcAzXXryWaSYL59pkhgJzrJPmi4e3aVTSIK73D/7Ou8rwUKC8iRPUuSWTp/5jHKs5T5JhqSYsKdOIBnAJ5DOc+a4SMFuik/znAmWe+pU1CoFlZm5mWAiHWFT4JjXz7GRbUhiKO81XUBbJWiaf/756/Y1S6E3x0mC5zwuv/cmBa85Jho5oZC/syxfHt8k7dp997K92d/dv3tDKYFS03W2p5mOjXx2CfCTNMsJlPwPyHchn2c6teQ4zMmQRr4HCRxbP8u893xvWuUzzEmbJIzz/cx3rl2g2l0S6Om22nyOSQrnf1KOqXScTQA5JQb7/U4gnf9lCZIzWzHfg+ynnEjKtmZGYv7P5NhoV8ye/ZrvWr4T+T+YYyPX5aTIiy++2K//CwAA3TVLtve0xHvGnUkUZVzX22S9jKWT6GnGKhmjZ7yTvzN+SpInk3r6KzFRxkmZ7Je4K2PBjOVSNBlZpaLpmJgxdMZjTbf6nOjP3xlXNcWWGY8mtkxMmtgh48S8t8QTzT7I5LG+Om22yjg2SbLEiBmXZdyawsyMWTM+Tsw0JXFld0nMJdGS/ZD9m8smxk7B3GC6h/Skt3062HMFU2qg+zvxfiYbZryczzuPyWoMSfylALSnSVNZdSP3y+MS6zTnNHKZOCZFninsbO2wmvs2cWMe2yTo8nln8lkkmdXfSbkDlcR0c+4nk8V6k8Rek3DMhN0mps73Nt+BJG1z3qEpBO/r+9V6DmKWWWapsVv2d563OU76ktgv5xqabWliycS+iQmntDtqb/F3b4444oh6nCUOy3GR71yOs3z22d6cI0nis6fkZ86lpBtvvuP5TuT95TiIHIcpAAUAYHAy5kzMmPFrVlPIGDJjyRTZ5foUkCW30dd5+8TBiTsT2ySmTX6wtcFDk8fK2C15m4zjMnZOLJdxYfIEyRVl0ljyKa0ykTGFdIlvE8tl0uW6665bH5PYM+PUjHf7K7F5upBG9xxYxqrR5EETHzQT8LpPpMpKja33HaiMz5tYMDFaa9FqigqbQsKm82UKF9OkJ8Wv+ZySzxhOiSMy0a0Zp2d/D2dxaVaZy3mROeecs+YnE0/l+Mh+z+TSxBO5vad8Z3fJqTXL0Q9lsWpyoslnJabO9yf5vKbwN8dh4uecv8m+a87r5DxD8lo5n5LJaz2t/DgYf/nLX2qslPgsx0X2WS6T208R6j777DNJriz7Mt+lfI9yvCf2zk/eT/JreUzrBGGA4aDoExgRTaJqSjtIZCCchEaSId2LNNOBMUmPJFhy0r/RdBjJclnp8tAUaeUyhXUZQGbGXU+JrEbTZSUz4VIImRb2jSRKmtfJwLMJULonPXKCvpkBle582abI4DSBR+t2p0A2QVe0Jn/SqaMZXKdYNJ1BGtk3SWIkYIkpXWI5haoJCrMtSdq1FsGlrX2KaCOD8byH3rQuKTclx0GCo6ZILsFZAtTWJRGSIG06maR7Trv2+Qnwsu0JviOBT54n8j5SuJtl7hopUm06DvWUiMv+SGK0SWzl+EoHjXTtTBDenwK47OMU+Wb2XZKlzfZFElo5GZDnTdCQ4KP7sZXPPwmtJIES/CTYyXHaFMJOiaagMK/dfUnyFDEm0MlJi+GanZgCyUa75QlbNd1I85m1Hmv57iUpmk6zWQoiHaAGIt+DfE8Hehzn+EqRZx7fyBIUCRybZHG7maXDLdvUdK5JwrB1yZZ0mcrt+c4nSZttbCcBa479RjrTZpZo9KfQGQCguyStEuNk8lJO8LdKfJNxcMZzGQP3JHFhYoSMx7uPT/N3s2RyT50Ve5Lu7enk38SUiekSV2QcnuTdnXfe2a/nSSIuz5El7hKTNsvNRd5XEnFNYqXdctI9SZfAxAytMWKSE82y063js6GIK/NZJfZqYo0mxm4KYTOeHCmDOVcwpQayvxNXJ0aLJN2agsVIN5AUi7YeB62fU5MYzH1a49S8n0xmzPg7MWfivlZZUq75LFLomZgtsW6KLJOAyiTF4dTEcH3FbznGE+enC0y2uVWSvilKTGzXbv/0JQWOmSDZbE9/V6XIcoU5R5BjqonpEvtk5Ya8nyRRR1r+Jzavm+9skvOtx0K2N+eqIuen2nXozRKjSVQ2+yGPy7mH7PsQwwEA06Kcp2+WhG73kzF3f+O8FBsmbuw+mScrDjS5hd7i0IzrM5knxWY5X5/z8t2bqKSINLFy4pBMCss5+dYcyGGHHVaLK7MqV7vJQLl/HptcWCYkZjye3zNeTn6re/6nL83Kfq1jycTHzSTA1u6dze+tRZ+ZrJWxbvJhTQFpf2Rf5T0mJ5vVJjJOTz4secNW2SfNShtNLJ9YO9ub4tyM/ZPjzSoWfU1Y603i35xraP1JZ9fkCPO+8rlk3ybmaW1CMtSSY0yuMTLZtIkJI/FNXj/vNXK/vpqsRPZt09SnNY80FBKPNHnzFDlnG9NIJYWTkZh7lVVW6bp/PuPEPU3X2oF2LO1L4uv8NHnnxEqpD0hjmhR4tk7ea3KR2cetOczsoxRuJ35vCo4BhouiT2BEpLtC9LTcdn+lECnFWtG9SDOzuBKYJMHSFCemu0bTZTSD63Yy0E7R2t57793j6zaBT6RwtJ0kTfLTBF3dZVDavfCutQisXUeHJnnUuixcBouZaZQlG1qXpG4kaGgKDwda1NZdM6hOYqy1ALGRxEs+hxQathZettP63vsTRPQkBbVJUiV4bgo1u0vQksRO9kXT0aRVjpHu2zuYz6JVa/K3VXPcpdNQT8siNoFYs+R4axDWKicYEuAnmG0+m9bAOtvQJIByXDez4dJlckqlmDafYZKVSZi2StHvcHb5jNYl0JvEW0+aJftywiOdaVtn3uW4SBem7KN2x3Rv8v3u67V72nftCkSb71W2r/tSKyOh+W7k5ENrEXsjwWxT7Jv/ke2+EylU6K45ydSuOygAQF8y3mqKmbov8d4shda9MKy7nIRPAWZPMWATnw40XkrBVHdJSjRjvcQp/ZE4JvFcEk/ttI5TB9JxZNVVV21b1JYEY/fx2VDElUlmthsfZ5nBpovKSE1uGui5gqEwkP2djiXZhsSdTTFtqxQTNsnSVokREwslUdRu7B1NIWuO+SShWqXYM6+ZJGo+l3R4aQoY+7tk42A153/6iqGSPMu2ZLLw/vvv35U4a6RDURJ9vXX37c8y8wPR7lxDYqZmX/dnSc6hlmMh51JyDPf0PzATSFMcm2Mvn3V3WeGhu5zHeNvb3jag/2EAAFOT5BOyalhPP+3ipXYyxs6YvKdcYxOHZnzfUxOVrEp4wQUX1MmA6W6YRhvdNefqs2R2u2YfGX83OabWPFLGkhlbJzeSMWAmlaV4NLmJFLVlHJkCukwOG0jhZ+KiaJ20md+TS0tOq3WSXNPJM7Fosw+apd1TGNkuT9GsWta9GDe5shRrZuJhup6mcDDvo91Kg8l1pCtk9kcKLpMDbF2VMjFvckkZZ3fPf/VX8sgpJG39yX7IZMus7JDi4UziyjYONDc1EHnNTB5MEWImJbaT4yM50kyQ7M/y4301/YnEnL0VT7frKpptaPLqrZrjNpN28x1sJ4W+TR3AQCf09qZp1tQqcX+Wce+e/2/iqHxv8r1sPXeSZinJUTbNXwCGy/Ce3QP4/zSJlb46PPRHipBy8jodB9OhoEkgNK37WwvPMtiLBD5JArWTJdT70hSOJihrEjjtZImFDKjbdWNp16q/tVNFu6Kw3pIwCQoS6PzhD38oDzzwQJ0Nl44mCW6axFp/BuK9yfP2thx7ArD+FhS2Jtcy+26wms8ig+nWoKxVjol0TknAMhKfRfTU4TLBTJPwStfR5u92AWFT2JjAvqfgtplp2OyHVinwzOzJJsBJUrqnIuWByncoxYvpTpPvWtNhpikCzf7pqVh1KLQW2zaz/nqy00471QKBbFtmLGbbEmAliZpEb2a5DqZ4c7AJ4tYuPq3yGeeEUpKa+e62du0Zbtmf+X5E69Iw3TWJ5Xbfo6ZjTnfNCYspKe4GAKZtGXcmwZXJZTlB3ozdsvx4TrYnudWXjO9TRJYOERlrJ17KZeKlJEAGEy/1Nf4ZaEeUbGOSghm/Z/sSf+X31rF+uyXuB7t97cZnUxJX9jTObWKevF5i8qGYhDbU5wqGwkD2dzOe7i1hnP3UvZiw6caaBFrToba71mMkx046kDYSM2dZ+SQYm+MqSd7WSY/DpSl6bbpI9iTbm65Hp556ai3YzU9iryRwkxRODDfY1UIGE8PlMa2J6VbNuZHu3WRHQvP55TjpadJt4vZ0js3/kRxz3QvVh/p/GADA1CDd4YcqVkgxZbrYp5Ay47cmDk0O4JFHHum6X2Ks7mO6rODWFI2lgUhPTXSa/E8K47pPmGo0k3ny2okXEhuleUcaQWTMmMYYrTnTFDsmh5IVH/K8iaH6u08S/2VMnwloGYNmPNp08uy+XHtyESloTa44256Ysin6bO0I2i6X0j2Pkf2XwsaMcZPzyeTRnnKGjdw3sVF+MvZNwWPyW5deemndr5l0mcLYFPYNNAZJUWmzz/L5Js5O0V8KPR977LGaC2pX4DjUmhgyx09PjXOaYzXbmeO0rxX88pllf+f+zfmUdp9RuwLNu+66a5KmLq0yIbFdAWwT+/Q08TGyP/N5J9eV466/xdm9SRzYU8zUxIL5TjXScTQNf/L6OW6yD/IZ51hOYXFPuXWAoaToExgRGeQ3iYqc+O+raCuefPLJmmRK14dWGbgnSZEAKYOpJAKSoMoyf+my0npSuykybW2rPiUFZ30FDM3rtOvo2Mzi68lAitAy4E3Hju6dG7J9mQ2XAKKnYG8gmv03pUuDRwKkJphrgo7+SKCVAs+mg0rzWfR1DDWfVbvPoq/301fX0nZ6SmS1vlZvnQ9bb0sQ1Jd2z5WAIkF0E/T3VGA6JUnUFH1mxlr2a473zH5McJyOIUO9rEOrJqmWDjg9FcS2FnLnpESW00jxZ4obU4ydn5NPPrkmOLMMZ8dAVk4AAQAASURBVH+KBVr1dynA7nr7/9PcNqVdeQeq9XvR2/+15rb8L25ODjUGs7wiAEB/5CR5xnSJ+VK0mb+zbHcKCLPaQF9xWWKGdL5P8V9roizjlyQNUjTVupxcf/U1/hlIgWYSbukEk4lKrRL/brrpprW7y1Bv31DHlT2Nc1uvH0in0ik1kHMFQ2Eg+7tJuvYWiybh1VPcl2O6P0tvt+vUmORoElfZL9nm3iayDpUkt5vvXutykz1JN6Rs5znnnFNX98j3It/f/GQSX5LQWeayP+eSWg2mg85YjN+G6lzIUP4PAwBgUhn/povjD3/4w0nGiymuS0FaCusysbEneUwalqQrZMb+X/rSl8pFF1002RiuGRdmfN9aSNpOcjcZF2aM2Kykke717Zrk5LoULWYCZoog+1v0mZxBYq+f//zndbuTD/7Vr37Vtugzubd0Bs2EzsRsKfrM+L+vos9MzGpdVnso5HNJoWt+dt555/q+sxx6ciHJL7Xr+NhfeZ/Zn2nwkrzZSSedVGPVFASnaclwamLIFFoONoZslxtLnjbFjYmve8oBt/uMkjtMAWxPzzslsU/is9y3t1UWByI57J40sXxrbjbnlpIjTS4yRdvJf+e4zs+xxx5bv/c555LzKwDDRdEnMCLSQj6znBJgpG3/2muv3edj0uo9g6LM1smJ/qbQKyftN9hgg3L++efX6xNMNJ07Pvaxj00SADWDsCkd8DUn9nta2rv74HhKi0x7k9lyWbIrlwn+skRbAqMkUpIgTIC17777DknRZwpVM4AdigFzgpwPfehDtWvHjTfe2K/HJCjJkowJllOkl84mzb7ta+nokfgsWiWZmURid63b2dvMwNbkXwKxwWx3EuI/+MEPugrzTj/99LrPh2r2YJbGS8CewC6Fnzk50Hz3mmXAh0uzNEhPSzl0l5mlOWbyc99999VEdv735GRDAsw99tijzrDsawbjUOhtScvm+GiX4O0p4TYUS2S2Hl+9/V9Ld6zm+BxMd1QAgMHIuCPFnWeeeWZNTGU829+l3ePzn/98Pcme2DGxU7p+ZFm8JCkSL6agcjBFn0MlBZ9ZxjrS7T3xcbYvxXiZTJb4ZzBFnyMdV/Y0Lm2Ngfrq8jiUBnKuYKQ1yaPext7tCgmbyaP5PmSJ88E48sgjazI4MXmOrayGkOOrr8l0UyKdjRr9jeHyPchP9lHit/yk82mKk5NIy3GVbqDDrbfzH4OJ34aq8HmsngsBAOD/ySSlSy65pBYTbrHFFmWllVaqcV5ynIlVkhfrregzcVkKDxOLJX5JLJbxb5ZbbxcjfO1rX6sxXX81q8j1NilrscUWq5dZtW4gUsiZos877rijFvmlg2a2s12xW4o7U/SZYs/Eb1lxIkWdQ93EJBL35LxCCjBTmNeT7POsmpft6mk1x8Habbfd6nPm888y4Im7s7960i6uGEhOqDk+MuE1x+NQSefK7JecS8n2DEWzoCmNfZrb28U+g8mv9SeX1z3Pm2Pr0EMPLd/4xjdqQ5/EsVmRMeek0qAnq1rkuOrPqqMAgzHwVmYAg5BBTxJt8b3vfa/P7gEp9muSXAlAuicjmgKztNhPIWkuW69vJJhqBmo9BSl5bFr5Z8mznjRBUE7W97aMV9OhMcnE4ZJOi0nMJWmU3z/3uc/VwXb2cVOU1SzbPKWa/ddTZ84kjFKImQK6dPLoSwK4SBFef5KsSdAl4ZLjoTl+ms8iXX56SphliYEElcP9WbTqaR81SdIEQL0toZfPLycDoqeZcpHlH7P/uiei8neSd/k+5DNJ0ja/f/GLXxyyWW7RzO7MrLV85tmWBDk5BodLijUT+LceQ73J8Z/HNEnTnCzIdzxdPvN9z+eQfZPZqiOhdXnOVvm/1G6Zx+Y46GnJi3RcmlKZ2dssddhbZ9nmtuZ/AQDASC7xHldeeWWNH3OSPCfyM6mpr4lQObkeSeqkuDLPleRVU/SXFShGU5NsytJ5We4tCcEUxjUFkiOxfUMRV/Y0zm1isSQ206l/JPX3XMForX6S+LCn8yHt4sDmcb2tlpHzFEksJT7rvjx3iibPPffcWvCZhHFigHvuuaccf/zxZTilI1Ekjm/XRahV4rbslyZ2TqySRHG+u/nep/g4ssxkX0m/oZDlCnvqdpOOw6MRv7WeC8nnl3Me7eQcSbPc4EidCwEA4P/FTpncF+nomAKwFG5meeem+3xfcV6abmTsnEl4e+21V1fs2H0iXn9ihGbVjNaYrukI3321iVaJEVvv219NEWNWWsgEsMQ8KXptN9Gs6f6ZcW0zWay3Lp9TImP15HRThPfUU0/1ef8mZ9KuwctgJb5OU6R0rcw4Ph1cu+c2m5iip7hiIDFFc3wkLvjvf//b9j75fJJDy316imO6S94x25n48zvf+U4ZTk3s08Rf7eRzbYo0m9gnq0Q02r2vxJ69xZT53vSUd87x2loYnX2YuoObbrqp/p2YO01mUuSZOohMRM33KPsr57UAhouiT2DEpONeBreZ0fTtb3+71/tmtlMGSxkkpUtLd02nlgzSzz777DpDLbOjEkC1SqeUptAuiax2EoglQZLl5HsbJDcD5XRSbCfdGVOQFx/84AfLcGmKVzPrr13nyCSKEsxF94RPk7zr75JdTSFfBqftBsi//OUv6/tOAWc6K/Yl+yWdbCLLGvTU0j+SsMpxEFmGL59vE/gmGZpgJctktJMZhQlc836b1xtuTVKru2Y5g7yH3pYHz+B/5ZVXrr9nNmdP+2TrrbcuG220UddSHI0sO5HCyBzvX/jCF2qxZ2aO5brc1l99HSMbb7xxDZzSMbMpmsz2DFfXnARhWZozstxfX59njoskzzMr8/rrr5/s9iyl0SToWhNl+V8zXEvaJVHZrvA2he0pnM6JhNaOo80JhXZJ9JwY6qlIc6Df7yRSm2O03fc7XT7TmXe4/6cBALSz/PLL15gnsV7G/YkdMn7pa7nm1sl+GT92lxPuiRfaxUtDradO6c02pvNGX7FFT0ma0YwrGz3F2InRI2P3oY4T+uo+399zBSMtx272RZKuTSFqq8Sv7eKXxORJrCU26GnFjHSuySS3rMTQ2lUy5zi++tWv1t8/9alP1ec66KCD6t/f//73y+23316GQ2KI5rl32WWXPu+fzqzZ9kxibBfLvP/97+/6vfVYHK6VCLIN7TriJPnXJPKbWKo1fkv81CTJW2XCZE8GEsMlJkssnmOl6Xzc3TnnnFP/Z6S7T3N+AQCA4Ze4oxnTtYvzkotoHWP2FYtmfJ+YOPmDFAnmspFcU2RM2G782eRjM7mwmUAVWQmhyfe162iYHEFua71vf6VQNQWrKURt4pbuS7s3krdK7jYxftMcpnXMP9SrUKYhS5ZV763xT2Rfpjg0+ppsOlDzzz9//RwjMWH3bWktMm2XF+otpuguxbYpME1OqqdOn/mck0PLBNn+TjpNY5DElU0xck8xSasURPaWe+9Jc4wn597TEvWJg+PNb35zV5fYTGptYqx2+/Haa6/t9RxLvpdNzNcqcXazisi6665bL7OUe1bk2GGHHWqxc3epKcj5luhp0h7AUFD0CYyYBCif/exn6+/pKpFgo/tMtCSeUrDWFFbuuuuuZdlll237fE2njqZDRdOBsFUGd03RaJa6zpLxTeCVwVtmI2WwnBPnzWC1J3vuuWdXQiLLqrUWSaWTTLpdNomt4QpQWmc4ZXZf61IQeV8pwswsoiYA7L6MWNPiPrPC+pM8TIFhBsnpqpnPJYPYRgbbBx54YNcMr/628s9jEuCkgDFBZxKaCbga2a4kYbOse15vvvnmqzMjG0le7LzzzvX3fA5JALcOmLNPsoxGpNtlU6w73DJTK8dis1/zGRx33HF1ezKbMUs49CXLdCShl2LKzPxrLRTMMgB533neFHZmlmgjS61nP+Z4T4FkPucUkWY2aeS23Kc/ms+xWeqjuxQo5hhvnc3X7rs3pfKZJlE4YcKE+t7znlK82ldiL9/lphto9kVTiN36OaVgtXshY+vx29N7H6wE8fn/0Brc5jM+5phj6u/5H9U64zWFzZHgsnVZxMy6zH1bT/BMyff7M5/5TH1M9m/+v7WeIMr3M/+v0+Um39ecAAAAGGnNyfRjjz22313fW5eqS6f31rFTChkzBmo64Q3Vsss9acaY3Se7NduY2LK180qKyk488cRJuma0W/J7tOPKRooX89k0sXEus5R4EikpcEw8P1L7dKDnCkZa4uodd9yx/p5CzCaZ2MQfGee3S7wm9ttss83q7/vss0/dt60xU85xnHTSSfXvxE6tHXkSF6dAMDFx0ylorbXWqt+jnjrMTIkU2uY7d8ABB3RNGGwtjuxJEo05XhKXJOZr3Q+JoRJXNwW92Y8DORYGK8d160TLxEqJ1/N9TTJ700037bot25Xtz3cn2998Z/P9ybmtZhWbwcTf3ZPjOcfRLOXZun35PNPRNf8/IsdTEr0AAIyMdBpsujUmF9kaQ2Wsl/PvWc680VcsmiYVWTI648xmmffG+uuvXxtbpDv9TjvtNEmeNeP7TPRKsV1yKU0uLbbbbrvaUCXdDDNebB2DZrybHEYK5XKfvvKl7SQvmjFwUxzXU9Fna2fPNMzIdg5Xp8/ED4mjIgWQiXO754wylk58lv2TLpDZv+95z3uGfFsSQ6QgMxIjtB4PidmaxjopCG1WHkiMkQLNxFn9lRij+dyTI8tkzdYcanKFTW43sdhAVufIvlx77bXr8+299961+Uz3/ZncVPZnjrEUROZYz+TdFAb3V/Z/05Qox2Wzmktz3iG54SbOyjY0ecO8TtNAKLFR6/mW5AWbnGlvkrdrLbJNTJptyPcln1NzfiGFuk2TmhRZt64Smv2T3HVi3HyXR6o5ETBt+v/3OAYYARkEZpB99NFH16Kn/KSILDNxMohNcWEkkEkQlIRcT9IJIoOvJARy/w033LDHgXSSe2eccUZNPnzrW9+qr5cC0xQVJhBLENRX548MftM1MQmHDLBz8j4DvAz4miRDOinkvQ1Xx4nm/eRkfvZVBppJAmVwmUAtgVn2RbYj3Uu7L8e35JJL1sts7zrrrFMLKtPlr6ftTZCRBFIG50kEZjm1dE3JZ5X9l4AjgVtTENsfSZAkuZmCsiwNnoRXBtoZ8GdAngRsU+yYGZFJ1DVLKjQSyOb1s+15bAbved7MSGuWOcgMq6aryUhIkH3KKafUzybbkqK5HF95TyngbE0+9yTFfilwTcCVWWrnnXdenfGY/ZHPO/s7nSqzNEBTJJiivCR8IkW0zTIaTVFjApAEs7lPCq/z+N4kIEqxZfZr9m8Kf1sTWpG/cyzku5fPqJlFNxhJKKdouJH3mPebAKpJQOY4TRDX39fJ/5kUS2ZZySRIm+9Ijo3m+MhrthZ9ZpZiguG8pyTScjwmIB6KjkA5FlNsmtmhWfoh/zPyfY1tttmm7uNWKbD82c9+Vj/b3NYsF5ETLnPOOWc94dLMYpyS73eO0+zXfH+TPE4QnddKQXz+ZyYwzUzE/A9o1/0JAGC4JQZLR8KMD5N46i1p1DqezeOSPMpjMxbO2C5j86a7ZRJK6T6S582Yc6BL1/VXtiXj5iRpEvusuOKKdayf8WpirIy50nmkmaiWMX8mxDVLrCf+HK6l3qckrmwd56bDR+K77OPEQOl2mMcmBmrGpyOxTwdzrmCkZSLg3/72txobZEzfxCBNIijj8SzH3l0SSPkM8r4/97nP1XF+JmZl3N9MLMtn0RR2RopBk6jK8+azaF11IudFkoTL4xP39dXxprvED62T1pJ0y/crz9dMsk1M1UzG7EveT4ol0+kzq15k0mISj4lL8h3IdyLHZrMCxECOhcHIdyHxT95n4qG8dhLpeZ85N5HzQa2TBvO/KecokojPOa50K8r3Ifsj+yWxZ+Ktdt+j/sTfrb785S93dYvN9mXf5fxWvnvNcpWJMXs7lwYAwNDL+DEFbt/97nfrmDBd/FMI2prbWWWVVWreIkVxifNaJzS1k1xc8mg5P5+4KxO4EmMlxkkuKgWMWXI68U5iyjRMSX6tmUSVsWNrDiRj2Twuk/MSDyQWTf4pjTQSm6ZgM9uU8W7GmQOV7qCJDfOeM47Oc/cksX3G/tnW5GD6yltNiXRNTWyR3HDG6vnJGD+TqiLj9sSxzcTTI444Yli2IzF+xv2JVxNbJC5LHiixVeK2xHPJ4yUGT2yYzzT5rEzkS+fLxH533HFHv14r8UBihBRGJp5M3joxSmKJJkeWfGT3GKsvOVaSU0phc1b0TIFvfnLcJC5JTin7s8nx5v6JVdMEqlmVs78Sp2bliKwemoLcJk5LTJ3zOMntZ591nxyc6xI355jOdyY5r3y+2a40mXrve9/bdvWNRs7HJHbP6+V9NbFgjum899ZYOJ9n8rKJ6fM9zD7O5LvkN5v4LOd/mhwfwHDQ6RMYcQl80vY9J8UzwMoJ/BRnpcApAUu6X+T2vk5SZ3DXBCzpHtHa/r67/fffvxZ9JohJcJWZcRkQZgCfIKTpnNGXBFgZJGfwlsRgniddHFJol44mKQTtbTuGQl43SZDM1ErQl4F+Bp25Ph1NMmurWc4729c6Wy9BV2Y9ZbCagX2SntnvvcnMswSpKUTLoDYD5SQBsxx1BrQZ3Pe2bHk7CaaSfM2gPbPCEtBlW5qOjglgkqRLoioD7HbBUQp1k8TNoD2fZYLbyGMTlGbwPdDtmhLpkpKkVgLnJJwSYDcFl5kZ2F/5DBMkJVDIc+WzTeI1AXKC+ASBrd1LE7DlGMhnms+2uwT2CdBzn9y3Lzl2kgRPMJbgqemC1CrFi81x3nTRGawcS1meoflJAJeTIAmM8v1O0i5J0YHMrMwxlKUck7xOUWoSbfku5Luf/wE5QdIsa9j6mBQY5wRDTjTkeGxdGnRKJKjN/598Z7JPUzSdEzw5TpuC3VYJjvM9TrfbfFeyPzLDNMm/fP49BYiD+X7n5Eo66ybpnIA025fjLf+LE4jnWOxp2VEAgOGW8VPTDSJxQ3+XCk8skclUiTczBsz4PCfpEytkLJg4ollmq7Vz4lBLTJtYM4mCjKuzHZHtSEyXWCZj/kzuyRgsE8maMVjT2T9FbWMtrmwkSdXEQInlEpcl9snztq5MMBL7dLDnCkZSkkOJOVKEmfgmY/Uk4nI+IQV/maTXTuLaJNQyATUdQpKMTfybxGXiipyLSAKz6SyUQsnms0sc3z2Wyv5pCjJzrKVAeiDuuuuuSWK4bEtinMRS6Taazz/fv/5+X2OjjTaqMVxip0x0S5eUJOWSKM95mJwjynE60GNhsJ9Tzu3k3FT+f+TYzjHeTM5rNxkxibxvfvObNXGazydxVeL2JFe7x54Djb+7b1viyBwLieXyfy37P+cfkuxM4jwx5nBORAYAoL1MYsp4P2PCjNsyPs15/Yz3My7MGLMZm/c3zstYOOPgjDGT52xWY0jeLCuFJR+QzvMpDGzyaxlTn3POOW1X78pEqUyaylg349XEIxmHZtJVrsttuc9g5H0249C+OndmgmFTPDdcXT5bJf+RTvkpCMxrJ8ZKHJ7xd+KJ5PLSaCOf33DmFdMcJoWMkf3e2sEzE+eSb83+SGyXmCi508TdKdZt4r3+yOeQmCwNZHIuJfFG4oYUYybuzHPm/SaOGKgUqOa4TGFzco6JUbPPsr2JRTMpLjnEHJs535JVFAZa8Bn5XBIj5n0kT53vUr5Tie+TK2vOZ3SXcwGZ4JrzLZmsl5x2ti/5wlzf16qVec3UMTTNUbLtKSJNrjfnbFol95rtSL1D8nbN9zCvl/gscX67bQQYSuMmNlOwATpQBuJ33313Xf6uafUOI6lJ+KSoL8tXTAsyQy2BXALHLImQIA4AAGCscK4AAAAA6EuWj0830ch5hBTJAnQKnT6BjpWBV37SCa8/y/wBQ+MnP/lJnVGaJcQVfAIAAGOJcwUAAAAAwNROmTrQUbLUQGQZtCxlEJl9M5C29sDAZUmCLPX4+9//vpxwwgldS2IAAACMNucKAAAAAIBpiaJPoKNcdtll5dhjj+36+13velfZZpttRnWbYFpw5JFH1qXcG5tvvnlZdtllR3WbAAAAwrkCAAAAAGBaYnl3oKMsvvjidTnpWWedtay11lrl+9//fplxxhlHe7NgqrfccsuVmWeeucwzzzxlxx13LF//+tdHe5MAAAAq5woAAAAAgGnJuIkTJ04c7Y0AAAAAAAAAAAAAoHc6fQIAAAAAAAAAAAB0AEWfAAAAAAAAAAAAAB1A0ScAAAAAAAAAAABAB1D0CdBBjjnmmLLsssuWf/zjH5Pd9txzz5Xvfe97Zdttty2rrbZaWWaZZcr73ve+8slPfrIcddRR5a9//WuZFu2///5l8cUXL1/4whdKp3vooYfqe8lPu2NgqDSvcdNNN5WR8t///rf87W9/G/BtQ+3VV18t6667btl6663L66+/PiKvCQDA1EsMN3Ix3FDGfrfeemtXXJR4ZKwbiRhuzTXXrK9x4YUXlpEyceLEcv/99w/4tuGw/fbbl49+9KPlhRdeGLHXBACAaSlebuKagf4kdzZYjz76aI3Nh0Ji+2zPcccdV4bKY489Vg499NCy9tprd50z2HHHHcvll1/e9v6333573Ybzzz9/yLYBgLFL0SdAh/j1r39dvvvd79ag4W1ve9skt91xxx21UC2Jwd/+9rdljjnmKEsvvXSZd955y5/+9KeaSPzYxz5WTj311FHbfujJr371q7LhhhuWn/zkJwO6bTjMMMMM5ctf/nL5zW9+U04//fQReU0AAKZOYjgYvDvvvLNsvvnm5dvf/vaAbhsuX/3qV8uDDz5YjjjiiBF7TQAAmJbi5fe+972T/aTQsfGud72r7X1mmmmmAb/+K6+8Uo4//vg6seuJJ54oY9Ef//jHel7g7LPPLo888kh5xzveUWadddZy4403lr322qvsvffekzUvWWmllcp6661XDj/88GFtHgPA2DB+tDcAgL6ls8hBBx1U5pxzzrLLLrtMctuTTz5Zdt555/L000+XLbbYouyzzz5l7rnn7ro9M9QSOCUZktllSSJusskmo/AumFLzzz9/ueyyy+rvCyywQJlanHbaaT128uzttuGyxhprlPe///3llFNOKeuvv35ZaKGFRvT1AQDofGK4kZf9+JnPfKYW0E5rpsY48dxzz63Fnd0Lpvu6bbgkwZwuvBdccEH5xCc+UZPLAADA0MXLP/rRjya7b7p4fuQjH6m/H3DAAWWVVVYZsg6ayQGNVSlK3WOPPep5g7znb37zm2W++eart918881l1113rXFgOqWm82erfffdt1x99dXlG9/4Rp1QCsDUS6dPgA6Q5dP+/Oc/l+22264GQa3OO++8Ouhffvnly8EHHzxJsjBmn332OuMryYk48cQTR3TbGdoulIsuumj9ye8MnwTML730Ul1eBAAABkoMN/KSAEus1CTCpiVNnDjLLLOM9qZM1ZKQHjduXO2aAwAADH28zP9z1VVX1ZUG0tkzHUlb49xVV121q1g25xe6SyOTjTbaqK6kd8MNN4zodgMwshR9Aoxxr776au3wMv3005dNN910stv/8Ic/1MvM5kryoSdZ+iyyBMC//vWvYdxi6HwrrrhiWWyxxcovfvGLevIBAAD6SwwHU6cFF1ywrL766rXLqOQpAAAMfbzM/zPXXHPVFQa23HLL8oY3vGGy2xdffPF6+c9//rPt4/O4OOmkk4Z5SwEYTZZ3Bxjjrrzyyprg+8AHPlCX9+6u6fiYdv5p9z/jjDO2fZ7llluuXHLJJTU4eNOb3jTZ7VlCMEsnXH755eWBBx6oz5XZYGuvvXb59Kc/XbvNdJfXzLJqv/vd72qnmtxnmWWWqcnJddZZZ7L7r7nmmuXhhx8uP/3pT8tFF11UL7OMwzve8Y7y/e9/v6vDTWavZcmBG2+8sTz66KNlpplmqkupbbzxxrXbTYLBofDaa6+Vn/3sZ+XHP/5xuffee8sLL7xQZ8utttpqZaeddipvf/vbJ3tMuj+eddZZtRgwy45n+7M/s7Tb1ltvXVZYYYXJHnPHHXeUM844o/zmN7+pSzlmZl7e81prrVUf027fttO6jEWOi9al7O6///66BOStt95al6XIPsvnl6XKM1vyjW9846D2UfbPD37wg/KXv/ylzDzzzLUbUZ4v+6idHDc5jrKsRB6TAP4tb3lL+dCHPlT3aetsxByPX/7yl7v+PvXUU+tPPueVV165x9uOOOKISY7bbF9mPf7jH/8oEydO7DpuP/WpT002S7R5zSzbvs0229TlLbLvcuzlOM9jGh//+Mdrp89zzjmndmACAID+EMMNXQyX104c8Mtf/rI88cQTdV+8//3vL5/73Ocmi9f233//Gtt97GMfq0vftcp7Pfvss2scl+dMR8w8z2677VYuvfTSmgjL77vvvvtk25D3+8Mf/rD85Cc/KX/961/r55UEW2K5xBXtDGec0k6T8EvcmffVyHF4+umnl//7v/+r7zvHXuKz3CfPmSLGwcjznXbaaeXuu++un+1SSy1Vk4o97Y+BxN6JaRNzNv73f/+3/iRGzGfU0235fAcTl7a+5rvf/e7axTPLRt511131+5FE65e+9KWu++bvFHzm9RJvAwAAQxcvD1bydWeeeWa56aab6sTJxKRZDSExSmKV5Lca2267bbntttu6/m5i4eT+muXjEwcmVkwMmbgnMeX48eNrLJH77LDDDjUu7o+s3tEUX9533339ekz2T356knglWvOE3c8nLLLIInXCWnKUiXUAmPoo+gQY45KkiJ6SCekyccUVV9RExmabbVYTN0nMZRZYqyRill566bbPkWRSlgJIojCdZhIITTfddDWhlRl3SVQlYdKamDrkkENqMVwkEbXEEkvUQC3Jn/yst9565eijj267DHkK6H7729/WToovvvhiTZo1ycIEfPvtt18trkwQlqAk90nBZH5+/vOfl5NPPrnMNttsU7BXS3n++edrwigBYCS4TMLr73//e7ngggtqQirb35r4TOIo+zcJ0uzPBFNJFibBmeAv25b9ks+hkfez99571wAxCcok4/LaTaCV18nyC/0t/Gwn27PjjjvWxFk+o3e+853l5ZdfLn/605/KPffcUxNr559/fk1yDcQpp5xSbr/99rqv81llxuD1119ff5IMzf5rlWLTnXfeub5mjqMFFligfq45NhNsJ0ma52wKY1OImmLZbGeSotm+/CTh19ttrcftZz7zmZq8zOeRJGqOmbxejpG8XhKcOZ67y7Gd5Gkel/2V58p7bPXBD36wFn0mqD/wwAPrdwIAAPoihhuaGC7JsBTYPfvss/U5M3kuBZQZ5+c1syRg9zF8O4nXUuiXxzbj/8RLieGuvfbaGnf0JnFD4qIU3mY78jz5Oz/Z393jouGOU/orx0aSmymWbSYeRmLeFCwmTsxlCjYHItv/61//uiZRs23//ve/a9FkfnIcdV/6fKCx9xxzzFE/k+znbPs888xT48AUEfd222Dj0laZpLn99tvXGDTvLa/Tvbg4BbP5rqXAOYnf5nsAAABMebw8GIkpvvrVr9YcXmKvxAeJQ5KDy8/FF19cY7A3v/nN9f65Pfm0pnAycXfim8Qbkdg2MUVinHjrW99aH5MYJHFMfjL5LJMDBxpPTanE2nk/mYQXzTLvPZ17SIyZmFzRJ8BUaiIAY9Z///vfiSussMLEd73rXRPvuuuutvd55ZVXJm677bb1Ps3PkksuOXHjjTeeeNhhh0286qqrJj7zzDM9vsbLL788ccMNN6yP++QnPznx73//e9dt+X2dddapt+2zzz5d13/ve9+r1y211FITzznnnImvvfZa122XXXbZxOWXX77efsghh0zyWh/+8Ie7tvHnP/951/VPPPFEvbznnnsmLrPMMhMXX3zxiccdd9zEF198ses+d999d9e2fOELX+j3PvzSl75UH7PvvvtOcv3ee+9dr99ggw0m3nHHHV3Xv/TSSxOPPfbYetuyyy478b777uu67dxzz63XZzsefvjhSR5z8MEH19vyeeXvyH5ZbbXV6vWnn356/Twb+Tzf97731dtOO+20fr2XBx98sGv/tX5Om222Wdf+zufZeOCBB7r22de+9rV+77PWY+krX/nKxOeff75en+0/5ZRTum676aabuh7z+uuvT9xiiy3q9VtttdXE+++/v+u2HH9f/vKX622rrLLKxMcee2yS19tmm23qbdnv3fV0W7Zp7bXXrrd97nOfm/joo4923Zbn33nnnbs+q9bj6OKLL+7a/s0337zru/Hkk0/W99Aqf7/nPe+p973zzjv7vf8AAJh2ieGGLobLzyc+8YlJYou8XmKK3Lbnnnv2GftlTL/lllt27avESI3f//73Ez/wgQ90vdYJJ5zQddstt9zSdf1yyy038cc//nHXPnvuuecmfv7zn6+3Lb300hOfffbZEY1T2mkee+ONN3Zdt9dee9Xrdt9997rNjccff7wrdttxxx0n9lfrsZD3kW1rXHjhhfXYym35fUpj795i+d5uG2xc2vp5r7XWWl2fW/ZbE9+3ar5/l19+eb/3HwAATOv6Ey/3lhfLuL27xHVNLHLAAQdMEp/98Y9/7IpJE2+/+uqrbZ+3NaaOxIZN3NAaw0T+bvJ+ibX6k89K/PyXv/yl/gzWr3/964kbbbRRV+y+8sorT7zooot6fcwvfvGLrlgMgKmTllUAY9gf//jH2tUkXSR66u6RLizf+c53aqfHZlnALJ2W5QaynNyuu+5aVl111Trb689//vNkj7/66qtrN8V0XcnMsNalAPJ706UjnVSyLemIks4xsccee5QJEyZM0gEx3WEOPfTQ+nuWDcyS5N2tuOKKkyz7lu4czRIHmYmX5ez22muvSZZbyGy5E044oXY8yQy6dOkYrCwnl5lt6dKZJQizzEEjs/nSmTPvI+81HUBaH9d0gEy3kNbHZCnBLLWQ5frS7aPpEvL444/X37NcYuuShpk5mNfJEu9T2hmk2a5NNtlkkqUh01Emy9B9+MMfrjMRByqdT/JZpitMZPuzjOJGG21U/25mEsY111xTO45maYssM58OOI3MjjzssMPqTMKnnnqqdleZUunqk64r2Y85blqXAZl33nnL8ccfX99zZlxmqcR2cow1MzfThTVdYFrl76ZjzC233DLF2wwAwNRPDDd0MVyWzktnzNbYIt1Jm6XO022yL1kWPh1KE9NkmfjESI3EJ80Se71JDJSOo80+y37/+te/Xn/PsuG///3vRzROGWicmPittctqOpamC066vgymi+jCCy9cP9dsW2PTTTet3U0jx/aUxt6DNRRx6Wc/+9muzy37LdvZnTgRAACGJ14eqMQmWWkv+bmsbtG6qt6SSy5Z44LEqYm3E5v0R1YpyDZmxYLWGCby91ZbbVV/T1zeH4mfs9JDu9UeBrISRuKrdCiNXGY7s9JBT5q4JecVskIDAFMfRZ8AY1iTbEvCoV2ioZGAJcV9SWglWffRj350kkLCJKKuu+66mqjKUmatspxdpPgwyZ/usnRaklEJHpIkSWLtmWeeqQm4JAvbSTIw25zEZZYC767dMmpJFGb7oykq7C5LoyfJN3HixPp+BitLHcbKK688SRKu1cc//vF6mW3K+4hmWbeLLrqoJkNT1NlIsjZJrCRYm+dMEqxZovELX/hCTT69/vrrXY9JIWiSmLmcEk2SN0uQ33zzzfXzbmSZyCQ3k7gaqK233rptgrHZ3ixn2ASYSTw3x1FTJNoqz9N8rlPy2TWa18ux1lpM2/qdyPegp9dLwP6e97ynz9dplkDMkpAAANAXMdzQxXDLLLPMJJPtWp8zmsl2/YkbMjkvRZfdpQCwr7igWXa8VfZV83m1xoUjFacMJE785je/WbcrSxQ2ll122Zr8/PKXvzzg502BZ7tju4kTU/SaJQSnJPYerKGIS9sd692JEwEAYPji5f5KfqpZgn277bZre59M/Et80EwS648f/ehH5c477yxbbrll29szqS1aY6zhlpg2sX0mnmXyYia6XXrppbUA9T//+U+PMWEzebHd5E4AOt/40d4AAHrWJI+aLh99SZHhZpttVn+SVMvsrRQBXnbZZbX7SGa7feUrX6ldR975znfWxzzwwAP1Mom4nuT+jSZ5k2ChdcZc90RKurr861//Kn/7298mu71dsi2dTpI0jIMPPniSjpWt/vnPf06yHYPRdMu56667umbkdZdOI/H888/X95FkY/ZrCj7ToSbb+I1vfKPOFEwXnnRJWWmllWoitZEkX4o9v/a1r5Ubbrih/qQIdJVVVimrrbZa+dCHPlTe/OY3lym133771e4zd9xxR+16k+RWtuX9739/fY2mWHWg8hm20yRZczwloZd90MxoTOKs6SjTXRLNzWed43OwHWuieb100ukpUG9mLrY7Vuacc85JuhD1pPnutSZyAQCgJ2K4oYvheioSbIr5Uhib/dMag/UU+/W2r1Jcmgl6A92OdIFM4WkTO45knNIfe+65Z02A5vNM99h8PikoTSy6xhpr9LpPBhMnJmbOcZ/OPXlv6bI52Nh7sIYiLm13rHcnTgQAgOGPl/uSSVhNE5TEdT3JbSmQbBfr9iQrdKSYMnF5Yoe8Vi7vueeerpiutcnLcGuNU1IAmslqH/vYx2ox51lnnVV23333yR6Tgs+cA0gM9MQTT4zYtgIwchR9AoxhzeysZtbYQDRLU+dn++23L5dffnktQExS7Pzzzy8HHHDAJN1R2nXBaOe5557rV1DWJBOTuOmuXRIriaFGEkJ9ab3/QDWPTZDTn0AnAVEST3lP2Xff//73a4CYgscsR5GfdPl84xvfWJfia+3cmd+TXD3jjDNqp518pllmMT/5jJJsS4J0Soo/s9x8ilFPP/302pUn+7wpMk3n0QR/KVAd6HIZrUsA9nT9iy++OMlx8cgjj9Sf3qR7S7axp4RzfzSvlyA7PwM9Vvo7i7T57vU0UxIAAFqJ4YYuhuupiHQgsox3X/uqp7inMZAONCMVp/RHJuf97Gc/K6eddlrtuJnjJkWg+Tn22GPrcZbVIlZcccUBPW9v+yu35X01ceJgY+/BGoq4tD9Ft83xJE4EAICRiZd7G//3Fe/2Fuv29LyHHXZY+d///d9JVtZLIWgmWCbW+r//+78ymrJkfFZhyEp/t912W4/3y75OnNVMfgNg6qLoE2AMaxI+PQ3GU+B3zDHH1I6S3Zf862699darS511n83WBFf9DXaaBE9fCbtmm/tKoDVak3C//e1v+/24wWje84477liXVByIBId77LFH/UnRZ5M0y1J0SWKlq2eW+WtdAjCdPfOTpR6y/EKWRU9AePfdd9fPMEuv5/Obks6XCTKTuEsAmo6f2aYUmWZf/uY3v6kdQFNo2t/EcDRLt3fX+tk3y9c3+zTvf5tttinDLa+X7UhA++EPf3jYXqc5joeq2w4AAFM3MdzY0uyr1mRgd/3dj2MpTumvLGV46KGH1kmAKcxNMjCdZBMvpivmpz/96Vpc/Ja3vGWK48TWYywdS6c09h6MkYpLm2S1OBEAAIYuXh6o1hg0sUgas/Q2fu9vzPr5z3++xkwZ7yeuePe7311X3kiDlxR+XnDBBcNe9JkYNl08k2/sqWlMM2Hu8ccf7/F5mn09lBMMARg7phvtDQCgZ29605sm6U7SXQKOJGqynECzbFp/2v9nCcFGs/R3b4/fZZddapBz55131iXaIgWPPSXOsqRBul9GgqD+JqOS+Iwsn96TbMN99903RYm5d7zjHX2+5+zzFEtmKcIs+RYp6kzRZrMERd5bOnkmaZvkbbN8xE9/+tN6maUO77///lqE2XxeH/jAB8ree+9dLrnkklqkGVl2Lu9pMNKdJJ9FCkkjAWc6tWT5vh/+8If1J8WkCfpSBDoQPS2/2Hy2eT8LL7xwv/dpOq1kKYws2Tel+vN66azzhz/8YYqW3Gu+e813EQAAeiOGG54YbrDSzTJ6i7cGG4uNZpzSl8SwSRA2MWCW9VtuueVqkWdWqUjHmkxoTEfOTA4cijgxx1fzGS+++OJTFHsP1kjFpc33u6ekMgAAMPB4eaCSnxo/fnyfq080t/Un1k2skILPyKoJ+++/f52QmZX0kn+LRx99tAy35Pg+/vGP1wmFPUkMFfPPP3/b29OIplmFQY4LYOqk6BNgDGsSFpmJ1QzMW2XZ7re+9a319yzj3brMQLvB/TXXXFN//9CHPtR1fZYXj9zWLtBKQeJ1111Xrr322ppozGumu2OWGExBYTs///nPa5Fhig1XX331fr3XJJxWXnnl+vtZZ53V9j4PPvhg2XrrrctGG21UfvGLX5TBajqupMNJijLbSSFnXmvbbbftSjzttNNOZcKECeXHP/7xZPfPDMHll1++qxAz0v1z/fXXLzvvvHMtAO3u/e9/f9fvzWMGKsmsdBXN8o/tZvO95z3v6Zq9mETuQFx88cVtrz/77LPrZT7bJsht9ulll13W47J9X/nKV8oWW2xR9t1330mu763DaU+3Na+XZe1zbHeX4zNJ7ixvceSRR5bBaoL35rsIAAC9EcMNTww3WM0KDNkX7YosEw9mYt9QGak4pS9Zyv2jH/1o2WGHHWqBabvjtOkKM9A4MR1q28WvTZy41FJLdXWiGWzs3RoLtisE7em2KYlLBxMnNgXVAADAlMfLA5XVJ973vvf1GZMmHowPfvCDXddnYlyjNa7I5LlG0+ilVbY78fOU5PX6Y7XVVuuKbdp1Rs11TQ6vp1UmWotTxS4AUydFnwBjWJbsTtCSJExml3WXgrskLBKc3HjjjbUg8ZZbbpks0EhnlSR7HnjggVoEmFlpjQ033LB2ikmAsNtuu00SBKSDxxe+8IX6exJG6eSS5dJSxBgnnHBCTRq2JomuuOKK8vWvf73+ni6YAymW23333WunmCxfmARoayeYdMPJ6yYpmiTpxz72sTJY6YSZjptJuH3mM5+pSxE2Upx5yimnlAsvvLD+ndub4C+z6uKkk06qBZ2tkihsOnw2SdgEkEmyJuGWpexy2UiHnSbJl6X0sjTEYCyxxBK1e00+83322WeSzy/v5bjjjquvleMo73sgkkRON9KmYDWX2eYEyDn2MtOwkeLWbEeOoxTHtnZWyesfdNBBtctMknPN8dN9WciHH354sm3o6bYc6+l6lG4yn/vc57pmNEaSuXvttVdNKmY7s5TgYOT93n333fX3JMoBAKAvYrjhieEGK8mvpZdeusYkiV/S5bF1+1KAOdCix96MRJzSH4lDm+LdHG+tBZd5vzkG8v5zHPa3yLeRGOmrX/1q1zLveb4zzzyznHPOOfXvvMcpjb2jmbzYug/7um1K4tKB+N3vflcvxYkAADB08fJgJCZOt89f/epX5Wtf+9okq1tkQmTijJdffrnm0j7xiU9MlnvqHle0FkeefPLJk0zUzAoXeb6s3hD9LVxNLJiYrKeJcO1sueWWtTtnlqZPLNuaI8t5gmxHJm7m3EDu204Tf6XDqU6fAFOn/9fvGoAxKYmgzFJLkV2WO1t11VUnu89aa61VvvnNb5ZvfOMbdRnxdHycY445ateOBDpJADYdLlZZZZVy/PHHdy3BFzPOOGMNXLLMWwoX11xzzbpMQRIwCRySfEynjoMPPrjrMUmeZLbbj370o/q6J554Yk0m5rUee+yxrgRjEkEDkYTJIYccUg488MCaNDrvvPPKoosuWhOHSZpltl0CkyxHl+2eEtlnn/3sZ+s+22qrrcqCCy5Yu99k1l8za+5Tn/rUJMHSdtttVxNEKfhMQDXffPPVn3TXaQKu7L/NNtusa99mf2d/ZTZeiiiz3EQSWXmdJMmSgD3iiCOm6P2ksDPbedttt9XjIe8lz5vPKO8ln3c+p3nmmWdAz5vPMMtXnH/++fU5s80JMHNcJqGbAL2R65Kwy3GUpSqTiE6yONuRALhJCH75y1+eZDZl5PhKJ6IsMZilFZMYzDHQ2235rL797W/XRGo+k4985CP1uE3y7m9/+1s9fnP8p2i1WVpwoJJoz/PMPffcdSlEAADoixhu+GK4wch+S7y0zTbb1IRX9n0m3CVxl4TbnHPOWZNkiVla9/FgjUSc0l/5nNPRMsWdic8S0+U4S0Kz6RC799571+0biBwnWf0iy8In5ssx9O9//7u+x/32269rEuSUxN7RxJv53NZdd926nZmA2dttUxKX9lfeb+L/fI5N9x0AAGBo4uWByiTJww47rBxwwAHlggsuKD/72c9qTJqxf2KwyMSwxAutMWnyPpmcmLF9iipT7LnnnnvWOCGTLi+//PLy/e9/v1xyySU1hklTl6YLaOKATOJM3Jsi06yC0ZtMumtimeS5+iOxamLLTFZL7i+rWCR2TdyVWDaFs4l1Tj/99DLzzDO3fY7s4xhs7APA2KfoE2CMS3fJBED/93//V2estbPBBhvUICPLrGU2W7q7JIGSZF8SbAlQcp+111677eOTIEmXyiTprr766q7kXJJhSZIkCdkaDCWoSIeMPN+5555bZ+QloZJuIumkkqXqkkwbjE022aQuk/6DH/ygJsnSmSOvlyAtSxqmG8ob3/jGMqWyrQm0ErClK00CrSRvEkglSZXkWBJ0rZIETHI1idIEfAmsMlMwj0n3knxW6V7TuiR5krTpXHLGGWfUACuJpiSHstxdHpP30yyrN1j5/JJ0SyI1y+YliZfPLwWp+YzSIWgwnUQTJGf7836TKEzgms4pSdhlVmR3SRpnO3L/dAvK/smShk2XmSzXt9JKK032uBTQJtF81VVX1f2TRGR/blt22WVrMWiWEcx3JMdtkrfprJNlJvO+221nf+U7F/nuNMvYAwBAX8RwwxPDDVa6mmRfnXrqqfVzSZyS2Cax2x577FH3S2KNFAYOheGOU/or8WCWmU+cmGMxx1c6neazyLGVQtj3vve9A37efJ4ptMzzptNNjrN8zond2q0uMZjYO9KFJ9+LfHZJrmYfJrGZSZS93TbYuLS/mlU/Es+P5nENAABTa7w8UIkPEoclPm5i0nTyTLyT+Djx7kwzzTTZ4zLBMgWjiY0TE2YSZRxzzDHl/e9/fy0izXWJYZrYOZPVEv/k9+Ti8l422mijMhzSjCSxZYpP8zrZluQXs5pFYrKtt956ko6lrRIfpTC1dRVDAKY+4ybmjDAAY1aSfkn4JVGUBMlglwEH+i/LDyZoz7Ibv/jFL2riEAAA+kMM11lStHrXXXfVjpSjsQQ9nSUJ4z/84Q91OfspKR4FAIBpkXh5ZNxwww21S2gau5x11lmjvTkADJPphuuJARga6S65yy671N8zqwwYftdff33tMJoZmgo+AQAYCDHc2JFOl1mO/NBDD217+7/+9a+u5fWWWmqpEd46Ok1W+kjBZzq2KvgEAICBEy+PjPPPP79eDlU3VQDGJkWfAB0ghWeLLLJIXQ4tnQeB4ZWlCrNM4ec+97nR3hQAADqQGG5sWGaZZeoyfVnSPsvitS54lGXB99xzz7o0+Pve9766HD305rvf/W4ZN25cPW4AAIDBES8Pr/vvv782NskS9ZmwBsDUS9EnQAcYP358OeKII8qLL75YTj755NHeHJiqXXHFFeW3v/1t2XvvvcvCCy882psDAEAHEsONDUsssUTZbrvt6hKCX/jCF8pqq61Wl3NP98+11167/O53vyuLLbZYOfLII0d7Uxnj0uEzy09OmDChrLjiiqO9OQAA0LHEy8Pr6KOPLjPPPHM55JBDRntTABhm4ya2TnEHYEw77rjjagfCJBre/va3j/bmwFQnXX422GCDMt9885WzzjqrTDed+TEAAAyeGG5suPnmm8s555xTl3J/7LHHyqyzzloneK233nplyy23LLPMMstobyJj3LbbbluPnZ/85CeOFwAAGALi5aF3yy23lO23374ceuihZbPNNhvtzQFgmCn6BAAAAAAAAAAAAOgA2lcBAAAAAAAAAAAAdABFnwAAAAAAAAAAAAAdQNEnAAAAAAAAAAAAQAdQ9AkAAAAAAAAAAADQARR9AgAAAAAAAAAAAHQARZ8AAAAAAAAAAAAAHUDRJwAAAAAAAAAAAEAHGD/aGwCMgFdeKeWmmya97v3vL2XGGUdriwAAAACAscr5RAAAAIAxa9zEiRMnjvZGAMPs8cdLmW++Sa977LFS5p13tLYIAAAAABirnE8EAAAAGLMs7w4AAAAAAAAAAADQARR9AgAAAAAAAAAAAHQARZ8AAAAAAAAAAAAAHUDRJwAAAAAAAAAAAEAHUPQJAAAAAAAAAAAA0AEUfQIAAAAAAAAAAAB0AEWfAAAAAAAAAAAAAB1g/GhvADAC3vCGUu66a/LrAAAAAAC6cz4RAAAAYMwaN3HixImjvREAAAAAAAAAAAAA9M7y7gAAAAAAAAAAAAAdQNEnAAAAAAAAAAAAQAdQ9AkAAAAAAAAAAADQARR9AgAAAAAAAAAAAHSA8aO9AcAI+O9/S7nvvkmvW3zxUsb7FwAAAAAAdON8IgAAAMCYNW7ixIkTR3sjgGH2+OOlzDffpNc99lgp8847WlsEAAAAAIxVzicCAAAAjFmWdwcAAAAAAAAAAADoAIo+AQBgKnDiiSeWxRdfvP58+ctf7vW+Tz75ZFl66aXrfbfddtsytXj++efLscceW9Zdd92y7LLLlve+971lm222KVddddWAnudXv/pV2W677coqq6zS9RxXXnnlsG03TM38b8rquP8t3/nOd8p6661XlllmmbLSSiuVnXfeudxxxx19PvZf//pXvf9xxx03RdvwxBNPlFVXXbWsueaaU/Q8AAAAAADA6FP0CQAAU5lrrrmmvPrqqz3e/otf/KIWIU1NnnvuubLVVluV0047rcw666xl6623rsWf9957b9ltt93q9f1x/vnnl5122qn86U9/qgVan/zkJ8uDDz5Ydt9993L88ccP+/uAqdm0+L8p9txzz3LMMceU1157rf5v+tCHPlRuuummMmHChFpk3pNnnnmmfO5zn6uXU+rrX/96LaoFAAAAAAA6n6JPAACYisw777zlP//5Ty0o6slll11WZptttjI1Of3008t9991Xttxyy3LxxRfXjoL/8z//U37+85/XfZKCzX/84x+9PkcKog455JB6///93/8tBx10UDnggAPKpZdeWhZaaKFy6qmn1gJQYOCm1f9NN954Y7n66qtrh8/8X/nKV75Sjj766PLd7363FoEefPDBbR+XwvMtttii3H333VO8DT/5yU/qNgAAAAAAAFMHRZ8AADAVSXfLuPzyy3tcKvg3v/lNWWuttcrUJO933LhxZd99962Xjfnnn792AE1x1Q033NDrc9xzzz3lzW9+cy0cTYFaY4455qhLIr/++uvlzjvvHNb3AVOrafV/U7OE+8c//vEy00wzdV3/vve9ryyyyCLlgQceqEuvN9Lp9PDDD+/qMrzaaqtN0es/+uij5dBDD7WsOwAAAAAATEUUfQIAwFRk8cUXr4VEWUb5lVdemez2FFyleHGDDTbotTPdjjvuWFZaaaWy3HLLlY997GPle9/7XttlmdM9M8sGr7322vW+7373u8v6669fvvWtb5WXXnppsm377Gc/W/7yl7+Uz3/+8/X5c//NN9+8XHHFFZM997bbblsfc8kll/T5vrfffvuy1157lTnnnHOy22acccZ6+fzzz/f6HCmuSje8LAff3f33318vW4tBgf6bVv83veENb6iXDz/88CTXZx889dRTZYYZZqiF5Y0XXnihnHnmmbUz6IUXXlg23HDDMlgTJ06sXY/Hjx9fOxcDAAAAAABTh/GjvQEAADAsHn988I+dffZSZpml/W3//ncqaQb3vLPOWsoILF283nrrlZNPPrkWSH34wx+e5LYsd7700kuXt7/97W0f+/3vf78ceeSRtVApxVJzzz13fZ6jjjqqLst82mmn1QKiuPfee8uECRNqZ7p051tggQXqEukpnPz2t79d/va3v9Vl1bsXYmXJ4re97W1lk002Kf/+979rsdcee+xRt7m1y9/GG29cVl555bLkkkv2+Z6zHT0VPV155ZX19xRpDUQKydKF7wc/+EH51a9+VTvzpRgMptg0+v9pWvzflA6nJ554Yjn33HPLEkssUbf9mWeeKd/85jdrh88UsTaF6ZFuoClk/cAHPtDVgXiwfvjDH9Z9c9xxx5U3vvGNg34eAAAAAABgbFH0CQDA1Gm++Qb/2JNOKmXXXdvfliKfFFYNxoEHljIC3dbSzS5FSr/4xS8mKazKUsFZnny//fZr+7gUSh199NFlscUWK2effXaZZ555ugonv/rVr5aLL764dqD79Kc/Xa9Px7znnnuuFkWmILKxzz771MKmFFvm9tlTpPb/SbFVuuTl+Zpl2FddddXyla98pRYotRZWZXnjKZVCq7znhRZaqKy++uoDeuyHPvShWvgVyy+/fN2nrUvHw6BNo/+fpsX/TSlSPe+888r+++/f9dPYe++9a4fRVin6bAo+p8Tf//73WliaotPs9xTAAgAAAAAAUwfLuwMAwFQmhVHvete7JltGOZ30UszU0/LJ559/fl1eOYVRTVFV5DFf+tKXynTTTVeXG26kQOrwww+fpKgq0lHune98Z32up59+erLXyfLJrcWTTTHVQw89VIbSZZddVg477LDa/e+II46oyyj3V7Y9xWHpwpeloX//+9/XLoCPPPLIkG4jTEumxf9NeZ+nnHJK+d3vflc7mW6//fblE5/4RJltttlqd9Kf/OQnZai99tprtbh01llnLQemmBcAAAAAAJiq6PQJAABToSyjnOWLsyz5mmuu2VVY9d73vre85S1vqUsZd/eHP/yhXmY54D/+8Y+T3Z4ipXSPe/755+vvq622Wr0+xVPpxJdufVkO/e67764/keKqVlmSubVoK+acc8562VoENhQdPg855JBawJUloVdcccUBPT5FZAf9f10P003wmGOOKaeffno5+OCDy6mnnjpk2wnTmmntf1P+//z4xz8u2223Xe0a2hSV7rnnnmXrrbcuX/7yl8uiiy5ai8uHyne/+91aZJpl5bu/JwAAAAAAoPMp+gQAgKlQlvNNYdXll19eC6vuv//+8qc//al8/etf7/ExzzzzTL0855xzen3u3C+FVY899ljtoHnFFVd0LR0877zz1uKt+eefv3bHS8Fk96WLu2uKoLrfdzBSyHXUUUeVM844o8w444y1WHOdddaZoufM9u21117lggsuKDfccEMtAMtzAwM3Lf1vyv+jdCCdY4456tL1rV1EF1hggfp/JZ1KL7rooiEr+kyRa4o9N9xwwyn+3wcAAAAAAIxNHVf0ufjii/d5n4033rgmeBpPPfVUOfnkk8t1111XHn/88Zpc2WSTTcoOO+xQl3oEAGAq9Nhjg3/s7LP3fNs996QCaHDPO+usZaS8/e1vL0suuWS59tpra5FiOulNP/30Zd111+3xMSmWihtvvLG86U1v6vX5UwS18847l3vuuadstdVW5WMf+1hdunmuueaqt2+++eZDvlx7X/I+991333LllVfWrn2JAQbS4fNvf/tbLZhaYYUVynzzzTfJbYkb0oXwP//5T/1JARkM2jT8/2la+t/0xBNPlJdffrm+frtC8eb8xsMPPzxkr3nVVVeVV199tVx66aX1p7u8Vl73rW99a/0MAABgJKQL/2mnnVbHoI888kh54xvfWD7ykY+Uz3/+8/3uTv/Pf/6znHDCCeXmm2+uz5fYYsKECXWMDwAAMK3puIrH3XbbrcfEzplnnlmXc3vf+943SaePbbfdtvzlL3+pXS4WXnjhmij65je/WZeIS4AIAMBUaLiK8vooOBprHfXS6TJLIqer3qqrrloTKz1JIVaWTr7jjjtq8qVVCpfyXCl8/NSnPlXuu+++WlT1gQ98oGsZ9EYKjrLU8lB17+yP1157rS6XnATSggsuWJdiX2SRRQb0HOnI973vfa984QtfKJ/5zGcmuS1xRpadznLPlktmik3j/5+mlf9NKTRNsWeKTNt1CE6heXQvMp8SK6+8ctvzJuk6esopp9Suo9tvv329BACAkfDss8+Wrbfeunb5z9g/Y/q//vWv5eyzz67d+bOqRsbzvcnkpS233LI2eUk8kclgV199dfna175Wn2v//fcfsfcDAAAwFkxXOszuu+/e9mf22WevidgtttiifOITn+i6f7r7/PnPf65LxaXAMwncLJ2WAtAEk+kCBAAAU6P11luvXp566qk1CZLESG823XTTepnl0bM8cqtvfetb5Qc/+EH53e9+V5cobpZCzv2a5ZOb4svDDz+8dsOM1tuG03e+851a8Jmu/ueee+6ACz5jo402KtNNN135/ve/Xx599NFJCsVSPPbiiy/WfZSuhMDgTSv/m1LkmXMPec0sad/qySef7Lou/3uGyiqrrNL2nMmuu+5ab0/hev5OgSwAAIyEk046qRZ8Zhya5i1f/OIXayyQgs2M2/vTnCVj+dw3Ob/EBXmOn/3sZ2X55Zevz3nXXXeNyHsBAAAYKzqu02c7Keo89thjy0ILLVS+/OUvd13/0ksvdc0QzAzARpK0CQhT8HneeefVJAxM1bKU4XXXTX4dADBVy/h42WWXrcVQTfFRb9773vfWpdXSDW6DDTYoa665Zu2+95vf/Kb8/ve/r8sBN+PtLKOW+//2t7+tBVnp1pHiyP/7v/+rnfTyuCxtnCXXBuuSSy6p3TzWWmut2umvJ3mNFH1G7pcYoJ0s9Z7tjFtvvbXcdttt9f55/lhiiSVqYdSJJ55YNtxww1qYlgKyrBSQwrR00Ntrr70G/X6Aaet/U2S7koD+7ne/W2655Zb6fyRFoNdcc03dhh133LHr/9JwbwsADIjzicAQSef7dObcaaedJrn+4x//eDnkkENqXNCbjHfT1fM973lPWWONNbqun3nmmcvee+9dO9mff/75ZZlllhm29wAAADDWTBVFn5nhlyROZgXOMsssXdffeeed5YUXXihrr7127djTPcmUZR9vv/322vFDtx6mallG8EMfGu2tAABGQTro/eEPfyirr756v5bzzRLpKcbKMmspSsqSxOmemcKkJGiSqIl01EuHjXTk+OUvf1nOOeecetuiiy5avvKVr9Ripky0uu6662qx5WD8+Mc/roWZKejqrZjp17/+dR33R7Y5P+3ssssuXcVVed50G9l44427ij4jyyKn+DOdQi699NIaK6SI7Etf+lLZdtttywwzzDCo9wJMe/+bIq+d1UZOO+20ctVVV9XtT6HrUkstVbbZZpuy7rrrDmobBrMtADAgzicCQyTj83bS/TPmnXfeXh+f8e7EiRPbTpZaYYUVapyeCVYAAADTknETEyl1sBtuuKHsvPPOZbXVVqvLMLZKh58UgmbJiCRvu8tyZjfffHPt+Pm2t71tBLcaAAAAAAAApi3pfJ8izSOOOKIu2Z6u+L11vz/uuOPqcvBHHnlk+cQnPjHZ7Wn8km6id9xxR51gBQAAMC3o+E6fCQYjS7111yzXNvfcc7d9bNNN5JlnnilTk9dff73+jBXpstq90yoAAAAAADD2jLUcw0DJSYxdP/rRj8pBBx1Uf88KfEcffXSvBZ/x1FNP1cu55pqrx1xfjtfnnnuuzDPPPMOw1QAAAGNPRxd9/vGPf6zLOmRJtnbLsmW5t+hpZl9z/csvv1ymFglsJ2y/Q3nk8X+XseIt876p/PAHZzjJAgAAAAAAYz3HsOOE8ujjj5ZO9eZ531x++P0fykmMQSnK/MxnPlMef/zxugrfF77whfLII4+UT3/60z0+5tVXX+1Xrq/JCU4tXtrnqNHeBAAAGLNmPvaLZVrX0UWfl1xySb2cMGFC29tnnnnmSQLC7poAcLbZZitT0wmZFHzufOwZZbrppx/tzSmvv/Za+c4+O9TtcoIFAAAAAADGrpzLT8HnbmftVqabvvPO6b/+2uvlpO1OkpMYoz760Y/Wn9h9993LFltsUbt9rrLKKmXZZZedolzfrLPOOmzbDQAAMNZ0dNHnNddcU4O4D3/4w21vb5Z66Gn59meffbZezj777GVqk4LP6cd39MfLUMpSPE88Mel1b3xj1rkZrS0CAAAAAMYq5xOneSn4nH786DeWYOq14IIL1g6fRxxxRM339VT02Z9c37hx46bKXB8AAEBPOrYq8N577y3//Oc/ywYbbFBmmWWWtvdZZJFF6uUDDzzQ9vZcn6LRBRZYYFi3FUZdTtDON9+k1z32WCnzzjtaWwQAAAAAjFXOJwJDIF04b7/99vLaa6+VD37wg5PdvtBCC9XLJ598ssfn6C3Xl+6fWR7+He94h86uAADANKVjI6Df/va39XLFFVfs8T7LLLNMXbr9tttuq0t5tHrwwQfLww8/XJZffvky/RhYBh0AAAAAAACmpqLPz3zmM2WfffbpWoa91d13310vU7TZk5VXXrl28rz11lsnu+3Xv/51LfxcYYUVhnjLAQAAxraOLfq86667ugo7ezLTTDOVDTfcsDz00EPlrLPO6ro+MwqPOuqo+vuECRNGYGsBAAAAAABg2pEl1z/ykY/UJdhPOumkyfJ8Z555Zl2RL7m8nrz5zW8uq622Wm3wcvXVV3dd/9JLL5Vvfetb9Xe5PgAAYFrTscu7N8s4zD///L3eb6+99iq/+tWvyuGHH15uueWWsthii5Wbbrqpzh5cb731arAJAAAAAAAADK2vfvWrtcDztNNOq5053/3ud5d//vOf5ZprrqkdPI877rgy77zz1vumm2eKO5dccsmy1lprdT3HAQccULbccsuyxx571NxecoN5/N///vey00471fsDAABMSzq26PPJJ5+sl3PMMUev95tnnnnKeeedV44//vhy/fXX14LPBRdcsOy3335lu+22qwElAAAAAAAAMLTSqfPiiy8up5xySi3UvOOOO8qcc85Zizp32WWXssQSS3TdNwWf6Qi68cYbT1L0meXfzz///NrZM41eXn755fL2t7+9HHrooWXTTTcdpXcGAAAwejq26POyyy7r933nm2++cthhhw3r9gAAAAAAAACTN2hJt8789Gb33XevP+2kyLNZzh0AAGBaN91obwAAAAAAAAAAAAAAfVP0CQAAAAAAAAAAANABFH0CAAAAAAAAAAAAdABFnwAAAAAAAAAAAAAdQNEnAAAAAAAAAAAAQAdQ9AkAAAAAAAAAAADQARR9AgAAAAAAAAAAAHQARZ8AAAAAAAAAAAAAHUDRJwAAAAAAAAAAAEAHGD/aGwCMgDnnLOWCCya/DgAAAACgO+cTAQAAAMYsRZ8wLZhpplI222y0twIAAAAA6ATOJwIAAACMWZZ3BwAAAAAAAAAAAOgAij4BAAAAAAAAAAAAOoCiTwAAAAAAAAAAAIAOoOgTAAAAAAAAAAAAoAMo+gQAAAAAAAAAAADoAIo+YVrw+OOljBs36U+uAwAAAADozvlEAAAAgDFL0ScAAAAAAAAAAABAB1D0CQAAAAAAAAAAANABxo/2BgAAADB1ef7558tpp51WrrzyyvLwww+XGWaYoSy11FJl++23L2uvvfYk933qqafKySefXK677rry+OOPlwUWWKBssskmZYcddijjx/c/ZL3++uvra/7pT38q008/fVlhhRXKnnvuWZZYYolheIcAAAAAAAAwOnT6BAAAYMg899xzZauttqoFmLPOOmvZeuuty7rrrlvuvffesttuu9XrG88880zZdtttyznnnFOWXnrpst1225VZZpmlfPOb3yz77LNPv1/zggsuKJ/97GfLv/71r7L55puXtdZaq9x0001liy22KHfeeecwvVMAAAAAAAAYeTp9AgAAMGROP/30ct9995Utt9yyHHTQQWXcuHH1+nTdTAfP448/vhaBvu1tb6sdPv/85z+XAw88sBaHxt5771322muvcsUVV9ROoeuss06vr/fvf/+7HHrooeXtb397ueiii8occ8xRr0/B54QJE8oBBxxQfvrTn3ZtBwAAAAAAAHQynT4BAAAYMpdffnktsNx3330nKbScf/75awfQ1157rdxwww3lpZdeqh063/KWt9QC0UaWZv/iF79Yfz/vvPP6fL3zzz+/vPzyy2WnnXbqKviMd7/73WWDDTaoBai/+93vhvx9AgAAAAAAwGhQ9AkAAMCQ2X777WunzjnnnHOy22acccZ6+fzzz9dl11944YWy8sorl+mmmzQ0XWihhcqCCy5Ybr/99lok2ptbbrmlXq666qqT3dZc19wHAAAAAAAAOp3l3QEAABgyWVK9nYkTJ9bl2mPxxRcvf//73+vvCy+8cNv7p/DzoYceqj9ZCr4neZ7x48eXBRZYYLLbUjgaf/3rXwf1XgAAAAAAAGCs0ekTAACAYXfuuefW7p4p5lx99dXL008/Xa+fe+65296/War9mWee6fV58zyzzz57XRa+p+d49tlnh+AdAAAAAAAAwOhT9AkAAMCwuuyyy8phhx1WO3IeccQRZYYZZiivvPLKJEu+d9dc//LLL/f63K+++uoUPwcAAAAAAAB0CkWfAAAADGuHz3333bf+fuSRR5YVV1yx/j7zzDN3FW220xSFzjbbbL0+f56nr+eYddZZp+AdAAAAAAAAwNgxfrQ3AAAAgKnP66+/Xo466qhyxhln1I6bxxxzTFlnnXW6bp9rrrl6Xb69WZI9S7f3Js/zxBNPlIkTJ5Zx48a1fY5mmXcAAAAAAADodDp9AgAAMKTSYXPPPfesBZ9zzz13vWwt+IxFFlmkXj7wwANtnyPXp0PnAgss0Otr5XnS6fORRx6Z7LYHH3ywXi666KJT8G4AAAAAAABg7FD0CQAAwJB57bXXasHnlVdeWRZccMHyox/9qGtJ91bLLLNMXbr9tttuq11BuxdrPvzww2X55Zcv008/fa+vt/LKK9fLW265ZbLbbr755nq5wgorTOG7AgAAAAAAgLHB8u4wLciSmCedNPl1AAAwxL7zne+Ua6+9tnboPPfcc8v888/f9n4zzTRT2XDDDcv5559fzjrrrPKpT32qq2g0y8LHhAkT+ny9jTbaqJxyyinl29/+dvnwhz9c3vCGN9Tr77jjjnLZZZeVJZdcUtEnAMBAOZ8IAAAAMGYp+oRpwSyzlLLrrqO9FQAATOWefvrpWvQZKba84IIL2t4vnT9XXXXVstdee5Vf/epX5fDDD6+dOhdbbLFy0003lbvvvrust9565SMf+cgkjzvzzDPLs88+WzbeeOPaRTTe+ta31udJoWgKQNdff/3y3HPPlUsvvbTMMMMM5Rvf+MYIvHMAgKmM84kAAAAAY5aiTwAAAIbEr3/96/LCCy/U36+55pr6084uu+xSiz7nmWeect5555Xjjz++XH/99bXgM8Wc++23X9luu+3KuHHjJnlcOoJm2fcs6d4UfcZOO+1UO4qeccYZdTn52Wefvbz//e+vy8wvscQSw/yuAQAAAAAAYOQo+gQAAGBIrLXWWuW+++4b0GPmm2++cthhh/Xrvlk2vidZKj4/AAAAAAAAMDWbbrQ3AAAAAAAAAAAAAIC+KfoEAAAAAAAAAAAA6ACKPgEAAAAAAAAAAAA6wPjR3gBgBPz736UsueSk191zTylvetNobREAAAAAMFY5nwgAAAAwZin6hGnBxIn/70Rt9+sAAAAAALpzPhEAAABgzLK8OwAAAAAAAAAAAEAHUPQJAAAAAAAAAAAA0AEUfQIAAAAAAAAAAAB0AEWfAAAAAAAAAAAAAB1A0ScAAAAAAAAAAABAB1D0CQAAAAAAAAAAANABFH0CAAAAAAAAAAAAdABFnwAAAAAAAAAAAAAdQNEnAAAAAAAAAAAAQAdQ9AkAAAAAAAAAAADQARR9AgAAAAAAAAAAAHQARZ8AAAAAAAAAAAAAHUDRJwAAAAAAAAAAAEAHGD/aGwCMgFlnLeXAAye/DgAAAACgO+cTAQAAAMYsRZ8wLZhttlIOOmi0twIAAAAA6ATOJwIAAACMWZZ3BwAAAAAAAAAAAOgAij4BAAAAAAAAAAAAOoCiTwAAAAAAAAAAAIAOoOgTAAAAAAAAAAAAoAMo+gQAAAAAAAAAAADoAONHewOAEfDkk6Wsvvqk1/3f/5UyzzyjtUUAAAAAwFjlfCIAAADAmKXoE6YFr71Wyh//OPl1AAAAAADdOZ8IAAAAMGZZ3h0AAAAAAAAAAACgAyj6BAAAAAAAAAAAAOgAij4BAAAAAAAAAAAAOoCiTwAAAAAAAAAAAIAOoOgTAAAAAAAAAAAAoAMo+gQAAAAAAAAAAADoAIo+AQAAAAAAAAAAADqAok8AAAAAAAAAAACADqDoEwAAAAAAAAAAAKADKPoEAAAAAAAAAAAA6ACKPgEAAAAAAAAAAAA6gKJPAAAAAAAAAAAAgA6g6BMAAAAAAAAAAACgA4wf7Q0ARsDMM5fy+c9Pfh0AAAAAQHfOJwIAAACMWYo+YVowxxylnHzyaG8FAAAAANAJnE8EAAAAGLMs7w4AAAAAAAAAAADQARR9AgAAAAAAAAAAAHQARZ8AAAAAAAAAAAAAHUDRJwAAAAAAAAAAAEAHUPQJAAAAAAAAAAAA0AHGj/YGACPg6adL+cQnJr3uJz8pZe65R2uLAAAAAICxyvlEAAAAgDFL0SdMC159tZQbbpj8OgAAAACA7pxPBAAAABizLO8OAAAAAAAAAAAA0AEUfQIAAAAAAAAAAAB0AEWfAAAAAAAAAAAAAB1A0ScAAAAAAAAAAABABxhfOtgNN9xQzjjjjPKHP/yhjBs3riy66KJl++23L+uvv/4k93vqqafKySefXK677rry+OOPlwUWWKBssskmZYcddijjx3f0LgAAAAAAAAAAAACmER1b8XjmmWeWww8/vLzxjW8sH//4x8vrr79errjiirL33nuXRx99tOy44471fs8880zZdttty1/+8peyzjrrlIUXXrjceOON5Zvf/GYtFj3hhBNG+60AAAAAAAAAAAAATJ1Fn/fdd185+uija2fPs88+uxZ+xm677VYLQI899tiy2WablTnmmKN2+Pzzn/9cDjzwwLL11lvX+6UwdK+99qpFoldeeWUtBgUAAAAAAAAAAAAYy6YrHSiFnv/973/LwQcf3FXwGW9605tqQecnP/nJ8u9//7u89NJL5YILLihvectbypZbbtl1v+mnn7588YtfrL+fd955o/IeAAAAAAAAAAAAAKb6Tp/XX399mXfeectKK6002W2bbrpp/YnbbrutvPDCC2Xttdcu0003aX3rQgstVBZccMFy++23l9dee60WggIAAAAAAAAAAACMVR3X6fPJJ58sjz/+eHnXu95VHnvssfLVr361rLbaamW55ZarxZ5XX311133//ve/18uFF1647XOl8POVV14pDz300IhtPwAAAAAAAAAAAMA0UfSZQs947rnn6jLut956a1l33XXLeuutV+6///6y66671uXf4+mnn66Xc889d9vnmmOOOerlM888M2LbDwAAAAAAAAAAADBNLO/+/PPP18s77rijvO997yvf/va3y6yzzlqv23nnnctmm21WjjzyyLLmmmvWLp4x44wztn2u5vqXX355xLYfAAAAAAAAAAAAYJro9Dn99NN3/f61r32tq+AzFl100bLtttuWV199tVxxxRVl5plnrtfn73aaotDZZptt2LcbAAAAAAAAAAAAYJrq9NksyZ5izxR5drfUUkvVy3/84x9lmWWW6XX59meffbZezj777MO4xTAGpKvtpptOfh0AAAAAQHfOJwIAAACMWR1X9LnQQguV8ePHl//+979l4sSJZdy4cZPc3nT1nGWWWcoiiyxSf3/ggQfaPleuT/HoAgssMAJbDqNorrlKufDC0d4KAAAAAKATOJ8IAAAAMGZ13PLuM844Y1l++eXr0uy33377ZLf/4Q9/qJdLLLFE7fSZpdtvu+228vrrr09yvwcffLA8/PDD9blal4wHAAAAAAAAAAAAGIs6rugztt5663p5xBFHdC3RHvfee28577zzytxzz13WWmutMtNMM5UNN9ywPPTQQ+Wss87qut9rr71WjjrqqPr7hAkTRuEdAAAAAAAAAAAAAEzly7vHBhtsUH71q1+VSy65pP6+zjrrlOeee6784he/qAWdhx12WJl99tnrfffaa69638MPP7zccsstZbHFFis33XRTufvuu8t6661XPvKRj4z22wEAAAAAAAAAAACYOos+43/+53/KiiuuWH70ox+Viy66qC77vtJKK5XPfe5z5b3vfW/X/eaZZ57a/fP4448v119/fS34XHDBBct+++1XtttuuzJu3LhRfR8AAAAAAAAAAAAAU3XRZ4o1N9lkk/rTl/nmm692/wQAAAAAAAAAAADoVB1b9AkMwH/+U8qnPz3pdd/9bilzzTVaWwQAAAAAjFXOJwIAAACMWYo+YVrwyiulXHTRpNedcspobQ0AANOYvfbaq/z2t78tv/zlL7uuu/XWW8t2223X52MPP/zw8slPfrLX+9x///1l/fXX7/H2448/vqy77roD3GoAgGmY84nAEHr++efLaaedVq688sry8MMPlxlmmKEstdRSZfvtty9rr712v55jtdVWK//+97/b3jZhwoTy9a9/fYi3GgAAYOxS9AkAAMCwOemkk8rll19e5p9//kmuf+tb31p22223to95+umnyznnnFNmnXXWstxyy/X5Gvfee2+9TLJw8cUXn+z2xRZbbNDbDwAAwOA999xzZeutty733XdfWXrppevvzz77bC0ATUy4zz77lM9+9rO9Psfjjz9eCz5TKLrmmmtOdnt/4kYAAICpiaJPAAAAhtzLL79cDjnkkHLhhRe2vX3BBRcsu+++e9vbdtlll3p56KGH9qtg85577qmXO+20U3nPe94zRdsNAADA0Dn99NNrweeWW25ZDjrooDJu3Lh6/Z577lk22WSTrpUZ3va2t/UZ8+V+fRWIAgAATAumG+0NAAAAYOpy7bXXlvXWW68WfK6xxhoDemwec91115UNNtig/vRHOn0mcfiud71rkFsMAADAcMjKD4nX9t13366Cz8hqEFtttVV57bXXyg033NCv1R2WWGKJYd9eAACATqDTJwAAAEPqoosuKs8//3w58MADaxKvv4m5LPF37LHHltlnn7185Stf6ffrJQG48MILl9lmm20KthoAAIChtv3229dYb84555zsthlnnLFeJn7sjaJPAACASSn6BAAAYMiTekcddVQt3hyIU089tTz55JNl7733Lm9605v69ZgnnniiPP7442WFFVYoRxxxRLnmmmvKo48+WhZYYIGy0UYblc985jNdiUQAAABG1oQJE9peP3HixHLllVfW3xdffPFenyPLu88666zliiuuKBdffHH5xz/+UePND33oQ2WPPfYo880337BsOwAAwFhleXcAAACG1CqrrDLggs/nnnuu/OhHP6rdX7bZZpt+Py7Jv/jNb35TlwT8yEc+UjbeeOPyyiuvlBNOOKHstNNO9XcAAADGjnPPPbfceeedZaGFFiqrr756j/d76aWXapHnCy+8UE455ZTy7ne/u2y++eZ1efgLL7ywbLLJJuWhhx4a0W0HAAAYbTp9AgAAMGaWhP/85z8/oILRFIu+/e1vL6uuumr52te+Vqaffvp6fRKCu+66a7npppvKd7/73fq8AAAAjL7LLrusHHbYYWX8+PF1xYYZZpihx/tmZYfFFlusThA86aSTytxzz93VKfS4444rp512WjnggAPKmWeeOYLvAAAAYHTp9AkAAMCoyxJ90003Xdlyyy0H9Lh11123LvF30EEHdRV8Rpb+O/DAA+vvP/3pT4d8ewEAABhch8999923/n7kkUeWFVdcsdf7pxPoz372s3LOOed0FXzGuHHj6tLuCyywQLn55pvLY489NuzbDgAAMFYo+gQAAGBUPfjgg+VPf/pTWWmlleoSfUMlHUDTDSbPDwAAwOh5/fXXa1fPgw8+uHb4/Na3vlU23HDDKXrOPM9SSy1Vf3/ggQeGaEsBAADGPsu7AwAAMKquvfbaern++usP+LF//etfy7/+9a/y7ne/u3b37J5UfPnll8tMM800ZNsKAADAwLzyyiu1u+eVV15Zu3WefPLJfXb4bCTeS0HnggsuWN7ylrdMdvuLL75YL2eeeeYh324AAICxSqdPAAAARtXvfve7eplOnwN1+OGHl0996lPll7/85WS33XnnnbXoc7nllhuS7QQAAGBgXnvttbLnnnvWgs8Ubv7oRz/qd8FnZGn3bbbZppx++umT3fb888+Xu+++u8wyyyzlne985xBvOQAAwNil6BMAAIBRddddd9Uune94xzsG/NgNNtigXp544onlueee67r+qaeeKt/4xjfq79tvv/0Qbi0AAAD99Z3vfKeu7rDAAguUc889tyyyyCIDevxHP/rRuoz7JZdcUu67776u6//73/+W//mf/ylPP/102XLLLa3wAAAATFMs7w4AAMCodn156KGHysILL1ymm673eYlJ8j388MNlrbXWKksuuWS9bqONNqodY6655pqy3nrrlbXXXrsuHXj99deXxx9/vOywww5lzTXXHKF3AwAAQCMFmSn6jMRwF1xwQdv7pfPnqquuWm699dZy22231fsm7ovEilka/sgjjyybb755WXfddcucc85ZbrnllvKnP/2prLDCCrWTKAAAwLRE0SdMC2aYoZQ11pj8OgAAGANJwIkTJ5Y55pijz/v++Mc/rgnAt771rV1FnykUTZfPH/7wh7Uo9MILL6xdYHL7V77ylbL++uuPwLsAAJjKOJ8IDIFf//rX5YUXXqi/Z6JeftrZZZddatFn4r2TTjqpbLzxxl1Fn7HjjjuWRRddtHz/+98vV111VXn11VfL2972tloM+qlPfarMOOOMI/aeAAAAxoJxE5NdY6qR5SzW2vDjZZfjzyrTjx/9mt7X/vvfcuqe25WrL/1pTbwCAAAAAABjN8ew9sfXLnv8cI8y/fjpS6d57b+vlRMmnFCu+ulVchJ0tJf2OWq0NwEAAMasmY/9YpnW9b52HgAAAAAAAAAAAABjgqJPAAAAAAAAAAAAgA6g6BMAAAAAAAAAAACgAyj6BAAAAAAAAAAAAOgAij4BAAAAAAAAAAAAOsD40d4AYAQ8+2wp++8/6XVHHFHKHHOM1hYBAAAAAGOV84kAAAAAY5aiT5gWvPRSKaecMul1Bx3kJC0AAAAAMDnnEwEAAADGLMu7AwAAAAAAAAAAAHQARZ8AAAAAAAAAAAAAHUDRJwAAAAAAAAAAAEAHUPQJAAAAAAAAAAAA0AEUfQIAAAAAAAAAAAB0AEWfAAAAAAAAAAAAAB1A0ScAAAAAAAAAAABAB1D0CQAAAAAAAAAAANABFH0CAAAAAAAAAAAAdABFnwAAAAAAAAAAAAAdQNEnAAAAAAAAAAAAQAdQ9AkAAAAAAAAAAADQARR9AgAAAAAAAAAAAHSA8aO9AcAImH76UpZaavLrAAAAAAC6cz4RAAAAYMxS9AnTgnnmKeXuu0d7KwAAAACATuB8IgAAAMCYZXl3AAAAAAAAAAAAgA6g6BMAAAAAAAAAAACgAyj6BAAAAAAAAAAAAOgAij4BAAAAAAAAAAAAOoCiTwAAAAAAAAAAAIAOMH60NwAYAc8/X8rRR0963X77lTLbbKO1RQAAAADAWOV8IgAAAMCYpegTpgUvvFDKwQdPet2uuzpJCwAAAABMzvlEAAAAgDHL8u4AAAAAAAAAAAAAHUDRJwAAAAAAAAAAAEAHUPQJAAAAAAAAAAAA0AEUfQIAAAAAAAAAAAB0AEWfAAAAAAAAAAAAAB1A0ScAAAAAAAAAAABAB1D0CQAAAAAAAAAAANABFH0CAAAAAAAAAAAAdABFnwAAAAAAAAAAAAAdQNEnAAAAAAAAAAAAQAdQ9AkAAAAAAAAAAADQARR9AgAAAAAAAAAAAHQARZ8AAAAAAAAAAAAAHWD8aG8AMALGjSvlTW+a/DoAAAAAgO6cTwQAAAAYsxR9wrQgJ2gff3y0twIAAAAA6ATOJwIAAACMWZZ3BwAAAAAAAAAAAOgAij4BAAAAAAAAAAAAOoCiTwAAAAAAAAAAAIAOoOgTAAAAAAAAAAAAoAMo+gQAAAAAAAAAAADoAONHewOAEfDii6V8//uTXrfjjqXMMstobREAAAAAMFY5nwgAAAAwZin6hGnBc8+Vsttuk163+eZO0gIAAAAAk3M+EQAAAGDMsrw7AAAAAAAAAAAAQAdQ9AkAAAAAAAAAAADQARR9AgAAAAAAAAAAAHQARZ8AAAAAAAAAAAAAHUDRJwAAAAAAAAAAAEAHUPQJAAAAAAAAAAAA0AEUfQIAAAAAAAAAAAB0AEWfAAAAAAAAAAAAAB1A0ScAAAAAAAAAAABAB1D0CQAAAAAAAAAAANABFH0CAAAAAAAAAAAAdABFnwAAAAAAAAAAAAAdQNEnAAAAAAAAAAAAQAdQ9AkAAAAAAAAAAADQAcaP9gYAI2DeeUuZOHG0twIAAAAA6ATOJwIAAACMWTp9AgAAAAAAAAAAAHQARZ8AAAAAAAAAAAAAHUDRJwAAAAAAAAAAAEAHUPQJAAAAAAAAAAAA0AHGlw71ox/9qBx00EE93n7zzTeXeeaZp/7+1FNPlZNPPrlcd9115fHHHy8LLLBA2WSTTcoOO+xQxo/v2F0AAADQEfbaa6/y29/+tvzyl7+c7La99967XHbZZW0f9853vrNceuml/XqNPP9JJ51U7r777vLqq6+WZZddtuy6665l5ZVXnuLtBwAAAAAAgLGiYyse77nnnnr5qU99qsw+++yT3T7LLLPUy2eeeaZsu+225S9/+UtZZ511ysILL1xuvPHG8s1vfrP84Q9/KCeccMKIbzuMuJdfLuVnP5v0uo02KmWmmUZriwAAmEakEPPyyy8v888/f4+x3VxzzVXjtu6aiXx9ueGGG8rnP//5Muecc5aPfexj5bXXXqvFottvv3058cQTy1prrTXF7wMAYJrifCIAAADAmNWxRZ/33ntvmXnmmcuXvvSlMt10Pa9Snw6ff/7zn8uBBx5Ytt56665OMuk0c8UVV5Qrr7yyFoPCVO2ZZ0rZfPNJr3vssVLmnXe0tggAgKncyy+/XA455JBy4YUX9nifF198sfzjH/8o73//+8vuu+8+qNd55ZVXyle/+tU6GfCSSy4pb3nLW+r1Wdlhs802qytErLbaal0TAwEA6AfnEwEAAADGrJ6rJcew119/vfzpT3+qS/31VvD50ksvlQsuuKAm/bbccsuu66effvryxS9+sf5+3nnnjcg2AwAATCuuvfbast5669WCzzXWWKPH+yWuS3y3+OKLD/q1sjT8448/XmO+puAzssrDhAkT6m1XX331oJ8fAAAAAAAAxpKOLPr8+9//XjvCLLHEEr3e78477ywvvPBCWXnllScrDl1ooYXKggsuWG6//fa69B8AAABD46KLLirPP/98XXHhtNNO6/F+Wdo9+ortenPrrbfWy/e9732T3bbqqqvWy1tuuWXQzw8AAAAAAABjyXSdurR7jBs3ri7Vvvrqq5fllluubLrppuXSSy+dpDi06fDSTgo/sxTgQw89NEJbDgAAMPXbfvvtyzXXXFO23nrrGrf1VfT5z3/+s2y77bZlpZVWKiuuuGL57Gc/Wyfx9cff/va3evm2t72tbcwXf/3rXwf5TgAAAAAAAGBs6eiizyzd/sQTT5SNNtqorL322uX+++8v++67bzn22GPr7U8//XS9nHvuuds+zxxzzFEvn3nmmRHbdgAAgKndKqusUmafffY+73fffffVy5NPPrm88Y1vLJtttll573vfW2644YZaMHrdddf1+RxN3DfXXHNNdluzDc8+++wg3gUAAAAAAACMPeNLB5o4cWJ561vfWnbfffey8cYbd13/4IMPlq222qouH/jBD36wdvGMGWecse3zNNe//PLLI7TlAAAANGaeeebaofOEE06YZIn3FH3usssuZf/9968dQ3srIH311Vd7jPvEfAAAAAAAAExtOrLTZ7p5XnvttZMUfDZL9+2xxx7195/97Gc1gdiaBOyuKQqdbbbZhn2bAQAAmNSZZ55ZrrzyykkKPmONNdYo66+/fu3ief311/f6HL3FfU3MN+ussw7pdgMAAAAAAMBo6ciiz94st9xy9fKBBx7oWt6vp+XbmyX++rPsIAAAAKMT2/WmifvaLeH+3HPP1cs55phjWLYRAAAAAAAARlrHFX2+/vrr5a677iq33XZb29tfeOGFrm4viyyySK9Jwlyfji8LLLDAMG4xAAAA7Qoyf//735d777237e0vvvjiJJ08e9Jb3Ndct+iiiw7BFgMAAAAAAMDo67iiz9h2223LdtttV5544onJbvv1r39dL5dddtmyzDLL1KXbUyCaYtFWDz74YHn44YfL8ssvX6affvoR23YAAABK+etf/1q22GKL8oUvfKHt7bfffvskHT97svLKK9fLW265ZbLbbr755nq5wgorDMEWAwAAAAAAwOjruKLP6aabrqy77rpl4sSJ5eijj56kmDMdYk477bTavXPTTTctM800U9lwww3LQw89VM4666yu+7322mvlqKOOqr9PmDBhVN4HAADAtCyT9BZeeOHy5z//uVx00UWT3HbJJZeUX/3qV2XppZfus2DzIx/5SJl77rnLOeecUyf3tXb5PPfcc8u8885bPvrRjw7b+wAAAAAAAICRNL50oHSC+c1vflN+/OMfl/vuu6+sssoq5V//+le5+uqraxHocccdV+aff/5637322qsmCw8//PDa+WWxxRYrN910U7n77rvLeuutVxOEAAAAjPyEvsRpn/70p8tXv/rVcuWVV9Zl2DOZLzFbijWPOeaYMm7cuEmKQbNiw1prrVWWXHLJel1WdzjwwAPLvvvuWzbZZJOywQYb1Ot//vOf1yXkTzzxxDohEAAAAAAAAKYGHVn0+cY3vrFceOGF5dvf/na56qqrakeXJPrWWGONsssuu9SOMY155pmnnHfeeeX4448v119/fU0eLrjggmW//farS8S3JhABAAAYOSuuuGK5+OKLy8knn1wn6SVee9Ob3lS22mqrsuuuu9bCz1aZ+HfbbbeVt771rV1Fn7H++uuXueaaq8aIP/nJT8oMM8xQb89zNMu/AwAAAAAAwNSgI4s+Iwm9/fffv/70Zb755iuHHXbYiGwXAAAAk8oKDT1Jd89jjz22X89z9tln93jbaqutVn8AAAAAAABgajbdaG8AAAAAAAAAAAAAAFNxp09gAN74xlIee2zy6wAAAAAAunM+EQAAAGDMUvQJ04Lppitl3nlHeysAAAAAgE7gfCIAAADAmGV5dwAAAAAAAAAAAIAOoOgTAAAAAAAAAAAAoAMo+gQAAAAAAAAAAADoAIo+AQAAAAAAAAAAADrA+NHeAGAEvPJKKTfdNOl1739/KTPOOFpbBAAAAACMVc4nAgAAAIxZij5hWvCf/5Ty4Q9Pet1jj5Uy77yjtUUAAAAAwFjlfCIAAADAmGV5dwAAAAAAAAAAAIAOoOgTAAAAAAAAAAAAoAMo+gQAAAAAAAAAAADoAIo+AQAAAAAAAAAAADqAok8AAAAAAAAAAACADqDoEwAAAAAAAAAAAKADKPoEAAAAAAAAAAAA6ACKPgEAAAAAAAAAAAA6gKJPAAAAAAAAAAAAgA6g6BMAAAAAAAAAAACgA4wf7Q0AAAAAAAAApk7PP/98Oe2008qVV15ZHn744TLDDDOUpZZaqmy//fZl7bXX7tdz/POf/ywnnHBCufnmm8vTTz9d3v72t5cJEyaUzTfffNi3HwAAYKzR6RMAAAAAAAAYcs8991zZaqutatHnrLPOWrbeeuuy7rrrlnvvvbfstttu9fq+pFB0iy22KJdeemlZZZVVarHniy++WL72ta+VI444YkTeBwAAwFii0ycAAAAAAAAw5E4//fRy3333lS233LIcdNBBZdy4cfX6Pffcs2yyySbl+OOPr0Wgb3vb23p8jsMPP7w89thj5Tvf+U5ZY4016nV77LFH7RR65plnlg033LAss8wyI/aeAAAARptOnwAAAAAAAMCQu/zyy2uh57777ttV8Bnzzz9/7QD62muvlRtuuKHXLp9XX311ec973tNV8Bkzzzxz2XvvvcvEiRPL+eefP+zvAwAAYCzR6ROmBW94Qyl33TX5dQAAAAAA3TmfCAyRdON89tlny5xzzjnZbTPOOGO9fP7553t8/G233VYLO1ddddXJblthhRXKDDPMUG655ZYh3moAAICxTdEnTAvGjy9l6aVHeysAAAAAgE7gfCIwRCZMmND2+hRyXnnllfX3xRdfvMfH//3vf6+X7ZZ/T8HnW97ylvLQQw+VV155pauIFAAAYGpneXcAAAAAAABgxJx77rnlzjvvLAsttFBZffXVe7zfU089VS/nmmuutrfPMccc5fXXXy/PPffcsG0rAADAWKPoEwAAAAAAABgRl112WTnssMPK+PHjyxFHHFE7dvbk1VdfrZc9dfFsrk+nTwAAgGmFok8AAAAAAABgRDp87rvvvvX3I488sqy44oq93n/mmWeepPizu6bYc9ZZZx3ybQUAABirxo/2BgAAAAAAAABTryzBftRRR5Uzzjijduc85phjyjrrrNPn45pl3Z955pm2tz/77LNl3LhxZfbZZx/ybQYAABirFH3CtOC//y3lvvsmvW7xxUsZ718AAAAAANCN84nAEEo3znT3vPLKK8vcc89dTj755D47fDYWWWSRevnAAw9Mdlu6fz7yyCPlHe94R5luOosbAgAA0w5naGBa8NRTpSyzzKTXPfZYKfPOO1pbBAAAAACMVc4nAkPktddeK3vuuWe59tpry4ILLlhOP/30rkLO/lh55ZVrJ89bb7217LbbbpPc9utf/7oWfq6wwgrDsOUAAABjl2lvAAAAAAAAwJD7zne+Uws+F1hggXLuuecOqOAz3vzmN5fVVlut3HbbbeXqq6/uuv6ll14q3/rWt+rvEyZMGPLtBgAAGMt0+gQAAAD+f+zdB5QV9fk//md3YeklSBEEbKhgwYKiaBQjqFgSu0FREXtUFGwxiQpGsSXWoBErYgmKwZbYIihWRGOMRgFbDEUEVJAmdfd/Zn5f+LuwNN3de+/e1+ucObP7mbl3nruHY/KZed/PEwAAABVp9uzZaegz0aFDh3jkkUfKPS9p9d6lS5d0Nc8k3Jmc27179xXHL7nkkujZs2ecc845ccABB0SLFi1i1KhR8fnnn8fJJ5+cng8AAJBPhD4BAAAAAACACpW0X1+wYEH6cxLSTLbynHHGGWnoMwl8Dh48OA477LAyoc9NN900Hn744XRlz1dffTUWLVoUm2yySVx55ZVx5JFHVtnnAQAAyBZCnwAAAAAAAECFSoKbEydOXOfz+/btm27lSUKey9u5AwAA5LvCTBcAAAAAAAAAAAAAwNoJfQIAAAAAAAAAAADkAKFPAAAAAAAAAAAAgBwg9AkAAAAAAAAAAACQA4Q+AQAAAAAAAAAAAHKA0CcAAAAAAAAAAABADqiR6QIAAAAAAACAqrVs2bJ0Ky4uTn+fN29eDB8+PKZNmxYdO3aMgw8+OIqKijJdJgAAACux0icAAAAAAADkkXvuuSd23XXXGD16dPr74sWL45hjjonrr78+Hnzwwbj44ovj1FNPTUOhAAAAZBehTwAAAAAAAMgTL7zwQlx33XXpyp5z585Nxx5//PH4+OOPo1mzZnH22WfHVlttFW+88Ua68icAAADZRegTAAAAAAAA8sTDDz8chYWFcffdd8dRRx2Vjj3zzDNRUFAQl112WRr6fOCBB6JBgwbx5JNPZrpcAAAAVlJj5QGgGmrUKOLFF1cdAwAAAABYmfuJUK395z//iZ122in22GOP9Pfvvvsu3nrrrSguLo699torHatfv37ssMMO8c4772S4WgAAAFYm9An5oLg4Yu+9M10FAAAAAJAL3E+Eai1p6960adMVv48bNy6WLl0aO+64Yxr8XC75edGiRRmqEgAAgNXR3h0AAAAAAADyxIYbbhhTp05d8fvLL7+ctnbffffdV4yVlJTE+PHjo1mzZhmqEgAAgNUR+gQAAAAAAIA80aFDh7TF+4gRI2Ls2LHxxBNPpOPdunVL90uWLIk//OEP8cUXX0Tnzp0zXC0AAAAr094dAAAAAAAA8sRpp50WL774Ylx22WXp76WlpbH33nvHlltuuSL8OXPmzGjQoEF6LgAAANnFSp8AAAAAAACQJ7bddtu45557YrfddovNNtssjj322Lj++utXHG/ZsmXssssu8Ze//CU9DgAAQHax0ifkg5KSiK+/Lju2wQYRhXLfAAAAAMBK3E+Eai8Jdd57773lHhs2bFjUqlWrymsCAABg3Qh9Qj5IbtA2b152bMaMiGbNMlURAAAAAJCt3E+EvLJo0aKYMWNG1KxZMzbccMN0DwAAQPbytVwAAAAAAADIMy+99FL06tUrOnXqFPvtt1/ceOON6fhZZ50VAwcOjAULFmS6RAAAAMphpU8AAAAAAADII7fcckv8+c9/jtLS0igsLEz3yZb45JNP0kDohAkT0lbvxcXFmS4XAACA77HSJwAAAAAAAOSJMWPGxG233RbNmzePm266Kd56660yx2+44YZo165d/Pvf/44RI0ZkrE4AAADKJ/QJAAAAAAAAeSJZvbNmzZpxzz33RI8ePaJevXpljm+33XZx9913pyt8PvHEExmrEwAAgPIJfQIAAAAAAECeeP/996NTp06x+eabr/acZBXQnXfeOSZNmlSltQEAALB2Qp8AAAAAAACQJxYuXLjK6p7lSVYD/e6776qkJgAAANad0CcAAAAAAADkiVatWsWHH34YJSUlqz1n6dKl6TktW7as0toAAABYO6FPAAAAAAAAyBP77LNPfPnll3HLLbes9pxbb701Zs6cGXvvvXeV1gYAAMDa1ViHcwAAAAAAAIBq4JRTTom//e1vMWTIkHj77bdjt912S8enTZsWI0aMiFGjRsWYMWOicePGcfLJJ2e6XAAAAFYi9AkAAAAAAAB5okmTJnHPPfdE375909DnP//5z3Q8+TnZSktL07buyUqgzZo1y3S5AAAArEToEwAAAAAAAPJIu3bt0tU+//GPf8Qbb7yRrvJZUlKShjx33XXXOPDAA6O4uDjTZQIAAFAOoU8AAAAAAADIM0VFRdGjR490AwAAIHcUZroAAAAAAAAAAAAAANbOSp8AAAAAAACQJ0444YR1PregoCDuu+++Sq0HAACA9SP0CfmgYcOIRx5ZdQwAAAAAYGXuJ0K1Nm7cuHUKe5aWlqZ7AAAAsovQJ+SDWrUijjoq01UAAAAAALnA/USo1gYPHlzueElJSXz77bfxzjvvxFNPPRWHHHJI9O/fv8rrAwAAYM2EPgEAAAAAACBPdO/efY3HjzrqqOjWrVv07ds3dt999zjooIOqrDYAAADWrnAdzgEAAIAfrF+/frHXXnuVe2zSpElx8cUXx5577hnbbLNNdOnSJc4555yYMGHCOr//p59+GltttdVqt2effbYCPw0AAEB+BEM7dOgQQ4cOzXQpAAAArMRKnwAAAFRq28BnnnkmWrRoscqxJNh53HHHxdy5c6Nr166x+eabx+TJk+Mf//hHvPjii3HnnXfGbrvtttZrLA+I7rvvvmnIc2Xt2rWroE8DAACQP1q3bh2vvPJKpssAAABgJUKfAAAAVLhFixbFFVdcESNGjFjtOZdffnka+Lz++uvj4IMPXjH++uuvx8knnxy/+93v0gBoYeGam1SMHz8+3Sev2XHHHSvwUwAAAOSnZcuWxQcffBDFxcWZLgUAAICVCH0CAABQoUaPHh1XXnllTJ06NV3Bc8yYMaucM3369HjnnXdi6623LhP4TOy+++7RuXPnGDt2bHz00UfRvn37ta70WVBQEFtuuWWFfxYAAIDqZnm3hNWFPWfOnBn3339/fPHFF/Gzn/2sSmsDAABg7YQ+IR/MnBnRvHnZsRkzIpo1y1RFAABUY48++mjMnz8/BgwYEMccc0y5oc2ioqK46KKLotlq/j/p8tVkkvdZlweWbdu2jXr16lVA9QAAuJ8I1duhhx6afnFuTUpLS6NWrVpx1llnVVldAAAArBuhTwAAACpU796947rrrov69euv9pymTZum7djL89VXX8Xbb78dNWrUiM0333yN1/r666/TVWg6deoU11xzTYwaNSq+/PLLaNWqVfziF7+IU089VTtCAACA70nmS6tTWFgYdevWTb+8d+KJJ6bdGQAAAMguQp8AAABUqF133fVHvT5pDb9gwYI0tNm4ceM1njt+/Ph0/89//jNmzZoV3bp1S1/7yiuvxC233JK2iL/77rsFPwEAAP7P6NGjM10CAAAA2RT6TNo9rK0lBAAAAFUvF+ZrSeDzmWeeiQ033DB+85vfrPX8efPmxSabbBJdunSJSy+9NG0bn0iCn0kbwtdffz3uuuuuOPPMM6ugegAAAAAAAKhchRX9hl27do2bbropJk+eXNFvDQAAQDWdry1ZsiQuvvjiuP/++6NJkyZx5513pvu16dGjRzz33HMxcODAFYHPRNKOcMCAAenPTzzxRKXWDgAAkIu++uqrmDNnzorfp02bFpdffnmcccYZcdttt6VfsgMAACAPQp/JBHHIkCGx//77R58+feLpp5+OxYsXV/RlAAAAqCbzteQh40knnRSPPfZYtGzZMh544IHYcsstf/T7JiuANmzYMCtDrgAAAJl0xRVXpF8MfOWVV9Lfk4Bnz549Y/jw4fHSSy/Fn/70p+jVq1csXLgw06UCAABQ2aHPMWPGRP/+/aNNmzbxxhtvxPnnnx977rlnXHXVVTFx4sSKvhwAAAA5PF9LVpJJHiyOGzcuOnToEA8//HBsvvnm6/z6zz77LP0sSTv3lZWUlMSiRYuiVq1aFVw1AABA7ho5cmQ8+OCDUbNmzSgoKEjHRowYEdOnT4927drF1VdfHT/96U/jo48+iqFDh2a6XAAAACo79NmsWbM47bTT0vZ6yeoshxxySLpyzLBhw+LQQw+No446Kp04zp8/v6IvDQAAQA7N15KVR3v37h2ffvpp+kAxeejYokWL9XqP5GHkiSeeGC+//PIqx95777009NmxY8cKrBoAACC3JV0WatSoka7qeeCBB6ZjyTwxCYD+9re/jcMOOyxuvfXW2GCDDeLZZ5/NdLkAAABUdujz+3beeee45ppr4tVXX03bRHTp0iXGjx8fl112WbqazO9+97v497//XZklAAAAkKXztQsvvDD+97//xV577RW333571KtXb73f46CDDkr3SevBpB3hcrNmzYrf//736c9JsBQAAID/J1nBs3PnztG+ffv09zlz5qRfmqtTp046niguLo7tttsunbMBAACQXWpUxUWSB3fJijHJ6irJqjEPPfRQ2nrvr3/9a9pCIhn/9a9/HTvttFNVlAMAAECG52tJ2PT1119Pf954443T0Gd5khVIk3b0iaSeqVOnRvfu3dNW8Ilf/OIX8fzzz8eoUaPigAMOiH333TddvfSll16KmTNnRp8+fWKfffap0NoBAABy2cKFC6NBgwYrfn/jjTeipKQknfcVFRWVOXfZsmUZqBAAAICMhj5nzJgRjz/+eLr997//XfFQ8eCDD45OnTrF3//+9xgzZkwcf/zxcfPNN6cP7wAAAKh8mZyvfb8d+/3337/a85I6loc+kxaE48aNi4022mhF6LOwsDBd5TNpDZ+EQpPgatKmMDmetCVc3qoQAACA/6dly5Yr5oCJ5EtzSWv3PfbYY8VY8mW6999/Pz0XAACAPAh9JhPBF154IX0gl6zcknw7sLS0NLbffvs4+uij04duSYuIxM9//vN48skn46KLLoobbrhB6BMAAKASZWK+NnHixFXGkkBmsq2P1YVDk5VoTjjhhHQDAABgzXbYYYd44okn4qabbkq/ZJd84S+xfM43ffr0uPbaa+Prr7+O/fffP8PVAgAAUOmhz4EDB8YzzzwTc+bMSR8cNmrUKH1QmDw83HLLLct9TdKO79JLL40pU6ZUdDkAAAD8H/M1AAAAzjzzzPTLgEOGDEl/T+aHhx9++IouC4ccckjMnj07WrVqFaeffnqGqwUAAKDSQ5/Dhw9f0YIveXDYo0ePqFWr1hpfs2jRothwww1jp512quhyAAAA+D/mawAAALRt2zYeffTRuOuuu2LGjBmx6667xoknnrjieMeOHWODDTaI888/P5o2bZrRWgEAAKiC0GefPn3iyCOPjM0333ydX5M8ZHzuued+1HXHjh2bTkgPPfTQuOaaa8ocmzVrVtx6663x4osvxsyZM9NvJh5xxBFprTVqVEqHewAAgKyTqfkaAAAA2WWTTTaJK6+8stxjd9xxR5XXAwAAwLqr8MTjr3/963SfhCs/+uij2GOPPVYcmzBhQjz77LNpi4jkW4QVZd68efHb3/42bT+xsqRt4fHHHx+ffPJJ7Lffful1X3vttfjjH/8Y77//ftxyyy0VVgdkrfr1IwYPXnUMAIC8kon5GgAAOcj9RMhb7733XkybNi222WabaN26dabLAQAAoByVsszlQw89FFdddVVsueWWZR4ifvDBB3H77bfH3XffnYY0jznmmAq53qBBg2Lq1KnlHktW+Pz4449jwIABceyxx6Zj/fv3j379+qWr1Tz//PNpGBSqtTp1Is46K9NVAACQBap6vgYAQA5yPxGqvX/961/x5z//OXr37r1ibnjRRRfFU089lf5cWFgYv/rVr+Lss8/OcKUAAACsrDAq2BtvvBG///3v08ngzjvvXObYjjvuGCeccEIUFBTEFVdcEePGjfvR1xs9enSMHDky9tlnn1WOLVy4MB555JFo2bJl9OzZc8V4UVFROnFNDB8+/EfXAAAAkAuqer4GAABA9kk6PSRhz1deeSU+++yzdGzMmDHx5JNPps/Qkvli7dq104VVknEAAACqeejzrrvuSieEy1eH+b7NNtssHbvnnnvSVuzJuT/GN998E5deeml07tw5jjvuuHJbUCxYsCA9njzU/L42bdqkbSneeuutWLZs2Y+qAwAAIBdU5XwNAACA7JTM+xYvXhynnXZaHH744enYE088kX4JMFk05f77708XTUnmj0m3CAAAAKp56POjjz6KTp06xS677LLac5JvCO60007x7rvv/qhrDRw4MA11Jq0Jk4noyj7//PN037Zt23JfnwQ/k0ntlClTflQdAAAAuaAq52sAAABkp2RBlC222CL69+8f9erVi5KSknTVz+RZ289//vP0nOR4Mn9MFlgBAACgmoc+582bF40bN17reU2bNk3br/9QSYuJ5557Li644II0vFme2bNnp/vV1dOgQYN0P2fOnB9cBwAAQK6oqvkaAAAA2eurr76KzTfffMXvSbBz7ty5seWWW8ZPfvKTFePJ/DEZBwAAoJqHPjfaaKN0RZilS5eu9pyknfr7778fLVu2/EHXmD59elxxxRXRpUuXOPbYY1d7XrKKZ6K4uLjc48vHFy1a9IPqAAAAyCVVMV8DAAAguyVhzm+//XbF7y+//HK632233cqcN3ny5GjYsGGV1wcAAEAVhz67d+8eM2bMiN///vfpw8KVlZaWxjXXXBPTpk2Ln/3sZz/oGr/97W/T9x40aFC5bd2Xq127drpfsmTJGkOhSesKqNa++iqiWbOyWzIGAEBeqYr5GgAA1YD7iVCtJat8vv322/HZZ5+lHSGS7nrJ87a99957xTnPP/98fPjhh7HddttltFYAAABWVSMq2IknnhhPPPFEjBgxIl577bV0gpisEJNMFpMHh6+88kpMmjQpbRd46qmnrvf7/+Uvf4lXX301fUiZrFKzJo0aNVpj+/blLSnq16+/3nVATiktXfWmbDIGAEBeqez5GgAA1YT7iVCt/fKXv4yxY8fGL37xi6hVq1bMnz8/DYIuX+nzjDPOSOeHyVzx+OOPz3S5AAAAVHboM2kJcffdd8dFF10U//nPf+LBBx9csRpnsmpMYsstt4wbb7wxNthgg/V+/6effjrdX3bZZem2ssceeyzdDjvssDjqqKPSseShZXmS8bp160arVq3Wuw4AAIBcU9nzNQAAALLfAQcckLZu//Of/5wGPrfYYou46aabVhyfMmVKFBcXpwuw/PSnP81orQAAAFRB6DOx2WabxaOPPhr//ve/480330zbByYt1ps1axadOnWKLl26/OD3TsKcnTt3XmU8mZwmK9a0b98+bVnYoUOH2HbbbdPW7ePGjYuSkpIoLCwsc/7UqVNj9913j6Kioh9cDwAAQC6pzPkaAAAAueG0005Lu0Ek7d2bNGlS5thVV12VBkHr1KmTsfoAAACo4tDncttvv326VaTDDz+83PHXX389DX0mYc++ffuuGD/44IPj4YcfjmHDhqWT18SyZcviuuuuS3/u1atXhdYHAACQCypjvgYAAEDuSFbzXDnwmejYsWNG6gEAACALQp/ZoF+/fvHqq6/G1VdfHWPHjo127dqlAdEPPvggbV/RrVu3TJcIAAAAAAAAAAAAkJnQ59tvvx133HFHfPzxx7FgwYIoLS0t97yCgoK0nWBlSr6hOHz48Lj55pvjpZdeSgOfrVu3jgsvvDBOOOGEtAYAAIB8kU3zNQAAACrfj1kAJZkbvvDCCxVaDwAAAFkW+kweICZt1JMW6qt7eFgZdt9995g4cWK5x5o3bx6DBg2qsloAAACyUabmawAAAGTO1KlTf/BrLZ4CAACQB6HPIUOGxNKlS2O//fZLV9JMApdFRUUVfRkAAADWk/kaAABA/hk2bFimSwAAACCbQ5/vvvtutG3bNm2n7tt/AAAA2cN8DQAAIP907tw50yUAAABQgQqjgiWrxrRv394DRAAAgCxjvgYAAAAAAAC5rcJDn5tvvnlMnjy5ot8WAACAH8l8DQAAAAAAAHJbhYc+jznmmBg/fny8+OKLFf3WAAAA/AjmawAAAAAAAJDbalT0G/70pz+N/fffP84999w49NBDY4cddoiGDRuutn1gt27dKroEAAAAymG+BgAAAAAAALmtwkOfXbt2TR8YlpaWxogRI9JtTZJVZgAAAKh85msAAAAAAACQ2yo89LnLLrtU9FsCP1bduhEDBqw6BgBAXjFfAwBgnbifCAAAAJA/oc/777+/ot8S+LHq1YsYODDTVQAAkGHmawAArBP3E6Fa6dmzZ+y6667Rv3//9Pcvvvgi6tatG40bN850aQAAAPwAhT/kRQAAAAAAAED2mzhxYkyePHnF7926dYurr746ozUBAACQRSt9Lrd48eJ48sknY+zYsTFt2rS0jWC/fv3igQceiG233TZ22GGHyro0AAAAa2C+BgAAkD8KCgrik08+iZKSkigsLIzS0tJ0AwAAIDdVSujz/fffj3POOSe+/PLLdNKYTCY32mij9Nijjz4agwYNigsvvDBOOumkyrg8AAAAq2G+BgAAkF/at28f//rXv2KvvfaKZs2apWNjxoyJww47bK2vTeaMI0eOrIIqAQAAyFjoM1kl5pRTTolvv/02nTzuvffe8fvf/37F8S5duqTfJvzDH/4QHTt2jJ133rmiSwAAAKAc5msAAAD554ILLojTTjstvvrqq3RLJPPCZFuX0CcAAADVPPR5++23p5PE3/3ud3H88cenY99/iPjrX/86dtxxx3RlmXvvvddDRAAAgCpivgYAAJB/dtppp3jppZfi008/jYULF0bv3r1jjz32iNNPPz3TpQEAAJANoc9XXnklNt988xUPEMuz3377RYcOHWL8+PEVfXmgPN98E7HnnmXHXnklokmTTFUEAEAGmK8BALBO3E+Eaqd+/fqx/fbbr/h9gw02iM6dO2e0JgAAALIk9Dlz5szYZ5991npemzZt0m8UAlVg2bKIDz9cdQwAgLxivgYAwDpxPxGqtQkTJmS6BAAAALIp9NmwYcP44osv1nrelClTokGDBhV9eQAAAFbDfA0AAIDlZs2aFQ8//HCMHTs2ZsyYEcXFxekKoF26dIlDDjkkmjVrlukSAQAAKEdhVLAdd9wxPvjgg/jXv/612nPGjRsXH374Yeywww4VfXkAAABWw3wNAACA5XO/Hj16xM0335yGPj/77LN0BdDXXnstrr/++vj5z38eb7zxRqbLBAAAoCpCn3369InS0tI444wz4tFHH42pU6euOLZ48eJ4/vnn47zzzouCgoI4/vjjK/ryAAAArIb5GgAAAMlc8Mwzz4xvv/029t5777jhhhvikUceieHDh8d1110Xe+65Z8yePTv69esX06ZNy3S5AAAAVHZ7906dOsWvf/3ruPbaa+PSSy9Nx5IHhk8//XT8/e9/j5KSkvQh41lnnRW77bZbRV8eAACA1TBfAwAA4M4774x58+alX/o77bTTyhxLuj784he/iCFDhsSNN94Y9913X1x88cUZqxUAAIAqWOkzceKJJ8awYcPSbwLWrl07fWi4dOnSKCwsjF122SWdKPbt27cyLg0AAMAamK8BAADkt1deeSU23njjVQKf33f66adH27Zt48UXX6zS2gAAAMjASp/LJQ8Lky1ZKSZpAZHsGzduHDVqVNolAQAAWAfmawAAAPlrxowZ0a1bt7Wet/XWWwt9AgAAZKFKf6KXrBbTpEmTyr4MAAAA68l8DQAAIP/UrVs3vv7667Wel5yTdIgAAACgmoc+H3/88fU6/9BDD63oEgAAACiH+RoAAADbbrttvPnmmzFhwoRo3759ueckx955553Ybbfdqrw+AAAAqjj0efHFF0dBQcFazystLU3P8xARAACgapivAQAAcMwxx8Rrr70Wp556agwYMCD22WeftBNEoqSkJEaPHh2XX355+nPPnj0zXS4AAACVHfpMJoblPURctmxZzJkzJ8aPHx/fffdd9OjRI7beeuuKvjwAAACrYb4GAABA9+7d4+ijj45HHnkk+vbtm7Zwb9WqVXrsiy++iIULF6ZfBjzyyCNj3333zXS5AAAAVHbo87bbblvj8WSieOmll6bfEuzfv39FXx4AAIDVMF8DAAAg8fvf/z79st/dd98dkydPjk8//XTFsTZt2sRJJ52UrggKAABAHoQ+1yb5tuCgQYPSFWZuvvnmuOGGG6q6BAAAAMphvgYAAJA/ktbtyTZ9+vR0SzRv3jw23HDDTJcGAABANoU+E8XFxbHjjjvGG2+8kYnLAwAAsBrmawAAAPmlRYsW6QYAAEBuyEjoM/HNN9/EggULMnV5yC+1a0eceeaqYwAAUA7zNQCAPOd+IgAAAEDWykjo8/HHH49//vOf0aFDh0xcHvJPgwYRt96a6SoAAMgB5msAALifCAAAAJBHoc/DDjtstceWLl0aX3/9dcyaNSsKCgri6KOPrujLAwAAsBrmawAAAAAAAJDbKjz0OX78+LWeU1xcHMcff3wcc8wxFX15AAAAVsN8DQAAAAAAAHJbhYc+hw0bttpjhYWFUbdu3dh0002jTp06FX1pAAAA1sB8DQAAAAAAAHJbhYc+O3fuXNFvCQAAQAUwXwMAAOCKK66IzTffPI499thMlwIAAMAPUPhDXgQAAAAAAADknieffDIeffTRTJcBAABAtqz0efXVV//g1xYUFMTFF19cofUAETF7dsShh5Yde/zxiMaNM1URAAAZYL4GAMA6cT8RqrWlS5dGq1atMnb9fv36xTvvvBMvv/zyOr/m6KOPjn//+9/lHtt7771jyJAhFVghAABAnoU+77vvvvRh4HKlpaVljq/tmIeIUAmWLIkYM2bVMQAA8or5GgAA68T9RKjW9t9//3juuefik08+iXbt2lXptQcPHhzPPPNMtGjRYp1fU1JSEh999FG0bt06Dl05kB4Rm2yySQVXCQAAkGehz9tvvz0ee+yxdLKYTBQPOuigdLJVs2bNmD59eowaNSpef/312GijjeKwww6r6MsDAACwGuZrAAAA/PznP09XzUzmfbvvvnt06NAhGjduHIWFheWef8IJJ/zoay5atCiuuOKKGDFixHq/9r///W989913sccee0Tfvn1/dC0AAAC5rsJDn8uWLYvnn38+jjvuuPjtb3+7ygSxV69e6eoy11xzTbRp0yYOOeSQii4BAACAcpivAQAAcPLJJ6fdHJIOD2PGjFltm/XkeHLejw19jh49Oq688sqYOnVqdO3aNb3m+pg4cWK632qrrX5UHQAAANVFhYc+hwwZkrZXKO8B4nK9e/eOkSNHxtChQz1EBAAAqCLmawAAACQt0pMwZ1V59NFHY/78+TFgwIA45phjon379uv1+vHjx6f79X0dAABAdVXhoc+PPvoo9t5779U+QFxu0003jRdffLGiLw8AAMBqmK8BAACQdHeoSsmXC6+77rqoX7/+D3r98tDnhx9+GNdee218/PHHUVxcnLamP+ecc9I5LAAAQD5Z85O+H6BBgwbx2WefrfGcpB1EMkH7yU9+UtGXBwAAYDXM1wAAAKhqu+666w8OfCYmTJiQ7m+88cbYbLPNomfPnrHlllvG008/HUceeWS89957FVgtAABAHoY+O3funH7D7t57713tOTfccENMmjQp9tlnn4q+PAAAAKthvgYAAMByM2fOjJtvvjltuZ50hRg4cOCKcGUSqMwGCxYsiObNm6et3f/2t7+lq5T++te/jvvvvz8uv/zymDdvXlx44YWxbNmyTJcKAACQu+3df/WrX8Xo0aPTNg3JPnlQ2LJly3S1mClTpsRzzz0XH3zwQTRt2jTOOuusir48AAAAq2G+BgAAQGLMmDFx/vnnx/z589M5YUFBQRqwTCTzxTvuuCPeeeeduOSSSzJaZ926dWPkyJHlHktW/Hz88cfjX//6V7ra54477ljl9QEAAFSL0Ge7du3i1ltvTb9l99Zbb8Xbb79d5ngycdx8883jlltuiQ022KCiLw8AAMBqmK8BAADw6aefxjnnnJOujpkEJ5NVPk8//fQVx5OW6X/605/iwQcfjN133z2rO0F07NgxDX0mHSuEPgEAgHxR4aHPRDIBfPbZZ+OFF16IcePGpe0hEq1atUqPdevWLYqKiirj0gAAAKyB+RoAAEB++/Of/xyLFy9OW7vvt99+qxzv3bt3bLvttnHcccelwc9Mhj5nzZoVn332WTRp0iQ23XTTVY5/99136b527doZqA4AAKAahT4T9erVi0MOOSTdAAAAyB7mawAAAPlr7Nix0aFDh3IDn8t16tQptt9++/jkk08ik954443o379/uhrpkCFDyhwrKSlJW9Anrem32267jNUIAABQ1Qor882TVgojRoxIvyn41FNPpWNJ+8CFCxdW5mUBAABYC/M1AACA/PTtt99G69at13pes2bN4ptvvolM2muvvaJBgwbx8ssvx2uvvVbm2K233pqGUvfdd9+0ewUAAEC+qFFZk8VLL700bRdYWlqajv385z9Ptz/84Q/pw8U//elPsfPOO1fG5QEAAFgN8zUAAID89pOf/CQ+//zztZ63vK16VRk/fnw6V91oo43i8MMPT8fq168fv//97+OCCy6IU089NQ14tmzZMv71r3/Fu+++G5tttlkMHDiwymoEAAColit9fvfdd9G7d+94/vnno3HjxrH//vuveJCYKC4ujlmzZqUTs+RhIgAAAFXDfA0AAIBdd901Pv744xg1atRqz3nuuefi008/jV122aVKQ5+DBw+Oxx57rMz4gQceGA899FC66mfS7v2BBx5I566nnXZa2sFigw02qLIaAQAAquVKn/fee29MmDAhDjrooLjyyiujTp060b59+xXH77///rjuuuvinnvuibvvvjsuv/zyii4BWFlxccSRR646BgBAXjFfAwBgnbifCNVaEpZ89tlno3///nHyySdHly5d0vElS5akXwBMwqC33HJL1KhRI/r06VPh1584cWK548nqnstX+FzZDjvsELfffnuF1wIAAJCLKjz0+cwzz0TTpk3j6quvTleJKU/SgiGZTI4bN66iLw+Up1GjiBEjMl0FAAAZZr4GAMA6cT8RqrUtttgi/cLfxRdfnAYpk62goCCdCyZboqioKAYMGBDbbLNNpssFAACgstu7J98A3GmnnVb7ADG9aGFhOkmcNm1aRV8eAACALJuv9evXL23DV54FCxakK8gkreY7duwY++yzT1x//fVpK/r18c4778RJJ52UtilMPmPSxl5wFQAAoHwHHHBAPPnkk9GzZ8/YZJNNolatWlGzZs1o1apVHHroofHoo4/GUUcdlekyAQAAqIqVPpMJ4ezZs9d63jfffJOeCwAAQNXIxHxt8ODB6QqjLVq0WOXY4sWL44wzzog333wzfvrTn8Z+++0X7777btxxxx3x1ltvxbBhw9YYUF1uzJgxceaZZ0bDhg3j5z//eSxbtiz+9re/pcHPP/3pT9G9e/cK+SwAAADVycYbb5yu5gkAAECehz7bt28f77//fkyfPr3ch3qJKVOmxH/+85/YbrvtKvryAAAAZMF8bdGiRXHFFVfEiDW0BR0+fHga+DzllFPiwgsvXDE+aNCgNPD54IMPRp8+fdZ4nSQ4+rvf/S7q168fI0eOjJYtW6bjyeuSVWkGDhwYe+yxR9SpU+dHfR4AAIDqat68eTFjxoz0y3/NmzdPV/0EAAAgj9q7H3nkkWkbvrPPPjttHbiymTNnxvnnn58+mDvkkEMq+vIAAABkeL42evTotFVgEvjs2rXras9bvpLnr371q1XawSchzSQUujZPP/10WnfSknB54DPRtm3b6NWrV3rshRde+MGfBQAAoLpKvjh3+OGHR+fOneOggw5Kuy906tQpjjvuuHjxxRczXR4AAABVFfo89NBD00lhsnrM/vvvH/vss08UFBTEuHHj4thjj41u3brFv//979h9993TB44AAABUjaqarz366KMxf/78tE3gkCFDyj1n6tSpMXny5OjYsWO6Suf31atXLx3//PPP48svv1zjtZKVQhO77bbbKse6dOmS7seOHfuDPwsAAEB1U1JSkn7ZLuma8OGHH6bzwg022CDdkmNvv/12nHnmmXHDDTdkulQAAACqor174qabborbb7897rvvvvjiiy/SseRBXbIlq7WcdNJJ6WQymUQCVeDbbyNOOaXs2F13RTRqlKmKAADIkKqYr/Xu3Tuuu+66VcKc35cEOpevyFmeNm3apIHOzz77LDbccMPVvs9///vfdL/xxhuX+x6J5D0AAFgP7idCtZZ8Ue/ZZ5+NFi1axG9+85v42c9+tqKle9IdIjmWzOnuvPPO9At53bt3z3TJAAAAVHbos7CwMP0G4Kmnnpp+QzB5kFhaWhrNmjWL7bbbLmrXrl0ZlwVWZ/Hi5C5O2bHbbstUNQAAZFBVzNd23XXXtZ4ze/bsdN+4ceNyjzdo0CDdz5kzZ53ep1E5AYTlodO5c+euQ9UAAKzgfiJUa4888kg69xs2bNgqX6BLvgx42GGHRYcOHdIOEPfee6/QJwAAQHUPfZ511lmx6aabxgUXXBA1a9aM7bffPt0AAADIrGyary1ZsiTdFxcXl3t8+fiiRYt+8Pus63sAAADkk08++ST9sl55HROWa9++fXrOO++8U6W1AQAAkIHQ5xtvvBGzZs2q6LcFAACgGs3XlrcOXJysIlWO5eP16tVb4/ssX5k0CX8mQdby3qNu3boVUjMAAEB1kMyRCgoK1mnetvI8CwAAgMwrrOg3LCoqioYNG1b02wIAAFCN5mvL27qvrvX68vHlLdpXZ3lb9/LeZ968eWVaxQMAABDRtWvXGDt2bEyZMmW153zzzTcxbty42GOPPaq0NgAAADIQ+jzyyCPjtddei9dff72i3xoAAIBqMl/bbLPN0v2kSZPKPb58vF27dj/4fZaPbb755j+6XgAAgOriggsuiKZNm8aJJ54Yo0aNWuX4xx9/HKecckraeeGiiy7KSI0AAABUYXv3rbbaKlq3bh0nn3xy+mCtQ4cO6QouhYWr5kuT1hEXX3xxRZcAAABAls/XWrRoERtvvHG89957sWDBgjIt2OfPnx/vv/9+ejx5ELkmnTt3jhEjRqSr1Oyyyy6rtLNPdOrUqZI+BQAAQPZL5k0rW7x4cSxatCjOPvvsNNyZzBWTdu7Tp09Pt0SrVq3inHPOSedcAAAAVOPQZ/JQMHk4WFpaGp988km6rY7QJwAAQNXJtvlasvLo9ddfHzfddFP89re/XTGe/P7dd9/Fscceu9b36NatWxpcfeCBB+LQQw+NNm3arFjl86GHHopmzZrF/vvvX6mfAwAAIJvNmTNnjcfnzZsXEyZMWGV86tSp8cUXX1RiZQAAAGRF6POss85KHw4CAACQXbJtvpa0Enz22Wfjvvvui/Hjx8cOO+wQ7777bowbNy523nnnVUKfI0eOTB86du/ePV2lNJGsSDNgwIA4//zz44gjjoiDDjooHf/73/+ePrj805/+lK5WAwAAkK/Ka+EOAABA7qrw0Gffvn0r+i0BAACohvO14uLiGDZsWAwePDgNfyaBz5YtW8YZZ5wRp556anr8+x577LE0ELrRRhutCH0mDjzwwGjUqFH8+c9/jscffzxq1qyZHk9CruW1MQQAAMgnyRwKAACA6uNHhz6TB2jJA7aBAwdWTEUAAABUiGyZr02cOHG1x+rXr5+2kV+XVvL333//ao/tscce6QYAAAAAAADV2Y8Ofc6ZMycWLFhQ7rETTjghfeh2+umn/9jLAAAAsJ7M1wAAACjPK6+8En/5y1/i888/j0WLFq32vIKCgnjhhReqtDYAAACquL379yVt9zbccMPKvAQAAAA/gPkaAABAfhozZkycccYZUVpautZzk9AnAAAAeRT6BAAAAAAAALLHbbfdlgY+jzrqqDjooIOiUaNGwp0AAAA5ROgTAAAAAAAA8sQnn3wSW2+9dVxxxRWZLgUAAIAfQOgT8kHNmhFdu646luVKSkrSLVsUFhamGwAAAABUazl6PxFYN8XFxdGyZctMlwEAAMAPJPQJ+aBx44iXXopckoQ9e/XuE9NmfhXZomWzpvHgffcKfgIAAABQveXg/URg3e2+++7x1ltvxaJFi6JWrVqZLgcAAID1JPQJZG3oMwl8nnbDvVFYVJTpcqJk2bK447w+aV1CnwAAAAAA5KrzzjsvjjjiiLjwwgtjwIABscEGG2S6JAAAANaD0CeQ1ZLAZ1EN/6kCAAAAAICKsNFGG8X5558fl156abzwwgvRvHnz+MlPflLuuQUFBTFy5MgqrxEAAIDVq5Ak1VNPPZVu5U0EV3ds+fEPP/ywIkoAAACgHOZrAAAAfN+YMWNi4MCB6c9Jd6svv/wy3VY3NwQAAKAahj5LS0ur9HUAAACsG/M1AAAAvu/WW2+NZcuWRbdu3eLggw+OJk2aCHcCAADkU+hz1KhRFVMJAAAAFcp8DQAAgJV9/PHHsdVWW6XhTwAAAPIw9LnRRhtVTCVA5Zk7N+Lii8uOXXNNRIMGmaoIAIAqYL4GAMAP4n4iVGu1a9eOtm3bZroMAAAAMtneHchyCxdG3HZb2bGBA92kBQAAAABW5X4iVGu77757vPnmm7F48eIoLi7OdDkAAACsp8L1fQEAAAAAAACQm/r165cGPs8999yYNm1apssBAABgPVnpEwAAAAAAAPLE3XffHVtttVW89NJL6da0adNo3Lhx1Kix6mPDgoKCGDlyZEbqBAAAoHxCnwAAAAAAAJAnhg8fXub3mTNnplt5ktAnAAAA2UXoEwAAAAAAAPLEsGHDMl0CAAAAP4LQJwAAAAAAAOSJzp07Z7oEAAAA8jH0OXv27BgyZEiMHj06pk2bFhtssEF069YtzjzzzGjSpEmZc2fNmhW33nprvPjii2l7ilatWsURRxwRffr0iRo1cvZPAAAAAAAAAAAAAOSRnEw8zp07N4499tj49NNPo0uXLmnY87PPPov7778/nnvuuXjkkUeiZcuW6blz5syJ448/Pj755JPYb7/9om3btvHaa6/FH//4x3j//ffjlltuyfTHAQAAAAAAgCrxm9/8Zp3PLSgoiKuuuqpS6wEAACAPQp+DBw9OA599+/aNs88+e8X4Aw88EFdccUUa5Lz66qvTsWSFz48//jgGDBiQBkUT/fv3j379+qUB0eeffz4NgwIAAAAAAEB199hjj6016JkoLS0V+gQAAMhCORn6nDJlSjRt2jROPvnkMuOHHHJIGvr817/+lf6+cOHCFat+9uzZc8V5RUVFcdFFF6WBz+HDhwt9AgAAAAAAkNcrfZaUlMS3334b//znP+Ott96Kww8/PH75y19WeX0AAABUw9BnsnpneZLVPxPNmjVL9++9914sWLAg9t133ygsLCxzbps2baJ169bppHXZsmVpEBQAAAAAAACqs969e6/1nAcffDCuvPLKOOigg6qkJgAAANZd2SRkjkq+dZi0ak/atteoUSPOPPPMdPzzzz9P923bti33dUnwc/HixenKoQAAAAAAAEBEr169YtNNN40hQ4ZkuhQAAACqw0qf3/eXv/wlBg4cmP6crNb5hz/8Ibp06ZL+Pnv27HTfuHHjcl/boEGDdD9nzpwqqxcAAAAAAACyXbt27eK1117LdBkAAABUt5U+mzRpEqeeemoceuihUatWrbjgggvirrvuSo8lq3gmiouLy33t8vFFixZVYcUAAAAAAACQ3T799NNMlwAAAEB1XOlz//33T7dE375945e//GW62ueuu+4atWvXTseXLFlS7muXh0Lr1atXhRVDBhQVRWy99apjAAAAAAArcz8RqrV58+at9tjSpUtj5syZMXTo0Pjss89it912q9LaAAAAyIPQ5/e1bt06TjnllLjmmmti1KhRsdFGG62xffvcuXPTff369au0TqhyTZpEfPBBpqsAAAAAAHKB+4lQre2yyy5rPae0tDSKioritNNOq5KaAAAAqMbt3ZPVOV977bV4+eWXyz3epk2bdP/NN9/EZpttlv48adKkcs9NxuvWrRutWrWqxIoBAAAAAAAgOySBztVtieTZWadOneLWW2+NLl26ZLpcAAAAcn2lzyT0eeqpp6YTztdffz2Ki4vLHP/g/759vOmmm8a2226btm4fN25clJSURGHh/59xnTx5ckydOjV233339JuKAAAAAAAAUN1NmDAh0yUAAACQTyt9Jq3Yu3XrlrZmHzx4cJlj//nPf2Lo0KFpIPTggw+OWrVqpfspU6bEsGHDVpy3bNmyuO6669Kfe/XqVeWfAQAAAAAAAAAAAKDar/SZ+N3vfpcGPIcMGRJvv/12bL/99vHFF1/EqFGjoqCgIG688cZo1qxZem6/fv3i1VdfjauvvjrGjh0b7dq1S1cITVYEPeCAA9IAKQAAAAAAAAAAAEC2y8nQ54Ybbhh//etf47bbbkuDnv/+97+jYcOG0b179zjjjDOiffv2K85t0qRJDB8+PG6++eZ46aWX0sBn69at48ILL4wTTjghDYkCAAAAAABAdfSb3/zmB782eY521VVXVWg9AAAA5GHoc3mY85JLLkm3tWnevHkMGjSoSuqCrDR/fsQf/lB27MILI+rVy1RFAAAAAEC2cj8RqpXHHntsvc5fecEUoU8AAIDskrOhT2A9LFgQcfnlZcfOOstNWgAAAABgVe4nQt6u9Ll06dIYNmxYzJgxI0pLS6NNmzaVWhsAAADrT+gTAAAAAAAAqqnevXuv03kfffRRXHzxxSsCn0cddVT6OwAAANlF6BMAAAAAAADy2F133RW33HJLLF68OJo1axZXXnlldO3aNdNlAQAAUA6hTwAAAAAAAMhDkydPTlfzfOedd9LVPQ844IAYOHBgNGrUKNOlAQAAsBpCnwAAAAAAAJBnhg8fHtddd10sWLAgDXkOGDAgDjzwwEyXBQAAwFoIfQIAAAAAAECemDFjRvz2t7+N1157LV3dc6+99opBgwalbd0BAADIfkKfAAAAAAAAkAeeeuqpuPLKK+Pbb7+NunXrpq3djz766EyXBQAAwHoQ+gQAAAAAAIBqbPbs2XHZZZfFP/7xj3R1z5133jmuvvrqaNOmTaZLAwAAYD0JfQIAAAAAAEA1NXr06DTw+fXXX0dxcXH0798/TjzxxEyXBQAAwA8k9AkAAAAAAADV1JlnnhkFBQXpz/Xr148nnngi3dZF8rqRI0dWcoUAAACsD6FPAAAAAAAAqMaSlu6JZLXPZFtXy8OiAAAAZA+hTwAAAAAAAKimhg0blukSAAAAqEBCnwAAAAAAAFBNde7cOdMlAAAAUIEKK/LNAAAAAAAAAAAAAKgcVvqEfFBQENG06apjAAAAAAArcz8RAAAAIGsJfUI+SG7QzpyZ6SoAAAAAgFzgfiIAAABA1tLeHQAAAAAAAAAAACAHCH0CAAAAAAAAAAAA5AChTwAAAAAAAAAAAIAcIPQJAAAAAAAAAAAAkAOEPgEAAAAAAAAAAAByQI1MFwBUge++i7jnnrJjJ50UUadOpioCAAAAALKV+4kAAAAAWUvoE/LBvHkRZ59dduzoo92kBQAAAABW5X4iAAAAQNbS3h0AAAAAAAAAAAAgBwh9AgAAAAAAAAAAAOQAoU8AAAAAAAAAAACAHCD0CQAAAAAAAAAAAJADhD4BAAAAAAAAAAAAcoDQJwAAAAAAAAAAAEAOEPoEAAAAAAAAAAAAyAFCnwAAAAAAAAAAAAA5QOgTAAAAAAAAAAAAIAfUyHQBUNVKSkrSLRsUFhamGwAAAAAAAAAAAKyN0Cd5JQl79urdJ6bN/CqyQctmTePB++4V/AQAAAAAAAAAAGCthD7Ju9BnEvg87YZ7o7CoKLO1LFsWd5zXJ61J6BMAAAAAAAAAAIC1EfokLyWBz6Ia/vkDAAAAAAAAAACQO6TeAAAAyIitttpqreccdthhcc0116z1vD322CO++uqrco/16tUrLrvssh9UIwAAAAAAAGQToU/IB82aRZSWZroKAAAo4+yzzy53vLS0NIYOHRrz58+P3Xbbba3vM3PmzDTwufXWW8c+++yzyvGOHTtWSL0AAHnD/UQAAACArCX0CQAAQEb07du33PF77rknDXz+8pe/jEMPPXSt7zN+/Ph036NHjzj99NMrvE4AAAAAAADIFoWZLgAAAACW+/jjj+OGG26INm3axG9+85t1es2ECRPSffv27Su5OgAAAAAAAMgsoU8AAACyxtVXXx1LliyJSy+9NOrUqbNOrxH6BAAAAAAAIF9o7w4AAEBWGDNmTLz22muxxx57RNeuXdf5dUl797p168Zzzz0Xf/3rX+N///tf1K9fP/bee+8455xzonnz5pVaNwAAAAAAAFQVK30CAACQFe666650f+aZZ67zaxYuXJiGPBcsWBC33XZbbL/99nH00UdHixYtYsSIEXHEEUfElClTKrFqAAAAAAAAqDpW+oR8sGhRxJNPlh37xS8iatXKVEUAAFDGhx9+GOPGjYudd9453dbVzJkzo127dtGwYcMYPHhwNG7cOB0vLS2NG2+8MYYMGRKXXHJJDB06tBKrBwCoZtxPBAAAAMhaQp+QD+bMiTj66LJjM2ZENGuWqYoAAKCMkSNHpvtevXqt1+vatGkTT64cSIiIgoKCtLX7U089FW+88UbMmDFDm3cAgHXlfiIAAABA1tLeHQAAgIwbNWpU1K1bN372s59V2HvWqFEjtt566/TnSZMmVdj7AgAAAAAAQKYIfQIAAJBREyZMiC+++CINfNapU2e9Xjt9+vR46623Ytq0aeUe/+6779J97dq1K6RWAAAAAAAAyCShTwAAADLqnXfeSfc777zzer82ae1+3HHHxZ133rnKsfnz58cHH3yQBkm32GKLCqkVAAAAAAAAMknoEwAAgIz6z3/+k+633Xbb9X7t/vvvn7ZxHzlyZEycOHHF+NKlS+Oqq66K2bNnR8+ePaNWrVoVWjMAAAAAAABkQo2MXBUAAAD+z6RJk9J9ixYt1njem2++GePGjYsOHTpE9+7d07G2bdvG+eefH9dee20cffTR0aNHj2jYsGGMHTs2Pvroo+jUqVOce+65VfI5AAAAAAAAoLJZ6RMAAICM+uabb9J9gwYN1nheEvgcPHhwvPDCC2XGTzrppLjjjjtihx12iH/84x8xfPjwKC0tTcOgQ4cOTdu7AwAAAAAAQHVgpU8AAAAy6umnn16n8/r27Ztu5enatWu6AQAAAAAAQHVmpU8AAAAAAAAAAACAHCD0CQAAAAAAAFSJfv36xV577bVer5k1a1ZceeWV0a1bt+jYsWP06NEj7rzzzli6dGml1QkAAJCthD4BAAAAAACASjd48OB45pln1us1c+bMieOPPz4eeOCB2GabbeKEE06IOnXqxB//+Mc477zzKq1WAACAbFUj0wUAAAAAAAAA1deiRYviiiuuiBEjRqz3a2+99db4+OOPY8CAAXHsscemY/37909XDH3uuefi+eefj/32268SqgYAAMhOVvoEAAAAAAAAKsXo0aPjgAMOSAOfXbt2Xa/XLly4MB555JFo2bJl9OzZc8V4UVFRXHTRRenPw4cPr/CaAQAAspnQJwAAAAAAAFApHn300Zg/f366UueQIUPW67XvvfdeLFiwIDp37hyFhWUfa7Zp0yZat24db731VixbtqyCqwYAAMheQp8AAAAAAABApejdu3eMGjUqbc1eUFCwXq/9/PPP033btm3LPZ4EPxcvXhxTpkypkFoBAAByQY1MFwBUgQ02iJgxY9UxAAAAAICVuZ8IVKBdd931B7929uzZ6b5x48blHm/QoEG6nzNnzg++BgAAQK4R+oR8kLQ8adYs01UAAAAAALnA/UQgSySreCaKi4vLPb58fNGiRVVaFwAAQCZp7w4AAAAAAABkndq1a6f7JUuWrDEUWq9evSqtCwAAIJOEPgEAAAAAAICs06hRozW2b587d266r1+/fpXWBQAAkElCnwAAAAAAAEDW2WyzzdL9pEmTyj2ejNetWzdatWpVxZUBAABkjtAnAAAAAAAAkHW23XbbtHX7uHHjoqSkpMyxyZMnx9SpU2OHHXaIoqKijNUIAABQ1WpU+RWBqrd4ccTrr5cd2333iOLiTFUEAAAAAGQr9xOBLFGrVq04+OCD4+GHH45hw4bFiSeemI4vW7YsrrvuuvTnXr16ZbhKAACAqiX0Cfng228jfvazsmMzZkQ0a5apigAAAACAbOV+IpAB48ePjxdeeCE22mijOPzww1eM9+vXL1599dW4+uqrY+zYsdGuXbt4/fXX44MPPogDDjggunXrltG6AQAAqpr27gAAAAAAAEDGQ5+DBw+Oxx57rMx4kyZNYvjw4XHkkUfG+++/n674uXDhwrjwwgvT1T4LCgoyVjMAAEAmWOkTAAAAAAAAqBITJ04sdzxZ3fP7K3x+X/PmzWPQoEGVXBkAAEBusNInAAAAAAAAAAAAQA4Q+gQAAAAAAAAAAADIAUKfAAAAAAAAAAAAADlA6BMAAAAAAAAAAAAgBwh9AgAAAAAAAAAAAOQAoU8AAAAAAAAAAACAHCD0CQAAAAAAAAAAAJADhD4BAAAAAAAAAAAAcoDQJwAAAAAAAAAAAEAOEPoEAAAAAAAAAAAAyAFCnwAAAAAAAAAAAAA5QOgTAAAAAAAAAAAAIAfUyHQBQBX4yU8i/vOfVccAAAAAAFbmfiIAAABA1hL6hHxQo0bENttkugoAAAAAIBe4nwgAAACQtbR3BwAAAAAAAAAAAMgBQp8AAAAAAAAAAAAAOUDoEwAAAAAAAAAAACAHCH0CAAAAAAAAAAAA5IAamS4AqAJLl0ZMnFh2bKutImr4TwAAAAAAsBL3EwEAAACyVs7eoZk/f34MGTIknn/++Zg6dWrUrFkztt566+jdu3fsu+++Zc6dNWtW3HrrrfHiiy/GzJkzo1WrVnHEEUdEnz59ooabVOSDWbMitt227NiMGRHNmmWqIgAAAAAgW7mfCAAAAJC1crK9+7x58+KYY45JQ59169aNY489Nnr06BETJkyIs88+Ox1fbs6cOXH88cfHAw88ENtss02ccMIJUadOnfjjH/8Y5513XkY/BwAAAAAAAAAAAMC6ysllLu+8886YOHFi9OzZMwYOHBgFBQXp+Lnnnpuu4HnzzTenIdCNN944XeHz448/jgEDBqTh0ET//v2jX79+8dxzz6Urhe63334Z/kQAAAAAAAAAAAAA1XClz2eeeSYNep5//vkrAp+JFi1apCuALlu2LMaMGRMLFy6MRx55JFq2bJkGRJcrKiqKiy66KP15+PDhGfkMAAAAAAAAAAAAANV+pc/evXvH3Llzo2HDhqscKy4uTvfz58+P9957LxYsWBD77rtvFBaWzbe2adMmWrduHW+99VYaEk2CoAAAAAAAAAAAAADZKidDn7169Sp3vLS0NG3Xnthqq63i888/T39u27Ztuecnwc8pU6akW9IKHgAAAAAAAAAAACBb5WR799V56KGH0tU9kzDnnnvuGbNnz07HGzduXO75DRo0SPdz5syp0joBAAAAAAAAAAAA8jb0+fTTT8egQYOiRo0acc0110TNmjVj8eLFZVq+r2z5+KJFi6q0VgAAAAAAAAAAAIC8DH0mK3yef/756c/XXntt7LzzzunPtWvXTvdLliwp93XLQ6H16tWrsloBAAAAAAAAAAAAfogakcNKSkriuuuui3vvvTddtfP666+P/fbbb8XxRo0arbF9+9y5c9N9/fr1q6hiAAAAAAAAAAAAgDwLfSardCarez7//PPRuHHjuPXWW1es8LncZpttlu4nTZpU7nsk43Xr1o1WrVpVSc0AAAAAAAAAAAAAedXefdmyZXHuueemgc/WrVvHX/7yl1UCn4ltt902bd0+bty4dFXQ75s8eXJMnTo1dthhhygqKqrC6gEAAAAAAAAAAADyJPR5xx13xOjRo9MVOh966KEVK3qurFatWnHwwQfHlClTYtiwYWVCo0lb+ESvXr2qrG4AAAAAAAAAAACAvGnvPnv27DT0mejQoUM88sgj5Z6XrPzZpUuX6NevX7z66qtx9dVXx9ixY6Ndu3bx+uuvxwcffBAHHHBAdOvWrYo/AQAAAAAAAAAAAEAehD7ffvvtWLBgQfrzqFGj0q08Z5xxRhr6bNKkSQwfPjxuvvnmeOmll9LAZ9IS/sILL4wTTjghCgoKqvgTAAAAAAAAAAAAAORB6LN79+4xceLE9XpN8+bNY9CgQZVWE2S9Ro0iXnxx1TEAAAAAgJW5nwgAAACQtXIu9An8AMXFEXvvnekqqMZKSkrSLVsUFhamGwAAAAA/gPuJAAAAAFlL6BOAHyUJe/bq3SemzfwqskXLZk3jwfvuFfwEAAAAAAAAAKBaEfoE4EeHPpPA52k33BuFRUWZLidKli2LO87rk9Yl9AkAAAAAAAAAQHUi9AlAhUgCn0U1/M8KAAAAAAAAAABUFkugAQAAAAAAAAAAAOQAS7JBPigpifj667JjG2wQofU1AAAAALAy9xMBAAAAspbQJ+SD5AZt8+Zlx2bMiGjWLFMVAQAAAADZyv1EAAAAgKzla7kAAAAAAAAAAAAAOUDoEwAAAAAAAAAAACAHCH0CAAAAAAAAAAAA5AChTwAAAAAAAAAAAIAcIPQJAAAAAAAAAAAAkAOEPgEAAAAAAAAAAABygNAnAAAAAAAAAAAAQA4Q+gQAAAAAAAAAAADIAUKfAAAAAAAAAAAAADlA6BMAAAAAAAAAAAAgBwh9AgAAAAAAAAAAAOSAGpkuAAAAgPz2l7/8JQYOHLja42+88UY0adJkje/xxRdfxC233JKeO3v27Nhkk02iV69ecfTRR1dCxQAAAAAAAJAZQp8AAABk1Pjx49P9iSeeGPXr11/leJ06ddb4+qlTp0bPnj1j1qxZceCBB0bTpk3jhRdeiEsvvTQ+++yzuPjiiyutdgAAAAAAAKhKQp8AAABk1IQJE6J27drx61//OgoLC9f79VdffXXMmDEj7rjjjujatWs6ds4550Tv3r1j6NChcfDBB8e2225bCZUDAAAAAABA1RL6hHzQsGHEI4+sOgYAABlWUlISH330UWyxxRY/KPCZrPKZrOq54447rgh8JpIQaf/+/dPg58MPPyz0CQCwPtxPBAAAAMhaQp+QD2rVijjqqExXAQAAq/j888/ju+++i/bt2/+g148bNy5KS0ujS5cuqxzr1KlT1KxZM8aOHVsBlQIA5BH3EwEAAACy1vovowIAAAAV2No9UVBQkK7Mueeee0bHjh3jyCOPjL/97W/rFBpNbLzxxqscSwKfLVu2jClTpsTixYsroXoAAAAAAACoWkKfAAAAZDz0+cgjj8TXX38dv/jFL2LfffeNTz/9NM4///y44YYb1vj6WbNmpftGjRqVe7xBgwZpC/l58+ZVQvUAAAAAAABQtbR3BwAAIGOS1uwbbbRR9O3bNw477LAV45MnT45jjjkmhgwZEnvttVfsvPPO5b5+yZIl6b64uLjc48vHrfQJAAAAAABAdWClTwAAADImWc1z9OjRZQKfiTZt2sQ555yT/vzkk0+u9vW1a9cuE/5c2fKwZ926dSuwagAAAAAAAMgMoU8AAACyUseOHdP9pEmTVnvO8rbuc+bMKff43Llzo6CgIOrXr19JVQIAAAAAAEDVEfqEfDBzZkRBQdktGQMAgAwqKSmJ//znPzFu3Lhyjy9YsKDMap7l2WyzzVYbDE1W/5w2bVpsuummUVho+gsAsM7cTwQAAADIWp56AQAAkDHHH398nHDCCfH111+vcuztt99O99ttt91qX9+5c+d0Jc8333yz3Ncnwc9OnTpVcNUAAAAAAACQGUKfAAAAZESy+maPHj2itLQ0/vCHP6Qrfy43YcKEGDJkSNStWzeOPPLI1b7HhhtuGHvssUe6WugLL7ywYnzhwoVx0003pT/36tWrkj8JAAAAAAAAVI0aVXQdAAAAWMUFF1wQ//znP+Oxxx6LiRMnxq677hrTp09PA5xJCPTGG2+MFi1apOcmq3km4c4OHTpE9+7dV7zHJZdcEj179oxzzjknDjjggPT8UaNGxeeffx4nn3xyej4AAAAAAABUB1b6BAAAIGM22GCDGDFiRPTp0yfmzJkTDzzwQLz++uvRtWvXePjhh2O//fZbcW4S+Bw8eHCZFT0Tm2666YpzX3311XjooYeiTp06ceWVV8aFF16YgU8FAAAAAAAAlcNKnwAAAGRUo0aN4uKLL063Nenbt2+6lWeTTTZZ0c4dAAAAAAAAqisrfQIAAAAAAAAAAADkAKFPAAAAAAAAAAAAgBwg9AkAAAAAAAAAAACQA4Q+AQAAAAAAAAAAAHKA0CcAAAAAAAAAAABADhD6BAAAAAAAAAAAAMgBQp8AAAAAAAAAAAAAOUDoEwAAAAAAAAAAACAHCH0CAAAAAAAAAAAA5IAamS4AqAL160cMHrzqGAAAAADAytxPBAAAAMhaQp+QD+rUiTjrrExXAQAAAADkAvcTAQAAALKW9u4AAAAAAAAAAAAAOUDoEwAAAAAAAAAAACAHCH0CAAAAAAAAAAAA5AChTwAAAAAAAAAAAIAcIPQJAAAAAAAAAAAAkANqZLoAoAp89VVEhw5lx8aPj2jaNFMVAQAAAADZyv1EAAAAgKwl9An5oLT0/92oXXkMAAAAAGBl7icCAAAAZC3t3QEAAAAAAAAAAABygNAnAAAAAAAAAAAAQA4Q+gQAAAAAAAAAAADIAUKfAAAAAAAAAAAAADlA6BMAAAAAAAAAAAAgBwh9AgAAAAAAAAAAAOQAoU8AAAAAAAAAAACAHCD0CQAAAAAAAAAAAJADhD4BAAAAAAAAAAAAcoDQJwAAAAAAAAAAAEAOEPoEAAAAAAAAAAAAyAFCnwAAAAAAAAAAAAA5QOgTAAAAAAAAAAAAIAfUyHQBQBWoWzdiwIBVxwAAAAAAVuZ+IgAAAEDWEvqEfFCvXsTAgZmuAgAAAADIBe4nAgAAAGQt7d0BAAAAAAAAAAAAcoDQJwAAAAAAAAAAAEAOEPoEAAAAAAAAAAAAyAE1Ml0AAAAAAAAAUH09/vjjMWzYsPjvf/8btWvXjj322CP69+8fG2200Tq9Pjn/q6++KvdYr1694rLLLqvgigEAALKX0CcAAAAAAABQKW688ca4/fbbo127dnHsscfGtGnT4umnn45XX301RowYEW3atFnj62fOnJkGPrfeeuvYZ599VjnesWPHSqweAAAg+wh9Qj745puIPfcsO/bKKxFNmmSqIgAAAAAgW7mfCFSQCRMmpIHPTp06xdChQ6O4uDgdP+CAA+Lss8+OQYMGpcfXZPz48em+R48ecfrpp1dJ3QAAANlM6BPywbJlER9+uOoYAAAAAMDK3E8EKkjS0j1x1llnrQh8Jvbdd9/YZZdd4qWXXorp06dHixYt1hgcTbRv374KKgYAAMh+hZkuAAAAAAAAAKh+xo4dGzVq1EgDnivbbbfdorS0ND1nTYQ+AQAAyrLSJwAAAAAAAFChFi9eHF988UVstNFGZVb5XK5Nmzbp/rPPPltre/e6devGc889F3/961/jf//7X9SvXz/23nvvOOecc6J58+aV9hkAAACykZU+AQAAAAAAgAr17bffpit5NmrUqNzjDRo0SPdz585d7XssXLgwDXkuWLAgbrvttth+++3j6KOPTtvBjxgxIo444oiYMmVKpX0GAACAbGSlTwAAAAAAAKBCLVmyJN2Xt8rn98cXLVq02veYOXNmtGvXLho2bBiDBw+Oxo0bp+NJmPTGG2+MIUOGxCWXXBJDhw6tlM8AAACQjYQ+AQAAAAAAgApVu3btMuHP8tq/J5LW7auTtIB/8sknVxkvKChIW7s/9dRT8cYbb8SMGTO0eQcAAPKG9u4AAAAAAABAhapfv34UFhautn378vHlbd7XV40aNWLrrbdOf540adKPqBQAACC3CH0CAAAAAAAAFSpp356s1PnFF1+Uu9rn5MmT033Svn11pk+fHm+99VZMmzat3OPfffddmVVFAQAA8oHQJwAAAAAAAFDhOnfunAY+33nnnVWOJW3ZkzbtO+2002pfn7R2P+644+LOO+9c5dj8+fPjgw8+iDp16sQWW2xR4bUDAABkK6FPAAAAAAAAoMIdccQR6f7GG2+MhQsXrhj/xz/+EW+//Xbss88+seGGG6729fvvv3/axn3kyJExceLEFeNLly6Nq666KmbPnh09e/aMWrVqVfInAQAAyB41Ml0AAAAAAAAAUP3suOOO0atXr3jwwQfjkEMOiW7duqUt25955plo2rRp/OY3v1lx7ptvvhnjxo2LDh06RPfu3dOxtm3bxvnnnx/XXnttHH300dGjR49o2LBhjB07Nj766KPo1KlTnHvuuRn8hAAAAFVP6BMAAAAAAACoFJdeemlsttlm8fDDD8f9998fjRs3jgMPPDANa7Zp02bFeUngc/DgwXHYYYetCH0mTjrppNh8883jnnvuSVcITdrFb7zxxmkY9MQTT4zi4uIMfTIAAIDMEPoEAAAAAAAAKkVBQUEcd9xx6bYmffv2TbfydO3aNd0AAACIKMx0AQAAAAAAAAAAAADk0Uqf/fr1i3feeSdefvnlVY4tWLAg7rrrrvj73/8e06ZNi6ZNm8ZBBx0UZ555ZtSpUycj9UKVql074swzVx0DAAAAAFiZ+4kAAAAAWatahD4HDx4czzzzTLRo0WKVY4sXL44zzjgj3nzzzfjpT38a++23X7z77rtxxx13xFtvvRXDhg2L4uLijNQNVaZBg4hbb810FQAAAABALnA/EQAAACBr5XToc9GiRXHFFVfEiBEjVnvO8OHD08DnKaecEhdeeOGK8UGDBqWBzwcffDD69OlTRRUDAAAAAAAAAAAA/DCFkaNGjx4dBxxwQBr47Nq162rPW76S569+9atV2sEnrd2TUCgAAAAAAAAAAABAtsvZ0Oejjz4a8+fPjwEDBsSQIUPKPWfq1KkxefLk6NixY9SvX7/MsXr16qXjn3/+eXz55ZdVVDUAAAAAAAAAAABAnoU+e/fuHaNGjYpjjz02CgoKyj0nCXQm2rZtW+7xNm3apPvPPvusEisFAAAAAAAAAAAA+PFqRI7adddd13rO7Nmz033jxo3LPd6gQYN0P2fOnAquDgAAAAAAAAAAAKBi5Wzoc10sWbIk3RcXF5d7fPn4okWLqrQuqHJJAPrQQ8uOPf54kojOVEUAAABkQElJSbrlosLCwnQjM/zbgTyTBfcTc/m/O7ls6dKlmS4BAAAAyOfQZ61atdL94sWLyz2+fLxevXpVWhdUuSQAPWbMqmMAAADkjSQ40+ukXvHlzC8jF23YbMN48J4HhfcywL8dyEMZvp+Y6//dKS0tjalTpkbrNq0j1yR/+0mTJ6WfAQAAAMhO1Tr0ubyt+9y5c8s9vny8fv36VVoXAAAAQCZCHEl45uxhZ0dhUW6F30qWlcTgEwann0Fwr+r5twNUtVz+705iyaIlcV7X8+KsoWdFUc2iyMXaQ+YTAAAAsla1Dn1uttlm6X7SpEnlHl8+3q5duyqtCwAAACBTkvBMUY3cCqCQHfzbAaparv53Z9nSZTlb//LaAQAAgOyVe1+RXQ8tWrSIjTfeON57771YsGBBmWPz58+P999/Pz3etGnTjNUIAAAAAAAAAAAAEPke+kwceeSR8d1338VNN91UZjz5PRk/9thjM1YbAAAAAAAAAAAAwLqq1u3dEyeeeGI8++yzcd9998X48eNjhx12iHfffTfGjRsXO++8s9AnAAAAAAAAAAAAkBOq/UqfxcXFMWzYsOjTp09Mnjw5hg4dGtOnT48zzjgjhgwZkh4HAAAAAAAAAAAAyHbVZqXPiRMnrvZY/fr14+KLL043AAAAAAAAAAAAgFxU7Vf6BAAAAAAAAAAAAKgOqs1KnwDAuikpKUm3bFBYWJhuAAAAAAAAAACsndAnAOSRJOzZq3efmDbzq8gGLZs1jQfvu1fwEyDPzZ8/P4YMGRLPP/98TJ06NWrWrBlbb7119O7dO/bdd991eo899tgjvvqq/P9969WrV1x22WUVXDUAAAAAAABUPaFPAMiz0GcS+DzthnujsKgos7UsWxZ3nNcnrUnoEyB/zZs3L4499tiYOHFibLPNNunPc+fOTQOgZ599dpx33nlx+umnr/E9Zs6cmQY+k6DoPvvss8rxjh07VuInAAAAAAAAgKoj9AkAeSgJfBbV8H8DAMi8O++8Mw189uzZMwYOHBgFBQXp+LnnnhtHHHFE3HzzzdGjR4/YeOONV/se48ePT/fJeWsLiAIAAAAAAEAus6wWAAAAGfPMM8+kQc/zzz9/ReAz0aJFizjmmGNi2bJlMWbMmDW+x4QJE9J9+/btK71eAAAAAAAAyCRLfEE+KC6OOPLIVccAACDDevfunbZzb9iw4SrHiv/v/7POnz9/je8h9AkAUMHcTwQAAADIWkKfkA8aNYoYMSLTVQAAwCp69epV7nhpaWk8//zz6c9bbbXVGt8jae9et27deO655+Kvf/1r/O9//4v69evH3nvvHeecc040b968UmoHAKi23E8EAAAAyFrauwMAAJB1HnrooXjvvfeiTZs2seeee672vIULF6YhzwULFsRtt90W22+/fRx99NFpe/gRI0bEEUccEVOmTKnS2gEAAAAAAKCyWOkTAACArPL000/HoEGDokaNGnHNNddEzZo1V3vuzJkzo127dml7+MGDB0fjxo1XrBR64403xpAhQ+KSSy6JoUOHVuEnAAAAAAAAgMoh9AkAAEBWrfB5xRVXREFBQVx77bWx8847r/H8ZCXQJ598cpXx5PVJa/ennnoq3njjjZgxY4Y27wAAAAAAAOQ87d0BAADIuJKSknRVz8svvzxd4fOmm26Kgw8++Ee9Z/I+W2+9dfrzpEmTKqhSAAAAAAAAyBwrfQIAAJBRixcvjvPPPz+ef/75tD37rbfeutYVPpebPn16Guhs3bp1tGzZcpXj3333XbqvXbt2hdcNAAAAAAAAVU3oE/LBt99GnHJK2bG77opo1ChTFQEAQGrZsmVx7rnnxujRo9Pg5p133hmbbbbZOr8+ae3+xz/+MXr16hWXXXZZmWPz58+PDz74IOrUqRNbbLFFJVQPAFBNuZ8IAAAAkLWEPiEfLF4c8eijZcduuy1T1QAAwAp33HFHGvhs1apVPPTQQ9GiRYv1ev3++++ftoIfOXJk/PKXv4ytttoqHV+6dGlcddVVMXv27OjTp0/UqlWrkj4BAEA15H4iAAAAQNYS+gQAACAjkkBmEvpMdOjQIR555JFyz0tavXfp0iXefPPNGDduXHpu9+7d02Nt27ZNW8Nfe+21cfTRR0ePHj2iYcOGMXbs2Pjoo4+iU6dO6UqiAAAAAAAAUB0IfQIAAJARb7/9dixYsCD9edSoUelWnjPOOCMNfSaBz8GDB8dhhx22IvSZOOmkk2LzzTePe+65J/7xj3/EkiVLYuONN07DoCeeeGIUFxdX2WcCAAAAAACAyiT0CQAAQEYkwc2JEyeu8/l9+/ZNt/J07do13QAAAAAAAKA6K8x0AQAAAAAAAAAAAACsndAnAAAAAAAAAAAAQA4Q+gQAAAAAAAAAAADIAUKfAAAAAAAAAAAAADlA6BMAAAAAAAAAAAAgBwh9AgAAAAAAAAAAAOQAoU8AAAAAAAAAAACAHFAj0wUAAAAAAFC+kpKSdIMqtXTpKg8Pli5dmo5XzeWr5joAAAAAuUjoEwAAAAAgCyVhz14n9YovZ34Zuai0tDSmTpkardu0jlyUy/X/2NobLVocj680duTxR8a3tYqjqv7tT5o8Kf0cAAAAAJQl9AkAAAAAkIWS4FsS+Dx72NlRWFQYuWbJoiVxXtfz4qyhZ0VRzaLINblc/4+tvfirbyO2eL3M2Km3nxqLmzaKqqw/ZD4BAAAAViH0CfmgZs2Irl1XHQMAAAAg6yWBz6IauRU6TCxbuizdqz/3ai+oXRxf/XTbVcaq6u+wvH4AAAAAViX0CfmgceOIl17KdBUAAAAAQA5Y2rh+vP7MoEyXAQAAAEA5cq8nEAAAAAAAAAAAAEAeEvoEAAAAAAAAAAAAyAFCnwAAAAAAAAAAAAA5QOgTAAAAAAAAAAAAIAcIfQIAAAAAAAAAAADkgBqZLgCoAnPnRlx8cdmxa66JaNAgUxUBAAAAAFmqaO6C2HrAsDJjH15+QixrUDdjNQEAAADw/wh9Qj5YuDDittvKjg0cKPQJAAAAAKyiaOGS2PTOZ8qMTfzNMbHM7UQAAACAjNPeHQAAAAAAAAAAACAHCH0CAAAAAAAAAAAA5AChTwAAAAAAAAAAAIAcIPQJAAAAAAAAAAAAkAOEPgEAAAAAAAAAAABygNAnAAAAAAAAAAAAQA4Q+gQAAAAAAAAAAADIAUKfAAAAAAAAAAAAADlA6BMAAAAAAAAAAAAgBwh9AgAAAAAAAAAAAOQAoU8AAAAAAAAAAACAHCD0CQAAAAAAAAAAAJADhD4BAAAAAAAAAAAAckCNTBcAVIGiooitt151DAAAAABgJaVFhTGnfZtVxgAAAADIPKFPyAdNmkR88EGmqwAAAAAAcsCSJg3ipbcGZ7oMAAAAAMrhq7kAAAAAAAAAAAAAOcBKnwAAWaqkpCTdskVhYWG6AQAAAAAAAACZIfQJAJCFkrBnr959YtrMryJbtGzWNB68717BTwAAAAAAAADIEKFPAIAsDX0mgc/Tbrg3CouKMl1OlCxbFnec1yetS+gTAAAAAAAAADJD6BMAIIslgc+iGv4vGwAAAAAAAAAg9An5Yf78iD/8oezYhRdG1KuXqYoAAAAAgCxVNH9htLv5sTJjn5x7WCyrVztjNQEAAADw/wh9Qj5YsCDi8svLjp11ltAnAAAAALCKogWLYqurh5cZ+++pBwp9AgAAAGSBwkwXAAAAAAAAAAAAAMDaWekTAAAAckxJSUm65aLCwsJ0y1W5/LdfunRp5LLS0tKc/wy5Ktf/7rn8bydX6wYAAAAAKo/QJwAAAOSQJHDY66Re8eXMLyMXbdhsw3jwngdzMviZ63/7pP5JkyelAbhcrP2zTz+LHof3iIKCgsg1yd986pSp0bpN68hF/u1kTi7/7QEAAACAyiH0CQAAADkWAEpCh2cPOzsKi3IrOFmyrCQGnzA4/Qy5GvrM1b99YsmiJXFe1/MicjA7VlpSGiUFJXH2fWdHUc2iyNW//VlDz8rp+v3bqXq5/LcHAAAAACqH0CcAAADkoCR0WFQj9wJM1UGu/u2XLV0WuS7X//a5Xn8u87cHAAAAAKqL3FuWAgAAAAAAAAAAACAPCX0CAAAAAAAAAAAA5AChTwAAAAAAAAAAAIAcIPQJAAAAAAAAAAAAkAOEPgEAAAAAAAAAAABygNAnAAAAAAAAAAAAQA4Q+gQAAAAAAAAAAADIAUKfAAAAAAAAAAAAADmgRqYLAKpAQUFE06arjgEAAAAArKygIBZt0HCVMQAAAAAyT+gT8kES+Jw5M9NVAAAAAAA5YHHThvHc5/dnugwAAAAAyqG9OwAAAAAAAAAAAEAOEPoEAAAAAAAAAAAAyAFCnwAA8P+1dyfgMtftH8dvS5YSUT2WkH0rslRIpSwVLSJKKEXaUDyP0EJaST2RtKmQkrRolQo9kkpI2qRNoixFC4pTOP/rcz//3zxzNktnzvxmzrxf1+WaY2bOnN98f3PmfO/53t/7BgAAAAAAAAAAAAAgCZD0CQAAAAAAAAAAAAAAAAAAkARI+gQAAAAAAAAAAAAAAAAAAEgChcM+AABxsG2b2cSJGa/r1cusePGwjggAAAAAAABAgiq4Lc0qPz4nw3WrL2hju4oXDe2YAAAAAAAA8F8kfQKpYOtWs379Ml537rkkfQIAAAAAAADIovDW7dbgXxMyXLe24/H2J0mfAAAAAAAAoaO9OwAAAAAAAAAAAAAAAAAAQBIg6RMAAAAAAAAAAAAAAAAAACAJkPQJAAAAAAAAAAAAAAAAAACQBAqHfQAAAABAstu1a5f/SxQFCxb0f4mC8QEAAAAAAAAAAACA2CDpEwAAAMgFJTN273mxrftpoyWK8oceYlMfm5QQiY2MDwAAAAAAAAAAAADEDkmfAAAAQC6TGpXQeOndk6xgoUJhH47t2rnTJvzzYj+uREhqZHwAAAAAAAAAAAAAIHZI+gQAAABiQAmNhQozvc4J4wMAAAAAAAAAAAAAuZdSpW1eeOEF69SpkzVq1MiaN29ugwYNsh9++CHswwIAAACAlJfbeG3t2rU2dOhQa9mypR111FHWoUMHe/rpp/P0mAEAAAAAe4eYDwAAAABiJ2WSPseMGWNDhgyxtLQ069atmweUr776qp1zzjm2Zs2asA8PAAAAAFJWbuM1LRSed9559sorr1jTpk2te/futm3bNhs2bJiNGjUqLs8BAAAAAJA9Yj4AAAAAiK2U6K+4YsUKe/DBB61JkyY2efJkK1KkiF/frl0769evn912221+OwAAAAAg+eK1kSNH2o8//mgTJkzwqi9y1VVXWc+ePf0xzzjjDDvyyCPj8nwAAAAAAP9DzAcAAAAAsZcSlT6nTJnil3379o0Ek9K2bVs75phjbN68ebZhw4YQjxAAAAAAUlNu4zVVfJkzZ463CAwW/6RYsWI2cOBAS09Pt+nTp+fxswAAAAAAZIeYDwAAAABiLyWSPhcuXGiFCxf24DGzZs2aeUCo+wAAAAAAkiteW7Rokd9H7QEzUyWZ/fbbj3gPAAAAAEJCzAcAAAAAsZfvkz7//PNPW7t2rZUrVy7DDsJApUqV/HLlypUhHB0AAAAApK5YxGurVq3yy8MPPzzLbVr8K1++vH3//ff+swAAAAAA8UPMBwAAAAB5o7Dlc7/99pvvACxVqlS2tx944IF+uWXLFssPChUqZGNHj7TyFQ+0AgUKhH04Pva17xhpBQsW9K/DpuMYe0dijE9cx6ZkSSvwn/9k/PklS+ogLFEl0rlKxNdyIuFcJZdEOl+cq+Q5V8L5yhnnKvnGp87okT5vRv6I13755Re/3N1j7Nq1y7Zu3WplypSx/ECv3zEjx9hhBxxmFv6v1b5JN6s6smrCvEftKx130o69hr9Iuj0z5RmrUaJG0m0DTuZjF44/PMl87MLxhyuZjz+3x16w3E6zTJ8nHlOuju3aLz7z6GQe+2Q//mQ+9uj5JjFfYiDm+/uKXNk17EMAAAAAkMDyfdLnX3/95ZfZ7SCMvj4tLc3yAy2kN2zQwBJJ2aMaJNb4JNDxxG1sihY1O+mkDFcl+vpkop2rRHstJxLOVXJJtPPFuUqecyWcr+xxrpJwfBJsvpzKYhGv7e1j5KeqL/+N+xpasjq0waGWrJJ97OUfx/7DklUyH7tw/OFJ5mMXjj9cyXz8uTp2rRycVC7DVQdbfCXz2Cf78SfzsSf7fDO/Ieb7+wrWqBz2IQAAAABIYMm4T3OfFCtWLENQmFkQBO6///5xPS4AAAAASHWxiNeI+QAAAAAgMRHzAQAAAEDeyPdJnyVKlPD2azm1hgiuD1pIAAAAAACSJ14LWvxt3rw5x8dQdUb9LAAAAABA/BDzAQAAAEDeyPdJn2rrUKlSJVu7dm22uwDXrFnjlzVq1Ajh6AAAAAAgdcUiXqtWrZpfrl69Osttesx169ZZ1apVfaERAAAAABA/xHwAAAAAkDdSIgI69thjPfBbunRpltvee+893wHYuHHjUI4NAAAAAFJZbuM1fb/u8/7772e5bcmSJf7YTZo0iflxAwAAAAD2jJgPAAAAAGIvJZI+zznnHL8cM2aMbd++PXL97NmzPSBs1aqVlStXLsQjBAAAAIDUlNt4Tbe1aNHCFi1aZHPmzIlcr8caO3asf929e/c8fQ4AAAAAgOwR8wEAAABA7BVIT09PtxRw880329SpU61KlSrWunVr27Bhg82aNctKly5tTz31lLeXAAAAAAAkbrymyi5a6Ktbt661adMm8v3ffvutde3a1bZs2WLt2rWzsmXL2ty5c23VqlXWu3dvGzx4cIjPDgAAAABSGzEfAAAAAMRWyiR96mkqoJw+fboHgQcddJA1bdrUrr76ahI+AQAAACAJ4rV7773Xxo8fbx07drRRo0ZleAx9n6q8qD1gWlqaLyaq2kvnzp29FSAAAAAAIBzEfAAAAAAQWymT9AkAAAAAAAAAAAAAAAAAAJDMCoZ9AAAAAAAAAAAAAAAAAAAAANgzkj4BAAAAAAAAAAAAAAAAAACSAEmfAAAAAAAAAAAAAAAAAAAASYCkTwAAAAAAAAAAAAAAAAAAgCRA0icAAAAAAAAAAAAAAAAAAEASIOkTAAAAAAAAAAAAAAAAAAAgCRQO+wCQNwYMGGBLly61+fPnh30oKe3333+3hx56yN544w374YcfbL/99rN69epZz549rW3btmEfXkr79ddf/dy8+eabtm7dOjv44IOtdevWduWVV1qZMmXCPjyY2cKFC+2iiy6ys88+20aNGhX24aS0adOm2YgRI3K8/b333uP3JiRvvfWWTZo0yT755BMrUKCAVa9e3f/GtG/fPuxDS0m1a9fe4306duzIe1pIduzYYRMnTrTnn3/e1qxZY8WLF7dGjRpZ37597aijjgr78JDP5va//PKL3Xffffaf//zHfvrpJ6tQoYKdc845dvHFF1vhwoTheTFnZ8zjOx9nvMOZazPu8Z1DM97xnxsz5vGf9zLmsbF582Z74IEH7PXXX/dxLFeunJ1yyil2ySWXWOnSpTPcd+3atTZu3Dh/f9dcp0qVKta9e3c799xzQzv+/LDm8ccff9gjjzxiM2fO9HnjIYccYqeffrrPG/U7kNlXX31l99xzj3344Yf+vbVq1bLevXv7eQMAAAAAIBnwyU0+NH78eJs1a5aVLVs27ENJaVu3brVu3brZF198YUcccYR/vWXLFl8k7tevn/3zn/+0yy67LOzDTEk6Dzof33zzjTVv3twXjleuXGmPP/64fzj79NNPW/ny5cM+TEv135/rrrvO0tPTwz4UmNnnn3/ul1r0L1GiRJbbs/vwHHlv8uTJNnLkSE+A6dChg+3atcvfwwYOHGjr16+3Xr16hX2IKUd/37Oj9zKdLyWMNWvWLO7Hhf+6+uqrbc6cOXb44Yf7PEAL3Jozv/vuu/bggw/a8ccfH/YhIp/M7bXof8EFF9jXX3/ti8aVK1e2d955x+666y5PMNIiP2I7Z2fM4zsfZ7zDmWsz7vGdQzPe8Z8bM+bxn/cy5rGhxM3zzz/f5ylVq1a18847z37++Wd77LHHbPbs2f56VzKtaONQ165d/Zwo0VyJiTpXw4YN8+8fOnRo2E8nKdc8/vzzT7v88svt/fff99e3Xs/Lli2zCRMm2OLFi23KlClWpEiRyP0/++wzf+3r/ejMM8+0YsWK+WP379/fbrjhBr8NAADg79IcQxsMM38NAEDMpSPf2L59e/r111+fXqtWLf93wgknhH1IKe3uu+/28zB8+PD0Xbt2Ra5fv359eosWLdLr1q2bvmrVqlCPMVXdfvvtfm7uvffeDNc//vjjfv3QoUNDOzb8l85B8F42ZMiQsA8n5XXp0iW9QYMG6Tt37gz7UPD/VqxYkV6vXr30du3apW/cuDFy/U8//ZR+3HHHpR9xxBHpmzdvDvUY8T+PPvqov58NGzYs7ENJWQsWLPBz0KlTJ58zB9577730OnXqpLdp0ybU40P+mtsHc82pU6dG7rdjx470fv36+fWvv/56KM8hP8/ZGfP4zscZ73Dm2ox7fOfQjHf858aMefznvYx5bASfx2vc0tLSItd/8MEH/p7Tp0+fyHV9+/b1+86bNy9y3bZt29LPPffc9Nq1a6d/8skncT/+/LDm8dhjj/lto0ePznD9rbfe6tdPnDgxw/UdO3b09/zPP/88ct2mTZv896N+/fo+xwcAAIiFINZnfQ0AkBcKxj6NFGFQu7t27drZM888Yy1btgz7cGDmu4O1c+df//pXhh082o2s3d87d+70lmKIv++//9530qtlTzRV+RC19UG472czZsywVq1ahX0oMPPKN19++aXVrFnTChZk2pAoVOVMLftuuukmr1IU0HubqhR16tTJNm7cGOox4n8t4+6++26rVKmSXXvttWEfTsr66KOPIn/rixYtGrle1aWqVatmq1evtk2bNoV4hMgvc/vt27dHKlCqilOgUKFCNnjwYP/6qaeeCuU55Nc5O2Me3/k44x3OXJtxj+8cmvGO/9yYMY//vJcxjw3NAV999VXbb7/9/L0luppk48aN7ayzzvI5ot7rVeVTVT0bNWqU4fN7VZnUe5CqQE2fPj2kZ5Lcax5BJc8rrrgiSzt4VcyOfi0vWbLEK32eeuqpVqdOncj1ZcqU8WqhaWlp9vzzz+fRMwIAAPmdOtaou4Sqv+szw+HDh9u3337rMb/mjgAAxBLt3fOJZ5991tsi3XjjjT6BiP7AAuHo2bOntyQsWbJkltuCDwB1zhB/9913X44TcTn00EPjfEQIqP2VWlode+yx1qNHD/9wF+FatWqVbdu2jb8rCWbevHn+XnXMMcdkua1z587+D4lBH/D89ddf/t4WtGdF/JUuXdovtdCauQ2gWitqkfbAAw8M6eiQn+b2H3/8sf3xxx/Wtm3bLAlcSnCpWLGit5jUh7xKqkDu5+yMeXzn44x3OHNtxj2+c+hFixYx3nGeG/Maj/+8V62vGfPcUwKt5oA1atTwpMHM6tWr5xspNJb777+/J3Y2b948y/2aNGni52bhwoVxOvL8s+ah1/qaNWvs6KOPthIlSmS47YADDrAGDRp42/f169dbuXLlImOc3XkIrtN9lAAKAACwrxuwtAll69atvrkw2LSsjT/ahKgNn7R7BwDEEiW78tEi5Ny5c61bt25MFBJE9+7ds/1wSJO5N954w7+uXbt2CEeGzH777Td7/fXXfVd94cKF7corrwz7kFLWiBEjfNHh9ttv570sQaxYscIvdT70O3LCCSf4B+ZaEH3llVfCPryUTcb46aefrFatWvbjjz/a9ddfby1atIicF32AgMSgii7vvPOOnx8qsYfrtNNO84peTz75pFdt0Qdva9eutaFDh/pC7QUXXJChKg/wd+f2SuCSypUrZ/s4SqJQ0oWqWCI2c3bGPL7zccY7nLk24x7fOTTjHf+5MWMe/3kvYx4bQQyhscqONg2JxjEY88MPPzzL/ZTwqaqrul9Oj5WK9mbNY29ey7Jy5Uq/VKWtnM6DkkJ1LoL7AgAA7C1tUlbCp+YT2uymavAvvfSSdenSxX799Vff+Ka4lLVPAEAskfSZTzRt2jTLTlYkJn3oqgoG+sBJCzoI17Rp07yKzVVXXWUbNmyw0aNHZ7vTG3lPwY8W8gcNGhT5QBaJsxCttm9aIFJrMlUCUQCrFrdqzYf40iK1aPFOLShVsUILe2p5pvPSt29f3zWK8D3yyCN+yWaCxKh4pJZ+9evX9wVvVdI5+eSTbebMmZ5kE7SwBHI7t9eHuHLQQQdle/+gouzmzZvjepz5ec7OmMd3Ps54hzPXZtzjO4dmvOM/N2bM4z/vZcxjQ+On5EFVmvz0008z3LZr1y5PWAySP1VpVUqVKpXjmOt79D6FvV/z2NfXcnD/7M6Dqt6qOmiQrAsAALA3NIdThXLNIS655BI7/fTTrVixYj6Pufnmm61x48a+8WTdunVhHyoAIJ+hvTsQR9rVc9ttt3llmlGjRvnOYYRLrZf69OnjFT9UpUkLnJp0a1KO+NHi/S233OKL99q9j8ShCmaHHXaY9e/f3zp27Bi5Xgsaaq310EMP2YknnuhttBAfam0WtApp1qyZPfDAA94mTi699FLfOXrHHXdYq1at/NwhHMuXL/fWoPrd4PcjfKqWc//993s7nSOOOMLPiaoGzp4929/HypYtm+E9Dvi7c/ugMlNOlWOD69PS0uJ6rPl5zs6Yx3c+zniHM9dm3OM7h2a84z83ZszjP+9lzGNH7yGqHqz3clVw0kYVJfKPHz8+UjFS7/d//fXXXo05lT73zd6Oa/Ba3tP9Nacn6RMAAOyLnTt32rJly6xChQrWvn37SCJo0Mq9evXqtnTpUr+P5ui0eAcAxAqVPoE4VgFSpQ7RQgIJIInh1FNP9UVjnZOXX37ZF5TvvPNO++STT8I+tJRy3XXXeVCkxAkCncSi960333wzSzKUqj+p2lZQFQrxU6hQocjXWlAKFqtFHx6oXZ8WMVSpC+GZMWNGpCU0wqe/82pv2aNHD3vuuef8746uU+tcVXi59tprvVojkNu5vXbxRy8mZxYs4quCEGIzZ2fM4zsfZ7zDmWsz7vGdQzPe8Z8bM+bxn/cy5rHTuXNnT/jUBgq19FR11VNOOcXnKSNGjPD7FC9efK/HPPr9CXtWtGjR3SbLZn4t7+k86HrOAQAA2BfaXKJ/2mz1ww8/RCqIKw7VZb169fw6fe4irIMCAGKFpE8gj2knjyr/3HTTTV4FaOzYsXbGGWeEfVjIRsWKFSMVPoP2S4hPu84FCxbYkCFDqEqYZBo0aOCXq1evDvtQUkrQmkyLEFqgziz4AOG7776L+7Hhf/R3ROdIrRQR/lzsmWee8d+da665JsOHatp9PWDAAN9drRY8QG7n9kGbyJxaoQZVg/bUphJ7P2dnzOM7H2e8w5lrM+7xnUMz3vGfGzPm8Z/3Muax1a9fP08aHz58uCf0P/jgg75RJXjvOfTQQ/dqzHXOGPN9E7R1z6k6Z+bX8u7Og36HVBk6OG8AAAB7Q/OMunXr2q+//mrvv/9+ls0ommPIH3/8EblO83IAAHKL9u5AHtKkTh/0qQWhPoC67777qPCZAOdk8eLFvptKbfIyU0UV+fnnn0M4utRtjSr6YFz/MlOFCv1T9RslWSB+FIiqDZ8CUbUnyywIUIMqCYgPvU8p0WjHjh3ZtgEJqlWokgjCsWLFClu7dq2dfvrpnIcEoNaK2mldo0aNbFv41a5d2y+DXdhAbub21apV2+2GCF2vpBclXiA2c/YTTjjBv2bM4zMfVwtsYbzjO9fmvSW+c2jGO/5zY8Y8/vPeDh06+NeMeWzfZzJXs/3oo4/8smbNmrZ169Ycx1zvQevWrbOqVat6NSjsvb15/xD9XkTff82aNV6VNZrOgc5FdpsDAAAAcortNX/TZybaPKKYR7GnBLFnsAklmOcpLg3uozmikkaDxwEAYF+Q9AnkES1QXn311d6qTdVoHn744ciHSgh3AblPnz7+wfW7776b5UPwzz77zC/1ISviQ4FQdouc+vD1xRdftDp16libNm18lxziT20Ot23bZu+8844dfPDBGW5bsmSJX9avXz+ko0tNet9q2LChj78SYpo2bZrhdrWQE/3uIBxLly71SzZ6JAZVctHvzffff+/zgMx/+7/99lu//Mc//hHSESI/ze2PPPJIbx25aNGiLB/Wam6jJIvjjjsuQ5th5G7OzpjHdz7OeIcz12bc4zuHZrzjPzdmzOM/72XMY2fw4ME2b948mzNnjpUsWTJyvcb1tdde8/mM/s5qQV+L/qr+pMqg0fTepGTDzEmI2LOyZcva4Ycfbh9//LFvmIhuza7EC72/6/ZDDjnErwvmPAsXLrSzzz47w2O99957fsl5AAAAOVEMr7m2NnHqcylt1NTmcHXrUAcVVXgP5tbBZsOg0mfw+XOQ8Kk5pCrE33jjjayBAgD+FrYLAHlkwoQJviisHfFPPvkkCZ8JQrulWrdu7buqxo8fn+G2Tz/91CZPnuwfDka36UTe6tSpk/Xv3z/Lv+CDVwU6+r8WmhFfCkxPO+0034145513RgLToFrLQw895L8vnTt3DvU4U1G3bt38UtVvo1uY6bw89dRT/iEDvzPh0d8T0UIqwqfF7lNOOcV+++03u+eeezLcpiqBwXVnnXVWSEeI/DS3L1q0qM8jlWwxZcqUDEmjo0eP9q8zV4BC7ubsjHl85+OMdzhzbcY9vnNoxjv+c2PGPP7zXsY8dlRBUmP+xBNPZLj+/vvvt1WrVnmCv+Y25cqVsxYtWniirRJEA9u3b7exY8f614z536O/lUrACMYxoP/r+uD9Xxo3buxz+VdeecUTRaN/R/S3V78bfM4FAACy880339jIkSPtvPPOs4svvti7oWgzz4YNG3wuXr58eU/ozNy6XXPFzF3zFixY4J95LVu2LJIECgDAviqQnvmvDvIFtevRLtf58+eHfSgp6ddff7WTTz7ZdxdrsTKn3TmqctC8efO4H1+qW79+vZ1//vneXkw7t4866ij/eu7cub7rasyYMSRLJQBVdVLQRFv38NvD6fflu+++s3r16nlFHAWwWqDQwrR+X7SohPi79tprbcaMGf73XudAVUNURUStQbSwwftYeHr06OEVpDQP0/lB+DZu3OgLqFp0VcKBqrvowzb97de8rVevXr4TG4jF3F4LxlooVoUsfZ8SATSvUXXKdu3a+d/OzG2Fkbs5O2Me3/k44x3OXJtxj+8cmvGO/9yYMY//vJcxjw0lFWoDxcqVK61Vq1aeUKi27nrda/y1eUhtPoNqq127dvXEc42xfid0bnS+evfu7VVDse9rHqq2pXHVa1djrsrOSqBQgq3m6JMmTcpQ+VaVVfW7oNe3kp+VlPvqq6/ajz/+aMOHDyf5FgAAZKH5nRI809LSvCOHNg1++eWXXj1fm6YqV66c7fcpFWfQoEE2c+ZM38TcrFkze+utt3yuvXr1aps2bZrPcQAA+DtI+synSPoMlxZo+vbtu8f7XX755TZw4MC4HBMy0gfb2nGvD1b1gZ7aL2mBTeeElsiJgaTPxKEFogceeMBmz57ti9AKYo855hj/faGSYXg0hdOCtT4U+Prrr30BQwkxV1xxhVeuQHjat2/vu34//PDDDK3lEC4trKpyi97LtLCt3xkl2CgRQZXWgFjO7TW/VDUttWnSa08t4ZUMcOGFF2ZptYrYzNkZ8/jOxxnvcObajHt859CMd/znxox5/Oe9jHlsBJVU3377bf9a49ihQwev8hld0UmU4Kkkc7USV9JAlSpVPMlQCbgk2f79NQ8l8atalhL5talClbaUWNunTx9P6sxMbd/HjRtnS5cu9f/XrFnTE2/btm0bl+cCAACSh7pD9OzZ0ypVquTzBc0xRJs1tYlTCZ+FChXKEHdGz+uuuuoqe+ONN7wyvL7ntttuszVr1ng3IdakAQC5QdInAAAAAAAAAAAAAAAAELVRU5XytZHtuuuu8wr5QaXx6E1SqqqvTW6qAl+qVKkMj6Hv0+bDSy+91CuOf/HFFzZ16lQSPgEAuVY49w8BAAAAAAAAAAAAAAAA5A8//fSTLVu2zLugZJfwqWTQDz74wLtJ7Ny507Zv3269evXy+6pCuagVvEyYMMG7e5DwCQCIFZI+AQAAAAAAAAAAAAAAgP+nypyq4nnsscdGrgsSPqdMmWKvvfaaLV261P+vSp9//PGH3XLLLbZhwwbr37+/FSxY0I477jibOHGiVwBVwmeNGjVCez4AgPyFpE8AAAAAAAAAAAAAAADg/1WpUsUTN1XtU9U7t2zZ4tU9lbz58ssv+22VK1e2M88801q2bGlffvmlPfvss/bII49Yu3btrFatWla3bl1r06aNDRgwgIRPAEBMkfQJAAAAAAAAAAAAAACAlJSenm4FChSIXEqZMmWsUqVK9tBDD9nKlSu93fuPP/5oa9eu9ftcfvnldvzxx1vjxo39/g0aNLAdO3Z4kqiSQ5X0efDBB9s999xjhQoVCvkZAgDym4JhHwAAAAAAAAAAAAAAAAAQhrS0NPvrr79s3bp1keuUtKk27eXLl7d58+Z5MufOnTu9ZbuqfV511VWRhM9t27b5ZaNGjTL8X0j4BADkBSp9AgAAAAAAAAAAAAAAIOWoKuekSZNs+fLltmbNGjvppJM8sbNjx452xhlnWMWKFe2XX36x1atX+/Wq3qkqoEFVUCWCFi9e3B/rueeeswMPPNCOPvrosJ8WACCfI+kTAAAAAAAAAAAAAAAAKeWjjz6yvn372pYtW6xy5cpWsGBBmzlzplf2VDv3Sy+91Bo2bJjt9yrh888//7QiRYr4/+fOnWtvvvmmNWnSxEqXLh3nZwIASDW0dwcAAAAAAAAAAAAAAEDK+PDDD+3CCy+0ww47zEaPHm0vv/yyPfnkkzZ48GDbsWOHTZ8+3ZYuXRq5vyp6yu+//+5VPyVI+NT3jhs3zrZv325Dhgzxap8AAOQlKn0CAAAAAAAAAAAAAAAgpRI+69WrZwMGDLDmzZv79dWrV7dDDjnEq3w++uij9vHHH1vjxo39tkKFCtnmzZvt8ssv98RPtX8vXLiwLVy40BYvXmz777+/TZw40apWrRryswMApAIqfQIAAAAAAAAAAAAAACAlWrr37NnTjjjiCBs4cGAk4XPXrl1+WapUKWvWrFkkOTQ9PT1S5XPjxo2eFPrFF1/YqFGj7NZbb7Vly5bZ8ccfb4899pjVqlUrxGcGAEglVPoEACABKGAsUKBA2IcBAAAAAAAAAAAA5EsrVqywrl27WsWKFa1///6R5E6t0xUsWNATP3VZvHhxv16JoVq/U5VPqVatmt111102f/58++2332zr1q2e8Fm2bFkrUaJEqM8NAJBaSPoEAERol9qCBQvsxRdftOXLl9v69ev9+sMOO8yOO+44u+CCC6xy5cqW7GbMmGHXXnuttW7d2u6///64/dzatWv7pVo8lCxZ0r/etm2bTZgwwYPHSy+9NM9+9qZNm+zxxx/3IHTNmjX+cw866CCrU6eOtWnTxjp16mRFihTJs58PAAAAAHvr/fff9zZ7gVdeecVq1qy52++54oor7M033/SvR44c6TFOQLHsokWLsly/J4qdnnjiCXv33Xdt7dq19tdff1np0qXtyCOPtHbt2ln79u19MRAAAAAAkPh+/fVXmzp1qid4ak1Ml5kpxtuwYYM9+eSTvpan9u+Z6Xu1tgYAQJj4VBIAEFnM6tatmycezpo1y4oVK2YtWrSwRo0a2S+//GJTpkzxBa2ZM2eGfaj5yj333OOJp2lpaXm6YNq2bVt74IEHfNfhMcccY61atfJdjAsXLrQbb7zRzjrrLA9iAQAAACDR7CkO1cLd22+/HdOfqURTJXZOnjzZN0iq3V/Lli29jZ+SS//1r395DK2qLgAAAACAxPbJJ5/YfffdZ927d/fNgN98842NHTvW5s2bZ3/++WekG5/at0+bNs1ef/11O/fcc72KJwAAiYhKnwAAr+jZpUsXT+5U9cvBgwdblSpVIrcr2FHSp9oVXHPNNVa0aFF2sP0Nr776ql9Gt3fQ4mFe2rJli7enUGXPO+64w84+++wMtyvRU+dbyZ9XX321PfXUU3l6PAAAAACwt1RVZfPmzb4xccCAATneT4txqsKpaiuKX2OxKXLo0KHevu+hhx7yDZHRvv32W7vqqqvsww8/9E10//73v3P9MwEAAAAAeeOPP/6wMWPGeBeHE044wbsBqo37Cy+8YOPGjfP7nHTSSb6hUF3zFAd27tzZBg0a5LcFLd8BAEgk/GUCAHjQooTPU0891caPH58h4VO0cHbJJZd4uzwlKSp5cMeOHaEdb7KqXr26/4tnYDh37lyv7nnyySdnSfiUsmXLerVRJfJqwfLzzz+P27EBAAAAwO5UqFDBjjjiCFu1apV9+umnOd7v5Zdftv3339+7GsTCiy++6EmkquqSOeFTqlat6guGweY+LQwCAAAAABKT4kUlccptt93mHRsGDhzo62ZaF1MF0JdeeskmTZrkCZ+qBHrrrbf6/bUuSsInACAR8dcJAFLcRx99ZIsXL/akv+uvv363gUvv3r2tXr161rhxY/vpp58y3KZ2B0oGVeJo/fr17eijj7YePXr4Lrn09PQs7cZr165tw4cP9woqaovXrFkza9iwoVccVSsF+eGHHyK36WdqwS24LfD999/7Y51//vm2adMmGzJkiN9fbekVlD399NNZfv7u6GeqUovanx955JH+WFdeeaUnREZbsWKF366fraoy0RQAdu3a1W/TYwX0f/1TpZrg/6qgKkq21f/vvfde30WorzXe2VHlmqZNm/o472lxUedFgrYU2TnooIOsV69eHvBmd/713BX8nnjiidagQQM/xzfddFO27eD/zutArzvdrl2U+p727dv7uQx88MEH1q9fPzvuuON8zJXAqtfO2rVrd/vcAQAAACS/M888c7ct3tetW2dLliyxtm3bWrFixWLyM4N4ZHdxVI0aNTzuUwyblpaW5fb58+fb5Zdf7q0AFeuefvrpdvfdd/umvMwUFyvGCeJQxXuKB9VGPrMZM2Z4HHX//ffbww8/7G3njzrqKD8OJaoG/vOf//hjBLHjKaec4rGaNnwCAAAAQKoI1qa09nSu/IX7AAAU6ElEQVThhRfad999Z6+88ooXRbnsssusQ4cO9tlnn9moUaM84bNjx452++23R9b71AECAIBERNInAKQ4VUQRVURRgLM7akv+/PPP+0JR+fLlMyRAnnHGGTZx4kRvkRAk7ymhVEmYanuXXWXQlStXemKmWos3adLEKlWqZB9//LFXFH3mmWf8NiUGKoGzcuXK/ngKwN56661s25h369bNq6xokUzJhl999ZUNGzbMW9LvDSW/KrhTi/PChQv781DVUy206bGnT58euW+dOnW8HbrccsstGRbuHnjgAU+UrFmzpreI2N3iZbVq1fzrWrVq+f+1eHfWWWd5Eq7aTGSXWDl79mxP9tSinRI2d0dJukHFzwkTJvg4ZUetErW7UT8/mhJQu3fv7uN66KGH+pgoQH7yySf9/GhxMrevAy3QqnViuXLlfMGyVKlSdvDBB/ttkydP9p8/Z84cf81pEVQLuToXCrz1egEAAACQf2lhTpvTXnvttWw39GmxTtcHyaGxEMRR06ZN89h0+/bt2d5Pm+FuvvnmLLH0nXfeaX369PHYVbGs2gcqFtMCohJFozfvvfPOOx4DKsbRYqJiHiWUvvfeex4bB9VlMlMVGrWVVwynmLlixYq23377+W1aoFTCqeJpVSXVxjklhCpWO+ecc2z16tUxGysAAAAASGTazBfEkip+ovW4xx57zNavX+/xkmInxWSKmQ488ECPmQIkfAIAEhlJnwCQ4pR4KVok+jtUdVKVMFUtRImRSi5UtUq1QFCioJIm33jjDa9kmV2SpSp4KqkyaJ3QunVr27Vrl91www2euKkERyVRqhKkKpcEC2+ZKcFz27Ztfr9HHnnEK57o63/84x+e2Bokt+ZESZtKStRCnCqsqHqnjlkJoEp8VOsHLeYtX7488j2qmqJjVNVT7QAUJSHqeJW0qQW43VWaueuuu7zqiyiBU//XpZIeVSlT46C2gpk9++yzfhm0otgdVcfUAp8CWh2PkiovuOACb+m+YMECT87MiVpa6HkpqFXC6HPPPWfjxo2zWbNmeWVVVfXUmOT2daBWjVoQ1Vjr50ydOjXy+tDPL1mypD3xxBMZfv51113nC6X9+/fPcQEWAAAAQPJTQqXiLlX6X7p0abZJn4cccojHPrGiBT+1lVeco9hUHSAuueQSe/DBBz1O0fU5UYVNxaTaoKdETm2YU2ykjWxK6FQMPnbsWL/vzz//7HGo4rJ//vOfHocq5lFMpGRTPS/Fo/o6s2+//dZGjBjhG+X0T/GeKIbUAqaSQFUVVHGWHlM/Xx0e1N1CnRz2pSMGAAAAACQTrfVFx21B/KMNdurCoPUtrT8pFtP6lRI/tT6p79P1WreM7qQAAEAiIukTAFJcUElSi0l/hxLwtGikypeqqlmkSJHIbarcGSw8adEpu+Q8fY8SJIPddqoUGXytBazixYtH7qtALEgSzKnKSvXq1SP/19dBpc0gkTAnWkTTgpt+vipLRrfxUxVUBXyqUqnKKAFVm1HV0wMOOMAX07S4p6qiup8qW2aumrkvzjvvPL9UZdVoGmtVRlW1GC087g0t8On4NZYKUhctWuStAJW0euyxx/qlEkAzU3KtnsvFF19sLVu2jFyvJFA9P+2A1OMpcM7t66Bnz56Rr4MW80rcVSA+aNAgX+TNfH+1m9dOzD0l9AIAAABIbkEVT20oi/b11197xwFVA41lBRbFqIpdFJepC4Q2GL799ts2ZswY69Gjh8dR/fr1y7bzgDasiZI4GzRoELleMZJiJSVjBpU+lZC5detW36inrhZBLCRKOr3xxhv9a22Oy0xxaPRGwOB7g/tqg54q2AQ0PopXdd2nn37qlUQBAAAAIL9RJz7FiNpsp+4H0fGSLrXm1bBhQ+/MoPUyUeJn37597eyzz/ZW7ypgom58JH4CABIZSZ8AkOK0gCXZtd3eG0FAFLTcy0yt1pUcqN1yn3zySYbb1C5cC17RypQp45eq0Knbo6kCpmRXVUUtF6ITEwOqpKLFLbUY//3333N8HsGCV07VYbQIJ0q4jKbjv/766/1rLfopIVU/U4mjuaEkR7V+VxUYBagBJZeqAqjaS0Qnpu6OFhdVyUWJnVqkPPfcc/2ciAJWXa/ETyXZRld7CYLhNm3aZHlMJZCqvaIqyujxc/M60LnOnHS8c+fOyGOqOml21D4+u3MCAAAAIH9RRwS1LlclTMVDgWADWCxbu0fHmEqcVLLnyJEjrUOHDnbYYYf5bUoCVVcKxVZq2R5QPBXEMW3bts3ymBUqVPCuCEGlz+C+webHzFRpRl0n1I5dlU6jKXkziOcD6kKhRFhdr82LmSlWU6t5IY4CAAAAkN9og502zyk2UtcFbcZTAqe61AXrX1rTUkcHXT799NMZCpgo8VOxnzrhqXiKEkNJ/AQAJKqMnwwCAFKOEitVGWXTpk1/6/t//PHHSDCUE92m1nPBfTMncUYLEhlLly6d423ZUeXL7JIN1V5diaQK8PRP1VCys27dOr9U23D9y4keQwGeFhwDSsBUxRklTypIvO222ywWtICoNhKq9tmoUSNf3NTXSmLt2LHjPj9eiRIlPClT/0TnXDsVFfiqTaIqe6qaTJcuXfz24HxpYTIvXwdqe5hdYK6F1JySTqNlXvwEAAAAkL8oZjj++OO9u4I2pwUbw9TaXRVZoitqxpriyU6dOvm/IHZU7DdlyhT78ssv7e677/afr2NSHKNNiqoUGmxozE0cpdivfPny9s033/h9o2Oz7OKoIK7Vps769evv9mcTRwEAAADIb7SOqHUudfZTNz7FUUr6nD9/vncTVMEWbZJT0RUldyquU6fAoJBLkPip9UYVYdHtKhYTvSYIAECiIOkTAFKcFoJUuSS6muTuqP2cgiYtuKnKSXRlyJwElViiW35L5qokubG7Vn7BMe7uPsExqmV4dsmo0bSAFh3gbdy40ds9iBb4XnrpJbvooosstxRwqi26Ekq163DJkiXeQl1VR8uWLbvH79dxahHyt99+y7Za5sEHH+wVcVRVZujQofbCCy/Yiy++GEn6DKq/7k1F0dy8DrJL1g3uq9dIu3btdvu4QbUdAAAAAPmX4hYlfc6cOdPjG21c+/77761///4x/Tnbt2/3aplpaWnWpEmTLLcrCVMxk9r+9enTx7tGKJbSMe1LDLW3cZS6IOxrHFWyZMlsO2Fk7sYAAAAAAPmJ1vd69OjhcaM24l122WXefW7ixInewUHrbar+qUIrF1xwgXe007pn06ZNrUaNGh6jKfFT36fNfHosdV8AACARkfQJAClObfLUouCDDz7wHW9qtZ0TVV688847bevWrXbTTTdZ165dI/dfs2ZNjt+nVnRBkmFeWb9+fbbXq524dvQpeXB3iZKqeKoqlErWbNGixT79bLV3V2sIjeW8efO80oseo2bNmpYbCkjVElBBqBJz9djSuXPnvfp+LTiqGo2CVO1izOn5a0FSi5ZaqFRlmugxUZKpqsVkd+7UzlBVT7W4GevXgarWKLFWC5yqnKrgGgAAAEDqClqdKw4ZMWKEV/mUs846K6Y/RzGQujkUL17cFi9enGNFF12vDgxK+gziqCCOUeKoYsTsOlgo7tLz0EZKxVErV670OOqoo47Kcl/FW0H1zr2JoxTDBR0v7rrrrn1+7gAAAACQzLQepkqf2hyooioqotK7d28vLqL/a63syiuv9PW8fv36eSKobtcanJI+tZFOG+wOP/xwX/uLZfEaAABiLeuWcABASqlbt64vNqlC5e23377bSiNjx471hE8lI6rKihx77LF+qcTEoKpItI8//tiT/Q488MA8rSSihNXly5dnuf6NN97w42rWrFmWyijRtItP5s6dm+3tepzTTjvNrr322gzXT58+3ZMxtfNv9OjRHiSqIsw111zjC3R7sqcKMGrxLrNmzfJj0yLeSSedZHtDC30KbmXy5Mm7va8SXkXtLgJBVRtV08kuoXT48OE2cOBAryQa69eBFkqDlvbZ/Xy54447Iu03AAAAAORvSsJs1aqVJ1i+8847XpGlYcOGVrly5Zj+HC3uKe7Spsenn356t/dVwmZ0HKU4Jmg1n10co0TQ6667zivLSBBHBQmsmc2ZM8fjS7Ue3JtuD+qCoH+Kj1XNJjv62docqNgNAAAAAJKZ1jYDWk8K1twUO6owi9aRvvrqK6tQoYIXGAmKtjz//PO+zrlq1Sq/77hx47zjQ3THQBI+AQCJjqRPAIBXSVEynhILtftNLfKiqUrJmDFjIomDw4YNsxIlSvjX7du392BpxYoVnjQaneioaiWDBw/2r88777zdJl3Ggnbdqapn4IsvvvBETOnVq9cekysPOOAAb+MwderUDMmv33zzjd16662eGFmlSpXI9UpiHDVqlAeRul2LkNoRqETazz//3IPEvUnMFCVOZkfJqlp0VCuKTZs2eSWZfQk0r776at+VqNYVCm63bNmS5T5ajFQFVz3uxRdfHLlerS30vY8++qi9//77ketVfVPPW2OtRUqNSV68DjSWcvPNN2f4+UES7uOPP+4/j7aEAAAAQGoINh8qtlF8dOaZZ8b8ZyguClrGK7Z55JFHPCaOpsXEGTNmeJylqp3dunWL3HbhhRf6parIfPnll5Hrlbx54403ejyl56HvU3yk2Fox2cMPP5whDv3ss888zgxis70VxFGDBg3yeCnaE0884bGljksJswAAAACQrLTRTeuCWi8SrWcp3pLq1av7ZrcNGzb4hkHFdFqPO+GEE3ztTt0MdR/FXHocxWLqirh58+Y9FmsBACBRsD0BAOBVKqdNm2aXXXaZt8pTRcl69ep5hRC1R//oo4880FFApOqOSvALKIHv3nvvtT59+ngSnoIrLR6pIqha4WmXnXbJDRgwIE+fg45DwZvaoatqpwK4RYsWefKhWjXsqWW72upph5+SJJVkqMU7VWtRkuQHH3zggaKeR5A8qv8rkVHjo4U6JWcGC4TaLagkUi0OqipnUDEzO6rYIqogo7Z9LVu2jFT3FAWXaueuBcPg631x4oknetB6yy23+HPSOapfv74/Xy06ahFQP1cJq0qQjU6gVIUaVSzV9T179vTKm4cccogntCqRU9Vv9Fzz6nWgsdO5U6CthVO9JitWrOg/W8cQLGQ2btx4n8YEAAAAQHJSlwq1UNfGPMVe0bFpLCnG0ya38ePH+wY5XSqOUov133//3RMylXSqY7nnnnusXLlyke9VhwglaSou0qa9o48+2hM71f1AFTi1sBhsilN8FcShasf+zDPP+CZC/ewgDu3atWuGpNI90X21aKnKNWpTrzhKx6fqNtrIqIVQbeLTpj0AAAAASEZac9K62cKFC+2tt97y9UDFWdFFR1TkRG3bn332WV930xqn1gzVoUEx3zHHHOMFR9TlUGuK0Zv2AABIBiR9AgCc2hy89NJLHvy8+eabviCkhEAFP0oKVbJhjx49PBE0MyUKvvjii57kqFbn+n5VzVQynr4vL6qvZFa0aFFvta4gb8GCBZ4gqcU1BXVKpNzbJMMXXnjBK1u+++67Nn/+fCtZsqQnL3bp0sWfR1Blc8KECfbhhx9a+fLlIwt2AbVUV3Ko7jNkyBAfG41HdlThRYt/qrain6f7RSd9SpA0qgBUVT/3lRb6lPSqKqYKgFWhVIuACnC10Hf66af7udVzyUzPQ89n0qRJ/nx1rEoY7d69uydkapEyL18HWvxUNVG1cF+2bJm/LpVsevLJJ/u5VYIvAAAAgNSg+PTUU0/12E8xTpkyZfLsZ11xxRV2yimneIyshUC1+lNMpBhHMbKSKxUXlS5dOsv33nDDDR7HqIuEEkS1gKjYSxstL7300kjnDFG8qjhUlT4Vh2oTZqlSpXwD3/nnn7/X8WxAsbCSOhXfanPhp59+6rG92sMr/gxiPAAAAABIVkru1AY9JXyqcIm6Gmj96qKLLvIiLYoVVb1TMdXAgQO9i4M27Cmm1OY6tXFXURb9a968uX+/7qs1QQAAkkWB9Oi+QQAAJBm1om/durW3p1+yZInlR6rSqYBTCa1BO0MAAAAAAAAAAAAglX333Xd23333eVVPdbjTxjlt4qtVq5Z3o1PHOBWLUZcFbeyLtmvXrkhbeCWCAgCQTAqGfQAAACArVYIRVXpRZRlVZVFFGwAAAAAAAAAAAADmHfKGDRvmhVMaNWpks2bN8vbt6hChyp66TR0bnn/++cj3BHXRlPApJHwCAJIRlT4BAEktv1b67N27tz+fIPnzrrvu+lvt0QEAAAAAAAAAAIBUMHnyZJsxY4Z99dVX1qJFC+vatatt2LDBW7yPGDHCunTpEvYhAgAQE4Vj8zAAACCW6tevb4sXL7YKFSpYnz59SPgEAAAAAAAAAAAAshG0ar/ooos82XP27Nne9v2zzz6zunXrWrVq1WzatGnWoEEDq127dtiHCwBArlHpEwAAAAAAAAAAAAAAAElLqS8FChSI/F8d9aZOnWoLFy60X375xa8bPny4nX/++RnuBwBAMiLpEwAAAAAAAAAAAAAAAPnKxo0bbfny5fbvf//bvvjiC3vttdesSpUqYR8WAAC5RtInAAAAAAAAAAAAAAAA8qWdO3d6AmjZsmXDPhQAAGKCpE8AAAAAAAAAAAAAAADky4TPQoUKhX0YAADEFEmfAAAAAAAAAAAAAAAAAAAASaBg2AcAAAAAAAAAAAAAAAAAAACAPSPpEwAAAAAAAAAAAAAAAAAAIAmQ9AkAAAAAAAAAAAAAAAAAAJAESPoEAAAAAAAAAAAAAAAAAABIAiR9AgAAAAAAAAAAAAAAAAAAJAGSPgEAAAAAAAAAAAAAAAAAAJIASZ8AAAAAAAAAAAAAAAAAAABJgKRPAAAAAAAAAAAAAAAAAACAJEDSJwAAAAAAAAAAAAAAAAAAQBIg6RMAAAAAAAAAAAAAAAAAACAJkPQJAAAAAAAAAAAAAAAAAACQBEj6BAAAAAAAAAAAAAAAAAAASAIkfQIAAAAAAAAAAAAAAAAAACQBkj4BAAAAAAAAAAAAAAAAAACSAEmfAAAAAAAAAAAAAAAAAAAASYCkTwAAAAAAAAAAAAAAAAAAgCRA0icAAAAAAAAAAAAAAAAAAEASIOkTAAAAAAAAAAAAAAAAAADAEt//Ae6W+2MOHSB0AAAAAElFTkSuQmCC", + "image/png": "iVBORw0KGgoAAAANSUhEUgAACn0AAAb5CAYAAACL3ldVAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAXEgAAFxIBZ5/SUgABAABJREFUeJzs3QeYnWWVOPAzk0Lo0ouAgjSpigoiqCgouoi6Lir2rqxigbX83dXVtay9I4qiIIJUBaT33hIgtBBCSSgJhCQkpCcz997v/5wv3OxkmCSTZJJv7szv9zz3mXbLud+9ge/cc97zthVFUQQAAAAAAAAAAAAA/Vp71QEAAAAAAAAAAAAAsHyaPgEAAAAAAAAAAABagKZPAAAAAAAAAAAAgBag6RMAAAAAAAAAAACgBWj6BAAAAAAAAAAAAGgBmj4BAAAAAAAAAAAAWoCmTwAAAAAAAAAAAIAWoOkTAAAAAAAAAAAAoAVo+gQAAAAAAAAAAABoAZo+AQAAAAAAAAAAAFqApk8AAAAAAAAAAACAFqDpEwAAAAAAAAAAAKAFaPoEAAAAAAAAAAAAaAGaPgEAAAAAAAAAAABawNCqAwAYiCZOnBgHH3xwj39ra2uLDTfcMLbaaqt43eteFx/96Edj4403jv7u//2//xfnnntuHH744fHTn/508e/f+MY3xqRJk+J73/tevPvd717iNrVaLZ544onYfvvte/04v/nNb+K4446LF77whXH11Vf36XMY6HbZZZfy60knnRSvec1rqg4nrrnmmrjwwgvjrrvuimnTpkV7e3tssskmsffee8ehhx4ab37zm2Mguu222+LDH/5w+f2YMWNi6NAlT7cmT54c6623XnkBAIDenOMvTZ5rrrvuurHNNtvEa1/72vjEJz4RG2ywQZ89flEUcfLJJ8eZZ55Z5n3rrLNOHHLIIfH9738/xo8fHz/5yU/izjvvjHnz5pXn+ieccMIyY27me0uT+fLw4cNj0003jZe+9KXxvve9Lw488MA+ez7Lyl9Xpzlz5sR5551X5rjjxo2LZ599tnye2267bey///5x5JFHrlDe3Fvz58+PZ555pnx/DDTN99I+++wTp59+etXhAAAwyOp+H/rQh+Ib3/jGcm/3pz/9KX784x+X32+xxRZx/fXX90lOs7T8cO211y7rj/vtt1985CMfKXOONVUPueqqqwZk7rG65Hto5MiRcdRRR8UxxxxTdTjxwAMPxDnnnBO33HJLPP3007Fw4cKyfr3TTjvFQQcdFEcccUSMGDEiBlt9dSDn1UDr0/QJsJrtvPPOSzR31ev1mDlzZjz00EMxduzYOOuss+Ivf/nLcot5rebGG28sC2nZ3NcfkhXWnAULFsQXvvCFuO6668qfN9tsszIpzIJxfjCSjaB5ecUrXhG/+93vyibowaCjo6N8vn/+85/jn//8p6ZPAAB67cUvfnGPiwXzHDMX2uVio7z84x//KHPMLPL1hSx4/OhHPyq/z4V5L3jBC8pCx9y5c8sC4pQpU8qiT57vZyGkt0WQbHjcY489nvf7zBmyIfKxxx4rC5lXXnll/Pu//3t86UtfilaVi+G+/vWvx4wZM8qf8xjm5wT5ucDDDz9cNoGedtppcfTRR5fFvr5ywQUXlE25n//859dogysAAAwGl112WfzXf/1XuXBtWS6++OLV8viZ83XP+7L+OHv27HKB3oMPPlgu3vvVr35VNorCsvz6178u61eNRqOsXW233XYxbNiwmDp1atxwww3l5cQTT4zf/va3sfvuu8dgIa8G+jtNnwCrWa70yxV13WXBJ6dnXnvttWWD3CWXXFJOQmw1OfWls7MzNt988yV+nxNeJkyYUFlcVOdb3/pW2fC5ww47lCtY99xzzyWKuNkQnO/9O+64Iz73uc/FqaeeGgPJXnvttfiDnK5TPrMgfvzxx1cYGQAAreozn/lMvOtd7+rxb1mUyUJEFhzznDMbDDNP6wuZp6bDDjssfv7zny/+fZ7v52NlgTMbTV/ykpes0P3mwrBlTWfM6fhf+9rX4tZbby0LTznt85WvfGW0mlzw1Wyafetb31rmP9kg25THMJ/f3/72t/jFL35RLqDrqwbXvL+czjJQfeADH4h/+Zd/KScZAQDAmpSf++e5fNY4lpWn5AK9++67b7XE8G//9m9lI9rSHjcXleXkxsyrskG1FXYcpBp///vfy2bO3NnjBz/4QbzpTW+KIUOGLP77I488Ev/5n/9Z7uqXu4tk/WugvZ+aNb2tt956UOXVQOtrve4igAFio402ih/+8IflhJNHH320bIRrRbnaKwt866+/ftWh0A/kNJ6cYplyq72uDZ8pi8K57WQmSmnUqFHlVhEDSRYd89/Eiha+AQBgZeTiwXe84x3xqU99qvw5z68zx+wLzemU++67b4+/z23YV8d575Zbbhm//OUvF+8K0Irbd99+++3x05/+tPw+mz3z+XRt+Ey5eDIXzX32s59dvHhydRWFB5osMuZ7r3tRDgAAVrdXv/rV5ddLL720V41ku+22W6xJuaV7MxeZNWtWnHfeeWv08Wktv//978uvX/3qV+Mtb3nLEg2fKfOuXKy4ySablJ8FnHLKKTHQNGt6FhUCrUbTJ0DFjZ/Nok9u9w6t7v7771+8/cOyir9ZNM4tKtPdd9+9BiMEAICB6Q1veMPi7/sqv8xz+5SLFXvz+77Ol1/2spe1ZL6cOxz893//d7m9Yj6H3N1jWXIL+9yaMY/rSSedtMbiBAAAVlw2xqXLL7+8PPdfVtNnLtLLqf9rWtYemzWYnNAIPZk5c2Y8/vjj5fd77733MhfdHXLIIeX399xzzxqLD4Bl0/QJULFarVZ+XXfddXv8W67AO+qoo8rpiDk18eUvf3kceuihZQGpp+3TP/ShD8Uuu+wS119/fbl1wxe/+MV4zWteE3vssUccfPDB8b//+78xffr0HmNZuHBh/OUvf4l//dd/LR8nt6U/5phjljkl5o1vfGP5eGeffXb5c27tlz+PHDly8Qqx/Dm38+6L5CMnRB5++OHlFtqZgOQ2A7mN4bhx43q8zQ033FAev/333z9233338jnlMTrttNOio6NjievedtttZax5ab4u3TX/ntftbtq0aeV25rnFXMaWxzC32Mgt/fLY9iS3RcjtF/M45mv0ile8It75zneWz/OZZ56JlZXTNvOxM458zrkd5E033bTEdcaPH7/4+YwZM2ap95Xvt7xOc1XqsgwbNqz8OmfOnHKyzbL84Q9/KLcVydejJ1deeWV8+tOfLl+7PDb5b+A//uM/nhdrblWy6667ljFm0+nynkfzvdr19t/+9rfL91L+G8vtWN7//veX18sibXf5Xs77yWlDZ555Zhx00EHl7d785jeX74ue3kf5HPPfX1Net/k+OvbYY8vv8326rNczr1PFh0MAALSGLCY2dS08rkye08wrc5J/ypwlf27mf/lzyr83b5u54Op6Tt0Lqc34mjsIdPeb3/ym/PvSco2eZA6TW9plPpa5XDZrZu7561//upyOsyJym8fM9VJzAuuyZPNs5urZ8Pnd7373eX8fO3ZsfPOb3yzzgX322afMjzLPz/vuPl2o+dybr903vvGN8uf8/armr+nmm28u87QDDzywzMtzymzm19mw2nwv9CQn0Ob2k3m7jD+nI33yk58sC+U9ab7X8nON733ve/GqV72qjPFd73pXPPvss4uf5/ve975VyiebMvf729/+Vt5f5uV5m4w1p7Rec801Sz0eAAAMPllD2Gyzzcptn++8884er5P1lzyXzQEYuUNCd2uiLtDcoW/u3Lnl15/97Gfl/WWes6xcJq+T59/Lygt6Y2XOsVe0ZtbMQTJP6Ukzd+yeD6WsEWZN9L3vfW/5OJnfZB0ptzifMmVKn9UpeyMbKTM/yjgy73nPe94TZ5xxxhI1qsy5Xve615XPZ1mLBZs5YO4qsTxDhw5d/P3y8p7M5y666KLyfdSTfL9/7WtfK2tm+dplbTK3g886YFeZ32e9LGM8+eSTl/s8vvKVr6xS7t6sW2e9O9/fmcM234vNx+/+PlpWXp2vS36fz6+zs7PH2J966ql46UtfWk75tT08sDpp+gSoUK6eyoklWcjKAkRXCxYsiI9//OPlCXKeaGcz3c4771xub5dNmNlslsWOpTW5ZdPnEUccURY6ckJKTg2ZOHFimcAceeSR5UlxV3ki/JGPfKQsNOV95hZpudVcFpDycR588MFePacc759FqJz0mPJx8+fmisKVlUWdd7/73WUTaT7/3J5i++23LwtV55xzTlmcyufcVW4xkElSHr9MXLIxMJtrsyH1O9/5Tpls9NTUtzIyUTjssMPiT3/6U/m6Znx5DLOg9KMf/ahM0KZOnbrEbUaPHl2+RplwzJ49u1x5ucUWW5THOp9nNt9mYrCijj/++DIJyqbgHXfcsXx/XXvtteX7Kbdcb9phhx3KhCidf/75Pd5XfmCRxzvfd81VfMuSr/U666xTfp8Ftkx+H3744R6v+6IXvah8X3RveM5C9Je//OUy8b/uuuvKLeEzgcoE/MILLyzfB6eeeuri6+exbm432dxavrtcyZrPI7dm6PoBSRYY3/a2t5UNnJnE5zHJFYv5emYSl++R5gci3eVjZfN1Jqj5PPL1zSSuJ/lvN5PIpmxAzmOVH7rkezfdeOONS23Ibm6/kv8WAQCgJ81FWnn+n8WnVZHnr3m+2pzkmee7+XOew3fN7/Lv+XNeMhfsS3lu3GxCbeYtq0sWFt/+9reXRaLMxzIXzueahdpmManZxNkbzUJRbovX3PpxebKJMy/NfKopi6SZB5x11lllkTPjyhwoc8jMgXOhZ9fm12YO3nztmq9Z/n5V8teUx+JjH/tYmadlHpQ5bH7OkPl1xrE02cj60Y9+tMy/siiWuXl+xpGLNLNw+KUvfWmpxbL/+Z//ib/+9a/la5KfbeTzesELXrDUx1rRfDLlc8kCYD5W5sD5Xs7b5OcF+ZlKFuJ/9atfLfUxAQAYXDLnyubAZW3x3szP8ry7J6u7LpDnuM0Jjs1coPmYmfNkg96yHjPjXmuttVb4cVflHHt11cx6kvWgzHuyJpq70WUNLOtpef/ZCJhNhJk3rWqdsjduvfXWchBJLpTbbrvtymOVMWXTZtbZmgNs8n2Xx2BZNb2sLV9yySVLvN7LkvW5zBdTNjTm0JNRo0b1WDvNRuc8RpmXdZcLAfN9mu+fbIzN1y5z23x/584XuQCveZ+ZozWfx9Jqetlw3Py31fX9vyq5e14na8bZyJnxZV08n09PlpVXZ01xxIgR5fshc86e5OuTTboHHHBA+R4GWF00fQKsYXlSO2PGjLj66qvLqRx50pcn7S984QuXuN4f//jHssCVJ885cTCv//e//71s3suf8+R63rx5ZXLRkyyK5MlkNjzmyqsrrriibAbMotNjjz1WJiBd5YSPTKi23HLLOPfcc8vbXHDBBWVi2iz+9MbrX//6soEuVy+lXDGVPy9rtWJvnHjiiWXceVKdJ9EZXyYPmUDl1MQsEGVy1pQn6z/96U/L73/+85+XxaQ8fnkcs7CVJ+TZ/Lm0hHxF5Cqtz372s+UJfiaJWeDLYlLGmEWtXOmXCXQWsrrK1YL5GuZKw5zCmcc9j3euessiat7v7373uxWOJxOyTIwzmcrnnF+bj51JWyaOTc2kL2PtKYnrmuD3ZuvGDTbYYPHUn2yWzPdn3jZXH2ZSl++FZU2OTZno53sv34v5uufxzOeRX7MRMxPCnPTSdXJpM+nL59HcarKrZgKc75VmQ3K+JhlTJo+5nWL+e8vr5WuWr0W+BnmscgpoT/KDig9+8IPleyrjveqqq8rn35OcytP1A4wsyjb/neTkmfw3lu/hnqap5vsg48h/u/nvCQAAusrz2Vzw1pxQkef4eS69KvL8Nc9XM+9MuXNA/pzTRPJr/pzy7/lzXjIX7Cu5ODJzyMyXcuFWNhquLvkYmQ9k4SenjWQOnTlZ5gaZf+eUkvxb5nxZQOuNLCalzPOb+cfKyNwp89zMcTKna+aNWcTLHLe5oC1z3CyspcwFu752+blD/py/X5X8NfPKLKxloTHzsmaOnTFlXrS0iZ05OTSbLHMhZi6ay9wmP4/I2//yl78sC4H5fLLZdGl5V+ZPGV/mXvm5Rl/nkxlLvua5ADCLjvlcmrl0TmBKJ5xwQkyePHkFXj0AAAay5rn40rZ4z3PcXOiUNYmerO66QDZONnOEzGlS1jxykuTSmgYzt2w2DK7qAIqVOcdeXTWz7vL1ykbE3FEhj0c+RuYaeczycTOnznwpF5J1XQy3onXK3sqhJTlQpFmbyqbYPDbZkJnHq+tzbr4uGXtPw3rytjn0J5sZe7sYNPP/zMvyuOTjZ36Xg1aydp079mUDak91t6Y8FrnQL3PFnHiauwDm/WRunZ9TZBNr5pxdp61m02fmZll77qlJM1+PbPzNnLq5kHJVc/fMc3OBa94u48u4s47ek2Xl1ZnjN/9dL61pNe8/GeQCrG6aPgFWsw9/+MOLx8LnJZu88gQ1T0yzgJMnit2LKSkLEnmCfPTRRz/vxDx/bm5htrQJnHkSnQWZXOXUlCfB2XyXum45kUlLJlvpJz/5yeKGzZSr1LKo0ty2uyrNVYe5ejKTxKaclJiFm5yIkttNNE/kc8plJqi5Oi+3q+sqR/ZnspL31RfPKwtsmQDmdhOZ2HRt/MtVeXn8MgnIRKfrqq/mc8oEsmtDZa4OzAmvb3jDG57XDNwbmaRmEas5ISY/FMj3W65+S5ksNuWxyevlSsRMHvsiwc/CYSahXWPPZDyTumygzOOej5sJdPcPQzKOZrE6j1vXCbj5PDLZzwkxebssEDblfWYCnKszc1VkV10/NOn6PDLBzBWSmcDmv8FsBG7KfwP57ycfMwuGPU0rzVWu2TSa10ld35crYnmrM5srAvNYdP33DADA4JHn8JkDdr3kDg45YSK3Fvz+979fLuLK8+zMj/q7zEG7P5+85Pl65qz5vLKwlIsgc1pH5qWrSy6qzMJdTuPPHKHrFI4s8GQTYeY2mb/3dgv7ZnF1ZXOEpiw4Zr6RsWVO1zV/zWmXmTc2c57MgVdn/tpcxJb5WOZlmcekzKOySNj8rKF7TtksUGZR9QMf+MDi2zUL5Zm7Niea5tTQ7vL93TWnX9YxXdl8spmb50TZrtvT522ywfktb3lL+Z5svq4AAJB1mPy8PpsWc6BKV7nNd9YUsm61tCn1q6MukHnBE088UZ7zN8+z8xw3a4PdB4Fk3aP7IJBsGGxO2FzV3SNW5hx7ddXMussBHvma5XHNRs7cAa5rzTHz61wMlwN8um4/vqJ1yt7KnCxz/q7PLRsYmwNWcshPNjw2J07mYyztfbMyzYZZD8u8uNkQnLJxNPPB3Mo9a35ZV83FePPnz3/e7fP3mWPljgtZE2/WzJrNzdnMm3IRaR7T1LWZs6fGyeZzy8md2RzaV7l71gLz9Ur5eUPzvldU899RNpB231K+ufNg/tvv+m8PYHXQ9AmwmjW3xWteXvayl5UJUzNhyYQhk6/uyVWuGLrnnnvKQl5PctpJWlrykCfSPW298JKXvKT8molbU564Z/KYJ8PNbbK7ysJPJitVam4fmAlYJgBd488T+0wWsmDVbNzbZpttykkimTDmdgTdt6rIFXrZ1Le0VZYrIhPh1Gyq7G7TTTddvFosE4CmTM5SbtGQKza7bmeXBbicktmcoLMichuInhKVTMyak0CbCWI2SmZy3VOCmIlvJiv5Ht5zzz1XKIaMP6fL5lSXLKx13yIhV+5lwpqFy+bWFClXRObPef1M3HrSXNWa/z5ye8Pmv4dmITA/rOgq399Z1Mz393777Vf+Lh+juc3G0l63/CAitx3MZLXr69Y1Ee6+9eLKygQ8X7N8Ts2pQE22dgcAIAsGuXCv6yWLVDkRM6fD5Dn3GWecURZbui5m6q/yfLz788lLTvnIc/wsjORUyMy1ljZ5o68087nMJ7oWp5ryeDa3buwpL1hWvr60Lct7K5sks/k1GyJ70vW17qn41lf5ay7iu/feexfnmz35yEc+8rzfZeNo5pSZm+dz6Uke98zp8zORnM7SXdfC4/KsbD7Z/Lwhc8cstnbfMjKLh7k7StdiNQAAg1t+nt+srXTfUa45hKL7QJK+rAscd9xxSwycycsee+wRhxxySHnumjWgbLjMOljXelEuvMq6Ri7Ey+Ezq2s64cqcY6+umtnScqI8Vj3VePJ4NfOlrjngitYpeytfk54Wt2XukveVj9N1q/mujbtdJ3DmUJQ8bpl/reh02MyhMu/M910OI8r3TtdFh5k75fHP49J1Omsu3Mupo8vKMXNXkGywzHp2150Im++zHBjT1fTp08shNV23ge+L3D0brfN59YWsNWYzcuaf3Sf1Nv8dZVNzb3ZQBFgVQ1fp1gAsV67uajaadZUngnnilwlAbnWWBY7u20jnCXU2LTZXBeUKvfyaJ9A5wSItbaR+1xVOXTWTjVqttvh3zYkg2dy3NLm1QNcpH2vaJz7xiTJxzkT0K1/5Spm0ZCNiNqPmRJFcddc1cc1Jp5/85CfLJCSTlLzkSq9cOZYr0vI2qzp1pbmFeW4X0Jwkktsq9qR5na6Jez6PbHrMIl5OG8nkMlfo5XPKVXzNBHJFdZ3U2lUzec7XPlfD5WvaTBBz1Vs2eebqveb2g6vabJhJVxYLmwXDTNRyC/Us5GUSlP8GMvHKFXk5MTNl0Tpl0ticZttd1+mgeTzztW4+j1zpl1tg5IcCzfd6s5m1uV1Eyn9HzWbT//mf/1lq4vXkk08ufpzumts69IVsUs7/TuSU0oz3mGOOKX+fH/Zkg2yuCMxVrAAADE45GaN5Xp45YOYXWWjKRs8s7GTu0FfFizUhF2Tldm1NWfzJfDO3+M7n1pxEuSpbo/dWc/eMzCUyJ+pJM//uKS/oSTNXyOfRF/KzgcwNMtb8XODxxx8vv+8aT09bSvZV/pp5Wt5/5qxZ2OpJFpi7a94+i7dLey0zR8scNhtLe5pWuiJ518rmk/leywWwI0eOjJ///OflJaf9ZG6ek5WWtqgWAIDBLZv18pw6t5jOIRfN+kPuoJbnj9lUuLrqAltttVV56Z435BTD5rlsnsd2l+f0GXfu/peP2ZyO32wCzdrb0pr3VsTKnGOvrprZ0nLArE91HxjT1JzemLWkzCHytV3ROuWq1vSybpXPOWPM90Pztcpm46wtZw6V753m0J5sRM1ac75ncjHfysi6YV4+//nPlwsLc3FmNmDmeyUbPzMX/eIXvxhnnnnmEjlYc9jO0uQuEKlrDptDeb7zne+UjaPZ1Npc8HfRRReVDb/5/umaf65q7p4TVftqkWyzITWbqvPYNAc4Zd1xZXZQBFhZmj4BKpIn6+9973vL5CCb3s4666xyhVozScvmu9xCIFdqdV3NlklbTqzIk+4bbrhhqfe/ItuWN5OXZU0t7LrlWxXyuOSJc64IzKQqk5mcbJOX3O4vi4b/+Z//uUQSnQlyFp6yqTYnjOSxzuOZl0zGcjVYTo9pjvJfGfk6dU84lqXryr9MAs8555z44x//WDZCZgEuC515yaJuJjiZ8HSfkrk8Ob1zeb/vOgUmt8vLxDGT1/xwIpsn81hlItdXCX7KJtv8MCEvuYXCpz/96fKY5erBY489tkySmscnj2smk8vTdduELHLnto9ZKMwCcr6+2TSdxzbvO7eB6Ol1uO+++5b7OF2v39TXRb887pmg5/szj0/G3Gy8Pfzww60IBABg8XSKLHzk4qUs5OSElyz4ZBEli1CtqDmRI3fGePe7310WfHJbuMwV+nKx1bJyusyH8rKieUFPmtvRZ/Nh3qY3OWcukstpPFn47SoXi+aWepmjdZXXO+KII8rPElZ3/trcgm9puWbqqamz+XjLe/7N22ZO3N2KFOVWNp/MvDe3wDzttNPKBZHNhtq85OcJGV8uKj3qqKNWevs/AAAGnqxJZO0qp1jm8Jb8OXcvyKEbmd/0ZhHbytYF8nbZmLcy8rbZ9JmTE/McPM/zmw2D2ay5sg2DXa3MOfbqqpktLU/J1637BNLu8phkHBnvytQpe2NZeVbzb113fWzufJfNjxlPs+mz+b5pTgJdVfk4zcEu2eiZzy0bMvO9nu/zrFV3zZF7k4N1vX7mevk8soE03//Nps/mIJfuTZOrmrv3dU0v48vPY/J55+LM/Jwma5NZl8whPEvbfQKgL2n6BKhYbluXTZ+ZONx///2Lmz4/+9nPllMR86T3gx/8YLlCLLeFzwkZ2dCZhZ1lNX2uiFwt2L0A1N3StpFfk3ICRyYVeRk3bly5QjCT4WxOzEkkX/jCF8pJN3vttdfi27zpTW8qL/nc8vp5yQQxE8vm9gs5DbS7nqakNLdE72nbvpRJybKmpfYkm3dzhWM29ubqxXzNczVlJglZ6MzVjDm5ckW2Ee8pzu5JzoYbbvi85CTjyOeQCWEmbvmezPdnc5Lm8uT1czVbrqT74Q9/2OOE26Z8n3/ta18ri9L52mQBc/PNN198PPMDkVwht6LyeWRBNJ9HJou5oi5X1nVfEdj1eOaxXlZSvaY0VzXmezlf+yx45+vQl0k6AAADS267lgWmm266KX7605+WE0J6muayonlOVXLHijyfz4bPnCCSOwKcfPLJZaPriliR55Q5SDMv7Kvp+plHZVEyc6TMWTMnXZ4s2GVOlgvyMp/J4m42fP6///f/yr/nVJe8n/xc4CUveUmZ02UeuSJNnyubvzZvt6zPDHpq2GzmWctrlm02X65qXrYq+WQe74997GPlJZt183XL/Dy3jM8c95e//GX5+Uz+HQAAUjYr5rln5izZBJhNn73d2r3KukA21zUHaGTjZ24F3my068vHXJlz7JWtmS1t54Nl1fW++c1vlvXX1V2nXJX8tZlLdR/M03Xnu1wQmjXPnLqZ26jnVNTeysE4GX9Orcwpq0uTr1O+T/Px8rXJ9042NTZfh6wz52u1ovJ5ZNNn1vL+67/+q2yevPfee8v7bW7Vvjpz91WRdc5suM3XPvPrrOsvrWEVYHVZsU9MAehzXadENJOSXCXVPDnOFWNZ5MnpiLl6rTnBMxOkvtKcQpJbBCwtMXr44YejSs1tCprNp7lK6kMf+lC5ei7H+OcKuiyoXXjhheXf83r5fJpbM+QqvFyhmMcyk4fmduK5fUMzacrtyJuaW393ldsmdpeJVnPV47KOUSZ/Y8eOLVd4pYw1V3uOGjWq/Dlf15y4mdsf5MrHvOR7o7mlxopY2paD2VTcTM622267Jf6WUzDz+Wc8uQXhFVdcscKJSd4+E/XcEj1XYS5Pc2JPFnCbjcfN92LXLSG6yymlmUhn8pfHsafnkUlWFiQz0erpg4psAG2+3st63XIblXzteipg9rV8XQ477LDy+zz+zdeiuZ0GAAB0lzlDNhfmJMXc9j0XVnVvzFuZPKdKuX1fFvJS5sVZQO2u+Zx6ej4r+px6k4PkFJEsPOU0zt7IfCMXbqacbrO8rdfzeTSbN3PLw+Y0n/w8oJnnnHjiieVuIfvss8/iRXwr+rnAyuavmX83c7Fsxu1JT9si5nNJmfsurWE037fNXDUXua6Klc0n83nm5zDNKT9bbrlleczz31bmts2CYrOABwAATVm7S9kMl+f9WX/KxUy9bbyrqi7QrP3kY+a5ceYAuVvb61//+j65/xU9x17ZmtnK5Ia9yRua01uzNrmydcpVrellM2g2V6buC/aywTgXA+Z1chFos6aXO/etyE6QuWNIHvds/l2erLM2F+rle6Xrscz3bPfdKbrK3Rhzi/ruA4Yyb87ad94+87RmTS+3sO/e2Ls6cvdV1aw95vFvvhZ5/PtqB0WA5dH0CVCxnDqZMlnJrcjTxIkTF/+9+bvuRYrmSr/uTW8rI5sh8yQ0E5ZMTLrLE/XeNPF11ZdbntVqtTIZ/MhHPtJjHFm0aiY8WTBKuTIsVyd+5Stf6bHA1tzuoOsxzBVwy0qymklTd83kPbekaD5+V9lUmpNq8jn85S9/WZyU5ArOfE49JUKZsDWTp57uc1lyW46e/PWvf108IaZ70pcTdfL3eaxzq42cFpQrFldkRWBqJjK5kjE/JFiW5ns4X4tmUTM/UMgkPY9/Jkc9yaJvJtL5+nbdpj7ltNB8Hpng53HIlZ95HLuvCMzkNKd/plNOOaXHx8kPOt7//veXzylX6a6qrtOJllb0ze0Zm++15r9FKwIBAFiWPJfPZs+UOd2Pf/zjJf6+snlOlXJbw2YDYE5szHPznp5TT88nF2zdcsstvX6sZrExtxHsaYeLzJFyYkeeq//oRz/q9f3m5JfMizO3+t3vfrfM6+aU1vwcIHOGfKym5mcDS9sWLmPuGmdPOXn33GNl8tdsYt11112f95hdZQ7e0wShbFDN2LJIu7S8MHPijDdzuVWxsvlkvlbZUJvbSHaXuXMzd+yLz18AABhYcjLn1ltvXQ7DyHPenPaYNbds5uytKuoCOdkxt2DPARrNJsUVbRhclhU9x17ZmtmycsMc6tFT02czB8yprM8888wy428OkFmZOmVvZaNwT4NHcmFgTtXMASo9TQ5tNhxmw+bKvm+aNb377ruvrA0uS75Xsjkzh7g0Fzlm42kzd88csydZp/vABz5QTr/NRtplNSA3a3E9TZxdXbn7siwtr2465JBDyuORCxnz9com2sy5m02xAKubpk+AiuQJYq78a24tnk1pudKt6zSMlCvE8qS+KadxfOpTnypXK6XuTW8rI09IP/7xj5ff5/j8rgWyTFTzJHlFt/xrrsDKBHdVZeLZXOn4/e9/v0zUusrjmMlGet3rXrd4dWUmjg8++GD87//+7xLx5wqvX/ziF+X3mZh0nTLZ3Mo8C6XNLebytcrVZfla9OTTn/50+Xwzcckm064ryPL5598zEcrpO5nYpCyYZQKYCe2xxx67xISWbFjM+HISSt5vrmZcEZnc5fYXzZWN+TUTnKuvvro8JrkysifNJOo3v/lNGVcme3nsV0Ruw5HbEebxzkJaNpo2p8M05fHJLRv/8Ic/lB985PNvypWQ7373u8vv8/cZc1MmyrldxXHHHVf+nMcymzeXliD+6le/Kl+7XBHYdRvDps9//vNlQTA/0MjVpV2T6nzf5OuW//YypsMPPzxWVddVifnvqid77rlnuTo03zfZtJqvV188NgAAA1sWNXJCZspCQ07RaFrZPKdKa621VrlFXTPnzS3nujcTphtuuKHMB5uyoJfb6S2tcNeTzCuyiJbTTXI7u67n6pm7ZANqTiTJc/Nm3tzb4u9nPvOZxblJFgu7TyTJps4vf/nLi5srM1fLnKCp+dlANlR2nTCTuWLmbZlTNXUvei0tJ1+Z/LWZPzUnl+Z7rFn0ypwpY2ku6usq87C8v2bzbhbBuxZAL7vsssWv7Xve857Fk1tW1srmk9kA2jzO55133hIFvXzNmgso+2rqEQAAA0vWIFLWZVKzntVbVdQFMgfKRVeZbzXzir5sNF3Rc+yVrZk1c8OTTjqpzNuactpj19pTV9l8mI+VufEnPvGJJfK0fIxvf/vb5TTRbPhr5jMrU6fsrcz1Mo/tmptl3SrraClrtM3BKd2PccaVjZI5hCUXCzYX6/XWAQccsHhoyje+8Y3yuXUdTJSykTHfl5kbp/zabMBNX/ziF8uv+T7KJt+uU1fzs4nm3zNHfvWrX73U5/HPf/6zbN7NnQp7qouurtx9VWrd+bo0/61m3p8McgHWpBXr5ABghX3ve997XmNarjbKE8RmISpPxDOJaNptt93KpsVc3fXnP/+5XF21zTbblIWX5sl2nojn5IpsVMskpKfmtxVx9NFHl9sEZGKSW+ll416ezGbzW04bycSrOZW0N/I55NbpWUTMZCNP0L/1rW+tdHzHHHNMWZTK1VJZxMliTq7gy6Jec6Xe+973vsXJVE58zGbPLGLlJMdc+ZWJQiaMuR1dJil5+0xgmvJ5ZlLwzW9+s9xGIJ9zFp3y/nNlYa4iy8Th7rvvXiK2XMX2y1/+sowxE7EsXOV2BFn8yubcfL3zWGbC0yy2pkxSjzzyyPKxcjVYvsZZFMvXOJPNbEj8zne+s8IrwjJBy20AM5nO+8ypONl4mYlONjcubUuQfH75WM3EcmUSk2ygzeQ6j0Wu2Mv3/w9/+MMyjtxKMJ9XJmSZ4OexyL91n1qTKygzyc33TyZu+Vrm9KL8N9OMLZ9jM8Hs6XlkHPnvZVnPIz8M+O53v1u+L3PaS04nzVWJ+W+qGWOuzsyiZk8J9cocm3zf5vPIYm4WcDPZ7f4BQMabr1M2zubz7DqZCQAAepLFqMwdsliSBZYs1mTBJM9jVzbPqdr+++9fTp8599xzy4JbFpmaC9Xy9zlFJHPYbEbMXC9zrizwZB511FFHLV5guTw5iTIncWbukY9z8MEHl/lcHtO8/zyeWYDKAm5zm/Peyrwo84Cf/OQnZa6YlyxS5YLPZm6UMlfL3CAXeHa/fRb4cvFnxtVsiszbZU6bEzgzzsxxu2/1njl55vO5LXzm8jk1J+9rZfPXzFk/+clPlveX76Vs4txqq63KWDLfzAWV+R5qbq/YlEXUzHFPP/308j2aDaIZd8bbzOUz78kFqH1hZfLJPDbZdJrNrDk1NxdN5nPLz1ry2GZumJN18n0FAADdZT0va3lZW8j84sADD1zh+6iiLpCLB/O8OR8z6zQrmu8sy8qcY69MzSzP+XMxYOa22XyXuU3mSpnbZN6ROWT33fEy/zr++OPL/Gbs2LHxtre9rcy18rHyds0hMl//+teXqN+saJ2yt/L1ztpsTojM+DNvye3l0wc/+MFyR7qeZP0q8/tVnQ6bO09kDpjNuVlPzUtOr818sHksMy/O45aLGfM5dpXNsHmdzPXyvrI+mTXmfB7NZsk8vnnMl/Y8sgE534vNfH9N5+5Ls7S8uqt8j2UTc75v8rms6OsPsCpM+gRYzfJk8M4771zikk2QWXzL4lomcZn0dE/gcgVXNqTlCr9MfvI2ecKat8kT5kwg86Q7dZ1esbIynlyFlPHkNgnTpk0rmwWz0JbFmVyBtSKyWJVJTxa48mR/eVt9L0+uGsuT5lztlslnNvQ98MAD5bHJE/s8Jl0bZ1NOqszbZMKUDYdZAMwEI4tcOXElt27YaaedlrhNJqG5Ei2bajOBzNvkSXoWTTMh6V7AasrEKiebZMNsFhwzwcjiVyZ9mZBlwXWfffZZ4jaZjGQBMxOkvF6uSstiXsaaScL555+/Uqs5M9aclpLFxHz/Zcy5cjEbX5d1f5mwZXKb9thjj8VbUayofF9mA2VODMokM49Hvl6ZCOdWgfn+ymk22dTcU/KTU30yccsEPxO9LD5m4p0Nu/vtt1/54UAWKZf2WnRdWZev9bImpTaPc27TkccrV3RmMp3Nn5nw5+u2qtNmusp/Y/n8c8pM/rvIDze6y/dt87lZEQgAQG/loqJmwSzzka4TPFc2z6laFgebBb2cUpp5ajM/zEVuec6e5/x5Dp9/y9wvc6zMG1ZE5t25YDEXZ2VxKIuKOWEkj1Fu4ZdFwizurIzcDSFzz2x+zMfJolnmRhlvLsjLCST59+4Nnynz/8zjsuCZ+UrGlM81c7UstnXNGZsFsq7HLo9HFi7z/dB16s3K5K8pF1Xm+yo/J8jnkTl53iY/u8jHS923scwCXObq+RlGPo98r2V+13x+eX/ZQJp5YF9Y2XwyJ8vm5yF5nczX8jOMzGNzsWDm13/7299WebEtAAADUzYvZoNietOb3rRSW6RXURfIJsNmbbKn7bRX1YqeY69MzSxzqmbtK3PHzJny3D/zrLyvzKN6kg2h+fevfvWr5QK2bBrNelrmmplH5SLD3Mp9VeuUvZGPl8NU8n2UuVk2uOYxy1wpF9wtS/O9knWxZn1vReVtc0BL7oyQxy2fW9aj87nlYr2skWU+m3lic/Jpd5lLZ46er0O+pnnbGTNmlE2TucAxc+quiwq7a77/ctFq5uBV5O49WVZe3fU92JywujI7KAKsirai6yxtAGBQyyk5uaIwE+6uW/mx5uQHH5kY5ocRuXKwvxbgAQAAmq699tpycWVOdMnpoQAAQP+uC2RTXi6UyoVauTV5TlKktWQTau6495a3vGXx9uKsWblbRi6szIWdubgym5cB1hSTPgGAUq5kzOkwuWItP1ygGrmasrmyUcMnAADQH+TUmNwhYcyYMT3+PQvTKSe5AAAA/b8ukNt552T8nIyo4bO13ze5uwfVyN04s+Ezd/nT8AmsaWYLA8Ag9vTTT8eCBQti3rx55VYbmeBnIW/99devOrRBJbd3zA9VcjrO6aefXm6nkdsqAgAA9Ac5wfOKK64ot/372c9+FptvvvniqSa5hV5u5ZcTgnIrRgAAoH/WBXIL89x++6677opf//rX5e8++tGPrtbHpO9kLe+JJ56IESNGxJ/+9KdyQuzOO+8cBxxwQNWhDSq5pfxaa61VbvmetdX0sY99rOqwgEFI0ycADGKjRo2K//iP/1j8c24dcvTRR1ca02B0zDHHxKOPPrrEz1tssUWlMQEAADRl3njHHXfEyJEj441vfGNst912ZaFx0qRJ8eyzz0Z7e3t89atfjX333bfqUAEAoCVUURf40Y9+VG7l3pQTIvfcc8/V+pj0nTlz5iyxU1/mYd/61rcqjWkwOvnkk8uFj00HHnhgHHrooZXGBAxOmj4BYBDbYYcdYpNNNom5c+eWWw/893//d2y00UZVhzXo7LPPPvHkk0/GxhtvHB/4wAfi05/+dNUhAQAALLb99tvHxRdfXE4guvLKK8tmz/nz55cLBw866KByItHee+9ddZgAANAyqqgL7LXXXnH77bfHOuusE+985zvj2GOPXe2PSd/J/Ct3Ych8LHO0fP1e+cpXVh3WoLP77ruX/4aGDh0ahxxySPzXf/1X1SEBg1RbURRF1UEAAAAAAAAAAAAAsGzty/k7AAAAAAAAAAAAAP2Apk8AAAAAAAAAAACAFqDpEwAAAAAAAAAAAKAFDK06AADoaz/72c/i5JNPjgsvvDBe9KIXxS677LJS93PVVVfFNttss1K3nTx5cqy33nrlZVV96EMfipEjR8ZRRx0VxxxzTPSFZ599Nv7yl7/E1VdfHY8//njUarXYcsst44ADDohPfOITse222y5x/cceeywOO+yw+PjHPx7HHntsn8QAAACwNPK65Zs/f36cdNJJcckll5R5XVtbW2y//fbxL//yL/GRj3wkhg8f3uPtZsyYEX/84x/LY/Pkk0/GsGHDYuedd45//dd/jXe/+93R3r7knIDzzjsv/t//+3/lbV772tf2SewAAABLIx9cvunTp5c5Wtb5Mq/baKONYvfddy9zwVe/+tXPu/6oUaPigx/8YHznO9+J9773vX0SAwDV0vQJwIBy++23x4knnhgf+9jHykQw7bPPPs+7XkdHR9x3333l91nc6ilpW2uttVb48fN+f/e738Wf//zn+Oc//9knyWBfe+SRR8rj8/TTT5dFwRe+8IUxYsSIsrHz9NNPL+M+7rjj4jWvec3i2+SxzEQxE8jXv/718YpXvKLS5wAAAAxc8rrlmzVrVlk4fOCBB8q8Lo9TURQxduzYuP/+++Oyyy4ri6TdY580aVJZ6Mui4NChQ+PFL35xzJs3L0aPHl1errnmmvjNb35TNoI2veMd74i//e1v8fWvfz0uuuii2HDDDSt4xgAAwGAgH1y+zAM/+clPxtSpU8t8cMcddyzzwWwAzUseu6997Wvl35pe9apXxVvf+tb4wQ9+UDaFNo8tAK1L0ycAA0ZOq/z2t78dG2ywQblarikbGbubOHFiHHzwweX33/jGN2K//fbrkximTJkSxx9/fPTnY/T5z3++bPjcc8894yc/+Uk5CSY988wz8c1vfrNc+fiFL3yhLBJusskmi2/77//+73HOOefEt771rTj33HOXKAICAAD0BXld7/zwhz8sC32bb755GWvmd+nOO++Mz33uc3HvvfeW1/ne9763xO3+8z//s2z43GmnncrFftn0mbIw+KUvfals+swCa+Z/TVko/OpXvxof+MAHyok7ORkGAACgr8kHly8X7WW+lg2fmc/lor1sek1jxoyJz372s+WOEBtvvHF8+tOfXuK2//Ef/xFXXnllmdP96U9/qugZANBXltyrBwBa2Nlnnx0PPfRQfPjDHy4TQp7v2muvLSd9rrPOOmUi2Gz4TNng+Ytf/KJc3Td79uw488wzl7htrmbMY5vHOI81AABAX5PX9W7yTE7cTNmM2Wz4bE7A+fKXv1x+f8EFF5TXbXrqqafi1ltvLb/PIl+z4TO98Y1vLCfFpFzs190rX/nKchpM8/UBAADoa/LB5ct8LRfy5Q5+uWCv2fCZcnv35sK/bFzNBtautt1223j7298eN954Y1x33XVrPHYA+pamTwAGhM7OznK7hSFDhsQRRxxRdTj9VrPAl4XArbbaqsetLg488MDy+5wM09273/3ucgvA3//+9+UxBwAA6Cvyut559tlnY8GCBeX3u+666/P+3mwCzetMnz598e8nT568+Ptl3a7r9bo68sgjo9FoxG9/+9s+eBYAAAD/Rz7YO81mzTe/+c1lE2d3r33ta2OHHXaI+fPnx6WXXtpjXpdy5wcAWpvt3QEYEC6//PJyy/JsWNxiiy367H4nTJgQJ598ctx8883lVJRsinzJS14S//Iv/1ImRrmSrulDH/pQjBw5cvHPmXClU045ZfG2Erk1xYUXXlgmWrnNQhbrsokyt+TL63zsYx9bYvrmsuSkzmZSNm7cuF7d5j3veU/svffeS2zb3l1RFOXXLOZ1l3Huv//+ccMNN8QVV1xRHgcAAIC+IK/rXV6X+Vw+h4ULF8b9999fbtXeVfN+8jqbbrrp4t9vvfXWi7/P2+X0zp5u1/V6XeXWibkDROaC+Tr15WsEAAAMbvLB3uWDOeWzOdVzafLxx48fH3fffffz/rbXXnuVTaH33HNP+fesGQLQmkz6BGBAuPjii8uvr3/96/vsPv/5z3+W2xycccYZ5RYIuUVCFswyCfrBD35QTr3sOgEl/77HHnss/jkTrpyouf766y+esvLxj388vva1r8U111wTw4YNK2+z4YYbxqOPPlpup/6ud72rLL6tLvl4hx9+eLzmNa/p8e+59d/VV19dfr/jjjv2eJ1cJZia2wkCAAD0BXld7+Tkm/e+973l9z/72c/KQmNTPu5PfvKT8vsPfvCDZfGxKQun2biZ/ud//icef/zxxX+75ZZb4oQTTii//+hHP9rj4w4fPrzc4j2LnD1NjAEAAFhZ8sHeaWtrK7/mYy9N5mxp0qRJPf5dnQ9gYDDpE4CWV6/X47bbbiu/f8UrXtEn95kJ39e//vUyMcrpmJnA5USTNHbs2PjSl74UDz74YHz2s5+Ns846qyykffOb34yJEycuLqL94he/iBe96EWL7/OPf/xjGedGG20Uf/jDH8rVdE25oi7va+rUqeXW6b/+9a+XG+MHPvCBPp+0mdv0ZYKbSWMmwj1pHuN8Lnnss+AIAACwKuR1KyafSx6zLCrm1ofbbbddmcc99thjZXPmUUcdFV/84hefd7tsCP2v//qvsmnzrW99a7z4xS8uC5f5nDfYYIP4z//8zzKmpcnX5sorryyn5HzkIx9Z4bgBAAC6kw/2Xm7p/sgjj5TPYWm7+T388MPl9zNnzuzxOnmM//KXv5R5HQCty6RPAFperpibPXt2tLe3L3U65YrKZCwTwdxG4rvf/e7iRDC99KUvjRNPPLHc8iEnqvR2JVwmTxnj0UcfvUQimPLn973vfeX3mWT2xsYbb1xuQZGXvnDeeectnuySU2N22WWXHq+XxzgbPfOYd50oAwAAsLLkdSue1+WWfLmFYKPRKKfK5LaF+f26665bPtcsnHaXjaG77rprOYkmj00WA7OomXJ6zdprr73Mx8wpNim3POzp/gEAAFaUfLD3+eAb3/jG8mtuMZ+L/rq74IILFk/47OzsXGZe99BDD8W0adN6/dgA9C+aPgFoec0CVW5Vt9Zaa63y/c2bN2/xisIPf/jDS11Jd8ghh5TfX3XVVb2639NPP71c6XfkkUf2+PdmcS2nrKxp55xzTjnRJVcA7rnnnuX3S5NJ8JZbbll+/8QTT6zBKAEAgIFKXtd7Wbj83Oc+VxYuc0He8ccfH6NHj4477rijnEST2/z99Kc/jc9//vNLNGbOmTOnnM6Z13nhC19YTnbJ53LrrbfG9773vbLImpNtvv3tby/1sbfffvvFx3f69Omr7TkCAACDh3yw9975zneWjbHz588vn9sVV1xRPt9Zs2aVE0u/9a1vlZNIU04v7UlOL83m1a7HHoDWY3t3AFpes9CUU0n6QjYyNle/7bHHHku9Xv4tV9LlNJXeyuJbbqdw1113lZNY8rHya27D0FxNl5NZ1qTc0r25zcRuu+1Wbk+xvKQ6t/3LlYLPPPPMGooSAAAYyOR1vXfuuefGtddeG+uss06cdNJJZbGyKbcGzIV8WQi85ppr4vzzz493vetd5d9ykk0WKHM66Mknn1zmdSnzv3e/+93lbg9ZvMxCZm79vt9++z3vsZu3SZkPbrbZZqvteQIAAIODfLD3Mn/L7eM//elPx/jx48upo13l1vT77rtv/OAHP1hiumlX2fCZf8tGUXU+gNal6ROAlpfJVVreNnS9ldNPmpaVYDaTpblz5/b6fr///e+XWyt03VIhE8Tdd9+93E7ihhtuiDWlo6MjvvGNb5RFwJRJYE6I6U1S3TzWmRACAACsKnld71166aXl13e84x1LNHw25e+y0fOUU04pC5jNps/m7XIaTNfmza7bER500EHllJu8XU9Nn11fH/kgAADQF+SDKyZzvqzt5YLAm266qczNttpqq3IR4Gtf+9o47rjjFk9OXZo81nk7eR1A69L0CUDLa06l7KvEZN111138fW5vt8kmmywzCe16/WX57Gc/W24nkdujf/CDH4y99947dtppp3IbhUwIc9uFNdX0mccqtwMcOXJk+fPb3va2ctXf8OHDe3371BfbbAAAAMjreu/JJ58sv+6www5LvU5u99d9q77e3i6bPpe2xV/X1yePAQAAwKqSD664rOe9973vLS/d3XfffeXXnXfeeam3V+cDaH2aPgFoeZtuumn5dcaMGX1yf9ttt10MHTo0arVamRi9/vWv7/F6zaQpk7nlyW0eMhFMJ5xwQrz61a9+3nUmT54ca0KuRPzkJz8Zd999d/nzUUcdFcccc8wK3UfzWDePPQAAwKqQ1/VecxrN1KlTl3qd5hZ9Xbfzy+8XLly4wrfrquvrs7TCKQAAwIqQD/ZebiOfA11yiudb3vKW5/09p5beeuut5ff7779/j/exYMGCmD9/fvm9Oh9A62qvOgAAWFXbb7/94lVpzSRlVayzzjqLk7XcDq8nTzzxRFx99dXl96973esW/769/f/+11oUxeLvu05J2WOPPZ53fxn3RRddVH5fr9djdfryl79cNny2tbXFN7/5zRVu+Mxk8Nlnn13uhBgAAIDektf1XvN55ZaC8+bNe97fOzo6yr91vW7X788555we48s878orr3ze7XoqYuZWgFtvvXWfPB8AAGBwkw/23rhx4+J///d/40c/+lHZ1NrdSSedVMaSW82/6lWv6vE+ujanqvMBtC5NnwC0vExcMoFrNBrlSru+cPTRR5erAG+88cayMTKnYzY98MAD8alPfaqckLLrrrvGO9/5zsV/yzi6b53XPWn67W9/G52dnYt/fvjhh8v7e/TRR8ufe5vQTp8+PR555JHy0lvnnXdeXHPNNeX3n/nMZ8rtJ1ZUNoxmwppFvjz2AAAAq0pe1/u87sMf/nBsuOGG8dRTT5XbC3aNMSd1fuELX4jx48eX1/noRz+6+G+ZA+aWg/fee2989atfLR+7a8Ez/56Nn9tss03827/9W4+Pfeedd5ZfX/7yl5cLCQEAAFaVfLD3+eAhhxxS5noZ2/e///1y0V/Kut1pp50Wxx9/fJmr5QCYpeVszbwuJ5ya9AnQumzvDkDLy6JVrtjLFXl33HHHUrcrWBFZwMpk6Rvf+EacddZZ8c9//jNe8pKXlFNUJkyYUF5n5513juOOOy6GDx+++HYveMEL4oUvfGFMmjQpPve5z5VJ4Be/+MVyleBb3/rWuOSSS+LPf/5z/OMf/ygLaVlQa64OPOCAA+Kmm24qt17I5HNp2+k1ZfKWj99c2dcbJ5544uLvcxuK973vfUu97m677VYmwt3lMU55nLs+dwAAgJUlr+t9XrfZZpuVhbyM7ZZbbomDDz64fF5Z0MxiYxYf8zlkIXLzzTdffLtddtklfvazn5UNnxdeeGFcdtll5e2ysJq3y6/5vP/whz/EiBEjenzsZj64tO0RAQAAVpR8sPf5YN5nTvrMmP72t7+V00UzjlwUmE2kOan0e9/7Xhx44IFLvY9mXtd1wikArcekTwAGhHe84x3l1xtuuKHP7jNX9p1//vnxnve8p1zp9tBDD8WMGTNin332if/+7/8ut8Tbdtttn3e7X/3qV2UymQWzXNX3+OOPl7/P4tp3v/vd2HPPPcstITKByxV4b3jDG+KEE04ok8Tm9njNLSX6Usaez6Fp9OjR5Wq+pV0efPDBHu/n+uuvX+KYAwAA9AV5Xe+98pWvLLdw//jHP15uhZiTOrNwud1225W/y7/ldbo79NBDy2LnkUceGVtttVU5ETQLlNkQ+vnPf77cHSILoT3JomXmkdlcethhh6225wYAAAw+8sFYoWmfZ555ZpnfZX6Wk0uz2TObUvP3RxxxxFJvm88pG1OTOh9Aa2sr8v9GANDictuCTGYee+yxcmLJTjvtVHVIA1JOf8niXm75kKsZhwwZUnVIAADAACGv699yCs13vvOdeNe73hU/+MEPqg4HAAAYQOSDa8Z1110Xn/70p2O//faLU045pepwAFgFJn0CMCBk8+FRRx1Vfp/bNLB65ArB9O///u8aPgEAgD4lr+vfzj777PI1ynwQAACgL8kH12yd7+ijj646FABWkaZPAAaMt7/97bHDDjvEP/7xj5g+fXrV4Qw4eUzPPffc8hgffvjhVYcDAAAMQPK6/unmm2+OsWPHllM+cwt5AACAviYfXL0eeeSRuPbaa+M1r3lN7LvvvlWHA8Aq0vQJwIAxdOjQ+OEPfxjz58+P3/72t1WHM+DkMZ03b155jPNYAwAA9DV5Xf/TaDTiRz/6UWy55Zbx1a9+tepwAACAAUo+uHr95Cc/iREjRsR3v/vdqkMBoA9o+gRgQNl7773jU5/6VLk9waOPPlp1OANGHss8pp/+9KfLYwwAALC6yOv6l9zxYdy4cfGDH/wgNthgg6rDAQAABjD54Opx6623xjXXXBNf//rXY5tttqk6HAD6QFtRFEVf3BEAAAAAAAAAAAAAq49JnwAAAAAAAAAAAAAtQNMnAAAAAAAAAAAAQAvQ9AkAAAAAAAAAAADQAjR9AgAAAAAAAAAAALQATZ8AAAAAAAAAAAAALUDTJwAAAAAAAAAAAEAL0PQJAAAAAAAAAAAA0AI0fQIAAAAAAAAAAAC0AE2fAAAAAAAAAAAAAC1A0ycAAAAAAAAAAABAC9D0CQAAAAAAAAAAANACNH0CAAAAAAAAAAAAtABNnwAAAAAAAAAAAAAtQNMnAAAAAAAAAAAAQAvQ9AkAAAAAAAAAAADQAjR9AgAAAAAAAAAAALQATZ8AAAAAAAAAAAAALUDTJwAAAAAAAAAAAEAL0PQJAAAAAAAAAAAA0AI0fQIAAAAAAAAAAAC0AE2fAAAAAAAAAAAAAC1A0ycAAAAAAAAAAABAC9D0CQAAAAAAAAAAANACNH0CAAAAAAAAAAAAtABNnwAAAAAAAAAAAAAtQNMnAAAAAAAAAAAAQAvQ9AkAAAAAAAAAAADQAjR9AgAAAAAAAAAAALQATZ8AAAAAAAAAAAAALUDTJwAAAAAAAAAAAEAL0PQJAAAAAAAAAAAA0AI0fQIAAAAAAAAAAAC0AE2fAAAAAAAAAAAAAC1A0ycAAAAAAAAAAABAC9D0CQAAAAAAAAAAANACNH0CAAAAAAAAAAAAtABNnwAAAAAAAAAAAAAtQNMnAAAAAAAAAAAAQAvQ9AkAAAAAAAAAAADQAjR9AgAAAAAAAAAAALQATZ8AAAAAAAAAAAAALUDTJwAAAAAAAAAAAEALGFp1AAAAAEDvLTj2x1WH0DJG/PyrVYcAAAAAAADQp0z6BAAAAAAAAAAAAGgBmj4BAAAAAAAAAAAAWoCmTwAAAAAAAAAAAIAWoOkTAAAAAAAAAAAAoAVo+gQAAAAAAAAAAABoAZo+AQAAAAAAAAAAAFqApk8AAAAAAAAAAACAFqDpEwAAAAAAAAAAAKAFaPoEAAAAAAAAAAAAaAGaPgEAAAAAAAAAAABagKZPAAAAAAAAAAAAgBag6RMAAAAAAAAAAACgBWj6BAAAAAAAAAAAAGgBmj4BAAAAAAAAAAAAWoCmTwAAAAAAAAAAAIAWoOkTAAAAAAAAAAAAoAVo+gQAAAAAAAAAAABoAZo+AQAAAAAAAAAAAFqApk8AAAAAAAAAAACAFqDpEwAAAAAAAAAAAKAFaPoEAAAAAAAAAAAAaAGaPgEAAAAAAAAAAABagKZPAAAAAAAAAAAAgBag6RMAAAAAAAAAAACgBWj6BAAAAAAAAAAAAGgBmj4BAAAAAAAAAAAAWoCmTwAAAAAAAAAAAIAWoOkTAAAAAAAAAAAAoAVo+gQAAAAAAAAAAABoAZo+AQAAAAAAAAAAAFqApk8AAAAAAAAAAACAFjC06gAAAACgu2effTZOOOGEuPrqq+Opp56KTTbZJA4++OD47Gc/GxtvvPES133Pe94Td999d4/3c9BBB5X3AwAAAAAAAAOBpk8AAAD6ldmzZ8f73//+eOSRR2L//fcvmz3Hjx8ff/3rX+Oyyy6Ls846K7baaqvyuo1GIx588MHYZptt4p3vfOfz7uvFL35xBc8AAAAAAAAAVg9NnwAAAPQrxx13XNnw+fnPfz6OPvroxb8/9dRT47vf/W78+te/jh/84Afl7yZMmBDz58+PAw44oLw+AAAAAAAADGTtVQcAAAAAXU2cODE23XTT+MQnPrHE79/xjneUX0ePHr34d+PGjSu/7rLLLms4SgAAAAAAAFjzTPoEAACgX/ntb3/b4+9z+mfabLPNFv9u7Nix5dddd911DUUHAAAAAAAA1THpEwAAgH5t5syZcdlll8UxxxwTQ4cOjc9+9rPPa/q8//774z3veU+8/OUvj/3226+8bm79DgAAAAAAAAOJpk8AAAD6rdNPPz323Xff+MIXvhBPP/10/PjHP479999/8d8feOCB8usvfvGL2GGHHeLII4+MnXfeOS6++OI44ogj4p577qkwegAAAAAAAOhbtncHgNWoWNgR0dEZ0WhENIqIooiiWPR18SW1tS2+tHX5Poa0RwwfVl7K3wPAILPxxhvHpz71qZg6dWpcfvnl8eUvfzmeeuqp+OQnPxnz5s2LzTffPDbZZJP43e9+F1tvvfXi251xxhnxrW99K77yla+UDaBDhgyp9HkAAAAAAK2l6KxF5KVWW/R91vqyXNes6eWVmjW91P7c1+bvhg0tL23t5rEB0LfairLzBADoqWGzmDUnYtbc8msxf2FE/i4bOctLZ5fvn/t9R2cUC/Lror8vbupcVZkYZvPnWsOiba3hEc9d2tYa9tzXLr/L640YHm0j1opYf91o23C9aNtgvUU/A0ALmzhxYrz3ve+NadOmxTnnnBN77rnnMq+fUz9Hjx5dNoDmtu8DxYJjf1x1CC1jxM+/WnUIAAAAAKxBZQvMgoVRzFsQMW/+oq9zn/s6b0EUzd/l1/kdEZ2dixo7O59r7Kzl9/WIei2ir7ppckF6NoAOHxptwxbV8RbV9IZHjHiu9rf2iGhbd52I9daOtvXWWfJ7NT4AujHpE4BBJ5s3yybOsqEzvz7X1Pnc94t+N2dR02Z/kQlqs7k05v7fr1fkPnJa6AbrRmQD6AbrRtv66y1uCI38ufz9etG2zojV8QwAYJVts8025YTPH/7wh3HVVVctt+lzr732Kps+H3/88QHV9AkAAAAAg1GREzefnR3x7OwoZs4uvy+6fj9zTsTceYsmcvYn9WwirS9qRu3y62JFmkaXaAZdJ9pesH60bbTBosvGGy76ms2jAAwKmj4BGJAyuWtMnRHF1OlRdP06Y9ai1XqDUU4hnfZsxLRnl51EDh0abRutH22bbhRtm+Vl4/LSvtlGEZlA2mYegNWoo6MjRo0aFfV6PV73utc97+/bbrtt+XX69OkxY8aMGD9+fLkF/Pbbb/+8686fP7/8OmKEBQ0AAAAA0BJTOmfOiUZZ13uutjdtxuLmzpzYOShlw+jMOWVT6zJrfDktdOPnGkE3eq4RNC+bvmBRvS93CwRgQND0CUBrT+ycsijpa3Rt7pw2o39N6Ww1uUqyPJYzIsb2MC10kxdE2+bZCLpRtJcNoc81hq67dkUBAzDQmj4/9alPxTrrrBM333xzDM8tjroYM2ZM+TWbPG+55ZY45phj4qCDDooTTjhhies1Go248847y8UKy5sICgAAAACsOUVut/5cbe//anyLGjxziAkraf6CKCblZcrz/9YWixpBN98k2rbYONq22CTay+83UeMDaEGaPgHo94p6I4qnp0Vj4tNRPDE5Gk9OLRPBmDOv6tAG57TQp6aWl1Tv+rd1RpTNoO1bbRZt22wZ7dtuEW1bbhZtQ4dUFS0ALWi99daLgw8+OC6//PI47rjj4thjj138t/vuuy9OPvnksiH0bW97W6y99tqx/vrrx/XXXx833XRTHHDAAYuv+9vf/jYefvjhePOb3xxbb711Rc8GAAAAAAavolEsau58cko0Jk0pmxEbT06JmD236tAGnyKimD6zvMQD45f8W24XnzW+bADdYtNo32bzaHvhFraLB+jH2opyPjYA9KMGz8nZ4Dk5iolPR+OJyVE8ObWcPkkLGjIk2rbK5HDLaNt2i0VfsylUIygAyzB58uR43/veF08++WS84hWviL333rv8/qqrriond/7iF7+IQw45pLzuxRdfHF/+8pfL79/0pjfFVlttFaNHj4677rordthhhzj11FNjk002iYFkwbE/rjqEljHi51+tOgQAAACAQaFY2FEODena3Jk1P5M7W1Rb26Ld/p4b9FLW+F64ebSNWKvqyADQ9AlAlYp6PYqnujR45iRPDZ6DqBF0i2jb5rkkcetsBDWAHID/M3369Dj++OPLRs8pU6bEBhtsEPvtt18cddRRseuuuy5x3Wzw/P3vf19u5z5v3rxysuehhx4an/nMZ8rJoQONps/e0/QJAAAA0PeyzaSYMj0aEyZF8eikaDz2ZPlzaD8Z2HKL+E3/rxF00dctTQQFqICmTwDW6Aq/xviJ0Xj48Wg88kS5lUPUltggnMFqSHs5AbT9JdsuvrStPaLqqACgX9L02XuaPgEAAABWXdHRGY3Hn1rU4DlhUZNnzFtQdVj0B+3t5QTQ9h22WVTj236baFt37aqjAhjwjNQCYM01eU58OqLRqDos+qN6o3x/1PNy3e2LtozYerNo33E7TaAAAAAAAABrUDF7blnbK+t8j05atFOfGh89aTSieGJy1PNS1vgi2jbfZFET6A7bll/bNtqg6igBBhxNnwD0GU2e9JncFmTSlKjnRRMoAAAAAADAalMsWLioyfPBx6Lx0GNRTJ5WdUi0qiKiePqZqOfllrsX/W6jDRY1ge64XQzZZftoe8H6VUcJ0PI0fQKw0orO2qIEMJs8H35ckydrtgk0t4rIBtBsBN1xu2hba3jVUQIAAAAAAPR7RU5nfOypqI+bEI0HH43i8aciGkXVYTFQzZgVjTvuLy+1iGjbctNo33X7RZecBDpU6xLAivJfTgBWeDuH+phHonH/w+Vqv+jorDokBmsTaNft4IcOifYdXxTtu78khuy+oxWCAAAAAAAAXRTPzo762Eei8cCj5TTPWLCw6pAYpHKSbD0v146KGD5s0ZCXbADdZfto33zjqsMDaAmaPgFYrsZTU6Mx5uGy2bNc6VdY6Uc/U6tH44Hx5aX29yuibZston23l8SQPXaM9m22rDo6AAAAAACANa7x5NRo3PdQ1O97aNGOfdDfdHRGY+z48pLaNt5wUQPoS3eI9l1ebAoowFK0FYXOHQCWVNQbi7ZtH/NweSmmz6w6JFh5L1g/huz2kmjffcdo32k7ySEALW/BsT+uOoSWMeLnX606BAAAAIA1um17Y/zEstGzcZ8aHy1ureFl8+eQvXYuv7atNbzqiAD6DV0PAJSK+Quicf/4qOe27Q9MiJhvSwcGiNyu5Oa7ykusNSzad35x2QCajaBt661TdXQAAAAAAAArrVjYEY1xj5bTPMtpiXPnVx0S9I18b9/1QHmJoUOjfZcXxZC9dinrfG3rjKg6OoBKafoEGOxJ4L0PRf3O+6Px4GMRjUbVIcHqtbCzfM/npdbWFu0v2Tba99kthuy9S7StvVbV0QEAAAAAACxX0VmLxv2PLKrxjZ0QUatVHRKsXrVaNMY8Ul6ivT3ad9w22vfcOYbsuVO0bbBe1dEBrHG2dwcYjFu3P/ho1O8YU27rEB2dVYcE1cvVgbvtEENesfui7SGGDqk6IgBYKtu7957t3QEAAIABtXX7Q49F/c6x0bj3wYgFHVWHBNVra4u27V8YQ3LIy8t2NQEUGDRM+gQYJBqPPRn1O+6Peo6/nzOv6nCg/60OvOfB8hJrjygnfw55xW7RtsM20dbWVnV0AAAAAADAINV49Mlyomf97nERs+dWHQ70L0URxfiJUcvLuVdF+0u3XzTkZbeXRNswLVHAwOW/cAADWGPqjEUTPUePjWLqjKrDgdYwf0HUb727vMRGG8SQl780hrxy92jfctOqIwMAAAAAAAaBxtPPlMNcyhrfM89WHQ60hnq93Omy3O1yxFqLhry8ao9o32GbqiMD6HO2dwcYYIo586I+emyZCBaPP1V1ODBgtG29eTn9M5tA216wftXhADCI2d6992zvDgAAALSKYmFH1Ec/UA6lUOODvtO26QtiyCv3KIe8tG28YdXhAPQJTZ8AA0DRKKIxbkLUb7krGvePj2g0qg4JBq62tmjf+cUxZP+9o32PHaOtvb3qiAAYZDR99p6mTwAAAKC/azwxedEOZHeOjVjYUXU4MHC1RbTv+KIY8pqXRfseO0XbEDU+oHXZ3h2ghRWz50b9tnsXrfibPrPqcGBwKBY1WeclNlwvhuy3Vwzdb69o22iDqiMDAAAAAABaQLFgYblrX1njmzSl6nBgcCgiGg89Vl5ig3VjyL57xdD991bjA1qSSZ8ALaj+0GNRv/muaNz3UETdVE+oXHtbtL90hxiy/8uifdcdoq29reqIABjATPrsPZM+AQAAgP6k8eikqN96T9TveiCio7PqcICs8e26w6Lpn2p8QAsx6ROgRRQLO6I+6r6o3zQ6iqefqTocoKtGEY0xj5SXtk1eUCaGOQG0bZ0RVUcGAAAAAABUqOisRf2OMVG/4c4onppadThA9xrf/Y+Ul7aNN4whr947huy3Z7Stv27VkQEsk0mfAP1cY8r0qN94Z9Rvvy9iQUfV4QC9NXxYDHn5S2PIa/eJ9q03rzoaAAYQkz57z6RPAAAAoCrFrDlRu2l0uXtfzJ1fdThAbw1pj/Y9d46hr3tFtL/4hVVHA9Ajkz4B+qHsx8/VRNns2Xjw0Qjt+dB6Ojqjfts95aVth21i6IH7RPteO0dbe3vVkQEAAAAAAKtJY+LTUbv+9miMfiCiXq86HGBF1RvRuOuB6LjrgWh78dYx9KB9o32PnWz9DvQrmj4B+pEiTyDvvD9qV99mC3cYQIrxE6Nz/MRFW7+/Yd8Ysu8e0TbUaRgAAAAAAAwERW4RPebhqF03qqwJAAND8eiT0XnyedG26QtiyOtfFUNetUe0DR9WdVgAtncH6A+KnAg48t6oXTMyYsasqsMBVrcN1o2hr3tlDHnNy6JtxFpVRwNAi7G9e+/Z3h0AAABYnYqFHYt2/brhziieebbqcIDVbd21y/pe7vDXtv66VUcDDGKaPgEqVMxfGPWbRpdbPMSceVWHA6xpa4+IIQe+PIa+9hXRtt46VUcDQIvQ9Nl7mj4BAACA1aGYvyDq198RtRvuiJi3oOpwgDVt6NAY8srdYshBr4r2zTepOhpgELKvKEAFitlzo3bd7VG/eXTEgo6qwwGqkh8KXXFL1K+7PYbst1cMPehV0bbRBlVHBQAAAAAA9KCYM68c5lK/8U41PhjMarWo33pPOem3ffedYuibXxPt22xRdVTAIKLpE2ANakyfGfVrRkb9tnvLE0GAUkdn1G+4o2wEH7LPbjHk4P2sCgQAAAAAgH6imDUnateOivrNd5Wf6QOUiojGfQ9Fx30PRfvuO8bQQw/Q/AmsEZo+AdaAxuRpUbv6tmjcOTai0ag6HKC/qjeiPuq+qN8+Jtr33CmGHvzqaN92y6qjAgAAAACAQal4dnZZ48uJfga6AMvSGPNwdIx5WPMnsEZo+gRYjRpTnonaJTdG455x5SofgF4pimjc82B03PNgtO+6Qww97LXR/kKJIQAAAAAArAmNZ56N+lW3Rn3UmIh6vepwgBai+RNYEzR9AqwGxczZUbvspqiPvM9kT2CVNB4YHx3jxkf7y18aQ9/62mjf5AVVhwQAAAAAAAN3G/fLb476bfeUu3MBrCzNn8DqpOkToA8V8xdE7arbon7DHRGdtngA+kgR0bhzbHTcPS6GvHrvGPrm10Tb+utWHRUAAAAAAAwIxYKFUbt6ZNSvvz2io7PqcICB2Py5x44x9F9eF+1bblp1SMAAoOkToA8UHZ1Rv/HOsuEz5i+oOhxgoKo3on7T6Kjffl8Med0rY+gb9o22EWtVHRUAAAAAALSkolaL+o2jo3bVrRFz51cdDjCANe57ODrufySGvGrPGPrWA6Ntg/WqDgloYZo+AVZB0WhE/bZ7o3b5TREz51QdDjBYLOyM+hW3RP3mu2LoIfvHkANeHm1Dh1QdFQAAAAAAtISiUZQDFmqX3RQxY1bV4QCDRf6357Z7oj56bAx5/Stj6Bv3i7a1hlcdFdCCNH0CrKT63eOidskNUUyZXnUowGA1d37Uzr86atffHsPecmC0v2L3aGtvqzoqAAAAAADot+r3PRS1i2+IYvK0qkMBBquO5wa83HJ3DD30gBjy6r2jbUh71VEBLaStKIqi6iAAWkn9oceidtH1UTz+VNWhACyhbavNYui/vDaG7L5j1aEAsBotOPbHVYfQMkb8/KtVhwAAAAD0E43Hn4rO86+OYsKkqkMBWELb5hvH0MNeH0P23KnqUIAWYdInQC81ps2I2nlXReP+8VWHAtCj4qmp0fmnf0TtJdvGsHcdEu1bbVZ1SAAAAAAAUKli9txyoEt91L0RRmIB/VDuLtp50rlR236bGHb4QdH+4q2rDgno50z6BFiOoqMzalfdGvVrRkbU6lWHA9A77e0x5MCXx9C3HBhtI9aqOhoA+pBJn71n0icAAAAMXkW9HvUb7oja5TdHLOioOhyAXmt/xW5l82fbButVHQrQT5n0CbAM9Xsfilpu8zB9ZtWhAKyYRiPq198R9dEPlEnhkFfuXnVEAAAAAACwRtQfmFDu4JfT8wBaTeOO+2PhmIdj6KEHxpAD94m2Ie1VhwT0M5o+AXrQmDojaudeFY0HbOUOtLjZc6PzbxdF7da7Y9i73hTtW9vyHQAAAACAgakxbUY50KUx5pGqQwFYNQs6yv+e1UfeG8P+7ZBo32HbqiMC+hHbuwN038r9ylujfq2t3IEBuuX7AS+PoW+15TtAK7O9e+/Z3h0AAAAGh2JhR9SuuCXq19+uxgcMSO377BbD3m7Ld2ARkz4BnlO/58HoPP/qiBmzqg4FYPVt+X7DHVG/y5bvAAAAAAAMDPW7x0XneVdFzJxTdSgAq03jzuaW7wfEkNe+wpbvMMhp+gQGvUVbuV8ZjQcmVB0KwJphy3cAAAAAAFpcMWNWdP7jClu5A4NHTjX+5zWLtnx/1yHRvuN2VUcEVMT27sCgZSt3AFu+A7Qi27v3nu3dAQAAYOApntvVqnbpjRELO6sOB6AyQ/bbM4a+/Y3RtrYaHww2Jn0Cg1JjwqToPOPiKKbOqDoUgP6x5fu9D8aw974lhuyyfdURAQAAAABAjxqTpkTnmZdEMfHpqkMBqFz9tnuj/sCEGHbEm2PI7jtWHQ6wBmn6BAbfdM9Lboj69XdEGHQM8H+enR2dJ5wdjVfvFUPf/gZTPwEAAAAA6DeKzlrULr856teMLIcZAPCcmXOi80//iPrLXxrD/vXgaFtvnaojAtYATZ/AoNF4dFJ0nm66J8Cy1G+9J+rjHo1h78mpny+uOhwAAAAAAAa5xviJ0XnWpVFMmV51KAD9VmP02Fj40GNl4+eQl7+06nCA1UzTJzA4Vv7ldM/rbjfdE6A3ZsyKzhPOisar946hbz/I1E8AAAAAAKrZwe+Ca6N+8+gIJT6A5ZszLzr/ekHU7xwbw454U7RtuH7VEQGriaZPYEBrPPpkdJ5xsZV/ACuhfuvdUR83IYa99y0xZGdTPwEAAAAAWDMajz0ZnX+7yA5+ACuhMebhWDj+iRh6+Bti6Kv3qjocYDXQ9AkM3Omel94Y9WtHme4JsKpTP39/VjT23zuGHm7qJwAAAAAAq09Rr0ft8pujftWtEQ01PoCVNn9h1M66NBp3PxDDjnyrqZ8wwGj6BAbmyr/TTfcE6Ev1W+6O+gM59fOtMWTnF1UdDgAAAAAAA0zj6Wei87QLo5j4dNWhAAwYjXGPxsKfnhzD3n1oDNlr56rDAfqIpk9gwChqtahdcmPUrxtl5R/A6pr6ecKZ0dj/ZYumfq41vOqIAAAAAABocUVRRP2GO6J24fURtVrV4QAMPHPnR+fJ50Vjvz1j6DsPVuODAUDTJzBwVv795fwoJk+rOhSAga2IqN98V7kqcNiHD4/2bbeqOiIAAAAAAFpUkcMGzrgkGg89VnUoAANe/bZ7o/HIEzHsA4dH+4vU+KCVtVcdAMCqqo28Nzp+cYqGT4A1qHjm2ej49d+iltOVAQAAAABgBdVvHxMLf3KShk+ANaiY9mx0/Oa0qF1xcxSNRtXhACvJpE+gZRULO6LznMujccf9VYcCMDjV61E7/5poPPx4DDvyX6Jt3bWrjggAAAAAgFao8Z19eTTuVOMDqESjEbVLboz6A4/GsA8cFu0bb1h1RMAKMukTaEmNSVOi4+d/0fAJ0A80xjwSC392cjQmTKw6FAAAAAAA+rHGk1PLHfw0fAJUr5gwMTp+elI5eRloLZo+gZZTu2l0dPzq1Cimzqg6FACanp0dHb89I2pX3hpFUVQdDQAAAAAA/Uzt1ruj41d/jWLK9KpDAaBpQUd0/u2i6Dz94ig6OquOBugl27sDLaOYvzA6z7wkGvc8WHUoACxtK4iLr4/GI4/HsPcfFm3rr1t1RAAAAAAA9Ift3M+53A5+AP1YfdR90Xhicgz7yDuifYtNqg4HWA6TPoGW0HjsqejIrYM1fAL0e41xj5bbvdcfeqzqUAAAAAAA6A/buWv4BOj3isnTouOXp0Tdf7Oh3zPpE+jXcovg+nWjonbR9RH1RtXhANBbs+ZG5+/PisYhr46hhx4Qbe3WGgEAAAAADLbt3GvnXhXRWas6FAB6a2FndJ52YTTGPxFD//XgaBuqtQz6I/8ygX6rmDs/Ok+/OBr3P1J1KACsjGzcv+KWaDzyRAz/0OHRtuH6VUcEAAAAAMCa2M7971dE4/YxVYcCwEqq33J3NCY+HcM/+s5o22iDqsMBujFyCejfWz1o+ARoecX4ibHw56dE49FJVYcCAAAAAMBq1Hjm2ej41akaPgEGgOKJybHw53+J+rgJVYcCdKPpE+h36vc8GB2/OTWK6TOrDgWAvjJ7bnQcf0bURt5bdSQAAAAAAKwG9QcfLYe6FJOnVR0KAH0ld2j9wzlRu/zmKIqi6miA59jeHeg38gShfvnNUbv8pgjnCgADT60etTMuieKpqTH08IOird36IwAAAACAgaB23aioXXBtREORD2DAKYqoXXpjNCY9HcPef1i0rTW86ohg0FNpB/qFoqMzOk/5Z9Qu0/AJMNDVr7s9Ov/49yjmL6g6FAAAAAAAVkFRq0XH6RdH7fxrNHwCDHCNex+Kjt/8LYoZs6oOBQY9TZ9A5fKEoOM3p0Xj7nFVhwLAGtIYNyE6fvnXaEx5pupQAAAAAABYCcXM2dFx3OnRGHVf1aEAsIYUT06Jhb84JRoTJlUdCgxqmj6BSjUmTCxPCIpJU6oOBYA1rJg6Izp+eWrUx46vOhQAAAAAAFZA49EnF9X4Hn+q6lAAWNPmzIuO350RdU3/UBlNn0BlarfeEx3Hn1meEAAwSC1YGJ0n/j1q14ysOhIAAAAAAHqhNvLe6Dj+9IhZc6sOBYCq1OrRefrF0XnBtVE0iqqjgUFnaNUBAINP0WhE7byro37jnVWHAkB/UBRRu+DaaDw1NYa959BoG+oUFQAAAACgvyme+yy3fu2oqkMBoJ+oXzMyiqefiWEffFu0jVir6nBg0DDpE1ijinkLovMPZ2v4BOB5GrePiY7jTo9i1pyqQwEAAAAAoIuisxadp/xTwycAz9O4/5Ho+PVp0Xjm2apDgUFD0yewxjSmzYiOX54SjQcfqzoUAPqp4vGnYuEvTonGpClVhwIAAAAAQH5uO3d+dPz+zGjcPa7qUADop4rJ06Ljl3+NxoRJVYcCg4KmT2CNaEycXK7sKKZZ2QHAcsycEx2/PT0aDz9edSQAAAAAAINaTm3r+PWpUWjiAWB5nlskUL/voaojgQFP0yew2tUffDQ6fntGxJx5VYcCQKtYsDA6/nB21O95sOpIAAAAAAAGpcbjT0XHr06NYuqMqkMBoFV01qLz5POidstdVUcCA5qmT2C1qo8eG51//HvEwo6qQwGg1dTq0fmX86N2s6QQAAAAAGBNqo95ODqON9QFgJXQKKJ29uXReemNVUcCA9bQqgMABq7aDXdE7byrIoqqIwGgZRVF1M65PIpZc2LYWw6sOhoAAAAAgAGvdtPoqJ17Zdm0AwArq375zRGz5sTQI94cbe3mEkJf0vQJrBadF10f9aturToMAAZSUjh7bgz9t0wK26oOBwAAAABgwClyEf6F10X9mpFVhwLAAFG/9Z4oZs+LYR86PNqGD6s6HBgwtFEDfapoNKLzzEs0fALQ5+q33F1u917UalWHAgAAAAAw4Gp8tTMv1fAJQJ9rjHk4On5/ZhRz51cdCgwYmj6BPlN0dEbnSedG/bZ7qw4FgAGqce+D0XHC2VHMX1h1KAAAAAAAA0JRr0fnXy+I+kg1PgBWj+LRJ6PjN6dFMX1m1aHAgKDpE+gTxbwF0XHCWdEY80jVoQAwwBWPPBEdx/0tillzqg4FAAAAAKClFZ216PzzudG4e1zVoQAwwBVTpsfC35wWjSnPVB0KtDxNn8AqK56dvaj5ZsKkqkMBYJAonpoaHb8+LRpTp1cdCgAAAABASyoWLIzOP5wdjbHjqw4FgMFi5pzo+O0Z0XhqatWRQEvT9AmsksbUGeVKjGLytKpDAWCQye0fOn7zt2hMerrqUAAAAACA1WDhwoVxwgknxNve9rbYa6+94lWvelV88pOfjFGjRi1xvV122SU+85nPxJlnnhkHHHBA7L333nHssccu92/poYceiv/4j/8o/7bHHnvE61//+vjmN78ZTz755BKP8Y9//KO8r/z6pS99qYxn//33j0svvTRadhe/358VjUeeqDoUAAab2XOj4/gzojFRjQ9W1tCVviUw6DWmTI+O351RrsQAgErMmRcdvzszhh/1nmjfZsuqowEAAAAA+sj8+fPjox/9aNx1112x++67x/ve976YN29eXHbZZfHhD384vv/978e73vWuxde/995745Zbbol3vOMd5c8vfelLl/u3G2+8Mf793/89arVa2ez54he/OMaOHRtnnXVWXH755XHyyScvcT/pZz/7WayzzjrxwQ9+MB588MF4+ctfHq2myGab359V7qgEAJWYO7/sNxn+6fdE+4u2qjoaaDmaPoGV0nj6mUUNn7PmVh0KAINdrkjPxs/PvCfat5MUAgAAAMBA8Ktf/aps+PzUpz5VTuJsa2srf3/00UfHe97znvjWt74Vr3nNa2LLLRctBn/mmWfif/7nf+LII4983n319Le5c+fGV77ylSiKIv74xz/GgQceuPhv2fSZ0z5zIuhFF10U7e3tSzSjXnDBBbHxxhtHKypmzIqO358ZxdQZVYcCwGA3f2H5/6Thnzoi2nfYpupooKXY3h1YYY3J08pR2xo+AehfSeFZ0Xh0yS2XAAAAAIDWU6/X4+yzzy4bK4855pjFDZ9piy22iE984hPR0dER559//hK3e+tb37rU++z+t6uvvjqmT59eTgvt2vCZsql03333jfHjx8fIkSOX+NurX/3qlm34bEydEQuP+5uGTwD6j4Ud0fGHs6P+0GNVRwItxaRPYIU0npxarrTI7XQBoF9ZsDA6Tjgrhn/6iGjf3mpAAAAAAGhVEyZMiDlz5pRTPI8//vjn/X3SpEnl1zFjxiz+3YYbblheetLT3+6///7y63777dfjbV71qleVDZ+53Xs2ejZtu+220Yoa02ZEx/GnR8ycU3UoALCkjs7o/OPfIz72zhjy0h2qjgZagqZPoNcak6YsavicO7/qUABgmasBF20D0ZofvgIAAADAYDdz5szy6+TJk+O4445b7vXSiBEjlnq9nv42e/bs8ut6663X421yomiaN2/JQSjLepz+qjF9ZnT87kwNnwD0X7VadP753IiPvD2G7LFT1dFAv6fpE1ixCZ8aPgHo7xZ2Rscfz4nhn35PtG//wqqjAVbSs88+GyeccEK51dpTTz0Vm2yySRx88MHx2c9+9nlbqM2YMSN++9vfxjXXXBNTp06NrbfeOv7t3/4tPvaxj8XQodJeAAAAaDXrrrtu+fW1r31tnHjiiavlMZrNnlOmTFlmQ+kLXvCCaGXFjFnRefwZETNmVR0KACxbvR6dfzk/4iPv0PgJy9G+vCsANCZP0/AJQAs2fp4djceerDoSYCXkpI33v//98ec//zm22mqr+OAHPxi77LJL/PWvf413vOMdZRNo06xZs+JDH/pQnHrqqbH77rvHhz/84Vh77bXjpz/9aRx77LGVPg8AAABg5eywww7lRM0HHnggOjo6nvf3UaNGlbn/zTffvNKPsdtuu5Vfcwv3ntx2223l1/xMolUVM2dHx+/OiGL6/01EBYB+rd6IzlP+GfVxE6qOBPo1TZ/AMjWefmbRdg9zlty6AgD6vQUd0XHC2dF44v+aw4DWkNu2PfLII/H5z38+Tj755PjqV78av//97+Ob3/xmOX3j17/+9eLr5oTPhx56KP77v/+7/P2Xv/zlOOecc+LNb35zXHbZZXH55ZdX+lwAAACAFTd8+PB4+9vfXu7o8ZOf/CQajcYSO37kZwR//OMfY+HChSv9GLmjSE7xvPDCC+P6669f4m/nnXde3HjjjfGiF70o9tlnn2hFxaw5ZY2vmPZs1aEAwIqp1aPzpPOiMf6JqiOBfkvTJ7BUjSnTy9V/MXtu1aEAwMpZsDA6fn92NCY+XXUkwAqYOHFibLrppvGJT3xiid/nlM80evTo8uuCBQvirLPOKqeBHnnkkYuvN2TIkLJRNJ1xxhlrNHYAAACgb3zlK1+JnXfeOU455ZR45zvfGd/73vfi29/+dhx22GExYcKEOOKII+Kggw5apS3kf/zjH8fQoUPjM5/5TBx11FHxox/9KD72sY/F1772tbIh9Oc//3m0t7deSb2YPXdRw+eU6VWHAgArpyN39ft7NB4z3AV60npnqMAa0Zg2Y1HD5ywNnwC0uPkLouP3Z0Zj0pSqIwF6Kad33nTTTeU27V3l9M+02WablV/vueeemDdvXuy7777PK8Bsu+22sc0225TbvdXr9TUYPQAAANAXNthgg3IxZ+4Ekrn9mWeeGZdccklst912ZXPmd7/73Whra1ulx3j9618fZ599drzlLW8pP2f461//Go899lh84AMfiPPPPz/22GOPaDXF3PnR8fuzonj6mapDAYBVs7AjOv5wthof9KCtKIqipz8Ag1e53cOvT4ti+syqQwGAvrP+ujH88++P9k03qjoSYAXNnDkzbr311vjhD39Ybu9+4oknxv77719O+czt3LL4c/TRRz/vdh/96EfjlltuKbd4z+3YBooFx/646hBaxoifL5r4CgAAAINBMW9BOdSl0BwDwECy3jox/HPvi/YtNqk6Eug3TPoEllDMXxgdfzhHwycAA8/sudF5wtnl1kZA6zj99NPLSZ5f+MIX4umnny63XcuGz/Tss8+WX3O7tZ6sv/765ddZs2atwYgBAAAA1rziuWloGj4BGHDmzIuO350ZjWcW1QQATZ9AF0WtFh1//kcUT0oGARiYimeeXfTB54KFVYcC9NLGG28cn/rUp+Kd73xnrLXWWvHlL3+5nPSZOjo6yq/Dhw/v8bbN3y9c6N88AAAAMHAV9UZ0/uX8KB5/qupQAGD1mDUnOn93ZhQzDHmApOkTKBWNIjr/emEUjzxRdSgAsFrlSvfOk86NolavOhSgFw499NCy0fNHP/pRXHDBBWUT6E9+8pO49957Y8SIEeV1Ojs7e7xtsyl03XXXXaMxAwAAAKwpRVFE55mXROOBCVWHAgCrVe5Y2/H7M6OYM6/qUKBymj6BUu3vl0fj3gerDgMA1ojGQ49H52kXlosegNaxzTbbxCc/+cny+6uuuio23HDDZW7fPnv27PLreuuttwajBAAAAFhzahdcG43bx1QdBgCsEcXUGdFx4t+j6Oh5GAQMFpo+gei89Mao33J31WEAwBrVuHtc1M69suowgB6mc950001x/fXX9/j3bbfdtvw6ffr02GGHHcrvH3/88R6vm79fZ511Yuutt16NEQMAAABUo3bNyKhfO6rqMABgjSoefyo6Tzk/ikaj6lCgMpo+YZCr3Tw66pffXHUYAFCJ+k2jo+b/g9Dvmj4/9alPxbHHHrt4e/auxoxZNLli++23jz322KPcun3kyJHR6PbhzhNPPBGTJk2Kl73sZTFkyJA1Fj8AAADAmlC/fUzULry26jAAoBKN+8dH7ZzLqw4DKqPpEwaxek44+7sJZwAMbrVLb4yaidfQb+RW7AcffHC5Nftxxx23xN/uu+++OPnkk8vpnW9729tirbXWKr9OnDgxTjnllMXXq9fr8eMf/7j8/gMf+MAafw4AAAAAq1N97PjoPOOSiKLqSACgOvVb74naZTdVHQZUoq0oCqeCMAg1Hn48Ov5wdkStXnUoAFC99rYY9pF3xpA9d6o6EiAiJk+eHO973/viySefjFe84hWx9957l99fddVV0dbWFr/4xS/ikEMOWbzN+xFHHFFO9XzDG94QO+64Y9x8883lRNC3vvWt5XXzNgPJgmMXNbSyfCN+/tWqQwAAAIA+1Xjsyej43ZkRHZ1VhwIA/cLQ974lhu63V9VhwBql6RMGocakKdHx29MjFiysOhQA6D+GDo3hR7072nfYtupIgOeaOY8//viy0XPKlCmxwQYbxH777RdHHXVU7LrrrktcN//+q1/9Kq699tpyQug222wT73rXu+LDH/5wDB8+PAYaTZ+9p+kTAACAgaQxZXp0/Oa0iLnzqw4FAPqP9vYY9ol3xZCX7lB1JLDGaPqEQaYxfWZ0/PrUiFlzqw4FAPqftdeK4Z97f7RvvVnVkQAslabP3tP0CQAAwEBRzJ0fHb/8axTPPFt1KADQ/wwfFsM/975o33bLqiOBNaJ9zTwM0B8UCxZG5x/P0fAJAEszf2F0/OnvUcz2/0oAAAAAoH8oavXoOOlcDZ8AsDQdndFx4t+j4f+VDBKaPmGQKBpFdJ56YRRPP1N1KADQv82YFR0nn1d+kAoAAAAAULXOsy6NYvzEqsMAgP5t9txyEFoxf2HVkcBqp+kTBonaxddH4/5Hqg4DAFpCMWFS1M65vOowAAAAAIBBrnbFzdG4fUzVYQBASyimTI/Ov/6zHIwGA5mmTxgE6nfcH/Wrb6s6DABoKfWR90bt+turDgMAAAAAGKTqd4+L2qU3Vh0GALSUxgMTonbhtVWHAauVpk8Y4BpPPBWdZ15adRgA0JJq/7wm6uMerToMAAAAAGCQaUx8OjpPvzjCoDIAWGH1a0dFfdR9VYcBq42mTxjAillzouPP50bUalWHAgCtqVFE5yn/jMbUGVVHAgAAAAAMqhrfPyI6OqsOBQBaVufZl0XjsSerDgNWC02fMEAVtdqihs+Zc6oOBQBa2/wF0fnnf0SxYGHVkQAAAAAAg6HGd9J5Ec/OrjoUAGhttXp0nHRuFP6fygCk6RMGqM6zLovi8aeqDgMABoTi6Wei89QLomjYSwkAAAAAWM01PlPJAKBvzJq7qPGz0w65DCyaPmEAql0zMhq3j6k6DAAYUBr3j4/aRddVHQYAAAAAMEDVbhqtxgcAfax4YnJ0nnlJ1WFAn9L0CQNMfez4qF2oIQUAVof6NSOjfocPXQEAAACAvtV47MmonXd11WEAwIDUuHNs1K66teowoM9o+oQBpDHlmej86wURha1nAWB16Tzzsmg8/lTVYQAAAAAAA0QxZ150/OX8iHq96lAAYMCqXXxD1MdNqDoM6BOaPmGAKBYsjM4//SNiwcKqQwGAga1Wi44/nxvF7LlVRwIAAAAAtLiiUUTnqRdEPDu76lAAYGAriug87aIo/D+XAUDTJwwQnWdfHsXUGVWHAQCDw6w50fm3i6IwXRsAAAAAWAW1S2+IxoOPVR0GAAwOOV37rxdEUW9UHQmsEk2fMADUbr07GqPHVh0GAAwqjXGPRv2q26oOAwAAAABoUfUxD0f9qlurDgMABpViwsSoXXx91WHAKtH0CS2uMXla1M69quowAGBQql16YzQmTKw6DAAAAACgxTSmzSh3EwqbCQHAGle/dmTU73uo6jBgpWn6hBZWdHRG51/Oj+isVR0KAAxOjcaiLSDmzq86EgAAAACglWp8J58fMX9h1aEAwOBURHSefkk0ps+sOhJYKZo+oYXV/nFlFE8/U3UYADC4PTs7Os+4uOooAAAAAIBWqvE9OaXqMABgcJu/oBy0VtTqVUcCK0zTJ7So+h1joj7y3qrDAABy4OeYR6J23e1VhwEAAAAA9HP1O+5X4wOAfqJ4YnLU/nlN1WHACtP0CS2oMXV6dJ5zedVhAABd1C68LhpPPFV1GAAAAABAP5VbyHb+XY0PAPqT+o13Rv2uB6oOA1aIpk9oMUWtFp2n/DNiYWfVoQAAXdXr0XnKBVEsWFh1JAAAAABAP1M0GtF56oURCzqqDgUA6KbzzEujMW1G1WFAr2n6hBZTO/+aKCZNqToMAKAHxTPPlkkhAAAAAEBXtctvjuLRSVWHAQD0ZGFHdJ52URT1RtWRQK9o+oQWUr/nwajfNLrqMACAZWjcPS5qN99VdRgAAAAAQD/RmDAx6lfeUnUYAMAyFI89GbUrbq46DOgVTZ/QIhrTZ0bnmZdUHQYA0Au1866OxpNTqw4DAAAAAKhYMX9hOTksGkXVoQAAy5GLNBoTTOam/9P0CS2gaDSi89QLIuYvrDoUAKA3arXoPOX8KDprVUcCAAAAAFSo85zLo5g+s+owAIDeaBTRedqFUSzQn0P/pukTWkD92lFRPPpk1WEAACugmDI9apfcUHUYAAAAAEBF6qPui8bosVWHAQCsgFysUTv3qqrDgGXS9An9XOPpZ6J26Y1VhwEArIT6dbdH41FbQAAAAADAYNOYNiM6/3Fl1WEAACu5cKN+70NVhwFLpekT+vu27qdfHFGrVx0KALAyiiI6z7jENu8AAAAAMIgUuTVs1vgWdlQdCgCwkjrPviyK2XOrDgN6pOkT+rH6NSOjePypqsMAAFaBbd4BAAAAYHCp33hHFBPsAAQALW3OvOg867Kqo4AeafqEfqoxeVrULrup6jAAgL7a5t2HvAAAAAAwKLZ1r11sETgADASNMQ9H7bZ7qg4DnkfTJ/RDtnUHgIG4zfvFUXR0Vh0JAAAAALCaFPk54JmXRvgcEAAGjNr510Qxc3bVYcASNH1CP1S/emQUT0yuOgwAoA8VU2fY5h0AAAAABrD6TaOjeOSJqsMAAPrSgoXR+fcrqo4ClqDpE/oZ27oDwMBVv/6OaEyYWHUYAAAAAEAfa0yfGbULr6s6DABgNWjc93DU73qg6jBgMU2f0I8U9ee2da/b1h0ABu4275fY5h0AAAAABpiabd0BYEDrPPeqKObOrzoMKGn6hH6kfs1ttnUHgAHONu8AAAAAMLDUbrkrGg89VnUYAMDqNHtudP7zmqqjgJKmT+gnGk9NjdplN1cdBgCwprZ5H2+bdwAAAABodcWMWVG74NqqwwAA1oDGqPuiPm5C1WGApk/oD4qGbd0BYNBt836mbd4BAAAAoNV1nn1ZxIKOqsMAANaQ2tmXR7HQ//uplqZP6AfqN42OYuLTVYcBAKzpbd6vurXqMAAAAACAlVS/64FoPGDaFwAMJsX0mVG75Iaqw2CQ0/QJFStmz43aJTdWHQYAUIH6NSOjMW1G1WEAAAAAACuoWLAwOs+7uuowAIAK1G+4MxqPPVl1GAximj6hYp0XXhexYGHVYQAAVajVo3buVVVHAQAAAACsoNplN0XMmlN1GABAFYoiOs+8NIp6o+pIGKQ0fUKFGhMmRuP2+6oOAwCoUGPs+Kjf91DVYQAAAAAAvdR4amo54QsAGLyKydOifuMdVYfBIKXpEypSNBrR+fcrI4qqIwEAqlY77+ooOjqrDgMAAAAA6IXOv18R0TDZCwAGu5z8XcyeW3UYDEKaPqEi9ZtGR/HklKrDAAD6gWL6zKhdfVvVYQAAAAAAy1EfdV8U4ydWHQYA0B8s6IjOC6+rOgoGIU2fUIHs8q9dcmPVYQAA/Uj96pHRmDaj6jAAAAAAgKUo5i+IzguurToMAKAfadx+XzQenVR1GAwymj6hArXs8l+wsOowAID+pFaL2nlXVR0FAAAAALAUtYtviJgzr+owAID+pIjo/MeVUTSKqiNhENH0CWtYY8KkqN9+X9VhAAD9UOP+8VG/76GqwwAAAAAAumk8MTnqN99VdRgAQD9UTHw66rfeXXUYDCKaPmENKhqN6PzHFWWXPwBAT2rnXR1FZ63qMAAAAACA5xRFEZ1/zxqfIh8A0LPaJTdEMXd+1WEwSGj6hDWoftNdUUyaUnUYAEA/VkyfGbWrbq06DAAAAADgOY077o/i8aeqDgMA6M/mzi8bP2FN0PQJa0gxe27ULvUfdwBg+epXj4zGM89WHQYAAAAADHq5K0+nBg4AoBfqt9wdjYlPVx0Gg4CmT1hDahffEDF/YdVhAACtoFYrt3kHAAAAAKpVv/72iBmzqg4DAGgFRRGd515VdRQMApo+YQ1oPP1M1EfdW3UYAEALaYx5OBrjJ1YdBgAAAAAMWsWceVG76taqwwAAWkgxYWLU73uo6jAY4DR9whpQu+j6iEZRdRgAQIvpvOi6qkMAAAAAgEGrdtlNEQs6qg4DAGjBPqGi0ag6DAYwTZ+wmjUenRQNHfwAwEooJkyK+piHqw4DAAAAAAbnTn633F11GABACyryPOI2OwKz+mj6hNWs80ITugCAVV0JaGI4AAAAAKxJtQuvjTChCwBYhYnhRUdn1WEwQGn6hNWofv8jUYyfWHUYAEALKyZPi8YdY6oOAwAAAAAGjfrDj0djzCNVhwEAtLJZc6J+/e1VR8EApekTVpOcyJWTuQAAVlXnpTdGUatVHQYAAAAADHhFUUTtn9dUHQYAMADUrr4tirnzqw6DAUjTJ6wmjTvvj+KpqVWHAQAMBDNmRf2m0VVHAQAAAAADXuOO+6OY+HTVYQAAA8GCjqhdcXPVUTAAafqE1aCo1aN26Y1VhwEADCC1K2+NYsHCqsMAAAAAgAGrqDeidtlNVYcBAAwg9Zvuisb0mVWHwQCj6RNWg/rNd0XhP9gAQF+aOz9q14ysOgoAAAAAGLDqo+6L4plnqw4DABhI6vWoXXxD1VEwwGj6hD6WE7hqV95SdRgAwABUv+72KGbPrToMAAAAABhwino96mp8AMBq0Bh9fzQmPV11GAwgmj6hj9WuHRUxZ17VYQAAA1FHZ9Quv7nqKAAAAABgwKmPvNdOfgDA6lFE1C5T46PvaPqEPpSTt+rXjao6DABgAKvfenc0ps2oOgwAAAAAGDCKWj1qV95adRgAwADWGPNQNCZNqToMBghNn9CHymRwYWfVYQAAA1m9EbVLb6o6CgAAAAAYMOq33RMxY1bVYQAAA33a5xWmfdI3NH1CHynmzCsnbwEArG6Nu8aa9gkAAAAAfaCo1aJ25S1VhwEADAKNex+MxuRpVYfBAKDpE/pI7frbIzprVYcBAAwGjSLqV4+sOgoAAAAAaHn1W+6OmDmn6jAAgMEy7fNy0z5ZdZo+oQ8UCxZG/cbRVYcBAAwi9dvvi2KWD6MBAAAAYGUVnbWoXXVr1WEAAINI4+5x0Xj6marDoMVp+oQ+UL/progFC6sOAwAYTGr1qF07quooAAAAAKBl1W++K2LW3KrDAAAGk6KI2hWmfbJqNH1CX6wAzK3dAQDWsPotd0Uxb0HVYQAAAABAyylyUfU1I6sOAwAYhBp3PRCNKdOrDoMWpukTVlF95L0Rs60ABAAqsLAz6jfeWXUUAAAAANBy6neMiZg1p+owAIDBqFFE7cpbqo6CFqbpE1ZB0WhE3QpAAKBCtRvuiKKjs+owAAAAAKBlFEUR9WtHVR0GADCINe68PxrTZlQdBi1K0yesgsbosVFMn1l1GADAYDZ3ftRvvbvqKAAAAACgZTTGPBzF089UHQYAMJg1CoPmWGmaPmEVVgDWrrqt6jAAAKJ27ago6vWqwwAAAACAllC7xpRPAKB69dvHRDF3ftVh0IKGVh0AtPQKwMnTqg4DACDi2dllUjh0v72qjgQAAAAA+rXGo5OimDCx6jDopb0v+tNyr/P2bXaK7+79ujj/iQfjv++5YbnXP/HV/xKv2mSr5V7v748/EGc+NjYenTMzhrS1x24bbhIff8neccDm2yxxvUZRxK8eGBXnPfFgFBHx6k23jq/tvn9sstbaS1xvYb0W77junHjNptvEf+914HIfH4BBoLMW9ZtHx9A3vabqSGgxmj5hJZnyCQD0J/Wrb4shr9oz2trbqg4FAAAAAPqt2tW2UW0lR+308h5/n82Vp064L+bWOmPf5xo4d9lgk6Ve/4l5s+KiSY/EZmutEzus94LlPu5P7r81Tp0wprz+v267S3Q26nHJk+Pjc6Mui2/v9dp457Y7L75uNoaePP7e2H/TF8Z2625QNn8+vWBu/OU1hy9xn6c/en8827Ew/n3nfVbwKAAwkNVuHB1D3rBvtA3VxkfvebfASqg//HgUjz1ZdRgAAIsVU2dE494HY8jeu1QdCgAAAAD0S40pz5S7+dE6ltYg+Zfx95YNn0dst2scvs1O5e923XCT8tJdNmx++OYLY0hbW/x4nzc8bwJndznZ87QJY2LrtdeLMw58Z2w4fK3y9x/Yfvd4/03/jB/ff2scuvUOsfaQRe0W5zz+QNlI+rt9D422trbYYsS68etxt8fYmdPipRtuWl5nVufC+NMjd8eHtt8jNhuxziofFwAGkNlzo37n2Bi6755VR0ILaa86AGhF9aturToEAIDnqTlHAQAAAIClql87KqLIGZG0sodnz4jfjLs9tlln/fjybvst9/onPDQ67p85LT6yw56xz8ZbLvf69z07tZwk+sYtX7S44TO9ZP2N4lUbb1k2m2YMTRPnzoqd1t+obPhMu26wqPF04rzZi6/zx4fuiqFt7fHRl2joAeD56tfdXnUItBhNn7CCGk9Njca4R6sOAwDgeYqJT5cTyQEAAACAJRU5Rev2MVWHQR/Irdc7G434+u77L562uTTZePmX8feVUzuXtvV7dxsNH1F+fXLenOf9bcrCeUtcJ204fETMq9cW/zyn1lF+3WDYoobRJ+fNjjMeGxuf2enlse7Q4b2KAYDBpXhqatTHTag6DFqIpk9YQfUb7qw6BACApXKuAgAAAADPV8vPzWr1qsNgFd045Ym4ddqT8epNt44DN992udf/1QOjoqNRj8/v8spYazkNok37brp1bL/uhnHN04/FXx65N2Z2LIxnFs4vm03HzZoeb9ryxeWU0aa9N9o8Rk57Mu6a/nTM6FgQZz02NtYZMix22WDj8u/HPXhHbLn2uuVW9ACwNPVrTfuk93p3VgOUivkLon7n/VWHAQCwVI0xD0UxY1a0bbRB1aEAAAAAQL9Q1GpRv/XuqsOgD5z0yD3l15yauTwT582KK596NLZbd4M4dOvte/0Yw9rb40/7HxbfvffG+PkDI8tL03tf9NL4Srct5Y/e5RUxevrT8ZFbLix/HtrWFt/Y88B4wfAR8cDMZ+LiSY/ET/d5YwxtXzSTq1EU0f7cVvAA0NQYNyEak6dF+5abVh0KLUDTJ6yA+m33RnR0Vh0GAMDSNYqo3XxXDDvsdVVHAgAAAAD9QmP0AxFzFm3LTesaO3Na3D59cuyz8Raxz8ZbLvf6p00YE40o4uMv2TuGtPV+E9SiKOKU8ffGjVMnxovX3TBevekLY0G9FtdPeTz+8cS42GLEuvGJHfdefP0Xrbth/P1174prn34s5tQ6Y79Nt44d19+o/NsvHhgZe71g8zhkq+1j8vw58a17bohRzzxVTgJ913a7xBd2eeXiZlAAqF87KtqPfGvVYdACNH1CLxWNIuo3ja46DACA5arfdk8MPfQ10TbU6T4AAAAA1G68s+oQ6APnT3yo/PreF+223OvWGo24aNIjsf7Q4XHY1i9Zocc5ZcJ9cfL4e8tt3H/w8oNiWPuQ8vfPdiyIo267NH497vZyeuibtvq/6aEbDl8r3rHtzkvcz81TJ5Zb0Z+0/2Hlz/9113Xx2NxZ8eOXvzGeXjA3fj72tthw2FpLNJACMLjl7sNDD3tdtK2/7v9n7z7A5arr/PF/zszcnt57D2kkhBp6R6pSBBVQwFXRtSvqX3+//am7dnct68ruYl8ERXFxLQuKgJR1Rar0AKETQgiBhPSbe2f+z0xIJJJAyr33e2fm9Xqe+8ydM+fOvBPj5cyc9/l8U0ehl3PJCGyj4vyHo7R0WeoYAACvbuXqDdMLAAAAAKDOFR9bFKUnnk4dgy5QnqTZki/EIcPHveq+tz73dCxfvy4OHzE+GvMbSpvb6j8fv79y+4ld999U+CwrL9f+sVn7brbPK00L/fr8m+Ow4eMqU0kfWvF8ZUrpWyfPjiNHTogzJ86Kg4aNi4seuXu7sgFQ4zo6o/Mm/23g1Sl9wjbqdAUgAFBFTC8AAAAAgIiOP/icrBbc/8LSWLRmVaXwWS5+vpryUuxlR4+atN2vtWjNysoEzsFNLS97bOOy7eV9XsmvFy6oFD0/MH3vyv1HVi7ftBT8RhP69I/n2tfGivXt250RgNrVeeMdlYsH4JVY7xG2QXHpsije/0jqGAAA26w8vaD4+KLIjRuZOgpst1WrVsUFF1wQV155ZSxcuDAaGhpi5syZcfbZZ8dRRx212b5veMMb4o477tji8xx66KGV5wEAAADqU2nVmij++ZUnMlId7nj+mcrtnoNGbNP+f37+mchFFrsPHL7drzWkqSWeXrMqlq5b87LiZ3l59g37tG7159s7O+NfH7gtTho7LSb2GVDZ1lkqVm47XlLiKe9Xlsu2OyIANay8CnHxwcciv8uE1FHoxZQ+YRt0/vGOCCV6AKDKdP7xz0qfVJ2VK1fGGWecEffff3/MmjWr8v2KFSsqBdD3vve98eEPfzje+c53VvYtFovxwAMPxJgxY+Kkk0562XNNmOADEQAAAKhnnTffFdHRkToGXeCeZc9Wbmf0H/Kq+64vFuPBF56rTNJsLTRs92sdO2pyfPehO+Kf7v1TfGa3g6OQ27CA6uqO9fHV+/5U+f740ZO3+vM/fvTeeL59bfzt1N03bZv0Yvnz9ueejkNfXJ7+z88vjmHNrdFWaNzujADUfk9J6ZNXovQJr6LU0RmdN92VOgYAwHbrvH1+FF53eGQtTamjwDb79re/XSl8vulNb4pPf/rTkWUbRh184AMfiNe//vXxz//8z3HMMcfE+PHj45FHHok1a9bEAQccEO973/tSRwcAAAB6kfKyqJXBLtSEJ1ZvmLBZLkm+msVrV8W6Yuc27XvRI3dXlld/3ZipMbq1b2XbO6bOjVuWLorLn3oo7lv+bBwwbEys7eyM/3nmiXh67ap4zciJcdLYXbb4fC+sXxffeejPcdak2THkJa8/td+gmDtwePzwxdcrZ7xn+bPxsZnztuNvAYB6Ubz7wSitWBVZ37bUUeilNlySAmxV8a4HIlauTh0DAGD7ta+PzlvuSZ0CtssVV1xRKXqed955mwqfZcOHD4/TTz89Ojs747rrrqtsK5dDy6ZNm5YsLwAAANA7lZdFLS15PnUMukh5cmZZ322Yirk9+178yD3x7w/eHk+tWblpW0u+EN/Z97h4/7S9Ip/LxU8fmx+/XrigstT7/5t9QHx598Mi95LPrV7quwvuiEKWi3MmzX7ZY1/d84g4dPj4+O+FC+Le5c/Gu6buHqdPmPWqGQGoQ51FA+p4RSZ9wqvo/N8/p44AALBTS7wXDtojdQzYZmeffXZlOfd+/fq97LHGxg0f1K9atapye99991Vup0+f3sMpAQAAgN7OOb7a8vNDXr/N+84eMDTuOP5t27TvFYe/cYvbG/P5eNuU3Spf2+NDM/apfG1JuTRaLn4CwLbovPHOyB8+b7MBGbCR0ie8guIzS6P40BOpYwAA7LDS089G8ZEnIzdxTOoosE3OPPPMrS7JduWVV2422XNj6fPee++NL33pS/Hggw9WiqH7779/vP/974+JEyf2YHIAAACgtygvh1q8Z0HqGAAAO6y0dFkUH3g08tOc6+DlLO8Or6Dzj3ekjgAAsNM6HNNQA370ox/FnXfeGWPHjo2DDjqosm3+/PmV26997WsxadKkeNOb3hS77LJLXH755XHqqadW9gcAAADqT+dt91WWRQUAqGad/+scH1tm0idsRamzGJ233ps6BgDATive+UCUXn9UZE0blsaGalMucX7uc5+LQqEQX/ziF6OhoSFWr14dw4YNi8GDB8e//du/xahRozbtf8kll8SnPvWp+OhHP1r52Xw+nzQ/AAAA0LM6b7k7dQQAgJ1WnlxeemFlZP36pI5CL2PSJ2xFeURyrFydOgYAwM5rXx/Fux5MnQJ2eMLneeedV/m+vIT7XnvtVfm+tbU1LrvssvjFL36xWeGzrDzxc/fdd49HH33UtE8AAACoM8WnnonSwmdSxwAA2HnFYnTe7GIWXk7pE7bClE8AoJZ03npP6giwXYrFYmWq59///d9XJnx+/etfjxNOOGGbf37OnDmV28cff7wbUwIAAAC9TectPgcDAGqH/hJbYnl32ILSuvYo3m0aFgBQO4oPPhalFasi69uWOgq8qvb29sp0zyuvvDIGDBgQ559//qYJnxs9//zz8fDDD8egQYNi4sSJL3uONWvWVG6bm5t7LDcAAACQVqk8DUsxAgCoIaWnn43iwsWRGz08dRR6EZM+YQsqhc/29aljAAB0nWIpOm+7L3UKeFWdnZ3xgQ98oFL4HDNmTPz4xz9+WeGz7I9//GOcccYZlWmgW5oSetttt0WWZTF79uweSg4AAACkVpz/SMSKValjAAB0KRe18NeUPmEL/LIEAGpR522Ocej9vvWtb8U111wTo0aNih/96EcxadKkLe538MEHR9++feP666+PP/zhD5s9Vp4MumDBgjjqqKMqzwMAAADUh85b7k4dAQCgy3Xefl+UiqXUMehFLO8Of6W87GnxgUdTxwAA6HKlJ56O4jNLIzdscOoosEXLli2rlD7LZsyYET/96U+3uF958ud+++0X//AP/xAf+chH4h3veEel4Dly5Mi4/fbb489//nOlLPrpT3+6h/8EAAAAQCqlNWujePdDqWMAAHS95SujuODxyO8yPnUSegmlT/grnbfPryx/CgBQqxPNc8celDoGbNEtt9wSq1evrnx/9dVXV7625F3velel9HncccdVJnn++7//e2W59/LPlu+fe+658c53vjP69OnTw38CAAAAIJXOP8+P6OhIHQMAoFsUb7tX6ZNNlD7hr1j2FACoZcXb7otQ+qSXOvLII+P+++/frp+ZO3dupfQJAAAA1LfOm+9JHQEAoNt03nl/FF5/VGQN6n5E5FIHgN6kuOS5KD2+KHUMAIBuU1q6LIqPLEwdAwAAAAC6TPG55VF61GdeAEANW9sexXsWpE5BL6H0CX+13CkAQK0z2RwAAACAWlK8Y/tWDgEAqEadt5pszgZKn/ASRQUIAKAOdP55fpQ6O1PHAAAAAIAu0XnnA6kjAAB0u+L8R6K0ak3qGPQCSp/wouKjT0Xp2WWpYwAAdL9VaypvCgEAAACg2pWWrYjS40+ljgEA0P06i9F5pwnnKH3CJpY5BQDqSeetjn0AAAAAqH6V4kMpdQoAgJ5RNOEcpU/4i867/FIEAOpH8b6HotTRkToGAAAAAOyUzjuc4wMA6kdxweNRWrM2dQwSU/qE8i/EJ56OWL4ydQwAgJ6zbn0UH3w8dQoAAAAA2GGlF1ZG6dGFqWMAAPSczmIU716QOgWJKX1C+ffhPX4ZAgD1p3jvQ6kjAAAAAMAO6ywvb1qytjsAUF+sZozSJ5QLD0qfAEAdcuELAAAAANWsWC59AgDUmeL8R6O0rj11DBJS+qTulZatiNLCZ1LHAADoectWRHHh4tQpAAAAAGC7lVaujuLDT6SOAQDQ8zo6onj/o6lTkJDSJ3XPhCsAoJ4V73YsBAAAAECVLmtatLQ7AFCfOu9+MHUEElL6pO5Z2h0AqGcugAEAAACgGrmYGQCoZ8X7Ho5SsZg6BokUUr0w9Aalde1RXPB46hgAAMmUFi6O0vIVkfXvmzoKVaCzs7Py1djYWLm/cuXKuOSSS2LRokUxZ86cOOGEEyKfz6eOCQAAANS40voO5/gAgPq2ak2UHn4ysinjUichAZM+qWvF+x+N6OhMHQMAIJ1SedrnQ6lTUAW+973vxbx58+Kaa66p3G9vb4/TTz89vvKVr8TFF18cH//4x+Md73hHpRQKAAAA0J2KDz0Rsb4jdQwAgKSs6Fe/lD6pa375AQBEFO91TMQru+qqq+LLX/5yZbLnihUrKtv+67/+Kx588MEYOnRovPe9741p06bFH//4x8rkTwAAAIDuXs4UAKDeFfWe6pbSJ3WrVCxF8V5TrQAAig88HqX29alj0Iv95Cc/iVwuF9/97nfjtNNOq2y74oorIsuy+OQnP1kpfV500UXRt2/f+OUvf5k6LgAAAFDjivOVPgEASs8ui+LSZaljkIDSJ3Wr9NjCiFVrUscAAEivoyOK9z+aOgW92N133x177LFHHHDAAZX7a9asiZtvvjkaGxvj4IMPrmzr06dPzJ07Nx56yIVVAAAAQPcpFxtKS55PHQMAoFdwjq8+KX1StzrvNuIYAGAjyz/wSsrLug8ZMmTT/Ztuuik6Ojpizpw5leLnRuXv161blyglAAAAUA8s7Q4A8BdKn/VJ6ZO6pdgAAPAXnfc+FKViKXUMeqkRI0bEwoULN92//vrrK0u777///pu2FYvFuO+++2Lo0KGJUgIAAAD1wNLuAAB/UVzwWJSKxdQx6GFKn9Sl0vMvROmZ51LHAADoPVaujtJTi1OnoJeaMWNGZYn3Sy+9NG688cb4xS9+Udl+xBFHVG7Xr18f//iP/xhPPfVU7LPPPonTAgAAALWq1NERxQVPpI4BANB7rFkXpccXpU5BDyv09AtCb1Bc8HjqCAAAvU75A/PcmBGpY9ALnXvuufH73/8+PvnJT1bul0qlOPTQQ2OXXXbZVP5csmRJ9O3bt7IvAAAAQHcoPvRERPv61DEAAHrdEu+5CaNTx6AHmfRJ/b4hBABgM8WHXBjDlu26667xve99L/bdd9+YNGlSnHHGGfGVr3xl0+MjR46MvffeO3784x9XHgcAAADoDsX7LO0OAPDXOu9/NHUEephJn9Qlkz4BAF6u+NCTUSqWIstlqaPQC5VLnd///ve3+NiFF14YTU1NPZ4JAAAAqL8pVgAAbK68vHtpzbrIWpyrqRcmfVJ3Ss+/EKXnlqeOAQDQ+6xdF6WFi1OnoAqsW7cunnjiiXj66acr9xsaGlJHAgAAAGpcaeXqKC1emjoGAEDvUyxG8cHHUqegByl9UndM+QQA2DpLvPNKrr322jjzzDNjzz33jNe85jXxta99rbL9Pe95T3z605+O1atXp44IAAAA1KjiQ0+kjgAA0GsVHzARvZ4ofVJ3lD4BALauuMCH52zZN77xjfjbv/3buPXWW6NYLEapVKp8lS1YsCB+8pOfxN/8zd9Ee3t76qgAAABADSo+/GTqCAAAvZbSZ31R+qTuuAoQAOCVPzwvFTcU+WCj6667Lv71X/81hg0bFl//+tfj5ptv3uzxr371qzFlypS444474tJLL02WEwAAAKhdzvEBAGxd6dllUXphZeoY9BClT+pK6bnllS8AALZi7booLVycOgW9zIUXXhgNDQ3xve99L4455phoa2vb7PHZs2fHd7/73WhsbIxf/OIXyXICAAAAtam0em2UFi1JHQMAoFcrPrIwdQR6iNIndcUVgAAAr6740OOpI9DL3HXXXbHnnnvG5MmTt7pPeQroXnvtFY8/7t8PAAAA0LWKjzwZUbI6DQDAqx4zUReUPqkrxQVOQAMAvJriAhfKsLm1a9e+bLrnlpSnga5Zs6ZHMgEAAAD1w2AXAIBXZ9Jn/VD6pK54QwgA8OqKDz8ZpWIxdQx6kVGjRsW9994bxVf4d9HR0VHZZ+TIkT2aDQAAAKh9zvEBALy60sJnorSuPXUMeoDSJ3Wj9NzyyhcAAK9i7booLVycOgW9yOGHHx5PP/10fOMb39jqPueff34sWbIkDj300B7NBgAAANS2ks+qAAC2TbEYxccXpU5BDyj0xItAb+AKQACA7VviPTfWxEY2ePvb3x6//vWv44ILLohbbrkl9t1338r2RYsWxaWXXhpXX311XHfddTFgwIB429veljouAAAAUGvLlBZLqWMAAFSF0sNPRkwdnzoG3Uzpk7pRfFjpEwBgu46dDtsndQx6iUGDBsX3vve9eN/73lcpfd56662V7eXvy1+lUqmyrHt5EujQoUNTxwUAAABqrfQJAMA2cexUH5Q+qRvFx59OHQEAoGoUn3DsxOamTJlSmfb5u9/9Lv74xz9WpnwWi8VKyXPevHlx3HHHRWNjY+qYAAAAQI0pWaIUAGCbFR97KkrFYmS5XOoodCOlT+pCaX1HlBYvTR0DAKB6vLAqSi+sjKxfn9RJ6EXy+Xwcc8wxlS8AAACAnuDiZACA7bCuPUpPLYlszPDUSehGKr3UhdJTz0QUi6ljAABUleKTi1NHAAAAAKCOFZ99PmLN2tQxAACqiiXea59Jn9QFhQUAgO1XKk9RmDk5dQx6gbPOOmub982yLP7jP/6jW/MAAAAAdfT5FAAA26X4pGOoWqf0SV3whhAAYPu5cIaNbrrppm0qe5ZKpcotAAAAQFewtDsAwPYrOcdX85Q+qQsKCwAA289VgGz0zW9+c4vbi8ViLF++PG677bb41a9+FSeeeGJ86EMf6vF8AAAAQG1S+gQA2H6lxUuj1NERWUE1sFb5X5aaV/4lVlr8bOoYAADVZ/nKKK1YFVnfttRJSOzII498xcdPO+20OOKII+J973tf7L///nH88cf3WDYAAACgNpWKJVOqAAB2RLEYpUVLIhs7MnUSukmuu54YeovSU0siOoupYwAAVCXTFNieYuiMGTPiBz/4QeooAAAAQA0oLXkuYl176hgAAFXJqsi1TemTmmdZUgCAHWeaAttjzJgxsWDBgtQxAAAAgBpQcjEyAMAOKy18JnUEupHSJzWv9ISiAgDAjnIBDduqs7Mz7rnnnmhsbEwdBQAAAKgBxccXpY4AAFC1TPqsbYXUAaC7KSoAAOw4bwgpmz9//iuWPZcsWRI//OEP46mnnorDDjusR7MBAAAAtcnnUgAAO660aEmUisXIcmZC1iKlT2paqaMjSk8/mzoGAED1WrYiSitXR9anNXUSEjrppJMiy7JX3KdUKkVTU1O85z3v6bFcAAAAQG0XFQAA2EHrO6L0zHORjRiSOgndQOmT2n8z2FlMHQMAoKoVn3g68jMmpY5BQqNGjdrqY7lcLlpbW2P69OlxzjnnxMyZM3s0GwAAAFB7Ss+/ELGuPXUMAICqVipPTlf6rElKn9S04hOWfQAA6JI3hEqfde2aa65JHQEAAACoI0Ur+QEA7LTiwsWR32tW6hh0g1x3PCn0FpZ2BwDYeUVLaQEAAADQg0qLl6aOAABQGyskU5NM+qSmlZ55LnUEAICqV1rimIoNnn322WhsbIx+/fpV7i9atCi+9a1vVW7nzJkTZ511VvTp0yd1TAAAAKDKlRYb7AIAsLOKelM1y6RPalpRQQEAYKeVnn0+dQR6gc985jNxyCGHxA033FC5v3LlynjTm94Ul1xySVx77bXxL//yL3HmmWfG2rVrU0cFAAAAqlzxaZM+AQB22vIVUVrXnjoF3UDpk5pVWt8RsWxF6hgAANVv3fooLXdcVc8uu+yyuPjii6OhoSGyLKtsu/TSS2Px4sUxZcqU+MIXvhAHHnhgPPDAA/GDH/wgdVwAAACgylneHQCgC5TKK/oZ7lKLlD6p7YlUpVLqGAAANaHoDWFd+/nPfx6FQqEy1fO4446rbPvtb39bKYD+n//zf+Lkk0+O888/PwYPHhy/+c1vUscFAAAAqlipPNRl7brUMQAAakLJKsk1SemTmqWpDgDQdbwhrG/lCZ777LNPTJ8+vXL/hRdeiDvvvDNaWloq28saGxtj9uzZ8dhjjyVOCwAAAFSz4uJnU0cAAKgZRRPUa5LSJzVLMQEAoOu4oKa+rV27Nvr27bvp/h//+McoFouxxx57RD6f32zfzs7OBAkBAACAWlF6WjEBAKCr6E/VJqVPapZiAgBA1/GGsL6NHDkyHnnkkU33r7322srS7gcccMCmbe3t7XHXXXdV9gUAAADYUSWTPgEAukzpGef4alEhdQDoLkXFBACALuOCmvo2d+7c+MUvfhFf//rXY+zYsfHf//3fle1HHnlk5Xbx4sXxpS99KZYuXRpHH3104rQAAABANSsqJgAAdOk5vlKpVBnmQe1Q+qRmKSYAAHSd0tJlUSoWI8tZLKAevfvd746rrroqLrjggsr98ocDp5xySqUAWnbiiSfGsmXLYtSoUfHOd74zcVoAAACgmpWeW546AgBA7WhfH7FsRcTAfqmT0IWUPqlJpTVrI1auTh0DAKB2dBajtHR5ZEMHpk5CAuPGjYuf/exn8Z3vfCeeeeaZmDdvXpxzzjmbHp8zZ04MHjw4zjvvvBgyZEjSrAAAAED1KnV2RrywMnUMAICam6SeV/qsKUqf1KTSM6Z8AgB0tdKS5yKUPuvWhAkT4rOf/ewWH/vWt77V43kAAACA2lMqT6EqllLHAACovXN80yakjkEXUvqkdn9ZAQDQpUpLXFjDy915552xaNGimDVrVowZMyZ1HAAAAKCKWdodAKDrlZ5/IXUEuliuq58QeoOi0icAQJdzYU19u/322+Pcc8+NP/zhD5u2fexjH4s3vvGN8cEPfjCOPvro+OY3v5k0IwAAAFDdSkuVPgEAulppmdJnrVH6pCaVnjWFCgCgqznGql/z58+Ps88+O2644YZ4+OGHK9uuu+66+OUvfxn5fD722muvaG5ujvPPP7+yHQAAAGBHlJ5X+gQA6GqlZStSR6CLKX1Sk0rLVqaOAABQc7whrF/f+973or29vTLp85RTTqls+8UvfhFZllWmff7whz+MSy65pFIA/dGPfpQ6LgAAAFClLO8OAND1LO9eewqpA0C3eEHpEwCgq5UcY9Wtm2++OaZOnRof+tCHKveLxWJl6me59Pna1762sq38+J577hl33nln4rQAAABAtVL6BADoBi+sjFKxGFnOfMha4X9JapJCAgBAN1jbHqX29alTkMCzzz4bkydP3nS/XOxcsWJF7LLLLjFw4MBN2wcMGFDZDgAAALAjlD4BALpBsRSxXJeqlih9UnNKa9ZFrO9IHQMAoCa5uKY+lcucy5f/5aTL9ddfX7ndd999N9vviSeeiH79+vV4PgAAAKD6lTo6I15YlToGAEBNKi0ztKOWKH1ScxQRAAC6kQ/e61J5yuctt9wSDz/8cKxcuTJ++ctfVpZ2P/TQQzftc+WVV8a9994bs2fPTpoVAAAAqE6l51+IKJVSxwAAqEmlZS+kjkAXKnTlk0FvoPQJANB9HGvVpze+8Y1x4403xute97poamqKVatWVYqgGyd9vutd74obbrihUgR9y1vekjouAAAAUI187gQA0L0X2FAzlD6pPd4QAgB0G6XP+nTsscdWlm7/t3/7t0rhc+rUqfH1r3990+NPPvlkNDY2xj/8wz/EgQcemDQrdJe1H/5y6ghVo/mrH0sdAQAAqEKlFVaYAQDoLpZ3ry1Kn9SckiVHAQC6jWOt+nXuuefGOeecU1nefdCgQZs99vnPf75SBG1paUmWDwAAAKhuPncCAOg+lnevLUqf1BzTpwAAuo9jrfpWnub514XPsjlz5iTJAwAAANQOkz4BALqPC2xqSy51AOhqiggAAN3IsRYAAAAA3UHpEwCg+6xakzoBXcikT2qOZjoAQPdxrFUfjjjiiB3+2SzL4qqrrurSPAAAAEDtK630uRMAQHcpKX3WFKVPao/pUwAA3cZU9fqwcOHCnSp9AgAAAGyv0orVqSMAANSuteui1FmMLG9h8Fqg9EnNUUQAAOhGq9dGqaMjsoK3ErXswgsvTB0BAAAAqDemTwEAdK/VayL6tqVOQRdwppaaUlrXHrFufeoYAAA1v8R7Nqh/6hh0o3322Sd1BAAAAKDOlFaZ9AkA0N1LvGdKnzXBvFZqSmnFqtQRAABq3wuOuQAAAADoOqX1HQa7AAB0N5PVa4bSJ7Vl7brUCQAAal5pnWMuAAAAALrQSlM+AQB6YtIntUHpk9riCkAAgO7nmAsAAACALlRavTZ1BACAmqf0WTuUPqkppXXtqSMAANQ+x1wAAAAAdCWfNwEAdD+lz5pRSB0AupQ3hAAA3a601jEX3WvVqlVxwQUXxJVXXhkLFy6MhoaGmDlzZpx99tlx1FFHbbbv888/H+eff378/ve/jyVLlsSoUaPi9a9/fbz1rW+NQsFbXgAAAKgGBrsAAHS/0mqlz1ph0ic1xRtCAIAe0O6Yi+6zcuXKOP300yulz9bW1jjjjDPimGOOifnz58d73/veyvaNXnjhhXjLW94SF110UcyaNSvOOuusaGlpiX/6p3+KD3/4w0n/HAAAAMB2cI4PAKD7mfRZM5Q+qS3eEAIAdDsX2tS+N73pTfG1r31t0/2nnnoqli1b1iOv/e1vfzvuv//+Sob//M//jE984hPx+c9/Pv77v/87hg4dGv/8z/8cjz32WGXf8oTPBx98MD75yU/GN77xjfjIRz4SP/vZz+I1r3lN/Pa3v61MCgUAAAB6v1L7+tQRAABqnmOu2qH0SW1Z55cTAEC3c8xV88qlyyeeeGLT/SOOOCK+8IUv9MhrX3HFFZFlWZx33nmV242GDx9emQDa2dkZ1113XaxduzZ++tOfxsiRIysF0Y3y+Xx87GMfq3x/ySWX9EhmAAAAYCetdZExAEC3W9+ROgFdpNBVTwS9galTAAA9wDFXzSuXLRcsWBDFYjFyuVyUSqXKV084++yzY8WKFdGvX7+XPdbY2Fi5XbVqVdx5552xevXqOOqooyoZX2rs2LExZsyYuPnmmysl0XIRFAAAAOjF2n3eBADQ7dYb7FIrlD6pLQoIAADdzoU2tW/69Olx++23x8EHH1xZUr2sPF3z5JNP3qbC6GWXXbbDr33mmWducXu5dLpxufZp06bFo48+Wvl+3LhxW9y/XPx88sknK1/jx4/f4TwAAABA9yuZ9AkA0O1K7SZ91gqlT2qKAgIAQA9wzFXzPvKRj8S5554bzz77bOWrbPny5ZWvV/PSJdm70o9+9KPKdM9ymfOggw6K73//+5XtAwYM2OL+ffv2rdy+8MIL3ZIHAAAA6ELtpk4BAHQ7x1w1Q+mT2qKAAADQ7VxoU/v22GOPuPbaa+Ohhx6KtWvXVpZcP+CAA+Kd73xnkjyXX355fO5zn4tCoRBf/OIXo6GhIdpfXPZt45Lvf23j9nXr1vVoVgAAAGD7+bwJAKAHdJj0WSuUPqkt6zTSAQC6nWOuutCnT5/YbbfdNt0fPHhw7LPPPj2eozzh8zOf+UxlguiXvvSl2GuvvSrbm5ubK7fr12/53+PGUmhbW1sPpgUAAAB2iOXdAQC6Xcmkz5qh9NnL/cu//Et885vfjPe+973xvve9b5t+plQqxRVXXBG/+tWv4q677oply5bFoEGDYvz48XHiiSfGCSecsOkE6UZHHHFEPPnkk/Hb3/42JkyY8LLnfPe73x1XX311tLa2xp/+9KctTtM55JBDYvHixfGHP/yhckI4BVcB9qyP3nZN/Pn5xfG7I05/2WOrO9bHDx6+K6546qFYvGZVDG5qiWNGTYpzp+4eLfmX/+pZsOL5OP/+W+OOZc9UfnZq34Fx9qQ5ceTIl/973JqOYjF+8ti98Z+P3x8LV6+Ivg1NcdjwcfGeaXvGgMbN/80/3742PnPXH+IPS56MAQ1NccLoKfGuXXaPhlx+s/0eXPFcvOH6/4rPzT0kjhs9ebv+fgCgZjnmqjvz58/v8dcsFovx5S9/ubKMe/n9x1e+8pV4zWtes+nx/v37v+Ly7StWrNhUXgUAAAB6OQUEAIDu127SZ61Q+qwxS5curZRDb7311hg4cGAcdNBBMWLEiHj22WcrZc3/+3//b3zrW9+qlEmnTZu26ef222+/uPTSS+O22257WemzPDnnxhtvjFwuF6tXr45bbrkl9t9//832eeKJJ+Lpp5+OGTNmJCt8Vigg9Jh/f/D2uHLRIzGsufVlj60vdsb7b/ld3Lx0Uew3ZHQcOWJC3Pn8M/G9h+6MW5c+Hd/Z97hozP+lXHnf8mfjbTdeHqVSxLGjJ1VKob996pE477ar4/+buW+cMXHWNpWdP3nn9fHfCx+KOQOGVn6mXCT96ePz48Znn4qLDnhd9G9s2rT/Z+/6Q1y7+LFK2bNcMv3OQ3dEKSLeP33D5KiN/vm+m2N6/8Fx7KhJO/13BgC1woU29ev555+Pn/zkJ5X3B88880yljFk+/i+/nyhfYDZ06NAueZ3ylM7zzjsvrrzyyhgwYECcf/75myZ8bjRp0objs8cff3yLz1HeXr5obdSoUV2SCQAAAOhGnZ2pEwAA1L6trJ5G9VH6rCFr1qyJc845Jx544IHK7Qc/+MFoaWnZ9HhnZ2dcfPHF8cUvfjFOP/30+MUvfhFjx46tPFYucW4sfZ5yyimbPW9526pVq+L444+P//7v/44bbrjhZaXPm2++uXJ7wAEHRFLrNdK727rOjvjiPX+My554YKv7/PSx+ZXC5zmTZseHZvxlCdAv33NjXPzoPXHJY/fGWZNmb9r+93f+T6zr7IwfHfi6mNZvQ2n47VPmxlv+8Mv4+vyb44iRE2J48ysvy3ndM49XCp9Hj5wYX9r9sMryn2UXPXJ3/OO9f4p/e/C2+Pis/Srbnlu3Jq5++tE4ddz0+LvZG/7N/u1Nv4mfPnbfZqXP8p/hhiVPxrfmHbvp+QAAkxfq1U033VS5wKw8WbN8wc1L/e///m985zvfia997WuVAujOKL9v+cAHPhDXXHNNjBkzJr797W9vKni+1K677lpZur2cqzwVtHyR2ksvSlu4cGHlfUv+JRcbAQAAAL1TqVhMHQEAoPZ1dEapWIospwNT7f5yVoyqV57eWS58nnnmmfGJT3xis8JnWflk51lnnVWZ9lkucZb32WjfffetlNrKE0L/WrnkWXbuuedG3759N93fUunzwAMPjJS8Iexe1y5+PE667j8rhc+Dho7Z6n4/evSeaMzl49ypczfb/t5pe0ZzvhCXPv6X5UFve+7puO+FpfGakRM3FT7LBjY2V4qf64qd8asnH3zVbBc/ck/ltryU+0sLmmdMmBWjWvrEL598sFJYLVu4ZmVlqucu/QZt2q/82is62ivLvpeViwxfu++mOHDomJg3xHQoANhMcfPCH7WvXKB897vfHcuXL49DDz00vvrVr8ZPf/rTuOSSSypLsJdXGFi2bFnlwrNFixbt1GuVVyYoFz7LEzp/9KMfbbHwWdbU1BQnnHBCPPnkk3HhhRduVhotZyorvzcCAAAAqsBfXWAKAEA3Me2zJpj0WSPWrl1bOeHa3Nwc73//+19x3/KUz4suuqhS1Jw/f35Mnz49Bg0aVFnu/f77768s2VheGn6j//mf/4nhw4dX9iuXQ3/3u99VlnIvLxu/UXnJ93LJdM8994ykFBC61X89cX9lKfT/u+v+cdq46TH38u+9bJ+nVq+IJ1eviD0GDY+2QuNmj7UWGmL2gKGVCZqL16yK4S1tcdOzT1Ue22cLxcqNZcubnl1UKYBuzfpiMW5/fnGMaG6L8W39N3ssl2Wx9+CR8YsnH4x7lj8bewwaEQMaNizzvqbjL5NhV61vj3yWRZ9CQ+X+bxY9HPctXxo/Peik7fxbAoA64EP4ulOetrly5cr48Ic/XLkY7KXmzp0br3vd6+KCCy6oTPr8j//4j/j4xz++Q69TLo6WS59lM2bMqBRLt6S81Ht5omi5ZFp+v/KFL3yhsuT8lClTKlNH77nnnjj22GPjiCOO2KEcAAAAQA/zeRMAQM/oNFCvFpj0WSNuv/32yvTO3XffPQYMGPCK+5aXPTz66KMr31955ZWbtpeXPixPNyw/10ZLliypFEM3TvDcePvSaZ+LFy+Oxx9/vHLitbFx85Jfj/OGsFudOXHXuPzwN8Qbxs/Y6nLnj616oXI7trXfFh8f09q3cvvIqmWb7T/uxe0vVV7SvZDlNu27NU+tWVEpfo5te+XXfHTl8srtyJY+MbSpNf7ryQfi6TUr46EVz8dVTz8au/YfGg25fKwvdsY37781ThgzJaa+ZBooAPAix1x1p3z8P378+JcVPl/qne98Z4wbNy5+//vf7/DrlC8mW716deX7q6++Or75zW9u8atc8CwrX7xWvvjt1FNPjbvuuqsy8bN8QdxHP/rRyrTPrR2zAgAAAL2MwS4AAD3Deb6aYNJnjXj44Ycrt5MnT96m/adOnVq5feKJJzZtK0/K+d73vldZ4v3www+vbCtPzSkXQTeWPQ844IBNJ31PO+20XrW0e4VfTN2qPDHz1Sxbv2F59P4vTtP8a31enP65Yn37Zvv3a3z5/uUpnW2Fhk37bs3y9nXb9ZqFXC4+Pmvf+MSfr4ujr/nJpuXkP7HrfpXvf/rYffHs2tXx3l3+Mrm2WCpV8gAAjrnq0TPPPLNNUzNnzpy5U6XPI488srL6wPYYNmxYfO5zn9vh1wQAAAB6gaKJUwAAPcJ5vpqg9FkjVqxYUbnt06fPNu2/cRroc889t2nb3nvvHQ0NDXHbbbdt2lYud5Yng5angJaNHTs2JkyYUFkysbOzM/L5/KbS58ZCaFJ+MSXX8eKb8sZcfouPb9y+rrOzcrt+G/Zf2fHKpc/yZM5XfI78i69Z/Mty7keOnBhT+g6KG59dWPm5Q4aPi8FNLbFyfXt8e8EdccbEWZXl529Zuig+d/f/xiMrl8WIlrZ49y57xuvGbChNA0DdcsxVd1pbW2Pp0qWvul95n+bm5h7JBAAAANQQnzcBAPQMx101wfLuNaJ///6V2/JShtuivBR82cCBAzdta2lpiblz58bdd98d7e3tUSwW4w9/+EPMnj17syXjyxM9yyXTe+65Z9MSjOXpOhunhyZl6YfkmvIbuuTrS1u+IrP9xYJma2HDfs0vFjU3lj+3tH9rvmHbXvPF537Zc7xYMG0tbP48E/r0jzdNmBmnjJtWKXyWfe+hOyvTbf9m8m6VyaAfvOWqyhTQ8/c5Og4YOjb+3x3Xxx3PL37FPABQD0qOu+rKrrvuGrfffnvMnz9/q/uUHytfQFbeFwAAAGC7+KwJAAC2mUmfNWLcuHGbLfP+ah588MHK7ZgxYzbbXl7ivTy586677qpM/Vy2bFmceeaZm+1Tnuh50UUXxZ/+9KfKzz/00ENx0kknRe/gDWFqG5dYX7F+w5Lrf23j1M6NS65vXNZ9S0u4l5dUX9WxPoY2t2zba25lIuhfv+bWLF67Ki5+5O543/S9om9DY/zk0Xsrz/n/zdo3pvUbHPMGj4qrn340Lnrkntht4PBXfC4AqI+rALPUKeghp59+euWCsHe84x3xqU99Kg4//PDKigBl5YvFrrnmmvj7v//7yvdvetObUscFAAAAqo2JU0AVWjM8i9KWF6ME6LUaSp3hV1f1U/qsEfvss09lGudNN90Uzz///GYTPLfkyiuvrNweffTRm20vL+P+jW98I+68885NU0PLkz1fat68eZVC6K233hrjx4+vTEXsFUu70yuUp2eWPbF6xRYff2LVhu2T+274NzqxbcMU2SdXvxC7D9q8SPn0mpXRUSrGpD6v/O95VGufaMrlNz33y17zxSyT+vxlYu2W/Ov9t8WQ5tZ44/gZlfuPrFpeuR3ftuHPVMjlYkxr33jsxe0AUNf0PevKkUceGW94wxvipz/9abzvfe+rLOE+atSoymNPPfVU5b1D+X3BqaeeGkcddVTquAAAAEC12cqKcAC92YIJd8byZfemjgGwXQ4qvFXpswZY3r1GlEuYZ5xxRuVk6z/90z+94r4/+9nPKksv7r777jFjxoZy20Zz5syJPn36VJZ4Ly/b3q9fv9htt90226etra3ys+XnKBc/syzrPaXPTPsgteHNbTGutV/ctWxJrO5Yv9lj5ft3L19SeXzjcup7DR5Zub1p6aKXPdefXty2+6tM1cxnuUphdOGaFfHkX5VNy9NCb1m6KFryhZjRf/BWn2PBiufjVwsfjPdO2zMaXlxyvvPFDxg6X7JUfXm5+ZyWCwA47qpD//AP/xCf/vSnK9P+16xZU5n4X/4qf1/eVp4A+tnPfjZ1TAAAAKAamfQJVKG2nNUhgeqTZeqCtcD/ijXkb//2b2PmzJmVUmf5hGz55OtLlSfv/OQnP6mcqG1tbY0vfelLL3uOfD4fe++9d9xxxx1x2223VZZ7L2/7a+Xpn4sWLYobbrihUhwdNGhQ9ArKB73CSWN3ibWdHXH+A7dutv2b999a2f7GCX8pG88dOCwmtvWPK556qFIU3ej59rXx3QV/rkzwPHnsLtv0mmVfve+mzUqaP3r0nnhqzco4Zey0TWXOLfn6/Jtjer/BcczISZu2TXxxMujtzy2u3C5rXxuPrly+aTsA1LPyhT/Un/LS7b/73e/iuuuuq0z9LH9de+21lW3lJeABAAAAAOpF29p+qSMA7ADn+GqB5d2rxM9//vPK0u1bMm7cuPjc5z4XjY2N8YMf/CDOO++8uPjii+Pyyy+PQw45JEaMGBHLli2LG2+8MR599NHKkuxf/epXK7dbUl7i/fe///0Wl3bfqLy9/BzlyT7veMc7otdQPugV3jJx17jq6UfjokfuifnLn4s5A4fGnc8/E7c893TsMWh4vGHcjM0KI5+cc2C860+/ibf/8b/j2NGTo63QEL996pFYsm51/J9Z+1WWXN/ohfXr4uJH7ql8/7e77LFp+7GjJsflCx+Kq59+NM78n1/GvkNHx8MrlsV1zzxeKZW+c+ruW81bngR6wzNPxLfnHbtZgeXoUZPiXx+4Lf7ujuvj+NGT40/PPhXri8U4a9Ku3fC3BgBVxDFX3Rs+fHjlCwAAAKBLbGEIDUBv17qsJaIxdQqA7eQ8X01Q+qwSCxcurHxtyQsvvLDp+/79+8e3v/3tuP766+PSSy+tLL++ePHiyvZJkybF2972tjjhhBMqkz63plz63Ghry7aXJ4qWp3s+99xzvWdp97KcX0y9QWM+XylQ/vuDt8fvFj0Sdy57JkY0t8XbJ+8WfzNlTuXxl9pj0Ij4/n7HVwqW5f3LJvcZGJ/Ydb84YsSEzfZdsb698rx/Xfos+8oeR8T3H74zfv3kgrjokbtjaFNrvHH8jErhs39j01bzfm3+zXHQ0DGxz5BRm20vL0H/7/OOiS/c88f4yWP3xaiWvvGPexwWM/oP2em/IwCoao65AAAAAOhKBaVPoPq0PF2KGJc6BcD2sbx7bchK5TW/oUas/ft/jVi+MnUMAIDaVshH85fPS50C6tbaD385dYSq0fzVj3XZc/l7T/P3DgAA1Id137goSo8+lToGwHa7ZfdrY+3qxaljAGyzQ8+5NgpNfVPHYCep7lJbjCAGAOh+jrkAAAAA6EKZ5d2BKtXWNDp1BIDtk3PcVQuUPqkp3hACAPSAvLcRAAAAAHShQiF1AoAd0lYakjoCwHbJF5pTR6ALOFtLbWlsSJ0AAKD2NTamTgAAAABALSkY7AJUp9bVlkgGqkcu3xRZpi5YC/yvSG1pVkAAAOhumWOuuvOZz3wmfvSjH6WOAQAAANQqpU+gSrUuNZgKqB75hpbUEegiSp/UlMzUKQCA7me6et355S9/GT/72c9SxwAAAABqldInUKVani5FlvOZOVAd8gWlz1qh9EltMXUKAKDbZU2OuepNR0dHjBo1KnUMAAAAoEZlSp9AlcqKEW19xqSOAbBNTPqsHUqf1JTM1CkAgO6n9Fl3jj766PjDH/4QCxYsSB0FAAAAqEV5pU+gerUVRqaOALBNlD5rRyF1AOhSCggAAN3PMVfdee1rXxt33HFHnHzyybH//vvHjBkzYsCAAZHLbfk6wrPOOqvHMwIAAABVrMFpa6B6tXYMTB0BYJtY3r12OHqmtljeHQCg21nevf687W1viyzLolQqxXXXXRfXX3/9FvcrP17eT+kTAAAA2C5W8wOqWNsLrakjAGwTpc/aofRJTckaFRAAALpdkw/h681JJ51UKXMCAAAAdIestTl1BIAd1rKkEDE0dQqAV2d599qh9EltMXUKAKD7OeaqO1/84hdTRwAAAABqWYvSJ1C9mp4rRmF03+hoX5E6CsArUvqsHbnUAaBLmToFANDtLO8OAAAAQFcy6ROodm2tY1NHAHhVlnevHUqf1BQFBACAHuCYq24tWbIk/vmf/zlOP/30OPTQQ+PTn/50ZfvXvva1uPzyy1PHAwAAAKpUZtInUOXacsNTRwB4VUqftcPy7tQWBQQAgG6Xma5el6677ro477zzYtWqVVEqlSLLsli9enXlsWuuuSa+9a1vxW233RZ/93d/lzoqAAAAUG2UPoEq17auf+oIAK8q39CaOgJdxKRPaopJnwAAPcAxV9156KGH4v3vf3+sXbs23vSmN8UFF1xQKX5udOqpp0ZbW1tcfPHFlQIoAAAAwPbIWppSRwDYKS3L/B4Der+GZgX1WmHSJ7VFAQEAoPs55qo7//Zv/xbt7e2Vpd1f85rXvOzxs88+O3bdddd485vfXCl+Hn744UlyAgAAAFWq1aRPoLq1LoqIcalTALyyxpaBqSPQRUz6pKZk3hACAHQ7x1z158Ybb4wZM2ZssfC50Z577hm77bZbLFiwoEezAQAAADWyml/OqWugehXWRDS3Dk8dA+AVNbYMTh2BLuLImdrStzUiSx0CAKC2Zf36pI5AD1u+fHmMGTPmVfcbOnRoPPfccz2SCQAAAKgxLjQGqlxb0+jUEQBeUWPLoNQR6CJKn9SULJ+PaGtNHQMAoHaVJy443qo7AwcOjEcfffRV93v44Ydj0CAfGAAAAADbL2tpSh0BYKe0lYakjgDwipQ+a4fSJzXH5CkAgG7UtzWynNHq9WbevHnx4IMPxtVXX73VfX7729/GQw89FHvvvXePZgMAAABqRFtL6gQAO6V1dd/UEQC2KldoikJjW+oYdBGlT2pO1s8vKACA7uICm/p07rnnRqFQiA996EPxz//8z3HTTTdVtq9fvz4ef/zx+P73vx8f//jHK/u89a1vTR0XAAAAqEJZX587AdWtdWlD6ggAW9XYbMpnLVH6pOYoIgAAdB8X2NSnqVOnxpe//OXIsiz+/d//Pc4+++zK97/5zW/i6KOPrjxWLoB+6lOfilmzZqWOCwAAAFShrL9zfEB1a15ciixXSB0DYIsaW5U+a4n/2lB7FBEAALqNiQv169hjj42ZM2fGD37wg7jxxhtj0aJFUSwWY+jQobHPPvtUiqDTp09PHRMAAACoUkqfQLXLdUa0to2JVSseTR0F4GVM+qwtSp/UHJM+AQC6jw/f69v48eMr0zwBAAAAulrWv2/qCAA7rU/DqFgVSp9A72PSZ21R+qTmKH0CAHQjU9WJiJUrV8YzzzwTDQ0NMWzYsGhqakodCQAAAKh2zvEBNaC1Y2DqCABbZNJnbVH6pOZkiggAAN3GBTb17bLLLouLLroo5s+fH6VSqbItn8/H3Llz421ve1scdthhqSMCAAAAVcoKM0AtaFvRmjoCwBaZ9FlblD6pOYoIAADdx7FWfSoWi/HhD384fvvb31bKnuWi56BBGz4ceO655+KWW26JW2+9Nd7xjndU9gMAAADYXkqfQC1oeSYfMTR1CoCXa2xR+qwlSp/UHpM+AQC6janq9elnP/tZ/OY3v4nhw4fHJz7xicpEz41Luq9Zs6by2Je//OX49re/HXPmzIkjjzwydWQAAACgymTNTRFNDRHr1qeOArDDmp4rRWF03+hoX5E6CsBmmtqGp45AF8p15ZNBb5AVChGtzaljAADUniyL6Kv0WY9++tOfRnNzc1x44YVxzDHHbCp8lrW0tMTJJ58c3//+9ysTQMu3AAAAADsi6983dQSAndbWOjZ1BICXaek3OnUEupDSJzXJsqMAAN2gT2tkOW8h6tGCBQti3rx5MX78+K3uM3369Mo+9957b49mAwAAAGqHJd6BWtCWG5Y6AsBmcvmmaGodmjoGXcgZW2qS0icAQNeztHv9am1tjaw86fVVlCeANjQ09EgmAAAAoAaZ9AnUgLZ1A1JHANhMc9+R23Seh+qh9ElNygb1Sx0BAKDmZIP6p45AIoccckjceOON8eSTT251n+eeey5uuummOOCAA3o0GwAAAFA7soHO8QHVr2VZU+oIAJuxtHvtUfqkJmVDB6WOAABQcxxj1a+PfOQjMWTIkDjnnHPi6quvftnjDz74YLz97W+Ptra2+NjHPpYkIwAAAFD9ckMGpo4AsNNaF5mmB/QuLX3HpI5AFyt09RNCb5AN9YYQAKCrOcaqH/vss8/LtrW3t8e6devive99b6XcOWbMmMpy7osXL658lY0aNSre//73x6WXXpogNQAAAFDtfP4E1ILCmlI0tw6Ptas3fG4KkJpJn7VH6ZOaZAoVAEDXyznGqhsvvPDCKz6+cuXKmD9//su2L1y4MJ566qluTAYAAADUssykT6BGtDWPVvoEeg2lz9qj9ElNyoYMiMhlEcVS6igAADXDpIX6saUl3AEAAAC6W9anNaK5KWLtutRRAHZKW3FILE0dAuBFLX2VPmuN0ic1KcvnIxvYP0pLl6WOAgBQG5qbIuvbljoFPWT0aG/+AQAAgHTDXUpPmo4HVLfW1X1SRwDYxKTP2pNLHQC6i0lUAABdx7EVAAAAAD3B51BALWhd2pg6AkBFQ/PAKDS0po5BFzPpk5qVDR0UMf+R1DEAAGqCD9u54YYb4sc//nE8+uijsW7d1pdYy7Isrrrqqh7NBgAAANSObIjPoYDq17y4FFn/QpSKHamjAHXOlM/apPRJzVJMAADoOrnyBTXUreuuuy7e9a53RalUetV9y6VPAAAAgB2VGzIwOlOHANhJuc6I1rYxsWrFo6mjAHVO6bM2KX1S25M+AQDoEi6oqW//+q//Wil8nnbaaXH88cdH//79lTsBAACAbmHSJ1Ar+jSMjFWh9Amk1dZ/QuoIdAOlT2pWTjEBAKDLuKCmvi1YsCBmzpwZn/nMZ1JHAerM2g9/OXWEqtH81Y+ljgAAAF3CxcdArWjt8Lk6kF6fQVNSR6Ab5LrjSaFXGNgvoqDXDADQFXzYXt8aGxtj5MiRqWMAAAAAdSDr0xrR0pw6BsBOa13ZmjoCQPQZrPRZi5Q+qVnl5SazIQNSxwAAqH592yJrbkqdgoT233//uOuuu2LdunWpowAAAAB1IBs5JHUEgJ3W8owhVUBauUJztPQbkzoG3UDpk5pmGVIAgJ1nyicf/vCHo729PT760Y/G0qVLU8cBAAAAalxu1LDUEQB2WvPSYhQa+qSOAdSxPgMnR5apB9YilxVQ07LhgyLuSp0CAKC65Ya5kKbejR49Os4777z4f//v/8VVV10Vw4YNi4EDB2514v5ll13W4xkBAACA2pEpfQI1oq1tXCxfdm/qGECd6jPI0u61SumTmr8KsDN1CACAKpeNHp46Aoldd9118elPf7ryfbFYjKeffrrytbXSJwAAAMDOyI0amjoCQJdoyw2L5aH0CaTRZ7DSZ61S+qSmZWNHpI4AAFD1cmMcU9W7888/Pzo7O+OII46IE044IQYNGqTcCQAAAHSbbMSQiFwWUSyljgKwU9rW9U8dAahjJn3WLqVPalpu8ICIluaINWtTRwEAqE65XGQmK9S9Bx98MKZNm1YpfwIAAAB0t6yxIbIhA6P0zHOpowDslJZlzRENqVMA9arPoKmpI9BNct31xNBb5MZYjhQAYGemKmQNrhWrd83NzTFu3LjUMQAAAIA64kJkoBa0Pm3FJCCNxtbB0dgyMHUMuonSJzUvU/oEANhhLqChbP/994/bb7892tvbU0cBAAAA6kRu5LDUEQB2WmF1KZpa/T4Dep6l3Wub0ic1Lzd2ROoIAABVywU0lH3wgx+sFD4/8IEPxKJFi1LHAQAAAOqASZ9ArWhrGp06AlCHLO1e26zTSM1TVAAA2HG5MS6gIeK73/1uTJs2La699trK15AhQ2LAgAFRKLz8LWWWZXHZZZclyQkAAADUjtwok/GA2tCnNDSeSx0CqDsmfdY2pU9qXm7IwIiWpog161JHAQCoLrnMRAUqLrnkks3uL1mypPK1JeXSJwAAAMDOygb2i2hpjlizNnUUgJ3SuqZP6ghAHeo3ZHrqCHQjpU/qQm7M8Cg++HjqGAAAVSUbPiSyxobUMegFLrzwwtQRAAAAgDqUGzsiig88mjoGwE5pXdoYofcJ9KB8Y1u0DZqcOgbdSOmTupCVlyVV+gQA2O4LZ6Bsn332SR0BAAAAqEPZ+JERSp9AlWt+uhTZLoUoFTtSRwHqRP+hu0aW5VLHoBv5X5e6oLAAALCDF84AAAAAQCK5cSNTRwDYabnOiNa2MaljAHWk//DZqSPQzUz6pC5kSp8AANstN9YxFBt84hOf2OZ9syyLz3/+892aBwAAAKgPufGjUkcA6BJtDSNjVZhcDPQMpc/ap/RJXciGDIxoboxY2546CgBAdchlkY0aljoFvcTPf/7zVy16lpVKJaVPAAAAoMtkfVojG9Q/Ss8tTx0FYKe0dQxMHQGoG1n0H6b0WeuUPqkL5RPPudHDo/jQE6mjAABUhWzY4MgaG1LHoJdP+iwWi7F8+fK49dZb4+abb45TTjkl3vjGN/Z4PgAAAKB2ZRNGKX0CVa91ZVvqCECdaB0wLhqa+6eOQTdT+qRuZOXlH5Q+AQC2SW7cyNQR6EXOPvvsV93n4osvjs9+9rNx/PHH90gmAAAAoD7kxo+O4m33pY4BsFNanilEDEmdAqgH/YfNSR2BHpDriReB3iA3eWzqCAAAVSM3ZVzqCFSZM888MyZOnBgXXHBB6igAAABADclNHJU6AsBOa15ajEJDn9QxgDrQf7jSZz1Q+qRu5CaNicj5Jw8AsC1cMMOOmDJlStxzzz2pYwAAAAA1JBs1LKKpIXUMgJ3W1uZzd6D7DRg+O3UEeoAGHHUja2qMbMzw1DEAAHq9bPCAyAb2Sx2DKvTQQw+ljgAAAADUmCyXi9y4kaljAOy0ttyw1BGAGpdvbIu2QZNTx6AHFHriRaA3LVPa+fii1DEAAHo1Uz75aytXrtzqYx0dHbFkyZL4wQ9+EA8//HDsu+++PZoNAAAAqH3ZhNERDz6eOgbATmldNyB1BKDG9R+6a2SZGZD1QOmTuiswdF7zp9QxAAB6/YUy8FJ77733q+5TKpUin8/Hueee2yOZAAAAgPqRmzwuOn/3x9QxAHZK67LmiIbUKYBa1t/S7nVD6ZO6kps0JiKXiygWU0cBAOi1lD7ZUqFza7Isi9bW1pg+fXq84x3viP32269HswEAAAC1LzdxdEShUF5yJHUUgB3W+nQWYaEtoBsNHLln6gj0EKVP6krW1BjZmOFRssQ7AMAWZYMHRDagb+oY9DLz589PHQEAAACoY1lDIXITR0XREu9AFSusLkVT67BYt/qZ1FGAGpQrNMWAkXNTx6CH5HrqhaC3MLkKAGDrclNcZgwAAABA75ObOj51BICd1tY0OnUEoEYNGDE3cvnG1DHoIUqf1J3cZEUGAICtyU12gQwAAAAAvY/SJ1AL2kpDU0cAatSg0fumjkAPsrw7dSc3aUxELhdRLKaOAgDQ65iKTtknPvGJHf7ZLMvi85//fJfmAQAAAMjGjohobopYuy51FIAd1rqmb+oIQI0aNGaf1BHoQUqf1J2sqTGyMcOj9Pii1FEAAHqVbPCAyAb4wImIn//859td9HwppU8AAACgq2W5XGVFv+I9C1JHAdhhbUsbIvqkTgHUmobmgdF38LTUMehBSp/U7QSrTqVPAIDN5KaMTR2BKpz02dHRERdeeGE888wzUSqVYuxY/44AAACA7pHbZbzSJ1DVmp8uRbZLIUrFjtRRgBoyaPQ+LxvQQW1T+qQula8C7LzmT6ljAAD0KrnJlnZng7PPPnub9nvggQfi4x//+KbC52mnnVa539U++MEPxm233RbXX3/9yx770Ic+FJdffvkWf27q1Knx61//usvzAAAAAGnkpo5PHQFgp+Q6I1rbxsSqFY+mjgLUkEFj5qWOQA9T+qQu5SaNicjnIjqLqaMAAPSqaeiwrb7zne/EN77xjWhvb4+hQ4fGZz/72TjkkEO6/HW++c1vxhVXXBHDhw/f4uP33Xdf9O/fP97ylre87LFBgwZ1eR4AAAAgndyIIRH92iJeWJU6CsAOa2sYGatC6RPoOoNH75M6Aj1M6ZO6lDU1VqZ9Fh94LHUUAIBeIRs9LLIBfVPHoAo88cQTlWme5cmb5emexx57bHz605+uFC+70rp16+Izn/lMXHrppVvdZ82aNfHYY4/F/vvvH+973/u69PUBAACA3ik3ZXwUb7s3dQyAHdbW4WJ1oOu09h8fzX1Hpo5BD8v19AtCb5GbNSV1BACAXiM3c3LqCFSBSy65JE488cS49dZbo1+/fvHVr341vva1r3V54fOaa66plEnLhc9Xmh5aXl6+WCzGtGnTuvT1AQAAgN4rP21C6ggAO6V1ZWvqCEANsbR7fVL6pG4pfQIA/EV+V8dGbN0zzzwTb3/72+Pv//7vY/Xq1XHwwQfHr3/96zjuuOO65fV+9rOfxapVq+JTn/pUXHDBBVvdr7y0e9n06dO7JQcAAADQ++RmTIrIZaljAOywlmfyqSMANWSQpd3rkuXdqVu5Qf0jGzk0SouWpI4CAJBWvz6RjRmROgW91K9+9av47Gc/G8uXL4/W1tbK0u5veMMbuvU1zz777Pjyl78cffr0ecX9NpY+n3rqqXjLW94S8+fPryw5v+eee8Z73vOemDNnTrfmBAAAAHpe1qc1svGjo/TIk6mjAOyQ5qWlyI9si871q1JHAapclsvHoFF7pY5BAiZ9UtdM+wQAiMjPnBxZZjoCm1u2bFm8//3vj4997GOVwudee+0Vv/jFL7q98Fk2b968Vy18lt1///2V2/PPPz8GDx4cp512Wuyxxx5x3XXXxRlnnBG///3vuz0rAAAA0PPysyanjgCwU/q0jU0dAagBA0fuGYWmvqljkIBJn0S9vyHsvOqPqWMAACSVs7Q7f+Waa66JT37yk7F06dJobGyMD33oQ3HOOedEb9Pc3Bzjx4+Pb3zjG5st8V4ufb7rXe+qTCW9+uqrt6lACgAAAFTZYJdfX5c6BsAOa8sNj+UxP3UMoMoNnXBo6ggkovRJXcvGjYzo2xaxwth0AKBONTZEbur41CnoZd797ndvmv5aLkyWJ3yWv7ZF+ecuu+yy6Ak/+MEPtrj9kEMOieOOOy5+/etfx7XXXhsnnHBCj+QBAAAAekZu+ODIhg6M0pLnU0cB2CGt6wakjgBUvUzps44pfVLXyieky8uZdv7pztRRAACSyO0yPrIGbwt4uVKpVLktT/ssf22rjWXR1ObMmVMpfT7++OOpowAAAADdIFc+x3fdLaljAOyQ1uXNGjvATuk3dGY09xmeOgaJ+E8IdS9XXuJd6RMAqOelsOCvXHjhhdHbrVy5MhYsWFBZ4v2lS7tvtGbNmspt+XEAAACg9uRnTVH6BKpW66IsYmzqFEA1GzrRlM96pvRJ3cvtMiGiPN1qfUfqKAAAPevFqefw1/bZZ5/o7R5++OF44xvfGFOnTq1M9PxrN99886aJnwAAAEDtySaNiWhtjli9NnUUgO1WWF2KppahsW7NktRRgCo1bMJhqSOQUC7li0NvkDU2VJY1BQCoN9m4kZH1bUsdA3bIrrvuGuPGjYsHH3wwfvazn2322GWXXRb/8z//E7NmzYo999wzWUYAAACg+2S5XOSmT0odA2CHtTWPSR0BqFKtA8ZH28CJqWOQkEmfUG4/z5wSxXseSh0DAKBH5WeZ8kn1yuVy8YUvfCHe/va3x//9v/83rrzyypg8eXLMnz8//vd//zeGDh0aX/nKVyLLstRRAQAAgG6S33VKFG+7N3UMgB3SVhoSz6UOAVQlUz4x6RM2Fh6cCwYA6kxu1pTUEWCn7LXXXvGf//mfcfzxx8fdd98dP/zhD+ORRx6J008/PX7+85/HxImucgUAAIBalps+MaJgzhFQnVrX9EsdAahSQycqfdY7R8BQXv6hX5/Ixo6M0uOLUkcBAOgR2aD+kRs5NHUM2Cb333//Vh8rT/f86le/2qN5AAAAgN4ha26K3IyJUbzrwdRRALZb29KGiD6pUwDVpqltWPQbOit1DBIz6RNelJ87PXUEAIAek3PsAwAAAEANyO8+I3UEgB3S/HQpsiyfOgZQZYZOODSyzHLG9U7pE16U32NGhF+KAECdyO/lCkAAAAAAql9u5uSIpobUMQC2W64zorXPmNQxgCosfYLSJ7xkiffc1HGpYwAAdLts1LDIjRiSOgYAAAAA7LSssSFys6amjgGwQ9oaRqaOAFSRhuYBMXDUnqlj0AsofcJL5PaYmToCAEDPTDgHAAAAgBqR33166ggAO6S1c1DqCEAVGT756MjlCqlj0AsofcJL5OfsEtHglyMAUMOyLPIudAEAAACghuSmT4xobU4dA2C7ta1oSx0BqCIjdzk+dQR6CaVPeImsuSlysyanjgEA0G1yk8dGNqBv6hgAAAAA0GWyfD7ys3dJHQNgu7U8k08dAagSrQPGR/9hs1LHoJdQ+oS/kt/TL0gAoHbl9jTlEwAAAIDak9tjRuoIANuteWkp8g2mfQKvbuRUUz75C6VP2NLyD20tqWMAAHS9QiHyu01LnQIAAAAAulxu8riIvopTQPXp0zY2dQSg18tixNTjUoegF1H6hC0t/6AMAQDUoNysyZE1N6WOAQAAAABdLstlkZ87PXUMgO3WmhueOgLQyw0YuXu09B2ZOga9iNInbEHesqcAQA1yjAMAAABALfP5F1CN2tYNSB0B6OVG7mJpdzan9AlbkJs4JrJB/VPHAADoOq3NkZs+KXUKAAAAAOg2uXEjIxs5NHUMgO3Surw5dQSgF8vlm2L4xCNSx6CXUfqErcjt4UpAAKB25HebFlkhnzoGAAAAAHSr/LzZqSMAbJfWRVnqCEAvNnT8wVFo6ps6Br1MIXUA6M3LP3Re9cfUMQAAukR+z1mpIwAAAABAj3wO1vHr6yI6OlNHAdgmhdWlaGoZGuvWLEkdpa6sbS/Fb29qjzse7IilL5SiPDdjzNBcHLZHY8ydunmd6olnOuO3f2qPB58sxpp1pejTksX08fk4br/GGNJ/2+btdXaW4prb1sdN93XEkueLkWURIwfn4sA5DbH/7IbN9i2WSvGLG9rjj3evr9yfPr4Qpx7aGP3aNn+t9R2l+Pvvr46ZE/JxxlEmxtaqEbsclzoCvZBJn7AVueGDIxszPHUMAICdN7BfZBNHp04BAAAAAN0ua2uJ3K5TU8cA2C5tzWNSR6i7wudXL1kTV960Phobsjh4t4bYfWohFj5bjG//am2lDLrRfY91xD/9eE3c8VBnTB2Ti0N3b4hRQ3Lxp3s74ksXrY5FS4uv+nrFYin+9edr479uaK+UP8slz71nFGLZylJc/Lt18aPfrd1s/+v/vD6uumV9jBuejz2nNcSdCzoquf7atbevj1VrS3H8fo1d9DdDb9PQPDAGj90/dQx6IZM+4RXk582Jjid/lzoGAMBOKewzO7LyJaMAAAAAUAfy+86J4p/np44BsM3aYkg8lzpEHfndze2VgueBcwrxpiOaNp1DOWH/Ynz5R2vi139or5RAh/TP4uIr10WxGPGB01piypj8puf437vXVx675Kq18aE3tr7i6/3xno6Y/3hn7DopH+94bXMU8hterzw1tFw+/cNdHbHXtI7YZdyGGtcf7uyIEYOyeM8pzZVsA/tm8Yv/aa9MHB07bEOG1WtLceVN7XHEHg3Rv4+Zf7VqxJRjIpdT7+Pl/L8eXmWJ92jafIw2AEBVyeUqH3IDAAAAQL3ITR0f2aD+qWMAbLPW1X1TR6grt97fEeXa5YkH/qXwWTagby4O2q0hiqWIex7piEcWFeP5FaWYPTm/WeGzbP9dGyql0IcWbljy/ZXcdn9H5fZ1BzRuKnyWtTRlceTeGzopdz3cuWn7kuXFGD00vynb6KEb6l1Llv3ldX7zp/bI58s/b8pnLRsz8/WpI9BLKX3CK8iamyK/+4zUMQAAdlhu1uTI+vuwCAAAAID6US7J5PeZnToGwDZrfU5xrycdtkdDnHBAY7Q2v3yVtMKL3c516yP6tmZx4oGNlYLnlpT3Ldcw17W/culz3sxCHDOvIYYPym319cpLzm/U1pxt9pwbH2tt3nB/6QvFuO7P6+PYfRuiudFKb7Vq4Kg9o23gxNQx6KXMf4VXkd9/bnTeeGfqGAAAOyS/39zUEQAAAACgx5VLnx2//UNE6ZWLOAC9QcuiUmRT81Eq/WXaI93nkLlbLtmWSqW4/cENUzlHD8nFsIG5eM0+W973qWc7Y/HzpejTEtGvzysXL/eZufUVZm9/sHOzaZ5lE0fl4+6HOuLhpzorGW64Y31lkdoxQzc0RH/1h/YY1DeLA+dYubaWjZl5WuoI9GJKn/AqcmNGRDZ2RJSeeDp1FACA7ZINHhC5aRNSxwAAAACAHpcN6Bu5aROjOP/h1FEAXlWuM6K1z+hYteLx1FHq2g13dMRjTxcry7bPnLD5cu4v1dlZih9fta5yXUG5eJl7yRLx2+Puhzvi9gc6oqUpYq/pfylwlpeBf3hhZ3zlkjWV+7lcxOlHNkWfliyeeKYzbrmvI952QnPkcxtet1gq7XAGeqfG1iExdOJhqWPQiyl9wjZOyOp44jepYwAAbJf8vrtVlrICAAAAgHqU33eO0idQNdoaRsWqUPpM5db718elv19XKVi+5ZjmyOezrRY+v/ffa+Php4oxZmgujpm35Umgr+bBJzvju/+9tvL9m47YUOjcqDzd8/+e1Rp3PtwRa9eVYtq4fIwasqGE+l83tMeEkbnYfZdCPL+iGBdduS4eeLwzmhqjsgz9iQc1biqDUr1GTz85cjm1PrbOvw7YBvk9ZkTHL38fsXZd6igAANsmn4/8PrumTgEAAAAAyeRmTYno3ydi+crUUQBeVWvnoNQR6tb1d6yPn16zLspVybOPaYopo7c85XNteym+86u1cd9jnTF0QBZ/e3JzNBS2v2B5x4KO+P7la2N9R8RJBzVuNuVzo7aWLPabtfn2+x7tiPmPdcaH3thSuf8fV6yNZ54vVaZ+lgugl13fXvm5o7eyJD3VIcvlY/TMU1LHoJfLpQ4A1SBrbIj83koTAED1yO22S2R921LHAAAAAIBksnwuCgfsnjoGwDZpW+Ez/Z5WXhb9P69bFz+5el3kc1EpT26pgFlWLlWWl1svFz5HD8nFh97QEgP6bH/t6upb2+Pbv1obHZ0Rpx3WGEftvW0FzVKpVJnyOWdyvlJKXbS0GA8+WYyj9m6IuVMLcdgejTF7Yj5+f9v67c5E7zJk3MHR3DYsdQx6OaVP2Eb5A3ePymUdAABVoHDgnqkjAAAAAEBy+X13iyhYABPo/VqX+F3Vkzo6S/HdX62Na25dH23NEe87taVSntyShUs64x9/tCaeerYY08flK5M2+29n4bNc2ixPE73suvYo5CLefkJzHLr7tk/kvOm+jnhqaTFOPKipcn/xc8VNS8FvNGxQLlasLsWadaXtykbvMmbWaakjUAWUPmEb5YYOitwuE1PHAAB4VdnYEZGbMCp1DAAAAABILuvTGvk9Z6SOAfCqGpd2Rr6hNXWMulAsluI7v14bf17QGYP7Z3Hem1q3uqT7088V4xs/WxPLV5Vi3sxCvPvk5mhp2v6JYT+9pj2u+/OGgun7T9t6wXRL1neU4tf/2x7771qIEYM2VL06ixuKncUN3c+Kjo4Nt5mBZlWrdcD4GDR6n9QxqAJKn7Ad8gftkToCAMCrKhzomAUAAAAANsoftFfqCACvKitl0dY2LnWMunDlzevjroc6Y2DfLD78hpYY/mKRckvTQL/zq7Wxck1UCpdvObop8vntb1TedN/6uP6O9dHSFPHBN7TEpFFbLphuTbksunJNKY7b7y+TQTeWPx9a2Llp28NPdcaAPlk0N2p9VqsxM06NTGuXbWA2NGyH3PRJkQ0eEKWly1JHAQDYsraWyO0+PXUKAAAAAOg1cqOGRm7KuCgueDx1FIBX1JYbHi/E/NQxatqqNaX47U3tle/HDsvFH+5av8X9pozJx5JlpVi0tBj5XESf1iwu/+OGn/tr5WXa21o2FPWuua091qwtxb6zGmJw/1xlIucv/2fDz40ZmovbH+iofP210UPzW5z+uXptKX77p/Y4Ys+G6N+W22z/SaNycfWt62P1ulI8v6IUjy0uxqmHbvuS8fQuuUJzjJz22tQxqBJKn7AdslwW+QN2j45f/j51FACALcrvu1tkBYf5AAAAAPBS+YP3VPoEer22dQNSR6h5CxZ2RvuLPc87H+qsfG3JMfMiFj27Ye30zmLElTdtuRxatveMhk2lz9/ftj6ee6EUU8fmK6XPcmm0XMgse/DJYuVri88xvbTF0me5oFqeLnrkXi8vc577uua45Kp1cdN9HZXpnsft2xCH7N6wLX8N9EIjphwTDU19U8egSjgbDNspP292dPzmf2LTUQAAQG+Ry0Vh/7mpUwAAAABAr5ObOcWKfkCv17q8WZOnm+02pRDnf7hPtz3/Z97ettn9MUPzO/V6Jx/cVPnakr6tuXjH61p2+LnpTbIYP+fNqUNQRf4y9xfYJllLc+T32y11DACAl8ntMSOygf1SxwAAAACA3rmi34G7p44B8IpaF22YFgnUlyHjD462gRNTx6CKKH3CDigcsndEPp86BgDAX2QRhcPnpU4BAAAAAL1Wfp85EU2WvQV6r8LqUjS1DEkdA+hhE+aekzoCVUbpE3ZANqBv5PeamToGAMAmuVlTIjfCB0EAAAAAsDVZS1Pk956dOgbAK2prHpM6AtCDBozYPQaMmJM6BlVG6RN2UP6weRGZ0eoAQO9QOGLf1BEAAAAAoNcrHLp3RM5pcqD3agsDHqCeTJh7duoIVCFHs7CDcsMGRW7OLqljAABEbsq4yI0flToGAAAAAPR62aD+kd/Tin5A79W6ul/qCEAPaRs0OQaPOzB1DKqQ0ifshMKRJmoBAOnlHZMAAAAAwDbLl1fNsaIf0Eu1PteYOgLQQybsdnZkjknYAUqfsBNyo4dHbvrE1DEAgDqWjR0R+V0mpI4BAAAAAFXDin5Ab9ayqBRZlk8dA+hmzX1GxPApR6eOQZVS+oSdVChfCQgAkIhjEQAAAADYflb0A3qrXGdEa5/RqWMA3WzcnDdHLldIHYMqpfQJOyk3eWxkExxwAQA9LytPJJg9NXUMAAAAAKjOFf1mTkodA2CL2hpGpY4AdKOG5v4xevpJqWNQxZQ+oQsUjpiXOgIAUIfyh8+LLMtSxwAAAACAqlQ4cr/UEQC2qLVzUOoIQDcaM+uNkW9oSR2DKqb0CV0gN3NyZCOHpo4BANSTAX0jv+fM1CkAAAAAoGrlJoyurOoH0Nu0rWhLHQHoJvlCS4zd9Y2pY1DllD6hC5QnbBUON+0TAOg5hUP3iSyfTx0DAAAAAKpa/ijTPoHep3WJz/+hVo3d9U3R2DwgdQyqnNIndJHc7tMjG+yXMgDQA/q0Rn7fOalTAAAAAEDVy+8yIbJxI1PHANhM49Ji5BtaU8cAulihsU+Mn3tW6hjUAKVP6CJZLudKQACgRxQO3TuyxobUMQAAAACgJhSOPiB1BIDNZKUs2trGpY4BdLFxu70lGpr6pY5BDVD6hC6U32tWZMMHp44BANSyAX0jf9CeqVMAAAAAQM3Iz5gU2aQxqWMAbKYtNzx1BKALNTQPjHGzz0gdgxqh9AldPO2zcPzBqWMAADWs8JoDImsopI4BAAAAADWlwTk+oJdpax+QOgLQhSbsfk4UGlpTx6BGKH1CF8vvOjWyCaNTxwAAalA2bFDk99k1dQwAAAAAqDm5iWMiN3NS6hgAm7Qsa04dAegiTW3DYszM01LHoIYofUI3aDjBlYAAQNcrHHdwZbI4AAAAANA9n79FljoFwAati/1CgloxcY+3Rb7QlDoGNcQZY+gGuUljXQkIAHSpbNzIyM/ZJXUMAAAAAKhZuVHDIrf7jNQxACoaVpaiqWVI6hjATmrpNzpGTTsxdQxqjNIndJPCcYdEZK68AQC6RuGEQ1JHAAAAAICaVzjmwIi80+hA79DWPDp1BGAnTdrznZHLN6SOQY1xtArdJDdqaOT2cCUgALDzctMnRn7KuNQxAAAAAKDm5YYMjPy8OaljAFS0xdDUEYCd0DZwUoyYemzqGNQgpU/oRoVjD4rI51PHAACqWRZROP7g1CkAAAAAoG4UjtovoqGQOgZAtK7plzoCsBMm7fWuyDL1PLqef1XQjXKD+kd+/7mpYwAAVSw3d0bkRg9PHQMAAAAA6kbWv2/kD9wjdQyAaH2uMXUEYAf1Gzorhk08PHUMapTSJ/TElYBNDsQAgB2Qz0Xh2ANTpwAAAACAulM4Yt+I1ubUMYA617KoFFlmdVGoRrvsf15kWZY6BjVK6RO6WdanNQqH7p06BgBQhfL77ha5IQNTxwAAAACAupO1NkfhNQekjgHUuVxHREuf0aljANtp+JSjY8CI3VLHoIYpfUIPyJdLn31aU8cAAKpJY0MUXrN/6hQAAAAAULfyB+we2bBBqWMAda5Pw8jUEYDtkCs0x9R5H0gdgxqn9Ak9IGtqjMIxrgQEALZd4fB5kfVtSx0DAAAAAOpWls9F4XWHpY4B1LnWjsGpIwDbYcJuZ0dzn+GpY1DjlD6hh+T3nRvZGL/UAYBXlw0eEPnD90kdAwAAAADqXn7m5MhNm5A6BlDH2lYaEAHVornPiBg/96zUMagDSp/QQ7JcFg2vPyoiS50EAOjtCicfEVmhkDoGAAAAAFD+vO7EwyNyTq0DabQuyaeOAGyjKfM+EPlCc+oY1AFHptCDcuNHRX6f2aljAAC9WG7WlMr0AAAAAACgd8iNGBL5A3ZPHQOoU41Li5EvtKaOAbyKASPmxogpr0kdgzqh9Ak9rHD8IREtWv0AwBY0FCpTPgEAAACA3qVwzAERfZSugJ6XlbJoaxubOgbwSrJc7LL/R1KnoI4ofUIPy/q0RuG4g1LHAAB6ocLh8yI3qH/qGAAAAADAX8lamqNwrHN8QBpt+eGpIwCvYNQur41+Q2ekjkEdUfqEBPL7zY1sjIMyAOAvssEDIn/EvNQxAAAAAICtyM+b4xwfkERb+4DUEYCtyDe2xeR93pM6BnVG6RMSyHJZNJxyVESWOgkA0FuUl3XPCoXUMQAAAACArXCOD0ilZXlz6gjAVkzc/e3R1Do4dQzqjNInJJKbMCrye89OHQMA6AVys6ZEfubk1DEAAAAAgG05x7ff3NQxgDrT+rR6D/RGfQZNiXGzT08dgzrkvwqQUOGEQyJaXJEDAHWtoVCZ8gkAAAAAVIfC8YdE9OuTOgZQRxpWlqKpZUjqGMBLZbmYcfDfRS7fkDoJdUjpExLK+rRG4biDUscAABIqHD4vcoP6p44BAAAAAGyjrKUpGlzIDfSwtuYxqSMALzF21mnRf7gVfklD6RMSKy//kI0ZnjoGAJBANnhA5A+flzoGAAAAALCd8rtNi9ysyaljAHWkLUz6hN6iqc/wmLzPe1PHoI4pfUJiWS6LhlOOishSJwEAelp5WfesoZA6BgAAAACwAyrn+Jos6Qr0jNY1/VJHAF40/cCPR6GhNXUM6pjSJ/QCuQmjIn/AHqljAAA9KDd3euRnmgQAAAAAANUqG9gvCscclDoGUCdan2tMHQGIiGGTjoyh4w9OHYM6p/QJvUTh+IMrS7wCAHWgT2s0nHJk6hQAAAAAwE7KH7RHZGOGp44B1IGWRaXIsnzqGFDXCo19Y9oBH00dA5Q+obfImhqj4Y3HWOYdAOpAw6mviayPJR8AAAAAoNpluVw0vOGYiJyTfED3ynVEtPQZnToG1LWp+34gmlqHpI4BSp/Qm+SmjLPMOwDUuNzu0yM/Z5fUMQAAAACALpIbMzzyB+2ZOgZQB/o0jEwdAerWgJF7xqjpJ6WOARVKn9DLFE44xDLvAFCr+rZFwylHpU4BAAAAAHSxwrEHRTbEOT6ge7V2Dk4dAepSLt8YMw7+P5FlJnvTOyh9Qi+TNTZEw5uOtcw7ANSghtcfFVlbS+oYAAAAAEB3nOM7/fgIZRCgG7WubE0dAerShD3eFm0DJqSOAZsofUIvlJs8NvIHWgICAGpJbvcZlnUHAAAAgBqWmzg68oftkzoGUMNalzSkjgB1p++QGTFht7NTx4DNKH1CL1U4/mBLQABATS3rfmTqFAAAAABANyscc2BkI4emjgHUqKZnOyNfMO0Tekqu0BS7Hv6ZyOUVruldlD6hl7LMOwDUjoZTX2NZdwAAAACoA1khHw1nHB+Rz6eOAtSgrJRFW9vY1DGgbkyd98FoGzgxdQx4GaVP6MVykyzzDgDVLrfHjMjPnpo6BgAAAADQQ3Kjh0Xh6P1TxwBqVFt+eOoIUBcGj90/xu76htQxYIuUPqGXs8w7AFT5su4nW9YdAAAAAOpN/vB5kY0flToGUIPa2vUHoLs1NPePmYd8MnUM2CqlT6iKZd6Pi8is8w4A1abhNMu6AwAAAEA9ynK5aDj9uIjGhtRRgBrTurw5dQSoeTMO+rtoahuaOgZsldInVIHcpDGRP3Tv1DEAgO2Q23vXyO9qWXcAAAAAqFe5YYMqq/oBdKWWxao+0J1G7vLaGDbp8NQx4BX5LwFUicJxB0U2bmTqGADANsiGDYqGUyzrDgAAAAD1Ln/gHpHbZXzqGEANaVhRisaWwaljQE1q6Ts6ph3w0dQx4FUpfUKVyPL5aDjrdREtTamjAACvpFCIhrNOjKypMXUSqBkf/OAH4+CDtzwVY/Xq1fGNb3wjjj766JgzZ04cfvjh8ZWvfCXWrFnT4zkBAAAA/lqWZdFwxvERfVpTRwFqSFvzmNQRoPZkuZh12N9HobEtdRJ4VUqfUEVyg/pHwxuPTR0DAHgFhZMOj9yooaljQM345je/GVdcccUWH2tvb493vetdcf7558eYMWPi7LPPjtGjR8e3vvWteOtb31p5HAAAACC1rF+faDjz+IgsdRKgVrSF8xDQ1SbsdnYMGLl76hiwTZQ+ocrk5+wS+QP8RwYAeqPc3OlR2H9u6hhQE9atWxd/93d/F//yL/+y1X0uueSS+NOf/hRvf/vb47vf/W6cd9558cMf/jDOOuusuP322+Piiy/u0cwAAAAAW5OfNjHyh81LHQOoEW1r+qWOADWl75DpMWmvd6aOAdtM6ROqUOHEwyIbPSx1DADgJbLBA6LhDUenjgE14Zprroljjz02Lr300jjkkEO2ut+FF14YjY2N8bd/+7cvWw6+paWlUgoFAAAA6C0Kxx4U2cTRqWMANaD1ucbUEaBmFBr7xOwjvxi5fEPqKLDNlD6hCmWFQjSc9bqIJgdyANAr5POV/zZnzU2pk0BN+NnPfharVq2KT33qU3HBBRdscZ+FCxfGE088EXPmzIk+ffps9lhbW1tl+6OPPhpPP/10D6UGAAAAeGVZPheNb35tRGtz6ihAlWt5OiLL8qljQE2YeeinorX/2NQxYLsofUKVyg0dFA2nvSZ1DACgfAXgaw+J3NgRqWNAzTj77LPj6quvjjPOOCOyLNviPuVCZ9m4ceO2+PjYsRs+oHn44Ye7MSkAAADA9skG9ouG049LHQOocrn1pWhpG5U6BlS9cXPeHMMmHp46Bmw3pU+oYvk9ZkZ+3uzUMQCgruV2nRKFg/dKHQNqyrx58142vfOvLVu2rHI7YMCALT7et2/fyu0LL7zQDQkBAAAAdlx+1pTIH7xn6hhAlWtrVPqEnTFgxNyYMu99qWPADlH6hCpXOPnIyEYMSR0DAOpT+ar8N7kqH1JYv3595baxsXGLj2/cvm7duh7NBQAAALAtCiccGpnVg4Cd0NY5KHUEqFqNLYNi9pFfjFyukDoK7BClT6hyWWNDNJz1uojGhtRRAKC+5HLR+ObXRtbanDoJ1KWmpqbKbXt7+xYf37i9ra2tR3MBAAAAbIuskN9wjq95w2ccANurdaXPPmGHZLnY9YjPRVPb0NRJYIcpfUINyI0YEoWTjkgdAwDqSuHYAyM3cXTqGFC3Ni7rvmLFii0+vnH7qy0TDwAAAJBKbvCAaDjz+IgsdRKgGrUuMRgKdsSkvd4Zg0bvkzoG7BSlT6gRhX3nRH6f2aljAEBdyM2aHPnD56WOAXVt0qRJldvHH398i49v3D5lypQezQUAAACwPfKzpkThNQekjgFUoaZnOyNfaE0dA6rK4HEHxMTd35Y6Buw0pU+oIYVTXxPZBBPHAKA7ZSOGRMOZJ0SWufweUho+fHiMHz8+7rzzzli9evVmj61atSruuuuuyuNDhgxJlhEAAABgW+Rfs3/kdp2aOgZQZbJSFm1tY1PHgKrR3Gdk7HrYZ5zjoyYofUINyQr5aHzrSRED+qaOAgC1qbU5Gt52SmTNTamTABFx6qmnxpo1a+LrX//6ZtvL98vbzzjjjGTZAAAAALZVuXzScMZxkQ0fnDoKUGXa8sNTR4CqkOUaYvZRX4qG5v6po0CXKHTN0wC9Rda3LRr/5uRo/5cfRazvSB0HAGpHLhcNZ58YucEDUicBXnTOOefEb37zm/iP//iPuO+++2Lu3Lnx5z//OW666abYa6+9lD4BAACAqlG+0LzhrSdH+9d/GLF2Xeo4QJVobXfOArbFtAM+Ev2HzUodA7qMSZ9Qg3JjRkTDm45NHQMAakrhxMMjP3V86hjASzQ2NsaFF14Yb33rW+OJJ56IH/zgB7F48eJ417veFRdccEHlcQAAAIBqkRs2KBrefEJ59GfqKECVaFvekjoC9HpjZp5a+YJaYtIn1Kj87jOiuGhJdF51Y+ooAFD18vvuFoWD9kgdA+rW/fffv9XH+vTpEx//+McrXwAAAADVLj9zcpSOOTA6rrghdRSgCrQsziJGpU4BvdfAUXvHLgd8NHUM6HImfUINKxx7UORmTUkdAwCqWjZpTBRef2TqGAAAAABAncgfuW/kZu+SOgZQBRpWlKKxZXDqGNArtfQbG3OO+lLkcmYiUnuUPqGGZVkWDWceH9mIIamjAEB1GtgvGs85KbJ8PnUSAAAAAKCezvGdcZxzfMA2aWsekzoC9Dr5xraYe8zXoqG5f+oo0C2UPqHGZc1N0fC2UyLaWlJHAYDq0tgQjX9zSmR9WlMnAQAAAADqTNbUGA1vf31E37bUUYBeri2Gpo4AvUqW5WP2EZ+PtoETU0eBbqP0CXUgN3hANJz1uoic/8sDwDbJIhrOOD5yo4elTgIAAAAA1KncoP7RWB7u0tiQOgrQi7Wu6Zc6AvQqU/f7UAwZd2DqGNCtNMCgTuSnjo/CSYenjgEAVSF/1P6Rn7NL6hgAAAAAQJ3LjRsZDWeeUB5bljoK0Eu1Pd+YOgL0GmNmvTHGzT49dQzodkqfUEcKB+4R+f3npo4BAL1abrdpUTj6gNQxAAAAAAAq8rOnRuF1h6WOAfRSLYs2LGcN9W7w2ANi2v7npY4BPULpE+pM4ZQjIzdrSuoYANArZZPGVJZ1z1w1DwAAAAD0IoVD9or8QXumjgH0Qrn1pWhpG5k6BiTVZ9CUmH3kFyLLKUBTH5Q+oc5kuVw0vOW1kU0cnToKAPQq2cih0fi210fWUEgdBQAAAADgZQonHm64C7BFbY3O/1O/GluHxNxjvh6FxrbUUaDHKH1CHcoaGzaUWkYMSR0FAHqFbFD/aHznaZG1NKWOAgAAAACwRVku2zDcZeyI1FGAXqatc1DqCJBEobFv7HHcN6O5r2m31BelT6hTWWtzNJ57WsTAfqmjAEBabS3RcO5pkfXrkzoJAAAAAMCrD3d5++srF7IDbNS60jkO6k+u0BRzj/la9Bk8NXUU6HFKn1DHsgF9NxQ/21pSRwGANCofkJ4auWGugAUAAAAAqkPWty0a3v76iJbm1FGAXqJ1ST51BOhRWS4fs4/8YgwYuXvqKJCE0ifUudzwwZWl3sulFwCoK/lcNJxzUuTGW+4BAAAAAKguuRFDovEdzvEBGzQ9W4x8wbAn6kUWMw75ZAwdf3DqIJCM0icQuQmjouGs10Xk/EoAoE5kEQ1vPDby0yemTgIAAAAAsENyE0ZHw9+cHFEw4Q/qXVbKoq1tbOoY0COm7vfBGLXLCaljQFIaXkBFfubkaHjjMZUSDADUusJrD4v8XrNSxwAAAAAA2Cn5XSZEw5tfG5Fzkg/qXWt+eOoI0O0mzD0nxs95c9S69vb2+Na3vhWdnZ2po9BLKX0Cm+T33jUKxx+SOgYAdKv8oXtH4dC9U8cAAAAAAOgS+Tm7VFY2MtwF6ltb+8DUEaBbjZp+UkyZ976oB29+85vjK1/5SpRKpdRR6KWUPoHNFA6fF/lD9kodAwC6RW6vWVF47aGpYwAAAAAAdP1wlxOPSB0DSKhteUvqCNBthk44LGYc9H9Sx+gxzz77bOoI9HJKn8DLFF53WOT2mJk6BgB0qdyMSZWr3bPM5e4AAAAAQO0pHLxnFI4+IHUMIJGWxc5/UJsGjtozZh/5+chy+dRRoNdQ+gReplyGaTj9uMjtNi11FADoErldxkfDOSdFlnf4CwAAAADUrnLp06p+UJ8aVpSisXlQ6hjQpfoNnRm7Hf3VyOUbo7f5+Mc/HtOmTYtFixbF1772tTjiiCNi1113jcMPPzz+8R//MVavXr3Z/uX9PvnJT8ahhx5a2e+AAw6I8847Lx588MFN+/zpT3+qPOfChQsr92fNmhVvectbNj1eLBbj4osvjlNOOSXmzp0be+yxR2Up+KuuuqoH/+T0Bs56A1tULsU0vPm1kZu9S+ooALBTclPGRcPfnBJZQyF1FAAAAACAHlnVL7/P7NQxgATaWsamjgBdpt/QWbH78f8ahcY+0Zu9733vix//+Mex3377xZlnnlkpZn7nO9+Jj370o5v2ue++++LEE0+Mn/zkJzFu3LhKUXP27Nlx+eWXx6mnnho33HBDZb/Ro0fHe9/73ujbt2/l/rvf/e44+eSTK9+Xn7f8Wv/wD/8Qa9asqfzcSSedFI899li85z3viW9+85uJ/gZIwZlv4JWLn2e9Ntb/4BdRvGdB6jgAsN2ySWOi4e2vj6yxIXUUAAAAAIAeW9Wv8Iajo9TRGcXb7k0dB+hBbTE0nk8dArqs8Hl+NDRtKD/2ZsuWLYsrrrgiBg8eXLn/zne+M4499tjK9M3FixfH0KFDKwXQ5cuXx+c///l4/etfv+lnr7/++sr+H/nIR+Lqq6+OMWPGVIqdP//5z2PFihWVMmehsKHeV57wWX7O1772tfGFL3whGho2nP/80Ic+VCmRlkufBx98cMyZMyfR3wQ9yaRP4BVl+Xw0nH1i5GZOSh0FALZLNnFMNL7jVIVPAAAAAKDuZLlcNJxxfOT2mpU6CtCDWtf0/oIcbEvhc48qKXyWnX766ZsKn2WDBg2qLLte9sQTT8Sf//znyhLuBx544GaFz7JySbM8rbNcHP3tb3/7iq9zySWXRC6XqywRv7HwWVaeCvr+978/SqVS/OxnP+vyPx+9k0mfwKvKCvloOOekWP+9n0dx/iOp4wDAq8omjIrGd7w+sqbG1FEAAAAAAJLIclk0vOm46Miy6Lz57tRxgB7Q9nxTREvqFLDzhc9ClRQ+yyZNevkQtX79+lVu169fHw899FDl+3nz5m3x5/faa6+47LLLKkvAb83q1atjwYIF0draGv/xH//xssdfeOGFyu0999yzw38OqovSJ7BNskIhGt56cqz/vuInAFVQ+Dz3tMiam1JHAQAAAABIXvwsvPHY8prv0XnTXanjAN2sZVFENjkfpVJn6ihQF4XPsqaml5+TzLKscluevllepr2sT58+W/z54cOHbyp2bs3G5yjvU17GfWvKS8hTH5Q+gW2WNRSi4W9OjvU/+EUU791wJQIA9L4l3V+v8AkAAAAAsFnx85gNxc8/3Zk6DtCNcutL0dI2MlavfDJ1FNgu/YbNij2Oq77C57bYWPZcvHjxFh/fOKVzwIABW32Otra2TVNFr7jiim7JSXXJpQ4AVOHEz3NOityuU1JHAYDNZJPHRuO5pyp8AgAAAABsYeJY4Q1HR36/3VJHAbpZW+Oo1BFgu9Ry4bNs5syZldubb755i30+MHkAAQAASURBVI/feOONldtddtnlFYujY8eOjSeeeCKee+65lz3+4IMPxpe+9KX4zW9+02W56d2UPoHtlhXy0XD2iZGbvfX/4ABAT8pNHReN7zg1sqbG1FEAAAAAAHpv8fPU10T+gN1TRwG6UWvn4NQRYJvVeuGzbPfdd69M6Lz11lvjJz/5yWaP/e///m9cdtll0b9//zjiiCM2bW9oaKjcrl+/ftO2U089tXL/05/+dLS3t2/avnbt2vjUpz4V3/ve9+LZZ5/tkT8T6VneHdghWT4fDWe9LtZf9Kso3nF/6jgA1LHcLhOi4W9Ojqxxw5sfAAAAAAC2XvxseP1RG5Z6/5/bUscBukHbqg3LQENvVw+Fz7JcLhf/9E//FOecc0588pOfjMsvv7wy/fPRRx+Na6+9NpqamuIf//Efo2/fv/w9jBw5svL4Rz7ykdhnn33i7LPPjre97W2VqaC//e1v47777osDDjggCoVCXHPNNbFw4cI4+OCD4w1veEPSPys9x6RPYIdl+Vw0vOW1kdt719RRAKhTuVlTouFtpyh8AgAAAABsh4ZTjoz8oXunjgF0g9Yl5r/R+w0aPS/2OOHfa77wudGsWbPi5z//eWVa5yOPPBI//OEP45577okTTzwx/vM//zMOOeSQzfYvlz2nTZsW1113XVx00UWbpn9++9vfjk984hOVgmj5+cpfAwYMiL/7u7+L888/PxobrYpYL7JSqVRKHQKobuVfIx2/vi46f39T6igA1JH8vNlROO3oyHKuYwLqy9oPfzl1hKrR/NWPddlz+Xvfdv7eq//vHQAAqB8dV/0xOi6/IXUMoAuVsogbZ/4yOjvWpI4CWzRs0pGx6+GfjVzeUBfYUc6QA12zDMRrD43C6w6LyFKnAaAe5I/cNxreeKzCJwAAAADATigcuV8UTt2w3DtQG7JSRFvb2NQxYIvGzDw1Zh/5BYVP2EnOkgNdpnDo3tFwxvEReb9aAOgmWRaFk4+IhuMOTp0EAAAAAKAmFPbfPRrefIJzfFBDWvPDU0eAl5m457kx/aBPRJb57w3srMJOPwPAS+T3nBXR1hrrf/BfEe3rU8cBoJbk89FwxnGR331G6iQAAAAAADWl8rlrS7NzfFAj2toHpo4Af5HlYtr+H42xu74hdRKoGarTQJfLT58YjX/7poi2ltRRAKgVTY3R8I5TFT4BAAD+f/buAz6qMvv/+JmZECCh9w5SpQqKgKCoiIqK2LAroq5tsaKubV37zy72sq4dC/a197LWtaMoomIBC0VFEKUm8399H/bJ/2aYSWaSSW4m+bxfr3klZCYzz9x7J9xzz3nOYwAAAFWDHB9QexQsaxD2EAAnEq1nA8ZcQMEnkGUUfQKoEtGu7S3/mP3NmjcJeygAgFzXqMDyp+xjsd5dwx4JAAAAAAAAANRq5PiA2qFgYSzsIQAWq1dgg3e40tr13C7soQC1DkWfAKpMtE0Lq3/s/hZp3zrsoQAAclSkZTN3gTHaqV3YQwEAAAAAAACAOoEcH5D76i0rtvwGLcIeBuqweg2a2sbjb7CWnUaEPRSgVqLoE0CVijRtbPlH72uR7p3CHgoAIMdEOrax/GP3t2jr5mEPBQAAAAAAAADqYI5vP4v26Rb2UABUUGFDcvQIR4NG7WzohFusaZsBYQ8FqLUo+gRQ5SING1j+EXtZdECvsIcCAMgR0Z5dLH/KvhZpXBj2UAAAAAAAAACgToo0rG/1/jLRYiMHhz0UABVQaG3CHgLqoKZtBtqmu91phc03CHsoQK1G0SeAahGpl2f1Ju9isc03DnsoAIAaLrpJP6t3+ESLNKgf9lAAAAAAAAAAoE6LxKJWb+J2lrfLGLNIJOzhAMhA4YrGYQ8BdUy7nuNs451vsvoFLcMeClDr5YU9AAB1RyQatXq7j7VI+9a29uHnzYqKwx4SAKAmiUQsb6fRljdmeNgjAQAAAAAAAAAE5G051CKtmtma6Y+brVoT9nAApKHhkvpmDcMeBeqGiHUfeoR13+SwsAcC1Bl0+gRQ7fI228jyj9rbrFFB2EMBANQUDfKt3qG7U/AJAAAAAAAAADVUrH9Pyz96f7NmdA8EckHDBXF1Zgp7GKjlonn1beDYCyn4BKoZf90BhCLavbPVP/5Ai3RoE/ZQAAAhi7RubvnHHWixfj3CHgoAAAAAAAAAoAzRjm3W5fg6twt7KADKEVttVlDYIexhoBarX9Dahk74l7XtsW3YQwHqHIo+AYQm0qKp5R+zn0UH9Q57KACAkER7d3MFn9G2LcMeCgAAAAAAAAAgDZEmjSx/yr7k+IAcUJhP0SeqRuNWG9qmu99pTVr3C3soQJ1E0SeAUEXq51u9g3axvO1HmUXCHg0AoDrFttjE6h0+0SIFDcIeCgAAAAAAAAAgA5H8ei7HFxs7IuyhAChDQVGLsIeAWqjNBtu4Dp8NClnZFQhLXmivDAD/E4lEXNFnpF0rW3PvU2ar14Q9JABAVYrFLG/itpY3fFDYIwEAAAAAAAAAVCLHV2/H0Rbt1G5djm/V6rCHBCBB4R+Nwh4CapluQw61Hpse5f4PABAeij4B1BixjfpYpFVzW33rw2ZLloU9HABAVWhcaPmTd7XoBh3DHgkAAAAAAAAAIAtig3pbpF1LW3PboxZf+EvYwwEQULA4z6x52KNAbRCrV2B9R59p7XpuF/ZQALC8O4CaJtqxjdU/YZJFuncKeygAgCyL6G/88QdS8AkAAAAAAAAAtUy0TUvL1/XfjfqEPRQAAfUXxy2a1yDsYSDHFTbvbsN2u5OCT6AGoegTQI0TaVRg+UftbbHNNgp7KACALIkO3tDyj9nfIs2bhD0UAAAAAAAAAEAViNTPt/yDdrG8nbcyi7LsL1ATROJmhYWdwx4Gcli7nuNcwWdh8w3CHgqAAJZ3B1AjRWIxq7fn9hbt3tnWPPic2arVYQ8JAFAReXmWt8vWljdqSNgjAQAAAAAAAABUg7yth1mkcztbc+djZsv/DHs4QJ1XGGtnv9uXYQ8DOSYay7fem021Tv33DHsoAJKg0yeAGi22ST/LnzrJLQkMAMgtkTYtLP+4Ayj4BAAAAAAAAIA6Jtazi9WfepBFurQPeyhAnVe4ulnYQ0COadCovQ3d5RYKPoEajKJPADVetPW6oqHY5huHPRQAQJqiQ/tb/gmTLErRPgAAAAAAAADUSZFmjS3/6P0sNnJw2EMB6rSCZQ3DHgJySKsum9vwPe62Jq37hT0UAGVgeXcAOSGSl2f1dh9r0Z5dbM2Mp81WrAp7SACAZPLrWd7uYy1v2MCwRwIAAAAAAAAACFkkL2b1Jm5n0V5dbc39z5qtWBn2kIA6p2BhzIymuyhHJBKz7kOPtG5DDrZIJBL2cACUg6JPADklNqi3RTq1tTV3PW7x734MezgAgIBI+9ZWb9IEi7ZtGfZQAAAAAAAAAAA1SGyjPhbt0t5WT3/C4t98H/ZwgDql3rJiy9+gha1e+WvYQ0ENld+wpQ3Y5gJr0XHTsIcCIE0s7w4g50RbNF23FMTWw8yYYAIANUJsxEaWf9wBFHwCAAAAAAAAAJKKNG9i+VP2sdh2I82iJPmA6lTYsFPYQ0AN1aLTcLecOwWfQG6h0yeAnBSJRa3ezlutW+79nifN/lgR9pAAoG5qkG/19tzeYkP6hj0SAAAAAAAAAEANF4lGrd64zS3Wu5utvvsJsyXLwh4SUCcUWmtbEvYgUKNEY/Wt5/BjrPOAfVjOHchBdPoEkNNifbtb/ZMmW6RH57CHAgB1TqRTW8ufehAFnwAAAAAAAACAjES7d7L6J0626KDeYQ8FqBMKVzYJewioQRq36mPD9phuXQbuS8EnkKMo+gSQ8yJNG1v+UXtb3vajzKL8WQOAKhcxi2051PKPPcCirZqHPRoAAAAAAAAAQA6KFDSw/Mm7Wt6e25nVY5FSoCo1XFI/7CGgJohErdvgybbprndYo+bdwx4NgErgzAlArVkKQkWf0f49bM29T1v8p8VhDwkAaqVIy2ZWb98dLNqdDssAAAAAAAAAgMrL22ywRTfoZGvufsLiPywKezhArdTwp7hZ96hZvDjsoSAkDRp3sP5bn2vN2w8JeygAsoCWeABqlWindpZ/wiSLbbsZXT8BINvdPbfYxPJPPpiCTwAAAAAAAABAVkXbtbL84ydZ3rjNzWLk+IBsi602KyjsEPYwEJL2vcfbiIn3UvAJ1CJ0+gRQ60TyYlZvhy0sNqCXrbn3KYsv+DnsIQFA7nf33GcHi/ag2BMAAAAAAAAAUDUisajlbTfSogN6rsvx0fUTyKrC/A72p30f9jBQjeo1aGobbnGGte2+TdhDAZBlTJEBUGtFO7ez/KkHWWzsCLNoJOzhAEBudvfcfON13T0p+AQAAAAAAAAAVINohzbrun5uP4qun0AWFRS1CHsIqEYtO21mIybOoOATqKXo9Amg9nf93HG0xQaq6+fTdP0EgEy6e+49zqI9u4Q9FAAAAAAAAABAXez6uf0oi2plv/vo+glkQ+EfjcIeAqqpu2evzaZah97jwx4KgCrEtBgAdUK0c3vLnzrJYtvQ9RMA0uruedJkCj4BAAAAAAAAAKGKdlTXzwPp+glkQcHP9IWr7dr13ME22+shCj6BOoC/6ADqjEhentXbyXf9fMriC38Je0gAUKNEWjS1vH12sBjFngAAAAAAAACAGiISi/2v62fPdSv7/UjXT6Ai6i+KW7RVAyteuzLsoSDLGjTuYH23OM1adh4Z9lAAVBOmwgCoc6Jd2lv+iQdZbMxwsyh/BgHAdfccNcTyTz6Ygk8AAAAAAAAAQI0U7djW8k+YZHk7b2WWXy/s4QA5JxI3KyzsHPYwkEWRSMy6DDrANtvzfgo+gTqGTp8A6m7Xz/FbWmyTfrbmoect/vX3YQ8JAEIR6dzO6u2+rUW7tg97KAAAAAAAAAAAlCkSi1re1sMsNnhDW/PIi1Y868uwhwTklMJYO/vd+NzUBo1b9bG+o8+0Jq37hj0UACGg6BNAnRZt39rqH72fFb3/qa15/BWzZX+EPSQAqB4FDSxvx9EWG7GRRaKRsEcDAAAAAAAAAEDaIs2bWP4hu1nRp1/Z2kdetPivS8MeEpATClc3C3sIqKRoXn3rvsmR1mXQfhaNUvYF1FV8+gHAzGKb9Ldo/5629tk3rOi1D8yKi8MeEgBUjUjEYsMHWt5OW1qksGHYowEAAAAAAAAAoMJi/XtatFdXW/vcm1b06rtmReT4gLIULCswi4Y9ClRUi47DbcMtTrOCpp3DHgqAkFH0CQD/E2lQ3+rtMsZiwwbamodfsPjc+WEPCQCyv5T7HttatAtLuQMAAAAAAAAAaodIfj2rN35Liw3tb2seep4cH1CGhgsjZqSJck6Dxh2s14jjrW33bcIeCoAagqJPAEi25PuUfa3o/c9szeMvs+Q7gNxX2NDydtzCYsNZyh0AAAAAAAAAUDtF27Val+N7d5atefwVs+V/hj0koMbJXxa3ehs0tzUrl4Q9FKQhltfQug052LoMOsBiefXDHg6AGoSiTwBIIbZJP4v278GS7wByfCn3QZa302iWcgcAAAAAAAAA1AmxTQdYdEBPW/v8W+tyfEVFYQ8JqFEaNexsSyj6rOEi1q7XjtZr+DFWv7B12IMBUANR9AkA6Sz5PnwQy0EAyCks5Q4AAAAAAAAAqKsiDRtYvQlbW2zUEFv7+CtW/PEXYQ8JqDEKrZVR8llzNWkzwPqMPMmath0Y9lAA1GAUfQJAJstBfDjb1j75H4v/ujTsIQFAck0KLW/7zV2xOku5AwAAAAAAAADqsmjLZpY/eVcr/nq+rfn3yxafvyDsIQGhK1zZNOwhIIn6Ba2tx/CjrX2vnSwSIccHoGwUfQJABmJD+lp0YG8revMjW/vCW2bL/wx7SACwToP6ljdmuMVGb2KR/HphjwYAAAAAAAAAgBoj2r2z5R9/oBW//5mteeo/Zr/9HvaQgNA0XFLfrEHYo4AXjdW3LoP2tw2GHGKxeg3DHg6AHEHRJwBkKJIXs7zRm1hs+EBb+/I7VvTqu2ar1oQ9LAB1VV6exTYfYnnbjLBIIYEgAAAAAAAAAADJqHNebGh/iw7qbUWvvGtrX/qv2WpyfKh7Gv4UN+seNYsXhz2UOi5ibXtsZz2HTbGGTTqGPRgAOYaiTwCooEj9fKs3bnPLGzXE1j7/lhW9NdOsqCjsYQGoK6K6ODXA8rYfZZHmTcIeDQAAAAAAAAAAOUGrZeVtN9JiIwbZ2qdfs6J3Z5kVx8MeFlBtYqvNGha2txXLfwh7KHVWq66jrcemf7XGLXuFPRQAOYqiTwCopEjjQqu3+1iLbTnU1j7zuhV/MNssTmAIoOpEB/ayvB1HW7Rty7CHAgAAAAAAAABAToo0aWT19t7BYmOG29pn37DiDz8nx4c6o1F+R1thFH1Wt+YdNnWdPZu2HRj2UADkOIo+ASBLoi2bWf7+461462G29sn/WPHsr8MeEoBaJtKjs9XbaUuLdusQ9lAAAAAAAAAAAKgVoq1bWP4BO1vx2M3WNXj55Aszaj9RyxUUtQh7CHVK0zYDrcewv1qLjsPCHgqAWoKiTwDIsmiHNpZ/2EQrnjvf1jzxqsW/+zHsIQHIcZEObSxvp9EW69s97KEAAAAAAAAAAFArRdu1svzJu1rxDwtt7dOvW/Fnc8MeElBlCv5oFPYQ6oRGLXtbj02PstZdR4c9FAC1DEWfAFBFoj06W/3jDrCiT760tc+/afHvF4Y9JAA5JtK2peWNHWHRjftZJBIJezgAAAAAAAAAANR60Y5tLf8ve1jxdz+uK/784tuwhwRkXeHPeWbNwh5F7VXQtKt1H3qkte2xLTk+AFWCok8AqGKxgb3crejzb2zti29bfO78sIcEoIaLdGlveduMsOiAngSCAAAAAAAAAACEINq1g+UfuZcVfz3f1jz9Ojk+1Cr1F8Ut2qqBFa9dGfZQapWGTTpbtyEHW4fe4y0SjYU9HAC1GEWfAFBNYhtu4G7F3/7gij/dkhDxsEcFoCaJ9upqsW1GWKx317CHAgAAAAAAAAAAdO2+e2erP2VfK547f12O7/Nvwh4SUGmRuFlhYWf7femXYQ+lVmjcqq91G3yQtem+jUUi0bCHA6AOoOgTAKpZtFtHyz90Dyv+abGtffG/VvzRbLNiqj+BOitiFh3Qa11nzy7twx4NAAAAAAAAAABIItqjs+X36GzF3y+0tS+9bcUzvzCLk+ND7iqMtbPfjaLPymjRcZh1HTzZWnYaHvZQANQxFH0CQEii7Vtb/gHjrXiHza3o5Xes6J1ZZmvXhj0sANUlGrXoJv0sb8xwi7ZtGfZoACCn3XvvvXb22WenvP+tt96yFi1aVOuYAAAAAAAAUDtFO7W1/Em7WPGiX63olXes6L1PzdYWhT0sIGOFa5qFPYTcFIlamw3GWLfBk61J675hjwZAHUXRJwCELNqymUUnbmd52420ta++Z0VvfmS2anXYwwJQVerlWWz4IMvbephFmjcJezQAUCvMnj3bfZ08ebI1atRovfsbNmwYwqgAAAAAAABQm0XbtLDoXuMsb9zmtvb1D6zojY/MVqwMe1hA2gqWNXQr0iE90Vi+te893rpudKAVNO0S9nAA1HEUfQJADRFp0sjq7byV5Y0dYUWvf2hrX3vfbPmfYQ8LQLY0rG+xUUMsb/RQizQqCHs0AFCrfP7559agQQM75ZRTLBqNhj0cAAAAAAAA1LUc346jLW+bEVb09se29j/vmS1ZFvawgHI1XBA1ax/2KGq+WH6hdeo30boM3M/qF7QKezgA4FD0CQA1TKRhA8vbdjOLbb2pFX80xxV/xucvCHtYACoo0r61xTYfYrFN+lskv17YwwGAWqe4uNi++OIL69WrFwWfAAAAAAAACE2kfr7lbTnUYltsbMWfzrWiNz6w4i++C3tYQEr5y+JWb4PmtmblkrCHUiMVNtvAOvafaB16j7e8/PVXmAKAMFH0CQA1VCQvz2JD+7tb8Xc/2drX33dFoFZUFPbQAJQnGrXowF6WN2qIRXuyvAMAVKVvv/3WVqxYYRtuuGHYQwEAAAAAAAAsEo1abGAvdyte+IsVvfGhFb07y2zV6rCHBqynUcPOtoSizxKRaMxad93KOvXf01p03DTs4QBAShR9AkAOiHZtb/ldx1t8wtbrloV46yOz334Pe1gAEjUqsNiIjSxv5GCLNGsc9mgAoM4s7S6RSMROOOEEe++992zp0qXWu3dvmzx5so0fPz7sIQIAAAAAAKCOirZtadHdx1reTqOt6L1Prej1Dyy+8JewhwWUKLTWRsmnWX5BK+vYd3fr1Hd3q1/YOuzhAEC5KPoEgBwSaVy4bun3bYZb8WdzreitmVb8+Tdm8XjYQwPqNHXzjI0c7Lp7RmKxsIcDAHWy6PP++++34cOH24QJE2zBggX20ksv2YknnuiWfp86dWrYwwQAAAAAAEBdX/p91BB3K/ryOyt6/UMr/vRLs2JyfAhXwcomVpc177CJdeq3p7XeYGuLRimhApA7+IsFALm6LMSAXu4W/3WprX17phX99xOz3/8Ie2hA3VHY0GJD+1tss8EWbdMi7NEAQJ0Vj8etY8eOdswxx9huu+1W8vP58+fbvvvuazfddJONHj3ahg4dGuo4AQAAAAAAAIn16upu8SXLrOidT9zS78r3AWEoWJJv1sDqlFh+obXvtZNbwr1R8+5hDwcAKoSiTwDIcZEWTa3ejqMtb/tRVjzrK1f8WfzFt2bFxWEPDah9IhGL9uxssU0HWnRwH4vkcSoFAGFTN0/dEnXu3NmOPfZYO/PMM+2xxx6j6BMAAAAAAAA1SqR5E5ffi2030ornznfFn8Uz55itXhP20FCHNFwQMdsgahav7bnliOvq2b73Ttam+1jLq1cQ9oAAoFKoVACAWkJLSsc26uNu8eV/WtGHs63o/c8sPu+nsIcG5LxIxzYW27ifxYb0tUizxmEPBwCQpkGDBrmv8+bNC3soAAAAAAAAQFKRSMRiPbu4W3z3sVY0c47rABr/5nszVn9HFYutilvDgna24o8frTYqbN7d2vfa0dr12sEaNGoX9nAAIGso+gSAWijSqMDyttjE3YoXL7Gi9z+14g8+s/jPv4U9NCB3NG/iijy1hHu0XauwRwMASKK4uNg+++wz+/PPP23YsGHr3a+fS4MGdWx9IgAAAAAAAOSkSP18yxs20N2Kf17iun8Wvfep2ZJlYQ8NtVij+p1qVdFnfsMW1rbH9q6rZ5PWfcMeDgBUCYo+AaCWi7ZubtFxm5uN29yKv/vRdf8s+uhzs+XriiAABDRssK5j7ib9LNK9k5tdCwCo2Q488EBbsWKFvfHGG9ayZctS97333nvu68CBA0MaHQAAAAAAAFAx0VbNLbrDFpanHN+X86z4w8+saNZXZn+sCHtoqGUKilpYrovG6lvrrqNdoWeLzptZNEo5FIDajb9yAFCHRLt2cLe8XcZY8RffrusAquBw9ZqwhwaEJy9m0X493PLt+hrJi4U9IgBAmqLRqI0bN84efvhhu/TSS+3//u//3M/k888/t5tuuskKCgps4sSJYQ8VAAAAAAAAqPjy7727ulvexGIr/uo7K/7ocwpAkTUFfzSyXBSJxKxZ+yHWruc4a9t9rOXVbxz2kACg2lD0CQB1UCQWtVjf7u4WX7Xaij/50opmzrHiL7+jABR1p9CzZxeLDupjsY16W6Qhy/4CQK466aST7P3337dHHnnE5syZY8OHD7eFCxfaCy+84JZ/nzZtmrVt2zbsYQIAAAAAAADZyfH12cDd/n8B6BwrmvUlBaCosIKf88yaWc509GzRaYS12WAra9V1tOU3yJGBA0CWUfQJAHVcpH6+xYb2d7f46jWu8LP406+s6LO5Zsv+CHt4QPYUNlzX0bN/T4v26eaOfQBA7tOS7g888IDdcMMN9vzzz9v06dOtsLDQttxySzvyyCNtwIABYQ8RAAAAAAAAqOIC0O0oAEWFNVgUt2jL+lZctMpqorz8xtaqy+bWeoOtrVXnkRar1zDsIQFA6Cj6BACUiOTXcwVxuuXF4xafv8CKPv3Kij+da/EfF4U9PCBjkbYt1xV6Duhpka4dLRKNhD0kAEAVaNq0qZ166qnuBgAAAAAAANT1AtD4tz+4Bi/Fs7+2+IKfwx4earhI3KywsLP9vuwrqynyC1pZm25bWetuW1nzDkMtGqsX9pAAoEah6BMAkFQkErFIl/YW7dLebIctLL5kmRXN+sqKP/vKir+ab1ZUFPYQgfVFoxbdoKNF1c1Tt9bNwx4RAAAAAAAAAABAtRaARnp0tmiPzmY7b2XxX5da0eyvXQFo8VfzzFavCXuIqIEK89rZ7xZu0Wdhix7WqvPm1maDra1JmwEuXw0ASI6iTwBAWiLNm1jeFhubbbGxxVeusuI5367rAjr7a5aIQLga1reoZq/272HRvj0sUtAg7BEBAAAAAAAAAADUCJEWTS1v1BCzUUMsvmatK/x0BaCfzXUFoYAUrqn+Rir1C1pbi07DrEXH4dai4zCrX9i62scAALmKok8AQMYiDepbbKM+7hbXMvA//WzFc+e5DqDFX8+nCBRVX+TZvZNFe3SxaM/OFunQlmXbAQAAAAAAAAAAyhGpl2exvt3dzXYfa8ULf7HiL74lxwcrWNbQrIrTbbF6Bda8/cbWopOKPIdboxY9qvYFAaAWo+gTAFD5ZeA7tLZoh9ZmW2xCESiyjyJPAAAAAAAAAACArIu2belu6+f45lnx19+T46tDGi6MmbXL7nNGIjFr0rrfuiLPTiOsaZsBFo3Vy+6LAEAdRdEnAKAaikAXrysAVZBIgIjyNPhfkWfPzq7QM9KRIk8AAAAAAAAAAICqRI6vbstfWmz1ujazNat+q/Bz5OU3sqZtBlqTtgOtWduB7vu8+o2zOk4AwDoUfQIAqiFAbGPRDm3MRgcCxLnzrXjeTxb/fqHFF/1qFo+HPVSEIWIWadXcIp3aWrRze4v26EyRJwAAAAAAAAAAQE3M8Wk5eOX35v207utPi82KisMeKrKksKCz/ZZ20WfECptvYE1V3Nl2kLsVNtvAHTcAgKpH0ScAILwA8X/iq1Zb/MdFVjx/oRV/v+B/haC/mBVTCFrrCjxbt1hX4NmpnUU7tXXfRxrUD3tkAAAAAAAAAAAAKC/H166VRdu1Mhs20P0svnatxb9f5ApAXRHo/J8s/vMSM1J8OanQWttvZXTxbNJmgCvuVBfPJm0GWj26eAJAaCj6BACELlI/3yIbdLLoBp1KfhZfvcbiPywqKQItViHowp8pBM0VCvzb+ALPdUWekY5tKPAEAAAAAAAAAACoJSJ5eRbp1sGi3TqU/Cy+YqUVz1tg8fkLrPinxRZf8PO6Vf+KikIdK8pXuLKJ+9qgcQdr3LKXNWrR2xq37G2NWvayhk060cUTAGoQij4BADVSJL+eRTboaNENOpYuBP1xsRX/uMjii3/9322JxX9ZalbM0hGhiEYs0rypRVo3X9fFs3Vz18XVFXjWzw97dAAAAAAAAAAAAKhGkYYNLNanm5lu/xMvKnYdQLUcfLGKQP1NXUFp+BKeRgUWbdvSIu1bW6RdS2vXsbl1aHe85dHBEwBqPIo+AQC5VQiaMFuwJFD85bf/XwT6v6/Fi381W7acJSSyoXHhuoLO/xV2ui6e+r5lM4vkxcIeHQAAAAAAAAAAAGqoSCxqkbYtzdq2tGBWyS0Pv/BXVwCqvF7859/W5fxUDPrHihBHXIsUNlyXz9Ot1bqv0VZq5tLcIo0Lwx4dAKCCKPoEANSOQLFNCzPdEsRXrV43c9AXgy5ZZvFlf1h82XJ3s+V/MoNQSzE0KrBIk0KLNGm07muzJqW6d7IsOwAAAAAAAAAAALK+PHzHNmYd25QqBpX4ylXrikB/Xbr+7bdlZitXhzTqGqZB/v/ye40s0rKpRVo2X1fc6Qo8m1ukITk+AKiNKPoEANRqWmI80rGtmW5JxFXwudwXga77aoGi0JKf/f6HWVGOLSEfVTFnoUWa/q+Qs3Ej970FizubNFr3mFg07NECAAAAqAFWTr0k7CHkjAZX/C1rz8V2D2e7AwAAAKi51JAk0qmtmW5JxFevsbjyd78rl/eHxV2+73//drc/S+6ztWstp+TlmTWsbxF16Wyyfm5PX80XeubXC3u0AIAQUPQJAKjTIiqM/F9QVJZ4PG62eo2ZOoeuWvfVVq+2uGYRJvuZAk39+3/fW3GxxYuL1y01r+cK3txAIgk3fYmYqRhTwZqKV+vnB76W/zP9nnsOAAAAAAAAAAAAoBZRsaOWKjfdyqECUZfPc3m9Veu+rlzl8njr8nn//2fusUVFLrdnRfH/fS1e99Xn+4I/Uy4uGjXLi61rshKLrcvvua/rvo/4n+XFzFTMqhX2Gga+qhtnyc8bWESPAwCgDBR9AgCQBlc86Qsswx4MAAAAAAAAAAAAgLS4bpgqEm1cGPZQAADICtZyBQAAAAAAAAAAAAAAAAAAyAEUfQIAAAAAAAAAAAAAAAAAAOQAij4BAAAAAAAAAAAAAAAAAAByAEWfAAAAAAAAAAAAAAAAAAAAOYCiTwAAAAAAAAAAAAAAAAAAgBxA0ScAAAAAAAAAAAAAAAAAAEAOoOgTAAAAAAAAAAAAAAAAAAAgB1D0CQAAAAAAAAAAAAAAAAAAkAMo+gQAAAAAAAAAAAAAAAAAAMgBFH0CAAAAAAAAAAAAAAAAAADkAIo+AQAAAAAAAAAAAAAAAAAAcgBFnwAAAAAAAAAAAAAAAAAAADmAok8AAAAAAAAAAAAAAAAAAIAcQNEnAAAAAAAAAAAAAAAAAABADqDoEwAAAAAAAAAAAAAAAAAAIAdQ9AkAAAAAAAAAAAAAAAAAAJADKPoEAAAAAAAAAAAAAAAAAADIARR9AgAAAAAAAAAAAAAAAAAA5ACKPgEAAAAAAAAAAAAAAAAAAHIARZ8AAAAAAAAAAAAAAAAAAAA5gKJPAAAAAAAAAAAAAAAAAACAHEDRJwAAAAAAAAAAAAAAAAAAQA6g6BMAAAAAAAAAAAAAAAAAACAHUPQJAAAAAAAAAAAAAAAAAACQAyj6BAAAAAAAAAAAAAAAAAAAyAEUfQIAAAAAAAAAAAAAAAAAAOQAij4BAAAAAAAAAAAAAAAAAAByAEWfAAAAAAAAAAAAAAAAAAAAOYCiTwAAAAAAAAAAAAAAAAAAgBxA0ScAAAAAAAAAAAAAAAAAAEAOoOgTAAAAAAAAAAAAAAAAAAAgB1D0CQAAAAAAAAAAAAAAAAAAkAMo+gQAAAAAAAAAAAAAAAAAAMgBFH0CAAAAAAAAAAAAAAAAAADkAIo+AQAAAAAAAAAAAAAAAAAAcgBFnwAAAAAAAAAAAAAAAAAAADkgL+wBAAAAAAAAAABQ3VZOvSTsIeSMBlf8LSvPwzav/m0OAAAAAABqHzp9AgAAAAAAAAAAAAAAAAAA5ACKPgEAAAAAAAAAAAAAAAAAAHIARZ8AAAAAAAAAAAAAAAAAAAA5gKJPAAAAAAAAAAAAAAAAAACAHEDRJwAAAAAAAAAAAAAAAAAAQA6g6BMAAAAAAAAAAAAAAAAAACAHUPQJAAAAAAAAAAAAAAAAAACQAyj6BAAAAAAAAAAAAAAAAAAAyAEUfQIAAAAAAAAAAAAAAAAAAOQAij4BAAAAAAAAAAAAAAAAAAByAEWfAAAAAAAAAAAAAAAAAAAAOYCiTwAAAAAAAAAAAAAAAAAAgBxA0ScAAAAAAAAAAAAAAAAAAEAOoOgTAAAAAAAAAAAAAAAAAAAgB1D0CQAAAAAAAAAAAAAAAAAAkAMo+gQAAAAAAAAAAAAAAAAAAMgBFH0CAAAAAAAAAAAAAAAAAADkAIo+AQAAAAAAAAAAAAAAAAAAckBe2AMAAAAAAAAAAABA1Vg59ZKwh5AzGlzxt7CHAAAAAABAuej0CQAAAAAAAAAAAAAAAAAAkAMo+gQAAAAAAAAAAAAAAAAAAMgBFH0CAAAAAAAAAAAAAAAAAADkAIo+AQAAAAAAAAAAAAAAAAAAcgBFnwAAAAAAAAAAAAAAAAAAADmAok8AAAAAAAAAAAAAAAAAAIAcQNEnAAAAAAAAAAAAAAAAAABADqDoEwAAAAAAAAAAAAAAAAAAIAdQ9AkAAAAAAAAAAAAAAAAAAJADKPoEAAAAAAAAAAAAAAAAAADIARR9AgAAAAAAAAAAAAAAAAAA5ACKPgEAAAAAOe/RRx+13Xff3YYMGWKbbbaZnXTSSfbDDz+EPSwAAAAAAAAAAAAgqyj6BAAAAADktGnTptkpp5xiq1atsv32288VfT711FO2xx572Pz588MeHgAAAAAAAAAAAJA1edl7KgAAAAAAqtfnn39uN954o22yySZ2++23W35+vvv5DjvsYEcffbRdcMEF7n4AAAAAAAAAAACgNqDTJwAAAAAgZ915553u65QpU0oKPmXbbbe1TTfd1F555RVbuHBhiCMEAAAAAAAAAAAAsoeiTwAAAABAznr77bctLy/PFXgmGjFihMXjcfcYAAAAAAAAAAAAoDag6BMAAAAAkJNWr15tP/74o7Vr165Ul0+vc+fO7uvXX38dwugAAAAAAAAAAACA7KPoEwAAAACQk5YuXeo6eTZt2jTp/Y0bN3Zff//992oeGQAAAAAAAAAAAFA18qroeQEAAAAAqFJr1qxxX5N1+Qz+fNWqVVab5P91n7CHUCex3cPBdq9+bPNwsN3DwXavfmzzcLDdAQAAAACoXSj6BAAAAADkpAYNGpQq/ky2/LsUFBRYbRLt2SXsIdRJbPdwsN2rH9s8HGz3cLDdqx/bPBxsdwAAAAAAaheWdwcAAAAA5KRGjRpZNBpNuXy7/7lf5h0AAAAAAAAAAADIdRR9AgAAAABykpZv79y5s/34449Ju33Onz/ffe3Zs2cIowMAAAAAAAAAAACyj6JPAAAAAEDOGjZsmCv4/OCDD9a776233rJIJGIbb7xxKGMDAAAAAAAAAAAAso2iTwAAAABAztpjjz3c12nTptnKlStLfv7888/be++9Z2PGjLF27dqFOEIAAAAAAAAAAAAgeyLxeDyexecDAAAAAKBanXvuuXb33Xdbt27dbJtttrGFCxfa008/bc2bN7f77rvPLQEPAAAAAAAAAAAA1AYUfQIAAAAAcprCWhV9zpgxw7799ltr1qyZDR8+3I477jgKPgEAAAAAAAAAAFCrUPQJAAAAAAAAAAAAAAAAAACQA6JhDwAAAAAAAAAAAAAAAAAAAADlo+gTAAAAAAAAAAAAAAAAAAAgB1D0CQAAAAAAAAAAAAAAAAAAkAMo+gQAAAAAAAAAAAAAAAAAAMgBFH0CAAAAAAAAAAAAAAAAAADkAIo+AQAAAAAAAAAAAAAAAAAAckBe2AMAAAAAAABAaaeddpo9/PDDdt5559lee+213v233367XXjhhe77u+++24YOHbreY04++WR77LHH7Morr7QddtihWsZdW3377bf24IMP2n/+8x/78ccfbfXq1dahQwfbYost7JBDDrH27duHPcRaQ8e9jv9E9erVsyZNmljPnj1t/Pjxtscee1gsFgtljHVpuyejx02ePLnKx1QX9enTx32dM2dO2EOpU6677jq7+uqrLT8/3/2db968edhDqpX++9//2qRJk8p93IYbbmj//ve/q2VMAAAAAADkKoo+AQAAAABAhXzzzTd2//332xtvvOEK4USFcKNGjbK9997bunXrFvYQc9Zmm23mirA++OCDpEWfr732mkWjUSsuLnbfJyv6fO+999xjRo4cWU2jrp1UYHvZZZe5ba39Mnz4cPf9zJkz7c4777SHHnrI/vnPfybdB6g4Ff2MHTu25N8rVqywxYsX21tvvWVnnnmmK2i++eabrWHDhqGOs7Zv92QGDx5cbeMBqlo8HrdHHnnECgoK7M8//3T/9x566KFhD6tW69ixo+22224p72/VqlW1jgcAAAAAgFxE0ScAAAAAAKhQIdyll17qiiVGjBjhCj3Xrl1rn3/+ud16662uGE6dJukGVzG+UFNFn4lWrlxp7777rm255Zaua5aKPk844YRSj/n+++9dIe6gQYOsadOm1Tbu2kbHsTqq9u7d26655pr1CpnViezUU0+1ww47zH3fpUuX0MZa2/Tt29eOOeaY9X6+fPly12nyueees1NOOcV150PVb3egttL/o/Pnz7cjjzzS7rjjDjeZRR2cI5FI2EOr1UWf/J0BAAAAAKByKPoEAAAAAAAZueWWW+ySSy5xy9BOmzbNevToUer+2bNnu2S+iuXWrFnjCuKQGXW5UqHhF198YT///HOprlfvvPOOrVq1yi0trqLbV1991X799Vdr0aJFqS6fomJcVIwKZ1XYrCXFVQgU3L7eLrvs4pZh1mfipptusgsuuCCUsdYljRo1cn9/9Nl49tlnXcfVjTbaKOxhAchR6tYs6nD77bff2jPPPOM6CtMlGwAAAAAA1GTRsAcAAAAAAAByx9y5c12hZ7t27VwhXGLBp+8Ud/fdd1vjxo3tqquucr+DzKmDarJun6+//rr7uvnmm7uiThV+qttnkDqB+segYh599FFbvXq17b///kkLPj11s506dapNnDixWsdXl2lJd99FWMu8A0BFqHOwugZrYsWAAQNs/Pjx7uf33ntv2EMDAAAAAAAoE0WfAAAAAAAgbTNmzHDdO7UMavPmzVM+rm3btnb44Ye7x2qpVGRviXcVeHbu3Nm6du1aUtSZrOizsLDQBg8eXI0jrl1eeeUV93XLLbcs83Ft2rSxI444woYMGVJNI4MMGzaspPMtAFTEE088YStXrrSddtrJLeeuv/fNmjWzl156yRYtWhT28AAAAAAAAFJieXcAAAAAAJC2559/3n3dZpttyn3sDjvsYJdffrnronXaaadVw+hql0033dTy8vLs/fffL/nZDz/8YF9//bXtu+++7t/du3e3jh072htvvOE6fqpoRYUq3333nY0ZM8b9Pirmp59+KtnGqHk6dOjgvlKYlV2zZ8+2a665JuX96uDsu6wCtWVp91133dV9zc/Ptx133NHuuecee+CBB2zKlCkhj7B20rlMqr8zOqfZfffdq31MAAAAAADkGq78AwAAAACAtGipaxXCqehH3Q3Lo26U9evXd7+jjp/16tWrlnHWFo0aNbJBgwbZJ5984jqRNWjQoKSjZ3DZdi3xrm6qs2bNsoEDB9p777233mOQuaVLl7qvBQUFYQ8FSfi/J1qeGdnz+eefu1sqKsii6BO1wVdffWUff/yx9erVy/r161fy8912262k6FNdzWOxWKjjrK1Fn9dee23KLs4UfQIAAAAAUD6KPgEAAAAAQFp+++03100ykyK4pk2buk58S5YsSatQFKVtttlmbnl3FaaoEEJFnyp2GzFiRMljVNypos+3337bFX1qaffg8vComBYtWtjChQtt2bJl1rJly7CHgwR//PGH+1pYWBj2UGoVFbxddNFFYQ8DqLYun7vsskupn2uyhTo8q6v2K6+8klZnc2RG5zN33XVX2MMAAAAAACCnRcMeAAAAAAAAyA3NmjVzy4f7Yqt0+C586g6KzPnCTS3xvnbtWlfYOXjwYNcFNFgYqk5k77zzjvu3On2qG98GG2wQ2rhrgy5duriv3377bbmPnTt3rhUXF1fDqOB9//33JR2FASAT+v/0sccec99fdtll1qdPn1I3FXzKfffdF/JIAQAAAAAAkqPTJwAAAAAASEt+fr61a9fOLdeuDoht27Yt8/E//vij/fnnn9a6dWtr2LBhtY2zNtloo41cZ9WZM2e6m4poE5dtb9KkietMpo6gv/76q3355Ze25557hjbm2mL06NGua6q6q26yySYpH6fPwvjx491+ePnll1kOvpr4IuehQ4eGPRQAOUYdPH/++Wfr1q2bDR8+PGUn0Ndff90VmHfq1KnaxwgAAAAAAFAWij4BAAAAAEDatttuO7vjjjvs+eeftwMOOKDUfStXrrQGDRqU/FuPkS222KLax1lbaCn3TTfd1GbNmuU6eEpi0af/2Ycffug6l8XjcRs1alQIo61ddt55Z7v++uvt7rvvtkmTJrnl3pO5/fbbXZfPjTfemILParJ69Wq79957ky7NDADlefDBB93XI444wnbfffekj1FR6Isvvmj333+/TZ06tZpHCAAAAAAAUDaWdwcAAAAAAGnbe++9XSHijTfe6LpKBp188smueOKFF16wxYsX280332zRaNQOPvjg0MZbG2j5dm3PJ5980hUe9u/ff73H+CJPFadoqXf9Diqnffv2dtRRR9myZcts8uTJNm/evFL3q9DzrrvusltvvdV1sj3xxBNDG2tdsmrVKjvttNPsu+++c4W5/fr1C3tIAHKI/j9VB2cV6W+//fYpH7fXXnuVFIiuWbOmGkcIAAAAAABQPjp9AgAAAACAtPXo0cN1vLr44ovtoIMOsiuvvNL9TMaMGeO6Hk6ZMsWaNWtmv/32mx199NHWu3fvsIed03wB55w5c9wy4pFIZL3HaHl3LS8+d+5ctyR806ZNQxhp7XP44Yfb0qVL7ZZbbrFx48a54tqePXva8uXL7f3333fbu7Cw0KZNm+Z+juyZPXu2XXPNNaWKPRcsWGBvvvmm/fLLL25J5nPPPTfUMdaF7Z5Mx44dU3ZHBGq6Rx991NauXeuKxvX3O5XRo0e74v+ffvrJdS7fcccdq3WcAAAAAAAAZaHoEwAAAAAAZOSQQw5xHTwvvfRSmzBhgo0YMaKksFPFnqKCT3WcVMGElhtPVqiI9PTp08datmzpCt2SLe0uvrvns88+y9LuWaTj9m9/+5ttt912dt9999nMmTNdsacKhlT4pi62urVt2zbsodY6n3/+ubt56jCsvy/q7KniZxVs6bhH1W73ZIYNG0bRJ3LWww8/7L7utttuZT5O5zkTJ050RdD33nsvRZ8AAAAAAKBGicSVeQEAAAAAAMjQt99+azNmzLDXX3/dfvzxR1fc2a5dO9eBb6uttrI777zT3aeC0CuuuMJ69eoV9pABAAAAAAAAAAByGkWfAAAAAACgyrz44ot2zz33uGXgGzduHPZwAAAAAAAAAAAAchpFnwAAAAAAAAAAAAAAAAAAADkgGvYAAAAAAAAAAAAAAAAAAAAAUD6KPgEAAAAAAAAAAAAAAAAAAHIARZ8AAAAAAAAAAAAAAAAAAAA5gKJPAAAAAAAAAAAAAAAAAACAHEDRJwAAAAAAAAAAAAAAAAAAQA6g6BMAAAAAAAAAAAAAAAAAACAHUPQJAAAAAAAAAAAAAAAAAACQAyj6BAAAAAAAAAAAAAAAAAAAyAEUfQIAAAAAAAAAAAAAAAAAAOQAij4BAAAAAAAAAAAAAAAAAAByAEWfAAAAAAAAAAAAAAAAAAAAOYCiTwAAAAAAAAAAAAAAAAAAgBxA0ScAAAAAAAAAAAAAAAAAAEAOoOgTAAAAAAAAAAAAAAAAAAAgB1D0CQAAAAAAAAAAAAAAAAAAkAMo+gQAAAAAAAAAAAAAAAAAAMgBFH0CAAAAAAAAAAAAAAAAAADkAIo+AQAAAAAAAAAAAAAAAAAAcgBFnwAAAAAAAAAAAAAAAAAAADmAok8AAAAAAAAAAAAAAAAAAIAcQNEnAAAAAAAAAAAAAAAAAABADqDoEwAAAAAAAAAAAAAAAAAAIAdQ9AkAAAAAAAAAAAAAAAAAAJADKPoEAAAAAAAAAAAAAAAAAADIARR9AqiRli9fbtOnT7dDDjnERo0aZf3797chQ4bYhAkT7MILL7RvvvkmtLH997//tT59+rjb2rVrrTb68ssv1/uZf89vvvlmtY3jww8/tLPOOsvGjx/v9v+AAQNs8803tyOOOMIeffRRKyoqstro+++/L9ne3333XY17/d9++80WL15cpWM48MADS8YQvG244Ya20UYbueNg//33t9tuu82WLVuW8nnGjBnjfu+BBx7Iyrjmzp1r8Xg8o995+OGH3RhGjx6d9D1OmzbN6uLnGwAAIJPzUt3OP//8tH7vlltuKfmdxHOwiqqKczfFk9mKbVOdc1a3ipxXpoo/rrnmGvezfffdN+1z/Gxu07L48Wq7V4dTTz3Vvd5JJ51kNU3wGkniTTH8JptsYjvuuKOddtpp9u6771bbMVzRYyHZ8RXWdaBksXeqzwUAAACyI9W5baqbz09kO69T3THAihUr7Prrr7edd97Z5WAGDx5su+22m9188822evXqtJ9HOVyNe/vtty/zcYceemjJ9lI+OJXPP/+85HFz5swpdU6c7Na3b183fp3XH3PMMfbCCy+UOY5ffvnFrr32Wttrr71sxIgRLoZRXnrvvfe2q6++2hYuXGgVUd5xo7z3sGHDbPfdd3fXGcrKc+XS9YGffvrJrrvuOjvggANs5MiRJTHhuHHj7PTTT7fXXnut2scEALVZXtgDAIBEL7/8sksGLFmyxP27WbNm1rt3b1u6dKl99dVX7qT+7rvvtqOPPtqOPPLIsIdbqyghokTqn3/+affee29o4/j999/tH//4hz311FPu3/Xq1bP27dtbYWGhzZ8/31555RV3u/XWW11w17Vr19DGWtfcfvvtLvC/8sorrXXr1lX+ei1btiy1f1VwuXLlSluwYIG999577qak/mWXXeYC8qosRL/iiitsxowZNnPmTMvLy71TqJry+QYAAKioZ5991s444wyLRCJlPs7HETXZ66+/7s7NlAg74YQTwh5OrcA2DZ8Sevn5+SX/1kRNXctR0lsT6JR83GWXXdx+Cj4u22rDsVDdsTcAAABK69atm7Vo0aLcx8ViMct1KjjUREcVWCreVk5GuZjZs2fbZ5995mJxnZ82atSo3OfabLPN3GO//fZb+/XXX5NuQ+V4ghPCVAioIsFk3nnnHfdV58QqZAxSTKEYJMjnkFSE+9xzz7mbClkvvfTS9a4lvPTSS/a3v/3N5SSVh9Q+13vX9vjkk0/so48+cnlI5StVnJnN40iFtMp3fvrpp+6mWOn+++93udBctGbNGle8escdd5RMlGvTpo3L7+s+vdeHHnrI3VTsqjhH+T8AQOXkXsUCgFpNJ88XX3yx+36HHXawKVOmWK9evUruX7Rokd1www12zz33uJNHnbgff/zxIY64dnniiSdccmTjjTdOmTjt0KFDlY5Bs+o0g04BgII4HQN77LFHSUJIAZtm5l1yySWuAFjdHh988EFr165dlY6rLmnbtm3K/a1ZmtVJMxEvuuiipPcp6D733HPt448/tqOOOsruvPNOGzhwYKnH6OKCAkoFl5WhoFvF5hWx7bbbupmlumhQ1z/fAAAAFaVJN4oH33//fRs6dGjKxymOmDVrVtZfX3GqOp80b948K8930003ZbUjZU0558x2/JFMqnP8bG9TZO6qq66yTp06rffzP/74w8VT6pTz73//2yUBL7/88lJJ12wew5U5FrIVQ1ZWqthb10DUObVhw4bVPiYAAIC6RCvOVbTQL9coB6OCT50Da+KRz7N88MEHLkenXIwek87qG5tuuqk7p9c5tVbz22abbZIWcq5atcp69uzpmv3o3yqCTDYxTI0/RN03EymHmKrBhZ5PhYVqGvL444+7QkN18/Q0KU35ZY1DHUEPPvhg13jGU8GqYhblHzX5VDlIda7M5nFUXFzsxqbn1/UONURSPJJrFN8pR6fi3Wg0avvtt59Nnjy5VEMXbWcVD6uBi/a3iowfeeQRq1+/fqhjB4Bcx/LuAGoMnbjrZE8UROhkPFjwKQo4tNz3X//615IL+VWR0MP6evTo4W5VmVhQQecpp5ziErUdO3Z0wZqWLAsGekoKKRmkhJFmgWmps3POOafKxlQXKSD3+7smJ4114UGzBrVch7pXKiBWkBzUpUsX9z4aN24c2jj12hqDxlKXP98AAACV4bu6P/PMM2U+zhcP9uvXL6uvr2JEnS+l0+klDLlwzpmt+KMmnOMjM0qeHn744fZ///d/7t9PPvmkPf300zXyGK7px5f+Bml8TNgDAABANqg4Uufnoq6XwcYaaiDhl5dXcWI6y7zr3D9YNJqMmlOIVgHQ+bfyO764M5Oiz7Ior6j3M2jQIPfvu+66a70mRCpE1IQqrSwZLPj0593nnXee61yqvJOWgM82FUhqGxx22GHu32+99ZbrkJprNLlPBZ/qeqvvlcdPXKFRxZ0TJkxweV9NplXR7c033xzamAGgtqDoE0CNoGI/tcfX0l+DBw+2Y489tszHa8aQWtzrRPu2226rtnGiainpo8BAzj77bOvcuXPKx6oAWLPv/BIMuRgIofIKCgpct0/58ssvyy0CAAAAQG4aN26c+6ql2RQ/llX0qcSJVo4AULMoybflllu676siaQoAAAAgM7/99ptbVVE23HDD9e73BZx6jLpfpsN3xExV9OnzgCqo3GKLLUr9LEiFgVodUM1gMi369MaOHeu+fvHFF6641FP3UtFqA6no2sLEiRNLHp/YdCRbtt5665LvlefKJT/99JMroJW//OUvrmlPWdTwxzd2euCBB6psmwJAXUHRJ4AaQUv06eRd/Iym8mZoqUOECj4108oHBH369LH+/fu7ICAZBSWbbLKJe9zMmTPXmy124oknupPrAQMGuE4yRx55pJtZlQmd+J988sm21VZbuefRkgFqU68lAFTUmkj3aTxvvvlmyTLVw4cPd8Wvu+22mz366KPucUps6gRYywDoPr2PQw45xD766KOk41i2bJn985//dEt/6fm0XbQMon7/mmuusaVLl5Y89vvvv3dj8EkXBWL695gxY0oeo3/7cSZSt00t47bzzjvbkCFDSsb+r3/9K62Zf96MGTNKAkst651OwuiCCy5whX7dunVb737tOxWGbr755iX7VEGHEsXJ6P3qPX733XdupqGWH9A202zGffbZx1555ZWSpQr03saPH+9mCWr7aiagP4aD/HbT/tC+1HZREKkx6fjSMgaZUidUFcUqeFLArTFquQQdH4nHmF7Tj0HL6CV6++23XadM3a+ZmsHjwW8LOfXUU92/PS11oX8//PDDbokLfa/9X9ZnXI/R0h6aPZlN2ge+k9OLL76YdJ9q2wTp+J82bZobs35f+0TbU8tozJkzZ73nmDRpUsm/9VnSc2o7BT/Dr776ql133XXugoaeT8eHjgltI91f1jGtz76OTX2u9RnSMiP33Xdf0r8Zqd6T5/eVvmbj871w4UK3nKlmvOp9aXyafarn03GdSH9f9Fzq3KyLQFryRa+lz6C2zQknnLDeNgYAACiPznm1dJvOTVIljr7++mu3JJ1isFatWqV8Lp3P6zxZ5+NKMOmcWuc422+/vZuMmGxZaH/Op3NIz59nKfnk47U999zTPZdue++9tz300EOlilT9uaGPA2688cZS527e7Nmz7cwzz3TFq4pH/LmU4uVkE51SnXP6cf/nP/9x2+a4445zz6Pn0zJ7iqtTJe4yiSmTeeyxx2yPPfZw55D6fS1r98Ybb6z3uGTxR1kSz4fL2qaVvU6Qqcpsb8VJWslAMaOOH20znTunM8HxhRdecJ00lTTVa+m41vWNTz/9tNTjdCwedNBBJcetEryJtIKC7tdzpJvUzYQ+F6JYKfhZKytu0n7U51XvT/tS20bbWiuABK85lPf5+u9//+v+rXhLr6+VRfT51/Mq5kkn3tLrKRbabrvt3O9qvNpmyf5ulBcLBo99H1+WFXsH4y2NPRktmajYUtc/dCzo2oOui6S6tuVfX8ff888/77arPuf63O66664ly90DAACg4nQertyFGt4oB6mchG4691Q+0RcgpkM5A53r6xxO522JOUKdryqu0Hm34hy9jmLdCy+80C0hnkgr6vkltj/77LP17vfX8vWYsuLsIJ1fi1ZqTMwR/vDDDy52V7dHndv7AtFkRZ/vvvuu+6r3qnFWRKNGjUq+/+OPP0q+96tMKO9X1sRS7SPl1nSurCLQqhB83uBYfPyim65jJOPv12PTpe2qY9HnTrUPVIiZaT5c7r//fhcvKG+fTn5flF/S8alrHsmulygOVk5Rj/MxTXDZe30GFK8pdlHOUY9RTl6fpcQYON1rDj4O9HFXcPtrHDqOtUKp4nrFgXr83//+95TPp2tXyo3ps6fxKcZXjk0/87EfAGQDRZ8AagRfaKTW737ZvvLoJFQ3dfoTJSzU/VMnvk888UTS39FJ+fLly91SWMHZW1dccYUdcMAB7vc000sncTrJfvnll13hny9GLI9a0St5oOTW77//7p5HAYUSDiom03Pp58kocaeL9irC0zJdCqAUYGm583vuucedrOoEcsGCBbbBBhu4C/JKmOmkVsmkICWFVBCpYjwFfFqGQGPR9tUJrxIUOqH2AY5eS4lEbT/RmH1isTz+xPv66693gZq6c7Zr184lKS+99FI79NBD0yr81GP0XOKDvPJouQXNstP2SKRiYG1vFXgq4FAhqYI4BY5KeBx//PEpExcKiDVubSvfbfTDDz90SSYdQyq21XtTElSvra/6uQovdSKfjJY00L7UvunZs6c7TnV8qZjwlltusXTp/aiYUEsgKEDv3r2727/adjo+NO5g4KokjYIKUYLx559/LrlPCT6NSTPplLgtq2hTRbU6JrzevXu7fyvQViLXz5RMPBY9X7y80047lVxAyCZdvJB0Alu9byXjlQDU/tA+1n7UtlFxtt6PkrSePgd6v57et26J70PPp/2s41KfAf2tSVaMnEifeR07Cqi1lIm2qZLNWgJDidtMCqeTqcznW2PSPtNMzXnz5rntpJmY2tdKNurvTKoCzh9//NEdf9OnT3f/1t/dJUuWuO5b+vuTLPgGAABIRfGZP69N1d3dL+2u85dUVOCn83mdB+t8XDGCzvWaNm3qzg0V++ncOFmyKxUlKfR8Oh/Xc+icKS8vz8Vip59+uovLPJ3r6VzMJ550jqZ/B88bFf9pDEqeqFBRy6LpnFWxpM5TVUgYLD5Nh35PsZOKA5Vc0+sq0aDYRxPcdO5amZgykeJDxbAqhFP8o/2nZJq2fbY7PJa1TStznaAyMt3eiilVjKmYTceerglodQsd6zoWdP6djN6XllucMmWKm4SmDjjaT4oh9H4V9/jzcdH9Km7U8a74RwmnxM+QklzaX4p5td+rKnaTdCZB3nnnna6IUZ9Xfa4U2yvm0u9q1QfFwH6yXDqfL1Exq7a3rlvo+NT1lXRiN1GMplhI1470t0P7TttM10WSJaozVVbsXRZd39BkVCVvNQ6/rXSM6DqCro8o0Z+KEpj6fSXmO3Xq5Laxto9+R8tiAgAAoGIUL+qcXUV1mqCjc9devXq5SY3qkqh8omIEnc+XR7kcTTjSuX6zZs1cIZyasHjKGSlHqbhCOQad9+t8V6+jxyoH5PNwnmI8PzFL8V/wur1iE8UFohyqzjHTobhKuVvFJTq/DPLnzIrVFHcoJ6y4XB0ulf9MVvRZ0S6f4ovyGjRo4GIzT4WEPgeiPKv2TbATqKf3ofNq5Xyqir+Woe3hl6OvKmrWoX2p96v9o3hDr6uiZMUMuj8TvlmOJt82btw4rd/RcalYTl1YdfwlUq5ZMaAKhPVZUcyl41gUS2tiqq6/KCbUayoG1vUSfZYUhwcLRLNBMZXiwBtuuMHFjhqTrtX4Rk3K8QUpl6bJnHfddZf7TOoakWIsNfTRzxQ7ZnLNCQDKQtEngBpBJ3CiYqLgrKtM6KRUBUaSrKNhsPBMJ2Hek08+aTfddJP7fSXkVICqbiwKPFQYKOecc07SLo5BOkHWybCCLj8jSs+jpceV2NEMOJ2AprpYruSiZggpOfTII4+4rz7oUAGjLtJfcsklbny6X6+nBIaftRek2VEK4hTsKTGiZdOVhNCJpxI8eq9KvvntoeBSRYS+eE8n+fq3CtjKos4uSjjq5FadK3Ryr5NqJaZ0sqsEkd6zuh+WRye7vggz2RISmVCBmhJbCkDVqUf7QsV82qdKZChI0zbxnTwSqVuIgjw9Xtta70tBg4JzJVBU5KZOn9pHOtb0GCVEVEyYqhuITuQVUOs5dVyoYFfFp3pOBc2puhUFqaBSMzgVVKgjrAoc9fo6NjQGJYf0XtUFNEjBU9u2bd34/FLo/jhREK3f0/dlUcGrjglPFxb0by3Np9/3ibtknz2NV9s78bOXTQqYfNfZVDMePe07BfpKnOlCiv4G6LOg/aluLToOdVHE0+dAAWRwX+q963MTpH2oizdKGuvzqc9csoA1kZLo6rbq96MSw/qbpGNKHWcVSFZGRT/fCqj1t0zBsmYt6nOg7aQLShqrZibq74yOjWTF7Nqu+qzpM6G/gzo29DNdHFmxYkVafxcAAACC/JLtqZZ41zmnkkU6pytrop7Oo5Xs8ecpOj/XuY7+rXMnJXo0oSddiod0jqSJfoq5dB6o8zgVTYpWqPAdE3X+rHMx36leF/v1b51T+WJLnYsqrlQ8qrhB54h6b4ol/DbQxLHyOm0G6RxWiTLFhzon0zmrCjN1vqpzY8VLlYkpEyk5p2SLtoO2r776+FoFcxXpIJJKWdu0otcJKivT7a1YXxMNda6s/a3f0UoMSv6pADTVhCmtuKHH6fcU5/jrGfqqGEZFnirsDHZY1WN9zKjf9Uk67W9NPBMltNKdkJspJaf9dR9NFCuLkns+6ajJuj6e1udWnwElbnXNwReCl/f5Cl5/aNiwoYvbtL31vP44KY/iPl1n8GPxcaTiXsWDle2OWlbsXZaLLrrIHWeKwXRc6DOn40z7XuPV9RElP1MlQHUdRd149RnXZ0LvT8eB6DhUASgAAAAyp/NNxYs6d9VKCjp/1Hmkiuz0cxWQKadR3vV6xcCKORXXKJ5VXjDY2MHnr3TepnyNzuF03qw4TueEyg8oR6QJY8qjBGkSowrpFNsqjtOEy3HjxrnfUdypc1Sd66ZLcbm6kEpi7kvnqeLzn4oN/OS7xElUWqEx+NhM6dzcx4GKz4JFqyoq9IWEvvOlChfVnEfFr9pPymNUJcUQmuTmz9G1vauyuFSry+maSJMmTVxeUrGUjg9td00sVSyh+1PlORMpl+aXo89msapyocpjKZ7W50d5PF/4q+NQsbOu3Wjb+Ws6usagfJaupWjiWqoVHyviq6++cnGSYjMdF9pm+qqcvopQp06dWipHpm2pz5I+RzreFXfrpvejvJp+Jzg5GAAqg6JPADWCT1ZVtouEToiV1FBCJLFIUx0YlfhQkkUX/j3fZURLZqnTgy/S0lcV1ulEUjPvUiWzPN9pRTPiVAipVvaekiX+dXQC6gOVxMSHLtL7mVDqzqcxiU5SFYAEx60CWQVfEkwAqVuHP8lWsai6g3jaNkpkKHCRyi6xrEJVBYcaixJ3wSI4tbdXEa3opFzvoSzBZeUqcxwoSPJFcgrSFKgGl0ZQktR3M1EHnWRt9BXoaewKwkUBkJ5H9D5UuKul7jwVqfquQ6mScdoeSo765JaOL3XRUNdOBePpFMBpG6vIV7PwlDD14xMltXRRQM+r4EFBSOKxpf2vpJYSQQqCFPToOPWFsJXhCwr12olLkquIUQGPLl5U1SxFFUh6yZYoDPLdSLXPgseaPntKjKrTrJaEUBeoTOhzoM9ppsexji8Veer3PS1FoQDSJ4yTzTCtahqT716jpGFw6RZ1mtL9+swrUasxJqPAVce+p860mi0q6RQ6AwAABClxpfhGE5d0kT9IsY3OgXUup/PfVBQTKj7QuXjiuan+7ZdMTtVZMRV1blcXfx9PKp5TTKFzcCXwPv7447SeR8k4PYeWuVM86pecE70vJeN8ciXZctKpqEug4oVgfKgEhV92Onhulo2YUvtKcZePM3x87QthdS5ZXSpynaCyMtneiqkVn4kSb75gUdQRRMWiweMguJ98clCPCcaoej+ayKhzb8WbivmCtKyc3xcq9FS8pjhXRZZKQmmCYlXy8Vt5sZuOccX46gSjMQcp8auiRMV1ybZPeVTgqMmRfjzprkihJQt1fUDHlI/nFPdo1Qa9HyVSq5v+JvrX1WdWCfrgsaDx6jqV6NpUsg69WmZUyUq/HfR7uu6gbS/EbwAAoK7R9Xm/JHSym863043xVGyomDFxIo9WG/A5hbJiUJ3TayKPis10nV7X4xObp6iIVHGyYhBNCNO1+GDu44ILLnDFlVqNK9lEID1ev6scmCYj6lxc3+tcWXmtxLxPefyKfsHzSMXGfgJgsHun/z5Y9KmJWjrPVR7MF5CmQ9tK71G5WK00oXN05cGULwzSNvGrbPg4XnG2xqviXJ33K7erFSzKm6xWFsW+us4QvKmzq3KDel/aL9q2ineCzUeyTblF5RhFE019PCiKbfT6eq+ix5XXXEW0bX0zn2D+KBsUi/h8uYqcNUY1UFHhpCjeHj58eMnjtY8V8/iutZl2LC2PYmvdfL5ZcZLqAtSQRgWewYl7PgepbRzMXWobqXBbsbsvOAaAyqLoE0CNoA4Lkmq57XSpEEnFWpJYpKnZXApQlGTxxYnqsOG7jOokOxmdcKto7YQTTkj5uj4AEhWOJqPEiW4++Eqkk9PEwrtgEViyrg4+gRRcGk4njZpxpKUbgktSewoefOFhpkVtifzJtZJjwQJET8kX7QcVGgYLL5MJvvd0golUVFCrRJWCaF+omUjBi5I72ha+q0mQjpHE8VZkXwQFE8BB/rhTt6FUSyP6gMwvOR4MxoJ0oUGBvoJav2+CAbbG4JNAOq79rDh1mawsFdNqHyphqaRpkIp+q7LLpwSXQPfJt1T8sn268KHOtMEZeDou1IlJ2yjZMV0Wfb7Le+1U2y5Zgaj/XGl8iUuuVAf/2dBFiGARu6eg1hf76m9kss+EihUS+YtNybqDAgAAlEXnWr6YKXGJd78cWmJhWCJdiFcBZqr4z8emmcZKKphKpMSEP89TjJIOxTCK5ZR8SiZ4jppJ15HNNtssaVGbkoyJ52bZiCmV0Ex2bqylBn0nleqa2JTpdYJsyGR7q2uJxqCY0xfTBqmY0CdMgxQfKg5SsijZebf4QlYd80pEBanYU6+pRKr2i7q8+ALGdJdtrCh/7ae8+EkJNI1FE4VPPfXUkuSZpy5FSvaV1d03nWXmM5HsOoPiJb+t01mWM9t0LOg6io7hVH8DNXlUxbE69rSvE2l1h0S6htG1a9eM/oYBAADUFsojaLWwVLdksVIyOr/W+XiqHKOPQXVun6p5ilYjvP/++91EQHU3VIONRP4avZbMTtbkQ+fePrcUzB/pPFLn1cqJ6PxPE8pUPKqchIradA6pAjpNDMuk8FMxkQQnbOp75dCUywpOkPOdPBWH+m3gl3ZXYWSy/IRfrSyxGFc5MhVratKhup6qcFDvI9kKg8pxqCuktocKLpX7C65GqXhXOSSdYyfmvdKl/LEKSYM3bQdNtNSqDioe1gQujTHTnFQm9JqaOKgiRE1ITEbHh3KjmhyZzvLj5TX7EcWbZRVPJ+sqqjH4fHqQP241YVefwWRU6Ovz/5lO5i2Lb9IUpJhfy7gn5v19DKXPjT6XwesmapKi3KRv+gIAlVW1V/AAIE0+uVJel4d0qAhJF7DVcVBdCnwSwbfwDxae6aRPFAApEZSMllAvjy8cVXDmkzjJaKkFnVgn68iSrGV/sFtFsqKwshIxCg4U8HzyySc2b948NytOXU0U5PjkWjon5GXR85a1HLsCsXQLCoMJNs3Cqyi/L3RSHQzOgnRMqHuKApfq2BeSqsOlghqf9FLXUf/vZIGhL2xUgJ8qyPUzDv12CFKBp2ZR+kBHielURcqZ0mdIxYvqUKPPmu8y44tAtX1SFatmQ7DY1s/+S+XQQw91RQIam2YuamwKtJRIVbJXs10rUrxZ0SRxsJNPkPaxLiwpsanPbrBzT1XT9tTnQ4JLxCTyyeVknyPfNSeRv3BRmeJuAABQd+mcU0kuTSzTRXJ/3qblx3XBXQmu8ujcXkVk6hKh82zFSvqqWElJkIrESuWd+2TaFUVjVGJQ5+4an2IvfR88z0+2xH1Fx5fs3KwyMWWqc1wf7+j1FI9nYwJatq8TZEMm29ufS5eVNNZ2Siwm9N1YlUTzHWoTBY8RHTvqQOopXtay8koy+uNKid7ghMeq4otefRfJVDRedT668cYbXcGuboq7lMRVYljxW0VXCqlI/KbfCSang/x1kcRustXB7z8dJ6km3CpmV+dY/R3RMZdYqJ7tv2EAAAC5Tp3hsxUnqJhSHexVSKlzNx+D6tr/Tz/9VPI4xVeJ53Nauc0XjalxSKrmOT7vo8K4xMlSnp/Io9dWrKC4SE071ABC54tqiBHMlarYUbkTrfag51X8lO42Ueyn83lNPtP5p85FfSfPxOXalYNQQatyxBq74klf9BnsCJosh5KYv9D2U2Gjzm+V69HE0VS5Qk+PVVykm857VfCovNYTTzzhtqsmXKowVoV9mcYfKir120z7VzG2iv5U6Llo0SKXA0pW4JhtPn7U8ZOqYY4/VjVOHaflrdynfabtrcf7aynJ9lGyAs1Zs2aVauYSpMmIyQpgfdyTatKjaHtqfyvHpeMu3eLssigGTBUv+ThQnylPHUfV6Eevr+NG20D7WMeyCotT5dQBoCIo+gRQI+hk3ycrdPG/vKIt+fXXX12iSZ0fgnQCr0SFAiWdVCkZoCSVlvpTp5XghW1fZBpsr16ZgrPyAgf/Osk6OvrZfKlkUoSmE1917Ujs3qDxaVacAolUQV8m/Par7NLgokDJB3U++EiHAi4VePouKn5flHcM+X2VbF+U937K61qaTKpkVvC1yup8GLxPwVB5kj2XAgsF0z74T1VgWplEqoo+NXNN21XHu2ZBKkhW15BsL+8Q5BNr6oKTqiA2WMitixNaVkPFnypuVDG2btddd51LcmopznQKBoLSXQ4wUVl/f/x9le3Km6ng56Ksv2v+Pv0t9heJvIossQgAAFAeXSjX+ZziPRVt6t9atlsFhFppoLyYTPGCut6r+C+YLNO5ixIHKpoKLimXrvLOfTIp0FTSTd1gNEkpSLHvxIkTXYeXbI8v2zFlqnPc4M8z6VRaWZlcJ8iGTLa3T7yWFYcq6ZUq5tMxnc7S28k6NSpBquSVtovGXNYk1mxRgtt/9oJLTqaijkga5/Tp093KHvpc6POrmybwKRGtpS7TuY4UVJEuOjUxdsvWdZBs/g0DAADA/6dzX3VxvPvuu0udK6q4TgVpKqzTpMZU9DtqVKKukDrvP+WUU+zBBx9c7/zNnxPq3D5YSJqMcjY6J9T5oV9FQ53rkzXH0c9UtKjJlyqCTLfoU7kCxV1PPvmkG7fywK+//nrSok/l3NQZVJM5Fa+p6FPn/uUVfWpSVnBZ7WzQflGhq26HH364e99aDl05EOWVknV8TJfep7anGrsoX3bttde6OFUFwWpWUpV8/KhCy4rGj8lyYsrPqrhRsXWq3G+yfaScoQpgUz1vZeIexWZ6bFmrK2ZCuetUfBwfzMnqupJyo8pBqmhbeW8d17pdccUV7nOv6y26tgIAlUXRJ4AaQa3kNdtJgYba92+77bbl/o5avuvkSLN2dLHfF3rpwv1OO+1kM2bMcD9XUOG7d+y8886lAiF/MlbZEz9/cT/V0t6JJ8mVLTIti2bNadkufVUQqGXaFCApmaIkoQKtE088MStFnypU1YlsNk6cFexstdVWrnPHG2+8kdbvKDjRsowKmlWkp+4mftuWt3R0deyLICU0lUxMFBxnWTMEgwlABWQVGbeS4nfccUdJYd7NN9/stnm2ZhFqeTwF7grwVPipiwT+s+eXAa8qfomQVEs6JNIMUx0zus2ZM8cls/W3RxcdFGgee+yxbqZleTMZs6GsZS398ZEsyZsq6ZaNZTKDx1dZf9fUIcsfnxXpjgoAAJApnXOouPP22293ySmdy6a7tLv89a9/dRfaFTcqblLnDy2Np0SFYkUVVFak6DNbVPCpZaxFnd4VG2t8KsbTRDLFPhUp+qzumDLVOWkw/imvy2M2ZXKdoLr5BFJZ593JCgn9xFF9HrTEeUVcfPHFLiGseFzHllZC0PFV3kS6ylB3Iy/d+E2fA920jRS76abOpypOVjJNx5W6gVa1sq59VCR2y1bhc029DgIAAABzE5QefvhhV0y4995726abbupiPOU2FacoH1ZW0adiMhUeKg5T7KI4TOe+Wm49WXxw5plnunguXX71uLImZPXs2dN91Wp1mVAhp4o+Z86c6Yr81EFT40xW7KbiThV9qthTsZtWm1BRZ7abl4hiHl1TUAGmCvNS0TbXankaV6pVHCvq6KOPds+p/a9lwBVza3ulkiymyCQX5I8PTXbV8Zgt6lyp7aLrKBpPNpoEVTbu8fcni3sqkldLJ4eXmN/VsXX++efbueee6xr5KIbVSoy6HqXGPFrRQsdVOquNAkBZMm9VBgBVQCc/SrbJLbfcUm4HARX7+USXApHEhIQvMFOrfRWS6mvw556CKn/ClipY0e+qpb+WPUvFB0O6YF/WUl6+Q6MSilVFnRaVnFPiSN8fddRR7qRb29gXZfllmyvLb79UnTmVNFIhpgro1M2jPArkREV46SRalaRT0kXHgz9+/L5Qp59USTMtNaDgsqr3RVCqbeQTpQqEylpGT/tPFwUk1Yw50RKQ2n6JySj9Wwk8fR60T5S41fd/+9vfsjbbTfwsT81e0z7XWBTs6BisKirW1AWA4DFUFh3/+h2fONVFA33G1eVTn3ftB20bzVqtDsElOoP0dynZUo/+OEi19IW6LlWWZvj65Q7L6izr7/N/CwAAAKpriXd57rnnXOyoC+W6mK8JTeVNgtIFdlFiR8WVei4lsHzRn1afCJNPOGn5PC35pqSgCuN8gWR1jC8bMWWqc1wfhym5qS791Snd6wRhrXyi2DDVtZBkMaD/vbJWytA1CiWXFJslLs+tosl77rnHFXwqaazz/9mzZ9tVV11lVUldiUQxfLJOQkGK2bRdfNysOEXJYn129blX8bFoqcnyEn/ZoCULU3W8UcfhMGK34HUQ7T9d70hG10f8koPVdR0EAACgrlPcpIl9oo6OKgBT4aaWd/ad58uL8dRsQ+fNmoB3/PHHl8SNiZPw0okP/IoZwXjOd4NPXGkiSPFh8LHp8kWMWmVBk78U76joNdkkM9/9U+e0fqJYWV0+K0Pn6crlqghvyZIl5T7e50qSNXapKMXWaoakrpU6h1cH18Scpo8nUsUUmcQT/vhQTLB27dqkj9H+Ue5Mj0kVwyRSvlHjVOz5z3/+06qSj3t87JWM9qsv0vRxj1aI8JK9L8WdZcWT+tykyjfreA0WRmsbqt7gzTffdP9WvK3mMiryVP2DJqHqc6TtpWtaAFBZFH0CqDHUcU8nuZrZdMMNN5T5WM160kmTTpbUqSWR79aik/W77rrLzVTTLCkFUkHqluIL7ZTMSkYBmZIkWk6+rJNlf8KsTorJqDujCvJk9OjRVlV88apm/yXrHKlkkYI6SUz6+AReust2+UI+naQmO1H+z3/+4963CjjVWbE82i7qZiNa3iBVa39R0krHgWgpPu1fHwArIaqgRctlJKOZhQpg9X7961U1n9hK5Jc10Hsoa3lwBQHDhg1z32tWZ6ptst9++9mECRNKluTwtPyECiN1vJ900kmu2FMzyPQz3Zeu8o6R3XbbzQVQ6pjpiyY1nqrqnKNgTMtzipb8K29/6rhQAl2zM1955ZX17teSGj5JF0yW6W9NVS1rp2RlssJbFbarcFoXFIIdR/2FhWSJdF0gSlWkmennW8lUf4wm+3yry6c681b13zQAAIBEgwcPdvGO4jyd8ytu0LlLecs1Byf66dwxkS66K1ZIFitlW6ou6X6M6r5RXlyRKlETZkzppYqvFZ+LztuzHSOU13k+3esE1U3HrraFEq++EDVIsWuy2EXxuJJrigtSrZah7jWa4KZVGIJdJXV944wzznDfT5482T3X2Wef7f5966232rvvvmtVQfGDf+4jjzyy3MerM6vGrgmMyeKYkSNHlnwfPBarahUCjSFZVxwlAH0y38dRwdhNsZNPlAdpsmQqmcRviscUh+tY8Z2PE02fPt39zVCHH39tAQAAAFVLMYc/n0sW4ykHETy/LC8O1bm94mHlDVQkqK+eckyi88Fk554+D6uJhX7ylGgVBJ/nS9bRULkB3Rd8bLpUqKqCVRWi+pglcWl3T/kq5WwV3/umMMHz/WyvPqlGLFpWvayGP6JtqeJQKW+iaabatm3r9qMoHkwcS7DINFk+qKx4IpGKbVVgqlxUqk6f2s/KnWlybLoTTtUQRDGlL0ZOFY8EqSCyrJx7Kv4YV6491RL1ioGlXbt2JV1iNaHVx1fJtuNLL71U5vUVfS59vBekGNuvIDJu3Dj3VUu5azWOgw8+2BU7J1Itga61SKoJewCQCYo+AdQYClSOOOII9706SyjoSJyRpuSTCtZ8YeWUKVNs4MCBSZ/Pd+vwXSp8B8IgneT5olEtda0l430AppM4zUrSSbMunvuT1lSOO+64kqSEllYLFkmpm4y6XfrkVlUFKsGZTprlF1wSQu9LRZiaTeQDwcSlxHyre80OSyeBqAJDnSyrq6b2i05mPZ10n3XWWSUzvdJt6a/fUaCjAkYFn0pqKvDyNC4lYrWsu16vTZs2boakpwTG4Ycf7r7XflASOHjirG2i5TRE3S59sW5V04wtHYt+u2ofTJs2zY1Hsxq1lEN5tFyHknoqptQMwGChoJYD0PvW86qwU7NFPS21ru2o410FktrPKiLVrFLRfXpMOvx+9Et+JFKBoo7x4Ky+ZJ+9ytI+VbJw//33d+9d70nFq+Ul9/RZ9t1AtS18IXZwP6lgNbGQMXj8pnrvFaVgXn8fgkGu9vHll1/uvtffqODMVxU2i4LM4NKImn2pxwYv9FTm833YYYe539H21d+34IUifT7191qdbvR51YUAAACA6uQvqF9xxRVpd3wPLlenLu/B8yYVMur8x3fCy9ayy6n488vEiW5+jIorg91XVFR2zTXXlOqckWzJ77BjSk/Fi9o3Pi7WVy0lrmSKChwVy1fXNs30OkF1U0x9yCGHuO9ViOkTij720Dl+suSr4r4999zTfT916lS3bYPxkq5vXHvtte7fipuCXXkUE6tAUPGw7xY0duxY9zlK1WWmMlRoq8/c3//+95LJgsHiyFSUbNTxophE8V5wOyh+UkztC3q1HTM5FipKx3VwkqXiJMXq+rwqoT1x4sSS+zQujV+fHY3ff2b1+dF1Lb+CTUVi78QEua5v+OU8g+PT/lRHV/39EB1PSvYCAACg6qnToO/WqBxkMH7SeZ6uu2s5c6+8OFTNKbRktM4x/TLv3o477ugaWqgz/aGHHloqv6pze03yUrGdcig+hyaTJk1yjVTUzVDnisHzT53rKnehQjk9prw8aTLKh+r81xfHpSr6DHb2VKMMjbOqOn0qdlAMJSqAVIybmCvSebRiM20fdYHU9h0yZEjWx6L4QQWZovggeDwoXvMNdVQQ6lcdUHyhAk3FWOlSfOH3u3JjmqgZzJ0qR+hzuorDMlmZQ9ty2223dc93wgknuKYzidtTOSltTx1jKojUsa6JuyoMTpe2v29GpOPSr+TirzkoJ+xjLI3B5wv1Or5xkOKi4LUW5QN9rrQsytcFi2wVj2oM+rxoP/lrCyrU9c1pVGQdXB1U20c5a8W3+ixXV1MiALXb/+9lDAA1gE4GdbJ96aWXuqIn3VREphk5OplVcaEooFEwpKRcKuoGoZMwJQX0+PHjx6c8oVaC77bbbnMJiCuvvNK9ngpMVVSogEzBUHndP3QSrK6JSjroRFsX8HWipxM/n2hQNwW9t6rqOuHfjy7oa1vphFOJIJ1kKmBTgKZtoXGoe2niknx9+/Z1XzXe7bbbzhVUqstfqvEq2FASSSfpSgZqSTV1TtG+0vZT4KEAzhfEpkNJEiU4VVCmpcGV9NIJt078dWKuJKwvdtTMSCXr/NIKngJavb7Grt/VSbyeVzPT/HIHmmnlO5tUBwXb119/vds3GouK5nR86T2pgDOYgE5FxX4qcFXgpdlq9913n5v5qO2h/a3trU6VWiLAFwmqKE9JH1ERrV9Owxc1KhBRUKvHqPBav18WBUYqttR21fZV4W8wqSX6t44Fffa0j/xsuopQUllFw57eo96vAimfhNRxqmAu3dfR3xkVS2ppSSVJ/WdEx4Y/PvSawaJPzVZUUKz3pGSajkcFxtnoCqRjUcWmmiWqJSD0N0OfVznggAPcNg5SgeVjjz3m9q3u88tG6MJLkyZN3IUXP5uxMp9vHafarvr8KoGsYFqvpYJ4/c1UgKoZifobkKwDFAAAQFVS/KWOhDo3VPKprMRR8FxWv6cEkn5X58E6r9N5ue9uqaSSOpDoeXW+menydenSWHTOrESN4p6hQ4e683ydqyq+0vmWuo/4SWo639dkOL/EumLPqlrqvTIxZfAcV10+FNtpGyv+UbdD/a7iH39uWh3btCLXCaqbJgF+8803Li7Q+byPP3wySOfiWo49kZJI2gd630cddZQ7x9ekLJ3z+0ll2he+sFNUDKpklZ5X+yK44oSuiSgRp99XzFde15tEih2CE9aUeNPnS8/nJ9gqnvITMcuj96NiSXX61IoXmrCo5KNiEn0G9JnQselXf8jkWKgIfRYU++h9KhbSayuZrvep6xK6FhScMKi/Tbo+oWS8rm+pY5E+D9oe2i6KOxVrJfscpRN7B5122mkl3WI1Pm07XdvSZ88vWan4sqzraAAAAMgunTuqwO1f//qXOx9UB38VggZzOsOHD3f5ChXFKcYLTmZKRjk45c90XV4xlyZvKb5SfKMclAoYteS0Yh3Fk2qUoryan0Cl88Zg7kPnsfo9TcxTLKA4VHknNdBQXKqCTY1J57o6x8yUuoMqLtR71jm0njsVxfU679dYlXspL19VGeqaqrhCOWGdp+um83tNqBKdsyuG9ZNOL7rooioZh+J7nfMrVlVcoZhM+R/FVYrZFMspf6f4W3Gh9qnyWJrEp86XivtmzpyZ1mspFlB8oMJIxZLKVys+URzhc2PKQybGV+XRsaJckgqbtZKnCnx103GjmES5JG1Pn9vV4xWnqvmTX40zXYpRtWqEVg1VQa6P0RRP6xqOcvraZokTg/Uzxcw6pvWZUa5L+1fjUnOpjTfeOOnKG56uxShu1+vpffk4UMe03nswDtb+VD5W8bw+h9rGmninvKaPzXTtx+f2AKAy6PQJoMZRAKT277owrhMtXcRXcZYKnBS4qAOG7i/vQrVO8nzgog4SwTb4iU499VRX9KlgRkGWZsjpxFAn8gpGfPeM8ijQ0smyTuKUHNTzqJODCu3U1USFoGWNIxv0ukqEaMaWgj+d8OvkUz9XVxPN3vLLeWt8wVl7Cr40+0knrTrBV+JT270smoGmYFWFaDq51QmzEoFajlontjrJL2vZ8mQUVCkBq5N3zQ5TYKex+I6OCmSUqFOySifayYIkFeoqkauTd+1LBbmi31VwqpPwTMdVGeqUosSWAmglnRRo+4JLzRBMl/ahgiUFDHou7VslXxUoK5hXMBjsXqrATceA9qn2bSIF+ArU9Rg9tjw6dpQIV1CmIMp3QgpS8aI/zn0nnYrSsaRlGvxNgZwuhihA0udbiTslRjOZYaljSMs5KoGtolQl2/RZ0GdffwN0ocQvbRj8HRUY60KDLjjoeAwuD1oZCm7190efGW1TFU3rQo+OU1+wG6QgWZ9jdbvVZ0XbQzNNlQDU/k8VKFbk862LLOqsq8SzAlONT8eb/hYrINexmGrpUQAAgKqkcyffEUIxQ7pLhSuO0EQqxZo6/9O5uS7UK07QeaBiCL/UVrBzYrYpnlWcqWSBzqk1DtE4FM8pjtH5vib26PxLk8j8+Zfv6q+itpoWU3pKVPn4R3GcYjLFPXre4KoE1bFNK3qdoDopQaR4Q0WYim10nq5knK4lqOBPE/SSUUyrpJomn6pLiBKyin2VvFRMoesQSmL67kIqlPT7TjF8Yhyl7eMLMnWsqUA6E7NmzSoVv2ksim8UR6nbqPa/Pn/pfl5lwoQJLn5T3KRJbuqUosSckuW6BqPrQzpOMz0WKrqfdF1H16X090PHto5xPzEv2UREJfMuu+wylzzV/lFMpZhdCdbEuDPT2DtxbIohdSwojtPfNW1/XXtQwlPJc8WXVTkJGQAAAOvTBCad6+t8UOdsOjfV9Xyd6+ucUOeX/rw83RhP58E6B9b5pfKbfiUG5cu0QpjyAOo6r8JAn1fT+fT06dOTrtqlSVKaMKXzXJ2rKhbROagmXOlnuk+PqQi9T38OWl7nTk0u9MVzVdXlM0h5D3XJV0GgXlvxlWJwnXsrllAOTw02tP+qMp+opjAqZBRt92AHT02aU55V20NxneIh5UwVc6tY18d66dB+UDymxjG6jqJYQzGDijEVc+o59X4VQ2RKBao6LlXYrFyj4lNtM41XcagmxCl3qGNT11q0gkKmBZ+i/aL4UO9D+Wl9lvSZUmyvHJm/lpFI1wE0uVXXWjRRT7lsjU95Qv28vNUq9ZqqX/BNUTR2FZEqx6vrNUHKuWocqnNQvs5/DvV6is0U4ycbIwBURCTup1kDQC2kE/JPP/3ULYHnW74D1cknfVTUp2Us6gLNVFNApwBSSyMomAMAAACAmoDrBAAAAAAAoCxaPl7dREXXEFQkCwA1DZ0+AdRaOgHTTZ3w0lnqD0B2PProo25mqZYQp+ATAAAAQE3BdQIAAAAAAAAAtQHl6ABqFS05IFoKTUsaiGbhZNLeHkDmtDSBlnv86KOP7Oqrry5ZGgMAAAAAwsR1AgAAAAAAAAC1DUWfAGqVp556yq644oqSf/fu3dsOOOCAUMcE1AUXX3yxW8rd22uvvWzgwIGhjgkAAAAAuE4AAAAAAAAAoLZheXcAtUqfPn3cctIFBQU2duxYu/XWWy0/Pz/sYQG13qBBg6xBgwbWokULO+SQQ+wf//hH2EMCAAAAAK4TAAAAAAAAAKh1IvF4PB72IAAAAAAAAAAAAAAAAAAAAFA2On0CAAAAAAAAAAAAAAAAAADkAIo+AQAAAAAAAAAAAAAAAAAAcgBFnwBQi1x++eU2cOBA++6779a7b/ny5XbLLbfYgQceaKNGjbIBAwbYiBEjbPfdd7dLLrnEvv7661DGHLZTTz3V+vTpYyeddJLluu+//969F92SHQPZ4l/jzTfftOqydu1a++abbzK+L9vWrFlj48aNs/3228+Ki4ur5TUBAABQOxG/VV/8ls2477///W9JTKRYpKarjvhtzJgx7jUeeOABqy7xeNzmzp2b8X1V4aCDDrLtt9/e/vzzz2p7TQAAAKA2xcM+bsn0prxYRS1YsMDF3tmg2F3jmTZtmlWV1157Le3X+Oyzz1z8u+WWW5ZcT5gyZYp99NFH6z1W+0CPueKKK6po5ACAqkLRJwDUEu+9957961//coFF165dS903c+ZMV6im5OAHH3xgjRs3tv79+1vr1q3tiy++cMnEnXfe2W688cbQxg+k8vrrr9v48ePt0Ucfzei+qlCvXj077bTT7P3337ebb765Wl4TAAAAtQ/xG1BxH3/8se211152ww03ZHRfVTnjjDNs/vz5dtFFF1XbawIAAAC1KR7eeOON17upENHr3bt30sfUr18/49dfvXq1XXXVVW7i1i+//GK5QPHG6aefntZjp0+fbnvssYc9/vjjtmrVKuvZs6f7+sILL9i+++5rjzzySKnHax9oIptyXsp9AQByR17YAwAAVJ66i5x99tnWpEkTO/LII0vd9+uvv9rhhx9uv/32m+299942depUa9asWcn9msWm4EoJEc0OUyJRwQByT9u2be2pp55y33fo0MFqi5tuuillJ8+y7qsqmhk5cuRIu/76623HHXe0zp07V+vrAwAAILcRv1U/bcfDDjvMFdDWNbUxRrznnntccWdiwXR591UVJaDVhff++++3XXfd1SWfAQAAAKQfD997773rPVZdPLfZZhv3/d///ncbPnx4VsawaNEil9/JFXPmzLGjjjrKjbs8b731lp133nnu+xNPPNEOOeQQy8vLsxUrVrifP/TQQ3bWWWe5zp/t27cv+T09/4MPPujuU1GoGqAAAGo+On0CQC2gJdS+/PJLmzRpkguUgu677z6XMBw8eLCdc845pRKG0qhRIzv++ONdgkKuueaaah07skdBWI8ePdyNgKxqaRmMlStXuiVIAAAAgEwQv1W/Nm3auDhJX+saHyM2bNgw7KHUakpYRyIRu/DCC8MeCgAAAJCT8TBKKyoqsrvvvtutZPDDDz+k9Tvnn3+++/qXv/zFTShVwacoHjz33HNdExN1/XzsscfWu9agfaJ9o30EAMgNFH0CQI5bs2aN6/ISi8Vs4sSJ693/ySefuK8DBw50CYhUFDTITz/9ZAsXLqzCEQO5b+jQoW5JjGeeecYFwQAAAEA6iN+A2qlTp062xRZbuC6jr776atjDAQAAAHIuHsb/t3TpUpswYYIr1FQDkv3337/cFQUUi3z11VduhQt17kykAtBTTz3V/va3vyV9rj333NM95sYbb3T7CgBQ87G8OwDkuOeee84l+TbffHO3vHci3/FRLf1Xr15t+fn5SZ9n0KBB9vDDD1vz5s2tVatW692vZQS1vMLTTz9t8+bNc8+lGWHbbrutmzGmWWCJ9JpaWu3DDz903Wr0mAEDBrgE5Xbbbbfe48eMGeNmq/373/92ywjoq5Z62GCDDezWW28t6XIzf/58u+WWW+yNN96wBQsWWP369d1yarvttpvreKOAMVuz6DTbTUsZfP755/bnn3+6zjCjRo2yQw891Lp167be7yj4uvPOO10xoJYd1/i1PRVA7bfffrbJJpus9zszZ8602267zd5//323nGNBQYF7z2PHjnW/k2zbJhNc6kLHRXA5u7lz57plIP/73/+6JSC0zbT/tFS5Zu+1bNmyQttI2+eOO+5wgWSDBg1cRyI9n7ZRMjpudBxpiUH9jgJHLSGx1VZbuW0a7Lyj4/G0004r+bcCTd20n4cNG5byvosuuqjUcavxPf/88/bdd99ZPB4vOW4nT5683kxS/5patv2AAw5wAbW2nY49Hef6HW+XXXZxnT6nT5/uujABAAAA5SF+y178ptdWDPCf//zHfvnlF7ctRo4c6ZJbibGaEluK63beeWe77LLLSt2n93rXXXe5GE7PqQ4oep6jjz7annjiCbv22mvd98ccc8x6Y9D7VeeVRx991L7++mu3v/r06ePiOMUUyVRljJKMxiOKOfW+PB2HN998s7322mvufevYU2ymx+g5VcRYEXq+m266yT799FO3b/v162f77LNPyu2RSdyteFbxpvf444+7m+JD7aNU92n/ViQmDb7mRhtt5Lp4alnJWbNmuc+HlnI/5ZRTSh6rf6vgU6+nWBsAAABA+vFwRSkXd/vtt9ubb77pJkYq5tRqB4pBFIsod+UdeOCB9s4775T828e6yuv55eMV5ykWVIyouEYxo4ohFSvoMQcffLCLe9Oh1TkUU/pl2tP1+++/u3hF7+OMM85w8ZHGXha9f1FMlyqvqLxjKnp/m222mYvpFK+miuEAADUHRZ8AkOOUqJBUCQV1mnj22WddcKBZWkreKDnXtGnTUo9TMqZ///5Jn0MJJS1VpmShus0oyIhGoy6ppVl5OvlX0iSYnDrvvPNcMZwoGbXhhhu6YE7Bgm477LCDXXrppUmXIVcB3QcffOA6Ka5YscIlznzCUEHhySef7IorFah1797dPUYFk7o9+eSTdt1111lhYWEltqrZH3/84ZJGPkhSAKqk17fffmv333+/S0pp/MHkp5JH2r5Kkmp7quhSCUMlORUgamzaLtoPnt7PCSec4IJIJSmVkNNra0aeikH1OlriMd3Cz2Q0nkMOOcQlz7SPevXq5ZZv+OKLL2z27NkuuTZjxgyX6MrE9ddfb++++67b1tpXP/74o73yyivupoSotl+Qik21nIReU8dRhw4d3H7VsamAXIlSPacvjFUhqoplNU4lRjU+3ZT0K+u+4HF72GGHuQSm9ocSqTpm9Ho6RvR6SnLqeE6kY1sJVP2etpeeS+8xaPTo0a7oU4H/WWed5T4TAAAAQFmI37ITvylZpgI7JcL0nJo4pwJKnePrNbUcXeL5ezKK1VTop9/15/6KlRS/vfTSS+V2UlHMoJhIhbcah55H/9ZN2zsxJqrqGCVdOjaU/FSxrJ90KIp3VbCoGFFfVbCZCY3/vffec0lWje3nn392RZO66ThKXPo807hbHWu0T7SdNfYWLVq4GFBFxGXdV9GYNEgTNA866CAXf+q96XUSi4uVXNVnTQXOSgz7zwEAAACA8uPhilDMoKJI5ecUW+n8X3GG8mu6PfTQQy7GateunXu87leuTBO5RHG14hfFE6LYVTGDYhjp2LGj+x3FGIpTdNPkMk3+yzReyoRiZOWfFIunO1HSF5UqXhTFWcpfKe5V3KcJcbrOoO9T0TUJxW6K1Sn6BIAcEAcA5Ky1a9fGN9lkk3jv3r3js2bNSvqY1atXxw888ED3GH/r27dvfLfddotfcMEF8eeffz6+bNmylK+xatWq+Pjx493v7b777vFvv/225D59v91227n7pk6dWvLzW265xf2sX79+8enTp8eLiopK7nvqqafigwcPdvefd955pV5r6623Lhnjk08+WfLzX375xX2dPXt2fMCAAfE+ffrEp02bFl+xYkXJYz799NOSsZx00klpb8NTTjnF/c6JJ55Y6ucnnHCC+/lOO+0UnzlzZsnPV65cGb/iiivcfQMHDozPmTOn5L577rnH/Vzj+OGHH0r9zjnnnOPu0/7Sv0XbZdSoUe7nN998s9ufnvbniBEj3H033XRTWu9l/vz5JdsvuJ/23HPPku2t/enNmzevZJudeeaZaW+z4LF0+umnx//44w/3c43/+uuvL7nvzTffLPmd4uLi+N577+1+vu+++8bnzp1bcp+Ov9NOO83dN3z48PiiRYtKvd4BBxzg7tN2T5TqPo1p2223dfcdddRR8QULFpTcp+c//PDDS/ZV8Dh66KGHSsa/1157lXw2fv31V/cegvTvIUOGuMd+/PHHaW8/AAAA1E3Eb9mL33TbddddS8UVej3FE7rvuOOOKzfu0/n8PvvsU7KtFB95H330UXzzzTcvea2rr7665L6333675OeDBg2KP/LIIyXbbPny5fG//vWv7r7+/fvHf//992qNUZLxv/vGG2+U/Oz44493PzvmmGPcmL3FixeXxG2HHHJIPF3BY0HvQ2PzHnjgAXds6T59X9m4u6w4vqz7KhqTBvf32LFjS/abtpuP7YP85+/pp59Oe/sBAAAAtV068XBZOS+dlydS3OZjjb///e+l4q/PPvusJOZUPL1mzZqkzxuMmUWxn48LgjGK6N8+p6dYKp1cleLjr776yt0qq6xcmShe1P233XabG1/wuoK/bbXVVvHPP/885Wt88sknJbnMYM4SAFAz0ZIKAHLYZ5995jqbqJNEqg4f6sTyz3/+03V69EsDavk0LUmgJeWmTJni2vWrE8yXX3653u+/8MILrpuiZpVpibbgkuH63nfqUDcVjUVdUdQ9Ro499ljbf//9S3VA1Ky0888/332vpQO1JHmioUOHlppBpg4dfhkEzdbTknbHH398qSUZNKPu6quvdjPeNMtOnToqSkvKaRabunRqGUItnehpxp86c+p96L2qC0jw93wHSHUMCf6OlhPUkhVask8dP3ynkMWLF7vvtWRicLaeZhfqdbTUQmW7g/hx7bHHHqWWh1RXGS1Ft/XWW7vZiplS9xPtSz8rUOPXUooTJkxw/9bx4r344ouu46iWh9Ay8+qC42kG5QUXXOCWy1uyZInrsFJZ6uyjzivajjpugkuFtG7d2q666ir3njUrU8slJqNjzM/uVBdWdYIJ0r9915i333670mMGAABA7Ub8lr34TUvrqTNmMK5Qd1K/1Lm6TZZHy8KrQ6niGS0Tr/jIU2zil+Ari+IfdRz120zb/R//+If7XsuGf/TRR9Uao2QaIyp2C3ZZVcdSdclRd5eKdBHt0qWL268amzdx4kTX3VR0bFc27q6obMSkRxxxRMl+03bTOBMRIwIAAAAVi4czpdhDq+gp96bVK4Ir5vXt29ed9ysOVTyt2CMd6o6pMWpFgmCMIvr3vvvu675X3J0OxcdaySHZag7Zpg6nomsBWuFD1w8U937yySduJQfFzFqxT/GZ4p5ktG8Up2tfabsBAGo2ij4BIIf5hJuSDsmSDZ6CGhX36eReCbvtt9++VCGhklEvv/yyS1ZpObMgLWknKj5UAiiRlk9TQkqBkBIlSq4tW7bMJeGUMExGCUGNWclLLQWeKNlSakoWavziiwoTaWl0BS3xeNy9n4pSMCRa6iCYiAvaZZdd3FeNSe9D/NJuDz74oEuIqqjTU8JWiSwlWf1zKhHml2k86aSTXAKquLi45HdUCKpEpr5Whk/0agnyt956y+1vT0tFKsGp5FWm9ttvv6RJRj9eLWmoZTJ88tkfR8mWjtDz+P1amX3n+dfTsZZs6Qt9JvQ5SPV6CuqHDBlS7uv4ZRC1PAYAAABQFuK37MVvAwYMKDXRLvic4ifapRMzaGKeii4TqQCwvJjALzsepG3l91cwJqyuGCWTGPGyyy5z49ISht7AgQNdcvS0007L+HlV4Jns2PYxoopetUx9ZeLuispGTJrsWE9EjAgAAABUPB5Ol3JPfgn2SZMmJX2MJvbp/N9PAkvHvffeax9//LHts88+Se/XpDUJxlA1hR+T4lBdU9DETm1v5ScVd2lym2LVhQsXppzopri0Xbt27ntiGgCo+fLCHgAAoOJ8Asl3+iiPigz33HNPd1NiTZ1hVAT41FNPuQ4kmhF3+umnu84jvXr1cr8zb94891XJuFT0eM8ncJRECs6qS0ymqLOLAotvvvlmvfuTJdzU7USJQznnnHNKdawM0iy14DgqwnfMmTVrVsmsvUTqNuJnzul9KOGo7aqCT3Wp0RjPPfdcN5tQnXjUKWXTTTd1yVRPiT4Ve5555pn26quvupuKQIcPH26jRo2yrbbaqiS4qoyTTz7ZdaCZOXOm63yjBJfGMnLkSPcavlg1U9qHyfhEq44nJfW0DfysRyXPfFeZREo2+32t47OiXWvEv5666aQK5n/++eeUx0qTJk1KdSJKxX/2gslcAAAAIBnit+zFb6mKBH0xnwpjtX2C8VequK+sbaXiUk3Oy3Qc6gKpwlMfN1ZnjJKO4447ziVItT/V/UX7RwWlikO33HLLMrdJRWJExcs67tUtRu9NXTYrGndXVDZi0mTHeiJiRAAAAKDy8XB5VJDoG5wobktF9z3xxBNJY9lUtALH0qVLXdyt2ECvpa+zZ88uidmCDVxqCl+QqsJOrbiR7BqDJnuq2YxiUq2ukIxizx9++MF++eWXKh8zAKByKPoEgBymoCN4Ip8JvzS1bgcddJA9/fTTrgBRibEZM2bY3//+91IdUpJ1wkhm+fLlaQVuPqHolxsISpbIUnLIU1KoPMHHZ8r/rgKadIIaJYaUfNJ70ra79dZbXRCpgkctWaGbuny2bNnSLccX7Nyp75Vgve2221y3He1TLbWom/aREm5Kklam+FPLzasY9eabb3adebTNfZGpOo+qW4kKVDNdUiO4DGCqn69YsaLUcfHTTz+5W1nUwUVjTJV0Tod/PQXiumV6rKQ709R/9vxnEQAAAEiF+C178VuqItJM+OXsytpWqWIeL5MONdUVo6RDE/Mee+yxkmX/dNyoCFS3K664wh1nWili6NChGT1vWdtL9+l9+RixonF3RWUjJk2n6NYfT8SIAAAAQHbi4bLO78uLZ8uKZVM97wUXXGCPP/54qVXzVAiqCZSKpV577TWrifx2UDyXagKknzBaVhdPv4/8pDgAQM1F0ScA5DCf9El14q0Cv8svv9x1lExc9i/RDjvs4JY7S5zx5k/u0w2IfJKnvKSdH3N5STQvmIj74IMP0v69ivDv+ZBDDnFLIGRCAaSWTNBNRZ8+cabl6JTIUldPzbILLgOozp66aekFLa+oZdEVNH766aduH2rpde2/ynS+VCCq5J2CVHX81JhUZKpt+f7777sOoCo0TTc5LH7p9kTBfe+Xr/fbVO8/2QzDbNPraRxaun7rrbeustfxx3G2Ou4AAACg9iJ+q1n8tgomCxOlux1rUoySLi11eP7557sJgCrMfeedd1wnWcWK6or5l7/8xRUXt2/fvtIxYvAYU9eYysbdFVFdMalPZhMjAgAAAOnHw5kKxpiKNdR0pazz83Rj0r/+9a8uJtL5vOKGjTbayBVKqnmLCj/vv//+Glv02aNHD5fv86tuJOOLQcuaSOn3UTYnHgIAqka0ip4XAFANWrVqVapDSSIFJUrWaMkBv3RaWfxSZWrx7/mlv8v6/SOPPNIFQh9//LFbpk1U8JgqeaZlD9T9UhQopZuQUvJTtHx6KhrDnDlzKpWc22CDDcp9z9rmCp60HKGWfRMVdapo0y9TofemTp5K3CqB65eY+Pe//+2+KvCaO3euK8L0+2vzzTd3Syo8/PDDrkhTtPSc3lNFqEOJ9oUKSUVBqbq1aAm/u+++291UTLp48WJXBJqJVEsw+n2r99OlS5e0t6m6rWi5DC3bV1npvJ6663zyySeVWnbPf/b8ZxEAAABIhfitauK3ilL3Eykr1qpoHBZmjFIexa/ff/99SfwXjUZt0KBBrshTK1Soo40mM6ojpyYGZiNG1PHl93GfPn0qFXdXVHXFpP7znSrpDAAAANRF5cXDmVLuyRcwlrW6hL8vnVhWsYAKPkWrIpx66qluwqVWyVNuTRYsWGA1lQpURdcV1GSmrJhNMXsq5L0AIHdQ9AkAOcwnLTTryi+RFqRluzt27Oi+1zLewaUIEikAePHFF933W221VcnPtby46L5kwZgKEl9++WV76aWXXLJRr6nujlpmUAWFyTz55JOuyFDFhltssUVa71VJp2HDhrnv77zzzqSP0XIE++23n02YMMGeeeYZqyjfdUVdTlSUmYwKOfVaBx54YEny6dBDD7X999/fHnnkkfUer1mEgwcPLinEFHX/3HHHHe3www9POvNu5MiRJd/738mUElrqKqolILXNEw0ZMqRkhqOSuZl46KGHkv78rrvucl+1b30g7LfpU089lXLpvtNPP9323ntvO/HEE0v9vKwOp6nu86+nZe2TBbc6PpXonjhxol188cVWUT7A959FAAAAIBXit6qJ3yrKr76gbZGsyFKxoCb1ZUt1xSjl0VLu22+/vR188MGuwDTZceqXUc80RlSH2mSxq48R+/XrZ+3atatU3B2MA5MVgqa6rzIxaUViRF9QDQAAAKD8eDhTWl1ixIgR5cacivdk9OjRJT/XxDcvGDdocpznm7gEadyKjyuTs6vqGFfdObUCw3333bfe/atWrbIZM2a478eNG5f0ORSrKmYUYhoAqPko+gSAHKYluxXYKBGjGWiJVHCnpIUCmDfeeMMVJL799tvrBSPqrqKEz7x581wRoGaueePHj3fdYhSIHX300aVmsWlG2EknneS+V9JIM8O0ZJqKGOXqq692icNgoujZZ5+1f/zjH+57dcHMpFjumGOOcd1itIShkqDBbjCauabXVWJUidKdd97ZKkqdMNVxU0m3ww47zC1H6Kk48/rrr7cHHnjA/Vv3+wBxl112cV+vvfZaV9AZpGSh7/DpE7EKMpVoVQCl5ex8ICXqsuMTfVpOT8tHVMSGG27oOthon0+dOrXU/tN7mTZtmnstHUd635lQIlndSH3Bqr5qzAqideypm6in4laNQ8eRimOD3VX0+meffbbrNKMEnT9+EpeG/OGHH9YbQ6r7dKyr85E6yhx11FGuM4ynhO7xxx/vEosap5YTrAi9308//dR9r2Q5AAAAUBbit6qJ3ypKRYD9+/d38YhiF3V5DI5PBZiZFj2WpTpilHQoBvXFuzreggWXer86BvT+dRymW+TrKT4644wzSpZ51/PdfvvtNn36dPdvvcfKxt3iJy4Gt2F591UmJs3Ehx9+6L4SIwIAAADpx8MVoZhX3T5ff/11O/PMM0utXqEJj4ojVOioPNmuu+66Xl4pMW4IFjled911pSZiagULPZ9WZ5B0C1cV6ynmSjXRLZuaNGniYk257LLL3IRDH9Nq26hzqXJpbdq0cZPdktHKhLoGoWsF2mcAgJptXc9rAEBOUjJIM9lUZKclzzbbbLP1HjN27Fh3cn/uuee6k3V1fGzcuLHr3KFgSElA3+Vi+PDhdtVVV5Uswyf5+fkuuNFSbypcHDNmjFvKQEkYJRl18q9uHeecc07J7yiBohlx9957r3vda665xiUU9VqLFi0qSTIqGZQJJU3OO+88O+uss1ziSDPVevTo4ZKHSpxpRp6WG9CSdBp3ZWibHXHEEW6b7bvvvtapUyfXAUczA5UkksmTJ9s+++xT8juTJk1ySSIVfCr4U+Ckmzrs+KJEbb8999yzZNtqe2t7qduIiii1JIWSWXodJcoUWF100UWVej8q7NQ433nnHXc86L3oebWP9F60v7WfWrRokdHzah9qiQvNDNRzasxLly51x6WSusGAUD9T0k7HkZarVDJaCWONQ0GyTwqedtpppWZcio4vdSPSMoNaXlHJQR0DZd2nfXXDDTe4AFf7ZJtttnHHrRJ433zzjTt+dfyraNUvL5gpJdv1PM2aNXPLIQIAAABlIX6ruvitIrTdFCsdcMABruBQ216T7ZTYU0JOCTMV0CpeCW7jiqqOGCVd2s9K8qm4U7GZ4jkdZ0p4+g6xJ5xwghtfJnScaOULLQuveE/H0M8//+ze48knn1wyAbIycbf4WFP7TR1qNE5NvizrvsrEpOnS+1Xsr/04atSoCj0HAAAAUFfj4UxpEuQFF1xgf//73+3++++3xx57zMWcOrdXjCWa+KV4IBhzKqejyYc6d9cEQBV7HnfccS4O0KTKp59+2m699VZ7+OGHXYyihi2+C6jO8zVJU3GtCim1ykVZNKnOxyrKYVU1xVeK67Q9FMMr5tVqC5oEqu2i937llVe6uCsZ7RvR/gkjTgcAZIaiTwDIceouqSDptddec7Paktlpp51cIKKl1jTjTSf3SqIo4ackm4IYPWbbbbdN+vtKkqhLpRJ1L7zwQkmCTgkxJUqUiAye/Cuhoy4Zer577rnHzdpTUkUdRdRNRcvVKaFWEXvssYdbJv2OO+5wiTJ159DrKZDTsobqiNKyZUurLI1VwZiCOnWmUTCmBI4Sf0pUKUGmJF2QEoFKsCpZqqBQiULNJtTvqIOJ9pU62ASXJFeiVt1LbrvtNhdMKdmkBJGCMP2O3o9fWq+itP+UeFMyVUvnKeDT/lNBqvaRugRVpJOoAmmNX+9XyUIFt+qeoqBSMycTKXGscejx6hik7aOlInynGS3Zt+mmm673eyqgVbL5+eefd9tHych07hs4cKArBtVSgvqM6LhVAlfddbTUpN53snGmS5850WfHL2MPAAAAlIX4rWrit4rq2rWr21Y33nij2y+KURTXKG479thj3XZRnKHCwGyo6hglXYoF1fVFMaKORR1f6nSqfaFjS4WwG2+8ccbPq/2pQks9rzrh6DjTflbclmxliYrE3aIuPfpcaN8p+aptqA42mkBZ1n0VjUnT5Vf8UCwf5nENAAAA5Go8nCmd/yvOUvzrY0518lQ8o/hX8ayWPE+kCZQqGFXsq5hPkyTl8ssvt5EjR7qiSf1MMYqPjTUZTfGNvleeTe9lwoQJVpMo7tHkS8VRiu/VvET5O+UcFWOVl3P0MY1f2RAAULNF4rrqCwDIWUr8KemnZJGSJBVdBhxA+rQEoQJ7Lc3xzDPPuOQhAAAAUB7it9yiotVZs2a5jpRhLEGP3KKE8ieffOKWs69M8SgAAABQGxEP12yauKdJgJocqcY22VjxAgBQtaJV/PwAgCqmk+4jjzzSfa+ZZwCq3iuvvOI6jGoWJwWfAAAASBfxW82hTpdajvz8889Pev/ChQtLlt/r169fNY8OuUarfKjgUx1bKfgEAAAA1kc8XLPNmDHDfT3qqKMo+ASAHEHRJwDUAio86969u1sSTZ0HAVQtLVeopQoV/AIAAACZIH6rGQYMGOCW8dOSd1pyPbgYkpYFP+6449zS4CNGjHDL0QNl+de//mWRSMQdNwAAAACSIx6umbQvHnnkEbdvWOUCAHIHRZ8AUAvk5eXZRRddZCtWrLDrrrsu7OEAtdqzzz5rH3zwgZ1wwgnWpUuXsIcDAACAHEP8VjNsuOGGNmnSJLfE4EknnWSjRo1yy7mr++e2225rH374ofXs2dMuvvjisIeKGk4dPrU85f77729Dhw4NezgAAABAjUU8XDNpX/z5559u32gfAQByQyQenMYOAMhp06ZNcx0IlWzo1q1b2MMBah11+tlpp52sTZs2duedd1o0yvwZAAAAVAzxW83w1ltv2fTp091S7osWLbKCggI3uWuHHXawffbZxxo2bBj2EFHDHXjgge7YefTRRzleAAAAgDQQD9ccWgFj/Pjx9pe//MWOP/74sIcDAMgARZ8AAAAAAAAAAAAAAAAAAAA5gPZUAAAAAAAAAAAAAAAAAAAAOYCiTwAAAAAAAAAAAAAAAAAAgBxA0ScAAAAAAAAAAAAAAAAAAEAOoOgTAAAAAAAAAAAAAAAAAAAgB1D0CQAAAAAAAAAAAAAAAAAAkAMo+gQAAAAAAAAAAAAAAAAAAMgBFH0CAAAAAAAAAAAAAAAAAADkAIo+AQAAAAAAAAAAAAAAAAAAckBe2AMAkEWrV5u9+Wbpn40caZafH9aIAAAAAAAAANQWXH8EAAAAAAAIXSQej8fDHgSALFm82KxNm9I/W7TIrHXrsEYEAAAAAAAAoLbg+iMAAAAAAEDoWN4dAAAAAAAAAAAAAAAAAAAgB1D0CQAAAAAAAAAAAAAAAAAAkAMo+gQAAAAAAAAAAAAAAAAAAMgBeWEPAEAWNW9uNmvW+j8DAAAAAAAAgMri+iMAAAAAAEDoIvF4PB72IAAAAAAAAAAAAAAAAAAAAFA2lncHAAAAAAAAAAAAAAAAAADIARR9AgAAAAAAAAAAAAAAAAAA5ACKPgEAAAAAAAAAAAAAAAAAAHIARZ8AAAAAAAAAAAAAAAAAAAA5IC/sAQDIorVrzebMKf2zPn3M8vioAwAAAAAAAKgkrj8CAAAAAACELhKPx+NhDwJAlixebNamTemfLVpk1rp1WCMCAAAAAAAAUFtw/REAAAAAACB0LO8OAAAAAAAAAAAAAAAAAACQAyj6BAAAAAAAAAAAAAAAAAAAyAEUfQIAAAAAAAAAAAAAAAAAAOQAij4BAAAAAAAAAAAAAAAAAAByQF7YAwAAAAAQvmuuucauvfZa9/3uu+9uF154YcrH/vrrr7bFFlvY2rVrbdiwYXbXXXdZbfDHH3/YTTfdZM8995z98MMPVq9ePevXr58ddNBBtu2226b9PG+//bb961//so8//tj+/PNPa9OmjW299dY2ZcoUa9GiRZW+B6Am4e+Kufdz66232iOPPGLz58+3hg0b2pAhQ9zfg4022mi9xy9ZssSuu+46e/nll23x4sXWoUMH22OPPezggw+2vLzyL+GMGTPG/f0qS23avgAAAAAAAAAA1EUUfQIAAAAo5cUXX7Q1a9a4osdknnnmGVfIVJssX77c9ttvP5szZ47179/fff/777+7AtCjjz7apk6dakcccUS5z/Pwww/b6aefbg0aNHCFoq1atbKPPvrIpk+f7oq4ZsyYYa1bt66W9wTUJHXx74ocd9xx9sILL1jXrl3d3xUVdT799NP25ptv2o033mibb755yWOXLVtmBx54oH311Ve23XbbWZcuXeyNN96wyy67zD755BO7+uqry329SZMmub9dyTz44IO2YMECGzFiRFbfIwAAAAAAAAAAqF4UfQIAAAAooYJEdZdTQdKWW26Z9DFPPfWUFRYWus6YtcXNN9/sCj732WcfO/vssy0SiZQUbKnL3lVXXWXjxo1zhVupLF261M4//3wrKChwxVXdu3cvuU+/f/3117virYsvvrha3hNQU9TVvysq2FTB54ABA+yee+6x+vXru5/7zp3nnHOOPf/88yWPV4fPL7/80s466yxXIConnHCCHX/88fbss8+6InQVg5Zl8uTJSX+u31fBp7qp/vWvf83q+wQAAAAAAAAAANUrWs2vBwAAAKAGU2GjqBNdMgsXLrT333/fxo4da7WJ3q8KPU888cSSgk9p27at7bvvvlZUVGSvvvpqmc+h+1Wwtueee5Yq+BQVWeXn57tun0BdU1f/rsycOdN93WWXXUoKPkWdNvU3Yt68efbLL7+4n61cudLuv/9+a9++vSs+92KxmP3tb39z3993330VGode48wzz7QmTZrYhRdeWOpvHAAAAAAAAAAAyD0UfQIAAAAo0adPH1eMpKWYV69evd79KtoqLi62nXbaqczudocccohtuummNmjQINt5553tlltucUs7J/ruu+/sH//4h1sKXY/daKONbMcdd7Qrr7zSFUEljk1LrGvpYxVR6vn1+L322st1sUukZZL1O1pyvTwHHXSQ66anoqhEKtaU8joQ9ujRw3Xl23777de7T4VbeXl59ueff5Y7FqC2qat/V5o3b+6+/vDDD6V+rm2gZd611H3jxo3dzz7++GP392HYsGEWjZa+VNO5c2fr1KmTvfvuu64APVN63+pErL9P6roKAAAAAAAAAAByG8u7AwAAAKksXlzx323UyKxhw+T3/fyzWTxesectKDArLLSqtMMOO7hlhlVktfXWW5e678knn7T+/ftbt27dkv7urbfe6pYvV7GTCq6aNWvmnueSSy5xSzvfdNNNrvhRPv/8c9t///1t7dq1rsNfhw4d7Ndff3XLId9www32zTffuGXRE4u59t57b7fMupZI/vnnn13B2LHHHuvGHOwUuNtuu7kCqr59+5b7njWOZOLxuFtSWVToVRZtF92See2111xBV6r7UUfU0b8pdfXvijqcXnPNNW5p9w033NCNfdmyZXbZZZe57psqYvVF5d9++6372qVLl6TPpcLP77//3t00znR98cUX9uCDD7qiW71HAAAAAAAAAACQ+yj6BAAAAFJp06biv3vttWZTpiS/T8VCKtKqiLPOMjv7bKtK6oinQqdnnnmmVHHW/PnzXTe6k08+Oenvqdjq0ksvtZ49e9pdd91lLVq0KCmcPOOMM+yhhx6y22+/3f7yl7+UdJ9bvny53XHHHW65Y2/q1KmuOErFlrq/kYrd/kcFW+q0p+fzSxRvttlmdvrpp9vdd99dqjhr9913r/S2ULGW3rMKrrbYYosKPcfvv/9u//d//+e+11LxqMPq6N+Uuvp3RUWqWpL91FNPLbl56rqpDqPeb7/95r6qoDUZ3xFURaOZUMGsuqjqtdRxGAAAAAAAAAAA5D6WdwcAAABQioqrevfuvd5SzOrGp4KoVEswz5gxwxUXqbjKF2aJfueUU05xSxY/8MADJT9XkdWFF15YqjBLWrZsab169XLP5QuhgrQEsy/MEl+QpQ542fTUU0/ZBRdc4DoIXnTRRW4p5kypuOzwww93XfxGjx5tEydOzOoYgVxRF/+u6H1ef/319uGHH7pOpgcddJDtuuuuVlhY6LqTPvroo6UeK77zZyL/81WrVqX9+osXL7YnnnjCLQ0/fvz4Cr8PAAAAAAAAAABQs9DpEwAAAEDSpZi1BPLrr79uY8aMKSnO2njjja19+/ZuOeREn3zyifuq5ZY/++yz9e5XoZOKH//44w/3/ahRo9zPVYClbn7q+Ddv3jz79NNP3U1UoBWkLnjBwi9p0qSJ+xosJMtGh8/zzjvPFYFpWemhQ4dm/BwquFJ3Pb2XjTbayKZNm1aqqAyoa+ra3xX97XjkkUds0qRJrmuo//wfd9xxtt9++9lpp51mPXr0sEGDBlmDBg3cfWvWrEn6XH4ceo/pUsGnnk/Luqt4HQAAAAAAAAAA1A5c9QcAAACQdClmFWc9/fTTrjhr7ty59sUXX9g//vGPlL/jlx2ePn16mc+tx6lwadGiRa6D5rPPPmtr165197Vu3doVgLVt29Z12NMSzkH169df7/l8IVXiYytCxWCXXHKJ3Xbbba6z3uWXX27bbbddxs8zZ84cV/D5008/uY6DWtY6uJw0UBfVpb8r+luiDqRall1L1wcLvjt06GDHH3+861T64IMPuqLPpk2blnq/iX7//Xf3NZO/Iy+88EKZXVQBAAAAAAAAAEBuougTqE2UKHz55fV/BgAAKmbRoor/blmFObNnq5KoYs9bUGDVoVu3bta3b1976aWXXIc5deOLxWI2bty4lL/jO9C98cYb1qpVqzKfX4VUWvZ89uzZtu+++9rOO+/sln/2hU977bVX1pdrL4/e54knnmjPPfec6/ynQs2KdPh866237Oijj3ZLu0+YMMEtEZ9qyWbUMXX4b0pd+7vyyy+/uKXY9frJPv99+vRxX3/44Qf3tXv37u6rupImo58XFBS4gtF0qNOplpVXl+GOHTtW4p0AAJCA648AQqAJXbfeeqvrpK9u/g0bNrQhQ4bYlClT3Dkv/h97/wKv1Zj/j//vvautI+lEKWbECIkhUZhQchw5lEPp4GwcRo2z+TqLMOM0QsZgwmjUMIxBKOWQlGFIhBjTwaFIJ1Gq/Xus9f/U39aORvfea9/3fj4fj/ux7n2t1b3e28w0rmu97usNAABUN0KfUEiSh4l77pl1FQBQOJo2rZjP/YHgUlXalS/Z6TJpq5zszNexY8do3LjxGq9PwlxJ++XXX389unTpUuZcEn5KPitp4dy/f/90J8wkmLX77rvHpZdeWubapB1x0q45V7t3ro3ly5enLZeTMFrLli3jj3/846oQ1v/ilVdeiVNOOSW+/vrr9Dhw4MAKqZc8Vc3/TqlOf68kQdMk7JmETJOA63eDn//5z3/SY7NmzdJj27Zt04DrxIkT011Ci4uLV12bPNROwqGdOnVKQ7JrI/nnlfy99mOC6wDwvaw/AhlI5uvJTvabbbZZ9OrVK7744ot0PpHMK26//fZ0DgAAAFCd/P+fIgAAAHzL/vvvnx6TBygffPBBGtb6Pj169EiPSXv0pMXyt914443x5z//Od15Lmk3vLKdcnLdyhbMiSSkdPXVV8f8+fPTn799riLdcccdaeAz2UXvL3/5y48KfCYPnZKWzUngM3kgJfAJ1ffvlSTk2a1bt/SeSUv7b5s7d+6qsWQ34ERS+0EHHZSGRIcNG1am9uR3T/Tu3Xut7//mm2+mx2233TYnvw8AAGQl2fU/CXwmX5T6xz/+ERdeeGFcd911ceedd6b/vnzZZZdlXSIAAECls9MnAABQrlatWsV2222XBqpWBpi+z4477hinnnpq3HrrrXHggQfG3nvvne7g969//Sv+/e9/py2GL7jgglVtnpPrX3311TTUlez2l+zE9/zzz6e78SV/LmmPnLQo/rEeeuihdHe8rl27prsFrklyjyT0mUiue/DBB8u9LtkxL6kz8fLLL6c78iXXJ5+fuPvuu2POnDmx/vrrpw+e/vCHP5T7OUn7uW/v4gfVSXX5eyWR1JWEL5OH0RMmTIgOHTqkIdDRo0enNRx33HGr/k5JJKHxF154IQ2oJtcnreGTnYumTJmShmW/u9PpPffcEwsXLoxDDz003aH421a2id9oo41+9O8KAABVQbKLfaJ79+6rvuiV2HXXXdMvbE6bNi399/zv6yAAAABQaIQ+AQCANUp24Zs8eXLsscce0aBBgx+8PtnhMgl03XvvvWmwKWlrnOyemYSbjj/++Gjyf22ok135hgwZEjfffHM899xzcd9996XnWrdune7akQSizj333Hj22Wd/dHvihx9+OA1mJqGw7wtnJS3ZFy9enL5Pak5e5Unata8MaCWfe8stt6Rhq5Whz+T3SCxYsCA9tya/+tWvhD6p1qrD3yuJ5N4jR46MoUOHxtNPP53WnwRdt9lmmzjmmGNiv/32K3N9o0aNYvjw4ekuoGPHjk0Dn0mY85xzzom+ffumv9+3JTuCJgHUJEz63dBnsptoIgmhAwBAPttwww3TY/Lvvt+WzAuSjhu1atVaq3kFAABAISkqLS0tzboIAAAAAAAAgG9Lgp3Jrv/JLveXX3557LPPPumXLX/3u9/FP//5z/TLYOedd17WZQIAAFQqoU8oJCtWRHz+edmxpKWJnaQAAAAAgHVl/RHIwPTp0+P888+Pf/3rX2XGBw4cGCeffPJqu+IDAAAUOu3dC9SKFSvSV1WRtK/UwrISJAuuzZqVHZs9O6Jp06wqAgAAAAAKhfVH8ui5xI/hWUbVk7Rxv/XWW+O1116LbbfdNtq3bx/z58+Pp59+OoYOHRobbbRRHHrooVmXCQAAUKmEPgtQsqjSu9+x8fGcz6KqaN60Sdz/57stlgAAAAAAQCE+lziud3wy55PIZxs33Tjuv+t+zzKqkGuuuSYefvjh6Nu3b1x44YWrdvU888wzo1evXnHBBRdE69ato127dlEovv7NtVmXAFBl1L7+3KxLyHv+fwWgMP8/ReizQBdXksDnSdffHcU1amRdTqxYvjzu+M2xaV0WSgAAAAAAoLAk6/9J4PP0YadHcY38fA6wYvmKuKXvLZ5lVCHJfxYjRoyIBg0axDnnnFOmjXuLFi1iwIABcd5558XIkSMLKvQJAADwQ4Q+C1gS+KxR03/EAAAAAABAxUsCnzVqZr8ZBYXh888/jyVLlsQWW2wRJSUlq53faqut0uOsWbMyqA4AACA7vqoIAAAAAAAAVCkbbLBBGvacOXNmLF26dLXz//nPf9Jjs2bNMqgOAAAgO0KfAAAAAAAAQJWSBD67desW8+fPj5tuuqnMublz564aO/jggzOqEAAAIBt6fwMAAAAAAABVzgUXXBBvvvlm3HnnnTFhwoTo0KFDGgIdPXp0zJs3L4477rjo2LFj1mUCAABUKqFPAAAAAAAAoMpp0qRJjBw5MoYOHRpPP/103HvvvekOoNtss00cc8wxsd9++2VdIgAAQKUT+gQAAAAAAACqpAYNGsTZZ5+dvgAAAIgozroAAAAAAAAAAAAAAH6Y0CcAAAAAAAAAAABAHhD6BAAAAAAAAAAAAMgDQp8AAAAAAAAAAAAAeUDoEwAAAAAAAAAAACAPCH0CAAAAAAAAAAAA5IGaWRcA5ND660c8+ODqYwAAAAAA68r6IwAAAEDmhD6hkKy3XkTPnllXAQAAAAAUIuuPAAAAAJnT3h0AAAAAAAAAAAAgDwh9AgAAAAAAAAAAAOQBoU8AAAAAAAAAAACAPCD0CQAAAAAAAAAAAJAHhD4BAAAAAAAAAAAA8oDQJxSSOXMiiorKvpIxAAAAAIB1Zf0RAAAAIHNCnwAAAAAAAAAAAAB5QOgTAAAAAAAAAAAAIA8IfQIAAAAAAAAAAADkAaFPAAAAAAAAAAAAgDwg9AkAAAAAAAAAAACQB4Q+AQAAAAAAAAAAAPKA0CcAAAAAAAAAAABAHhD6BAAAAAAAAAAAAMgDQp8AAAAAAAAAAAAAeUDoEwAAAAAAAAAAACAPCH0CAAAAAAAAAAAA5AGhTwAAAAAAAAAAAIA8IPQJAAAAAAAAAAAAkAeEPgEAAAAAAAAAAADyQM2sCwByqH79iFtuWX0MAAAAAGBdWX8EAAAAyJzQJxSSOnUiTjst6yoAAAAAgEJk/REAAAAgc9q7AwAAAAAAAAAAAOQBoU8AAAAAAAAAAACAPCD0CQAAAAAAAAAAAJAHhD4BAAAAAAAAAAAA8oDQJwAAAAAAAAAAAEAeqJl1AUAOffZZxNZblx17++2IJk2yqggAAAAAKBTWHwEAAAAyJ/QJhaS09P+38PrdMQAAAACAdWX9EQAAACBz2rsDAAAAAAAAAAAA5AGhTwAAAAAAAAAAAIA8IPQJAAAAAAAAAAAAkAeEPgEAAAAAAAAAAADygNAnAAAAAAAAAAAAQB4Q+gQAAAAAAAAAAADIA0KfAAAAAAAAAAAAAHlA6BMAAAAAAAAAAAAgDwh9AgAAAAAAAAAAAOQBoU8AAAAAAAAAAACAPCD0CQAAAAAAAAAAAJAHhD4BAAAAAAAAAAAA8oDQJwAAAAAAAAAAAEAeqJl1AUAO1a0bccklq48BAEAe+fLLL2Po0KHx1FNPxaxZs6JWrVqxzTbbRL9+/WKfffYpc+0XX3wRQ4YMiWeffTbmzJkTLVq0iMMPPzyOPfbYqFnTlBcAIKesPwIAAABkzhMwKCT16kVcemnWVQAAwI+2aNGi6NWrV7zzzjux7bbbpu8XLlyYBkBPP/30+M1vfhMnn3xyeu2CBQuiT58+MW3atOjWrVtsuumm8eKLL8bvfve7mDx5ctx8881Z/zoAAIXF+iMAAABA5oQ+AQAAqDL++Mc/poHPo446Ki699NIoKipKx88888x0B8+bbrop9ttvv9hss83SHT7fe++9uOSSS9JwaGLgwIExYMCAGDVqVBoUTcKgAAAAAAAAUCiKsy4AAAAAVnriiSfSoOdZZ521KvCZ2GijjeLoo4+O5cuXx7hx4+Lrr7+OBx98MJo3b54GRFeqUaNGnHvuuen74cOHZ/I7AAAAAAAAQEWx0ycAAABVRr9+/dJ27uuvv/5q50pKStLjl19+GW+88UYsXrw49tlnnyguLvt9xlatWkXLli1j0qRJaUg0CYICAAAAAABAIRD6BAAAoMro3bt3ueOlpaVpu/bEVlttFR9++GH6ftNNNy33+iT4OXPmzPSVtIIHAAAAAACAQqC9OwAAAFXeX/7yl3R3zyTMuccee8S8efPS8YYNG5Z7fYMGDdLjggULKrVOAAAAAAAAqEh2+oRCMnduxB57lB17/vmIRo2yqggAANbZ448/HoMGDYqaNWvG4MGDo1atWrF06dIyLd+/a+X4kiVLKrVWAICCZv0RAAAAIHNCn1BIli+PeOut1ccAACCPd/i84ooroqioKK655ppo3759Ol67du30+M0335T751aGQuvVq1eJ1QIAFDjrjwAAAACZE/oEAACgylmxYkVce+21cffdd6e7dv7+97+Pbt26rTq/wQYbfG/79oULF6bH+vXrV1LFAAAAAAAAUPGEPgEAAKhSkl06zzrrrHjqqaeiYcOGMWTIkFU7fK60+eabp8fp06eX+xnJeN26daNFixaVUjMAAAAAAABUhuJKuQsAAACsheXLl8eZZ56ZBj5btmwZDzzwwGqBz0Tbtm3T1u0TJ05MdwX9thkzZsSsWbNihx12iBo1alRi9QAAAAAAAFCxhD4BAACoMu64444YM2ZMukPnX/7yl1U7en7XeuutFwcddFDMnDkzhg0bViY0mrSFT/Tu3bvS6gYAAAAAAIDKoL07AAAAVcK8efPS0Gdi6623jgcffLDc65KdPzt27BgDBgyIF154Ia6++uqYMGFCbLHFFjF+/PiYMmVK7L///tGlS5dK/g0AAAAAAACgYuVt6HPZsmVx1113xcMPP5y27qtTp078/Oc/j9NOOy223377Mtd+8cUXMWTIkHj22Wdjzpw56Y4xhx9+eBx77LFRs2be/iMAAAAoKK+88kosXrw4fT969Oj0VZ5TTjklDX02atQohg8fHjfddFOMHTs2DXwmLeHPOeec6Nu3bxQVFVXybwAAAAAAAAAVK28Tj2eeeWY888wzsdlmm0WvXr3SYOcTTzyRPuS7/fbbY/fdd0+vW7BgQfTp0yemTZsW3bp1i0033TRefPHF+N3vfheTJ0+Om2++OetfBQAAgIjo2rVrvPPOO//Tn2nWrFkMGjSowmoCAAAAAACAqiQvQ59JaDMJfLZt2zb+8pe/xHrrrZeOr9y987LLLounn346HUt2+HzvvffikksuScOhiYEDB6ZtAEeNGhVPPfVUGgYFAAAAAAAAAAAAqMqKIw+9/vrr6bF79+6rAp+JXXfdNTbffPOYPn16fP755/H111/Hgw8+GM2bN4+jjjpq1XU1atSIc889N32ftAIEAAAAAAAAAAAAqOryMvS54YYbpsdZs2aVGV+6dGna5r1WrVrRoEGDeOONN2Lx4sXRoUOHKC4u+6u2atUqWrZsGZMmTYrly5dXav0AAAAAAAAAAAAA1SL0ud9++0Xjxo3T1u4PP/xwLFq0KD766KM4//zz0x0++/TpEyUlJfHhhx+m12+66ablfk4S/EyCojNnzqzk3wAAAAAAAAAAAADgf1Mz8nSnz6QtexLyXPlaaeDAgXHyySen7+fNm5ceGzZsWO7nJLuBJhYsWFApdQMAAAAAAAAAAABUq9BnsjvnrbfeGq+99lpsu+220b59+5g/f348/fTTMXTo0Nhoo43i0EMPTa9LJLt+lmfl+JIlSyq1fgAAAAAAAAAAAIBqEfq85ppr0rbuffv2jQsvvDCKiorS8TPPPDN69eoVF1xwQbRu3Tpq166djn/zzTflfs7KUGi9evUqsXqoQMl/5089dfUxAAAAAIB1Zf0RAAAAIHN5F/pcsWJFjBgxIm3Nfs4556wKfCZatGgRAwYMiPPOOy9GjhwZ22233fe2b1+4cGF6rF+/fiVVDxWsQYOIIUOyrgIAAAAAKETWHwEAAAAyl3ehz88//zxtx77FFluU27Z9q622So+zZs2K7t27p++nT59e7mcl43Xr1k3DogAAAAAAAEDVsPKZ3/c59NBDY/DgwZVSDwAAQFWRd6HPDTbYIA17zpw5M23P/t3g53/+85/02KxZs2jbtm3aun3ixInpDqHFxcWrrpsxY0YaDO3UqVPUqFGj0n8PAAAAAAAAoHynn356ueOlpaVxzz33xJdffhm77rprpdcFAACQtbwLfSYhz27dusVjjz0WN910U9rifaW5c+emY4mDDz441ltvvTjooIPir3/9awwbNiz69++fnlu+fHlce+216fvevXtn9JsAAAAAAAAA5TnjjDPKHb/rrrvSwOeRRx4ZhxxySKXXBQAAkLW8C30mLrjggnjzzTfjzjvvjAkTJkSHDh1i/vz5MXr06Jg3b14cd9xx0bFjx/TaAQMGxAsvvBBXX311em3SFn78+PExZcqU2H///aNLly5Z/zoAAAAAAADAD3jvvffi+uuvj1atWqXPCwEAAKqjvAx9NmnSJEaOHBlDhw6Np59+Ou699950B9BtttkmjjnmmNhvv/1WXduoUaMYPnx4ugPo2LFj08Bny5Yt0x1C+/btG0VFRZn+LgAAAAAAAMAPSzZ5+eabb+Kiiy6KOnXqZF0OAABAJvIy9Jlo0KBBnH322enrhzRr1iwGDRpUKXVBpubNi/huK5O//z2iYcOsKgIAAAAACoX1RyBD48aNixdffDF222236Ny5c9blAAAAZCZvQ59AOb75Jln1WH0MAAAAAGBdWX8EMnTnnXemx1NPPTXrUgAAADJVnO3tAQAAAAAAANbsrbfeiokTJ0b79u3TFwAAQHUm9AkAAAAAAABUWQ899FB67N27d9alAAAAZE7oEwAAAAAAAKiyRo8eHXXr1o299tor61IAAAAyJ/QJAAAAAAAAVElTp06Njz76KA181qlTJ+tyAAAAMif0CQAAAAAAAFRJr776anps37591qUAAABUCUKfAAAAAAAAQJX05ptvpse2bdtmXQoAAECVIPQJAAAAAAAAVEnTp09PjxtttFHWpQAAAFQJQp8AAAAAAABAlTR37tz02KBBg6xLAQAAqBJqZl0AAAAAAAAAQHkef/zxrEsAAACoUuz0CQAAAAAAAAAAAJAHhD4BAAAAAAAAAAAA8oDQJwAAAAAAAAAAAEAeEPoEAAAAAAAAAAAAyAM1sy4AyKGSkogePVYfAwAAAABYV9YfAQAAADIn9AmFZIMNIkaMyLoKAAAAAKAQWX8EAAAAyJz27gAAAAAAAAAAAAB5QOgTAAAAAAAAAAAAIA8IfQIAAAAAAAAAAADkAaFPAAAAAAAAAAAAgDwg9AkAAAAAAAAAAACQB2pmXQCQQ/PnR5xwQtmxO++M2GCDrCoCAAAAAAqF9UcAAACAzAl9QiFZujRi5MiyY7femlU1AAAAAEAhsf4IAAAAkDnt3QEAAAAAAAAAAADygNAnAAAAAAAAAAAAQB4Q+gQAAAAAAAAAAADIA0KfAAAAAAAAAAAAAHlA6BMAAAAAAAAAAAAgDwh9AgAAAAAAAAAAAOQBoU8AAAAAAAAAAACAPCD0CQAAAAAAAAAAAJAHhD4BAAAAAAAAAAAA8oDQJwAAAAAAAAAAAEAeEPoEAAAAAAAAAAAAyANCnwAAAAAAAAAAAAB5QOgTAAAAAAAAAAAAIA/UzLoAIIdq1Yro3Hn1MQAAAACAdWX9EQAAACBzQp9QSBo2jBg7NusqAAAAAIBCZP0RAAAAIHPauwMAAAAAAAAAAADkAaFPAAAAAAAAAAAAgDwg9AkAAAAAAAAAAACQB4Q+AQAAAAAAAAAAAPKA0CcAAAAAAAAAAABAHqiZdQFADi1cGHH++WXHBg+OaNAgq4oAAAAAgEJh/REAAAAgc0KfUEi+/jri1lvLjl16qUVXAAAAAGDdWX8EAAAAyJz27gAAAAAAAAAAAAB5QOgTAAAAAAAAAAAAIA8IfQIAAAAAAAAAAADkAaFPAAAAAAAAAAAAgDwg9AkAAAAAAAAAAACQB4Q+AQAAAAAAAAAAAPKA0CcAAAAAAAAAAABAHhD6BAAAAAAAAAAAAMgDQp8AAAAAAAAAAAAAeUDoEwAAAAAAAAAAACAPCH0CAAAAAAAAAAAA5AGhTwAAAAAAAAAAAIA8IPQJAAAAAAAAAAAAkAdqZl0AkEM1akRss83qYwAAAAAA68r6IwAAAEDmhD6hkDRqFDFlStZVAAAAAACFyPojAAAAQOa0dwcAAAAAAAAAAADIA0KfAAAAAAAAAAAAAHlA6BMAAAAAAAAAAAAgDwh9AgAAAAAAAAAAAOQBoU8AAAAAAAAAAACAPFAz6wKAHPryy4jrris7ds45EfXqZVURAAAAAFAorD8CAAAAZE7oEwrJ4sURl11Wduy00yy6AgAAAADrzvojAAAAQOa0dwcAAAAAAAAAAADIA0KfAAAAAAAAAAAAAHlA6BMAAAAAAAAAAAAgDwh9AgAAAAAAAAAAAOQBoU8AAAAAAAAAAACAPCD0CQAAAAAAAAAAAJAHhD4BAAAAAAAAAAAA8oDQJwAAAAAAAAAAAEAeEPoEAAAAAAAAAAAAyANCnwAAAAAAAAAAAAB5QOgTAAAAAAAAAAAAIA8IfQIAAAAAAAAAAADkAaFPAAAAAAAAAAAAgDxQM+sCgBwqKopo0mT1MQAAAACAdWX9EQAAACBzQp9QSJIF1zlzsq4CAAAAAChE1h8BAAAAMqe9OwAAAAAAAAAAAEAeEPoEAAAAAAAAAAAAyANCnwAAAAAAAAAAAAB5oGbWBQAAAAAAAACsybhx4+Luu++OyZMnR1FRUbRu3Tr69esXBxxwQNalAQAAVDqhTwAAAAAAAKBKuueee+Lqq6+Oxo0bR/fu3WPFihUxatSoGDhwYHzyySdx3HHHZV0iAABApRL6hELy1VcRd91VdixZ7KhTJ6uKAAAAAIBCYf0RqGTvvPNOXHfddenOnvfee28a/EycfvrpaQD0+uuvj549e0aDBg2yLhUAAKDSCH1CIVm0KFnpKDt2xBEWXQEAAACAdWf9EahkSdBz2bJlcdlll60KfCaaNGmS7vT5xhtvxGeffSb0CQAAVCtCnwAAAAAAAECVM3bs2GjatGnsvPPOq53r0aNH+gIAAKhuirMuAAAAAAAAAODb5s6dG3PmzImf/exnMXv27Pjtb38bu+22W7Rr1y4Nez7zzDNZlwgAAJAJoU8AAAAAAACgSkmCnolFixbFYYcdFi+//HLst99+sf/++8f7778fp512Wtr+HQAAoLrR3h0AAAAAAACoUr788sv0+Prrr8euu+4at912W9StWzcdO+mkk6Jnz55xzTXXxN577x2bbLJJxtUCAABUHjt9AgAAAAAAAFVKjRo1Vr2/6KKLVgU+E61bt44+ffrEN998E6NGjcqoQgAAgGwIfQIAAAAAAABVSoMGDdJjEvZMQp7ftc0226TH//73v5VeGwAAQJaEPgEAAAAAAIAqpVWrVlGzZs1YtmxZlJaWrnY+2eUzUadOnQyqAwAAyI7QJwAAAAAAAFCllJSUxA477BBLly6NSZMmrXZ+8uTJ6bFNmzYZVAcAAJAdoU8AAAAAAACgyunVq1d6HDx4cCxcuHDV+NSpU2P48OHRsGHD6Nq1a4YVAgAAVL6aGdwTAAAAAAAA4HsdeOCB8cILL8RDDz2Uvu/WrVssWrQonnzyyVi+fHkMGjQo6tevn3WZAAAAlUroEwAAAAAAAKiSrrrqqmjfvn088MADMXLkyLTt+8477xy/+tWvYscdd8y6PAAAgEon9AkAAAAAAABUSUVFRXH44YenLwAAACKKsy4AAAAAAAAAAAAAgB8m9AkAAAAAAAAAAACQB7R3h0LStGlEaWnWVQAAAAAAhcj6IwAAAEDm7PQJAAAAAAAAAAAAkAeEPgEAAAAAAAAAAADygNAnAAAAAAAAAAAAQB4Q+gQAAAAAAAAAAADIA0KfAAAAAAAAAAAAAHmgZtYFADm0ZEnEo4+WHTv44Ij11suqIgAAAACgUFh/BAAAAMic0CcUkgULIo44ouzY7NkRTZtmVREAAAAAUCisPwIAAABkTnt3AAAAAAAAAAAAgDwg9AkAAAAAAAAAAACQB4Q+AQAAAAAAAAAAAPKA0CcAAAAAAAAAAABAHhD6BAAAAAAAAAAAAMgDQp8AAAAAAAAAAAAAeUDoEwAAAAAAAAAAACAPCH0CAAAAAAAAAAAA5AGhTwAAAAAAAAAAAIA8IPQJAAAAAAAAAAAAkAeEPgEAAAAAAAAAAADygNAnAAAAAAAAAAAAQB4Q+gQAAAAAAAAAAADIA0KfAAAAAAAAAAAAAHmgZtYFADnUuHHE7NmrjwEAAAAArCvrjwAAAACZE/qEQlJcHNG0adZVAAAAAACFyPojAAAAQOa0dwcAAAAAAAAAAADIA0KfAAAAAAAAAAAAAHlA6BMAAAAAAAAAAAAgDwh9AgAAAAAAAAAAAOSBmlkXAOTQ0qUR48eXHevUKaKkJKuKAAAAAIBCYf0RAAAAIHNCn1BI5s+P2GuvsmOzZ0c0bZpVRQAAAABAobD+CAAAAJA57d0BAAAAAAAAAAAA8oCdPgEAAKjSBgwYEK+++mo899xzq50bOHBgPP744+X+uS233DIee+yxSqgQAAAAAAAAKofQJwAAAFXWLbfcEk888URstNFG5Z5/++23Y4MNNog+ffqsdq5Ro0aVUCEAAAAAAABUHqFPAAAAqpwlS5bEFVdcESNGjFjjNV999VX897//jU6dOsUZZ5xRqfUBAAAAAABAFoozuSsAAACswZgxY2L//fdPA5+dO3de43XvvvturFixIrbaaqtKrQ8AAAAAAACyIvQJAABAlTJy5Mj48ssv45JLLomhQ4eu8bqktXuiTZs2lVgdAAAAAAAAZEd7dwAAAKqUfv36xbXXXhv169f/3utWhj4/+uij6NOnT0ydOjVKS0tjp512itNOOy3atWtXSRUDAAAAAABA5bDTJwAAAFXKLrvs8oOBz8Q777yTHocMGRKNGzeOnj17xo477hjjxo2LXr16xbPPPlsJ1QIAAAAAAEDlsdMnAAAAeal27dqx2Wabxc0331ymxXsS+jzllFPi/PPPj9GjR69VgBQAAAAAAADygZ0+AQAAyEv33HNPPPXUU2UCn4nOnTvHAQccEPPmzYuxY8dmVh8AAAAAAADkmtAnAAAABaddu3bpcfr06VmXAgAAAAAAADmjvTsAAAB5Z9GiRTFt2rS0xft3d/pMfPXVV+kxOQ8AAAAAAACFIq9Dn+PGjYu77747Jk+eHEVFRdG6devo169f2sbv27744osYMmRIPPvsszFnzpxo0aJFHH744XHsscdGzZp5/Y8AAACgWvrggw/iyCOPjC233DIee+yx1c5PmjSpzI6fAAAAAAAAUAjytr37PffcEyeddFK8++670b179zjooIPStn0DBw6Mu+66a9V1CxYsiD59+sR9990X2267bfTt2zfq1KkTv/vd7+I3v/lNpr8DAAAAP07btm1j0003jffeey9GjhxZ5txDDz0UL7zwQjoH3GmnnTKrEQAAAAAAAHItL7e5fOedd+K6665Ld/a89957o3Hjxun46aefngZAr7/++ujZs2c0aNAg3eEzeQh4ySWXRK9evdLrkmDogAEDYtSoUfHUU09Ft27dMv6NIEc23DDizTdXHwMAgAJTXFwcV199dZxwwgnx29/+Np3bJXPEqVOnxvjx46Np06bx+9//Pu0KAQBAjlh/BAAAAMhcXoY+k6DnsmXL4rLLLlsV+Ew0adIkDXS+8cYb8dlnn0WtWrXiwQcfjObNm8dRRx216roaNWrEueeemz4UHD58uNAnhaNmzYhtt826CgAAqBTt27ePv/3tb+mX/SZMmJCGPZN54dFHHx2nnXZaGvwEACCHrD8CAAAAZC4vQ59jx45NH97tvPPOq53r0aNH+kpMnDgxFi9eHPvss0+6C8y3tWrVKlq2bBmTJk2K5cuXp0FQAAAAqma3hzVJdvdMuj0AAAAAAABAdVA2CZkH5s6dG3PmzImf/exnMXv27LSN32677Rbt2rVLw57PPPPMqms//PDD9LjpppuW+1lJ8HPp0qUxc+bMSqsfAAAAAAAAAAAAoFqEPpOgZ2LRokVx2GGHxcsvvxz77bdf7L///vH++++nLfyS9u+JefPmpceGDRuW+1kNGjRIjwsWLKi0+gEAAAAAAAAAAACqRXv3L7/8Mj2+/vrrseuuu8Ztt90WdevWTcdOOumk6NmzZ1xzzTWx9957p7t4JkpKSsr9rJXjS5YsqbT6AQAAAAAAAAAAAKpF6LNGjRqr3l900UWrAp+J1q1bR58+feL222+PUaNGRe3atdPxb775ptzPWhkKrVevXoXXDZVi2bKId94pO7bVVhE18+5/6gAAAABAVWP9EQAAACBzebcSs7IlexL2TEKe37XNNtukx//+97/Rtm3b723fvnDhwvRYv379CqwYKtEXX0T833/vV5k9O6Jp06wqAgAAAAAKhfVHAAAAgMwVR55p1apV1KxZM5YtWxalpaWrnV+5q2edOnVi8803T99Pnz693M9KxpPwaIsWLSq4agAAAAAAAAAAAIBqFvosKSmJHXbYIW3NPmnSpNXOT548OT22adMm3ekzad0+ceLEWLFiRZnrZsyYEbNmzUo/69st4wEAAAAAAAAAAACqorwLfSZ69eqVHgcPHryqRXti6tSpMXz48GjYsGF07do11ltvvTjooINi5syZMWzYsFXXLV++PK699tr0fe/evTP4DQAAAAAAAAAAAAD+NzUjDx144IHxwgsvxEMPPZS+79atWyxatCiefPLJNNA5aNCgqF+/fnrtgAED0muvvvrqmDBhQmyxxRYxfvz4mDJlSuy///7RpUuXrH8dAAAAAAAAAAAAgMIMfSauuuqqaN++fTzwwAMxcuTItO37zjvvHL/61a9ixx13XHVdo0aN0t0/b7rpphg7dmwa+GzZsmWcc8450bdv3ygqKsr09wAAAAAAAAAAAAAo6NBnEtY8/PDD09cPadasWbr7JwAAAAAAAAAAAEC+Ks66AAAAAAAAAAAAAAB+mNAnAAAAAAAAAAAAQB4Q+gQAAAAAAAAAAADIA0KfAAAAAAAAAAAAAHlA6BMAAAAAAAAAAAAgD9TMugAAAAAAAAAgvyxfvjx9lZSUpD8vWrQohg8fHh9//HG0a9cuDjrooKhRo0bWZQIAABQcO30CAAAAAAAAa+2uu+6KXXbZJcaMGZP+vHTp0jj66KPj97//fdx///1x/vnnx4knnpiGQgEAAMgtoU8AAAAAAABgrTzzzDNx7bXXpjt7Lly4MB37+9//Hu+99140bdo0Tj/99Nhqq63ipZdeSnf+BAAAILe0d4dCssEGEc8+u/oYAAAAAMC6sv4IRMRf//rXKC4ujj/+8Y+x2267pWNPPPFEFBUVxcUXXxxdu3aN/v37x9577x2PPvpo9O7dO+uSAQAACorQJxSSkpKIPffMugoAAAAAoBBZfwQi4s0334wdd9xxVeDzq6++ikmTJkVJSUn84he/SMfq168fO+ywQ7z66qsZVwsAAFB4tHcHAAAAAAAA1krS1r1Jkyarfp44cWIsW7Ys2rVrlwY/V0reL1myJKMqAQAACpfQJwAAAAAAALBWNt5445g1a9aqn5977rm0tXunTp1Wja1YsSLefvvtaNq0aUZVAgAAFC6hTwAAAAAAAGCtbL311mmL9xEjRsSECRPikUceSce7dOmSHr/55pu47rrr4qOPPooOHTpkXC0AAEDhqZl1AQAAAAAAAEB+OOmkk+LZZ5+Niy++OP25tLQ09txzz/jZz362Kvw5Z86caNCgQXotAAAAuSX0CYVkxYqIzz8vO9a4cUSxTX0BAAAAgHVk/RGIiLZt28Zdd90Vt956a8yePTt22WWXOOuss1adb968efzkJz+JSy65JDbffPN1vt8DDzwQl1566RrPv/TSS9GoUaN1vg8AAEC+EPqEQpIsuDZrVnZs9uyIpk2zqggAAAAAKBTWH4H/s/POO8fdd99d7rlhw4bFeuutl7N7vf322+mxf//+Ub9+/dXO16lTJ2f3AgAAyAdCnwAAAAAAAMCPsmTJknTHz1q1asXGG2+cHnNp6tSpUbt27TjvvPOi2M7CAAAAYWYEAAAAAAAA/E/Gjh0bvXv3jp122im6desWN9xwQzp+2mmnpe3YFy9evM73WLFiRbz77rux5ZZbCnwCAAD8Hzt9AgAAAAAAAGvt5ptvjttuuy1KS0vTMGZyTF6JadOmpYHQZIfOpNV7SUnJj77Phx9+GF999VW0adMmh9UDAADkN1+JAwAAAAAAANbKuHHj4tZbb41mzZrFjTfeGJMmTSpz/vrrr48tttgiXn/99RgxYsQ63SsJjiaKiopi4MCBsccee0S7du2iR48e8dhjj63TZwMAAOQroU8AAAAAAABgrSS7d9aqVSvuuuuu2G+//aJevXplzm+33Xbxpz/9Kd3h85FHHslJ6PPBBx+Mzz//PA4++ODYZ5994v3334+zzjorDZgCAABUN9q7AwAAAAAAAGtl8uTJsdNOO0Xr1q3XeE2yC2j79u1jypQp63SvpGX8JptsEmeccUYceuihq8ZnzJgRRx99dAwdOjR+8YtfpPcCAACoLuz0CQAAAAAAAKyVr7/+erXdPcuT7Ab61VdfrdO9kt08x4wZUybwmWjVqlX8+te/Tt8/+uij63QPAACAfCP0CQAAAAAAAKyVFi1axFtvvRUrVqxY4zXLli1Lr2nevHmF1dGuXbv0OH369Aq7BwAAQFUk9AkAAAAAAACslb333js++eSTuPnmm9d4zZAhQ2LOnDmx5557/uj7JKHSN998MyZOnFju+cWLF6fH2rVr/+h7AAAA5KOaWRcAAAAAAAAA5IcTTjghHnvssRg6dGi88sorseuuu6bjH3/8cYwYMSJGjx4d48aNi4YNG8bxxx+/Tvfq06dP2iL+xRdfjMaNG5c5l9w7sd12263TPQAAAPKNnT4BAAAAAACAtdKoUaO466674ic/+UkavEx29Uwk7y+++OIYO3ZsbLzxxnHHHXdE06ZNf/R9iouLY7/99ovS0tK47rrryrSTnzp1aho6rVu3bvTo0SMnvxcAAEC+sNMnAAAAAAAAsNa22GKLdLfPp59+Ol566aV0l88klJmEPHfZZZc44IADoqSkZJ3vc/bZZ8e//vWvePjhh+Odd95JP/vTTz+NZ555Jr3fDTfcEBtttFFOficAAIB8IfQJAAAAAAAA/E9q1KiR7sSZvCpK0tI9aRl/2223pQHT++67L+rVqxedO3eOU045Jdq2bVth9wYAAKiqhD4BAAAAAACAKmmDDTaI888/P30BAAAg9AmFZf31Ix58cPUxAAAAAIB1Zf0RiIi+ffuu9bVFRUXx5z//uULrAQAAqG6EPqGQrLdeRM+eWVcBAAAAABQi649AREycOHGtwp6lpaXpEQAAgNwS+gQAAAAAAADWyi233FLu+IoVK2L+/Pnx6quvxj/+8Y/o3r17DBw4sNLrAwAAKHRCnwAAAAAAAMBa6dq16/ee79mzZ3Tp0iXOOOOM6NSpUxx44IGVVhsAAEB1UJx1AQAAAAAAAEBhBUO33nrruOeee7IuBQAAoOAIfQIAAAAAAAA51bJly5g2bVrWZQAAABQcoU8AAAAAAAAgZ5YvXx5TpkyJkpKSrEsBAAAoODWzLgDIoTlzIpo1Kzs2e3ZE06ZZVQQAAAAAFArrj0BETJ069XvDnnPmzIl77703Pvroo9hrr70qtTYAAIDqQOgTAAAAAAAAWCuHHHJIFBUVfe81paWlsd5668Vpp51WaXUBAABUF0KfAAAAAAAAwFpp0aLFGs8VFxdH3bp1o02bNtG/f//YZpttKrU2AACA6kDoEwAAAAAAAFgrY8aMyboEAACAaq046wIAAAAAAAAAAAAAyGCnz9LS0igqKsr1xwIAAJAx8z0AAABW+uyzz6KkpCTWX3/99OePP/447rjjjvTYrl276Nu3b9SvXz/rMgEAAApOznf67Ny5c9x4440xY8aMXH80AAAAGTLfAwAAIHHFFVekc8Tnn38+/XnRokVx1FFHxfDhw2Ps2LHxhz/8IXr37h1ff/111qUCAAAUnOKK+Fbf0KFDY999941jjz02Hn/88Vi6dGmubwMAAEAlM98DAADgoYceivvvvz9q1aq1qhvEiBEj4tNPP40tttgirr766th9993j3XffjXvuuSfrcgEAAApOztu7jxs3Lh5++OH429/+Fi+99FJMmDAhbevQvXv3OPzww2OrrbbK9S0BAACoBOZ7AAAAJPPCmjVrprt6tmnTJh0bNWpUGgC98MILo2PHjnHggQfG3nvvHU8++WSccsopWZcMAABQUHK+02fTpk3jpJNOSid39913X/rwL9n5ZdiwYXHIIYdEz54902/7ffnll7m+NQAAABXIfA8AAIBkB88OHTqsCnwuWLAg3njjjahTp046nigpKYntttsu/vvf/2ZcLQAAQOHJeejz29q3bx+DBw+OF154Ia644or0m31vv/12XHzxxbHHHnvEb3/723j99dcrsgQAAAAqgPkeAABA9fT1119HgwYNVv2cdIJYsWJF7LjjjlGjRo0y1y5fvjyDCgEAAApbhYY+V6pXr16648t5550XRx11VNreYfHixWlLwOTnI488Ml599dXKKAUAAIAcMt8DAACoXpo3bx7/+c9/Vv08duzYdC642267rRpLukJMnjw5vRYAAIDcqhkVbPbs2fH3v/89fa2cACYPBQ866KDYaaed4p///GeMGzcu+vTpEzfddFN07dq1oksCAAAgB8z3AAAAqp8ddtghHnnkkbjxxhujVatW6dwvsXLO9+mnn8Y111wTn3/+eey7774ZVwsAAFB4KiT0mXx775lnnomHH344xo8fn7Z0KC0tje233z6OOOKIOOCAA6JOnTrptb/85S/j0UcfjXPPPTeuv/56DwEBAACqMPM9AACA6u3UU09N54VDhw5Nf07mhIcddlgaAE1079495s2bFy1atIiTTz4542oBAAAKT85Dn5deemk88cQTsWDBgnSSt8EGG6QP+pKHfz/72c/K/TMHH3xwXHTRRTFz5sxclwMAAECOmO8BAACw6aabxsiRI+POO+9MO0Dssssu0b9//1Xn27VrF40bN46zzjormjRpkmmtAAAAhSjnoc/hw4enx6SVX/Lgb7/99ov11lvve//MkiVLYuONN44dd9wx1+VA9VK/fsQtt6w+BgAAOWC+BwBQzVl/BP7PT37yk7jyyivLPXfHHXdUej0AAADVSc5Dn8cee2z06NEjWrduvdZ/JnlIOGrUqFyXAtVP0kbztNOyrgIAgAJlvgcAUM1ZfwR+wBtvvBEff/xxbLvtttGyZcusywEAAChIxbn+wPPOOy99ADhnzpx48cUXy5ybOnVq3HjjjTF9+vRc3xYAAIAKZr4HAABA4rXXXouTTjqpzNzw3HPPjSOPPDIGDBgQ++67b9zy3Z2BAQAAqJqhz8Rf/vKX2GuvveL3v/99mfEpU6bE7bffHgceeGA88MADFXFrAAAAKpD5HgAAQPWWfOmvX79+8fzzz8cHH3yQjo0bNy4effTRqFGjRrRv3z5q164dQ4YMSccBAACo4qHPl156KS6//PIoLi5OJ3Xf9vOf/zz69u0bRUVFccUVV8TEiRNzfXsAAAAqiPkeAAAAd911VyxdujTd6fOwww5Lxx555JF0Ppjs9nnvvffG8OHD0wBo8sVBAAAAqnjo884770wncX/605/iwgsvLHNu8803T8eSyWBpaWl6LQAAAPnBfA8AAIBJkybFlltuGQMHDox69erFihUr0l0/k9DnL3/5y/Sa5PxOO+0Ub7zxRtblAgAAFJychz7ffffddBK38847r/GaZEeYHXfcMf7973/n+vYAAABUEPM9AAAAPvvss2jduvWqn5Ng58KFC+NnP/tZbLjhhqvGGzZsmI4DAABQxUOfixYtSidxP6RJkybx9ddf5/r2UL199llE06ZlX8kYAADkgPkeAEA1Z/0R+L8w5/z581f9/Nxzz6XHXXfdtcx1M2bMiPXXX7/S6wMAACh0NXP9gZtsskm6o8uyZcuiZs3yP3758uUxefLkaN68ea5vD9Vbaenqi6zJGAAA5ID5HgBANWf9EYhId/l85ZVX4oMPPohmzZrFo48+mrZ233PPPVdd89RTT8Vbb70VnTt3zrRWAACAQpTznT67du0as2fPjssvvzx92PddpaWlMXjw4Pj4449jr732yvXtAQAAqCDmewAAABx55JHxzTffxMEHH5yGOmfOnBmbb775qp0+TznllBg4cGAaBO3Tp0/W5QIAABScnO/02b9//3jkkUdixIgR8eKLL6bf6kt2eEkmdsmDv+effz6mT5+etvs78cQTc317AAAAKoj5HgAAAPvvv3/auv22226LL7/8Mrbccsu48cYbV51PQqAlJSXpFwZ33333TGsFAAAoRDkPfTZs2DD+9Kc/xbnnnhtvvvlm3H///ekDwJW7viR+9rOfxQ033BCNGzfO9e0BAACoIOZ7AAAAJE466aT0i4GLFi2KRo0alTl31VVXpUHQOnXqZFYfAABAIct56DORtHAYOXJkvP766/Hyyy+n7f+SNg9NmzaNnXbaKTp27FgRtwUAAKCCme8BAACQSHbz/G7gM9GuXbtM6gEAAKguKiT0udL222+fvgAAACgs5nsAAAAAAABQYKFPAAAAAAAAIH916dLlR//ZoqKieOaZZ3JaDwAAQHVXIaHPV155Je6444547733YvHixVFaWrrGiV7SDhAAAID8YL4HAABQvcyaNetH/9lkbggAAEAVD30mDwD79+8fy5cvX+PDPwAAAPKP+R4AAED1M2zYsKxLAAAAoCJDn0OHDo1ly5ZFt27dom/fvtGsWbOoUaNGrm8DAABAJTPfAwAAqH46dOiQdQkAAABUZOjz3//+d2y66aZx0003adkAAABQQMz3AAAAAAAAIFvFuf7AZNeXNm3aeAAIAABQYMz3AAAAAAAAoMBCn61bt44ZM2bk+mMBAADImPkeAAAAAAAAFFjo8+ijj4633347nn322Vx/NAAAABky3wMAAAAAAIBs1cz1B+6+++6x7777xplnnhmHHHJI7LDDDrH++uuvsf1fly5dcl0CVF9160ZccsnqYwAAkAPmewAA1Zz1RwAAAIDCC3127tw5feBXWloaI0aMSF/fJ9klBsiRevUiLr006yoAAChQ5nsAANWc9UcAAACAwgt97rzzzrn+SAAAAKoA8z0AAIDq56ijjopddtklBg4cmP780UcfRd26daNhw4ZZlwYAAFAt5Tz0ee+99+b6IwEAAKgCzPcAAACqn3feeSdatGix6ucuXbrEwQcfHNdcc02mdQEAAFRXxVkXAAAAAAAAAFRNRUVFMW3atFixYkX6c2lpafoCAACgQHb6XGnp0qXx6KOPxoQJE+Ljjz9O2wAOGDAg7rvvvmjbtm3ssMMOFXVrAAAAKpD5HgAAQPXRpk2beO211+IXv/hFNG3aNB0bN25cHHrooWsVGH3ooYcqoUoAAIDqo0JCn5MnT45f//rX8cknn6Tf9EsmdJtsskl6buTIkTFo0KA455xz4rjjjquI2wMAAFBBzPcAAACql7PPPjtOOumk+Oyzz9JXYv78+enrhyRzRgAAAKp46DPZ5eWEE05IJ3rJN/723HPPuPzyy1ed79ixY9oC4rrrrot27dpF+/btc10CVF9z50bssUfZseefj2jUKKuKAAAoIOZ7AADVnPVHqJZ23HHHGDt2bLz//vvx9ddfR79+/WK33XaLk08+OevSAAAAqqWchz5vv/329AHgb3/72+jTp0869u2HgOedd178/Oc/T3eGufvuuz0EhFxavjzirbdWHwMAgBww3wMAqOasP0K1Vb9+/dh+++1X/dy4cePo0KFDpjUBAABUVzkPfT7//PPRunXrVQ8Ay9OtW7fYeuut4+2338717QEAAKgg5nsAAABMnTo16xIAAACqtZyHPufMmRN77733D17XqlWrtA0EAAAA+cF8DwAAgJW++OKL+Otf/xoTJkyI2bNnR0lJSboDaMeOHaN79+7RtGnTrEsEAAAoSDkPfa6//vrx0Ucf/eB1M2fOjAYNGuT69gAAAFQQ8z0AAAASEydOjDPOOCMWLFgQpaWlZc6NHz8+7rzzzrjhhhvSACgAAAC5VZzjz4uf//znMWXKlHjttde+dyL41ltvxQ477JDr2wMAAFBBzPcAAACYNWtWnHrqqTF//vzYc8894/rrr48HH3wwhg8fHtdee23sscceMW/evBgwYEB8/PHHWZcLAABQcHIe+jz22GPTb/SdcsopMXLkyHTit9LSpUvjqaeeit/85jdRVFQUffr0yfXtAQAAqCDmewAAAPzxj3+MRYsWpfO/2267LQ444IBo165d+uW/gw8+OO64444YOHBgGgr985//nHW5AAAABSfnoc+ddtopzjvvvLSdw0UXXRRdu3ZNH/g9/vjj6a4wZ555Znz22WfpNwB33XXXXN8eAACACmK+BwAAwPPPPx+bbbZZnHTSSWu85uSTT45NN900nn322UqtDQAAoDrIeegz0b9//xg2bFjavqF27drpTjDLli2L4uLi2HnnnWPo0KFxxhlnVMStAQAAqEDmewAAANXb7NmzY+utt/7B67bZZpv45JNPKqUmAACA6qRmRX1w8rAvea1YsSLmzZuXHhs2bBg1a1bYLQEAAKgE5nsAAADVV926dePzzz//weuSa5IvCwIAAJAHO32WuUFxcTRq1CiaNGniASAAAEABMd8DAACoftq2bRuvvfZaTJ06dY3XJOdeffXV9FoAAAByK+dP5f7+97//T9cfcsghuS4BAACACmC+BwAAwNFHHx0vvvhinHjiiXHJJZfE3nvvnX4pMJF0ghgzZkxcdtll6fujjjoq63IBAAAKTs5Dn+eff34UFRX94HWlpaXpdR4CAgAA5AfzPQAAALp27RpHHHFEPPjgg3HGGWekLdxbtGiRnvvoo4/i66+/TueFPXr0iH322SfrcgEAAApOzkOfybf5ynsIuHz58liwYEG8/fbb8dVXX8V+++0X22yzTa5vDwAAQAUx3wMAACBx+eWXp/O+P/3pTzFjxox4//33V51r1apVHHfccemOoAAAAORB6PPWW2/93vPJt/suuuiitLXDwIEDc317AAAAKoj5HgAAACslrduT16effpq+Es2aNYuNN94469IAAAAKWs5Dnz8kafEwaNCgdIeYm266Ka6//vrKLgEKV+3aEaeeuvoYAABUAvM9AIACZ/0RKMdGG22UvgAAACjQ0GeipKQkfv7zn8dLL72Uxe2hcDVoEDFkSNZVAABQjZnvAQAUMOuPAAAAAJkrzurGc+fOjcWLF2d1ewAAACqI+R4AAAAAAAAUUOjz73//e/zrX/+KzTffPIvbAwAAUEHM9wAAAAAAACCP2rsfeuihazy3bNmy+Pzzz+OLL76IoqKiOOKII3J9ewAAACqI+R4AAAAAAAAUWOjz7bff/sFrSkpKok+fPnH00Ufn+vYAAABUEPM9AAAAAAAAKLDQ57Bhw9Z4rri4OOrWrRs//elPo06dOrm+NQAAABXIfA8AAIArrrgiWrduHb169cq6FAAAgGop56HPDh065PojgbU1b17EIYeUHfv73yMaNsyqIgAACoj5HgBANWf9EYiIRx99NFq1aiX0CQAAUCihTyBD33wTMW7c6mMAAAAAAOvK+iMQEcuWLYsWLVpkcu8JEyZE//7945BDDonBgwdnUgMAAEDBhT6vvvrqH/1ni4qK4vzzz89pPQAAAOSG+R4AAAD77rtvjBo1KqZNmxZbbLFFpd130aJFceGFF0ZpaWml3RMAAKBahD7//Oc/pw/zVvruxOuHznkICAAAUDWZ7wEAAPDLX/4yXn/99Tj00EOjU6dOsfXWW0fDhg2juLi43Ov79u2bk/sOGjQoZs2alZPPAgAAyGc5D33efvvt8fDDD6ff8Eu+3XfggQfGT37yk6hVq1Z8+umnMXr06Bg/fnxssskm6WQQAACA/GC+BwAAwPHHH59+sS/5st+4cePiueeeK/e65HxyXS5Cn2PGjImHHnoo9t577/Q9AABAdZbz0Ofy5cvjqaeeimOOOSZtsfDdb/X17t073R1m8ODB0apVq+jevXuuSwAAAKACmO8BAABwyCGHlOn0UNHmzp0bF110UXTo0CGdjwp9AgAA1V3OQ59Dhw6Nli1blvsAcKV+/fql38a75557PAQEAADIE+Z7AAAAJF/0q0yXXnppLF68OK666qqYMWNGpd4bAACgKir/Kd06ePfdd2Pbbbdd4wPAlX7605/GBx98kOvbAwAAUEHM9wAAAKhMjz76aIwaNSrOPvvstKMEAAAAFRD6bNCgwQ8+3CstLY233347Ntxww1zfHgAAgApivgcAAMBKc+bMiZtuuimOPvro2HPPPdMdORM33HBDPP744+v8+Z9++mlcccUV0bFjx+jVq1cOKgYAACgMOQ99dujQId577724++6713jN9ddfH9OnT4+9994717cHAACggpjvAQAAkBg3blzsv//+cfvtt8drr72WBjSTFuyJMWPGxFlnnRVXXnnlOt3jwgsvjOXLl8egQYOiqKgoR5UDAADkv5q5/sBf/epX6WTu2muvTY/Jg77mzZunu73MnDkzbcEwZcqUaNKkSZx22mm5vj0AAAAVxHwPAACA999/P37961+ngcyjjjoq3eXz5JNPXnW+R48e8Yc//CHuv//+6NSp04/6UuADDzwQL7zwQlx++eWxySab5Pg3AAAAyG85D31uscUWMWTIkDjvvPNi0qRJ8corr5Q5nzwMbN26ddx8883RuHHjXN8eAACACmK+BwAAwG233RZLly5NW7t369ZttfP9+vWLtm3bxjHHHJMGP39M6HNle/iLL744fX3Xww8/nL4OPfTQGDx48I/8TQAAAPJTzkOfieRbe08++WQ888wzMXHixJgzZ0463qJFi/Rcly5dokaNGhVxawAAACqQ+R4AAED1NmHChNh6663LDXyutNNOO8X2228f06ZN+1H3SMKcHTp0WG18xowZ8cgjj0SbNm2ia9euaR0AAADVTYWEPhP16tWL7t27py8AAAAKh/keAABA9TV//vzYcccdf/C6pk2bxpQpU37UPQ477LByx8ePH5+GPpOw5xlnnPGjPhsAACDfVVjoMzF9+vR4+eWX46OPPorNN988fvnLX6bt/5KWDrVr167IWwMAAFCBzPcAAACqpw033DA+/PDDH7zugw8+iEaNGlVKTQAAANVJzYr6ht9FF12UtvsrLS1Nx5IHgMnruuuuSx8O/uEPf4j27dtXxO2h+iopiejRY/UxAADIEfM9AIBqzPojEBG77LJLPPbYYzF69Ojo0qVLudeMGjUq3n///TjooIMqvT4AAIBCl/PQ51dffRX9+vWLqVOnpt/e69ChQzz55JOrzpeUlMQXX3wRJ554Ytp+YdNNN811CVB9bbBBxIgRWVcBAECBMt8DAKjmrD8CEXHSSSelc8GBAwfG8ccfHx07dkzHv/nmm/SLgEkY9Oabb46aNWvGsccem9N7d+rUKd55552cfiYAAEC+Kc71B959993pA8ADDzwwndTdeOONZc7fe++9cdxxx6UPC//0pz/l+vYAAABUEPM9AAAAttxyy7j22mujqKgobr/99vTLgcn7JAi67777pueSAOgll1wS2267bdblAgAAFJychz6feOKJaNKkSVx99dVRp06dcq85++yzo0WLFjFx4sRc3x4AAIAKYr4HAABAYv/9949HH300jjrqqPjJT34S6623XtSqVSudDx5yyCExcuTI6NmzZ9ZlAgAAFKSct3dP2jZ07tw5beu3JsXFxek3+55//vlc3x4AAIAKYr4HAADASptttlm6mycAAAB5HvpMvsU3b968H7xu7ty56bUAAADkB/M9AAAAvmvRokUxe/bsdB7YrFmzdNdPAAAA8ij02aZNm5g8eXJ8+umnsdFGG5V7zcyZM+PNN9+M7bbbLte3BwAAoIKY7wEAALDSQw89FPfdd19MnTo1SktL07EaNWrEDjvsEMcff3zstddeWZcIAABQkIpz/YE9evSIr776Kk4//fS09d93zZkzJ84666xYunRpdO/ePde3h+pt/vyInj3LvpIxAADIAfM9AIBqzvojEBErVqyIAQMGxG9/+9t46623oqioKBo3bpy+knOvvPJKnHrqqXH99ddnXSoAAEBByvlOn4ccckiMGTMmnnrqqdh3332jefPm6WRv4sSJ0atXr3THl+QB4G677ZY+MARyaOnSiJEjy47demtW1QAAUGDM9wAAqjnrj0Akfw2MjCeffDLtAHHBBRekO3qubOmefFEwOXfttdfGH//4x2jXrl107do165IBAAAKSs53+kzceOON8etf/zrWX3/9+Oijj9KWDp988km8+uqraVuH4447Lm677bb04SAAAAD5w3wPAACgenvwwQejdu3aMWzYsNhvv/1WBT4TderUiUMPPTTuvvvudI6YHAEAAKjiO30miouL07YNJ554YtrWYeWDwKZNm8Z2222XTgQBAADIP+Z7AAAA1du0adNil112ic0222yN17Rp0ya9JvmCIAAAAFU89HnaaafFT3/60zj77LOjVq1asf3226cvAAAA8pv5HgAAAHXr1l2r7g7JDqDJ3BEAAIAqHvp86aWX4osvvsj1xwIAAJAx8z0AAAA6d+4cTzzxRMycOTNatmxZ7jVz586NiRMnxh577FHp9QEAABS64lx/YI0aNWL99dfP9ccCAACQMfM9AAAAku4PTZo0if79+8fo0aNXO//ee+/FCSecEPXq1Ytzzz03kxoBAAAKWc53+uzRo0fcd999MX78+OjUqVOuPx4AAICMmO8BAABUPx06dFhtbOnSpbFkyZI4/fTT03BnsuNn0s79008/TV+JFi1axK9//esYMWJEBlUDAAAUrpyHPrfaaqt0Ynf88cdH69atY+utt46GDRtGcfHqm4oWFRXF+eefn+sSAAAAqADmewAAANXPggULvvf8okWLYurUqauNz5o1Kz766KMKrAwAAKB6ynnoM3molzzcKy0tjWnTpqWvNfEQEAAAIH+Y7wEAAFQ/5bVwBwAAoIBCn6eddlr6cA8AAIDCYr4HAABQ/WyyySZZlwAAAEBFhj7POOOMXH8kAAAAVYD5HgAAAAAAAOR56LNDhw5xwAEHxKWXXpqbigAAAKgSqsp8b8CAAfHqq6/Gc889t9q5xYsXx5133hn//Oc/4+OPP44mTZrEgQceGKeeemrUqVMnk3oBAAAK3fPPPx8PPPBAfPjhh7FkyZI1Xpd0i3jmmWcqtTYAAIBCt86hzwULFqQP2crTt2/f2G233eLkk09e19sAAABQyarCfO+WW26JJ554IjbaaKPVzi1dujROOeWUePnll2P33XePbt26xb///e+44447YtKkSTFs2LAoKSmp0PoAAACqm3HjxqVzsdLS0h+8Ngl9AgAAUMXbu3/bxIkTY+ONN67IWwAAAJCBip7vJTvFXHHFFTFixIg1XjN8+PA08HnCCSfEOeecs2p80KBBaeDz/vvvj2OPPbbCagQAAKiObr311jTw2bNnz7TTwgYbbCDcCQAAUCihT6CS1aoV0bnz6mMAAJBHxowZE1deeWXMmjUrOnfunO4iU56VO3n+6le/Wq0dfBIWTUKhQp8AADlk/RGIiGnTpsU222yTflEPAACAyif0CYWkYcOIsWOzrgIAANbJyJEj48svv4xLLrkkjj766GjTps1q1ySB0BkzZkT79u2jfv36Zc7Vq1cv2rVrl+4C+sknn+hAAQCQK9YfgYj0y3fNmzfPugwAAIBqqzjrAgAAAODb+vXrF6NHj45evXqtsUXghx9+mB433XTTcs+3atUqPX7wwQcVWCkAAED106lTp5g8eXIsWbIk61IAAACqJaFPAAAAqpRddtlltd07v2vevHnpsWGy21Q5GjRokB4XLFhQARUCAABUX7/5zW9i6dKlcc4558Tnn3+edTkAAADVTsG0d58wYUL0798/DjnkkBg8eHCZc1988UUMGTIknn322ZgzZ060aNEiDj/88Dj22GOjZs2C+UcAAABQbXzzzTer2gqWZ+W4nWcAAABya5NNNomzzjorLrroonjmmWeiWbNmseGGG5Z7bdK94aGHHqr0GgEAAApZQSQeFy1aFBdeeGGUlpaudi7Z1aVPnz4xbdq06NatW9r678UXX4zf/e53aeuJm2++OZOaAQAA+PHWW2+99JjsLlOeleP16tWr1LoAAAAK3bhx4+LSSy9N369YsSI++eST9LWm0CcAAABVMPT5j3/8I32VN5Fb07mV59966611vv+gQYNi1qxZ5Z5Ldvh877334pJLLolevXqlYwMHDowBAwbEqFGj4qmnnkrDoAAAAFS9+d6arGzrvnDhwnLPrxz/oTbxAAAA/G+SZ2/Lly+PLl26xEEHHRSNGjUS7gQAAMi30Gd5O2xW5J/7tjFjxqRtIfbee+/0/bd9/fXX8eCDD0bz5s3jqKOOWjVeo0aNOPfcc9PA5/Dhw4U+KRzJg+3zzy87NnhwRIMGWVUEAECey3K+930233zz9Dh9+vRyz68c32KLLSq0DgCAasX6IxCRbray1VZbpeFPAAAA8jD0OXr06MjK3Llz46KLLooOHTrEMcccs1ro84033ojFixfHPvvsE8XFxWXOtWrVKlq2bBmTJk1Kv42YBEEh7339dcStt5YdS1qsWHQFACDP5ns/ZKONNorNNtts1byvbt26q859+eWXMXny5PR8kyZNMq0TAKCgWH8EIqJ27dqx6aabZl0GAABAtbXOoc9NNtkksnLppZemD/euuuqqmDFjxmrnP/zww/S4polnEvycOXNm+koeBgIAAFA15ntro0ePHvH73/8+brzxxrjwwgtXjSc/f/XVV9GrV69M6wMAAChEnTp1ipdffjmWLl0aJSUlWZcDAABQ7ZTd/jKPPProozFq1Kg4++yz0/BmeebNm5ceGzZsWO75Bv/37eMFCxZUYKUAAABUhP79+8e2224bf/7zn6NPnz5pADQ5Dhs2LNq3by/0CQAAUAEGDBiQBj7PPPPM+Pjjj7MuBwAAoNpZ550+s/Dpp5/GFVdcER07dvzeh3jJhDOxpm8ZrhxfsmRJBVUKAABARUnmdEnA85Zbboknn3wy/v3vf0fz5s3jlFNOiRNPPNGOMwAAABXgT3/6U2y11VYxduzY9NWkSZN0A5aaNVd/7FhUVBQPPfRQJnUCAAAUqrwMfSZt+5YvXx6DBg1KJ4trUrt27fT4zTfffG8otF69ehVUKQAAAOvqnXfeWeO5+vXrx/nnn5++AAAAqHjDhw8v8/OcOXPSV3m+7zkeAAAA1ST0+cADD8QLL7wQl19+eWyyySbfe+0GG2zwve3bFy5cuOohIQAAAAAAAPD9ko4LAAAAZCfvQp+PP/54erz44ovT13c9/PDD6evQQw+Nnj17pmPTp08v97OS8bp160aLFi0quGoAAAAAAADIfx06dMi6BAAAgGot70KfSZizvMnkjBkz4pFHHok2bdpE165dY+utt462bdumrdsnTpwYK1asiOLi4jLXz5o1Kzp16hQ1atSo5N8CAAAAAAAAAAAAoMBDn4cddli54+PHj09Dn0nY84wzzlg1ftBBB8Vf//rXtNVE//7907Hly5fHtddem77v3bt3JVUOAAAAAAAA+e2CCy5Y62uLioriqquuqtB6AAAAqpu8C33+rwYMGBAvvPBCXH311TFhwoTYYost0oDolClTYv/9948uXbpkXSIAAAAAAADkhYcffvgHg56J0tJSoU8AAIAKUPChz0aNGsXw4cPjpptuirFjx6aBz5YtW8Y555wTffv2XTXxBAAAAAAAAH7cTp8rVqyI+fPnx7/+9a+YNGlS2r3vyCOPrPT6AAAACl3BhD47deoU77zzTrnnmjVrFoMGDar0mgAAAAAAAKCQ9OvX7wevuf/+++PKK6+MAw88sFJqAgAAqE6Ksy4AAAAAAAAAKBy9e/eOn/70pzF06NCsSwEAACg4Qp8AAAAAAABATm2xxRYxZcqUrMsAAAAoOAXT3h2IiBo1IrbZZvUxAAAAAIB1Zf0R+B+8//77WZcAAABQkIQ+oZA0ahThW7MAAAAAQEWw/ghExKJFi9Z4btmyZTFnzpy455574oMPPohdd921UmsDAACoDoQ+AQAAAAAAgLWy8847/+A1paWlUaNGjTjppJMqpSYAAIDqROgTAAAAAAAAWCtJoHNNioqKom7dutGmTZs48cQTo2PHjpVaGwAAQHUg9AkAAAAAAACslalTp2ZdAgAAQLVWnHUBAAAAAAAAAAAAAPwwoU8AAAAAAAAAAACAPKC9OxSSL7+MuO66smPnnBNRr15WFQEAAAAAhcL6I1RLF1xwwY/+s0VFRXHVVVfltB4AAIDqTugTCsnixRGXXVZ27LTTLLoCAAAAAOvO+iNUSw8//PD/HPT8NqFPAACA3BL6BAAAAAAAANZ5p89ly5bFsGHDYvbs2VFaWhqtWrWq0NoAAACqI6FPAAAAAAAAoFz9+vVbq+vefffdOP/881cFPnv27Jn+DAAAQG4JfQIAAAAAAAA/2p133hk333xzLF26NJo2bRpXXnlldO7cOeuyAAAACpLQJwAAAAAAAPA/mzFjRrqb56uvvpru7rn//vvHpZdeGhtssEHWpQEAABQsoU8AAAAAAADgfzJ8+PC49tprY/HixWnI85JLLokDDjgg67IAAAAKntAnAAAAAAAAsFZmz54dF154Ybz44ovp7p6/+MUvYtCgQWlbdwAAACqe0CcAAAAAAADwg/7xj3/ElVdeGfPnz4+6deumrd2POOKIrMsCAACoVoQ+AQAAAAAAgDWaN29eXHzxxfH000+nu3u2b98+rr766mjVqlXWpQEAAFQ7Qp8AAAAAAABAucaMGZMGPj///PMoKSmJgQMHRv/+/bMuCwAAoNoS+gQAAAAAAADKdeqpp0ZRUVH6vn79+vHII4+kr7WR/LmHHnqogisEAACoXoQ+AQAAAAAAgDVKWronkt0+k9faWhkWBQAAIHeEPgEAAAAAAIByDRs2LOsSAAAA+BahTwAAAAAAAKBcHTp0yLoEAAAAvkXoEwpJ0ialSZPVxwAAAAAA1pX1RwAAAIDMCX1CIUkWXOfMyboKAAAAAKAQWX8EAAAAyFxx1gUAAAAAAAAAAAAA8MOEPgEAAAAAAAAAAADygNAnAAAAAAAAAAAAQB4Q+gQAAAAAAAAAAADIA0KfAAAAAAAAAAAAAHmgZtYFADn01VcRd91Vduy44yLq1MmqIgAAAACgUFh/BAAAAMic0CcUkkWLIk4/vezYEUdYdAUAAAAA1p31RwAAAIDMae8OAAAAAAAAAAAAkAfs9AkAAAAAAABUSfPmzYuhQ4fGmDFj4uOPP47GjRtHly5d4tRTT41GjRplXR4AAECls9MnAAAAAAAAUOUsXLgwevXqFXfddVc0b948jjnmmNhqq63i3nvvje7du6chUAAAgOrGTp8AAAAAAABAlXPLLbfE+++/H2eccUacfvrpq8bvu+++uOKKK+Lmm2+Oq6++OtMaAQAAKpudPgEAAAAAAIAqZ+bMmdGkSZM4/vjjy4wnu3wmXnvttYwqAwAAyI6dPgEAAAAAAIAqZ8iQIeWOJ7t/Jpo2bVrJFQEAAGRP6BPIGytWrEhfVUlxcXH6AgAAAAAAKtb8+fNjwoQJMXjw4KhZs2aceuqpWZcEAABQ6YQ+gbyQhD179zs2Pp7zWVQlzZs2ifv/fLfgJwAAAAAAVKAHHnggLr300vR9jRo14rrrrouOHTtmXRYAAEClE/oE8ib0mQQ+T7r+7iiuUSOqghXLl8cdvzk2rU3oEwAAAAAAKk6jRo3ixBNPjDlz5sRTTz0VZ599dnz88cdxwgknZF0aAABApRL6BPJKEvisUdNfXQAAAAAAUJ3su+++6StxxhlnxJFHHpnu9rnLLrvEdtttl3V5AAAAlcbWdAAAAAAAAEDeaNmy5aodPkePHp11OQAAAJXKdnkAAAAAAABAlbJ06dKYNGlSLF++PH7xi1+sdr5Vq1bpce7cuRlUBwAAkB2hTwAAAAAAAKDKhT5PPPHEqFu3bowfPz5KSkrKnJ8yZUp6/OlPf5pRhQAAANnQ3h0AAAAAAACoUurXrx9dunSJhQsXxi233FLm3Jtvvhn33HNPGgg96KCDMqsRAAAgC3b6hELStGlEaWnWVQAAAAAAhcj6I1DJfvvb36YBz6FDh8Yrr7wS22+/fXz00UcxevToKCoqihtuuCGaJn83AQAAVCNCnwAAAAAAAECVs/HGG8ff/va3uPXWW9Og5+uvvx7rr79+dO3aNU455ZRo06ZN1iUCAABUOqFPAAAAAAAAoEpq1KhR/L//9//SFwAAABHFWRcAAAAAAAAAAAAAwA8T+gQAAAAAAAAAAADIA0KfAAAAAAAAAAAAAHmgZtYFADm0ZEnEo4+WHTv44Ij11suqIgAAAACgUFh/BAAAAMic0CcUkgULIo44ouzY7NkRTZtmVREAAAAAUCisPwIAAABkTnt3AAAAAAAAAAAAgDwg9AkAAAAAAAAAAACQB4Q+AQAAAAAAAAAAAPKA0CcAAAAAAAAAAABAHhD6BAAAAAAAAAAAAMgDQp8AAAAAAAAAAAAAeUDoEwAAAAAAAAAAACAPCH0CAAAAAAAAAAAA5AGhTwAAAAAAAAAAAIA8IPQJAAAAAAAAAAAAkAeEPgEAAAAAAAAAAADygNAnAAAAAAAAAAAAQB4Q+gQAAAAAAAAAAADIA0KfAAAAAAAAAAAAAHmgZtYFADnUuHHE7NmrjwEAAAAArCvrjwAAAACZE/qEQlJcHNG0adZVAAAAAACFyPojAAAAQOa0dwcAAAAAAAAAAADIA0KfAAAAAAAAAAAAAHlA6BMAAAAAAAAAAAAgDwh9AgAAAAAAAAAAAOSBmlkXAOTQ0qUR48eXHevUKaKkJKuKAAAAAIBCYf0RAAAAIHNCn1BI5s+P2GuvsmOzZ0c0bZpVRQAAAABAobD+CAAAAPx/7d0HmFTV/T/+wy5iQ+yCCnZFMRp7jdHYosZeEhUVe1SwGzWaKMZeYoslYDdij0YTNdagscVeYkFjiVhQNBYUQWD3/3zO/zv724UFUZa9c2dfr+fZZ5c7s7tn7iwz59zzPp9D4WzvDgAAAAAAAAAAAFACQp8AAAAAAAAAAAAAJSD0CQAAAAAAAAAAAFACQp8AAAAAAAAAAAAAJSD0CQAAAAAAAAAAAFACQp8AAAAAAAAAAAAAJSD0CQAAAAAAAAAAAFACQp8AAAAAAAAAAAAAJSD0CQAAAAAAAAAAAFACQp8AAAAAAAAAAAAAJSD0CQAAAAAAAAAAAFACQp8AAAAAAAAAAAAAJSD0CQAAAAAAAAAAAFACQp8AAAAAAAAAAAAAJdC56AYAbWjOOVP6978nPQYAAAAAMK1cfwQAAAAonNAn1JLOnVNadtmiWwEAAAAA1CLXHwEAAAAKZ3t3AAAAAAAAAAAAgBIQ+gQAAAAAAAAAAAAoAdu702E1NDTkj2pRV1eXPwAAAAAAAAAAAKA1Qp90SBH27Ntvj/TByI9TtZh/3nnSkKuuEPwEAAAAAAAAAACgVUKfdNjQZwQ+9z37ilRXX190c1LDhAlp8GF75HZNU+hz/PiUhg1reax375Q6+68OAAAAAEwj1x8BAAAACudKDB1aBD7ra+mC5KefpvSDH7Q89tFHKc07b1EtAgAAAABqheuPAAAAAIWzjzQAAAAAAAAAAABACQh9AgAAAAAAAAAAAJSA0CcAAAAAAAAAAABACQh9AgAAAAAAAAAAAJSA0CcAAAAAAAAAAABACQh9AgAAAAAAAAAAAJSA0CcAAAAAAAAAAABACQh9AgAAAAAAAAAAAJSA0CcAAAAAAAAAAABACQh9AgAAAAAAAAAAAJSA0CcAAAAAAAAAAABACQh9AgAAAAAAAAAAAJSA0CcAAAAAAAAAAABACQh9AgAAAAAAAAAAAJRA56IbALSh2WdP6R//mPQYAAAAAMC0cv0RAAAAoHBCn1BLunRJab31im4FAAAAAFCLXH8EAAAAKJzt3QEAAAAAAAAAAABKQOgTAAAAAAAAAAAAoASEPgEAAAAAAAAAAABKQOgTAAAAAAAAAAAAoAQ6F90AoA01NKT0ySctj809d0p18t0AAAAAwDRy/REAAACgcEKfUEvigut887U89tFHKc07b1EtAgAAAABqheuPAAAAAIWz/BYAAAAAAAAAAACgBIQ+AQAAAAAAAAAAAEpA6BMAAAAAAAAAAACgBDoX3QAAAAAAAACA1nz11Vdp0KBB6Z577knvvfdemmGGGVKfPn1Sv3790kYbbVR08wAAANqdSp8AAAAAAABA1fnyyy/TTjvtlEOfs8wyS9p5553TJptskl599dU0YMCAfBwAAKCjUekTAAAAAAAAqDqXXHJJGjZsWNpxxx3TwIEDU6dOnfLxgw8+OG233XYhLtgQAABQH0lEQVTpvPPOyyHQhRdeuOimAgAAtBuVPgEAAAAAAICqc9ddd+Wg5+GHH94U+Azdu3fPFUAnTJiQHnzwwULbCAAA0N5U+gQAAAAAAACqTr9+/dKoUaNSt27dJrmtS5cu+fNXX31VQMsAAACKI/QJAAAAAAAAVJ2+ffu2eryxsTHdc889+evevXu3c6sAAACKZXt3AAAAAAAAoDSuvfba9MILL6RevXqlddZZp+jmAAAAtCuhTwAAAAAAAKAU7rzzznTyySenzp07p9NOOy3NMMMMRTcJAACgXQl9AgAAAAAAAKWo8Hn44Yfnr08//fS0yiqrFN0kAACAdte5/X8lAAAAAAAAwNRpaGhIZ5xxRrriiitSly5d0u9///u08cYbF90sAACAQgh9AgAAAAAAAFXpm2++ydU977nnnjTHHHOkCy+8UIVPAACgQxP6hFrSrVtKN9446TEAAAAAgGnl+iPQziZMmJAOPvjg9MADD6SePXumSy65JC222GJFNwsAAKBQQp9QS2acMaUddii6FQAAAABALXL9EWhngwcPzoHPBRZYIF177bWpe/fuRTcJAACgcEKfAAAAAAAAQFX57LPPcugzLLPMMunGiSsN/5/Y6n3NNdds59YBAAAUR+gTAAAAAAAAqCpPPfVUGj16dP76/vvvzx+t2W+//YQ+AQCADkXoEwAAAAAAAKgqG264YRo2bFjRzQAAAKg6dUU3AAAAAAAAAAAAAIBvp9InAAAApXbdddelgQMHTvb2xx57LM0111zt2iYAAAAAAACYHoQ+oZaMHJnSfPO1PPbRRynNO29RLQIAgOnulVdeyZ9333331LVr10lun3nmmQtoFQBADXL9EQAAAKBwQp8AAACU2quvvppmmmmmdNRRR6W6urqimwMAAAAAAADTTWlDn1999VUaNGhQuueee9J7772XZphhhtSnT5/Ur1+/tNFGG7W476effpouvPDC9I9//CONHDkyLbDAAmm77bZLe+yxR+rcubSnAAAAoMNraGhIr732WlpyySUFPgEAAAAAAKh5pZwR+/LLL9NOO+2UQ5+zzDJL2nnnndMmm2ySq7sMGDAgH6/44osv0q677pquueaatOyyy6bddtstb+131llnpcMOO6zQxwEAAMC0efvtt9PXX3+dll566aKbAgAAAAAAANNdKctcXnLJJWnYsGFpxx13TAMHDkydOnXKxw8++OBcwfO8887LIdCFF144V/h8/fXX0/HHH5/DoeHQQw9NhxxySLr77rtzpdCNN9644EcEAADA9xGL/0KMC2Os99RTT6XPP/88LbXUUmn33XdPm2++edFNBAAAAAAAgI5d6fOuu+7KE3qHH354U+AzdO/ePVcAnTBhQnrwwQfTmDFj0o033pjmn3/+HBCtqK+vT0ceeWT++vrrry/kMQAAANB2oc8Y+33yySdpyy23TBtttFF644038pjx7LPPLrqJAAAAAAAA0LErffbr1y+NGjUqdevWbZLbunTpkj9/9dVX6YUXXkijR4/OE351dS3zrb169Uo9e/ZMTz75ZA6JRhAUAACAcmlsbEwLLrhgOvDAA9M222zTdHz48OF5UeCgQYPSj3/847TKKqsU2k4AAAAAAADosJU++/btm/bbb79WJ/tiu/bQu3fv9Pbbb+evF1pooVZ/TgQ/v/nmm/Tuu+9O5xYDAAAwPUQ1zwceeKBF4LMy3jvooIPy17fffntBrQMAAAAAAIC2VcrQ5+Rce+21ubpnTO6ts8466bPPPsvH55hjjlbvP9tss+XPX3zxRbu2EwAAgOlv+eWXz5/feeedopsCAAAAAAAAHXd799bceeed6eSTT06dO3dOp512WpphhhlyFc/mW75PrHJ87Nix7dpWgI6koaEhf1STurq6/AEAlFv0MV5++eU0evTotNpqq01yexwPM800UwGtAwAAAAAAgLbXuVYqfJ544ompU6dO6fTTT0+rrLJKi4m9cePGtfp9lVDorLPO2o6tBehYQYy+/fZIH4z8OFWT+eedJw256grBTwCoAbvuumv6+uuv0yOPPJLmnnvuFrc99dRT+fNyyy1XUOsAAAAAAACgbXUue5jojDPOSFdccUWu2vn73/8+bbzxxk23zz777FPcvn3UqFH5c9euXdupxQAdS7xOR+Bz37OvSHX19akaNEyYkAYftkdum9AnAJRbvJdvsskm6ZZbbklnnnlmOuWUU5re31999dU0aNCgNMsss6Ttt9++6KYCAAAAAABAxw59RpXOww8/PN1zzz1pjjnmSBdeeGFThc+KxRZbLH9+5513Wv0ZcTwmABdYYIF2aTNARxWBz/rOpX3LAQCq2BFHHJGefvrpdOutt6Zhw4al1VdfPX344Yfpvvvuy4s8zjnnnNS9e/eimwkAAAAAAABtopQlziZMmJAOPvjgHPjs2bNnuu666yYJfIYf/OAHeev2J554Ik/2NTd8+PD03nvvpRVWWCHVV0n1OQAAAL6b2NL9pptuSnvssUfe5eGaa65Jjz76aFp33XXTDTfc0GI3CAAAAAAAACi7UpZdGzx4cHrggQdyhc5rr712slVbZpxxxrT55pvnib6rr7467b777k2h0dgWPvTt27dd2w4AAEDbmn322dPRRx+dPwAAAAAAAKCWlS70+dlnn+XQZ1hmmWXSjTfe2Or9ovLnmmuumQ455JD08MMPp1NPPTU9/vjjaYkllshVX1566aW06aabpg022KCdHwFMR127pnTBBZMeAwAAAACYVq4/AgAAABSudKHPp556Ko0ePTp/ff/99+eP1uy333459DnXXHOl66+/Pp133nlp6NChOfAZW8L/6le/Srvttlvq1KlTOz8CmI5mnjml/v2LbgUAAAAAUItcfwQAAAAoXOlCnxtuuGEaNmzYd/qe+eabL5188snTrU0AAAAAAAAAAAAA01vddP8NAAAAAAAAAAAAAEwzoU8AAAAAAAAAAACAEhD6BAAAAAAAAAAAACgBoU8AAAAAAAAAAACAEuhcdAOANvTxxykts0zLY6+8ktI88xTVIgAAAACgVrj+CAAAAFA4oU+oJY2N//+F14mPAQAAAABMK9cfAQAAAApne3cAAAAAAAAAAACAEhD6BAAAAAAAAAAAACgBoU8AAAAAAAAAAACAEhD6BAAAAAAAAAAAACgBoU8AAAAAAAAAAACAEhD6BAAAAAAAAAAAACgBoU8AAAAAAAAAAACAEhD6BAAAAAAAAAAAACgBoU8AAAAAAAAAAACAEhD6BAAAAAAAAAAAACgBoU8AAAAAAAAAAACAEhD6BAAAAAAAAAAAACgBoU8AAAAAAAAAAACAEuhcdAOANjTLLCkdf/ykxwAAAAAAppXrjwAAAACFE/qEWjLrrCkNHFh0KwAAAIAOoqGhIX+UVV1dXf4AppLrjwAAAACFE/oEAAAAAL6zCHv23bNvGjFyRCqrHvP2SEMuHyL4CQAAAACUhtAnAAAAAPC9Qp8R+Bxw9YBUV1++0GTDhIZ0wW4X5Mch9AkAAAAAlIXQJwAAAADwvUXgs75zfdHNAAAAAADoECxhBwAAAAAAAAAAACgBoU8AAAAAAAAAAACAErC9O9SS//0vpXXWaXnsn/9Maa65imoRAAAAAFArXH8EAAAAKJzQJ9SSCRNSevnlSY8BAAAAAEwr1x8BAAAACmd7dwAAAAAAAAAAAIASEPoEAAAAAAAAAAAAKAGhTwAAAAAAAAAAAIASEPoEAAAAAAAAAAAAKAGhTwAAAAAAAAAAAIASEPoEAAAAAAAAAAAAKAGhTwAAAAAAAAAAAIASEPoEAAAAAAAAAAAAKAGhTwAAAAAAAAAAAIASEPoEAAAAAAAAAAAAKAGhTwAAAAAAAAAAAIASEPoEAAAAAAAAAAAAKAGhTwAAAAAAAAAAAIAS6Fx0A4A2NNNMKR1wwKTHAAAAAACmleuPAAAAAIUT+oRaMttsKV14YdGtAAAAAABqkeuPAAAAAIWzvTsAAAAAAAAAAABACQh9AgAAAAAAAAAAAJSA0CcAAAAAAAAAAABACQh9AgAAAAAAAAAAAJSA0CcAAAAAAAAAAABACXQuugFAG/rss5S23rrlsb/8JaU55iiqRQAAAABArXD9EQAAAKBwQp9QS8aNS+nBByc9BgAAAAAwrVx/BAAAACic7d0BAAAAAAAAAAAASkDoEwAAAAAAAAAAAKAEhD4BAAAAAAAAAAAASqBz0Q0AAAAAoH01NDTkjzKrq6vLHwBQK+9tZTZ+/PiimwAAAAAdhtAnAAAAQAcSgZi+e/ZNI0aOSGXWY94eacjlQwQ/ASj9e1tjY2N67933Us9ePVOZn4N3hr+THwsAAAAwfQl9AgAAAHQgEcqIUMyAqwekuvpyBiYbJjSkC3a7ID8WoU8Ayv7eNm7suHTYuoel/lf2T/Uz1KcyqjyGJPPJdHbIIYekZ555Jj300ENFNwUAAKAwQp8AAAAAHVCEYuo7lzNYAgC19N42YfyEUre/+WOA6emCCy5Id911V+revXvRTQEAACiU0CcAAAAAAABQlcaOHZtOPPHEdNNNNxXdFAAAgKpQvn1OAAAAAAAAgJr3wAMPpE033TQHPtddd92imwMAAFAVhD4BAAAAAACAqnPzzTenr776Kh1//PFp0KBBRTcHAACgKtjeHQAAAAAAAKg6/fr1S2eccUbq2rVr0U0BAACoGkKfAAAAAAAAQNVZffXVi24CAABA1bG9OwAAAAAAAAAAAEAJqPQJtaRLl5S2337SYwAAAAAA08r1RwAAAIDCCX1CLZl99pRuuqnoVgAAAAAAtcj1RwAAAIDC2d4dAAAAAAAAAAAAoASEPgEAAAAAAAAAAABKQOgTAAAAAAAAAAAAoASEPgEAAAAAAAAAAABKQOgTAAAAAAAAAAAAoAQ6F90AoA19/nlKe+/d8till6Y0++xFtQgAAAAAqBWuPwIFGzZsWNFNAAAAKJzQJ9SSb75J6eabWx676KKiWgOUWENDQ/6oFnV1dfkDAAAAKJDrjwAAAACFE/oEAFqIsGfffnukD0Z+nKrF/PPOk4ZcdYXgJwAAAAAAAADQoQl9AgCThD4j8Lnv2Vekuvr6opuTGiZMSIMP2yO3S+gTAAAAAAAAAOjIhD4BgFZF4LO+s64CAAAAAAAAAEC1UC4LAAAAAAAAAAAAoASEPgEAAAAAAAAAAABKQOgTAAAAAAAAAAAAoASEPgEAAAAAAAAAAABKQOgTAAAAAAAAAAAAoASEPgEAAAAAAAAAAABKQOgTAAAAAAAAAAAAoASEPgEAAAAAAAAAAABKQOgTAAAAAAAAAAAAoASEPgEAAAAAAAAAAABKoHPRDQDa0AwzpLTuupMeAwAAAACYVq4/AgAAABRO6BNqyRxzpDR0aNGtAAAAAKZCQ0ND/iir8ePHF90EauDviJLp2jWl++6b9HjBrwdejwAAAICOROgTAAAAANpZhPT67tk3jRg5IpX5Mbwz/J3U2NhYdFM6rFr4O4q/n/fefS/17NUzlVHZ218rj8HrEQAAANCRCH0CAAAAQAEBpQjqDbh6QKqrr0tlNG7suHTYuoelJGNVmFr6O+p/Zf9UP0N9Kpuyt7/WHoPXIwAAAKAjEPoEAAAAgIJEUK++czlDVhPGTyi6CdTQ31FZH0PZ219rjwEAAACgIyjn8m8AAAAAAAAAAACADkboEwAAAAAAAAAAAKAEbO8OtWTUqJSOPrrlsdNOS2m22YpqEQAAAABQI+pHjU59jr+6xbGXT9gtTZhtlsLaBAAAANDRCH1CLRkzJqWLLmp5bOBAoU8AAAAAYJrVjxmXFr3krhbHhv16pzTB5UcAAACAdmN7dwAAAAAAAAAAAIASEPoEAAAAAAAAAAAAKAGhTwAAAAAAAAAAAIASEPoEAAAAAAAAAAAAKAGhTwAAAAAAAAAAAIASEPoEAAAAAAAAAAAAKAGhTwAAAAAAAAAAAIASEPoEAAAAAAAAAAAAKAGhTwAAAAAAAAAAAIASEPoEAAAAAAAAAAAAKAGhTwAAAAAAAAAAAIASEPoEAAAAAAAAAAAAKAGhTwAAAAAAAAAAAIAS6Fx0A4A2VF+fUp8+kx4DAAAAAJhGjfV16Yule01yDAAAAID2I/QJtWSuuVJ66aWiWwEAAAAA1KBxc82Whj55QdHNAAAAAOjQLMEFAAAAAAAAAAAAKAGhTwAAAAAAAAAAAIASsL07AEANaGhoyB/VpK6uLn8AAAAAAAAAAG1D6BMAoOQi7Nm33x7pg5Efp2oy/7zzpCFXXSH4CQAAAAAAAABtROgTAKAGQp8R+Nz37CtSXX19qgYNEyakwYftkdsm9AkAAAAAAAAAbUPoE2rJV1+ldOaZLY/96lcpzTprUS0CoB1F4LO+s+4dAAAA00f9V2PSEufd2uLYfw7eJk2YdabC2gQAAADQ0UgFQC0ZPTqlE05oeax/f6FPAAAAAGCa1Y8em3qfen2LY2/ts5nQJwAAAEA7stcmAAAAAAAAAAAAQAkIfQIAAAAAAAAAAACUgO3dAQAAoEQaGhryR5nV1dXljzIr8/Mwfvz4VAsaGxtL/VjK3PZa4u8IAAAAACgboU8AAAAoiQgZ9t2zbxoxckQqsx7z9khDLh9S2uBn2Z+HaP87w9/JYbeyisfw5htvpk223SR16tQplVEtPA9l5+8IAAAAACgjoU8AAAAoUbgngoYDrh6Q6upLGpic0JAu2O2C/FjKHPos8/Mwbuy4dNi6h6VU4oxYY0NjaujUkAZcNSDVz1CfyqgWnoey83cEAAAAAJSR0CcAAACUTAQN6zuXM6BUS8r6PEwYPyHVirI+B7X2PJSdvyMAAAAAoEzKV44CAAAAAAAAAAAAoAMS+gQAAAAAAAAAAAAoAaFPAAAAAAAAAAAAgBIQ+gQAAAAAAAAAAAAoAaFPAAAAAAAAAAAAgBIQ+gQAAAAAAAAAAAAoAaFPAAAAAAAAAAAAgBLoXHQDgDbUqVNK88wz6TEAAAAAgGnVqVMaO3e3SY4BAAAA0H6EPqGWROBz5MiiWwEAAAAA1KBv5umW7n77T0U3AwAAAKBDs707AAAAAAAAAAAAQAkIfQIAAAAAAAAAAACUgNAnAAAAAAAAAAAAQAkIfQIAAAAAAAAAAACUgNAnAAAAAAAAAAAAQAl0LroBQBv6+uuULr+85bE990xp5pmLahEAAAAAUCPqvh6bFvrTfS2OvbPrhqlh5hkLaxMAAABARyP0CbXkyy9TGjCg5bGf/1zoEwAAAACYZp2/HJOWP3xwi2Pvb/Oj9I3QJwAAAEC7sb07AAAAAAAAAAAAQAkIfQIAAAAAAAAAAACUgNAnAAAAAAAAAAAAQAkIfQIAAAAAAAAAAACUgNAnAAAAAAAAAAAAQAl0LroBAADQUTU0NOSPalFXV5c/qolzBAAAAAAAAPD/CH0CAEABIsjYt98e6YORH6dqMf+886QhV11RNaFG5wgAAAAAAACgA4c+//KXv6Srr746vfXWW2mmmWZKa6+9djr00EPTggsuWHTTAADoYCLQGGHGfc++ItXV1xfdnNQwYUIafNgeuV3VEmh0jvgujPcAAABqlzEfAABABwx9nnPOOemPf/xjWmKJJdLOO++cPvjgg3TnnXemhx9+ON10002pV69eRTcRAIAOKMKM9Z07TLf8e3GO+DbGewAAALXLmA8AAKClDjFz+uqrr+bB4Morr5yuvPLK1KVLl3x80003TQMGDEgnn3xyvh0AAIByMd4DAACoXcZ8AAAAk+oQexLGdg+hf//+TYPBsNFGG6VVV101DR06NH344YcFthAAAIDvw3gPAACgdhnzAQAAdNDQ5+OPP546d+6cB38TW2ONNVJjY2O+DwAAAOVivAcAAFC7jPkAAAA6YOjzm2++Se+//37q0aNHixWAFb169cqf33zzzQJaBwAAwPdlvAcAAFC7jPkAAABa1znVuM8//zyv8pt99tlbvX222WbLn0eNGpVqRX19fTr3jFPT/D1nS506dSq6Ofn89z791FRXV5e/rgbRlnNPr8Fz1K1b6vSPf7T82d26xS9IZVdtz1m1/m1XG89bOVXb8+Y5K99zFjxv5XveqvE5q8ZztPQZp+b+NtWho473zjn1nLTgrAumVPx/i++nMaVFT120ql5vvqtoe5mfh8Yujemmq29KS3RdorTLgT2G6lD2x1D29gePoXhlb/93fQx1PSakNNH1x1V7LJ0aZii2j1z256Hs7a+Vx1DppxrzVY+OOOYLXQ7YsegmAFBDvK8A1KaaD32OGzcuf25tBWDz42PHjk21IibEV1h++VRNuv9w+eo7Rz+swXM044wprbdei0MlnH8szXNWjX/b1cbzVk7V+Lx5zsr3nAXPW/met2p7zqryHFVZP7uj67jjvRVS2c27/LypzGrheZhvtflS2XkM1aHsj6Hs7Q8eQ/HK3v7v9BhiRmG9Hi0OzZ2qQ9mfh7K3v1YeQ9n7qbWmI475Qt0SCxXdBABqiPcVgNpU1vWWU22mmWZqMTBsbWuIMMsss7RruwAAAJg2xnsAAAC1y5gPAACgg4Y+u3btmrddm9zWDpXjlS0gAAAAKAfjPQAAgNplzAcAANBBQ5+xtUOvXr3S+++/3+pKwOHDh+fPSyyxRAGtAwAA4Psy3gMAAKhdxnwAAAAdNPQZVltttTwYfOaZZya57bHHHkudOnVKK620UiFtAwAA4Psz3gMAAKhdxnwAAAAdNPS53Xbb5c/nnHNOGjNmTNPxe++9Nz311FNp/fXXTz169CiwhQAAAHwfxnsAAAC1y5gPAABgUp0aGxsbUwfwu9/9Lg0ZMiQtssgiaYMNNkgffvhhuuuuu9Kcc86Zrr/++rw9BAAAAOVjvAcAAFC7jPkAAAA6aOgzHmYMCG+44Yb09ttvpznmmCOtvvrq6eCDDzYYBAAAKDHjPQAAgNplzAcAANBBQ58AAAAAAAAAAAAAZVZXdAMAAAAAAAAAAAAA+HZCnwAAAAAAAAAAAAAlIPQJAAAAAAAAAAAAUAJCnwAAAAAAAAAAAAAlIPQJAAAAAAAAAAAAUAJCnwAAAAAAAAAAAAAl0LnoBjB9HHLIIemZZ55JDz30UNFN4f989dVXadCgQemee+5J7733XpphhhlSnz59Ur9+/dJGG21UdPM6vM8++yw/Pw888ED64IMP0txzz5022GCDdMABB6S55pqr6OYxkccffzztvvvuaeutt06nnXZa0c0hpXTdddelgQMHTvb2xx57zP+lKvDggw+mK664Ir344oupU6dOafHFF8/vQ5tttlnRTeuwevfu/a332WabbbzWFWz8+PHp8ssvT7feemsaPnx4mnnmmdOKK66Y+vfvn374wx8W3TyqrC//6aefpgsvvDD94x//SCNHjkwLLLBA2m677dIee+yROnc2BJ+e/XTnvpj+t/NebN/a+S+mv+y8F9cXdu6L6+c6923riy++SBdffHG6++678/ns0aNH2njjjdPee++d5pxzzhb3ff/999P555+fX/+jb7TIIoukvn37pp///OeFtb+W5ktGjx6dLr300nTHHXfk/uY888yTfvazn+X+ZvyfmNjrr7+ezjvvvPTss8/m711qqaXSXnvtlZ8/AAAAaC+uxtSgCy64IN11112pe/fuRTeF//Pll1+mnXfeOQ0bNiwtu+yy+etRo0blSeMBAwakww47LP3yl78supkdVjwX8Zy88cYbac0118yTyG+++Wb605/+lC+83njjjWn++ecvupk0+/90zDHHpMbGxqKbQjOvvPJK/hxhgK5du05ye2sXyWlfV155ZTr11FNzWGarrbZKDQ0N+TXu0EMPTSNGjEh77rln0U3skKIf0Jp4jYvnLIJma6yxRru3i5YOPvjgdN9996WFF1449xliwjv6248++mj64x//mH70ox8V3USqpC8fk/e77rpr+s9//pMnfRdaaKH0yCOPpLPOOisHiGKynunTT3fui+l/O+/F9q2d/2L6y857cX1h5764fq5z37YiuLnTTjvlfs2iiy6afvGLX6T//e9/6aqrrkr33ntv/vuPUG2IBUc77rhjfm4igB6BxHjOfvvb3+bvP/roo4t+OKWeL/nmm2/Sfvvtl/71r3/lv/f4+37uuefS4MGD05NPPpmuvvrq1KVLl6b7v/TSS/n/QrxObbHFFmmmmWbKP/vAAw9Mv/nNb/JtAADA9xd97ViIO/HXQCsaqRljxoxpPPbYYxuXWmqp/LHOOusU3ST+z9lnn52fk+OOO66xoaGh6fiIESMa11577cZlllmm8e233y60jR3ZKaeckp+fP/zhDy2O/+lPf8rHjz766MLaxqTi+ai8zh111FFFN4f/s8MOOzQuv/zyjRMmTCi6KbTi1VdfbezTp0/jpptu2vjxxx83HR85cmTjWmut1bjssss2fvHFF4W2kZYuu+yy/Dr329/+tuimdHgPP/xwfi623Xbb3N+ueOyxxxqXXnrpxg033LDQ9lFdfflKv3LIkCFN9xs/fnzjgAED8vG77767kMfQEfrpzn0x/W/nvdi+tfNfTH/ZeS+uL+zcF9fPde7bVuUafpy/sWPHNh1/+umn82vRPvvs03Ssf//++b5Dhw5tOvb11183/vznP2/s3bt344svvtju7a+l+ZKrrroq33bGGWe0OH7SSSfl45dffnmL49tss01+T3jllVeajn3yySf5/8tyyy2XxwgAHU28DgLA9FC5Nmb+GVpX11oQlPKJre423XTTdNNNN6V111236OYwkVjtGysQDj/88BYrEWJ1cazqnjBhQt5CjGK8++67eZV8bMPTXFT2CLFVD9XzWnfLLbek9ddfv+im0ExUwHnttdfSkksumerqdC2qUVREi237TjjhhFy5qCJe+6Jy0bbbbps+/vjjQttIy63izj777NSrV6/061//uujmdHjPP/98U79gxhlnbDoeVacWW2yx9M4776RPPvmkwBZSLX35MWPGNFWejGpMFfX19enII4/MX19//fWFPIZa76c798X0v533YvvWzn8x/WXnvbi+sHNfXD/XuW9b0Xe888470wwzzJBfc5pXkVxppZXSlltumfuW8V4QVT6jqueKK67Y4pp/VJeM16aoenPDDTcU9EhqY76kUslz//33n2Q7+Kis3fxv+6mnnsqVPn/605+mpZdeuun4XHPNlauFjh07Nt16663T6REBVKd4v/rxj3+cq1QDwLSKHZ9iF5bYDSGuvR933HHprbfeytfIYiwFtGR79xpx88035y2Pjj/++Pzi1/yiA8Xr169f3pqwW7duk9xWubAXzx/FuPDCCyfbqQjzzjtvO7eI1sQ2V7F11WqrrZZ22WWXfPGW6vD222+nr7/+2ntPFRs6dGh+LVt11VUnuW377bfPH1SPGNCOGzcuv+ZVtm+lOHPOOWf+HBOuE28DGFssxmTtbLPNVlDrqKa+/AsvvJBGjx6dNtpoo0mCWhFc6dmzZ94iMi5ORUiCtuunO/fF9L+d92L71s5/Mf3lJ554wnkvqC/sb764fm5sde3ct50I0kbfcYkllshhwYn16dMnL7iIczrLLLPkYOeaa645yf1WXnnl/Bw9/vjj7dTy2psvib/94cOHp1VWWSV17dq1xW2zzjprWn755fO27yNGjEg9evRoOtetPR+VY3GfCIACdBQxPo/FU6eddlq+RrLzzjsX3SQASrwwMRZjffnll3kRbmXRfyyEi8W6sUDadu/QknJcNTQRef/99+fOtBe56tO3b99WL/bEm9I999yTv+7du3cBLaM1n3/+ebr77rvzivnOnTunAw44oOgmkVIaOHBgnmQ45ZRTvM5VmVdffTV/jucl/t+ss846+cJ4TIz+7W9/K7p5HV4ENkaOHJmWWmqp9NFHH6Vjjz02rb322k3PUQyWqB5R0eWRRx7Jz5Hq7dVhk002yRW/rr322ly1JS44vP/+++noo4/OE7a77rpri+o8dNy+fAS1wkILLdTqz4lQRIQoonolbdtPd+6L6X8778X2rZ3/YvrLzntxfWHnvrh+rnPftipjhzhnrYnFRiHOZ+XcL7zwwpPcLwKfUX017je5n9WRTc18ydT8bYc333wzf44KQ5N7PiIUGs9J5b4AHcUyyyzTtCDzd7/7XbrmmmuKbhIAJV1EEIHP6FfHYtDYHeH2229PO+ywQ/rss8/ywtC4fiMjAC0JfdaI1VdffZLVqFS/uKgalQriAlJM5FC86667LleyOeigg9KHH36YzjjjjFZXb9O+olMXE/xHHHFE0wVXqm9iOrZ7i4mh2IosKoBEBz22wo2t+ShOTFyHmMCLbSmjSkVM7sU2Z/Ec9e/fP6+Qozpceuml+bMFB9VVASm29FtuueXyBHhU1PnJT36S7rjjjhzGqWxpScczcV8+Lj6FOeaYo9X7VyrCfvHFF+3azo7QT3fui+l/O+/F9q2d/2L6y857cX1h5764fq5z37biPEZoMCpM/vvf/25xW0NDQw4qVsKfUXE1zD777JM99/E98frFd58v+a5/25X7t/Z8RBXcqA5aCe0CdBRRiS1C7xHSiY+TTjopDRkypOhmAVAiMaaJSv3Rl957773Tz372szTTTDPl/nwsKFhppZXyAqwPPvig6KZC1bG9OxQkViecfPLJuUJNbHsQgyKKF9sq7bPPPrnKR1RuiknO6EBEB4NixKT+iSeemCf1bQ1SnaLS2YILLpgOPPDAtM022zQdjwmM2EJr0KBB6cc//nHeLov2F9uZVbZFWGONNdLFF1+ct4gL++67b14ld/rpp6f1118/P48U5+WXX85bhsb/Ff9fqkdUzbnooovyNiLLLrtsfm6i2uC9996bX9+6d+/e4rWPjtuXr1RYmlzl18rxsWPHtmtbO0I/3bkvpv/tvBfbt3b+i+kvO+/F9YWd++L6uc5924vXlqgqHK/1UbEmFrZE0P+CCy5oqhQZ7wfjxo2bqnOv0uf3M7Xnt/K3/W33jzGB0CfQkUyYMCEHchZbbLEciI8FsXGtJMaTlZ1TYuv3uHYCAFN6P3nuuefSAgsskDbbbLOmIGhlK/fFF188PfPMM/k+MXa1xTv8Pyp9QkFVgaJCR4iJA8GO6vHTn/40TyDH8/LXv/41Ty6feeaZ6cUXXyy6aR3WMccckzt7cbFAB646xevZAw88MEnoKapCRTWuSrUoilFfX9/0dUwmVSawQwyUYsu+mLiIal4U65Zbbmm6IEr1iD5BbHe5yy67pD//+c/5fSmOxRa7cUH717/+da72SMcxub58rD5uPhk8scpkfFQAom376c59Mf1v573YvrXzX0x/2Xkvri/s3BfXz3Xu297222+fA5+x0CK2MIwqqxtvvHHu1wwcODDfZ+aZZ57qc9/8dYupN+OMM04xNDvx3/a3PR9x3HMBdMR+dCWME5XZoj8d/YgIfka1/Ah8jhgxIj366KNFNxeAKhWLrOIjFiG+9957TZX0430mPvfp0ycfi+uVQV4A/h+hT2hHsSIhKgGdcMIJeaBz7rnnps0337zoZjEZPXv2bKrwWdlaifbfxvPhhx9ORx11lAqEJbX88svnz++8807RTemwKtuRxcRDXICbWGWw9N///rfd20ZL8V4Tz1NsqUj19N1uuumm/P/oV7/6VYuLCbHq9JBDDsmrSmPrEWrft/XlK9s8Tm5r00rVn2/bZpLv3k937ovpfzvvxfatnf9i+svOe3F9Yee+uH6ucz99DBgwIIfJjzvuuBz4/+Mf/5gXtlRek+add96pOvfx3Dn3309lW/fJVeec+G97Ss9H/J+KytGV5w+gI4i+QlhiiSXyrhwfffRR2nLLLdPRRx+dXzNjIWFU0d9kk03y9ZSPP/646CYDUIWiv73MMsukzz77LP3rX/+aZFFW9LXD6NGjJ3kPgo5OPXVoJ/HmFBfwYivCuKB04YUXqvBZJc/Lk08+mVeGxBZ5E4tqKuF///tfAa0jtk4NcQE8PiYWFSniI6rgxEUD2l90tGMbvuhox3ZkE6t0wCvVEGh/8ToW4aTYSqe1LQ8qFSqiigjFefXVV9P777+fV8R7LqpHbLEYK0zj4nVrW/j17t07f66sPqVj9+VjO7MpLXSI4xFmiSAFbdtPjy3kgnPfvv3v2PI6OO/F9K295hTTX3bei+sLO/fF9XO32mqr/LVzP31efyaubvv888/nz0suuWT68ssvJ3vu47Xpgw8+SIsuumiufsN3NzWvKyH+nzS///Dhw3N11ubiuYjnpLXFAwC1qtJvjrFL9KVjDB+LB2O82K1bt1w1/LzzzssLGfr375/mnnvuopsMQBVeC4vxTLx3xCKquCYQ12hC5RpNZTFWZdwT7zmV+8SYKUKjlZ8DHY3QJ7SDmKg8+OCD8xZtUZXmkksuabpIRPGTyfvss0++OB3bS0x8ofull17Kn+MCKu0vOnitTXbGxdXbbrstLb300mnDDTfMq38oTmx3+PXXX6dHHnlkkgs3Tz31VP683HLLFdQ64nVthRVWyM9FXHhbffXVW9we28eF+P9EcWILpGBBSHWJqgTxf+jdd9/NfYaJ+wlvvfVW/jzffPMV1EKqqS//gx/8IG/9+MQTT0xykSn6LhGaWGuttVpsI0zb9NOd+2L63857sX1r57+Y/rLzXlxf2Lkvrp/r3Le9I488Mg0dOjTdd999ORRTEef373//e+7/xPtxTGDGJGdUu4nKoM3Fa1aEDCcOHzL1unfvnhZeeOH0wgsv5IUVzbdmjwnneP2P2+eZZ558rNJHevzxx9PWW2/d4mc99thj+bPnA6g1MTaJvkIsTovxdyxAi8WwzRdLRdgmQjoffvhh0/dFvy7uE/2DqAIaVT7j/kI5AB3b5N5XYneb2HkoFgpU3icq7zOVSp+VeZhK4DPGVLFjwvHHHy8rQIelVwXtYPDgwXmSOFa8X3vttQKfVSQGoxtssEFeIXLBBRe0uO3f//53uvLKK/MFv+Zbd9J+tt1223TggQdO8lG5sBoduPh3TDxTjOh4x/YscQHnzDPPbOp4V6q1DBo0KP8f2n777QttZ0e38847589REbf5tmXxHF1//fV5QOX/UbHiPSfEhCrVIya/N9544/T555/nygTNRXXByrHYuoraNbV9+RlnnDH3GSM8cfXVV7cIjZ5xxhn564krOdE2/XTnvpj+t/NebN/a+S+mv+y8F9cXdu6L6+c6920vKkfGub/mmmtaHL/ooovS22+/nRcARF+oR48eae21186B2wiIVowZMyade+65+WvnftrEe2pMPFfOZ0X8O45X3h/CSiutlMcCf/vb33JQtPn/mXiPjv8rrn8BteSNN95Ip556avrFL36R9thjj7zbQyxCiHBn8yBOLFaLsWIs2AzxXhYV3OP4TjvtlBebnHjiiemyyy4T+ATowKb0vhJj1Pnnnz8HOifeuj3GThPvKvnwww/na8bPPfdcUwgUOiJ//TCdffbZZ3miOMSg58Ybb2z1frHqbc0112zn1hGOPfbYPMEQF+dilfwPf/jDvK3Y/fffnweu55xzTl5VArTuiCOOSE8//XTe6nPYsGG5Mk500GNCIi76xP+hqJ5AceIiWwyAbrnllvx1TO5FxZCoIBITdSeffHKeUKI4lW3j/F+pPrEVVfQTLr300lzRJaq7xEWG6CdEP2/PPffUh6th37Uvf8ghh+TX27h4FX8vMaEfkx5RlXLTTTfNIUamTz/duS+G815s39r5L6a/7LwX1xd27ovr5zr3bStCnfE6H+HaqCYZQcLY1j2qDcfzsP/++zfd9ze/+U3acccd00EHHZTPdfw/iecoAjV77bWXijbTaPfdd8+v9VdddVV65ZVXcuXnmDiOoG308ZuHPqP/GaGl+L8Rz2GEoeO94c4770wfffRROu6441xDBmpGvC9FEGfs2LF5p4Fll102vfbaa3lL3ajQVlEJcS6yyCJ5wVSM2XfbbbdcJTwqW6+//vppxRVXTIcffni68MILczg+QqAAdCxTel+JY81VFhaECIBGtegQC3LDgw8+mK+PxbWE2JloySWXbOdHA9WjU+PEMWlqQu/evfMFoIceeqjopnR4MTHTv3//b73ffvvtlw499NB2aROTihXZsZo+LprGRbrYWikm1+J5seVx9YmJhVgBFNtPRiUWihcTQxdffHG6995786R0XNRZddVV8/8hlQurQ3T5YhL7uuuuS//5z3/yqrkIz8RkUlSroFibbbZZXuX47LPPtthSjuoQFb8idBavcbF9Zfz/6dOnT9pll11yRTZq1/fpy0dfMibwY3uZ+NuJLeGjemJMeky8dSpt20937ovpfzvvxfatnf9i+svOe3F9Yee+uH6uc9+2KhVV//nPf+av43xutdVWOUzYvIJNiIBnVJ6MLcRjQjSCNVHhM4IzzSdE+X7zJRHyjypBEf785JNPcoWhCNjus88+rS6QjaDu+eefn5555pn875hkjgDuRhtt1C6PBWB6i/Bmv379Uq9evfLrW7wmhliE9t///jcttNBCedv2EAuk4ushQ4bkYHxs8z7PPPPkLXrXW2+9puprd9xxR+5jxFa+AHQs3+V9pXJ9pvk4JxbA3XPPPXmnhPieWJg7fPjwvCuXHAcdndAnAAAAAAAAAHTwBWgR2IwFOcccc0z6yU9+ko9Hdc/mizyiKngs1hk9enSuvBaBntjKPYI7sXg2KueHcePGpRlmmKGwxwNAud5Xvv7660kqQsf3xSLdfffdN+8GFTvjxGIDgU+wvTsAAAAAAAAAdGgjR45Mzz33XN7lobVgToR2nn766VwdP6p8jhkzJu2+++7pRz/6Ua5KHSHPDTbYIN836k4JfAJ0bN/nfWXPPffM941K/c23dR88eHDeDUfgE/4foU8AAAAAAAAA6MCiglpUW1tttdWajlWCOVdffXX6+9//np555pn870qlz9hmd//9988fsR1vfEy8NS8AHdP3eV858cQT04cffpgOPPDAVFdXl9Zaa610+eWX5wqgEfhcYoklCns8UG2EPgEAAAAAAACgA1tkkUVywCaqskWVtVGjRuUqbBGy+etf/5pviy3ct9hii7Tuuuum1157Ld10001p0KBBeUv3pZZaKv8cgU8Avu/7ys0335wuvfTStOmmm+b3lWWWWSZtuOGG6ZBDDhH4hIkIfQIAAAAAAABAB1Gpxtm8Kudcc82VevXqlUOcb775Zt6W96OPPkrvv/9+vs9+++2Xt3JfaaWV8v2XX375NH78+PT888/nEE8l9AlAx9OW7ysREq28r8w999zpvPPOS/X19QU/Qqg+dUU3AAAAAAAAAABoH2PHjk3jxo1LH3zwQdOxCNfEdrrzzz9/Gjp0aA7dTJgwIW+tG1XZDjrooKZgztdff50/r7jiii3+DUDHND3fVwQ+oXUqfQIAAAAAAABABxDV06644or08ssvp+HDh6f11lsvB3C22WabtPnmm6eePXumTz/9NL3zzjv5eFRZi2ptleptEdiZeeaZ88/685//nGabbba0yiqrFP2wACiI9xUohtAnAAAAAAAAANS42Iq9f//+adSoUWmhhRZKdXV16Y477sgV2GLb3X333TetsMIKrX5vBHO++eab1KVLl/zv+++/Pz3wwANp5ZVXTnPOOWc7PxIAqoH3FSiO7d0BAAAAAAAAoIY9++yzabfddksLLrhgOuOMM9Jf//rXdO2116YjjzwyjR8/Pt1www3pmWeeabp/VF4LX331Va7OFirBnPje888/P40ZMyYdddRRuSobAB2L9xUolkqfAAAAAAAAAFDjwZw+ffqkQw45JK255pr5+OKLL57mmWeeXI3tsssuSy+88EJaaaWV8m319fXpiy++SPvtt18O6MQ2vZ07d06PP/54evLJJ9Mss8ySLr/88rTooosW/OgAaG/eV6B4Kn0CAAAAAAAAQI1uvduvX7+07LLLpkMPPbQpmNPQ0JA/zz777GmNNdZoCvE0NjY2VWP7+OOPc3hn2LBh6bTTTksnnXRSeu6559KPfvSjdNVVV6WlllqqwEcGQBG8r0B1UOkTAEogOsOdOnUquhkAAAAAAEBJvPrqq2nHHXdMPXv2TAceeGBTCCfmHOrq6nJAJz7PPPPM+XgEeGIuIqqxhcUWWyydddZZ6aGHHkqff/55+vLLL3Mwp3v37qlr166FPjYA2p/3FageQp8ATLVYgfPwww+n2267Lb388stpxIgR+fiCCy6Y1lprrbTrrrumhRZaKJXdLbfckn7961+nDTbYIF100UXt9nt79+6dP0f5+m7duuWvv/766zR48ODcMd53332n2+/+5JNP0p/+9KfcwR4+fHj+vXPMMUdaeuml04Ybbpi23Xbb1KVLl+n2+wEAAKbGv/71r7x9WMXf/va3tOSSS07xe/bff//0wAMP5K9PPfXUPL6piHHsE088McnxbxPjpmuuuSY9+uij6f3330/jxo1Lc845Z/rBD36QNt1007TZZpvlSQ4AACjKZ599loYMGZKDOHF9Pz5PLPqsH374Ybr22mvzvERs0zux+N6YJwCgY/O+AtXFlUcApnpCa+edd87Bw7vuuivNNNNMae21104rrrhi+vTTT9PVV1+dJ7XuuOOOoptaU84777wcPB07dux0nTTdaKON0sUXX5xXVK266qpp/fXXzyu0Hn/88XT88cenLbfcMnfQAQAAqsm3jUFjQuKf//xnm/7OCJpGsPPKK6/MiyNjG7N11103b08W4dLDDz88j5+jWgUAABThxRdfTBdeeGHq27dvXtz0xhtvpHPPPTcNHTo0ffPNN007i8U2u9ddd126++67089//vNcbQ0AJuZ9BaqPSp8AfKuo6LnDDjvkcGdUvzzyyCPTIoss0nR7dOQi9Bml2H/1q1+lGWec0eqc7+HOO+/Mn5uXro8JxOlp1KhRufR+VPY8/fTT09Zbb93i9gh6xvMd4c+DDz44XX/99dO1PQAAAFMjqkV88cUXeVHiIYccMtn7xSRDVOGMKhIxdm2LBZFHH3103pZs0KBBeTFkc2+99VY66KCD0rPPPpsX0P3+97+f5t8JAADfxejRo9M555yTq9Kvs846eWez2G73L3/5Szr//PPzfdZbb728QCp2AIt+7fbbb5+OOOKIfFtla14ACN5XoDr5XwXAt4oOWQQ+f/rTn6YLLrigReAzxOTZ3nvvnbfMi5BihAfHjx9fWHvLavHFF88f7dnpvf/++3N1z5/85CeTBD5D9+7dc7XRCPLGpOUrr7zSbm0DAACYnAUWWCAtu+yy6e23307//ve/J3u/v/71r2mWWWbJOxq0hdtuuy2HSKNaxcSBz7DooovmiZDKwr6Y8AAAgPYU/d8I24STTz45V6A/9NBD8xxAXOOPSm233357uuKKK3IwJyq2nXTSSfn+MccjmANAc95XoDr5nwXAFD3//PPpySefzKG/Y489doqdsr322iv16dMnrbTSSmnkyJEtbotS7hEGjeDocsstl1ZZZZW0yy675BVAjY2Nk2w33rt373TcccflKiqxNd4aa6yRVlhhhVxxNMrEh/fee6/ptvidMelWua3i3XffzT9rp512Sp988kk66qij8v1jW/rocN54442T/P4pid8Z1Vpi+/Mf/OAH+WcdcMABORDZ3Kuvvppvj98dlWWai87tjjvumG+Ln1UR/46PqFZT+XdUUA0Rto1//+EPf8grpOLrON+tieo1q6++ej7P3zbBGM9LqJTcb80cc8yR9txzz9yZb+35j8ceHfsf//jHafnll8/P8QknnNDqdvDf5+8g/u7i9lghFt+z2Wab5eey4umnn04DBgxIa621Vj7nEWCNv533339/io8dAAAoty222GKKW7x/8MEH6amnnkobbbRRmmmmmdrkd1bGIlMaQy2xxBJ5zBfj17Fjx05y+0MPPZT222+/vMVZjHN/9rOfpbPPPjsvyJtYjIljfFMZg8ZYL8aCsY38xG655ZY8hrrooovSJZdckred/+EPf5jbEUHVin/84x/5Z1TGjRtvvHEep8ViTwAAyq1ynT2uo++2227pv//9b/rb3/6WCzz88pe/TFtttVV66aWX0mmnnZaDOdtss0065ZRTmuYuoqI9AFR4X4HqJfQJwBRFVZQQVVGi8zYlsS35rbfemieL5p9//hYByM033zxdfvnlufx7JbwXgdIIYcbWd61VBn3zzTdzMDO2Fl955ZVTr1690gsvvJArit500035tggGRoBzoYUWyj8vOpcPPvhgq9uY77zzzrnSSkyURdjw9ddfT7/97W/zlvRTI8Kv0XGNLc47d+6cH0dUPY3JtvjZN9xwQ9N9l1566bwdejjxxBNbTN5dfPHFOSi55JJL5vL3U5rAXGyxxfLXSy21VP53TOBtueWWOYQbJfRbC1bee++9OewZE3cR2JySCOlWKn4OHjw4n6fWxHaJsXIrfn9zEUDt27dvPq/zzjtvPifR+b/22mvz8xMTlNP6dxCTtLF9Yo8ePfKk5eyzz57mnnvufNuVV16Zf/99992X/+ZiIjQmc+O5iEFF/L0AAAC1KSYcYmHa3//+91YX88UkRByvhEPbQmUMdd111+Vx6ZgxY1q9XyyE+93vfjfJOPrMM89M++yzTx63xjg2tkWLcVhMjERQtPnCvUceeSSP/2J8E5MkMd6JQOljjz2Wx8WVqhkTi+oasa18jN9ivNyzZ880wwwz5Nti4iUCpzGWjqqksWguAqExTttuu+3SO++802bnCgCA9heLkyp94yjkEHMLV111VRoxYkTu/0VfMPqY0QecbbbZch+wQjAHgIl5X4HqJfQJwBRF8DLERNH3EVUnoxJmVAyJYGSEC6NaZZR3j6BghCbvueeeXMmytZBlVPCMUGWlLPwGG2yQGhoa0m9+85sc3IyAY4QooxJkVC+pTL5NLAKeX3/9db7fpZdemquexNfzzTdfDrZWwq2TE6HNCCXGZFxUWYnqndHmCIBG8DHK2seE3ssvv9z0PVE5JdoYVU9jdVOIEGK0N0KbMQk3pWozZ511Vq78EiLAGf+OzxF6jEqZcR5ia8GJ3Xzzzflzpcz+lER1zJjki856tCdClbvuumve0v3hhx/O4czJiXL98biiwx6B0T//+c/p/PPPT3fddVeurBpVPeOcTOvfQWzXGJOica7j9wwZMqTp7yN+f7du3dI111zT4vcfc8wxebL0wAMPnOwkLAAAUG4RqIwxV1T5f+aZZ1oNfc4zzzx53NNWYiIjtpWPMU6MS2P3h7333jv98Y9/zGOUOD45UWEzxqOxOC+CnLFYLsZFsYgtAp0x/j733HPzff/3v//lMWiMyQ477LA8Bo3xToyHImwajyvGovH1xN566600cODAvEguPmKsF2L8GBMzEQKNqqAxxoqfGb8/dneInS1iF4fvshsGAADFi3mL5v3QSn8uFgxFVfm4Vh/X0qNvGdfiI6ATcy3xfXE85mCaV4YHoGPzvgLlIPQJwBRVKknGhNL3EQG8mDiKypdRVbNLly5Nt0XlzsrkU0w8tRbOi++JgGRlJVFUiqx8HZNYM888c9N9o5NZCQlOrtLK4osv3vTv+LpSabMSJJycmEiLSbf4/VFZsvlWflEFNTqzUaUyqqNURMWZqHo666yz5gm1mOCLqqJxv6hsOXHVzO/iF7/4Rf4clVWbi3MdlVGjYkxMPk6NmOSL9se5jA74E088kbcDjNDqaqutlj9HAHRiEa6Nx7LHHnukddddt+l4hEDj8cXqrvh5MSiY1r+Dfv36NX1d2WI+grsxyDjiiCPyRO/E94/t5mOV2bcFegEAgPKqVPGMxWTN/ec//8m7DUQ10LasLBHj0xi3xJgsdoCIxYX//Oc/0znnnJN22WWXPIYaMGBAq7sOxGK1ECHO5Zdfvul4jI9inBRhzEqlzwhkfvnll3mRXuxoURkHhQidHn/88fnrWBg3sRiDNl8EWPneyn1jcV5U5qiI8xNj1Tj273//O1cSBQCgHGJXsejzxuKhqObevP8Xn+P6/QorrJArzce1/xABnf79+6ett946b8kbxRhiZzEBHQC8r0B5CH0CMEUxiRVa23Z7alQ6e5Vt9yYWW61HODBWAr344ostbovtwmPSq7m55porf44KnXF7c1EBM7RWWSXKyTcPJlZENZWY4Iotxr/66qvJPo7KpNfkKsTERFyIwGVz0f5jjz02fx0TfxFIjd8ZwdFpESHH2Po9KsFE57siwqVRATRK5zcPpk5JTDBGNZcIdsZE5c9//vP8nITojMfxCH5GyLZ5xZdKR3/DDTec5GdGgDS2WIyqMvHzp+XvIJ7riUPHEyZMaPqZUZ20NbF9fGvPCQAAUDtiN4TYujwqYcZYqKKy+Kstt3ZvPr6M4GSEPU899dS01VZbpQUXXDDfFiHQ2JEixlWxZXtFjKUqY5iNNtpokp+5wAIL5B0RKpU+K/etLHycWFTQiB0nYjv2qHTaXIQ3K2P5itiBIoKwcTwWLk4sxmmx1XwwhgIAKIdYMBSLgaKvF1XkY3FRBG1ix63Ktfy4Ph8V6uPzjTfe2KIYQwR0oi8bu3pFIYgI8AjoAHRc3legXFpe/QOAiUSwMqqjfPLJJ9/r+z/66KOmjt7kxG2x/VzlvhOHOJurBBnnnHPOyd7Wmqh82VrYMLZXjyBpdF7jIyqitOaDDz7In2Pb8PiYnPgZ0XmNSceKCGBG1ZkIT0YH+OSTT05tISYRo0R+VPtcccUV8wRnfB0h1m222eY7/7yuXbvmUGZ8hHjOYxVWdOpjq8So7BkVZXbYYYd8e+X5isnJ6fl3EFsftjboiMnUyYVOm5t4AhQAAKgdMV740Y9+lHdWiIVplUVhsbV7VJpoXlGzrcVYctttt80flXFjjPuuvvrq9Nprr6Wzzz47//5oU4xhYoFiVAqtLGacljFUjPvmn3/+9MYbb+T7Nh+XtTaGqoxpY0HncsstN8XfbQwFAFAOMScS1+xjl7LYWSz6hRHOeeihh/LOaFF8Ihb9RAGJCOFEPzV2PasUpagEdGLuJApKxO1R+KL5/AYAHYf3FSgXoU8Apigmg6J6SfNqklMSW9BFhzAm3aLSSfPKkJNTqcbSfMvvMHFlkmkxpe38Km2c0n0qbYwtw1sLozYXk2jNO68ff/xxLmUfYpLv9ttvT7vvvnuaVtGZjm3RI1AaK6qeeuqpvIV6VB3t3r37t35/tDMmIj///PNWq2XOPffcuSpOVJY5+uij01/+8pd02223NYU+K9Vfp6ai6LT8HbQW1q3cN/5GNt100yn+3ErFHQAAoDbFmCVCn3fccUce28SitXfffTcdeOCBbfp7xowZk6tljh07Nq288sqT3B4hzBgvxXZm++yzT94xIsZR0abvMn6a2jFU7IDwXcdQ3bp1a3UXjIl3YgAAoPrFXMUuu+yS+8GxsOiXv/xl3knr8ssvzxXpY+4gqrRF0Yhdd901784Vczirr756WmKJJXKfMwI68X2xOCl+VlSTB6Bj8r4C5SL0CcC3bpUX5deffvrpvJonttqenKi8eOaZZ6Yvv/wynXDCCWnHHXdsuv/w4cMn+32xHV0lZDi9jBgxotXjsZ14rFaK8OCUgpJR8TSqUEZYc+211/5Ovzu2d4+y93Euhw4dmqu9xM9Ycskl07SIznZsCxgd7Ajmxs8O22+//VR9f0w6RkWa6IDHCq3JPf6YlIyJy5isjOo0zc9JhEyjYkxrz11saRhVT2OCs63/DqJyTQRrY5IzKqfGwAEAAOiYKludxxhk4MCBucpn2HLLLdv098T4J3ZymHnmmdOTTz452UoVcTx2X4jQZ2UMVRnDRHA0xoet7V4RY654HLGIMsZQb775Zh5D/fCHP5zkvjHWqlTvnJoxVIzfKrtdnHXWWd/5sQMAUH3i2n5UZIvFTlEgIgpC7LXXXrlQQvw7rvsfcMABeW5iwIABObATt8d8QoRzYmFQLBhaeOGF8zxGWxbiAKB8vK9AuUy67BsAmllmmWXyhFNUqDzllFOmWG3k3HPPzYHPCCNGpZWw2mqr5c8RTKxUFmnuhRdeyGG/2WabbbpWE4nA6ssvvzzJ8XvuuSe3a4011pikOkpzsUIp3H///a3eHj9nk002Sb/+9a9bHL/hhhtyGDNWNZ1xxhm5AxxVYX71q1/lSbpv821VYGKL93DXXXfltsVE3nrrrZemRkz2Rcc9XHnllVO8bwReQ5Tyr6hUtomKOq0FSo877rh06KGH5kqibf13EJOllS3tW/v94fTTT2/aWgAAAKhdEcJcf/31c8DykUceyZUmVlhhhbTQQgu16e+JSYsYc8WCxxtvvHGK943AZvMxVIxhKlvNtzaGiSDoMccckytmhMoYqhJgndh9992Xx5axpdrU7PQQOyDER4yNo0pHa+J3x8LAGLcBAFB9Yp6mIq6NV+YPoi8cRSbimvjrr7+eFlhggVwsoVKA4tZbb81zNm+//Xa+7/nnn58r2Dff/UwwB6Dj8b4C5Sb0CcC3ikopEcaLYGGs7Ilt8pqLSiXnnHNOU3Dwt7/9beratWv+erPNNssdwVdffTWHRpsHHaNiyZFHHpm//sUvfjHF0GVbiBVFUdWzYtiwYTmIGfbcc89vDVfOOuusuUT9kCFDWoRf33jjjXTSSSflYOQiiyzSdDxCjKeddlruIMftMREZq50iSPvKK6/kDvDUBDNDBCdbE2HVmHiMMvuffPJJribzXTrRBx98cF5xFWX5o+M+atSoSe4TE5JRwTV+7h577NF0PMr2x/dedtll6V//+lfT8ai+GY87znVMVMY5mR5/B3Euw+9+97sWv78Swv3Tn/6Uf5+tCQEAoPZVFh7GuCbGRltssUWb/44YE1W2jI9xzaWXXprHw83FJMktt9ySx1hRtXPnnXduum233XbLn6M6xmuvvdZ0PMKbxx9/fB5LxeOI74uxUYyrYzx2ySWXtBiDvvTSS3mMWRmXTa3KGOqII47IY6XmrrnmmjyujHZFYBYAgOoSC3dijiOufYe4Nh/9x7D44ovnxTsffvhhXgAVfdSYW1hnnXXyPETszBb3iT5k/JzoW8YOb1988cW3Fp4AoDZ5X4HyE60G4FtFlcrrrrsu/fKXv8zb5UVFyT59+uQqIbE9+vPPP587cdHZi+qOEfCriADfH/7wh7TPPvvkEF50HGMCKSqCxnZ4sYIoVgAdcsgh0/UxRDuiYxrboUfVzuicPvHEEzl8GGXov23L9thaL1YvRUgyQoYxgRcVWyIk+fTTT+dOcDyOSng0/h1Bxjg/MVkX4czKJGGshIoQaUwQRlXOSsXM1kTVlhBVZGLrvnXXXbepumeIjnNs5x6ThpWvv4sf//jHuUN+4okn5scUz9Fyyy2XH29MPMZEYPzeCKxGQLZ5gDKq1ETF0jjer1+/XHlznnnmyYHWCHJGBZx4rNPr7yDOXTx3MYiIydP4m+zZs2f+3dGGymTmSiut9J3OCQAAUD6xQ0VsoR6L8mLc1Xxc2pZifBcL3C644IK8OC4+xxgqtlj/6quvciAzQqfRlvPOOy/16NGj6Xtjd4gIacaYKBbsrbLKKjnYGTsfRAXOmDCpLIiLsVVlDBrbsd900015AWH87soYdMcdd2wRKv02cd+YjImKHLFNfYyhon1RtSMWMcYETyzgiwV7AABUj7h+HnMAjz/+eHrwwQfz3Eb0G5sXUIiCDbG97s0335znEGK+JuY/ouJ89GFXXXXVXDwhdmyL+ZHmi5AA6Fi8r0BtUOkTgKkSJdxvv/32vH15dOLef//9HP586qmn8iRRhB1jC7iYOJpYBAVvu+22HAyMDuEDDzyQJ8IijBeTVxdffHHuIE5PM844Y95qPVYgRcc1Jrpigm3w4MF5Em1qQ4Z/+ctf0g477JBXLD300EN5QjHCizExFqHGyuOIn/vss8+m+eefv2nSriK2VI/zFRVgjjrqqDwxODlR5aVv3745dBm/L873xCqh0XheourndxXPWazS2n///fNzFRVKK89tt27d0t57752rvP7sZz+b5HvjcVx11VX53MT2hfHcxuRjtDnOVfPtFKfH30E8d1FhNgKjI0aMyFVwoirqT37yk7yte4RMAQCA2hdjiZ/+9Kf561jUN9dcc0233xVjpxgfx3goFurFFmax3XqENyMwGdVAY4xVWfzX3G9+85s8dozxaIyHYnIlxnuxyDIW+zVvdyz6i3FVLO6LiZUYp8W4KxbvxZgzKmt8F7FQMMauEUaNxZD//e9/09ChQ9P48ePz2DMmcioVUwEAqB4RwokFR5Vq71GlfZdddslzMpXdzWLOYqeddsoLkKIqfaWPXKnaFv3WuD3mSeJ7o08Y1/8B6Hi8r0Bt6NTYfG8gAKgxsRX9BhtskLenby0wWQuiSmd0xmNFlgk6AAAAAACoTbFw58ILL8zV12K3rlgoFIuSllpqqbyzVux+9fDDD+eq8RtvvHGL741CFJXte+vr6wt7DABUD+8rUF5CnwDUtFoNfUaZ/KiW+eijj+aO9+yzz56rvkzviqkAAAAAAEBxRo0alXczu+yyy9IjjzySK8cfffTRaeutt04ff/xx2nbbbfMOW7G7Vog4QFR9B4DWeF+BchL6BKCm1Wroc6+99sqPJ8KfIbZH32KLLYpuFgAAAAAA0E6uvPLKdMstt6TXX389rb322mnHHXdMH374Yd6Kd+DAgWmHHXYouokAlIj3FSgPoU8Aalqthj7PPffcdPnll6e555477bPPPmnnnXcuukkAAAAAAEA7qGypGyKYc++99+btebt165aWWWaZNHLkyLwz2Kmnnpp69+5ddHMBqHLeV6B8hD4BAAAAAAAAoEQm3l43Cl8MGTIkPf744+nTTz/Nx4477ri000472YYXgG/lfQXKRegTAAAAAAAAAEru448/Ti+//HL6/e9/n4YNG5b+/ve/p0UWWaToZgFQUt5XoHoJfQIAAAAAAABAjZgwYUIO6nTv3r3opgBQA7yvQPUR+gQAAAAAAACAGgnm1NfXF90MAGqE9xWoTkKfAAAAAAAAAAAAACVQV3QDAAAAAAAAAAAAAPh2Qp8AAAAAAAAAAAAAJSD0CQAAAAAAAAAAAFACQp8AAAAAAAAAAAAAJSD0CQAAAAAAAAAAAFACQp8AAAAAAAAAAAAAJSD0CQAAAAAAAAAAAFACQp8AAAAAAAAAAAAAJSD0CQAAAAAAAAAAAFACQp8AAAAAAAAAAAAAJSD0CQAAAAAAAAAAAFACQp8AAAAAAAAAAAAAJSD0CQAAAAAAAAAAAFACQp8AAAAAAAAAAAAAJSD0CQAAAAAAAAAAAFACQp8AAAAAAAAAAAAAJSD0CQAAAAAAAAAAAFACQp8AAAAAAAAAAAAAqfr9f9mAiUPp2Z9mAAAAAElFTkSuQmCC", "text/plain": [ "
" ] @@ -866,13 +890,13 @@ }, { "cell_type": "code", - "execution_count": 38, + "execution_count": 15, "id": "982f835e", "metadata": {}, "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACVEAAAbHCAYAAAB5LbTXAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAXEgAAFxIBZ5/SUgABAABJREFUeJzs3QmYXGWVMOBT3Z2EhARCRFB2QhRkkSD7MiKKCKigiCOCuIDjgig4IyjuOiqIuICMIjrI4IbCj6jjCsgiBARkEYggGHZUFAhJCCTp7vqfczM3qVSq973rfZ+nnu6uuvf2V1W3bt17vvOdr1KtVqsBAAAAAAAAAADQpFpGugEAAAAAAAAAAAAjSRIVAAAAAAAAAADQ1CRRAQAAAAAAAAAATU0SFQAAAAAAAAAA0NQkUQEAAAAAAAAAAE1NEhUAAAAAAAAAANDUJFEBAAAAAAAAAABNTRIVAAAAAAAAAADQ1CRRAQAAAAAAAAAATU0SFQAAAAAAAAAA0NQkUQEAAAAAAAAAAE1NEhUAAAAAAAAAANDUJFEBAAAAAAAAAABNTRIVAAAAAAAAAADQ1CRRAQAAAAAAAAAATa1tpBsAAAAAI+mee+6JK6+8MubMmRMPP/xwPPHEE/HUU0/FWmutFTNmzIjtttsudt5553jFK14Ra665Zow1H/rQh+LHP/7xKvcde+yx8d73vjfGgn/84x/F+3P11VfHX/7yl3j88cfjySefLN6L6dOnx6xZs4r3Z7/99osNNthgpJs77r30pS8tPie1zjvvvNh1111jLPrqV78aZ5555ir3vfa1r41TTjml2/U6Ozvj//2//xfrrrtu7LPPPjFW5Hu37777Fu2vNWXKlPjd734XU6dOjfHsyCOPjOuvv36V+04++eQ45JBDopn2XwAAAKAxSVQAAAA0pblz58aXv/zluOqqqxo+/thjjxW3u+++Oy666KKio/2II46IY445JiZOnDjs7W02mTz19a9/PX70ox/FsmXLVnt8/vz5xe2+++6LSy+9NL7whS/EAQccECeccEKsv/76I9JmmsMtt9wS//mf/xm33357cVwYSzLxqz6BKi1evDh+9rOfxRvf+MYRaRcAAADAaGA6PwAAAJrON77xjaLySFcJVI0sWLCgSOo59NBD49577x3S9jW7rIiTCVHf+973GiZQNdLe3l4kgRx00EFF5SoYisS+rOx22GGHFQlUY00mT9VXpat1wQUXDGt7AAAAAEYbSVQAAAA0jWq1Gh/+8IfjS1/6UvF7f9x1113FlFAPPfTQoLePiAsvvDDe+c53xsKFC/u1flanymphl19++aC3jeb2gQ98oEhC6u+xY6Rdc8018cgjj3T5+B133BG33XbbsLYJAAAAYDQxnR8AAABN45vf/GYxnVUju+22W+y3336x6aabxoQJE+KBBx6ISy65pGFVo6xIk9PGff/7349KpTIMLW8Of/jDH+ITn/hEdHR0rPbYFltsEa9+9atjyy23jLXWWiseffTRIikkq08tWbJktapUWTHof//3f+PZz372MD4DxprXv/718S//8i+r3DdjxoyGyzaaBm+sJSj2JKfP3G677YalPQzv/gsAAAD0TBIVAAAATeHWW2+Nr3zlK6vdnwk5p512Wuy9996r3L/rrrsWHdQ55d/xxx8fTz311CqP33TTTfGb3/wmXvGKVwx525tBVp56//vfXyRA1coktf/4j/+Io446KlpbW1d57MADD4x3vOMdReWpe+65Z7WKVGeddVZ87GMfG5b2MzY95znPKW7j3RNPPBGXXXZZj8tl4mEmIK655prD0i4Gpln2XwAAABgupvMDAACgKZxxxhmrVTjKilPnnHPOaglUtV784hfHV7/61YYVp7773e8OSVub0Q9+8IP4+9//vtr9Of3iv/3bv62WQFXKymHf/va3G1ZfyapjixcvHpL2wljyk5/8JJYtW7bKfc961rNWO67l5yUTqQAAAACakUpUAIwaixYtiosvvjh++9vfxl133VVUD5g4cWJsvPHGsfvuu8dhhx0Wm2++eYxHOdr7xz/+cTFFTVbCGG3//+67747nPe95Q/b/f//738eb3/zmho9l5/akSZNi/fXXj+233z4OOeSQ2HnnnRsue9FFF8VJJ51ULJtVQwYqK2E8+OCDfd7vXvrSl8bDDz8cn/nMZ4oKJvXP8Y477oi2tuE5DcvPUXaY1U5llIkAZ555ZrzoRS8qOqxHm4ceeihe9rKXFb9nhZfsHB8J5f7UnTxGrbPOOvH85z+/2DezIspIa7T/ARF33nlnXH311avdf/TRR/dq6qo999wz9tlnn+I8JWXiwcyZM4sp5jIxq6sEn9Itt9wSv/jFL4rqVffff3+RqDB16tTi+LzDDjsUSVz5+W1p6f1Yp5xaLLf5q1/9Km6//fZ47LHHiqpaOd3dwQcfXHyv92V79XIaw9x2tjmnzqtWq0Wi0qxZs2KvvfYq/sfaa68dg2Hp0qVx3nnnrXb/jjvuGEceeWSP66+33nrxzne+M04++eRV7ttpp52K12XKlCndrp/f95k4MmfOnJg3b148+eSTxTE+k0xe8IIXFNNl5TG+p+o85XdsrR/+8Icxe/bs4jn+9Kc/LaYf/Mtf/hILFiwozll22WWX4jlutdVWq6yXy+T39O9+97v429/+VjyHDTfcsJhy8tBDD+12yq7cB2rlOVRO05Zy/8tpKPO55ndunpNstNFGxf6d59v5ug2FgexP2dasRJbr1Mr355e//GXD9T7+8Y8Xr329j3zkI6ucdzZ6z1772tfGKaecstp5SSN5rlCeL+T7k8eI17zmNfGnP/1pleVe+cpXxpe+9KXoTrYj21P/XuZ+M1CNpjF93eteVxybrr/++lXuz9ftDW94Q5+uI2qV5295jMrqV/l4HoNzGtQ8RuVxMyv45f9fY401evV/rr322uK9zmNdnueUlQFz/TyO5rVKJrzmcS+vHfrrc5/7XPzP//zPKvflZyKvLbqbuvWGG26IN73pTavcl5+t/PzWf1az6l4eu/M76c9//nM8/vjjxXdCXvdMmzYtNttss+I8/VWvelWP12A97b/18jN03XXXFZ/FvCbJ1zKvw/P+PL4997nPLY5F++67b3FM6Om7DaAkpte8Mb2RVh9TzNfjbW97W4/rffrTn47vfe97xe+DFR8binjM008/XVzP5Pn6QI2GeGB/Y35dxVW72v/L66EcbLPHHnsM2WsKwPgkiQqAUeHyyy8vOh9ymok0ffr0IikhO7ByapYMwOSF7bHHHhvvete7Rrq5TePee+8tLvwzqD9cF9fbbrttEWgrZcd07gfZ4ZediZnYkp1s2a7a5QZbdmrk/8gOnpxaaCw699xz42tf+1oxdVVtEhV9lwGmRrITLD8n2UGWtyuuuCJOPfXUYW8f0LPsfK+XCUaHH354r7eRHeQZ5M3EnDwudJfEUsrzmE996lOrJSmk7FzKW3ZsZIJLnvtkgsduu+3W43bvu+++YorB+kSNf/7zn8XtmmuuKb67v/zlL0dfZUJRBqNvvPHG1R7LToG8ZUJMBuHf97739SrJqSf5vzLBot4RRxzRbeJCfZJKJiRksnW+R9lp15N8/b/whS8Ugff6KmWZhJyJGg888ED8+te/LhJg8lw029RX2a6ckjB/1spt5y2rBH30ox8tOhjT2WefXVROq60c9MwzzxTJFrfddluRcJbf8S984Qt73YZMkvjWt75VnBfUT5k4d+7c4pbnDnlOPphJuIOxP2XHR37+vvOd76xyf3Z+5PfuZz/72dUSbsqksfrtDMb+2pNMrK5vU17v5HvYXdJQ7mf1MiFroP74xz+utu+lTNLZZJNNVjs+ZcdU7g9bb711v//nI488EieeeGKRXNToGJUdYbk/5n6ciYpdyWXzXLzRMTTlZyTPxzL5MV+/b37zm0UyZVfnbr157+qTqDLp7w9/+ENxXOnLe5fJl/XfE/ld9MlPfrI49tTLz2V26uX/y+ebx4H8LOaxYTCue/Kzlu9Jo89i7XdSfq/kMTG/k/I7JBMdAbojpjc6jURMbzTIROGekqjyvL/Rd/dok4Mv8lrlve99r0Fyg8RrCkBvSKICYMTlFDqf//zni98POOCAeM973rPKCKkMIn/9618vRsxnEDc7H7LTkMHz7//+78U0OTnyuVZWZMhkov52QvTH6aef3nAkUHZiZtAtOxSzozE7Gb74xS+u0rH68pe/vKi0kKO4B+ob3/hGEXDqj+yAzA6doark0Fu11ThqZedvVtOYPHnysLdprOou4JiB4gxM5ucl982sVpOJfsDo0qjTOBN3sxJQb+XnO2+9demllxaJM3nu0huZ5JDVdj74wQ/GW97ylm6Xy1G4ZUdVV26++eZiub6MsM3kiTwnyOSUnmQlpTz+ZRJYjuQeiPpEizLJLSuh9FYmDGcVmd7K7/m3v/3txWjo3sgEpnye+brm/+ltUkN2HOY5S3YkdiXPGzKxIisZZQJcjpjuTiac5fuUCRm9SeZLOTI7k1a6k+dbmbCRiRS5/YEazP3pAx/4QHFeWn9+lhWWsvJOmeCSHYX5HOqrVmW1qqzO09ukvIHIkfCZ3FWbBJftymSxTNDvKjGyPtEpqwBlotNAXXDBBavdl53bOUJ/gw02KF7vrJRW6/zzz+/35/qvf/1rcRzLCmo9JVplJ2dWZWq0H2dVk0x6ywSp3srXMfe5TKLLild9lVWYttlmm2LfrZWfta6SqHJfy0oK9Q466KBV/s7nmddd9ftmV7KSV1YFy89PVo0YyL6bx698LTORqrdyf8zrhtx/MtkOoBExvZE3mmJ6Iy2rE916663FuUhWV+xKJitnovZgG+x4YH5mGk133l9jOR6Yg0fyXCr1prp/uWye6w7lawrA+NT/uv4AMEgdmmWp3Qy05Mj4+hLTeeH5iU98Io455pgVyS05jQODJ1/j7GQY6aSf7uT0Eu94xztWdI7+/Oc/X62qSAaM8nmMdJA//3+2oz6ANVpkJ1W2rz6QQP/kdH6ZsJZTr6RmGuEJY0Um3mYllnrdVT8ZjHOc7CDqbQJV7ajo/K5rNPVWyu1lVZaeEqhKWeUop0LrjUycyQoBvUl4qZWd/PUVgvoqE5MafZ/2NA3fQBIKcirH3iZQ1Y9ezqnieisTUbpLoCplYkWeD/eUQFX7fv3Xf/1Xr5MhekqgqpVVt7Ka00AM9v6UFZxy1Hh9p0m+bnmtUCYBZcJao/c1k9T6kjQ50HODnM6lNxXxaqsm1MvpjwZ6fp7JW3ne3CjRK+X5aqNkxex4zXX7I5NHe0qgKuWx7L//+78bPpbvZV8SqGqTr+qnuOtrNap6Wa0ik5q6On7Vd8bl61o7DWS2KffB3iZQ1SfkXnjhhTEQ+ZnuSwJV7ee4p+mtgeYlpjc6jIWY3nDJir75XdtTlanynGwgVTcbEQ8cOpn4lW3vbZJ8uexYTBgDYORJogJgxORFbXZAZWfh7Nmzi+k7uvPud7+7GEWUwevedi4x/uSI7r333rv4fSCdIzCYshpJThGUsoIGMLpkJ319lZXUlwpNfbFkyZJi+rLaKjSlHAmeSVLf/e53i++xnKorKy7Vy86mnMa2XlZXyWlR6k2aNKmo6JKJMjkCOkek97ZCUW3CQlaGqZWVTzKhIJN1crsf+9jHGiYrZ3JLX5NlajVKuOjNdHz9lVOtNUooyEpQWUEnn2u+lu985ztj6tSpqy2XU131NqmhnDovK//853/+ZzEVX+4DjTovct8pZdWzHCmdy2fHY6NKm7/97W971YacIqz04he/uHivcx/MdmRFtnp5vt3fhI+h3J+222674pqgXn4m8v3KztysXFovqznlqPv+yA7JTOzKW6OOtmxP+XjtuWmjRJysRFX7XtRq1Nk3GJUtMzkrK4zVvw+1Fa7KhKpauU6j5KveKCs75Ocpj4V57ZbTNe61115dJgnVy/e/UQWtTCzLfSvf59xu7kONjhWNqtv1Vr429ZXmsvpbV9PgNXrv9t9//+K4XLrqqqtWS6bM6a4y0TATCrJCS/7Ma+J11113te3l1H79ldfbjd7LnAK1PBbkFIZ5PNhxxx1XWy6fd1fPHWheYnqMRvn921Vyeu25eVaQXGuttYqpdwEA6kmiAmDE/OEPf1jROdib6UIykJ2B3Qy2ZAdUvQxKl52RO+ywQzGtW5YSz7LiWT683kUXXVRMYZFTg+TI4OysydHC2TmTSTr5P/L+dOeddxYBoRzRlB1Nud3s+KnvWMrOgdxmdszlaOTshMvEimxLdtxk+xYuXNin1ykDUtlRl9Px7LLLLsX/z5Ht2WGQ01XUd7xlMDzbkD/rO4yzvTk9UD6enSVlR112bpSvRcrR+/l32RF00003FX/n/82pVrKEcv7daNqKUnbk5jIDCfh35Q1veEPxM/ef2ildyvc0Owfr/e53v4t3vetdRcdLTtGx6667FlNaZAdM7etUbiNLe6ezzjqr+Dtfo/T73/+++Ptf//Vfi///xje+sdhncrtlCft8nXKZRh0/Kf9fvrb77bdfsW62N0d4N5o+sLvnVPte5a2sulC+n/XvRW6rdj/NtnfVEZTTG5X7e3Z4vfe97+2yIkX5/3N/uuSSS4rXNac7yf0+P49lOfP+yABrVqPIzqx8rfLzdNxxx8Vtt9222vubbcj3tqtO/Kzekh1DuVyWdx9sZRJEow7nDNJdfPHFxT6YQbp8Lnmcyil9MvDc6L3P1zHbmp1ueQzK553PP9+TPFbl8TArqfRWLpuvY/n5H0iyA4w1XVUByiqHQyGP/w8++OBq9+cxIKvVve51r4udd965mIY2vzu++c1vrtLZnvK4maP56zWqdpfPIzvg8/ifx5j8Tsrkn5xitLfVGTPpIY9TjaqXZLW9fffdt9jum970pqIzvr7DIb8DMsFrMN+joXp/sipTVtmpl0lLeX9OqZjPNZ9jJqPl69goSSOnGK5NeupObjuri+X5Q56D5D6Q38ddye+AnB4nzx9z+fwOaNQ5mUlKjRIEu5JVzHJ/y++D3AezHfm+NZoyLs8z8zuoP4Zyf8rPUZ6L1stzthNPPHG17+HssM2kxP7Ka5DsHM5bo4S6/IyVj9cmWeVzyikma2Vlp8svv3y1beTxYu7cuavcl1XY8hgxUI2S/TKZszaJL699crrDepkY1l95HpmfpzwPzfOXPO/NRLdGVa/uv//+1c4VMyl90003XaXyWO4zWbUq99c818zt5j7U6Hojk556+/msl8lNjSqJldPC1Gt0TVSfANeoOlpez+U59kte8pLiHDV/ZiWX/A4pK1hk9YQ8v839K6tC9UeeA9ZXFcvz+/w8lseCfL/yeJAJVflelee2eezL96w+EQ9ATK93xntML2NZuVyjJPfST3/602KZ/D4pqzrm65LXLxmXyu/AMvaU34ONzpV6K88xc+DBLbfc0mVVzIxt5SCbPM9qNEihNoaUMcPyXCbbmOdQ+d2ZU0Q3mhKuUTywNo6Y5zt5jp8DRHO/yvOZ3DfqE8rLfbEc9JFTVeff9dcPGbs84YQTiued5wrZxjwH7SqG11U8sGx3fqZzmzkTQF6D5OcpPy953dPVuUB+PnPgx6GHHlrs43nekj8PO+yw4rl2V5m5tzG/2tcxb+Ugle6Uy5ZVmbt7TXMa6/w9n3NX8cucIjIrWef5vukAAcY/SVQAjJjyIqa1tbUIZPRGXkzlrX5qlwyI5AVXXvjcddddxajnzTffvJjCJi/Y8rG82GokL5wzYJxB/QzqZIdCXmhnADkTSS677LLiQvCKK64opgDJkUo5rUR2AGXguZG8mMp1svMoA+DZAZBJEtm+TADq7fQWeYGabciASLY/pzHJKgYZQM+OpQzO1wY9sgM2A0cZBMgR+fVTvORzvO6664pgfHbM1nfY1m4nAwPZ6ZSywyj/zovxfP5lh052KjaSzy//T763gzGCvl7tCOky2ak7WcEhX8cMxGRHzFZbbVV0zOa6OcVOTueTAZz0rGc9q3iuZSdZvgb5dzlVW21nRAav/vSnP8WsWbOK4FX9Ml3JYETuC9mZke9nBrEyAJivVSYDDVS2I9tcyv+Rf+dz604GCnI0fAYXsx3la1WO0nvrW99a7PddyX0q18/S/FndJV/jfH1ynezU7I8MLH7mM58pOsLyeWQQMUcUZvCpdqqr7JzO9yrb2qhjPGWCVwZRs5x3BqsGU77/eaxIGfCtlQGj7JDPAGzug/n5zOeSnZUZNM0OyqxWUd95WsoO7DyeZFAtpwfK55lB0awYkEGpMjDcnTzO5fuXHZIZ8MnPRE/7A4wneZxtpL7SyGBplPyRx6lMYGkkOwxy6r9Gx63ahMc8v2g0tVWu26iaUFbQyeBwb+Txqb6jJtvcqHpPvm4f+chHep1g0BuNOqSG8/3JY2J+jzWaPjC/07JjoF6+H72pBJVVfzJhtv755HtWn2STsgpN2QlWq1HySerNVIEpOzMyAalenq9lR2Oj74X+JlEN5f6U5yennnrqalNz5HdxfXWxfO3zPCTPX4dbV+fBjSojNLovE1kGOv1IHi+yk7tefeWpfA/Kyg21sgMrr7P6Ks918nWv/zzl+5HnI/WyU7j+OJ3Xh5lgl1PlZedzdlbm8Sxf13ozZ85sWHmvq2N/bzSqJJbH5PKaoZRTxdZXXMtr0ewUrdVoWp88t2vUxrwezWvRfDyff14n5DVeJnf1R6P/ndfMd9xxx2r3Z+JUVqHL/5n/O9uQCYplJWCAkphez5ohpld+X2YMqatk3/L/lBV483s/r4s+9alPFQleeQ6aCSz5HZvfO3m+evrpp0d/5PuV11b5P7qqRlWeY2aiWlcy5vf617++iBlmMlK+htnG3HczrpLJgK997Wt7vS+UMbdMOCwTAzM2lc85941MHqsdLFPGIsvrh9wHa9/TlNUkc+BFJqnlvpbnQ7n/Z9vLGF5fE+Iz+SuTuvL9z89Lnl/l5yX3xYyd1k9tnMlq+TrmuUIOVMnrz5zSM5fL84h8rrUx1/7G/AZDd69pHmPy85n7cFaO7Wo/zueV1zTDNUU4ACNHEhUAI6bsBMzgSKNR3b2VCQR5EZoXoJm8kBeKmUSRwY688MkOp+xcygvSRlUhrr766uJiMy8Uf/nLXxZVeHJ0XMoLvkwKyWoxGSDKC6bsTMoATcpEhEYjanIb2ZGTI9vy97ygzTZlckuO6mnUUdTVxWT+37wAzfbl/86Adl7AZ1Ah/3d2suWFaikTJMpKBRlgySSWlIktZRAi/393c8hnh15ZKSPlhWz+nSOPUgaTUr6+jYIk5YVlBi6G4sIyOxDKfaa+06Jedkycdtppxe8ZIMvATl6IZ6dnjmTPi+RMpiqDK9lBkM+1rCSQAaP8u77TMfelDFzl+5sdO7ndDAj1RgaJsjO1bEu+r9lRlvtMvp99qS7USFnppHZkYP7dU+dHdk5l51AGhXJfyc9GVi+45pprivZmp2Xu03lrJIObWfkkgy35+cvnlwljZZCq3Bf7IqdiyRGN2ZZ8rbIthx9+eLF/1U51lYG48vXvKhBYVsRo1Ck2ELkP5ii/HJWW7ajfV7LiRwbFMgEqP8e57+VzySBu/p2ft0yoy6BTIzkqL4M02SGdnYn5Hn3ta18rAppZuaGn6aTy+JdJXBmMzpF9mXyVbYFm0lUHQ1fTag1Edrrk561eo8SBWpkUWd+hlMH/2uTaRiNy87iTAfyu5Ejk3nzm87upXm1Cbr3s2KqvXJPH5P6+po0Spobi/ekqMSi/G7pLtMnjZyYh1etN8nO+Vl0lWjdKosrqk3l+Uq+206RWbytRledvjeS+1yjBKc+F+2Oo96dcPkfd9yQT3rN60Ujpakq/+qpAQzWVX6POp+yYbZQwlRURGulPNaq8Jms0XWX53jXSVdWoPDbkeXke53LgQn3HeXa2ZnJVo0TM/lZCTXkdkx2B9RXW6gdwNOqgzSS1TBir1Wg/zGvPTCbIzsW8bsuOyPLznAMZsgpU/Xb6I48n9Z+/7KzM/TM7PjORIJMMymuQ7MzOKhKNjkMAJTG9njVDTC+ThrMqZ37n5utfL79v8vnm91l5zZLnz/m6ZoJOvrb5nuc5S76XWQU25RS3fUlQ6u2Ufvk9m+cO+V3XXfJfJuzn+5KJNrmd2jbm+5LxwBzskvGV3sqBc1kVPWOUGTfLfSH3ifIcIRPjygpL+R7le1ZeK+RnJP8u37uMMWWVsLwWzP09Y2W5vWxnfqeX1y25z9QnPnWnTA7L7eV7k3GrjAeWn6faASSZGJXn4xl3zUpY+b6Wn918z//jP/6jWC6nBO7qmqm3Mb/B0N1rmsewshJnPu9GMvY7FDFFAEYnSVQAjJhy1HyjUcN9keWfM9iSo/bzIrt2upW8L4MEGTDIwHpXSQof/vCHV5kWJC+IyqB5BoTy4rkMCmUiSQZvUgY8GlWEKBNSaoPlGeDIxIe8wM2LwwySdydH4mXCRF6YZ7JPbfuyMzhHbWVJ5Qzs5HZr5Ui3vGDOi+8MrmRQKgMzGdTIdXI01UBkoCFfl9xeoyoBw3FhWU7x09O0FjlaMF+j7Jir7xzMgFAm+WRArbsS3l3JhKEyoJTt6aqTvl5eqB9xxBErOkWy0zZHkGXgKZ9PlpEebhmcKv9vVqOo7VzLZJ1sb5bUTlkSvlEZ7wxuZsCrfB1yvayOUnaKNupQ7UmOBsttlO9PbjsDOFmNrCyDXsoAYb6mOaq+PtCSSQ0ZvOxvdbQsdV5/y0BLljzP553Bx+yAzs99TolSK/9vfu4zeFs//VD+XZZRrw2c1srgXh7HajvycpqCcorH7l7XPO5l6fkM1mVAOoPAI1GNA0ZaV9U7hmJ6okYJVHlsqq9KUi+PIdlpXa/2eNZoKpOsktSoykgpjz+1U7x2JZMy65VTHnR1q6+AlIH0HJk9WO/RULw/ee6WVQ3q1R+7G2m0TG8C+/kedaVRkkJ21jTSVVWiRtPINtKoWlmtRvtfo32uN4Zjf8pzkzyX60p2WJadNyMlz/9zapX6fbB2mppMxq5PkMzzy95W9ehKXgc0SizP16xRYmWeW+X5fb2f/exnfU5o7G4a0UbTBqaeOvjyvC/PefLcL8838/w9r7XK6e8aJUz1pdOwXp4zNhogUd9B3GgqpEbrZcd7JsvWy3bntWFWHsnqJvldkVUlsuJDV+eG/ZHXgo2qeGWlkzw/POaYY4rXM68V81w7O037MlUo0HzE9MT0Um1yVKPkk0yqyXO6MtkqlVUuM0ZRe52S31MZZ8t4VMaCeltttV4m9GQSdr5H9dOu5XuXST95HtHoezHl65LJPfncclBi/WCIHKRSxhf7+l2dCXK1FUHzOq4cGJDxwIxh9kYmJWWcLKuKZSws98vSc57znBXxu0z0qq1s3JNM4s6krPL6Ml+DPOfOz2CqrXCa72O2OV/rrCZVe46Xbct4a/l57up16kvMb6iVSYd5nl5fKTT3pawkn9esGY8DYPyTRAXAiCk7ggYyQjiVo2AyWN0oKJ8XcxmILpet72jKC8IyGaH2vrITISvA1F9Y1yYzNJpKKzu/MrmiXgZdyg64cuqvrmS1mZSBk65GfpXJIDlyqbY0cl48Z8nkvOjNhJIMsOSFeD6nTJAZqHx9ymBKfedMjqrK/5UXlo1eg8FS7jc9jc7OjssMkmXwJUuo109JksGzDMqVI476O61gX2QAotF+Wr6fXZWOHkq5D2WALkdkNapEkd70pjcVgY0MXjaaRrHR+52fnbIzuD9TquT/rJfveZb2rn+tMjhTfr7KqlP1Iynzs96o6kdPstOu/pYdnjltUHZGZtArP7ONErRyZFtO9dKo46z2WNhoBGzKwG2jBL1y5GmjygvlsSkrUOUxIKcvzMDtQEYIw1iWnTuNvi8aJdMMVKPk3vw+bjRNXL1Gx6faoHejc47eJEb2phJVfzsp6vWU3NyVRlPJNUrEGah8no2SjnpTObOn96cr3b1HeY7S26S/rjp6equnfaVRJ2h/94vh2p8++9nPNnwNy6T1oZoSsi8adUDWJuI0SsLJzrXazrD+yCSYrP5QLzsrsyOo/pbn8I2mO87zjL5O1dlVolTq68CFrDqSHchZsSkTz/MaJzulsyOrtwmE/dWoyl/tlH6ZpF5fFSU7ybuqtpUVs7K6QneyMz3Ps/P6JPeDcgqqgcrrluyk7+69SZlMkNXHshM7z5tz8ERX56hAcxPTE9Or/b7MNmelooceeqjHiuBlUlLGczJxLqt618rqSZn41puBII1k3CMTnRpN6debqfzyXCXf33wtXvKSl6z2eG63vLbr63dko+m5a6uK9TZulkl1GZPKJOyeBmr0pY35fBtdNzeKP+UAjEw2y1uj681Mxi4/010l5Pcl5jfUdt111yKumO2uP/ctEwsz6Ws0XF8AMPQaR5oAYBiUHVH97WwrlaN0Go2eL5WP5RQF+f9qL+4yKNEosaAM8DfqUKoN/jcK3ueUL13JIECWXc7Af3fKkfdZsrusVNPVtBdZqSFHV9VOm5G/5+idTO7IYHh2MGW1o+6qVfRFBklyhHR2umQnZ5koUwZIMug/lBeW5YV7Tx0B2Smbo/hyxGK2LW+57+XIu0x+yWBbf0dO9icZJ9epnxqkdsRXGsxy1b1Vjr58wQte0GWnXQaJslMoR5Dl564++NNVYLAM3tQGBXurq891GUzLzsEMMpUdwzlyLDuesmpCVikogz9lYLC/1dFqK8tkQCWDRBmsytL6+dnLAF2Oku1KHjOyQ7kcvZYdbvkz18+pYbqrltDT61qWe6+XpeDLYFl28g/GdDAwljt5sipN/QjYRlWjupOdGDkqPUc356jfRtNVdZXQ0RuNzil6SqTozbG1N8k3XR1L+qqrxM6eZOJBJpzWygo92bHV2wTQfA4ZiM/v+EyOLqfmHaxEpP68P/1JGulPdcze6KmqTKPvof6+XsO1P+VUMF39r0wYyf2gqwpewyWT03NEf20HVnaWlvt2o6lmBmMqv66m+81z4q4qeXTlRz/60YrR+b3R3TVAX/apTDbLChCNOt7yWJvT++WxIxOEcmqcRkljAzFz5syiSkbttJZ5PZlT8GSnfF+nYczPdk5Nk4lRmaiUCXQ5JWF3soM0E5pyasqstDIQ2TGa/zP3jawM0tNU29m2rCCXHYk5XVF/rn2A8UtMT0yvdsrpTHbOKk8Zi8np2cprrRzImLGkrPxUyuSsTC7L2M2XvvSl4pbfubmNjK10NZCsL7JiVyZC5XlWfoeWr3cm4mWlpt4Misw2ZLwmk6ny/c4EsXwv8vuzHDDQ16qXjeI7tQlPfYmbZYwnbzldXlaWzDhTDhLK1712MEpf2thVvLK7uF4+lq9LJpfn/892ZHuyHeU+3lUb+hrzG0plVbVMZM8YYjkQMq+hygEQpvIDaB6SqAAYMeUI3ZxGLDtIehMIyIDJ4sWLV5kWpRw11t36tQGVDE7UBlx66ljpzyjwrioIpHK0Uk+ji8pOo96WXs7t1XfmZnA/n192PORrUFsWfaByBFx2UuZUZXlxmSWpa0frDOWFZV6Ql6MdM9DSkyyTnlPYfPe73y2CC3kRnoGdvGUgKju3MjjV12BUoyl4ejsNYXePjcRo7958jmo/S42mWOqp07ev1QJye10F7Wpfx9y/y4BKln3PkZk5kjEDm7mPZudTBnDyc99o1F9fZZvys5XVGjIYmkkZGZT73ve+t8oIwtrXNitl5P5WO0o3n18GjDJxLUuxD3Zneu5HGZjMoHQG+zLpKzvuoFnlqPH6JKoM9ObxIgP/vZEjyjPYn7dMisjvlkymeutb37riO6HRKNw8DuSxqqdzjkZTp9VWaGqUOFwmYnanp0761KjzKZMX8rkN1/uT39P13xvZ0XHQQQf1ahuZ4JrJDnn7+te/Xpyr5PuT1QvKc8f8vshzu/pAfr72ZTJzX96fgU5h08hQJb1m51yj6dpKjTpBe0pWH8n9KTtrstOtK9nZlYk1H/vYx2Ik5blV7od5HlAqO/FyxHv9dEB5XlBOmdJfua9motZgyTZmR1hvK0IMtGpayk7XE088cZXkvzxvz3OvTI7L5Knac/FMHh8KmTxWm0SVsiOtURJVnrN1VdG1Vp7/ffrTn45PfvKTRcfstddeWxy/8nXOa91GMokpj5O5Lw1EXqfmAJO8ZaLqNddcU5wzZ5XVrLDaSA7wyGulPK4ClMT0xPRq5fL1SVTlYLaM09TGcPL7PCtlZwzloosuKq7R8rwub3k9kM81v6fe9a539fu8OBO1Mgkqv8PzHDiTl7KqUe4/OX1uT9vNuGF+T+f5Wu11Q74fmWSXyUS1U9v11mDFzXK5fA2zklftvpjPKz+bmdTdaFrnnvSUOFffvjyPydcpr6tr5Wd07733Lu6vr042kJjfUMv9OKtw5nlRxp7zM5f7QCbN5Xlwd8meAIwvpvMDYMSUc4jnhWeO5u2NCy64oFgvRzCVAfXywqq7keq1U4p0l8QyWLoKftcGiBpNW1OrDATldFzZadHTrVHHX45WzovNDBplx9hARy/XK0ekl51CGZDI/5NtaVT9YbDUBipe9KIX9Wqd7HDIzofsJMgOgLe97W1FAlZWL/jpT39ajO4bDo2Sj0rlPtwoONBVIKWrkth91ZvPUSqDM8PxOcqEo66qZtS2s/b1ys60six7uV+WgaMcSTmY1T0ysJdl5jOImgkK733vexu+H8ccc0wRGMwOxdzvspMvp6HJYF5WIejPVJK9kQHXb37zm8XUMeW0gr091sJ41KjjOY+t559/fq8TE+sru+TI8vxs1QZ/GyX3ZuA9k3h7OneoDz6n2mSKRpWvMsDfXcdMnmdlBa2e1HZmDeV0h13JkeeNpjzs7fuTzjvvvFX+zoSAc889d5VKRfleNeqAygSGnjTqKBlosstwqk8EqdeoKk2jfa43hnp/yv06p2nuKfE8O+cyQWWkNarilIk4WRWo/hwvpzMaqJxypD8VQHuqRjWcvvWtb612HpgJcXlek0ni9YMZurv+Gmgli/oO+kyozeN1WT2llNUz+pJYmddoWekqzxW//e1vF98Ted6a1yWNKkH8v//3/2Iw5ec7p4jKZMPsIMyk/kxMzONxvZxSMJMfAEpiemJ6tbJSb8ZmMvE2vyPz+ierHnY1PW6ek2d8JP93/t+cvjATWLLCd77GGTfJ8/j+yv0kK8/neVaZ9FwmiPWU8JzJ7jlQ7tJLLy2eUyaFZdWurGqV1wPf+c53VkzrOFKyPTlQLmN0+XyyWnJeq2b78hwzzy2GWr7Xb37zm4v3O6uDfvCDHyzOZzKRP48JWc2yuyqW/Yn5DbWyqlqjmKIqVADNRRIVACMmO7CykkvK0TM9jbbJC6syeJ8dlGWHZdlZ2V0HYXZylqPpG1WIGGxl2e7uOqjyArM3o/q621YmbuQFco4irn/9slM3g93ZIXnOOecUAZwMTHz/+9+PweyQztc0O8VytHh2KAzHhWXZiZ37T08j8bJzLduWtzLxJUekZcdbBhb+4z/+o7j/8ssv7/cURH2RFUO6GrFY7sO1HbLlSP6uAguNqmL0R/k5yv2zqzLbGcgqS9aXpd6Ha5rBemWiwSabbLJax1YZCMzS7RnQzZ+19w+mfN3KfSgDSNkJVSsrCmTiXsoRgrnfZWdcfv7LhK4cuTsU8v9kB2OO+syAZh4jPvKRjwxZJyOMdjktRKORo3kO0tOURimTJhtNFZUJmrUj3HOU82abbbbacj11AmRSZX0iZm43EyJLs2fPbjhqOpOBu5Lfzb2ZZqU8J6tft6vvn+yMyOp+//Zv/1Z0emTnfv10fH2RwfFyyoRaeZ7Tm3OX/B7PJIBGz6v+/cjqP/Uy2bW784A8l8wKZPWyc2asyI7L2oqItfJ9bjQ1We5z/THU+9PZZ59djHyvV58snd99WQFrsM7xGn3+epOslJUe6quAZbWGTHaqled9ZTL4QAx2sk15nBnOaqmNEhsz4air88XaDvbBlNcO9QnveUzNSlK9ncovO2OzMzGPZZ/5zGeKDvW8Hqmv/JTvf3ZcZ/WNMgm+Vu3UPH2RFT6yIzA7pLPSSH5v5WeoXiZu5f6XSfj1HZZ5fZAVGQBKYnpierWy6lN5DpPndRkHyQpQuZ/UJxzld3bGSrIicMrp9TKJ/OSTTy6ec1lBvD+VlOpjIimTnzIOktvOWFZ30zWmTJ7K+E5WzMprtOOPP76IqeR7WsbohiqO0xt5Pp+fufSe97wnvvzlLxeJavm8yiTD4WhfDlTNc8P8DGecNs9vMgGpdsrC3AcGO+Y31MrYYX4ecr/Jqp15jdHb6sgAjA+SqAAYUTmKKjsjymlXupPJCVkCODsUa0fUlBfXF198ccPgeQZqMvhQjg4eDhngKZN2auV9WRI45ci77pTPK0fP58V7I1/84hfj8MMPL6apqQ245Kjo7IBKH/jAB4qO47zoT6eeeupqo6Z76ijqKhiWQZJXvepVK4ISGdDJC8sMzA+VfJ/LTpUs7d2TDHhkh0aO6G70PGpHWtd2gg3VVDrZhuyobZSgVHakZadKqQwQ5r7dqNJIGeTqz/tX3wmcAaJMEChH59XLsupZzSMDGFkBYDg06gTM96n8TNe+VqUM5D7vec8rApI5QjADkjmKsqdpmvrriCOOiJ122qn4PQOatZU+asuW57Rf9TJhIqtSlc9rqJTTVZbT+kGzOu644xoGoXOKsa5G0Ocx9Gtf+1rReVEvOzVyBHW9Rt+DmTCRiViN5Hd9o6moclRx7XQi+Tkujze1zjjjjGLq0kYd7tlh39tOlPrvvkzUzUSB+uTaPHbl6Oc8vuZI43xt8pyuUVJBX+Rr2Wgql5ymNatMdfV9lucf//7v/97wsexY6M37k0nOOf1vo4qC+TwbbT+TYsZSElWe/+Vr2eh1zE6rRp0t/Z0Gdyj3pzyfzuUbfV7yvLdedtDltLqDoVFFy94kJ+drUV+FIa9R6juM87y0uxH7vZHJfo2SbXKqld5Uwshbfhbq5SCAHIAwXBqd9zb6/5kg11Vljr5OJd2VRon49ZXdMumo0Xlp+T3zjne8Iz71qU8V56bZGZcJVFk1oqvzv5yKul6jan29kYn8+dnI6+3s2M6kqvyclYMj6uWxoFH13P7+f2D8EtPrWjPG9GqTT3J7Kc9/6s8Jc7/JKfUyabde/v8y3jTQGEm+BzmwLPfPTPLJc84ysao7ZRwnE5IaDY7J64ZMyBqMNvbnPcxYV3n+2dX0cjl4olRblXcwlcngW2yxRcNEpzzfyfP77l6n/sT8Bqqnz0UmzOU1eCZyZeJnJsO/5CUvGZJp3AEYvSRRATCicnT7O9/5zuL37FjMii71o7Ty4jWDBjnCpewMqx019MY3vrEY5ZIXsbmt2hGyGXzPDtMMFOfFb063NRzyQixH+dY+lwy2HHvsscVjGUTIi8zuZCfpXnvtVVzs5qj8MlBTBpGyQ7e8KM7HyyoYuXwmDGVwIAMPGZBJWWI5R2/n/fl4by6iyxFM2enV1fJlkCTfnxyVnUGKobiwzCBBdpiVo7LzNezNxXQGSDIIk/vA5z73uVU6unJKihyxVSbe1HZUl50E9SPEB0NOk1EGlMr9NPfNcpTeoYceuuKxbFe2P/ebbH9ZASA7Y/I1725qlfI5lEGLnkpW/+u//uuKqVJq25ednZkclKW4UwY8G3VyD4XsaMqpeMoO10w2O/HEE4tOxxwxmSPdutsvy4SFoayOlgGY7OjN9ynbmftoWWmjdlqv3H9rK4Bk51h+dssOrMGamrGRPEbm65ZM60cz23vvvRsmPeX3V07ZkJ/J/G7Nzo685XE2R0V3lfyUx8NGU3lkcmXtd0opv7vzezmTaTMhOEc5Z4W6o48+erUKLxnwz3OJevl9Xi+/2/J/ZmdLdn5k288888ziWNioelYj+f2TweF6+Xpkm8sk5vyZ516ZaFGvq2Nyb2UVlHwO9R0teWzNJJh8L3KKr3yO2ZZMPs6E6kxOaJTIku933url+VGjZOCcyio7knIaijxOZuJbnifkqONGSSmZaFI7leNYkMnl2WmVr12+hjnNSu5TjaoaZPJxf5Omh2p/yu/X/D6rr6iVn7f8/s1OyEZJy/l88/M2UI2SSDLJPPedTE7JztCu5P7bU5J+V5WM+qJ+2tGU+2lPU9fUyvPsstJC/f4zXBpNZ5fJQHmemh2XecsE0qwS1dVUlYNVOSs/B42mqKyVlT+7Oh5kNatGFcZyOsc8789z3dyH8tidn4m8fm2UKNjbaczr5We+0bVVnvtncn12dufnMduTx7y8v76zMwd2NOpIBpqbmF7XmjGml+9rVlbPpLGsgNgoibz2fCfPK/J7rzaZJV/zjAOlRufxfT1vy23ktUQ5YKU3FT/LOE4m9eXrUtu+rKCV15Nlpd+hjON0FZvM96e81sxqx7VVhzPOmYnz5VSKaagqiZbV1jJZqnbq+tzX8v/XJuV31Yb+xvwGoqd4b57PlYmEwxFTBGB0ahvpBgBAXlTlxV8GcPMiK285AjvLOeeI57LTKhMUMniSwYX6Ub9nnXVW0YGWAfQMpGdZ7ayqkxff2cmS289OjeEK/GbbMzCdF11ZEScvuDNhIn/mdB45pVZv5Ei9DCLldCUZWMrgfV5EZlCpnBIuq2fUTn+TnaZZjSIvCjPppuysyYBM/p0dOPl4BuYbVeSo9YIXvGDFhWW+rtmZkQkYtR1AOeopO9nKUXoDvbDMNtV2QGRwKQMC2YYycJGB/ays0xvZ5nzeGWTKKhbZsZTloLNjIEuW54ii7BSor1CQlYtyaqAM/GTHXgbAPvGJT8RAZdWKDHjk89xggw2K/537aT7P3O/zfantoMv3OzvXcx/Pz0Z2sOR+kK9Hvi65X+T0RY1KZOdzyA6RTPDJ9y2Db7UJWvVyupvcTk5/l+3L1y735dzfcn9Ob3rTm1b7DA6V/Mxn0DHbn6NaM7Capb6zozyDgdlxVlsmvD4ol5/5XDa3U46uHCoZQM3Pan7+8rOe71cGXfM9yES+rJyQI/4zcSLfv3zvytGNOVVXBp1yxH8GjLKjbSi8/vWvL/bnrFCRIz/z9zKoCs0kO3EyeTGP8fWyCk7eeuNlL3tZMeVSI3lsz2NXHkvrR7jmlB1560l+LzWaOjUr/GT1o/p25vdZHme6qpjVm2o5eWzIqTfql83zq66SFEp5ftOXJI3uXtes+tQoGaV2et7efN+WI/gbyQpdeT5RP9VhHpuzOkxvkhKGsvLmUMrzykZT4dXKBJrsgBmIodif8nu2UcJVJiOWCY353ub5Tn1nYZ47ZhLKQJL9G00jneeT5bEgrz/y2qZ2is/adbMztJzmt15+J+fneyCyKlOjaRmzQzTPKXsrz6/yOFN/nMz3Lc9b8/pmqGWnZ31yX3aw5QCC7gYR1BqsKf7KTuByQEF/EuCygkies9cfc7LKQW+q+GWFh0wS7I/c7/LzVF9tNl+fTEztjewwblSJDUBMr2vNGNPL9fNcOuMbWUEr4171si15Hp7f5x/84AeLc/Yc2JfxkDyvytf5hS98Ya+qz/ckk5zz3Cjbk+9lJnn1JAdsZsJa7o/5mmfFrDw3ysEpGTPL1y+rh86ZM6dIUMv2DlU1+4wpZRJhOZAkX7scyJPvfVa4zPhODlzIz0bGFfPzlufAuV5WY839OCtMdlWxaiAywSk/7/k/ckBPtiHPZ/N6Ks8xch8uX8dGFW8HEvMbite0PrkwE7yyLeuuu+6Yqj4MwOBQiQqAUSGDshnUzWSRHLmUHYEZUM6RaHnRnxdm+XhXyRt5AZQXbjmiLS+KMyCRHaQ5KiYvun/6058WF2bDJYMEOaIsL9bzAjsrAeXzygvcnLe+t1V8shM2R+TkBWUGv7NjJDuOMpiUHQs5ci0TX0p5YXr22WcXv2cHZH1HT46mKqta5Eju3nRg5Qig7IjMwEBeCOd7Uq8cWZaBsoGWV8+y6TlCr7z96U9/KoJLGdTJi/JMgsqpaPoSxM8KEnnxm+XWM0CXo+IyiJSd0xnQyn2rvjMo97VMOslgXe5LjTrs+iMTxHIkW+7TGWjJC/d83bICSu6nW265ZcOgZAbfdtxxxyKAmKXbc9/OIGV3HZwZ7MkEndxfcp2upuyobVsG4nIEen5eMgCTr3922uRovUxCy9H/QxUcqpf/JzurMjiUbcj3IBOMsmP0Jz/5SbF/diU7SMsgRwbAymkRh1LuS+Vo1PwclqNWM9ib+2weA/I9z+eRr212aObnMBMeysBidq4N5euZHctZ3Sb3f9P60azymJjfn40qOvVWJmbmaObujof5nZOfub52Omf78tjeVfJn/s/smOhp9HspA8957O6NTDLO1yan9uiL/E4qKzsOhuxEy++9/lZ5yu/S7CDq7tif5wDZIdKfqdOyc6i3r+lokp10vfkOz2UyASo7PQZisPen7IBslPCR5zq1VQ7y2qFRxbmsZjHQhPieznOz06q76m/ddUzmMSO/owcir4cajfRvVAWiJ3ke3MhwVaPKa7i+JH7lsbNeV9Mn9Uej6YhK2Sme5+k9HYuzY7w/yfKZ1JiJtfmZ6q9cv7+VrDK5Na/TAboiptdYM8b0Mv5WXv90d/6Rr2VOJ73rrrsWSdL5umSicX6fZuJ7JlIPxgCzjLuUAxV7O+Ajv3czbpeDb3L/zWpTGbvL9y23ke9peY6bba6tMjbYMskszxEzJpZxvfLcJgdJZhWqPA/O/THjT3mum9Xs8/XLBLWyklejwUOD9TnJz2YmCGYCVSZtZRsz6SgTv/OxchrKRgMrBhLzG4rXtFa+7xmHLvfpRueZAIxvlWpXE78CAH2WF38ZHM8AdTl/ezPIztyc+iYDZuWUYTDSsqMyS4BnEHKgZeCB8SmnbMspVnuqylPKEdIZTO9LdbtMDs6k1t5Un8pAbSbnZPXDnuSI36yymBUKu5JJMKeeemrRYVKfVJLTkXQ1Jcof//jHIpErj6E9yco5mSzWaPrCgcqR1JmsltX8ehO6yA6SPBfJDrreJu5kwksmbGV1vvrpq+plh0AG+cvpb7s7F6yVHUhdVbfKDoYcQV4rO5S6SrZplGydFSTrpxprtFxO1ZWdbdlp1VVlskxayX2wuypbmZxcP/1FJlpnJ9hQ7U+ZGJSVfuoTwrPzI9+7+k7GXD6fQ1YzqJefidqqQX19z7LzslG1p1J2WmUHViPZCZedXVkNoV52hGXFhoHIUfN5zKmVFbqycl1fO3/y85DnT/VJYbmP5HGn/IxlFbCcLrG3x5e+7Mc5ZU5uq6dpSbNDMzvD6ity5P5U/9729TNXn4iYU+7VKytC9EZ2cmbnZm87XLPjOz8TWfGikb7sv5nEn995OQVl/ZSYjWQneB5T8z1QhQpoBmJ6YnpQDozI8+BMOvz5z39eVMcDoLlInwUABiRHGOboohxB1NWIdRhu2VGbt0x4GM4Rq8DYkqNbM+EhE0uylH+OkM3R5o8//niRQJCjerMDe9ttty2mScjjSY5M7otcN0dS57QbOQI/k6kyOSinq8hpCnLEd3bUZGJK/o/eVvvLke3lFAQ5VWgmguXo40w+yZGzmSSSo+ezveX0ob2V02dk5cdMlMgKefn6ZAA5p2XISjk56jjbnB31s2fPjqGS1aKyIlGOYM4R1FdffXVRmSCfZyaj5EjlfP3y+WbySSZR9HWa0lw/pxDJBIisgJAJEpnkkKPKM2kgE1CyOkJWN8xEjdopd8einAImk/Qy6Sn3nZxaIyt+ZRJS7oM5qn0g090N1f6UiW6NKmrm+9Zoir3cblZ9yKSXepmQkglfOVVPf2Ri38UXX1wkDuXUN7kv5muWCUC5nzRqT23SVx53MmGoVralqyS03sq21CdQpUz67M/o+Tx2ZGJRVrqole9bJjbmvjTUcn/Ijqvzzz+/OAbkFC957MzPYe43mayWbcyE0UwQymNCPl664oorigSs/lScaySP0Y2SqLJCQW9lhZXsmL/xxhuLZLz8bsjvhKxOkvIYlueveVwrvxcGK4EpP+uZ9Jafi3xdM5ksj3eZlJvXdLl/5ndITnW08847F4mIg/XaATA6ienB6vKaJa9X8hxTAhVAc1KJCgAGUbOMWstAe3Ywl1OVZUdQlsg+66yzRrppNLHsWE8Z6MgOouxszTLdOXUAADSTripRZWIaIycTfTIZMxORamX1tKxyx+iW71NW9aqViVyZjAvA2CemJ6ZH88pk/ay0mlP8ZSwxY4tnnHFGMVAHgOajEhUA0GeZnHLYYYet+DtHLWfSCoykrPCSU5SUchT9m970phFtEwBA6X/+539WS6BKtdMLMjrl1IJZDa+e9w6AsUZMD6Lh1No//OEPV/ydAx8kUAE0r5aRbgAAMPbkNCU57UhOCZGjr7/97W/HZpttNtLNosll1Y211167mOJl3333jXPOOafYRwEARlpOR5cVLhpNd5hTvDG6KxOccMIJ0dnZudq0ka985StHrF0A0B9ierC6bbbZpognrrXWWsV00aeffvpINwmAEWQ6PwAAAIBxxHR+I++kk04qkm+yusMjjzwS999/f8PlsoqmRJzRJadwyin6Mjk/K4fddddd0dHRsdpyb3jDG+LTn/70iLQRAAAAGBqm8wMAAACAQTRhwoRiCrjubLvttnHggQcOW5vonaxAMHfu3G6XyUoF73nPe4atTQAAAMDwMJ0fAAAAAAyinCanOzNmzIgvfvGLUalUhq1N9M7666/f7eOtra1x8skn97gcAAAAMPZIogIAAACAYUiiamlpiX322aeYLm6zzTYb9nYxsAS4rbbaKs4555zYf//9h7VNAAAAwPCoVKvV6jD9LwAAAAAY9xYsWBC///3v4+GHH47FixfHpEmTYsMNN4wddthBBaNRrrOzM6655pp44IEHivcxK089+9nPLqZffN7znjfSzQMAAACGkCQqAAAAAAAAAACgqZnODwAAAAAAAAAAaGqSqAAAAAAAAAAAgKYmiQoAAAAAAAAAAGhqkqgAAAAAAAAAAICmJokKAAAAAAAAAABoapKoAAAAAAAAAACApiaJCgAAAAAAAAAAaGqSqAAAAAAAAAAAgKYmiQoAAAAAAAAAAGhqkqgAAAAAAAAAAICmJokKAAAAAAAAAABoapKoAAAAAAAAAACApiaJCgAAAAAAAAAAaGqSqAAAAAAAAAAAgKYmiQoAAAAAAAAAAGhqkqgAAAAAAAAAAICmJokKAAAAAAAAAABoapKoAAAAAAAAAACApiaJCgAAAAAAAAAAaGqSqAAAAAAAAAAAgKYmiQoAAAAAAAAAAGhqkqgAAAAAAAAAAICmJokKAAAAAAAAAABoapKoAAAAAAAAAACApiaJCgAAAAAAAAAAaGqSqAAAAAAAAAAAgKbWNtINAAAAGMseeuihmDNnTvFzyZIlMWnSpNhoo41izz33jA033HCkmwcADLFlD/0tqjfeEdWnFkdlzSlR2WmbmLDRc0a6WWNCdemyqM5fGNHeHtHWFpXp06IyccJINwsAgEHQuWhxVB/6e1SXLInKpElR2Wj9aJk6ZaSbBdCtSrVarcYY1N7eHuecc078+Mc/jgcffDAmT54cO+ywQ7znPe+J7bfffqSbBwAAjHP33XdfcT0yb968LpeZOXNmHHLIIbHpppsOa9sAoHT88cfHTTfdFFddddVqjy1evDi+9a1vxc9//vP461//Guuuu2688pWvjGOOOaaItdW7++674/TTT4+bb765WPf5z39+HH300bHffvtFM1r2mznRcdUNEYuXrP7glEnR+uKdY8J+e4xE00a96uNPRsdd90bn3HkRnZ0rH2hpiZatZ0brlptHZcbaI9lEAAD6qXPeQ7Hs2puj+uf7IzprUhFaKlF5/qYxYfcdomXmRiPZRIDxl0SVyVKXXnpp0Rnxkpe8JJ544on45S9/WTx21llnxV577TXSTQQAAMap22+/vRjUsWzZsmhpaSkGcsyePTumTJlSdCrfcsstceutt0ZnZ2dMmDAhjjrqqNh2221HutkANJkzzzwzvvrVr8b666+/WhLV0qVL4+1vf3v8/ve/L+JoW2+9dfH9df311xcDFc8777yYOHHiiuXvuOOOOPLIIyNDia9+9atjjTXWKGJxjz76aHz0ox8tHmsW+f3fcdq5Ef94YuWdlZoFaqOtz14nWj/w1uJ8gCj2n4477onOObcsf9GmTo5K28rJEqpZkWrR4uL3lj1mR+s2s6JSqX1xAQAYrTIO1v7L30XndX9cfsekiVFpa13xeLW9I2JJDkCoRMtuL4y2A/6liKsBjCZjMonqmmuuWdEJ8f3vf7+YLiNdd9118ba3va2YOuOSSy4Z6WYCAADjtALVGWecUXSgbrPNNvHGN74x1l579UoJTz75ZPzgBz8oOp2z4/S4445TkQqAYZHTy/7nf/5nXHDBBcXfjZKoMknqs5/9bJFIdcIJJ6y4P+/Lxz70oQ8VcbZSVlb885//HBdeeGFstdVWxX2PP/54vOENb4i///3vRSwu/08zeObkb65MoOouv6eMuj57nVjjpH8bjqaNeu233x0dV98UlWlTozJhZfJUveqy9qguXBSte+0YbdvOGtY2AgDQP0t/fmV0zrk1YvKkVZKn6hXJVE8viZY9Z8fEA188rG0E6MmYTO3MEd3p4IMPXpFAlXbbbbdiuowHHnggHnvssRFsIQAAMF7lFH5lAtW//du/NUygSnl/Pp7L5fIXXXTRsLcVgObz29/+Ng444IAigWrvvffucrmy0tS73/3u1ab/y6n8zj///BX33XjjjUVS8Cte8YoVCVRpxowZ8a53vatI2srvx2aZwq9XCVS1j//jiVh22bXR7HIKv6xA1VMCVcrHc7nOOTdH9YkFw9ZGAAD6P4VfUYGqhwSqVDw+eVJ0XntrdN738LC1EWDcJlGts846xc+HH354tTLkOa1fjvKeNm3aCLUOAAAYrx566KGYN29eUWo8K1C1tnYfFMrHc7lcPterv4YBgMGWlaKeeuqp+MQnPhHf+MY3Gi6T30cPPvhgvPCFL4ypU6eu8tiaa65Z3J+VF//2t7+tqP6edt9999W2Vd5XLjPedVx1w/JfejvD3P8t13H59dHsOu66t3hBekqgKpXLddw5b4hbBgDAQC279ubiZ08JVKXly1Vj2TU3DXHLAJogiWr//fePZz3rWcVUfjnKbdGiRfHII48UZcazAtWRRx5ZjKQDAAAYTHPmzCl+br/99l1WoKqXy+Xy5dTkADCU3vKWt8Rll10Whx9+eFQqjTN9MkEqbbLJJg0f33jjjYufmQCc7r03k1+i4bS0z3nOc4oBjeWy49myh/4WsXhJ/1ZevGT5+k2qunRZdM6dFzF1ct9WnDqlWC/XBwBgdOpctDiqf74/YlIf++cnTSrWy/UBRosxW4kqS4pvt912ReLUjjvuGPvss0/8/Oc/j/e///1x4oknjnQTAQCAcVqJKs2ePbtP65XLl+sDwFDZddddV6suVW/+/PnFz+nTpzd8vKzwvmDBglWWb5RAnNUWs3rVwoULY7yr3nhH36pQlSp16zeh6vyFEZ2dUWnrXRWqUrF8Z8fy9QEAGJWqD/09orPa6ypUpWL5zury9QFGib5dtY4SOW3f1772tbj55ptjm222iZ122imefPLJuOSSS4oy5euvv3689rWvHelmAgAA48ySJcurT0yZMqVP602ePHmV9QFgJC1btryqT1eV3Mv7y++tnpbPSlRNkUT11OIRXX9Ma28fwMqVAa4PAMBQqg4w3jXQ9QGi2ZOoPv/5zxfT+L35zW+OD3/4wytKkx933HFFqfKTTjoptthii3jhC1840k0FAADGkUmTJhU/Fy/uWyfo008/vcr6ADCSyu+jHKjYSHl/VphKa6yxxirJVPXy/r4mGI9FlTWnRHWA6zetPlagWlV1gOsDADCUKgOMdw10fYCmns6vs7MzLrjggqKs+AknnLAigSptsMEGcfzxx0e1Wo0LL7xwRNsJAACMPxtttFHx85ZbbunTeuXy5foAMJLKafy6qh5V3l9OC1hO41dO71cfq3vqqadWTAE4nlV22mb5L33NpKrWrd+EKtOn5dyPUe1jRali+ZbW5esDADAqVTZaP6KlEtX2jj6tVyzfUlm+PsAoMeaSqB577LGilPgmm2zSsIT4lltuWfx8+OGHR6B1AADAeLbHHnsUP2+99dZiSvHeyOVy+bTnnnsOafsAoDdmzpxZ/HzggQcaPl7eP2vWrFWWf/DBB1db9q9//WtRiSqrwo93EzZ6TsSUfo6SnzJp+fpNqjJxQrRsPTNi0fLqnL22aHGxXq4PAMDo1DJ1SlSev2nEksaVbru0ZEmxXq4PMFqMuSSqHPmWyVMPPfRQw5Lj9957b/FzvfXWG4HWAQAA41lWksqO5Ky68YMf/CA6OrofYZeP53K5fK634YYbDltbAaAr66+/fmy66abxxz/+cbUparOq1G233VY8vu666xb37bLLLsXP6667brVtXXvttcXPHXfcMZpB64t37ls1qv9brnWf5a9hM2vdcvPiBaku6101qnK51q2WJ/EBADB6Tdh9h+Jnb6tRLV+uEhP2fNEQtwxgnCdRZQLVfvvtV4zmPv3001d57PHHH19x30EHHTRCLQQAAMaz1772tTFhwoS444474pvf/GaXFany/nw8l8vlDznkkGFvKwB05dBDD42nn346vvKVr6xyf/6d9x9++OEr7nvRi15UJAP/7//+b5F4VRuL+8Y3vhGTJk0qttcMJuy3R8Sz1+ldIlX5+LPXiQkv2z2aXWXG2tGyx+yoLlzUYyJVPp7LteyxQ1TWWWvY2ggAQP+0zNwoWnZ7YcTTS3pMpCoef2ZJtOy+fbRsZsAhMLpUqtVqb8dNjRr//Oc/44gjjoj77rsvtt1222I0XHZQXHbZZTF//vw46qij4oMf/OBINxMAABinbr/99jjnnHOK6YtaWlpi++23j9mzZ8fkyZOLjudbbrmlmMIvK1BlAlVeo+S1CwAMty233LKoPHXVVVetcn9WeD/ssMOKZN+MreX3WH5/XX/99bHTTjvFt7/97WIwY+nGG28svs8qlUq86lWviqlTp8YvfvGLePTRR+PjH/94EatrFvn933HauRH/eGLlnZWaBWqjrc9eJ1o/8NbifICIDEV33PGX6Jxz8/I7cuqXtraVj7e3F1P4pUygat1mi2KfAwBg9Ms4WPuvro7Oa29dflI8aVJU2lpXTZ5asqQ4ec4Eqrb99yriagCjyZhMokoLFy4sRrpdcskl8fDDDxdBna233jre9KY3xf777z/SzQMAAMa5+++/Py666KKYN29el8tk1Y6sQJVTIgHAaEqiSosWLYozzzwzfvWrX8Vjjz0Wz33uc+OAAw6If/u3fyuSpOrlNH9nnHFG3HTTTcXfz3ve8+Loo4+Ol7/85dGMll12bXRcfn3E4uwIqjNlUjGFnwpUjVWfWBAdd86LzrnzIjqXT+VSdLS1tEbL1jOLKfxUoAIAGJs673s4ll1zU1T/fH9EZ00qQkslKs/ftJjCTwUqYLQas0lUAAAAo0EO6rjmmmvioYceiiVLlhRTGm200Uax5557xoYbCggBwHi37KG/RfXGO6L61OKorDklKjttExM2es5IN2tMqC5dFtX5CyOyAlVbW1SmT4vKRFW7AADGg85Fi6P60N+jumRJVLIq1UbrR8vUKSPdLIBuSaICAAAAAAAAAACamklGAQAAAAAAAACApiaJCgAAAAAAAAAAaGqSqAAAAAAAAAAAgKYmiQoAAAAAAAAAAGhqkqgAAAAAAAAAAICmJokKAAAAAAAAAABoapKoAAAAAAAAAACApiaJCgAAAAAAAAAAaGqSqAAAAAAAAAAAgKYmiQoAAAAAAAAAAGhqkqgAAAAAAAAAAICmJokKAAAAAAAAAABoapKoAAAAAAAAAACApiaJCgAAAAAAAAAAaGqSqAAAAAAAAAAAgKYmiQoAAAAAAAAAAGhqkqgAAAAAAAAAAICmJokKAAAAAAAAAABoapKoAAAAAAAAAACApiaJCgAAAAAAAAAAaGqSqAAAAAAAAAAAgKYmiQoAAAAAAAAAAGhqkqgAAAAAAAAAAICmJokKAAAAAAAAAABoapKoAAAAAAAAAACApiaJCgAAAAAAAAAAaGqSqAAAAAAAAAAAgKYmiQoAAAAAAAAAAGhqkqgAAAAAAAAAAICmJokKAAAAAAAAAABoapKoAAAAAAAAAACApiaJCgAAAAAAAAAAaGqSqAAAAAAAAAAAgKbWNtINAAAAAAAYq6pLl0V1/sKI9vaItraoTJ8WlYkTRrpZAAAAQB9JogIAAAAA6KPq409Gx133RufceRGdnSsfaGmJlq1nRuuWm0dlxtoj2UQAAACgDyrVarXalxUAAAAAAJpVhlM77rgnOufckuHViKmTo9K2cqxqNStSLVpc/N6yx+xo3WZWVCqVEWwxAAAA0BuSqAAAAAAAeqn99ruj4+qbojJtalQmdF3ov7qsPaoLF0XrXjtG27azhrWNAAAAQN+19GMdAAAAAICmnMIvK1D1lECV8vFcrnPOzVF9YsGwtREAAADoH0lUAAAAAAC90HHXvcUUfj0lUJXK5TrunDfELQMAAAAGShIVAAAAAEAPqkuXRefceRFTJ/dtxalTivVyfQAAAGD0kkQFAAAAANCD6vyFEZ2dUWnrXRWqUrF8Z8fy9QEAAIBRSxIVAAAAAEBP2tsHsHJlgOsDAAAAQ00SFQAAAABAT/pYgWpV1QGuDwAAAAw1SVQAAAAAAD2oTJ8W0dIS1T5WlCqWb2ldvj4AAAAwakmiAgAAAADoQWXihGjZembEoqf7tuKixcV6uT4AAAAwekmiAgAAAADohdYtNy+m5qsu6101qnK51q1mDnHLAAAAgIGSRAUAAAAA0AuVGWtHyx6zo7pwUY+JVPl4Lteyxw5RWWetYWsjAAAA0D9t/VwPAAAAAKDptG4zK9OponPOzVHNO6ZOiUrbyjBrtb29mMKvWHavHaN1my1GrrEAAABAr1Wq1WpxrQ8AAAAAQO9Un1gQHXfOi8658yI6O4rEqpzqL1pao2XrmcUUfipQAQAAwNghiQoAAAAAoJ+qS5dFdf7CiKxA1dYWlenTojJxwkg3CwAAAOgjSVQAAAAAAAAAAEBTaxnpBgAAAAAAAAAAAIwkSVQAAAAAAAAAAEBTk0QFAAAAAAAAAAA0NUlUAAAAAAAAAABAU5NEBQAAAAAAAAAANLW2kW4AAAAAAADAcKkuXRbV+Qsj2tsj2tqiMn1aVCZOGOlmAQAAI0wSFQAAAAAAMO5VH38yOu66Nzrnzovo7Fz5QEtLtGw9M1q33DwqM9YeySYCAAAjqFKtVqsj2QAAAAAAAIChkt0gHXfcE51zbslukYipk6PStnKMeTUrUi1aXPzessfsaN1mVlQqlRFsMQAAMBIkUQEAAAAAAONW++13R8fVN0Vl2tSoTOh6go7qsvaoLlwUrXvtGG3bzhrWNgIAACOvZaQbAAAAAAAAMFRT+GUFqp4SqFI+nst1zrk5qk8sGLY2AgAAo4MkKgAAAAAAYFzquOveYgq/nhKoSuVyHXfOG+KWAQAAo40kKgAAAAAAYNypLl0WnXPnRUyd3LcVp04p1sv1AQCA5iGJCgAAAAAAGHeq8xdGdHZGpa13VahKxfKdHcvXBwAAmoYkKgAAAAAAYPxpbx/AypUBrg8AAIw1kqgAAAAAAIDxp48VqFZVHeD6AADAWCOJCgAAAAAAGHcq06dFtLREtY8VpYrlW1qXrw8AADQNSVQAAAAAAMC4U5k4IVq2nhmx6Om+rbhocbFerg8AADQPSVQAAAAAAMC41Lrl5sXUfNVlvatGVS7XutXMIW4ZAAAw2kiiAgAAAAAAxqXKjLWjZY/ZUV24qMdEqnw8l2vZY4eorLPWsLURAAAYHdpGugEAAAAAADSf6tJlUZ2/MKK9PaKtLSrTp5k+jSHRus2sTKeKzjk3RzXvmDolKm0ru0equQ8uWrx82b12jNZtthi5xgIAACOmUq1Wi2sGAAAAAKC5LFiwIL7+9a/Hr3/96/jHP/4Rz3nOc2K//faLt7/97bHOOuussuwjjzwSZ5xxRlx77bUxf/782GyzzeKII46If/3Xfx2x9jM2VR9/Mjruujc6586L6Oxc+UBLS7RsPbOYfi2rB8Fgqz6xIDrunPd/+15HkViVU/1FS+vyfW+rmSpQAQBAE5NEBQAAAABNKBOh3vjGN8a8efNi8803j7322isef/zx+M1vfhMbbLBBnHvuucXP9PDDD8dhhx0WTzzxRBx44IGx7rrrxqWXXhr3339/vO1tb4sPfehDI/10GAMyFN1xxz3ROeeW5ckrUyd3WQ0op1/L6kGVSia5wOBSBQ0AAGhEEhUAAAAANKGPfvSjccEFFxSVp774xS/GxIkTi/tvuummOPLII2PPPfeMs88+u7jv2GOPjUsuuaT4e++99y7ue+aZZ+Itb3lL3HrrrXHhhRfGtttuO6LPh9Gv/fa7o+Pqm6IybWpUJqxMnqpXXdYe1YWLimnV2rbNadgAAABg6LUMw/8AAAAAAEaRjo6O+MUvfhETJkyIT33qUysSqNKLXvSiOOigg+LKK6+MP//5z0UVqqw6tcMOO6xIoEprrLFGvP/97y+qC/3whz8coWfCWJrCLytQ9ZRAlfLxXK5zzs3F9GsAAAAwHCRRAQAAAECTeeyxx+Kpp56KTTfdNGbMmLHa41tvvXXx84Ybbojrr7++SJTafffdV1tuxx13LBKxrrvuumFpN2NXx133FlP49ZRAVSqX67hz3hC3DAAAAJaTRAUAAAAATaasPLV06dKGjy9cuLD4+dBDD8V9991X/J4JV/Uygeq5z31usVxX24Lq0mXROXdexNTJfVtx6pRivVwfAAAAhpokKgAAAABoMtOnTy+Soh588MG4/fbbV3mss7MzLrvsshXJVE888UTx+9prr91wW9OmTSvWWbRo0TC0nLGoOn9h7lhRaetdFapSsXxnx/L1AQAAYIhJogIAAACAJvSOd7yjmKbvve99b/z2t78tkqDuv//++OAHPxjz5i2fQi0fX7Zs2SrVq/pa1QqivX0AK1cGuD4AAAD0Tt+G/gAAAAAA48Khhx4af/vb3+JrX/tavPvd715x/+abbx6f/OQn48QTT4zJkydHR0dHcX+ZTFWvTJ6aMmXKMLWcMaePFahWVR3g+gAAANA7Y/Lqc8stt+xxmde+9rVxyimnDEt7AAAAAGAsOvbYY+Pggw+Oq666Kp566ql43vOeF3vttVf87ne/Kx5/9rOfHU8//XTx+4IFCxpuI6f8q1QqMXXq1GFtO2NHZfq0iJaWqLa392lKv1w+WlqXrw8AAABDrG2sBncayfLi5557bhHw2W233Ya9XQAAAAAw1my88cZxxBFHrHLfrbfeWvzMpKqc5i898MADq62b1an++te/FtWrWlpahqnFjDWViROiZeuZ0XnbPRF9SYhatDhatntesT4AAAAMtTGZRPXe97634f3nnHNOkUD1hje8IV7zmtcMe7sAAAAAYKzI6fquuOKKuPTSS2OttdZacX9nZ2f86le/Kqbn22WXXYokqqw09fvf/361wY033nhjkUi14447jsAzYCxp3XLz6Lzt7qgua4/KhJ7D0rlcsd5WM4ehdQAAABAxboaH3X333fGlL32pGDl30kknjXRzAAAAAGBUmzVrVjz55JPx3e9+d5X7v/a1r8V9990XRx55ZDFF33Oe85zYc8894/rrry8SrkrPPPNMfOUrXyl+r69kBfUqM9aOlj1mR3XhohUJUl3Jx3O5lj12iMo6KxP8AAAAYChVqjkH3jhw1FFHxTXXXBNnn3127L333iPdHAAAAAAY1Z5++uk45JBDYt68efHSl740Zs6cWUzjd8MNNxQVqDLONnny5GLZe++9Nw477LBYuHBhHHDAAbH++uvHZZddViRbHX300UVVK+hJhqI77vhLdM65efkdU6dEpW1lVapqe3sxhV/KBKrWbbYoqqABAADAcBgXSVRXXnllvOMd7yhGxOWUfgAAMN7kafvSpUtHuhkwpk2cOFFHLECdxx9/PE4//fT43e9+V/y+0UYbxcEHH1xUoVpjjTVWWTYTprLy1LXXXhtLliyJzTbbrKhAdeihhzq+0ifVJxZEx53zonPuvIjOjgxT570RLa3RsvXMYgo/FagAAAAYbuMiiSqDOllO/Hvf+17stNNOI90cAAAYVHnK/uUvf7moAAH0X1ZYOf7443X0A8AoUV26LKrzF0ZkBaq2tqhMnxaViRNGulkAAAA0qZW1kseouXPnFglUmTwlgQoAgPFK0gcAAONNJkxV1psx0s0AAACA8ZFEddFFFxU/s3Q4AACM1wSqrJ5jOr/RK6c0+shHPlL8/tnPfjYmTZo00k2iAdP5AQAAAAAwbpOoLrvsspgyZUrss88+I90UAAAYMpn4ITFnbMj3yXsFAAAAAABjS0uMYXfeeWc88sgjRQLV5MmTR7o5AAAAAAAAAADAGDSmk6huuumm4udOO+000k0BAAAAAAAAAADGqDE9nd/tt99e/Nx2221HuikAAAAAQBOqLl0W1fkLI9rbI9raojJ9WlQmThjpZgEAAADNlET1wAMPFD/XX3/9kW4KAAAAANBEqo8/GR133Rudc+dFdHaufKClJVq2nhmtW24elRlrj2QTAQAAgGZJonr88ceLn9OmTRvppgAAAAAATaBarUbHHfdE55xbIqISMXVyVNpWhlmr7e3Redvdxa1lj9nRus2sqFQqI9pmAAAAYJwnUf3iF78Y6SYAAAAAAE0kE6g6rr4pKtOmRmVCW1Q7O6P6zJLl1ahaWiImTojK9LWiuqy9WC4Trdq2nTXSzQYAAADGcxIVAAAAAMBwTuGXFagygSqTpjoffSyqTyzI8lQrF6pUorLOWlFZe1qxXOecm6O64XrFfQAAAMDo1TLSDQAAAAAAGAs67ro3Ml2quuip6Lz3oSKpKlpbo5LVp/7vln8XyVb5+KKniuU77pw30k0HAAAAeiCJCgAAAACgB9Wly6Jz7ryotrdH9W//jGhrW5441VJZZbn8u0imamsrlsvli/WWLhuxtgMAAECvrnsffTw6H3m0+NmM17Gm8wMAAAAA6EF1/sKoLlka8c/5ERNWT56ql49XJ0wolq+uO71Yv7LejGFrLwAAAPRGVlPOysudc+cVU9ev0NISLVvPjNYtN4/KjLWjGUiiAgAAAADoSXt7xKLFxa89JVCtkkiVvyx6evn6AAAAMEpUq9XouOOe6JxzS17BRkydHJW2lWlERWXl2+4ubi17zI7WbWZFpdK76+GxShIVAAAAAEAPqtWIaiZRrTGpbyvmtH6LFhfrAwAAwGiRCVQdV98UlWlTozJh9fShIqFq+lpRXdZeLJeJVm3bzorxrGWkGwAAAAAAMHZU+7G8DCoAAABG1xR+WYGqqwSqWvl4Ltc55+aoPrEgxjNJVAAAAAAAPShmLJg6JWJZR99WzOWnrrl8fQAAABgFOu66t6gs1VMCValcruPOeTGeSaICAAAAAOhJW1tUpk7OGHNUOzt7tUqxXCWWr5fTIAAAAMAIqy5dFp1z50XktWpfTJ1SrJfrj1eSqAAAAAAAelCZPi0qkyZFrDs9Yml7j4lUxePL2ovlc71cHwAAAEZadf7CiM7OqPRxsE8ll+/sWL7+OCWJCgAAAACgB5WJE6Jl65lRaW2LynPXjWjviOqSZaslU+XfeX8+XnnOulFpbV2+3sQJI9Z2AAAAWKG9fQArVwa4/uimhjQAAAAAQC+0brl5dN52d8Saa0ZlyuSozl9QjMCtLutYuVBLJSoz1orK9LUiWloinlocrVvNHMlmAwAAwEoDmm6+Oq6nqx+/zwwAAAAAYBBVZqwdLXvMjo6rb4rKtKnRsv66UV13RsTSZcVUCEXS1MQJUWltieqy9qguXBSte+0YlXXWGummAwAAQKGYbr6lJart7X2a0q+aFahaWsf1dPWSqAAAmly1Wo2lS5eOdDNgTFuyZEnD34G+mzhxYlQqlZFuBkCXWreZVUxf0Dnn5hx/GzF1SlQmT1olqFydv2j5snvtGK3bbDFyjQUAAIAupqvvvO2eiL4kRC1aHC3bPW9cT1dfqWavGQAATSsTPj7wgQ+MdDMAoHDaaafFpEkrkxEARqvqEwui48550Tl3XkRnTueXCaDVYlRuBqNzCj8VqAAAABiNqo8/Gcsu/E3EmlOiMqHn+kvVZe3FdPUTXv+KcX2tqxIVAAAAAEAfZdC4bffZUd1xm6jOXxiR0xq0tRXTGoznUbkAAACMr+nqY9rUbhOpqk00Xb0kKgAAVjjuWVvEhErLSDcDgCazrNoZpz/2l5FuBkC/ZMJUZb0ZI90MAAAAGPh09W1tq0xXn1P4NdN09ZKoAABYIROoJkqiAgAAAAAAGNcqlUq0bTsrqhuut2K6+mrn4lWnq9/ueU01Xb0kKgAAAAAAAAAAaEKmq19JEhUAAAAAAAAAADSxiunqw1wtAAAAAAAAAABAU5NEBQAAAAAAAAAANDVJVAAAAAAAAAAAQFOTRAUAAAAAAAAAADQ1SVQAAAAAAAAAAEBTk0QFAAAAAAAAAAA0NUlUAAAAAAAAAABAU5NEBQAAAAAAAAAANDVJVAAAAAAAAAAAQFOTRAUAAAAAAAAAADQ1SVQAAAAAAAAAAEBTk0QFAAAAAAAAAAA0NUlUAAAAAAAAAABAU5NEBQAAAAAAAAAANDVJVAAAAAAAAAAAQFOTRAUAAAAAAAAAADQ1SVQAAAAAAAAAAEBTk0QFAAAAAAAAAAA0NUlUAAAAAAAAAABAU2sb6QYAAAAAAIxV1aXLojp/YUR7e0RbW1SmT4vKxAkj3SwAAACgjyRRAQAAAAD0UfXxJ6Pjrnujc+68iM7OlQ+0tETL1jOjdcvNozJj7ZFsIgAAANAHkqgAAAAAAHqpWq1Gxx33ROecWyKiEjF1clTaVoZZq+3t0Xnb3cWtZY/Z0brNrKhUKiPaZgAAAKBnkqgAAAAAAHopE6g6rr4pKtOmRmXC6uHVIqFq+lpRXdZeLJeJVm3bzhqRtgIAAAC919KHZQEAAAAAmnoKv6xA1VUCVa18PJfrnHNzVJ9YMGxtBAAAAPpHEhUAAAAAQC903HVvUVmqpwSqUrlcx53zhrhlAAAAwEBJogIAAAAA6EF16bLonDsvYurkvq04dUqxXq4PAAAAjF6SqAAAAAAAelCdvzCiszMqbb2rQlUqlu/sWL4+AAAAMGpJogIAAAAA6El7+wBWrgxwfQAAAGCoSaICAAAAAOhJHytQrao6wPUBAACAoebKHQAAAACgB5Xp0yJaWqLa3r7KlH6VP94ULT/49oq/Oz77lYiW1hV/5/L5d7E+AAAAMGpJogIAAAAA6EFl4oRo2XpmdN52T0SZELXgyVUSqFLrR45f8XvHO46LWGe9aNnuecX6AAAAwOgliQoAAAAAoBdat9w8Om+7O6rL2qMyoS1afvHj7pf/xlciOjqjMmOtiNbWiBtvHLa2AgAAAH3T0sflAQAAAACaUmXG2tGyx+yoLlxUJFJ1vvrQrheuVpcnUE2dEpVMoEo77bTyNn/+sLUbAAAA6JkkKgAAAACAXmrdZla07rVjxFOLo7qsMzre+q7Vk6faO1YkUMXkSY03tO++KxOqzjlnWNoOAAAAdM10fgAAAAAAvVSpVKJt21lR3XC96LhzXnS2tkb7hz4bUY1o+9yHcomoTJkUscaklRWoevK1ry2/lUz7BwAAAMNOEhUAAAAAQB9V1lkr2nafHdUdt4nq/IUR7e0Rr7khKtOnRWXihIgvfSni+9/v38azOlXpF7+IWG+9QWs3AAAA0JgkKgAAAACAfsqEqcp6M1Z/4N//ffktPfBAxCGH9O8fHHjgyt8PP3zlNgEAAIBBJYkKAAAAAGAobbLJqlP01Vaa6ousbFVb3er66yNaWgbePgAAAEASFQAAAADAsKpNqLr44ojPfKZ/29lll5W/f/GLEXvvPfC2AQAAQJOSRAUAAAAAMFJe85rlt7R4ccSLX9y/7fzHf6z8PatTZZUqAAAAoNckUQEAAAAAjAZTpqxapepNb4q4886+b6ezc9UpA3/3u4jJkwenjQAAADBOSaICAAAAABiNvvvdlb/fdlvE297Wv+38y7+s/P300yP23HPgbQMAAIBxRhIVAAAAAMBot912K6tUZaWpXXbp33aOO27Vv2srXwEAAEATk0QFAAAAAE2qvb09zjnnnPjxj38cDz74YEyePDl22GGHeM973hPbb7/9Kss+8cQT8V//9V9x+eWXxz/+8Y/YYIMN4nWve1287W1vi7Y2YcZh1dKyavLT+94XMWdO/7ZVO+3fT34SseGGA28fAAAAjEGiGwAAAADQpI477ri49NJLY9NNN43DDz+8SJT65S9/GXPmzImzzjor9tprr2K5BQsWxJFHHhn33HNP7LfffrHJJpvENddcE6eddlrcdtttccYZZ4z0U2luta//vfdGvP71/dvOwQev/P2lL4049dSBtw0AAADGCElUAAAAANCEMgkqE6i23Xbb+P73vx+TJk0q7i+rS33qU5+KSy65pLgvK1Ddfffd8YlPfKJItkrvf//74/jjj49f//rX8Zvf/KZIrmIU2HzzVatU1Vaa6ovf/nbVdW+4IaJSGXj7AAAAYJRqGekGAAAAAADD79Zbby1+HnzwwSsSqNJuu+0WM2fOjAceeCAee+yxeOaZZ+JHP/pRPPe5z43DDjtsxXKtra1x4oknFr+ff/75I/AM6JVMqCpvA6kstfPOy5Oq8vbnPw9mCwEAAGBUUIkKAAAAAJrQOuusU/x8+OGHV7l/6dKlxbR+EyZMiGnTpsUtt9wSixcvjpe//OXR0rLqmMyNN944Ntpoo7jhhhuio6OjSKxqNtWly6I6f2FEe3tEW1tUpk+LysQJMSrlFH1llaoFC5b/3R//V42ssOOOEd/4xuC0DwAAAEaQJCoAAAAAaEL7779/fPWrXy2m8ttqq62KJKkFCxbEaaedVlSgOuqoo2LixIlx3333FctvsskmDbeTiVQPPfRQcdt0002jWVQffzI67ro3OufOi+jsXPlAS0u0bD0zWrfcPCoz1o5Ra621Bmfavz/8YdV1r7kmoqayGQAAAIwVkqgAAAAAoEkrUeU0fB/60IdW3Ervf//7453vfGfx+/z584uf06dPb7idrFaVMgGrGVSr1ei4457onHNLRFQipk6OStvKMGu1vT06b7u7uLXsMTtat5kVlUolRr3ahKpf/Sriox/t33b23HPl72ecEbHHHgNvGwAAAAwDSVQAAAAA0IRy2r6vfe1rcfPNN8c222wTO+20Uzz55JNxySWXxDe+8Y1Yf/3147WvfW2xXMqqVI2U9y9ZsiSaQSZQdVx9U1SmTY3KhNXDq0VC1fS1orqsvVguE63atp0VY8r++y+/pZymcLfd+red972v60QtAAAAGGUkUQEAAABAE/r85z8fP/7xj+PNb35zfPjDH15RLem4446Lww8/PE466aTYYostYo011ijuX7ZsWcPtlElWa665ZjTDFH5ZgaqrBKpaxePTpkbnnJujuuF6UVlnrRiTMimsNvnp1FMjfvSj/m2rdtq/n/0s4rnPHXj7AAAAYJC0DNaGAAAAAICxobOzMy644IJiKr4TTjhhlenmNthggzj++OOLaesuvPDCWHvttbudrm/hwoXFz6lTp8Z413HXvUVlqZ4SqErlch13zotx48QTlydV5e2ii/q/nVe/enlSVd6++MXBbCEAAAD0iyQqAAAAAGgyjz32WDH93iabbNJwmr4tt9yy+Pnwww/HzJkzi98feOCBhtvK+6dMmVIkX41n1aXLonPuvIipk/u24tQpxXq5/rizySYrE6oGMlXfD36wMqEqb9XqYLYSAAAAekUSFQAAAAA0mawulclTDz300Irp+Grde29WXIpYb731Ytttty2m6rv++uuLCla1HnzwwSLRavbs2dHa2hrjWXX+wizhFZWc3q4PiuU7O5avP97VJlS95S39387OO69MqJo3jqp4AQAAMKpJogIAAACAJpMJVPvtt188+eSTcfrpp6/y2OOPP77ivoMOOigmTZoUr3rVq4qEq/POO2/Fch0dHXHqqacWvx9xxBEx7rW3D2DlygDXH4Pe+96VCVW//GX/t/Ov/7oyoerMMwezhQAAALCKvg2bAgAAAADGhZNOOiluv/32+Na3vhXXXXdd7LLLLkVS1WWXXRbz58+Po446Knbfffdi2eOPPz6uvvrqOPnkk4tlZ82aFXPmzIk77rgjDjjggHjZy14W414fK1CtqjrA9ce4Zz971en+MiGqP849d/mtNGdOZgQOvH0AAAAgiQoAAAAAmtO6664bF154YXzjG9+ISy65JL7zne8UFaq23nrreNOb3hT777//imVnzJgR559/flGh6oorrigSqDbaaKM44YQT4s1vfnNUKpUY7yrTp0W0tES1vb1PU/rl8tHSunx9lqtNqLr++ohjjunfdvbYY+XvJ58c8fKXD7xtAAAANK1KtVqtjnQjAAAYOUuWLIkPfOADxe8fWPd5MbFixmcAhtfSamec9s+7i99PO+20YuowgNGo/dpbovO2e/qUEFWdvyBatntetO0+e0jbNi4sXbpqYlR/TZ8ecemlg9EiAAAAmogeMgAAAACAXmjdcvNiar7qsvZeLV8u17rVzCFu2TiRU/Nllary9qpX9W878+cvnzKwvD355GC3FAAAgHFIEhUAAAAAQC9UZqwdLXvMjurCRT0mUuXjuVzLHjtEZZ21hq2N48onP7kyoeqii/q/nZe9bGVC1a9/PZgtBAAAYBxpizHsyiuvjG9/+9tx2223RaVSiS222CLe8pa3xIEHHjjSTQMAAAAAxqHWbWZlOlV0zrk5qnnH1ClRaVsZZq22t0csWrx82b12jNZtthi5xo4nm2yyPJkqVasRO+/cv+185CPLb6VymwAAADS9MZtEde6558bJJ58cz3rWs+Lggw+Ozs7O+PWvfx3vf//7429/+1scddRRI91EAAAAAGCcycGcbdvOiuqG60XHnfOic+68qHZm0lSlmOovWlqjZbvnFVP4qUA1RCqVVZOfPv/5iAsu6N+2sjpVKbexeU7ZCAAAQDOqVKs5bGdsueuuu+KQQw6JTTfdNL7zne8UiVTpn//8Z5FQ9eSTT8a1114b06ZNG+mmAgCMekuWLIkPfOADxe8fWPd5MbFixmcAhtfSamec9s+7i99PO+20mDRp0kg3CaDXqkuXRXX+woisQNXWFpXp06IyccJIN6t5/eMfEQccMPDt7LNPxBe+MBgtAgAAYIwYk5WoMnGqvb09PvWpT61IoErrrrtuUYnqj3/8Y5FQJYkKAAAAABhKmTBVWW/GSDeD0rOfvWqVqtpKU31x+eWrrvv730e0tg68fQAAAIxaYzKJ6oorrohnP/vZsXODee8PPfTQ4gYAAAAAQJOrTai6+uqI44/v33Z23XXl72eeGbHbbgNvGwAAAKPKmEuievzxx+Mf//hH7LnnnvHoo4/G6aefXiRVLVy4MJ7//OfHu971rth3331HupkAAGPS4s72WGo6v9GpWo1lMeZm4oZRZUJUIiqVkW4GDbRXO0e6CQA0g732WplUtXRpxB579G87xx678vfp0yMuvXRw2gcAAMCIGnNJVJk4lRYtWhSHHHJIrLHGGrH//vsXf//mN7+J97znPfHRj340jjzyyJFuKgDAmPO1x+8d6SYAAAAMvYkTV61SdcghEQ880PftzJ+/6rR/OQ3gtGmD00YAAACG1ZhLonrqqaeKn7feemvstttu8fWvfz2mTJlS3PeOd7wjXv/618fnP//5eOlLXxobbrjhCLcWAAAAAIBR76KLVv5+000ZbO7fdvbZZ+XvRx0VccwxA28bAAAAw6JSrVbH1Jwgt9xyS7zhDW8ofv/5z38es2bNWuXxL3/5y3HWWWfFBz/4wTgqL1IBAOhWng4uXbo0lixZMtJNoQf5PgH9NzErTjCqTZo0qXifKqZdBGC0yPD5zjsPzrZqK18BAAAw6oy5SlTT/q8Uclaf2mKLLVZ7fOutty5+3n///cPeNgCAsSg7qrPTOm8AAADUyMTe2uSnT30q4mc/69+2aqf9u/jiiI02Gnj7AAAAGDQtMcZsvPHG0dbWFu3t7UXVhHrLli0rfk6ePHkEWgcAAAAAwLj1iU8sT6rK2y9+0f/tvOY1y5Oq8nbhhYPZQgAAAJoliSrL+s+ePbuYyuSGG25Y7fHbbrut+LnVVluNQOsAAAAAAGgK6623MqFqIFP1nXLKyoSqvHV2DmYrAQAAGK9JVOnwww8vfp5yyimxcOHCFfffeeedcf7558f06dNj3333HcEWAgAAAADQVGoTqt797v5vZ5ddViZU3XTTYLYQAACAblSqjebEGwNOOumkuOiii2L99deP/fbbLxYtWhS/+tWvimn+vvKVr0iiAgAAAABg5OVA4H32Gfh29twz4vTTB6NFAAAAjKckqmx2JlH94Ac/iHvuuaeY5m/77bePd7/73fGiF71opJsHAAAAAACre+MbI+6+e+DbufzyiGnTBqNFAAAAjOUkKgAAAAAAGNNuvTXi6KMHvp2PfzzioIMGo0UAAABNSxIVAAAAAACMtM7OiF12Gfh2ZsyI+M1vBqNFAAAATUUSFQAAAAAAjDaf/nTET3868O3kNjbYYDBaBAAAMK5JogIAAAAAgDqdixZH9aG/R3XJkqhMmhSVjdaPlqlTRqYx990XceihA9/Ou94V8fa3D0aLAAAAxh1JVAAAAAAA8H865z0Uy669Oap/vj+isyZ83lKJyvM3jQm77xAtMzcaySZG7LTT4GznhhsiKpXB2RYAAMAYJ4kKAAAAAICm19nZGe2//F10XvfH5XdMmhiVttYVj1fbOyKWLMmwerTs9sJoO+BfoqWlJUbc+edHnHbawLdzxhkRe+wxGC0CAAAYkyRRAQAAAADQ9Jb+/MronHNrxORJqyRP1SuSqZ5eEi17zo6JB744RpXFiyNePAhtevnLI04+eTBaBAAAMGZIogIAAAAAIJp9Cr+l3/7xatWnurK8KtXSmHj0IdGy2YYxau2yS5bYGvh25syJmDhxMFoEAAAwao2CWsMAAAAAADByll17c/GzNwlUK5erxrJrbopR7frrI268cfktp+vrr5zmb6edlt+uumowWwgAADBqqEQFAAAAAEDT6ly0OJZ+4ZyICRN6nUS1ohrVsmUx8YSjomXqlBhTOjoidt114NvZb7+Iz31uMFoEAAAw4iRRAQAAAADQtDruvDeWfe9/o7Lm5D6vW33q6ZhwxKuidavNY0x7xSsiHnts4Nu55JKIddYZjBYBAAAMu7bh/5cAAAAAADA6VJcsGdH1R4Vf/3rl7w88EHHIIf3bzstfvvL3ww6L+MAHBt42AACAYaISFQAAAAAATUslqh4ceGDEo48OfDs33BBRqQxGiwAAAIaESlQAAAAAADStykbrR7RUotreEZW21l6vl8vnesX649kvfrHy9x/9KOLUU/u3nZ13Xvn7BRdEbD6OE88AAIAxSSUqAAAAAACa2pLv/Syqd97Xp2pU1acWR2WrzWPSEa+OprR4ccSLXzzw7Rx1VMQxxwxGiwAAAAZEEhUAAAAAAE2tc95DsfTbP46YNLFX1aiKKlRLlsbEow+Jls02HJY2jnrve1/EnDkD385110W0mUQDAAAYfpKoAAAAAABoekt/fmV0zrk1YvKkbhOpigSqZ5ZEyx6zY+KBg1CJabxOAfjxjw98O//1XxG77joYLQIAAOiRJCoAAAAAAJpeZ2dntP/q6ui89tZMlYqYtGoy1fLqU0syrB4tu28fbfvvFS0tLSPa5jFh6dKIPfYY+HZ23DHiG98YjBYBAAA0JIkKAAAAAAD+T+d9D8eya26K6p/vj+isCZ+3VKLy/E1jwp4vMoXfQHzpSxHf//7At/Ob30TMmDEYLQIAAChIogIAAAAAgDqdixZH9aG/R3XJkqhkVaqN1o+WqVNGulnjy1/+EvGGNwx8Ox/+cMQhhwxGiwAAgCYmiQoAAAAAABhZ2VXxlrdEzJ07sO1ssknERRcNVqsAAIAmIokKAAAAAAAYXc47L+KMMwa+nR//OGLjjQejRQAAwDgniQoAAAAAABi9/v73iFe+cuDbedvbIt7znsFoEQAAMA5JogIAAAAAAMaO3XaLaG8f+Hauvz6ipWUwWgQAAIwDkqgAAAAAAICx6YorIj7wgYFv50tfinjxiwejRQAAwBgliQoAAAAAABj7li2L2H33gW/nRS+KOPvswWgRAAAwhkiiAgAAAAAAxp8TT4z47W8Hvp2rroqYMmUwWgQAAIxikqgAAAAAAIDx7a67Io44YuDb+dSnIl75ysFoEQAAMMpIogIAAAAAAJpHdovsvPPAt7P33hFf/OJgtAgAABgFJFEBAAAAAADN6+Mfj/jFLwa+ndzGeusNRosAAIARIIkKAAAAAAAgPfpoxIEHDnw7L3tZxOc/PxgtAgAAhokkKgAAAAAAgEZOPDHit78d+Hauvz6ipWUwWgQAAAwRSVQAAAAAAAA9+c1vIj784YFv57zzIrbeejBaBAAADCJJVAAAAAAAAH2xZEnEnnsOfDsvfWnEqacORosAAIABkkQFAAAAAAAwEJ/+dMRPfzrw7cyZEzFx4mC0CAAA6CNJVAAAAAAwRJ588slYe+21e7XslVdeGXvvvfeQtwmAIZaJUO9738C3c8opEfvuOxgtAgAAekESFQAAAAAMkZe85CVx2mmnxU477dTlMs8880x87nOfiwsuuCD+9Kc/DWv7ABhinZ0Ru+wyONu68cbB2Q4AANCQJCoAAAAAGCJbbbVVtLa2xjvf+c449thjo6WlZZXH//jHP8YJJ5wQ999/f0yYMCFuu+22EWsrAMPgvPMizjhj4NvJqQM32GAwWgQAAPwfSVQAAAAAMES+973vxRe+8IVYsmRJ7LDDDvHFL34xnvvc50ZnZ2eceeaZcfbZZ0d7e3tst9128dnPfjae//znj3STARgujzwScdBBA9/OMcdEHHXUYLQIAACamiQqAAAAABhCf/nLX4pqU3Pnzo211lor3ve+98XFF18ct99+e6yxxhrF329961tXq1IFQJN53/si5swZ2DZe8ILl1a4qlcFqFQAANA1JVAAAAAAwxLLaVFae+uY3v1lUoUo77bRTfO5zn4uNN954pJsHwGjzk59E/Od/Dnw73/9+hCqHAADQK229WwwAAAAA6K9FixbF3/72t+jo6Fhx38MPPxwPPPCAJCoAVnfwwctv6cknI172sv5t5/DDV/6+//4Rn/nM4LQPAADGIZWoAAAAAGAI/eIXv4jPfvaz8fjjj8c666wTH/3oR+Pyyy+Pn/3sZ1GpVOK1r31tnHTSSTFt2rSRbioAY0EmRv35zwPfzrXXRkyYMBgtAgCAcUESFQAAAAAMkWOOOaZImMoQ3D777FMkU82YMaN47Fe/+lV84hOfiAULFsR6661X/P7Sl750pJsMwFjyhz9EvPOdA9/Oxz8ecdBBg9EiAAAYsyRRAQAAAMAQ2WqrrWLKlClFpanXv/71qz3+j3/8o3js6quvjpaWlpg7d+6ItBOAcSCnjN1114FvZ5NNIi66aDBaBAAAY4okKgAAAAAYIocffnh8/vOfj4033rjb5b73ve/FaaedFjfffPOwtQ2Ace5b34o466yBb+e3v41Ya63BaBEAAIxqkqgAAAAAYIhk6K1SqfRq2fvvvz823XTTIW8TAE3ogQciDjlk4Nv593/PDOHBaBEAAIw6kqgAAAAAYBg89dRTceutt8YjjzwSz33uc2PPPfeMe++9NzbffPORbhoAzWannQa+ja22ivjOdyJ6mSwMAACjnSQqAAAAABhCy5Ytiy996Utx/vnnxzPPPFPc9+pXvzpOPfXUYrq/BQsWxOmnnx5bbLHFSDcVoClUly6L6vyFEe3tEW1tUZk+LSoTJ0TTOuOMiPPOG/h2Lr44YqONBqNFAAAwPpKoli5dGj/96U/juuuui7/+9a+x8847x/HHHx/f/e53Y9ttt43Zs2cP5r8DAAAAgFGrvb093vGOd8S1114bbW1tsdVWW8Vtt90WBx10UJFElT///Oc/x7Oe9ay4+OKL49nPfvZINxlg3Ko+/mR03HVvdM6dF9HZufKBlpZo2XpmtG65eVRmrB1N7cknI172soFv54UvjDjnnMFoEQAADJuWwdxYBoBe8YpXxMc+9rH43//937jpppuK8uTpwgsvjDe+8Y1xjpNmAAAAAJpEVp+aM2dO7LLLLnHppZfGBRdcsMrjP/zhD+OVr3xlPPbYY3HuueeOWDsBxrMcS95++92x7MLfROdt90RMnhSVtaetuOXfnbctfzyXa+oJPNZeO+LGG1feDj64f9v54x+XTxlY3jo6BrulAAAwepOosurU29/+9uLnv/zLv8THP/7xVS40dt9992htbY0vfOELcWOeeAMAAADAOPfjH/841lprrTjzzDNj/fXXX+3xyZMnx8knn1xUorrqqqtGpI0A413HHfdEx9U3Raw5ZfnUfW1tqzyef1emr1U8nst13PGXEWvrqPOxj61MqMpp//pr111XJlT9+c+D2UIAABh9SVRnnXVWPPnkk/GRj3wkzj777Dj88MNXefyDH/xgfOlLXyoSq7797W8P1r8FAAAAgFFr3rx5sdNOO8W0adO6XGbixImx/fbbx8MPPzysbQNolin8OufcEpVpU6MyYdXkqXr5eC7XOefmqD6xYNjaOGbsscfKhKprr+3/drL/qEyo+sIXBrOFAAAwOpKofve738UWW2wRRx55ZJfL7LfffvGCF7wg/vSnPw3WvwUAAACAUatSqcSSJUt6XO6pp54qlgVgcHXcdW8ejXtMoCqVy3XcOW+IWzbGTZiw6rR/3fQNdeuHP1yZUPW2t0UsXTrYLQUAgOFPovrHP/4Rs2bN6nG5jTfeOP75z38O1r8FAAAAgFErBx3edtttRQX3rjz++ONx++23x8yZM4e1bQDjXXXpsuicOy9i6uS+rTh1SrFerk8vHXfcyoSq/s5Gcttty6tdlUlVc+YMdisBAKBbvRt60QtrrbVWPPLIIz0u99BDD3VbvhwAAAAAxouDDjooPvvZz8aJJ54YX/jCF4oYWq2sUvXhD384Fi9eHAceeOCwtWvLLbfscZnXvva1ccopp6z4+4knnoj/+q//issvv7wYULnBBhvE6173unjb294WbW2DFmYEGDTV+QsjOjuj0sdjVC5f7VxcrF9Zb8aQtW/c2m675clUqVqNeMlLsuRi37fzvvet+ne5TQAAGCKDFt3YYYcd4re//W3cfPPNxe+NXH/99TF37tx42cteNlj/FgAAAABGrcMOOyx++ctfxpVXXhkvfelL4wUveEFxf1aeOuGEE2LOnDnx2GOPxdZbbx1HHHHEsLXr2GOPbXh/tVqNc889t5hecLfddltx/4IFC+LII4+Me+65J/bbb7/YZJNN4pprronTTjutqLR1xhlnDFvbAXqtvX0AK1cGuD6FnKr2yitX/n3ZZREf/GD/tpXVqUoXXxyx0UYDbx8AAAxFElWOOLvsssviXe96VxEA2n333Vc8tnTp0rjiiivi05/+dFQqlSLgAgAAAADj3YQJE+K///u/4zOf+Uz85Cc/iRtuuKG4f968ecUtY2WveMUrirjZxIkTh61d733vexvef8455xQJVG94wxviNa95zYr7swLV3XffHZ/4xCfi8MMPL+57//vfH8cff3z8+te/jt/85jdFchXAqDKgKnnVAa5PQznIvqwotWBBxEtf2r/t1HxHxTHHRBx11OC0DwCAplap5vCyQZKj1D7/+c+vcl9ra2sxgq2zs7P4+Z73vKfLIA0AAAAAjFc5BV4mUT3yyCNFrGy99daLnXfeOTbccMMYDTJJKqfwe85znhM/+9nPYvLkycX9zzzzTDFgcu211y4q0be0tKxY58EHH4x999039txzzyIBC2A0qS5dFsu+87OIyZP6NKVfNStQPb0kJhz56qhMnDCkbaTGt7+dWbsD28aLXxxx2mkRNd9VAAAwIklUKQNB3/zmN4ufTz/99IoRdznF39FHHx177733YP47AAAAAGAQHHXUUcUUfWefffYqMbzrr7++qCx/8MEHx6mnnrraei972cvi0UcfjVtuuaUYUAkwmrRfe0t03nZPVKZP6/U61fkLomW750Xb7rOHtG1049ZbI44+euDbufDCiM02G4wWAQDQBAatFu3jjz8eM2bMKEbP5S1H082fP7/4OX369GhT9hYAAAAARqUrr7yySKDKilL1gyDvu+++4ucmm2zScN2NN944HnrooeK26aabDkt7AXqrdcvNo/O2u6O6rD0qE3rup8jlivW2mjkMraNL22+/ctq/Z56J2Guv/m3n0ENX/v7Wt0Yce+zgtA8AgHFp0DKbcjTaOuusE9/97neLv7OsdyZVAQAAAECz2GWXXfq9bqVSid///vcxEr71rW8VP4855pjVHsuBkikHSjYybdry6i4LFiwY0jYC9EdlxtrRssfs6Lj6pohpU7tNpMoEqurCRdG6145RWWetYW0n3VhjjZUJVenzn4+44IK+b+fcc5ffSldcETF16uC0EQCAcWHQkqgefPDBYtQZAAAAADSr3iQS5ZR3OQBx2bJlK+7LvzOJaiTMnTu3mLJvp512Km71li5dWvycOHFiw/XL+5csWTLELQXon9ZtZmU6VXTOuTmqecfUKVGpmT2j2t4esWjx8mX32jFat9li5BpLzz74weW3dP/9Ea97Xf+285KXrPz9Qx9atWoVAABNadCSqJ71rGfFk08+OVibAwAAAIAx57LLLlvl72eeeSaOP/74+Otf/xrHHnts7LfffrHBBhsUjz3xxBPF8l/60peKqfLKalDD7aKLLip+HnHEEQ0fXyMrgESskvTVKMlqzTXXHLI2AgxEJqm2bTsrqhuuFx13zovOufOi2plJU5m8Wo1oaY2W7Z5XTOGnAtUYk9PIllWqqtWIN7whYt68vm/nlFOW39KsWRHnnz+47QQAoLmSqI477rg46aST4stf/nK85S1vMZUfAAAAAE1nww03XOXvr3zlK3HvvffG97///XjhC1+4ymPrrLNOHHroobHddtvF6173umLZj370oyOS+DVlypTYZ599Gj6+9tprd1tla+HChcXPqaZEAka5TJBq2312VHfcJqrzF0ZkBaq2tqhMnxaViRNGunkMVFZ0/NGPVv59++0Rb31r37dzzz0RtZUZr7oqYsqUwWkjAADNkUT1hz/8ITbddNM4++yzi9t6660X06dPL0qRNxr1UY5wAwAAAIDx6qc//WnsuOOOqyVQ1dpyyy1j1113jV//+tfDnkR15513xiOPPBKvfOUrY/LkyQ2XmTlzZvHzgQceaPh43p9JWGWFLYDRLhOmKusZCD7ubbvtyipV8+dH7Ltv/7bz4hev/P2Tn4x41asGp30AAIzfJKoLLrhglb///ve/F7dGMokKAAAAAMa7xx57LLbNTtweTJo0KRYtWhTD7aabbip+7lRbcaNOtj+n6rv++uujs7NzlUGTDz74YDz88MOxxx57RGtr67C0GQD6bPr0lQlVqZvvvW5lElXe0h57ZMnJiAbFBAAAaPIkqvPOO2+wNgUAAAAA48JGG20UN9xwQzz11FNFIlIj//znP+P3v/99bLbZZsPevttzqqP/S5TqLsHrVa96Vfzwhz8sYoBv/b+pkTo6OuLUU08tfj/iiCOGqcUAMAhqE6r+939XJkb1xZw5EbvssvLvnIFlk00Gp30AAIztJKpdak8UAQAAAIAi+ej000+PY445Jk455ZR47nOfu8rjf/nLX+KEE06IxYsXx6GHHjrs7Sun6Ft//fW7Xe7444+Pq6++Ok4++eS47rrrYtasWTFnzpy444474oADDoiXvexlw9RiABhkOT1fOUXfM89E7LVX/7ZzyCErf99666w+MDjtAwBg2FSq1Wp1sDe6dOnS+OMf/xiPPvpoTJw4MdZdd93YZpttYsKECYP9rwAAAABg1HrmmWfiLW95S9x6663FdHdbbLFFkUiVIbmcBm/evHnF7y95yUvi61//elQqlWFt34EHHlgkct18880xZcqUbpfNWF8mhF1xxRWxcOHCosrWIYccEm9+85uLGCAAjDuZCHXGGQPfTlat8l0JANBcSVSdnZ1x5plnxv/8z/8Uo+dqTZs2LQ477LA47rjjioARAAAAADSDjJNlzOxHP/pRLFq0aJXH1l577SIJ6Z3vfGe0tQ1a0XiGUXXpsqjOXxjR3h7R1haV6dOiMtFgUoBx5957I17/+oFv57//O2L77QejRQAAjOYkqve9731xySWXFKPnNt9889h4442jo6MjHnzwwaI0eI6ky9LeGTQCAAAAgGbS3t4et99+e/z9738v/n7Oc54T2267rQGHY1T18Sej4657o3PuvBxduvKBlpZo2XpmtG65eVRmrD2STQRgqORx/+CDI/7614FtZ//9Iz7zmcFqFQAAoyWJ6uKLL44PfehDsdlmm8UXv/jFYvq+Wjm934knnhj3339/8XiWCgcAAAAAGEsynNpxxz3ROeeWDK9GTJ0clZoqYtWsSLVoeZX+lj1mR+s2s4Z9mkYAhtnZZy+/DcQee0R8/vMRkycPVqsAABipJKojjzyySJT6+c9/HhtttFHDZbIi1Stf+crYaaed4pxzzhmMfwsAAAAAo95jjz0Wd999dzz99NPRWVu1qE5WcWd0a7/97ui4+qaoTJsalQldT8FYXdYe1YWLonWvHaNt21nD2kYARtADD0QccsjAt3PyyREvf/lgtAgAgOFOotp5553jhS98Yfx3zuXcjaOPPjrmzp0b11577WD8WwAAAAAYtTo6OuJTn/pUXHjhhUUFo5786U9/GpZ20f8p/JZd+JuINad0m0C1Yvll7RFPLY4Jr39FVNZZa1jaCMAokwlVmVg1UDfcEKGyIQDAkOr5Sr+XlixZEmuuuWaPy+UyTz311GD9WwAAAAAYtf7nf/4nfvSjHxW/Z/X29dZbL1pbW0e6WfRTx133FlP49SaBKuVymTrXcee8aNt99pC3D4BR6KKLVv5+000R73hH/7az884rf7/wwojNNht42wAAGJokqg022CBuvfXWaG9vj7a2xpvNx3KZ5z73uYP1bwEAAABg1Prxj38cLS0tccYZZ8S+++470s1hAKpLl0Xn3HkRUyf3bcWpU4r1qjtuE5WJE4aqeQCMBS96UcSNNy7//emnI/7lX/q3nUMPXfn7m98c8b73DU77AACaXMtgbWifffaJRx99NE455ZQul8nHcplcFgAAAADGu/vvvz923HFHCVTjQHX+wojOzqh0MYC0K8XynR3L1weA0uTJyxOqytub3tS/7Zx3XsROOy2/HXhgVjQY7JYCADSNSrVazYrSA/bYY4/FK1/5ynjyySfjBS94Qey///6x8cYbF489+OCD8ctf/jLuvPPOmDFjRvzkJz+JdddddzD+LQAAAACMWrvvvnvMnj07vv71r490UxigzkcejfafXxWVtaf1ed3qkwuj7ZUvjpYN1huStgEwzvz5zxGHHz7w7Vx8cc4nPBgtAgBoCoM2nd+znvWsOPfcc+OYY46JuXPnxp/+9KdVHs9crZzy76tf/aoEKgAAAACaws477xw33XRTLFmyJCZNmjTSzWEg+liBalXVAa4PQFN5/vNXTvuXlaV2261/23nNa1b9/aMfHZz2AQCMU4NWiaq0dOnSourUDTfcUEzdl5tfb731YpdddokDDjggJk6cOJj/DgAAAABGrXvuuScOPfTQeNWrXhUf//jHxcbGsOrSZbHsOz+LmDypT1P6VbPz++klMeHIV0dl4oQhbSMATeAb34j45jcHvp3f/CZixozBaBEAwLgx6ElUadmyZTFhwsqAwPz582PBggWxySabDPa/AgAAAIBR66yzzopbbrklrrzyylhzzTXjBS94Qaz1/9m7Ezir6vJ/4M+9MwyLwyIqJi4FoqK4UCgGqVm472ZqWq5lfzN30dLSTHONMrfKFjX1576bu1IJoSKKuSC4oLlgbsgmCMzc+399zw2QBGFgZu7M3Pe713ndc892n3lVOnPu5zxPly6Ry+U+dWzalrq403LVPfp0FJ59OXLdln6kX3HKtMhvtE5UD+rfpLUBUIHefTdip52W/zqHHx7xve81RkUAAK1ao4ao3nrrrTjjjDOirq4u/vznP8/fnjpTHX/88Vk3ql/84hex5pprLvdnXXfddXH66acvdv+jjz4a3SXoAQAAACijvn37ZuGopbkFl4574YUXmqUulk1x8tSYe/MDESt0ily7JXejKs6ti/hoZrTbe/vIrdilWWoEoEKl3zVSGOrJJ5fvOt26RTz4YPrFpLEqAwBoNZa+7/QSvPPOO7HvvvvG+++/H717915oX+pK1a1bt3j88cfjO9/5Ttx2223LHXCad0Pp4IMPjtra2k/t79ix43JdHwAAAACW1znnnFPuEmhEue5dIz+4f9SPfCqic+1nBqlSgKo4fUZUbTFAgAqAppdCT2nU3zwvvhix//4Nv86UKRGbbbbgvbF/AEAFabROVKkD1bXXXhv7779/nHTSSdGhQ4eF9tfX12c3ja655posSPXTn/50uT5vn332iQkTJsTYsWMjn88vZ/UAAAAAAEuWbqfWP/9KFEaNLW2o7RS56gVhqmJdXcSMmdl6fvAXo6rf2osc3wgAzeajjyK++tXlv87QoRHf+lZjVAQA0LZDVDvssEN2A+G+++5b7E2BQqEQ22+/fRaoGj58+DJ/VrrOl770pejTp0/cfPPNy1E1AAAAAEDDFT+cFvXjJ0Zh3MSIQn261Zq2RuSrIr9B76jq21sHKgBapq22iphZCvwul8cei/hEkBgAoLVrtN9s3n777dh6660/86mq1DFq/fXXX64AVfLaa6/FrFmzom/fvst1HQAAAABoTJMmTVqu83v27NlotdC0UkCqelD/KA7oF8Up0yNSB6rq6sh16xy5mnblLg8AFu+RRxasP/poxFFHLdt1vvzlBet//nPEJpssf20AAG0hRNWtW7elukn0/vvvR+fOnZfrs8aPH5+9psDWcccdF2PGjImpU6fGuuuuGwcffHDssssuy3V9aG6pi9ucOXPKXQa0ejU1NUYkAAAAZTVkyJBlPjf9PTNu3LhGrYemlwJTuR7dy10GACybQYMixowprc+dW3q/LL773QXrvXtH3Hhj49QHANAaQ1RpvF4a5TdixIjYcsstF3nM6NGjY+zYsVnHqsYIUd14442x+eabx2677Rb/+c9/sg5XJ5xwQrz44otx/PHHL9dnQHMGqC644IJ49dVXy10KtHq9e/eOY489VpAKAAAo69/55TgXAGC5tWu3IFCVXH11xIUXNvw6EydGbLrpgvdpQk0XI24BgAoKUR100EHxwAMPxJFHHhmHHHJIbLPNNvPbj88LOP35z3/Ovtg+9NBDl+uz0g2l1VdfPY466qjYc889529/4403Yr/99ovLLrssttpqq9j0k7+gQQsm8AEAAABtw7yH/wAAWr0DDigtyXvvRRx9dMRLLzX8Ol//+oL1YcMilrPZAgBAU8kVG/ERt6uvvjrOO++8qK+vX/SH5XJx0kknZSP3mkrqTnXqqafGvvvuG2eccUaTfQ40JuP8WrbZs2fHT37yk2z9rLPOivbt25e7JBbDOD8AAAAAgCaWvlrcbLPlv843vxnx4x83RkUAAC2rE1VywAEHxGabbRbXXnttNrrv3Xffjbq6ulhllVViwIAB8Z3vfCc23njjaErzrv/666836edAY0qhD8Gc1iH99+S/KwAAAAAAKlZ6kPWTY//OPjvi1lsbfp2bby4tSZpu86c/RfTo0Xh1AgCUM0SV9O3bt0k7QBUKhRg3blzMnDkzBg4c+Kn9aXvSoUOHJqsBAAAAAAAAiIhTTiktyeTJEdtt1/BrTJoUsdNOC96n6RB77tl4NQIAlCNE1RxSx6tZs2bFP//5z1hppZUW2jfmv8n3jTbaqEzVAQAAAACVojhnbhSnTI+oq4uoro5ct86Rq2lX7rIAoDy6d1+4S1UKRr37bsOvc9ZZpWWe0aMj8vnGqREAoClDVOPHj4+qqqpYZ511Ftp+yy23xO233x5TpkzJOlQdcsghscEGGyzXZ+Xz+dhhhx3i1ltvjV/+8pdx9tlnZ9vm1XHZZZdFp06d4ptpjjIAAAAAQBMoTp4a9RNejcK4ial9/oId+XzkN+gdVev1ilz3ruUsEQDK7557Fqy/+mrE3nsv23U+OZ3mxhsjevde/toAAP5HrlgsFmMZvfvuu3HsscfG2LFjs9DSmWeeOX9fGul33XXXxScvX11dnQWfdtxxx1geH3zwQey3337x73//Owtlbb755vHOO+/EQw89lI37u+CCC2K7ZWkVCrAIs2fPjqFDh2brw4YNi/bt25e7JAAAAKBM0v3O+udfjsKop9Pt1YjajpGrXvCsajF1pJoxM1vPD+4fVf36RC6XK2PFANACpX9fHnZYxLPPLt91TjwxYt99G6sqAKDCLXPfy7lz58ZBBx0UTz31VNTU1MQqq6wyf18as3fttddm63vssUf83//9XxawWmGFFeKUU07JAk/LI43wu+mmm7LOVtOmTYtrrrkmRo0aFV/96lfjhhtuEKACAAAAAJpEClDVj3wqYoVOpdF9nwhQJel9rluXbH86rv75V8pWKwC0WOnfn1dcURr9l5Zl7VD1y19GbLppafnpT9MXmI1dKQBQQZa5E1UKK/3sZz+LQYMGxW9+85vo2nVBa+rvfve7WZBqwIABWYBqnr/97W/xgx/8IL7//e/H8ccf3zg/AUAT04kKAACAZZUeAOzSpUu5y6ARR/jNvfmBUoCqXfWSj59bF/HRzGi39/aRW9H/DgBgqbz+esQ3vrH817n55ogvfKExKgIAKsQyd6JKo/NSB6rzzjtvoQDVrFmz4vHHH89aVO+///4LnfO1r30tVltttXjkkUeWr2oAAAAAaAW23HLLOPHEE2P06NHlLoVGUD/h1WyE39IEqJJ5x9WPn9jElQFAG7LWWgs6VC3P71Df/OaCLlUnndSYFQIAbdQyh6jGjx8f/fr1ix49eiy0PY33q0tzjCOyLlX/q2/fvjFp0qRl/VgAAAAAaDU6dOgQd911Vxx00EGx/fbbxx/+8Id47733yl0Wy6A4Z24Uxk2MqO3YsBNrO2XnpfMBgAbK5xcEqtJyxhnLdp3hwxcEqtLy4YeNXSkAUMkhqilTpsSqq676qe1PPvlk9tqrV6/o3r37p/anMVgff/zxsn4sAAAAALQaI0aMiF/96lfx5S9/Od5444244IILsm7tP/zhD+Nvf/tbFAqFcpfIUipOmR5RKESueum6UM2THV+oL50PACyfnXZaEKj6298i9txz2a6z7bYLAlX339/YVQIAlRai6tix4/yOU580ZsyYbJTfpumXjkV49913o0uXLsv6sQAAAADQatTU1MTOO+8cV1xxRTz00ENxxBFHZJ3dH3744Wx96623zoJVKWBFC7eIe6FLL7ec5wMAn9K5c8RPfrIgVHXyyct2nXSNeYGqFMoScgeAirXMIao111wzJkyYsNC2GTNmxNixYxc7yi/tf+aZZ7JzAQAAAKCS9OzZM4466qgsQHX55ZfH3nvvHfX19dmIvzTq7+CDD4577rkn20YL1MAOVAsrLuf5AMAS7bXXgkDVlVcu2zVSsH3gwFKg6sgjIyZPbuwqAYC2GKLacsst480334w777xz/rZrr7025s6dGx06dIitttrqU+f89re/zW4CLSpgBQAAAACVIHVx32yzzbKxfoMHD87ep7F+jz32WJxwwgmxzTbbZGEqWpZct84R+XwUG9hRKjs+X1U6HwBoHhtuuCBQNWpUxBe+0PBrPPZYxHbbLehS9cgjTVEpANCCLPPjTwceeGBcddVVcfLJJ8cDDzyQ3exJT9Gl14MOOihWWGGF+ce+9957ceWVV2ZP2KUxgPvuu29j1Q8AAAAArca//vWvuPXWW+Pee++N6dOnR7FYjM9//vPxzW9+MwYMGBB333133HLLLVmYKu13H63lyNW0i/wGvaPw7MsRDQlEzZgZ+Y3Wyc4HAMqgpibi5psXvL/00ogrrmj4dY4/fuH3KZyVrg0AtBm5YrpTs4wef/zxrAX5tGnT5m/beuut4+KLL4527Uo3BR599NE49NBDSx+Wy8VZZ50Ve6Z5wgCtxOzZs2Po0KHZ+rBhw6J9+/blLgkAAIBW5N1334077rgjbr/99pg4cWIWnEr3zrbddtvYZ5994stf/vJCx48aNSq7n7b66qtnDy3SchQnT425Nz8QsUKnyLVb8vOpxbl1ER/NjHZ7bx+5Fbs0S40AQAO8+mrE3nsv/3X+8peIfv0aoyIAoDV2oko233zzGD58eDz00EPxwQcfxAYbbPCpUX3dunXLbgxtuOGGccwxx2RjAAEAAACgEhx22GFZKCqN60v3yHr37p0Fp3bfffdYccUVF3lOGvHXoUOH7H4bLUuue9fID+4f9SOfiuhc+5lBqhSgKk6fEVVbDBCgAoCWqlev0si/pFAodZsaObLh1znooAXrO+wQ8YtfNF6NAEDrCFEltbW1scceeyx2/7rrrpu1Kde5BQAAAIBKM2LEiOy+2Pbbb5+FpzbddNOl6oicRvttvPHGzVIjDVPVr0+KU0Vh1NjIWvzXdopc9YLbrMW6umyEX3bsFgOiqt/a5SsWAFh6+XzEb36z4P3TT0d873sNv85995WWeYYPj+giUA0AbX6cH0AlMM4PAACAZXXNNdfEbrvtFl18cdbmFD+cFvXjJ0Zh3MSIQn0WrIoUq8pXRX6D3lHVt7cOVADQVnz0UcShh0a88sryXee22yLWXLOxqgIAWlonKgAAAABg0aZMmRKjR4+ObbbZ5jOPu+mmm+LJJ5+Mc889t9lqY/mkgFT1oP5RHNAvilOmR6QOVNXVkevWOXI17cpdHgDQmFZYIeKGGxa8P+WUiAceaPh19txzwfrhh0d897sRuRTEBgBagny5CwAAAACAtuqSSy6JB5biC7Z//OMfce+99zZLTTSuFJjK9+ge+Z49slcBKgCoAGefHTFmTGm5+OJlu8bvfx+x2WYRadxzWiZNauwqAYAG0okKAAAAABrJn/70p/j4448X2jZhwoQsTLU406ZNixEjRkSnTp2aoUIAKklxzlzd8qCpDRpUClMls2ZFbLnlsl1nt90WrP/85xE779w49QEAS02ICgAAAAAaycyZM+O3v/1t5P47liW9vvjii9myOMViMXvde++9m61OANq24uSpUT/h1SiMmxhRKCzYkc9HfoPeUbVer8h171rOEqFt6thxQaAq+fWvI669tuHX+dnPSktSXR0xcmTpFQBoUv5tCwAAAACN5Pvf/34WpCr89wvrq666KtZee+34yle+ssjjU8iqQ4cO0atXr9h1112buVoA2poUzK1//uUojHo6/VsmorZj5D4RvCjW1UXh2ZeyJT+4f1T16zM/+As0geOPLy3Ju+9GHHpoxH/+07BrpE5yX/7ygvdXXRWxwQaNWycAkMkV5z3qtpxS2/EuXbo0xqUAWpTZs2fH0KFDs/Vhw4ZF+/bty10SAAAArUTfvn1jt912i/PPP7/cpQBQAeqeeynqRz4Vuc61kWu3+Ofoi3Projh9RlRtMSCqN+zTrDUCUeoQd/bZEbffvnzXOeKIUjALAGhZIapNNtkktttuu6zt+MCBAxvjkgAtghAVAAAAANAaRvjNvfmBiBU6fWaAav7xc+siPpoZ7fbePnIrekgeyurGGyOWN3S/1VYR55wT4TsMACj/OL/Udvyuu+6Kv/71r7HWWmvFXnvtFXvuuWesssoqjfURAAAAANCizZgxI3utra1d6P3SmnceADRU/YRXsxF+SxOgStJx6Sn7+vETo3pQ/yavD/gM++xTWpLJkyO2267h13jkkYhPjpA29g8AyteJas6cOfHggw/GzTffHI8//ng2d7uqqiq++tWvxje/+c3sNZ/PN8ZHATQrnagAAABoyPi+dA/s7rvvjl69esX666+/1OfmcrkYN25ck9YHQNtUnDM35l59V0TH9pGrXvrn54t1dRGzZke7A3aNXE27Jq0RWAbpa9z/9/8innpq+a4zZEjEueemXzgbqzIAaJMarRNVTU1N7LzzztkyadKkuOWWW+K2226Lhx9+OIYPH551pEqdqVKgas0112ysjwUAAACAFqVQKMxfb8jzi430rCMAFag4ZXr6F1CDAlRJOr5YmJmdn+vRvcnqA5ZRCj394Q8Ld5s6/viGX+fhhyM222zB+7vvjlh11capEQDakEbrRLUo6dKPPvpo3HfffVmYavLkydkTdQMHDox99tkntt9++6xbFUBLphMVAAAAANCSFSa9G3V3PxK5rp0bfG5x6vSo3nmryPfs0SS1AU1k9uyIX/864pZblu86J54Yse++jVUVALRqTTpfLwWmNttss/ja174WgwcPzt6nJ/Eee+yxOOGEE2KbbbaJe+65pylLAAAAAAAAaNsa2IFqYcXlPB8oi/TA98knR4wZU1rOOGPZrvPLX0Zsumlp2W67rKsdAFSqJvut+F//+lfceuutce+998b06dOzrlSf//zns3F+AwYMiLvvvjsb+ZfCVGn/vhLOAAAAAAAADZbr1jkin49iXV2DRvql4yNfVTofaN122qm0JM8/H3HQQQ2/xuTJEQMHltZ79Ii44gpj/wCoKI0aonr33XfjjjvuiNtvvz0mTpyYBafatWsXO+64Yza+78tf/vL8Y7/0pS/FkCFD4tBDD40//OEPQlQAAAAAtHoD533ptAxSF/fHH3+8UesBoDLkatpFfoPeUXj25YiGBKJmzIz8Rutk5wNtSL9+pe5USX19xPe+F/Hssw27xrvvRuy884L3p50WsdtujVsnALTVENVhhx0Wo0aNysb1pfBU7969s+DU7rvvHiuuuOIiz0kj/jp06BAffPBBY5UBAAAAAGUzbdq0cpcAQIWqWq9XFJ59KYpz6yLXbslf/6TjsvP69m6G6oCyqaoqdZSa5+qrIy68sOHXSeMCPzkycMSIiI4dG6dGAGhrIaoRI0ZE+/btY/vtt8/CU5umublLMHv27Gy038Ybb9xYZQAAAABA2Tz88MPlLgGACpXr3jXyg/tH/cinIjrXfmaQKgWoitNnRNUWAyK3YpdmrRMoswMOKC3JpEnL3l1qyy0XrF98ccSgQY1THwCUUa6Y2kY1gmuuuSZ222236NLFL9tA25ICn0OHDs3Whw0blgVGAQAAAABamvSVT/3zr0Rh1NjShtpOkateEKYq1tVlI/yS/OAvRlW/tbNxsgCRvjI+88yIO+9cvusMHhxx0UWNVRUANKt8Y11oypQpMXr06CUed9NNN8WPf/zjxvpYAAAAAAAA0pPzuVxUb9gn2u29feQ3Widi1uwoTp0WxanTs9f0Pm1P+9NxAlTAfOmfB6edFjFmTGlJY/+WxahREWli0bzlgw8au1IAaPnj/C655JKsE9U222zzmcf94x//yEb/nXvuuY310QAAAADQIuy5557ZF9LpXlnPnj2z90srnXfrrbc2aX0AVIY0oq96UP8oDugXxSnTI1IHqurqyHXrHLmaduUuD2gN1l+/FKZKPv44Yostlu0622+/YP3Pf47YZJPGqQ8AWlKI6k9/+lN8nP6F+QkTJkzIbhAtzrRp07IAVadOnZb1YwEAAACgxXrhhReyMFQaDT/v/dLSDQSAxpYCU7ke3ctdBtDadeiwIFCV/Pa3EZdf3vDrfPe7C9YPPDDiyCMj8o02OAkAyheimjlzZvz2t7+df3Mnvb744ovZ8lmzuJO99957WT8WAAAAAFqsq666KntNXag++R4AANqMI44oLcm//rVwOGpppd+TP/m78o03RvTu3Xg1AkBzhqi+//3vZ0GqQqEw/4bQ2muvHV/5ylcWeXwKWXXo0CF69eoVu+6667J+LAAAAAC0WAMHDvzM9wAA0Kak8XzzulTNmRMxePCyXWeffRasn3TSwu8BoJnkivPaQy2nvn37xm677Rbnn39+Y1wOoMVIIxiGDh2arQ8bNizat29f7pIAAABopVIX93feeSeqq6uzblWf//zny10SAAA0jeuui/jVr5b/Ov/8Z4TvZgBoyZ2o/tf48eMb61IAAAAA0GbMmTMnLrvssrjuuuviww8/XGjfaqutFoceemh85zvfKVt9AADQJPbbr7QkkydHHH54xMSJDb/OJych/f73EZtu2ng1AkBjhKhmzJiRvdbW1i70fmnNOw8AAAAA2nKA6pBDDomnnnoqUkP4Hj16ZB2o0vpbb70VkyZNirPOOiuefvrprPsxAAC0Sd27R9x4Y2k9DUr67W8jrrii4ddJQax5fvCDiO9+t/FqBKDiLXOIatNNN418Ph9333139OrVKzbbbLOlPjeXy8W4ceOW9aMBAAAAoFX4y1/+Ek8++WSsu+66WVhqo402Wmj/6NGj49RTT83usW2++eax9957l61WAABoFrlcxA9/WFqSe+6JOO20hl/nd78rLUn6rjqNDuzUqXFrBaCi5Jfn5EKhMH89PT23tMsnzwMAAACAturOO+/MOrJfeeWVnwpQJQMHDozLL788OnToENdff31ZagQAgLLaaaeIMWNKy0MPLds1nngiYqutSqP+0nL//Y1dJQAVYJk7UY0fP/4z3wMAAABApfv3v/8dW265ZXRP40sWY/XVV8+6UD322GPNWhsAALQ43bqVwlTz/PSnEffd1/Dr/OQnpSVJI//SGMDUAQsAmqoT1bKaNWtWOT4WAAAAAJpVt27dlupeWOrc3snoEQAAWNgvfrGgS9Xvf79s1/jzn0vj/uZ1qfrPfxq7SgDaiEYLUf385z+POXPmLPG4p556KnbffffG+lgAAAAAaLF22GGHGD16dIwbN26xx7zxxhtZF6ohQ4Y0a20AANCqpADUvEDV44+XxgAui112WRCoGjGisasEoBVrtBDVddddF9/85jfj5ZdfXuT++vr6uOCCC+KAAw7IbgwBAAAAQFszY8aMhZZDDz00vvCFL8QhhxwSV111VUydOnX+sXPnzo2///3vcdBBB2XHDB06tKy1AwBAq1FVFXHGGQtCVb/85bJd57jjFgSqzjwzfand2JUC0IrkisVisTEu9K1vfSuefvrp6NChQ/zoRz+K/fbbb/6+V155JU488cR44YUXoqqqKrt5dPzxxzfGxwI0udmzZ8+/kT1s2LBo3759uUsCAACghVp//fWXeExtbW32t+WUKVOyBw+TFVZYIWpqamLUqFHNUCUAALRh770X8d3vRkyatOzX2HnniKOPjlhppcasDIBK6UR17bXXxpFHHhl1dXVxxhlnZOsffvhh/OUvf4m99tora1net2/fuPHGGwWoAAAAAGiT0vOKS1qmT58e77//fnYfbd621LVq8uTJ5S4fAABav1VWibjzzlKHqtGjUzeQhl/j7rsjtt++1KHq0EOXL5AFQOV1oprnmWeeybpOvf7669nTc3PmzIl27dploarvfve7WScqgNZEJyoAAAAAAIA24G9/izjxxOW7xle+EnHeeREdOjRWVQC0tU5U82y88cZx8sknZ2GpFDxItt566zjooIMEqAAAAACghfnHP/4RBx98cAwYMCA23XTT2HfffeOee+751HGp6/wvfvGLGDJkSHYPcIcddog//vGPWUctAABoFb72tVKHqrT8/e8RX/pSw6/xz39GbLFFqUtVWlK3KwDahEYNUaVW5Kecckr84Ac/yG6ebLHFFtGtW7d48MEHY7fddosnnniiMT8OAAAAANqEadOmxU033dTsn3vllVfG97///XjxxRdj9913j1122SXrMH/cccfF5ZdfvlB9BxxwQFxzzTXRr1+/OPDAA6Njx45Zx+bjjz++2esGAIDlVlsb8Yc/LAhV/fGPERts0PDrHHHEgkDVpZemGd9NUS0ArWmcXwpKnXHGGfH+++9Hp06d4ic/+Ul84xvfyN6n9fREWz6fz55kS+P+0jEArYFxfgAAACyP1NXpL3/5S7z11lsxd+7c+OTtuEKhkP3dOa+b0wsvvNBsdU2YMCG7f/f5z38+rr766lhppZWy7el+XgpUTZ06NR599NHo3LlznHPOOVng6mc/+1nsv//+2XH19fVx7LHHxgMPPBAXX3xxbLfdds1WOwAANKl33om48MKIBx6IyOWWLRi1zjoRv/tdRLduTVEhAC05RNW3b9/sNbX8Pu+882L11VdfaP8NN9wQ5557bnz88cex2mqrxfDhwxvjYwGanBAVAAAAy2rEiBFx2GGHLfG49MDhoEGD4tL05Hoz+elPf5p1v0rdpTbbbLOF9t18883xzDPPxCGHHJLdy0u1de3aNbunlx6UnOeNN96IbbbZJr7yla8s1LkKAADajPTAw2mnlQJVy+qggyK23z5i3XUbszIAWuo4v3bt2mUdptJTa/8boEpSB6o777wzNtlkk3j77bcb62MBAAAAoMVK98qS1L3p9ttvjx/84AdZCCmFlG699dY45phjsod1VlxxxTj//PObtba///3vscoqq3wqQJV885vfzLrO9+rVKwtTzZw5MwYOHLhQgCpZc801Y4011ognnngi60wFAABtTnV1xNlnLxj7l9Yb6i9/SX8UlEb+DRwYcfvtxv4BtOUQVbrx893vfjdyqZ3hYqSbKtdee212cwgAAAAA2rrnnnsuevbsmXV9Sp3ct9pqq2yEX3rIcIMNNshCVWlUXhr1l8blNZfJkyfHe++9F+uuu268++678ZOf/CTrJrXxxhtnAaqHHnpo/rGvvfZa9rrWWmst9p7fnDlz4s0332y2+gEAoGzSGOt5gapbbmn4+YVCxC9+EbHDDqVQ1bbbRkya1BSVAlCuENV66633qW3p6bM0BmuhD8zn4/DDD2+sjwUAAACAFmvatGnZfbN5HZzWWWed7PX555+ff8xOO+2UBZQefPDBZqsrBaeSGTNmxDe+8Y14/PHHY4cddogdd9wxXnnllfjhD384v4vWlClTstdu3bot8lqdO3ee/7MCAEBF+fznFwSqRo8udZtaWh98UHr98MOI3XYrBarScuutTVYuAM0Uoppn/PjxcdJJJ2VP1W244YZxWpoPGxGnnHJK/PGPf9TWGwAAAICK0bFjx4VG4NXW1kbXrl3j1VdfXei4FLR6/fXXm62ujz76KHv917/+FWuvvXbceeedceqpp8Z5552XdZxfYYUVsvXUISt1mUpqamoWea152//3YUoAAKgo6ff+449fEKr63e8iVlqp4ddJ4wLnBapSl6pZs5qiWgCaOkR10003Ze2+002X9DRbsVjMlmTs2LHx61//Ohvll1qWAwAAAEBbl0bdTZgwYaFtX/jCFxbqRJXMmjWrWe+ZVVVVzV9P4alOnTrNf59CVQcccEDMnTs37r///ujQoUO2Pb1flHkhqxS8AgAA/muzzSLuv78UqHrkkYhDDmn4NVKXqi23XBCqevHFpqgUgMYOUT399NPxs5/9LLupMnTo0PjrX/+60P7jjjsuVllllXj44YfjrrvuaqyPBQAAAIAWa8stt8y6OZ155pkxffr0bNvGG2+cbXvooYey96+99lo88cQT0bNnz2ara94IvhSeSqGp/7XBBhtkr//+97+zzlmfNa5v3s+VumwBAACLkB5a+OEPS4GqJ56IuPnmZbtOGhc4L1CVHsz4b0MTAFpYiCqN6kt+//vfx/e+973o06fPQvu32267uOKKK7L25aljFQAAAAC0dQcddFCsvPLKce2118YJJ5yQbdtvv/2y12OPPTb23nvv2HPPPbNuTtumUR3N2CGruro66urq5neS/6R5XafSOMLevXtn64sbN5i2pzBWc4bAAACg1crlUnvaBWP/rr122a5z0EGlblcpUHXJJREzZzZ2pQAVp9FCVE899VT0798/Nk3/kF6M9FTbgAEDsqfrAAAAAKCt6969exag2mabbWKttdbKtqVQ0sknn5yFl5599tlslN+GG24Y3//+95utrpqamuxeXgpvpS5Y/yvVlfTt2zerLY3qGz169KdGDr7xxhtZV610rU+OCAQAAJbSuusuCFSlsX/duzf8GldeGbHVVhFHHx1x2GGlawHQYNXRSGbMmJE9Vbc0rcIX1/obAAAAANqa1PXp4osvXmjbgQcemAWrnn766VhxxRVj8803zzq4N6f9998/xowZE+eee25cddVV80f8jR8/Pq6//vro1q1bVmP79u1jl112iRtuuCE77uCDD86Oq6+vj/PPPz9b//a3v92stQMAQJsd+/fAAwve33NPxGmnLf35o0aVXg8/fMG21An3uOMimvnvDYCKDlH16NEjJkyYsMTj0jGrrLJKY30sAAAAALRKafxdOUfg7bzzzjFy5Mi49dZbs/Xtttsue1DyvvvuywJSZ511VtTW1s4fPZiOPeecc+Kxxx6LPn36xKhRo+L555+PHXfcMYYMGVK2nwMAANqsnXYqLcmkSRHpgYbJkxt2jeuuKy3z3HprxH+75ALQRCGqLbbYIm688cbsKbVvfetbizwmtS5/8803Y5999mmsjwUAAACAFi+FkiZNmpSN7vvfkXiflMbnNaezzz47Nt1007juuuvi5ptvzsb8bbbZZvGDH/wgvvSlLy00ljDd97vwwgvj73//exagWmONNeLEE0/MumrlcrlmrRsAACpOegBjXpeq9DfFXXelX+jTHxsNu843vrFg/ZxzIrbdtnHrBGjFcsVisdgYF0o3gXbbbbf46KOPYtddd41BgwbFySefHF/96lezFt8PP/xwdqOlXbt2cfvtt8fnP//5xvhYgCY3e/bsGDp0aLY+bNiwbIwBAAAALK3LLrss/vSnP2Vdnj5LCiKNGzeu2eoCAADaiBdfTHO5I844Y9mvkcJU6fx27RqzMoDKDFElTzzxRBx99NHx4Ycffurps/QxK6ywQvz617/OglUArYUQFQAAAMsqdXf66U9/mq2nLk8rrrhiVFVVLfb44cOHN2N1AABAmzNlSsQRR5SCVctqu+3STO+IHj0aszKAyhnnl6RW3/fff3821u+xxx6Lt99+O2tPvsoqq8TAgQNj3333zdYBAAAAoBKkzuzpYcPUsX2//fbLurQDQFtXnDM3ilOmR9TVRVRXR65b58jV+HcgQLPo1i3i2mtL66mfyplnRtx5Z8OukcYGzhsduM8+EXvsEbHuuo1fK0Bb7kQF0BbpRAUAAMCy6t+/f6y77rrZQ4cA0NYVJ0+N+gmvRmHcxIhCYcGOfD7yG/SOqvV6Ra5713KWCFDZHn884oc/XL5r9O8f8ZvfRNTWNlZVAG2zExUAAAAAsEAa4dfDCAwA2rj0vH798y9HYdTT6fn9iNqOkate8BVUsa4uCs++lC35wf2jql+frFMjAM1s880jxowprX/8ccSPfxwxcmTDrvH00xFbb73g/bBhC78HqMQQ1ZFHHrnMH5p+Mb744ouX+XwAAAAAaA022mijGDduXBQKhcjn8+UuBwCaRApQ1Y98KnKdayPX7tNfPWWBqm5doji3LjsuBa2qN+xTlloB+K8OHUodpeZ58cWIk0+O+Pe/G3ad/05zyRx4YAoSZB0IASoqRPXQQw8t84d6ugAAAACASnDEEUfEAQccEJdcckkcffTR5S4HAJpkhF/qQLW4ANUnZfs710Zh1Ngort4jcit2abY6AViCddeNuOWW0voHH0SkpiiTJ0eMGrX017jqqtKS9OwZ8ec/R6yyStPUC9CSQlTnnHNO41YCAAAAAG3MpEmTYptttonf/e53cffdd8cXv/jF6NKlyyIfMkzbfpzGaQBAK1I/4dWss9SSAlTzpOOK6bzxE6N6UP8mrw+AZbDSShGnn15ar6+POPfciNtua9g1Jk2K2HHH0vopp0RssUWEUedAC5crpkHVACzW7NmzY+h/W5EOGzYs2rdvX+6SAAAAaCX69u2bhaOW5hZcOu6FF15olroAoDEU58yNuVffFdGxfWlk39KeV1cXMWt2tDtg18jVtGvSGgFoZCNGRBx33LKdu956EVtuGbHLLhFrrNHYlQGUrxPVksyaNSvee++9qKqqih49ekS7dn4JBgAAAKCy/PCHP1xk1ykAaAuKU6ZHFAoNClAl6fhiYWZ2fq5H9yarD4AmkEJQY8aU1v/zn1IgamlNmFBaNtmkdI1//at0vc03j1hhhSYrGaBsIarUlvyaa66JZ555JgqFQrYtBakGDRoUhx56aPYKAAAAAJXgqKOOKncJANB0UkepZZZbzvMBKLvPfW5BoCp13/3DHyL++MfPPqdjx4gBA9IfSxFPPhlx110RKYz7pS+VtvfrF/HlLzdL+QBNGqI66aST4q677srak6fg1EppVmpETJ48OUaMGBEjR47Mnr478sgjG/NjAQAAAAAAaG4N7EC1sOJyng9Ai5I68P6//1dakmeeiXj88YhXX4149NGI6dNL21PXqdmzI8aOXXBuCtWOHl1aPild68ADI9q3b8YfBKhkjfbb6U033RR33nlnNrrvxz/+cQwZMiTa//cfZmm03/333x/nn39+XHrppdG/f//YYostGuujAQAAAKBFuOqqq7LXPffcMzp37jz//dI6MH1BAACtRK5b54h8Pop1dQ0a6ZeOj3xV6XwA2qaNNy4tSfrnfgpVjRhR2pZCVf+davWZLrustCSDB0cMHRqx1lpNWzdQ0XLF1DaqEey1117x8ssvx+233x69evVa5DETJkzIjtt8883jz3/+c2N8LECTmz17dgxNv5RFxLBhw+YHRAEAAOB/9e3bN3K5XNxzzz3ZPbJ575ck3aJLx73wwgvNUicANJa6R5+OwrMvNygQVZwyLfIbrRPVg/o3aW0AtFDvvhsxfHgpVJVG+jV0vOvXvx5x+OERKZewFH9vATR7J6qJEyfGl7/85cUGqJL11lsvC1A999xzjfWxAAAAANBi7LHHHlkYKnWh+uR7AGirqtbrFYVnX4ri3LrItVvy107puOy8vr2boToAWqQePSK+9a3SMnNmxGOPRVxzTalb1dJIAay09OwZkSZgbbllxIABETU1TV050MY1WoiqQ4cO2RNzjXUcAAAAALQ255577me+B4C2Jte9a+QH94/6kU9FdK79zCBVClAVp8+Iqi0GRG7FLs1aJwAtVKdOpc5Saamvj7jllojzz1+6cydNirjxxtJyyCERu+4a8dRTpWDVyis3deVAG9RoIaqtttoq7rvvvnjttdfiC1/4wiKPmTx5cjz++OPZsQAAAAAAALR+Vf36pDhVFEaNjewx+tpOkate8BVUMY1pmjGzdOwWA6Kq39rlKxaAlquqKmKffUpL8vzz6cmUiKUZe/6Vr0Tcf3/EZZeV3q+/fqlDVQpU9e0bkc83be1Am5ArNlJbqBSQ2m+//WL27Nnx85//PL761a8utH/8+PFxyimnxLvvvhs33HBDrL766o3xsQBNLv1zbejQodn6sGHDon379uUuCQAAgFZm4sSJ8dZbb8XcuXMX6tKe1tPfne+99148+OCD8X//939lrRMAlkfxw2lRP35iFMZNjCjUZ8GqSLGqfFXkN+idjfDTgQqAZTJtWsTvfx/xyisRb74Z8c47C/Z16RLx4IOlblTjxi3+GjvvHHH00RErrdQsJQMVHKL69re/HdOmTYuXXnopcrlcdO7cOdZaa62oqqqK//znP1l4KqmpqflUACEdnzpUAbREQlQAAAAsz9+URx11VIwYMeIzj0u36NI9sheW5glrAGjhinPmRnHK9IjUgaq6OnLdOkeupl25ywKgrUgRh5dfjhg5MiL9rbXGGhHHHBOx/fZLf4211oo4+eSIzTZrykqBSh3n9+STTy500ycFqp577rlF3jhKCwAAAAC0dVdccUU88sgjUV1dHeuss05MnTo13n777dh0002z9VdeeSXq6+tj7bXXjuOOO67c5QJAo0iBqVyP7uUuA4C2KpeLWGed0pK6TxUKEW+9FbHtthGjRkV89NGSr/H66xE/+MGC9z/6UcQ3vlEaKQhUrEYLUT388MONdSkAAAAAaBMeeOCBrMPUlVdemQWn7rjjjvjxj38cp512WhaqmjRpUhx55JHx4osvxuqrr17ucgEAAFqffD5izTUjzjmn1AXx6adLHaoeemjhsX+f5bzzIn73u4jBgyO23DJi0KDSmECgojRaiKrcN3kee+yxOPjgg2OPPfaIc889t6y1AAAAAEDy73//OzbaaKMsQJWk9dTFfezYsVmIqmfPnnHhhRfGDjvskHWtOv/888tdMgAAQOtVXR2R/v5KS+r2m0b+pXDV0oSppk2LuO++0pKCWakz1YknlrpWfeELpQ5YQJvWaCGqcpoxY0accsop2Q0oAAAAAGgpZs+enQWl5llrrbUin89nnafmWXPNNWOTTTaJMWPGlKlKAACANmqLLSLuvru0noJUv/lNxIMPLvm8NCJw5ZUjnnkm4rDDUleZUoeqtHzxixE1NU1eOtDKQ1QjRoyI6667Ll577bXsBtHipBbmD6XWeY3krLPOirfSjFMAAAAAaEG6desW06dPn/++uro6Pve5z8Urr7yy0HGrrLJKPPfcc2WoEAAAoEKsumqpK9W8sX833hjx618v/vgUmLr//tJ6yiNcf31p6dQpYubMiP79I046KWLddZvtRwBaSYjqH//4Rxx++OFL1Q0qhagay/Dhw+PWW2+Nr3/969k6AAAAALQU66+/ftZhavLkydG9e/dsW+/evePpp5+OOXPmRM1/n15+4403olO6EQ8AAEDzjP3bf//SMq9LVRr9N2JExOjREV27lsJRp5766XNTgCp5+ukF56fxf6ecErHbbqV1oLJDVL/97W+zANXee+8dO++8c3Tt2rVRw1KLkm4+nXrqqTFw4MD4zne+I0QFAAAAQIuy2267Zd3b99133zjuuONip512iq233jpGjhyZ3df6/ve/Hw8++GCMGzcuvvSlL5W7XAAAgMrtUrXXXqXl448j3nwzYsaM0rI00vi/X/yitCS77x5x5JERK67YpGUDLTRE9fLLL8cGG2wQZ555ZjSX008/PWbOnBlnn3129rQeAAAAALQku+yyS/bg37333hv33XdfFqLaa6+94rLLLos777wzW5L0MOIhhxxS7nIBAADo0CGiT5/S+t13R7z00oIuVWkM+1JM54o77igtgweXxgJusUXEaqs1eenA8mm0PnKp9fhqzfh/+nSD6f7774+hQ4fGmmuu2WyfCwAAAABLK4WjLrjggvjd736XBaiSjh07xlVXXRWbb755dk9t1VVXjZ/85Cex7bbblrtcAAAAPilN30pj/Q49NOKKKyLuvz9i4MClP3/UqIjzzovYddeIffeN+P3vSyGspQliAa23E9XgwYPjiSeeiNmzZ0f79u2jKb3zzjtZx6tBgwbF/vNmjAIAAABAC/W1r31tofe9evWKK6+8smz1AOVXnDM3ilOmR9TVRVRXR65b58jVtCt3WQAAfJbu3SN++9vS+syZpWBVWpbGK6+UxvvNnRvxjW9EpJHuqUPVoEERnTs3adlAM3eiOv7442POnDlx4oknxgcffBBN6ZRTTon6+vo466yzsqf5AAAAAKAlOvnkk+Omm25a4nFpvN+BBx7YLDUB5VWcPDXqHn065l59V9TdMTzq7n4ke83eP/p0th8AgFagU6eIH/4wYsyYiCeeiPj1ryNWXvmzz0mj/Z58MuI//4m4554UfogYMiTi//2/iKOOinjkEV2qoC10olp99dXjhBNOiFNPPTUeeuih6NGjR6yYUpSLkIJPt9566zJ9znXXXRcjR46MM844I/tMAAAAAGipbrvttuxhwL333vszjxs7dmw8/fTTzVYX0PyKxWLUP/9yFEal/6/nImo7Rq56wS36Yl1dFJ59KVvyg/tHVb8+HiIGAGgt0u9tW21VWpKpUyMefzxi5MjSMm1aaXvqPHXDDQufWyiUglXJo48u2H7IIaUxgh07NtdPARUvV0x/uTWCf/zjH3HEEUdkN4WW+KG5XLzwwgvL9DkHHHBAjB49eonH7bnnnnHuuecu02cAfFIaUzp06NBsfdiwYU0+shQAAIDW6+yzz47p06cvFKJaa621YsCAAYs9Z9q0aTF8+PBYZZVV4pH01DHQJtU991LUj3wqcp1rI9du8c83F+fWRXH6jKjaYkBUb9inWWsEAKAJpJDUs8+mp2ciDjooYvfdIyZNatg1Nt004qSTInr3bqoqgcbsRHXppZdmAaohQ4bELrvsEt27d2+Sp2RSOGrgwIGf2v7GG2/EHXfcEX379o1tttkm1l9//Ub/bAAAAAD4LD179lzowb50f+z111/PliXZd999m7g6oFzSiL7UgWpJAaok29+5NgqjxkZx9R6RW7FLs9UJAEATyOcjNtmktCSXXVbqTjViRGkU4Jw5S75GOm6ffUrrRxxR6mi1zjqlDlhAy+tE9cUvfjF7qi4Fmcph1KhRccghh+hABTQ6nagAAABYWukhw+uuuy57Tbfd0n2qDTfcMHbddddFHp9CVh06dIjevXvHpunJYqBNqnv06Sg8+3LkunVe6nOKU6ZFfqN1onpQ/yatDQCAMpo1K+KJJyKOP77h5/boUQpTbbllxJe/HNGuXVNUCBWl0TpRpZs9KUQFAAAAAJWqqqoqvvOd78x/f9VVV2XhqIPSyAagIhXnzI3CuIkRtR0bdmJtp+y84oB+kavxhRgAQJvUsWPEVluVOk2lsX933pnmxJfWl+TddyNuvTXir3+NGD484s9/jlhllVKwatVVm6N6aHMaLUQ1ePDgePzxx2POnDlRU1PTWJcFAAAAgFZreLqRDVS04pTp2ZdgueqG3Y5PxxcLM7Pzcz26N1l9AAC0oLF/e+xRWpIXX4z45S8jxo797PMGDiyFrq68MqKurrRt3XVLYar+/Uv7G/i7KFSqRvt/yrHHHht77bVXHHPMMXHaaafFaqutFs0phbgmTJjQrJ8JAAAAAEsjjfebNGlSzJo1Kwqf8URx3759m7UuoBnM+yJrmeSW83wAAFqtFIT64x9L6zNnRtxwQ8QHH0Q88kjEpEkLjkvj/B57bOHfG1MAKy2ftN12KdhRGgMING2I6s9//nOst9568fe//z1bVl555ejWrVtULyLRmMvl4tbUVg4AAAAA2rjLLrss/vSnP8WMGTM+87h0z2zcuHHNVhfQTJbrqf9is3QNSCMHs45Z6Yu36urIdetshCAAQEvSqVPEIYeU1k84IeK11yJGjCgtqePUZZct+RoPPFBakjTu75RTIr7ylaatG1qZRvvr6/rrr1/o/XvvvZcti7shBAAAAABt3c033xwXXHBBtl5TUxMrrrhiVFVVlbssoBmlQFIazVKsq2vQSL90fOSrSuc3keLkqVE/4dUojJtYGgEzTz4f+Q16R9V6vSLXvWuTfT4AAMsg5S169SotBx5Y2rb11hFz5kSMGhUxbdqSr/HOOxHHHLPg/UUXGfsHjRmiuuqqqxrrUgAAAADQJqQHD9MDhSeffHLst99+0a6dzi5QaVJHpxRIKjz7ckRDAlEzZkZ+o3WapCNUsViM+udfjsKop0sjA2s7LhTwSgGuwrMvZUt+cP+o6tfHw9EAAC3ZVluVlvr6iGeeKXWoakiG4+ijI2prIwYNKo0HHDw4olu3pqwY2naIamBKJQIAAAAA87388sux0UYbxYHzng4GKlLq6JQCScW5dZFrt+Tb8um47Ly+vZuknhSgqh/5VOQ61y6ynixQ1a1LVkc6LgWtqjfs0yS1AADQiFLn4y9+sbSkYNQTT0Scc07E668v+dw0gv7BB0tLCtD/5S+lcc9plODaa5e2QRvXJL3Y5syZE88880y8++67WZvylVdeOfr16+dJOwAAAAAqSro31qNHj3KXAZRZGomXOjplgaTFBJfmScGl4vQZUbXFgMit2KVJRvilDlSLC1AtVHfa37k2CqPGRnH1Hk1SDwAATWizzSJuvbW0/sEHpbF9d9+95PNScGrddSO+//1SZ6vPfa7UoSotm26a/tht8tKh1YeoCoVCXHLJJfGXv/wlZs6cudC+zp07x7e+9a045phjoiqlHwEAAACgjUtdqMaNG5fdN8vn8+UuByijNBIvdXTKAklpQ22nT43QSyP8smO3GBBV/dZukjrqJ7ya1bE0HbGSdFyqt378xKge1L9JagIAoBmstFLEz39eWgqFiNtuK3Wp6t07YuLEhY9N4/xSZ6pnny29/89/Im66qbTMs/76ET/+cUS/fs37c0ATyhXT8PNGcvTRR8eDDz6YzVPv1atXrLnmmlFfXx9vvPFGvP7669nM9CFDhmRBK4DWYvbs2TF06NBsfdiwYdG+fftylwQAAEAr8eSTT8YBBxwQhx9+eHbvDKD44bQskFQYNzGiUJ8FmiLFlPJVkd+gdzbCr6k6PhXnzI25V98V0bH9QgGuJZ6XAl6zZke7A3aNXI2JEwAAbc7770f8858RI0ZEPPZYxCmnlLafdtrSX+OkkyL22qs0UhAqvRPV7bffHg888EB84QtfiF/96lfZ+L5PSuP9TjrppHj44YfjnnvuiZ122qmxPhoAAAAAWqRJkybFNttsE7/73e/i7rvvji9+8YvRpUuX7GHD/5W2/Tg9xQu0aSkglTo6FQf0i+KU6REpoFRdHblunZs8oJR9XqHQoABVko4vFmZm5+d6dG+y+gAAKJOVV47YfffSMmdOadt990WstlrE228v3TXOP7+0JDvuGHHccRHd/e5IhXaiSk/UpaBUuhm0xhprLPKY1JFq5513jk033TQuv/zyxvhYgCanExUAAADLqm/fvlk4amluwaXjXnjhhWapC6hMhUnvRt3dj0Sua+cGn1ucOj2qd94q8j17NEltAAC0QOlv2VdfLXWoSsvTTzfs/IEDI7bcsrQsJkcCbbIT1fjx47Nw1OICVEka77fZZpvFuHHjGutjAQAAAKDF+uEPf7jIrlMAZdHADlQLKy7n+QAAtDrp79nevUvLQQdFvPlmqdvUqFFLd/7o0aXlV7+K+MIXIk44IWKTTSJqavxuSYtU3ZidWlZYYYUlHpeO+eijjxrrYwEAAACgxTrqqKPKXQLAfGlkYOTzUayra9BIv3R85KtK5wMAULlSU52LLiqtz54dcdVVEZddtnTnvvZaRJcuEVdeGXHTTRGDBpU6VA0eHNG1a5OWDUsrH42kZ8+e8a9//Svq0h9Ti5H2pWNWS3MzAQAAAACAZpOraRf5DXpHzJjVsBNnzMzOS+cDAECmffuIww6LGDOmtFx8cQqOLP747t0j1l8/YuTIiOnTIx54IOLUUyO23TZil10ivv71iAcfLI0QhNbeieprX/taXHnllXHuuefGT3/600Uek/a9++67cVBq8wYAAAAAbcxV6SnciNhzzz2jc+fO898vrQMPPLCJKgMoqVqvVxSefSmKc+si127JXxGk47Lz+vZuhuoAAGi1UmepO+8srafpZI8/XgpMpWXy5Igttoh4772IF19c+LxCIeI//ymtn3xyaUn23z/i+9+PqK1t5h+ESpYrFhsnxvfBBx/EzjvvHFOnTo31118/dthhh1hzzTWzfW+88Ubce++9MX78+OjevXvccccdsfLKKzfGxwI0uTSudOjQodn6sGHDon1KVQMAAMAi9O3bN3K5XNxzzz3Rq1ev+e+XJN2iS8e98MILzVInUNnqnnsp6kc+FbnOtZ8ZpEoBquL0GVG1xYCo3rBPs9YIAEAbkUJS6W/dDh0iXnkl4pRTGn6NjTeO+NGPItZbrykqhMbvRLXSSitlnaiOOOKIGDdu3Kdu+KQbQWnk38UXXyxABQAAAECbtMcee2RhqNSF6pPvAVqSqn4pEJWLwqixkT1lXdspctULvi4o1tVlI/yyY7cYEFX91i5fsQAAtG75fES/fqX1tdeO6N9/QYeq1K1q9uwlX+OZZyK+/e3SeupOlbpa9e1buja0xE5U88yZMyfuu+++GD16dDa6L12+R48eMXDgwNhxxx2jpqamMT8OoMnpRAUAAABAW1T8cFrUj58YhXETIwr1WbAqUqwqXxX5DXpnI/xyK3Ypd5kAALRVKUB1//0RZ5zR8HNXWqkUptpll4gvfrEpqqMCNXqICqCtEaICAAAAoC0rzpkbxSnTI1IHqurqyHXrHLmaduUuCwCASpKiK/fdF3HOOREzS11Rl8pRR0VstFHEFVdEbLllKVjVs2dTVkob1ijj/AqFQrz33nux6qqrfmrf22+/HSNGjIhddtklOnXq1BgfBwAAAACtysSJE+Ott96KuXPnZp3b50nr6eGddG/twQcfjP/7v/8ra51AZUqBqVyP7uUuAwCASpbLRey4Y2lJXn01dbgojfz7LCk0dccdEY8+WlrOPz+id+/S9m7dIr71rQgT02iuENXw4cPjvPPOiy996UtxTkoE/o8UoPrZz34WF110UZx66qmx/fbbL+9HAgAAAECrkAJSRx11VHaP7LOkMFUu3TAGAAAAInr1irj00tL6xx9HjB4d8eSTKYQS8frrpe2rrVYKTD3yyMLnTpxYWpKLLiq9brVVxAknRKy+enP+FFRSiOqee+6Jk046Kerq6mKFFVZY7A2gtO/999+PY489Ngta7bHHHsvzsQAAAADQKlxxxRXxyCOPRHV1dayzzjoxderUrHP7pptumq2/8sorUV9fH2uvvXYcd9xx5S4XAAAAWp4OHUohqLSkv51TiGrkyGwUdbb+5ptLvkYKWs0LW624YsTJJ0d87WulDljwX/lYRm+88Ub86Ec/ym7yHHHEEXHVVVct8rh99903Ro4cGQcddFAWqPr5z3+e3SgCAAAAgLbugQceyDpMXXnllXHbbbfFMccck20/7bTT4s4778xG+G2wwQbx73//O1b3NCwAAAAs2VprRey/f8Q++0T06BFx3nkRu+xSGt+3ND78MOKkkyI22yzi618vjQycM6epq6Yth6iuvvrqmDt3bpx44olx9NFHR21t7WKP7dChQ5x88snx//7f/4tZs2bF//3f/y3rxwIAAABAq5HCURtttFHWeSpJ6+lBw7Fjx2bve/bsGRdeeGG2LXWtAgAAABqgY8eIIUMiTj89PcmUWkJHHHjg0p8/bVrED38Ysc02pWDVnXdGTJ7clBXTFkNUo0aNipVXXjkObMD/+FLHqi5dusSINKMSAAAAANq42bNnZ0GpedZaa63I5/Px4osvzt+25pprxiabbBJjxowpU5UAAADQBuTz6emliKOPjkh/Y19+ecS66y7duTNnRgwfHnHGGal9dMTHH0f86U8REyZEFItNXTmtPUT11ltvxXrrrRfVacbkUmrfvn12Q+j1NJMSAAAAANq4bt26xfTp0+e/T/fSPve5z8Urr7yy0HGrrLJKvP/++2WoEAAAANqojTeOuPbaUqDqoYcivvGNpTtvyy0jRo+O+P3vI7797Yiddoo4++yIRx4pha1os5Y+AbUInTp1WqZz0hhAAAAAAGjr1l9//azD1OTJk6N79+7Ztt69e8fTTz8dc+bMiZqammzbG2+8sUz32gAAAICl0K1bxCmnlJZCIeLuuyMefjhi6tSI555buNvUFltE/OUvC96/917ErbeWlnl69444+eSIL36xeX8OWmYnqvTEXOpG1VDpnK5duy7rxwIAAABAq7HbbrvFrFmzYt9994177rkn27b11lvHjBkz4tRTT806Uv3+97+PcePGZeEqAAAAoBnG/u26a8RvfhNxxRUR998fcfrpEUOGlMYB9uwZMWLEZ19j4sSIww6L2HTT0nL11REaClVuiCo9RTdhwoTsKbmGBKjSDaF11llnWT8WAAAAAFqNXXbZJXbcccfsHtp9992Xbdtrr72y8X133nlntv/CCy+MXC4XhxxySLnLBQAAgMqTOkfvskvEeedFXH55xMcfR2y7bcQaayz9NS68MGLQoFKgKgWypk9vyoppaSGq3XffPerr6+P8889f6nPOPffcKBaL8bWvfW1ZPxYAAAAAWo0Ujrrgggvid7/7Xey0007Zto4dO8ZVV10Vm2++eTbOb9VVV42f/OQnsW26QQsAAACUTy6X/nCPOP74iNtui7jllohjj40YMGDpr/HXv5a6Wv2//xdxzTUR//73wuMCabFyxZRqWgaFQiH222+/eOaZZ2KHHXaIk08+OXr06LHIY99///04++yzs5blq6++etx1113RqVOn5a0doFnMnj07hg4dmq0PGzYs2rdvX+6SAAAAAAAAAGhOkyZFXHBBxN/+1vBz11uvFKh64YWINL2tXbumqJDlVL2sJ+bz+SxMsPfee2etyP/2t7/FZpttFv3798/akc+dOzcmT54cY8eOjSeffDILIXTu3Dn+8Ic/CFABAAAAAAAAANB69OwZ8ctfltbnzo247rqIiy5a+nPTiL+DD47o0KE0+m/LLSMGDy6NE6R1d6Ka55133okTTjghxowZU7pgam32CfMuv8UWW8Tpp58eazRkZiRAC6ATFQAAAEvr9ttvX67z99hjj0arBQAAAGgmTz0Vce65ERMnRtTURMyZs/D+004rhadOOWXh7Sljk3I16Zy0b6edUlejZi2dRgxRzZPG+qUxfRMnTsyCVdXV1VlHqo022ii222676Nu3b2N8DECzE6ICAABgaaV7YP/7kGFDvJDa+gMAAACt16xZEU88ETFiRGl5//2I+++P+M1vIu69d+musddeEUccEdG1a1NXS2OM8/tfG2+8cbYAAAAAQKWrqamJTTfdNDqkp0wBAACAytGxY8RWW5WW1Nfo1VcjVlopYsqUpb/GLbeUlmTddSN+/OMUzGmykmnkEBUAAAAAVLqvfe1rMXLkyKyr8dNPPx3bbrtt7LrrrjF48ODl6lAFAAAAtELpXkDv3qX1iy+O+OCDiH/+s9Sh6rHHSl2rluTFFyMOPbQUptpii4gtt4zo18/Yv5Y8zg+grTLODwAAgIaYOnVq3HffffHXv/41xowZk21baaWVYpdddskCVf3SjU4AAACgss2ZE3HFFRF//GPDz11xxYivfCXi+OMjamsFqhqJEBXAEghRAQAAsKz+85//xF133ZUFqiZMmJB1o/rCF74Qu+22WxaqWnPNNctdIgAAAFBuKbrzt79FnHNOxIcfLt05XbpEPPRQxPe+F9Ghw4IuVe41LDMhKoAlEKICAACgMbzyyitx5513xt133x1vvvlmFqjaZJNNskDVjjvuGCump0ib2XXXXRenn376Yvc/+uij0b1792z9ww8/jEsvvTT+9re/xXvvvRc9e/aMvfbaKw455JCorq5uxqoBAACgjXvzzYhf/zrikUcWf8xOO0UcfXTEDjssvP3zn4/o2jVi4MCIgw8uBaxYKkJUAEsgRAUAAEBje+qpp7LuVPfff39Mnjw5qqqqYosttojf//73zVrHaaedFjfccEMcfPDBUZva//+P733ve9GxY8eYNm1a7L///vHyyy/HdtttF2uttVb885//jHHjxsX2228fF110UbPWDQAAABWjri7i2WcjRoyIGDkyYuLE0vazz46YNSvizDOXfI3NN4848cSIL3yhycttzYSoAJZAiAoAAICmUCgUYsSIEXH++ednXapSZ6oXXnihWWvYZ599sjGDY8eOjXw+v9jjzjnnnLjyyivjZz/7WRamSurr6+PYY4+NBx54IC6++OIsXAUA0BSKc+ZGccr00pfI1dWR69Y5cjXtyl0WAJTHW2+VwlQ77hjxi19EDB/esPM7dYo45ZSI7bePyOWaqspWSYgKYAmEqAAAAGhMjz32WNxzzz1Z+Gjq1KmRbs917do16+h0xhlnNGuI60tf+lL06dMnbr755sUe9/HHH8egQYOyGocPH75Q2OqNN96IbbbZJr7yla/E5Zdf3kyVAwCVojh5atRPeDUK4yamX14W7MjnI79B76har1fkunctZ4kAUF4zZ0aMHr2gS9UHHzTs/J13LoWpNt00oqYmKl11uQsAAAAAgLYudXq6++67s/F977//fhacSmPydtppp9h1112zUX7V1c17q+61116LWbNmRd++fT/zuGeeeSZmzpwZ22677ae6Va255pqxxhprxBNPPJF1pkpjCQEAllf6Xan++ZejMOrp1BMiorZj5D7xu1Kxri4Kz76ULfnB/aOqX5+sqycAVJzUVWrrrUtLChyPH5/aSUcsbafru+8uLR06RAwcGLHllhFDhkR06RKVSIgKAAAAAJrAuHHjsuDUvffeG2+//Xb2ZWAKSm299daxyy67xJAhQ6JDuklZJuPTjdX0tWQuF8cdd1yMGTMm64y17rrrxsEHH5zVOC9slay11lqLvE4KUr355pvZ8vnPf74ZfwIAoK1KAar6kU9FrnNt5Np9+uvMLFDVrUsU59Zlx6WgVfWGfcpSKwC0GOnBpw02iLj66tL7FKQ677yI555b8rkffxzxyCOlpV8/ISoAAAAAYPm88sorWXAqjev797//nQWnUvemzTbbLOs4td1222Vj8VqCeSGqG2+8MTbffPPYbbfd4j//+U82su+EE06IF198MY4//viYMmVKdly3bt0WeZ3OnTtnr9OmTWvG6gGAtjzCL3WgWlyA6pOy/Z1rozBqbBRX7xG5FSvzC18AWKT114+48srS+vTpEX/4Q8R11332OT16RKyzTlQqISoAAAAAaCQ777xz1tkphac23HDDrJtT2rbKKqtES5NqXH311eOoo46KPffcc/72N954I/bbb7+47LLLYquttoo5c+Zk22tqahZ5nXnbZ8+e3UyVAwBtWf2EV7POUksKUM2Tjium88ZPjOpB/Zu8PgBoldIDUCecUFqKxYgHH4x4662If/4z4plnSqMAky22SC2ro1IJUQEAAABAI0vdpurr6+OOO+7IlqWRwle33nprNJfUbSotixrPd/TRR8epp54ad9555/wxfnPnzl3kdeaFrFZYYYUmrhgAaOuKc+ZGYdzEiNqODTuxtlN2XnFAv8jVtGuq8gCgbUghqe22K60fckjE1KkRo0ZFjBgRMWRIVDIhKgAAAABo5A5PU6dOzZaGSCGqlmLjjTfOXl9//fXYaKONPnNc3/Q0EiB9d1lb24wVAgBtUXHK9KwTRq66YV9hpuOLhZnZ+bke3ZusPgBok7p2jdhxx9JS4YSoAAAAAKCRXHXVVdEaFAqFGDduXMycOTMGDhz4qf1pe9KhQ4fo3bv3/EDVoqTtnTp1ip49ezZx1QBAm1dXtxwn55bzfACg0glRAQAAAEAjWVQgqaU64IADYtasWfHPf/4zVlpppYX2jRkzJntNXag23HDDbFTf6NGjs/BVPp+ff9wbb7wRb731VgwePDiqqqqa/WcAANqYBnagWlhxOc8HACrdgjseAAAAAEBFSEGoHXbYIRs9+Mtf/jILR80zfvz4uOyyy7LuUt/85jejffv2scsuu8Sbb765UKet+vr6OP/887P1b3/722X5OQCAtiXXrXP6RSWKDewolR2fryqdDwCwjMSxAQAAAKACDR06NJ588sm47bbbYsKECbH55pvHO++8Ew899FAWqrrgggti1VVXzY499thjY+TIkXHOOefEY489Fn369IlRo0bF888/HzvuuGMMGTKk3D8OANAG5GraRX6D3lF49uWIhgSiZsyM/EbrZOcDACwrnagAAAAAoAKlEX433XRTHHLIITFt2rS45pprsmDUV7/61bjhhhtiu+22m39s9+7d4/rrr886Uz377LNZR6qPP/44TjzxxKwbVS6XK+vPAgC0HVXr9cpG8xXnLl03qnnHVfXt3cSVAQBtXa6YenYDsFizZ8/Ons5Nhg0blo0xAAAAAACgYYpz5kZxyvSINHqtujobvaZzEItS99xLUT/yqch1ro1cu+rPDFAVp8+Iqi0GRPWGfZq1RgCg7THODwAAAAAAgCZTnDw16ie8GoVxEyMKhQU78vlsdFvqPJTr3rWcJdLCVPVLgahcFEaNjawbRG2nyFUv+FqzmIJ4M2aWjt1iQFT1W7t8xQIAbYYQFQAAAAAAAI0uDUOpf/7lKIx6OgvERG3HTwVhCs++lC35wf2z4IwRsSTpfweps1Rx9R5RP35iFsArFlJoKv3voxiRr4r8RutkI/xyK3Ypd7kAQBshRAUAAAAAAECjSwGqzxrJlgWqunXJRrKl41JAxkg2PikFpKoH9Y/igH5GQQIATU6ICgAAAAAAgEYf4Zc6UC0uQPVJ2f7OtaXRbav30FmIT0mBqVyP7uUuAwBo4/LlLgAAAAAAAIC2pX7Cq1lnqSUFqOaZd1wa3QYAAOUgRAUAAAAAAECjKc6ZG4VxEyNqOzbsxNpO2XnpfAAAaG5CVAAAAAAAADSa4pTpEYVC5KqXrgvVPNnxhfrS+QAA0MyEqAAAAAAAAGg8dXXLcXJuOc8HAIBlI0QFAAAAAABA42lgB6qFFZfzfAAAWDZCVAAAAAAAADSaXLfOEfl8FBvYUSo7Pl9VOh8AAJqZEBUAAAAAAACNJlfTLvIb9I6YMathJ86YmZ2XzgcAgOYmRAUAAAAAAECjqlqvVzaarzh36bpRzTuuqm/vJq4MAAAWTYgKAAAAAACARpXr3jXyg/tHcfqMJQap0v50XH7wFyO3YpdmqxEAAD6peqF3AAAAAAAA0Aiq+vVJcaoojBobxbShtlPkqhd8NVWsq8tG+GXHbjEgqvqtXb5iAQCoeEJUAAAAAAAANLpcLhfVG/aJ4uo9on78xCiMmxjFQgpN5bJRf5GvivxG62Qj/HSgAgCg3ISoAAAAAAAAaDIpIFU9qH8UB/SL4pTpEakDVXV15Lp1jlxNu3KXBwAAGSEqAAAAAAAAmlwKTOV6dC93GQAAsEj5RW8GAAAAAAAAAACoDEJUAAAAAAAAAABARROiAgAAAAAAAAAAKpoQFQAAAAAAAAAAUNGEqAAAAAAAAAAAgIomRAUAAAAAAAAAAFQ0ISoAAAAAAAAAAKCiCVEBAAAAAAAAAAAVTYgKAAAAAAAAAACoaEJUAAAAAAAAAABARROiAgAAAAAAAAAAKlp1tFJTpkyJyy67LIYPHx5vv/12rLTSSjFkyJA44ogjonv37uUuDwAAAAAAAAAAaCVaZSeq6dOnx/777x+XX355rLbaavGd73wn1ltvvbj66qtj9913z0JVAAAAAAAAAAAAbbYT1SWXXBKvvPJKHHXUUXHkkUfO337NNdfEmWeeGRdddFGcc845Za0RAAAAAAAAAABoHVplJ6o333wzVl555fjud7+70PbUhSoZO3ZsmSoDAAAAAAAAAABam1bZierSSy9d5PbUnSpZZZVVmrkiAAAAAAAAAACgtWqVIar/NXXq1Hjsscfi3HPPjerq6jjiiCPKXVKLUSwWY86cOeUuA1q12bNnL3IdaLiamprI5XLlLgMAAAAAAABgIbliStm0Ytddd12cfvrp2XpVVVX88pe/jJ133rncZbUYKfAxdOjQcpcBAJlhw4ZF+/bty10GAAAAAAAAwELy0cp17949DjvssNhjjz2yL2VTYOhPf/pTucsCAAAAAAAAAABaiVbfieqT3nzzzdh3333j/fffj5tvvjk22mijqHSf7ER1zEprR7tcq8/NAdDKzC0W4sIPXsnWdaICAAAAAAAAWqLqaEPWWGON+N73vhfnnntuPPzww0JU/yMFqGqEqAAAAAAAAAAAoHWHqObMmRNPPPFE1NfXx1ZbbfWp/WuuuWb2Onny5DJUBwAAAAAAAAAAtDatMkR12GGHRadOnWLUqFFRU1Oz0P7nn38+e+3Vq1eZKgQAAAAAAAAAAFqTVjfbrba2NoYMGRLTp0+PSy65ZKF9zz33XFx55ZVZwGqXXXYpW40AAAAAAAAAAEDr0eo6USU/+clPssDUZZddFmPGjIlNNtkkJk2aFA8//HDkcrm44IILYpVVVil3mQAAAAAAAAAAQCvQKkNUn/vc5+KWW26J3/72t1lw6l//+ld06dIlttlmmzj88MOjb9++5S4RAAAAAAAAAABoJVpliCrp3r17/PSnP80WAAAAAAAAAACAigtRAQAAAAAAAOVXnDM3ilOmR9TVRVRXR65b58jVtCt3WQAADSJEBQAAAAAAADRYcfLUqJ/wahTGTYwoFBbsyOcjv0HvqFqvV+S6dy1niQAAS02ICgAAAAAAAFhqxWIx6p9/OQqjno6IXERtx8hVL/jasVhXF4VnX8qW/OD+UdWvT+RyubLWDACwJEJUAAAAAAAAwFJLAar6kU9FrnNt5Np9+uvGLFDVrUsU59Zlx6WgVfWGfcpSKwDA0sov9ZEAAAAAAABAVPoIv9SBanEBqk9K+9NxhVFjo/jhtGarEQBgWQhRAQAAAAAAQBtRnDM3Cu9OjsKkd7PX9L4x1U94NesstaQA1TzzjqsfP7FR6wAAaGzG+QEAAAAAAEAb6BCVAk6FcRMjCoUFO/L5yG/QO6rW6xW57l2XP6CVrl/bsWEn1nbKzisO6Be5mnbLVQMAQFMRogIAAAAAAIBWqlgsRv3zL2cj9lKHqBRwylUv+AqwWFcXhWdfypb84P5R1a9P5HK5ZfusKdOzgNYnr7800vHFwszs/FyP7sv02QAATU2ICgAAAAAAAFqpFKCqH/lU5DrXLnLEXhZ46tYlinPrsuNS0Kp6wz7L9mF1dctRaW45zwcAaFr5Jr4+AAAAAAAA0EQj/FIHqsUFqD4p7U/HFUaNjeKH05bt84oRxdlzovjRrCjOmh3F+kJDzo5oYAcrAIDm5DcVAAAAAAAAaIXqJ7yadXhaUoBqnnRcMZ03fmJUD+rfoLBW+qzC8y9H8d3JUcxPicjnInK5yHXrHLluXSLXvmbx56cOVPmq7FgAgJZKJyoAAAAAAABoZYpz5kZh3MSI2o4NO7G2U3ZeOn+Jn1EsRt1zL8Xcmx+IwrMvR3TqGLke3bMAVa6mXURVPoqTp0Xh1TejMHlqdvwizZgZ+Q16l84BAGihhKgAAAAAAACglSlOmR5RKESugSPysuML9aXzl6D++ZejfuRTESt0KnWcqq6OXNdSN6lioRi5fD5y7dtFVFdF8T/vR3HKp8cEFufWZa9VfXs3qE4AgOYmRAUAAAAAAACtTRqRt8xySzw/jfArjHo6cp1rFxoXmMb25VZdKWLu3CxIlW3L5yNqqqP4zgdRnD1nwTXm1kVx+ozID/5i5Fbsshz1AgA0vYZF0wEAAAAAAIDya2AHqoUVl3h+/YRXs7DVJwNU88wLRGWhqf/WkoJUxWLqcDUtYqVu2Qi/pGqLAVHVb+3lqBUAoHkIUQEAAAAAAEArk8brRQou1dU1aKRfOj7yVaXzF3fMnLlRGDcxorbjoj87/WfFrlFcoWM2FrD44bQo1hUjisUovjc5okP7qNponWyEnw5UAEBrIUQFAAAAAAAArUyupl3kN+gdhWdfjviMQNSnzJgZ+Y3Wyc5fnBSMikJhieGsXE1N5HqsFMWVV4yYMzc7pzhjZlTvtFVUrd6jIT8OAEDZ5ctdAAAAAAAAANBwVev1ykbzFefWLdXx845LHaI+U+pW1QBplF+uQ/vIdeoYufY1kcs16HQAgBZBiAoAAAAAAABaoVz3rpEf3D+K02csMUiV9qfj8oO/uOQRew0YD7iIT1rO8wEAysNvMAAAAAAAANBKVfXrk+JUURg1NsWXImo7LTSGr5i6Ss2YWTp2iwFR1W/tJV4zl8YD5vPZuUsa6fdJ2Wflq0rnAwC0MkJUAAAAAAAA0Erlcrmo3rBPFFfvEfXjJ0Zh3MQoFlJoKs3UK2ahpvxG62Qj/JbYgWreNWvaRX6D3lF49uWIhgSiZszMPiudDwDQ2ghRAQAAAAAAQCuXAlLVg/pHcUC/KE6ZHpG6QlVXZ12hliXUVLVeryg8+1I2BjDXbslfKc4bJ5jCWgAArVG+3AUAAAAAAAAAjSPrItWje+R79shel7UrVK5718gP7h/F6TPmB6QWJ+1Px+UHf3Gpu10BALQ0OlEBAAAAAAAAn1LVr082FrAwamwaDBhR2yly1Qu+Xiymblcz0ujAiKotBkRVv7XLVywAwHISogIAAAAAAAA+JZfLRfWGfaK4eo+oHz8xCuMmRrGQQlO5FKGKyFdFfqN1shF+OlABAK2dEBUAAAAAAACwWCkgVT2ofxQH9IvilOkRqQNVdXXkunVe5nGBAAAtjRAVAAAAAAAAsEQpMJXr0b3cZQAANIl801wWAAAAAGhtHnvssejbt2/8+Mc//tS+Dz/8MH7xi1/EkCFDYuONN44ddtgh/vjHP0Zd6kQBAAAA0MrpRAUAAAAAxIwZM+KUU06JYrH4qX3Tpk2LAw44IF5++eXYbrvtYq211op//vOfMWzYsHj22WfjoosuKkvNAAAAAI1FJyoAAAAAIM4666x46623Frnv0ksvjZdeeilOO+20LDA1dOjQuPnmm7NA1f333x8PPPBAs9cLAAAA0JiEqAAAAACgwg0fPjxuvfXW+PrXv/6pfR9//HHceOONsdpqq8W3vvWt+durqqripJNOytavv/76Zq0XAAAAoLEJUQEAAABABZs8eXKceuqpMXDgwPjOd77zqf3PPPNMzJw5M9ufzy98O3HNNdeMNdZYI5544omor69vxqoBAAAAGpcQFQAAAABUsNNPPz0LSZ199tmRy+U+tf+1117LXtdaa61Fnp+CVHPmzIk333yzyWsFAAAAaCpCVAAAAABQoe688864//77Y+jQoVkYalGmTJmSvXbr1m2R+zt37py9Tps2rQkrBQAAAGhaQlQAAAAAUIHeeeedOPPMM2PQoEGx//77L/a41GUqqampWeT+edtnz57dRJUCAAAAND0hKgAAAACoQKecckrU19fHWWedtcgxfvN06NAhe507d+5nhqxWWGGFJqoUAAAAoOkJUQEAAABAhbnuuuti5MiR8aMf/ShWX331zzy2a9eunzmub/r06dlrbW1tE1QKAAAA0Dyqm+lzAAAAAIAW4p577sleTzvttGz5X7fddlu27LnnnrH33ntn215//fVFXitt79SpU/Ts2bOJqwYAAABoOkJUAAAAAFBhUjhq4MCBn9r+xhtvxB133BF9+/aNbbbZJtZff/3YcMMNs1F9o0ePjkKhEPl8fqHj33rrrRg8eHBUVVU1808BAAAA0HiEqAAAAACgwnzjG99Y5PZRo0ZlIaoUnjrqqKPmb99ll13ihhtuiKuuuioOPvjgbFt9fX2cf/752fq3v/3tZqocAAAAoGkIUQEAAAAAn+nYY4+NkSNHxjnnnBOPPfZY9OnTJwtcPf/887HjjjvGkCFDyl0iAAAAwHJZ0HsbAAAAAGARunfvHtdff31885vfjGeffTbrSPXxxx/HiSeemHWjyuVy5S4RAAAAYLnoRAUAAAAAZAYPHhwTJkxY5L4ePXrEWWed1ew1AQAAADQHnagAAAAAAAAAAICKJkQFAAAAAAAAAABUNOP8AAAAAAAAAGj1inPmRnHK9Ii6uojq6sh16xy5mnblLguAVkKICgAAAAAAAIBWqzh5atRPeDUK4yZGFAoLduTzkd+gd1St1yty3buWs0QAWgEhKgAAAAAAAABanWKxGPXPvxyFUU9HRC6itmPkqhd8BV6sq4vCsy9lS35w/6jq1ydyuVxZawag5RKiAgAAAAAAAKDVSQGq+pFPRa5zbeTaffqr7yxQ1a1LFOfWZceloFX1hn3KUisALV++3AUAAAAAAAAAQENH+KUOVIsLUH1S2p+OK4waG8UPpzVbjQC0LkJUAAAAAAAAALQq9RNezTpLLSlANc+84+rHT2ziygBorYSoAAAAAAAAAGg1inPmRmHcxIjajg07sbZTdl46HwD+lxAVAAAAAAAAAK1Gccr0iEIhctVL14Vqnuz4Qn3pfAD4H0JUAAAAAAAAALQedXXLcXJuOc8HoK0SogIAAAAAAACg9WhgB6qFFZfzfADaKiEqAAAAAAAAAFqNXLfOEfl8FBvYUSo7Pl9VOh8A/ocQFQAAAAAAAACtRq6mXeQ36B0xY1bDTpwxMzsvnQ8A/0uICgAAAAAAAIBWpWq9XtlovuLcpetGNe+4qr69m7gyAForISoAAAAAAAAAWpVc966RH9w/itNnLDFIlfan4/KDvxi5Fbs0W40AtC7V5S4AAAAAAAAAABqqql+fFKeKwqixUUwbajtFrnrBV+DFurpshF927BYDoqrf2uUrFoAWT4gKAAAAAAAAgFYnl8tF9YZ9orh6j6gfPzEK4yZGsZBCU7ls1F/kqyK/0TrZCD8dqABYEiEqAAAAAAAAAFqtFJCqHtQ/igP6RXHK9IjUgaq6OnLdOkeupl25ywOglRCiAgAAAAAAAKDVS4GpXI/u5S4DgFYqX+4CAAAAAAAAAAAAykmICgAAAAAAAAAAqGhCVAAAAAAAAAAAQEUTogIAAAAAAAAAACqaEBUAAAAAAAAAAFDRhKgAAAAAAAAAAICKJkQFAAAAAAAAAABUNCEqAAAAAAAAAACgoglRAQAAAAAAAAAAFU2ICgAAAAAAAAAAqGhCVAAAAAAAAAAAQEUTogIAAAAAAAAAACqaEBUAAAAAAAAAAFDRhKgAAAAAAAAAAICKJkQFAAAAAAAAAABUNCEqAAAAAAAAAACgoglRAQAAAAAAAAAAFU2ICgAAAAAAAAAAqGjV0Up99NFHcdlll8UDDzwQb731VrRr1y422GCDOOigg2Lbbbctd3kAAAAAAAAAAEAr0So7Uc2YMSP222+/LETVqVOn2H///WOHHXaI8ePHx5FHHpltBwAAAAAAAAAAaLOdqP74xz/GhAkT4lvf+lacfvrpkcvlsu3HHHNM7LXXXnHhhRdmoarPf/7z5S4VAAAAAAAAAABo4VplJ6p77703C06dcMIJ8wNUyaqrrpp1qKqvr49//OMfZa0RAAAAAAAAAABoHVplJ6qDDjoopk+fHl26dPnUvpqamuz1o48+KkNlAAAAAAAAAABAa9MqQ1Tf/va3F7m9WCzGAw88kK2vt956zVxVyzenWCh3CQBUIP/+AQAAAAAAAFq6VhmiWpxrr702nnnmmVhzzTVjyy23LHc5Lc5FH7xS7hIAAAAAAAAAAKDFyUcbcc8998RZZ50V1dXVce6550a7du3KXRIAAAAAAAAAANAKVLeVDlRnnnlm5HK5OO+882LTTTctd0kt0tErrR01uTaTmwOgFY3z0w0RAAAAAAAAaMladYiqUCjE+eefH1dccUXU1NTEr371q9huu+3KXVaLlQJUQlQAAAAAAAAAANBGQlRz5syJE044IR544IHo1q1bXHrppTpQAQAAAAAAAAAAlRGiqq+vj2OOOSaGDx8ea6yxRvzxj3+M3r17l7ssAAAAAAAAAACgFWqVIao//OEPWYCqZ8+ece2118aqq65a7pIAAAAAAAAAAIBWqtWFqKZMmZKFqJL1118/brzxxkUel0b7DRo0qJmrAwAAAAAAAAAAWptWF6IaM2ZMzJw5M1t/+OGHs2VRDj/8cCEqAAAAAAAAAACg7YWottlmm5gwYUK5ywAAAAAAAAAAANqIfLkLAAAAAAAAAAAAKCchKgAAAAAAAAAAoKIJUQEAAAAAAAAAABVNiAoAAAAAAAAAAKhoQlQAAAAAAAAAAEBFE6ICAAAAAAAAAAAqmhAVAAAAAAAAAABQ0YSoAAAAAAAAAACAiiZEBQAAAAAAAAAAVDQhKgAAAAAAAAAAoKIJUQEAAAAAAAAAABVNiAoAAAAAAAAAAKhoQlQAAAAAAAAAAEBFE6ICAAAAAAAAAAAqmhAVAAAAAAAAAABQ0YSoAAAAAAAAAACAiiZEBQAAAAAAAAAAVDQhKgAAAAAAAAAAoKJVl7sAAAAAAKA8pkyZEpdddlkMHz483n777VhppZViyJAhccQRR0T37t0XOvbDDz+MSy+9NP72t7/Fe++9Fz179oy99torDjnkkKiudpsRAAAAaN10ogIAAACACjR9+vTYf//94/LLL4/VVlstvvOd78R6660XV199dey+++5ZqGqeadOmxQEHHBDXXHNN9OvXLw488MDo2LFjDBs2LI4//viy/hwAAAAAjcEjYgAAAABQgS655JJ45ZVX4qijjoojjzxy/vYUlDrzzDPjoosuinPOOSfbljpQvfTSS/Gzn/0sC14lxx13XBx77LFx//33xwMPPBDbbbdd2X4WAAAAgOWlExUAAAAAVKA333wzVl555fjud7+70PbUhSoZO3Zs9vrxxx/HjTfemHWr+ta3vjX/uKqqqjjppJOy9euvv75ZawcAAABobDpRAQAAAEAFSt2lFiV1p0pWWWWV7PWZZ56JmTNnxrbbbhv5/MLPZK655pqxxhprxBNPPBH19fVZsAoAAACgNdKJCgAAAACIqVOnZqP50pi+6urqOOKII7Ltr732Wva61lprLfK8FKSaM2dO1tkKAAAAoLXSiQoAAAAAKtx1110Xp59+eraeukn98pe/jEGDBmXvp0yZkr1269Ztked27tw5e502bVqz1QsAAADQ2HSiAgAAAIAK17179zjssMNijz32iPbt28fQoUPjT3/6U7YvdZlKampqFnnuvO2zZ89uxooBAAAAGpdOVAAAAABQ4bbffvtsSY466qjYd999s25Um2++eXTo0CHbPnfu3EWeOy9ktcIKKzRjxQAAAACNSycqAAAAAGC+NdZYI773ve9l6w8//HB07dr1M8f1TZ8+PXutra1txioBAAAAGpcQFQAAAABUmNQ96p///Gc88sgji9y/5pprZq+TJ0+O3r17Z+uvv/76Io9N2zt16hQ9e/ZswooBAAAAmpZxfgAAAABQgSGqww47LAs/jRo1Kmpqahba//zzz2evvXr1ig033DAb1Td69OgoFAqRzy94LvONN96It956KwYPHhxVVVXN/nMAAAAANBadqAAAAACgwqTRe0OGDMlG8V1yySUL7XvuuefiyiuvzAJWu+yyS7Rv3z57ffPNN+Oqq66af1x9fX2cf/752fq3v/3tZv8ZAAAAABqTTlQAAAAAUIF+8pOfZIGpyy67LMaMGRObbLJJTJo0KR5++OHI5XJxwQUXxCqrrJIde+yxx8bIkSPjnHPOicceeyz69OmTdbBKHat23HHHLJAFAAAA0JoJUQEAAABABfrc5z4Xt9xyS/z2t7/NglP/+te/okuXLrHNNtvE4YcfHn379p1/bPfu3eP666+PCy+8MP7+979nAao11lgjTjzxxDjwwAOz0BUAAABAa5YrFovFchdB05k9e3YMHTo0Wx+68jpRkzPBEYDmNadYiGHvv5StDxs2LBsFAgAAAAAAANCSSNQAAAAAAAAAAAAVTYgKAAAAAAAAAACoaEJUALib8EwAAQAASURBVAAAAAAAAABARROiAgAAAAAAAAAAKpoQFQAAAAAAAAAAUNGEqAAAAAAAAAAAgIomRAUAAAAAAAAAAFQ0ISoAAAAAAAAAAKCiCVEBAAAAAAAAAAAVTYgKAAAAAAAAAACoaEJUAAAAAAAAAABARROiAgAAAAAAAAAAKpoQFQAAAAAAAAAAUNGEqAAAAAAAAAAAgIomRAUAAAAAAAAAAFQ0ISoAAAAAAAAAAKCiCVEBAAAAAAAAAAAVTYgKAAAAAAAAAACoaEJUAAAAAAAAAABARROiAgAAAAAAAAAAKpoQFQAAAAAAAAAAUNGEqAAAAAAAAAAAgIomRAUAAAAAAAAAAFQ0ISoAAAAAAAAAAKCiCVEBAAAAAAAAAAAVTYgKAAAAAAAAAACoaEJUAAAAAAAAAABARROiAgAAAAAAAAAAKpoQFQAAAAAAAAAAUNGEqAAAAAAAAAAAgIomRAUAAAAAAAAAAFQ0ISoAAAAAAAAAAKCiCVEBAAAAAAAAAAAVTYgKAAAAAAAAAACoaEJUAAAAAAAAAABARROiAgAAAAAAAAAAKpoQFQAAAAAAAAAAUNGEqAAAAAAAAAAAgIomRAUAAAAAAAAAAFQ0ISoAAAAAAAAAAKCiCVEBAAAAAAAAAAAVTYgKAAAAAAAAAACoaEJUAAAAAAAAAABARROiAgAAAAAAAAAAKpoQFQAAAAAAAAAAUNGEqAAAAAAAAAAAgIpWXe4CAAAAAAAAAKAlKM6ZG8Up0yPq6iKqqyPXrXPkatqVuywAmkGbCVEde+yx8dRTT8UjjzxS7lIAAAAAAAAAaEWKk6dG/YRXozBuYkShsGBHPh/5DXpH1Xq9Ite9azlLBKCJtYkQ1SWXXBL33ntvrLrqquUuBQAAAAAAAIBWolgsRv3zL0dh1NMRkYuo7Ri56gVfoxfr6qLw7EvZkh/cP6r69YlcLlfWmgFoGq06RDV79uw488wz46abbip3KQAAAAAAAAC0MilAVT/yqch1ro1cu09/fZ4Fqrp1ieLcuuy4FLSq3rBPWWoFoGnlo5UaPnx47LjjjlmA6qtf/Wq5ywEAAAAAAACglY3wSx2oFheg+qS0Px1XGDU2ih9Oa7YaAWg+rTZEdfPNN8dHH30UP/vZz+Kyyy4rdzkAAAAAAAAAtCL1E17NOkstKUA1z7zj6sdPbOLKACiHVjvO76CDDorzzz8/amtry11KqzG3WCh3CXzGrOW5USx3GdDqtUt/6JhD3uL49w8AAAAAAC1Ncc7cKIybGFHbsWEn1nbKzisO6Be5mnZNVR4AZdBqQ1Sbb755uUtodS784JVylwAAAAAAAABQdsUp0yMKhchVN+wr83R8sTAzOz/Xo3uT1QdA82u14/wAAAAAAAAAYJnU1S3HybnlPB+AlqjVdqJi6dTU1MSwYcPKXQZLMc5vzpw55S4D2sQ/84zza/n/HQEAAAAAQNk1sAPVworLeT4ALZF/srdxKUzQvn37cpfBUujQoUO5SwAAAAAAAICKkOvWOSKfj2JdXYNG+qXjI19VOh+ANsU4PwAAAAAAAAAqSq6mXeQ36B0xY1bDTpwxMzsvnQ9A2yJEBQAAAAAAAEDFqVqvVzaarzi3bqmOn3dcVd/eTVwZAOUgRAUAAAAAAABAxcl17xr5wf2jOH3GEoNUaX86Lj/4i5FbsUuz1QhA81n64a4AAAAAAAAA0IZU9euT4lRRGDU2imlDbafI/X/27gO8ybJt4/jVwXAzXjci4kARVFAZTgRxb3hVRBQcoCgOQHCLW3GgIjhQQUVBRBBBcQACArJREJC9NwKCjK7kO87b98mXhqQtpe2TNv/fceRom6TJ/Ywoz9Xzvu7U//8zejAz0y3h5557zumWcvKx/g0WAFCoCFEBAAAAAAAAAAAAABJSUlKSpdY4zoJHHmJZfy62wJzFFgwoNJXklvqz5BRLrnm8W8KPDlQAULIlBYNBF6gFAAAAAAAAAAAAACCRBdMzLLhlm5k6UKWmWlK5AyypdCm/hwUAKAKEqAAAAAAAAAAAAAAAAAAktGS/BwAAAAAAAAAAAAAAAAAAfiJEBQAAAAAAAAAAAAAAACChEaICAAAAAAAAAAAAAAAAkNAIUQEAAAAAAAAAAAAAAABIaISoAAAAAAAAAAAAAAAAACQ0QlQAAAAAAAAAAAAAAAAAEhohKgAAAAAAAAAAAAAAAAAJjRAVAAAAAAAAAAAAAAAAgISW6vcAAAAAAAAAAPhj+/bt9t5779mPP/5oq1atslKlSln16tXt1ltvtcaNG2d77ubNm61Hjx72888/24YNG+yII46wJk2aWKtWrSw1lTIjAAAAAAAo3pKCwWDQ70EAAAAAAAAAKFr//POP3XTTTTZv3jw7+eST7cwzz7Rt27a5QJW+tm/f3tq0aeOeu3XrVvfchQsX2kUXXWSVK1e28ePH25w5c+ziiy+2t956y+/NAQAAAAAA2CuEqAAAAAAAAIAE1K1bN3v33XftxhtvtC5dulhSUpK7f926da7D1KZNm2z48OF29NFH24svvmh9+vSxp556yoWpJCsryx544AEXuurevbsLVwEAAAAAABRXyX4PAAAAAAAAAEDRU0BKwakOHTqEAlRy6KGHWrNmzVxIasyYMbZr1y4bMGCAHX744S5w5UlJSbFOnTq57/v37+/LNgAAAAAAABSU1AJ7JQAAAAAAAADFxq233uqW7TvwwAN3e6x06dLu6/bt223mzJm2Y8cOa9y4sSUnZ5+TedRRR1mlSpVsypQpLnSlYBUAAAAAAEBxRIgKAAAAAAAASEDNmzePen8wGHRL9Em1atVs6dKl7vvKlStHfb6CVCtXrnQ3Lf0HAAAAAABQHLGcHwAAAAAAAICQzz//3HWfUjjq3HPPtS1btrj7y5UrF/X5BxxwgPu6devWIh0nAAAAAABAQSJEBQAAAAAAAMD57rvv7Pnnn7fU1FR76aWXrFSpUpaenp5tib9I3v1paWlFOlYAAAAAAICCRIgKAAAAAAAAgOtA1aFDB/f9yy+/bGeccYb7vmzZsu5rRkZG1N/zQlb77bdfkY0VAAAAAACgoKUW+CsCAAAAAAAAKDYCgYB17drVevfu7bpKvfbaa3bRRReFHj/ooINyXK5v27Zt7uv+++9fRCMGAAAAAAAoeISoAAAAAAAAgASlLlLqPvXjjz9auXLlrEePHqEOVJ6qVau6r8uXL4/6Grp/3333tSOOOKJIxgwAAAAAAFAYWM4PAAAAAAAASEBZWVl2//33uwBVpUqVrF+/frsFqKRGjRpuqb7Jkye7rlXhVqxYYatWrbLTTjvNUlJSinD0AAAAAAAABYsQFQAAAAAAAJCA3n//fRs1apTrIPX555+HOk5FKlOmjF1xxRW2cuVK++STT7KFsLQMoDRv3rzIxg0AAAAAAFAYkoLBYLBQXhkAAAAAAABAXNqyZYtdcMEFtmPHDmvUqJGddNJJUZ+nzlT169e3TZs2WdOmTV3XKf3ecccdZxMmTLDZs2fbpZdeat26dbOkpKQi3w4AAAAAAICCQogKAAAAAAAASDAjRoywe+65J9fn3XXXXfbggw+679evX29vvvmmjR492rZt2+aWALzuuuvslltusdKlSxfBqAEAAAAAAAoPISoAAAAAAAAAAAAAAAAACS3Z7wEAAAAAAAAAAAAAAAAAgJ8IUQEAAAAAAAAAAAAAAABIaISoAAAAAAAAAAAAAAAAACQ0QlQAAAAAAAAAAAAAAAAAEhohKgAAAAAAAAAAAAAAAAAJjRAVAAAAAAAAAAAAAAAAgIRGiAoAAAAAAAAAAAAAAABAQiNEBQAAAAAAAAAAAAAAACChEaICAAAAAAAAAAAAAAAAkNAIUQEAAAAAAAAAAAAAAABIaISoAAAAAAAAAAAAAAAAACQ0QlQAAAAAAAAAAAAAAAAAEhohKgAAAAAAAAAAAAAAAAAJjRAVAAAAAAAAAAAAAAAAgIRGiAoAAAAAAAAAAAAAAABAQkv1ewAAUBz06NHD3nrrLStdurSNHTvWypcv7/eQAACAj7p3725vv/32bveXKVPG/vOf/1i9evXs7rvvtqOOOsqX8QEAgIL1wAMP2PTp011NIK82b97s6gk///yzbdiwwY444ghr0qSJtWrVylJTKcsW9+N7/fXX2++//x71sQYNGth7771XgCNEXm3fvt3t+x9//NFWrVplpUqVsurVq9utt95qjRs3ztNrrF692tUBf/31V9uyZYtVqVLFmjdv7o45ivexPfvss23jxo1RH9MxfvLJJwt41MgLfc50bEeNGmVr1qyxihUrWqNGjaxt27ZWoUKFPL0Gn9uSe2z53BYPEydOtJYtW9o111xjL730Up5+h89tyT22fG7jV79+/axLly4xH9fnsUIu/31OhM8uV+sAkItgMGiDBw+2fffd13bs2GGDBg2y22+/3e9hAQCAOFCnTh138/7NsHPnTluyZIl9/fXXrrj/xRdf2LHHHuv3MAEAwF5QcHr48OF26KGH5vl3tm7dai1atLCFCxfaRRddZJUrV7bx48fbq6++arNmzXJFZxTf4xsIBGz+/PlWqVIl9welSPpDAoreP//8YzfddJPNmzfPTj75ZPf9tm3b3L/L7733Xmvfvr21adMmx9dQOOfGG290IcjLLrvMTZAYMWKEPfHEE7Z48WJ7+OGHi2x7ULDHVmFW/UFXwauGDRvu9vgpp5xSiFuAWHQcdTwXLVpk9evXdwEbfdY+/fRT++GHH2zAgAF2+OGH5/gafG5L7rHlc1t8/hv96KOPurpYXvG5LbnHls9tfJs7d677qmDc/vvvv9vj++yzT46/nyifXUJUAJCLSZMm2YoVK+yuu+6yjz/+2P3j/rbbbrOkpCS/hwYAAHymAFW7du12u3/YsGHWoUMHe+WVV+zdd9/1ZWwAAGDvpKWl2bPPPmtffvnlHv+uOlAtWLDAnnrqKfcHRHnwwQddxyP94VB/+Fe4CsXz+Co0r/C8ZtlH+7cg/NGrVy8XstEfdjTD3qvd3X///a4L3JtvvmmXXHKJHX300TFf48UXX7T169fb+++/b+eff76777777nPdjvr06WNXXHGF1ahRo8i2CQV3bL0/Gup5uQWuULRBVoVs9N9SBeI8ffv2df+NVuhYn8uc8LktuceWz23x8Pzzz7tgxZ7gc1tyjy2f2/j2559/WtmyZa1z586WnJy8x7//YoJ8dvd8zwBAgvnqq6/c1wsvvND9D2Hp0qWuRSEAAEAsl19+uZvNozA2AAAofrTszKWXXuoCNl5xOK927doV6q6gP/h7UlJSrFOnTu77/v37F/iYUTTHVxTmkGrVqhXC6JBf6iimcI0mM4RPflSXsWbNmllWVpaNGTMm5u/rj4SaSV+rVq1s54X+0KQQpLowqNMsit+x9f5oKCeeeGKhjxd5t3LlStfFInLlh6uvvtp9nTFjRo6/z+e25B5b4XNbPP5NpdVbonUcioXPbck9tsLnNn553XSPP/74fAWoViXQZ5dOVACQS6tKzQ7VP/aVnFWC9vvvv3drxp511ll+Dw8AAMQpFfb1h9LUVC65AAAojgYOHGjbt293naT0B/o9+SPAzJkzbceOHda4cePditNHHXWUWwJuypQp7o/++vcCitfxDZ9hzx+H4otmwGv5qAMPPHC3x0qXLu2+6rjHMnnyZPfHHy07Fen000+3UqVK2cSJEwt41CiKYyv8UTc+qXNjNOpgJAcffHCOv8/ntuQeW+FzG982bdrklvBSl/abb77ZhW7ygs9tyT22wuc2fqlJiLrp5vfYTE6gzy4VfQDIgZbi0QzSG264wf0xVMnacuXKuX8wqF3hIYcc4vcQAQBAHFLo+u+//7bmzZv7PRQAAJDPP9h37drVdZbMT3FaKleuHPVxBanUnUG3nJaeQnwe3/AQ1Zw5c+zll192SzcqyKEJd1rO4phjjingESMvYv3bW3/s0STJ3LqHeZ/daJ9L/VFI3eX0uU1PTw8Fd1A8jq33ud13333dkqpaeWDZsmXuvwENGjRwn1vqvPFB19H6A+xLL73kJiW1bds2x+fzuS25x1b43MY3La+qiQMvvPCCrVixIs+/x+e25B5b4XMbv7yAm/7erc5RU6dOdf9tPuGEE6xly5aukUhOlibQZ5fl/AAgD0v5XXPNNe6r/qN/2WWXWWZmpmv5DgAAEptm4HTv3j10e/XVV10hsH379lavXj3r2LGj30MEAAD5ULdu3XwHbLZs2eK+ahJWNAcccID7unXr1r0YIfw6vuF/gOjWrZtVrVrVLduoPz5899131rRpU9eNDPHj888/d8dEAcZzzz035vM2b97svh500EExP7taBkWd61G8jq0myeqPuPqDcM+ePe3UU0+166+/3i0HqBpvkyZN3B/94C+t/qCuJ/oj+7p161zYNVq3i3B8bkvuseVzG9+++eYbF5JR3Uv/Dd4TfG5L7rHlcxvfvGsYLT3/119/2VVXXeW6J6tDoJZMfv3113P8/c0J9NmlExUAxLBw4UJ3Ea61YatXrx66/9prr3UX6Pof/l133UXrfQAAEjxEpVs05cuXdxekmn0FAAASh2beSqzZt979aWlpRTouFAz9UUgz6CtWrGjvvPOOHXHEEaHH+vfv75YIfOihh1ygipqR/3Qcnn/+edf1RN1PNEs+loyMjDx9dr3POIrPsd2wYYMdd9xxbjnAt99+OxRyVScrhSHfe+89e/zxx61Pnz5FuAWIVKFCBbvzzjvd8VKHMf0Bf82aNXbHHXfE/B0+t8VDfo4tn9v4pSDcs88+64JwN9100x7/Pp/bknts+dzGNx2HI4880tq1a+f+1u1RtzEtca7jc95559kZZ5xhif7ZpRMVAOTSherqq6/Odv8pp5ziZhnqH/mjR4/2aXQAACAe3HvvvTZv3rzQTQHsESNGuJbImrWlC1AVEAAAQOIoW7ZstiJzJK+ovN9++xXpuFAwFJAfNGiQDRkyJFuAStSRqlatWm6pC7pR+U+TIDWrXrTsYqw/CO3pZ5dJEsXv2KqThjpr9O3bN1uXQC1no844+iz/+uuvtn79+kIfO2K7+OKLXbhGx3To0KEuePPKK6/YrFmzYv4On9uSe2z53MavRx991LKyslyQVcdjT/G5LbnHls9tfNO/nUaNGpUtQOUdNx0f0fGLJZE+u4SoACAKLdfn/Y9Cy/JUq1Yt223x4sWhGYYAAACeMmXKuAtPdau85ZZbXIDq008/9XtYAACgCHnLG8Rarm/btm3u694sJ4f4pcl3snz5cr+HkrC0jIg6Ez399NOuS9Ebb7xhV1xxRYF8dvVHQD67xe/Y5kSv461CwOc2flSqVCnUpWjkyJExn8fntuQe25zwufV3acZx48ZZ586dXUeb/OBzW3KPbU743Bb/a5iDEuizy3J+ABCFOkxt3LjRqlSpYnXr1o3ZqUr/oND6vfqHPwAAQLizzjrLtaf21psHAACJQd2rcypA637Nzo3sYoTiYfPmzW5ynbpoHHPMMbs9vnPnzmwztVG0NANes+y1XJQ6IPTo0SPXLkV5+exqxr260uuYJyczN724HVstT6Tjqhru4YcfvtvjfG79O6ZTpkxxXU+0fFAkTVCSTZs2xXwNPrcl99jyuY3fpVTlySefdLdIgwcPdjd1ulHoNRo+tyX32PK5je8g+pw5c9zS5HXq1Nntcd2f27GpmkCfXUJUABDFwIED3dc2bdrYddddF/U5CllppsSAAQOsffv2RTxCAABQHP7AJgcccIDfQwEAAEWoRo0abqm+yZMnu2J1eBF5xYoVtmrVKhe2TklJ8XWcyB8tQaKlmxs0aGDvvfdetsd0vKdPn+5mYNesWdO3MSYq/bH+/vvvd8uU6I93vXr1Cv2xJy/0ByUdu0mTJrllu8NNnTrV/XHo9NNPL4SRo7CPrVYc0GoDzZs33+0Pw9u3b7fZs2fbPvvsY8cff3whjB45BW3uvPNOFyyeMGGClS5dOtvjOi4SLbDq4XNbco8tn9v4pABNtACG/o2rpY5PPPFEu/DCC+2kk06K+Rp8bkvuseVzG99atGjhgmzjx4+3ihUr7vbZk5yuYeok0Ge3+MfAAKCAadmdX375xf0DX2t1x3L99deHAlex1n8FAACJSbN3PvnkE/d948aN/R4OAAAo4uV9tbyUOld7/x7wQgBdu3Z13+sPCyie1FFDIfmxY8e6P0CEU2echQsXun//0Wms6L3//vsuZKN9//nnn+9RyEYOO+wwO/vss10AcsSIEaH7d+3a5ZaNEz67xfPYqsarZYQGDRpk8+bNC92fmZlpL7zwgm3ZssVuvPFG999vFB0t99OoUSO3/M/bb7+d7bE//vjDdXZWjT6nJRv53JbcY8vnNj6p6UC7du12u11zzTXucQVs9LPCNrHwuS25x5bPbfzSxJ5LLrnEgsGgvfLKK27yh0erKGhyiP673LRp05ivkUif3aSg9hQAIEQzmZSUzqklpeh/MA0bNnTtCbt162aXXXZZkY4TAAD4p3v37q4QqBk44bO0dHmlbpU//fSTa0uvoqH+mKZZOgAAoPiqVq2aHXrooS44E27u3LmugHzkkUdm62StfweoAK2uUxdccIEdd9xxrhODZl9feumlro7Avw+K7/HVcicdO3Z03yswpeVKZsyYYb/99psLd/Tt23e32d0oXPqjnD5rmsygf4PH6pKg5d/q16/vZtDrD0B6XvgfA5csWeL+uKc//OuzqvNCneiXLl1qt99+u3Xq1KkItwoFeWw/+ugje/nll90yNfoj4oEHHmgTJ060+fPnu64JH374oeuOgaK1du1aa9asma1evdodh1NPPdV9r8+d/j+p/196x5HPbeIdWz63xYf+nduqVavd/q7G5zbxji2f2/j1119/uf8uL1u2zKpXr25169Z1SzDqekd/89Z/ly+66CL33ET/7LKcHwBEUEJa9A+C3FK7Kojqj6j9+vUjRAUAQALSxaRuHi3Lo84EJ5xwgptRqX8r8AdSAABKLoVsvGB1eMimQoUK1r9/f3vzzTdt9OjR7o8PWoLqoYcesltuuYV/HxTz46sakDrivPvuu255P4U79HPr1q2tTZs2rgMHipaWENFxEP0hR7do7rrrLhe00b/hdWxV/wv/w5CWlvriiy/cbPpx48ZZWlqaValSxZ577rkcZ+Yj/o/tbbfdZscee6z7464mvWhlgaOPPto6dOhgLVu23G25MRQNdbX46quvrGfPnu7Y/v777+4P7jp2OqZaPsrD5zbxji2f2+KPz23Jxee2+NEkjy+//NLeeecdd2w08UPL0J9//vnuv8talt4zOcE/u3SiAgAAAAAAAAAAAAAAAJDQkv0eAAAAAAAAAAAAAAAAAAD4iRAVAAAAAAAAAAAAAAAAgIRGiAoAAAAAAAAAAAAAAABAQiNEBQAAAAAAAAAAAAAAACChEaICAAAAAAAAAAAAAAAAkNAIUQEAAAAAAAAAAAAAAABIaISoAAAAAAAAAAAAAAAAACQ0QlQAAAAAAAAAAAAAAAAAEhohKgAAAAAAAAAAAAAAAAAJjRAVAAAAAAAAAAAAAAAAgIRGiAoAAKCIBINBv4cAAAAAAAAAAFFRvwQAJDpCVAAAJJisrCwbM2aMtW/f3i655BI77bTT3O3yyy+3559/3pYvX24lwaBBg6xatWrWtm3bIn1fvaduW7duDd23c+dOe/PNN61Xr16Fuq2xbieffLLVq1fPmjVrZp999pllZmaaHx5++GE3nj59+vjy/gAAAAAAAHsrPT3d1VlU47juuuv8Hk6JtWbNGnv33XfthhtusHPOOcdq1KhhZ511lt1+++329ddfWyAQsJKgYcOG7lyaO3dukb1n9+7d3XuqFhzut99+s6ZNmxbZOAAAiEepfg8AAAAUnRUrVljHjh3dBXFycrK7WD777LNtx44dNm/ePPvkk0+sX79+9vLLL7tQFQqGAlS9e/e2e++9t1Dfp2LFiq6YFGnbtm22ePFimz59uruNGzfOevTo4c4BAAAAAAAA5N2IESNs8+bNVqZMGZs9e7ars2mCIgquE5JqlK+++qoLrKnedeyxx1q5cuVs1apVNn78eFfbGjBggL3//vu2//77+z3kEuGff/6xG2+8kU5UAICER4gKAIAEsXbtWvvvf//rijyNGjWyTp06WZUqVUKPqyjhFSgeeughVwi68MILfR1zcfTdd9+5r+EFHHX/KgoqKOn4xaJZeuoGNWrUKPv+++/tsssuK5JxAQAAAAAAlBRffvml+6qOSD179nRdvwlRFZzXX389FI565pln7IorrrBSpUqFHl+4cKF16NDBpk2b5o6B9n9qKn/u3BPNmzd3dUEF0zzq7EWACgAAlvMDACBhqAOVAlQXX3yxvf3229kCVFK6dGm744477O6773ahH3Wj8mvZt+JMQSbd4rHL0zXXXGMXXXSR+37kyJF+DwcAAAAAAKDYdXn/9ddf7cgjj3R1tH333ddNVNu0aZPfQysRtG979erlQlN9+vSxa6+9NluASo477jj76KOPXABIXcC++eYb38ZbXFWoUMHVL9XlCwAAZBd/f90DAAAF7vfff7cpU6a47lKPPfZYjgEfzeCqXr261a5d2zZs2JDtsY0bN7pwlYJYNWvWtDPOOMNuvvlm1+EocqbSpEmT3HKBTz75pCswaYZYvXr13Mw8dcQaPXq0e57acHuP6T2vv/760GOelStXutdq1qyZ/fXXX9a5c2f3/Fq1atl1113n2nfvyUwpvedTTz1lDRs2tBo1arjXatu2rc2YMSPb8/7880/3uN77hx9+yPaYgmZqca3H9Foe/azb1q1bQz+rw5covKafu3fvbp9++qn7Xvs7GnUGq1u3rtvPW7ZssYKiIp9Ee00t9adjof1yyimn2KmnnmqNGze2p59+2nUyCzdo0CA3fs24XLBggd13331uP2q8V155pX344Yd5DuEp0KX9rJta4gMAAAAAAMSjgQMHuhqUuvjst99+rkamGo5qU5GTGVU3+eCDD6K+jpYB1OPeZDePwlhdu3YN1d7OPPNMu+2222zMmDG7vUZ4bUbBo/r167tajupuGRkZoSXa1NVJNaw6derYySef7L62aNHChg4dGnVsGoPqf6oJqT6kOtFrr71mO3bscDVD/Rztd/I67pyonqT9e8MNN7jXiUXhH4XYVDvztjWc6kuquWlbVW/SmFW/U40xkvaF9uP69eutf//+dtVVV7ntPuecc9zvaB+KjvHVV1/t9rH3en///Xe211IHeL3WhAkT3P7V8/Va559/vnts2bJled4X2g+quar2evrpp7vXUVeuHj16uGMRrn379u59FTqLrMepzqrHVHf13l+1Sd33/PPPh37WMYusb2rfnn322e57Bdai0Tmux3X8AQAoCQhRAQCQALyiiC6GDz300Byfq1bZgwcPdsWSww8/PFugSBfqmumlC/UGDRq4YoYCWgo1KUQTLTSzePFiF3SaOHGiu+A/6qijbObMma7jldqf6zEFrhSIqly5snu9Nm3aRC2ybNu2zW666Sa3ZJ4KIApxKcDzxBNPuCUI80JhMhUwVBRRq29th7pyaYk7vfYXX3wReu6JJ55o999/v/v+2WefzVYYeeedd1zo6vjjj7dHHnkk5vspUFS1alX3/QknnOB+VmFBBRmF2lRUWbdu3W6/99NPP7mgk4pp4a2194aOz7hx40LbFu7zzz932//tt9/aIYcc4vaLikIamx5TAS5a8ErHq2nTpq6FugJy+h0dExVOunTpkuuYdJy1j5OSklzBhiUkAQAAAABAPNKEOgWXRPUsadKkifuqOpMe93iPDxs2LOprDRkyJNQ1PHyZOv2sINGuXbtciOekk06yyZMnW+vWre2NN96I+lrqxKSQk+pNqq9VqlTJdW9SHUeTFfWYwkN6TPWe8uXLu9dU0EsBq3B6nmpAqv8pHKbnq06k57Vs2TLqJMb8jjtaEEt1MlH9LDd33nmnm7iowFU4Tei85557XFcr1e0UeEpJSXHHSDVB1SGjUShKtSzVRhVI2759u/sd1a00wVCP77PPPi5UpG7/ekxjiEZLDGr/an9oH5YtW9bVW1VDU100NzqX9L6quf7xxx8uvHbeeee5ffTWW2+5iaYaQ/jYVfOdM2eOOw7h+1QTar39cvTRR0d9P507l156aehn7X/ddB4pmCXeuR/pq6++cl913gAAUCIEAQBAideqVavgCSecEOzevXu+fj8tLS14wQUXuNfo0qWL+9mzfPny4EUXXeQe69atW+j+iRMnuvt0a926dXDXrl3u/kAgELz77rtDj7Vt2za4Y8eO0O899thj7v42bdqE7luxYkXo+eeee25w4cKFocf0/TnnnOMe++abb0L3f/XVV+4+vZdny5YtwXr16rn7+/bt68bimTx5crB27drB6tWrB2fPnh26PysrK3jTTTe533n44Yfdfb///rt7Xs2aNYN//vlntn3ljfPvv/8O3ffcc8+5+956661sz+3YsaO7/7333tttn7ds2dI9NmHChFyPj7etN998826Pafway5QpU4K33Xabe16dOnWCa9euDT1n48aNbltOPvlk97xw69atCx37zz77bLf39PZL+DH88ccf3f3VqlULrl+/PnR/586d3f29e/d2P48bNy5Yo0YN996jR4/OdTsBAAAAAAD8MnLkSFfXaNasWbb7L7nkEnf/Tz/9lK0ec/7557v7FyxYkO35mZmZwbPPPtvVTVatWuXuy8jICL3Oa6+95n72zJ8/39XD9JjGEK02069fv2zvLS+++GKoxpaenh56XPWwd9991z1Wv379qDXERx55JFv9T3Ub1W/0mOpEnvyMO5Zp06a556rmFv46e0L7Qa9x1llnBf/4449s+8Tb5jPPPDP4119/hR5TPU33qy4WXofT7+sYeY9NmjQp9NjSpUtD+yP8fbzal24vv/xy6Fjo60svveTuv+yyy7Jtn1d3mzNnTui+Hj16uPuuvfba0DkiO3fuDLZv3949du+992bbdtXZNF6Na9GiRe4+HXs9t0OHDtmeqxql7lfN0qP6oTf2cNpWve4ZZ5wRqu96pk6d6p6v2ikAACUFnagAAEgAXqej//znP/n6/eHDh7sl8NS9SF2fSpcuHXpMnaU0o00+/vhjN8Mqkn5HXZdEHYfU0cr7XjO8NIvLc/nll7uvS5cujToWzfw69thjQz/re68TlGZ55USdrzQDS+/fvHlz9/4edem66667XLcmzbbzaOlDdeVSi3bNuPr5559d1ys9T7PBNFMrv7yZcpqJFk77Wp271JlLS+TllWb4ee22vZtm/mnbtL3qQqUOXpqlF96RTMs2qkW7ZhSqu1c4zTb0ukNpXJG0X7yZeB69lmY9anaiZiNGo+3TEorav+rqpbbmAAAAAAAA8cpbsk/dhMJ5HXj69u0buk/1DnU9kshl89RtSbUYLUV3xBFHhDqSq5u7llzT0mzqnu5RNyUtBSdati9abSZ8THpvOeCAA1z3ItWx1FHIo3qYupHLX3/9FarlqQv9+PHjXWd61evC63+q20TrurQ3445Vv1SnrPDX2RNeFyZ1XdLSheH7RJ3vL7jgAtdpXl2kIqleqA5UHv2+111eHce0NKBHHZ285Qaj1TBVf9N+946Fvurn4447ztXKVBeLRR3A+vTp475XzdU7R0QdrdQtv0KFCm7fh7+3OmSp/peWluZqdTpfVcdU7TYv3eJj0bbqXN26datbJjEcXagAACURISoAABKAV3iIttxeXsM5ctlll4Uu/iMLA8ccc4xb5m/WrFnZHjv44INdoCacLvS9gI4eD3fQQQeFCgaRVPyJFrbx2nJraTm12o5FbbzlrLPOivq4CikSWcjQ+L3W1/fee68rUOg9VZjYGwosqRijYpOWBvQorBUIBFyBJjzolZuKFSuG2m2r8BMeiNJ+U6t4FTcig18Kx6koozbjHgWg1qxZ45Y5VBFNMjIydntPhbRUwImkYys6JyJNnz7dLeeoIp3aq6vIAwAAAAAAEK8U8Bk7dqxb6i182TPRUnYKKanutGjRolyX9NPye+ItkxZeswoP8YRTXUc1OdW+du7cme2xE044IWroSDUXhZfCJyN6tTtvOcHweo8CVKKaV3iAyqO6YKS9GXckL+gVrf6UF2vXrrXly5e7iX6NGjWK+hxvmcBoIabTTjttt/u8GqZqn5EOPPBA91WhpUiqy0XW9LQfvImK3rKF0WhJPgW9FJ5SvTXSvvvu6wJdqt1FLk2ooJZqjarlaiKqzovXX3/dnbd7Q8tCRi7ppxqsJt6qXnvJJZfs1esDABBP8hflBgAAxYqCSgrCaHZZfqxfv9591cylWPTYkiVLQs+NDEWF84oImlkW67Fo1JkpWohLIR4VNTSLTzfNwItGoSB59NFH3S0WvYYKNuGz9BRo+u6771w3JxWSnn/+eSsIKkK89NJLrhtVrVq1XHhK3ysUFl5MywsVxV599dVs96lI1bp1axszZowrvsSaeab3VWBKhbwFCxbYypUrQ0E275ioOBOrYBTJK95F+50ffvgh9Lhmad54440xXwcAAAAAAMBvCo9kZWW5eo0mhkVSrUi1pH79+tnjjz8e6uCjDk2aTKabvleISd18VLu6+OKLd6tZ9ejRw91yotqbXttTrly5HINFGtOUKVPcpECvNhhef/NqN6tXr3ZfwzsfhYtWF9ybcUfyJloqQKSJoHvajcqrSaqTVqzf9bYhsn5Z0DXMKlWqRL1fYwvvuhWNdxz0NbcO+N5zw2ukL774out+r32orvOnnHKK7S11ndc+UPhLY1eHe9VJdT43a9Ys6gRLAACKK0JUAAAkALWX/uWXX7J1O8qJWlqrEHDOOefYkUceGTUIEy2EI5Ez1fLbfjsaFapi8caY03O8MaqVebTCSDgVGsJDVBs3brTZs2e77xUuUthIhYi9pdbu6gKlwoOKbFOnTnXL5qkrVviSe/l16qmn2ltvveXGqqKZlnRUN61w6gh122232bRp09zxql69upuZp1CWCi0Kjr377rtRX39POmWFz5jT6+mm4ouKO7oBAAAAAADEG9WcvGXLFPDxui9Fo4lxDz74YGiCn7pRKUClJf0UotISbAqe6H51TIqsWZ155pl22GGH5Tie8HqVRJtw6E1i69Chgwt3KaCkGo+6FKkjuToZRXZ79zpAeWOJth8i7c24I2n5vzJlyrjOTr/99lu2Dus5BcT03uqElZf6pYJwEq3TVm7j2xOxjok3xpzqpd5zVBcMX0IwGm+5wXCjR4/Odg6oDqhuUXtD+0sd13r37u26mGnCpteViqX8AAAlDSEqAAASwEUXXWQ9e/Z0IRnNtPKWWotGrbVfeeUV++eff1zbZ3UJ8p6/YsWKmL+ndtneknKFRcWRaFR82rRpkytA5BQ8UsFI3bIUKNrTJeS0nN/mzZvdvlQxQq2w9Roq8OwNddDSbC6FqBR08wodTZs2tYJSt25du/POO+29995z54EKS6effnro8Y8++sidGyqiKdjkzYoLL7gUJM3Y1Jg0s1HtzVV0USt8hdsAAAAAAADiiUJTqolpouHIkSOjTihTmKhBgwauS49CJjfddJO7X/UOdTNXbeWJJ55wYarwpf48Xu3tqquuCi2dtjdUK1MtS8EovW/z5s2zjXvLli27/Y5XD9Lkvrx0PSrocWvSnSZ0ah9///33uYaoVE9SHUvBNdXTvLGoO1asTlZe/VKTDAtTrE5T6vyeU7ev8I5cek5kx/ncKHz2/vvvuxCfAlg///yzPfPMM67Wu7cUllKISkv4aVKoJuuedNJJdvLJJ+/1awMAEE+iR6EBAECJogtaFSHUQemFF17IcWbWG2+84QJUCvco4CLerCcFfaLNRps5c6YrQmhWU40aNQptOxQAmzNnzm73//jjj25c9erVizqTzKPgjqgYE41e55JLLrFHHnkk2/1ffPGFK8ao5XfXrl3dDC7NinvooYdCs/Ryklu3Jq/IpCKExqZiiQpvBUljPu6449yMO3W88pbqE82I9MYRGaBS0UndoiQvM/rywjtG2p/t2rVz3z/55JPuvAMAAAAAAIgnX375pfuqOlmsGo86D1177bXue3VH8uy///524YUXumX0VPNRIEv1kMiAkFd7i1WzmjVrlpuEd9ddd7laTW4WLFhg27Ztc0uw3XzzzbuNe+zYsaHvvVqfN+FwzJgxUetd6qIVqaDHfccdd7ixqkv+3LlzYz5PobZPPvnEfa/t0/5XTUv7VhNER40aFfX3vv32W/dVNcTCpPBSJNXktJSj5DSRUCsKqEvZH3/8ETWMpfpcixYtXB1v8uTJ2YJznTp1cu+jmuXLL7/swmLqpq9Q2t7WL9WxXuetarOakKlx0IUKAFASEaICACBBdOnSxYWcFNRRcMWb+RS+pFu3bt2sT58+7mfNUlOhRy677DI3++nPP/90IazwQoqKFrpAlxtuuCHHEFNB0Cw6dZ3yzJs3zwWbREvS5UTFBc3EUiHms88+yxYKWrRokT333HOuU1WVKlVC9ysc9tJLL7lCgh5XEeP22293wTQVc7RUXm7Kli0bavkejQo3Rx99tCvkqKimoltBLoMoOi6aeabtWLx4cbbl+VRQ8wo84QWt7du326OPPur2jSg4VtBatWrlZqxplqD2MwAAAAAAQLxQV3IvPKRuSzlp0qSJq7vMnz8/W7jF6zqljlSqu2hZtMjAimpvCgFpEp8mOIbX3jSpUPUZ1ajUbSkvNSOv1qPxT506NdtjCnJpLB6v3qPl/hSSUY1GNaTwMeg13nnnnd3ep6DHrSUPFYrS6ygoNGzYsN3CVwpmKWylbVNN6dZbbw095tUGNf7wEJZqgOrQroDYQQcd5DopFSaFuLzwnSjYpJrq0qVLXXf40047LebvqvbYrFkztw9Uww1fGUCvo65SOr+WLVuWbTKr6mq6T5NItbKAtlP1XXnqqafc8ciJllL0xKpheqEpBdhU77zyyivztD8AAChOWM4PAIAEoZlYmgnXpk0bV/zRDLHq1au7VuSaqfT777/b1q1b3QWwugKpCBIewOnevbtbEu7TTz91HZt0sa/OQVOmTHFdjRo2bGgPPPBAoW6DxqEZWJrBpoKAgl8qGqio0LZt21yX6FPBRsvw3X///a6YollT1apVczPztJydChHaDq/gop8VENP+UUDMm6Wmoo+KTQplffDBB65rVPjyeJGqVq3qvg4YMMAVos4///xsLc5VONPyfa+99lro+8KgMep91VlLrb0vv/xyN4vslltuceE6LSeo5QpVgNI2q0OVvp5wwgmuALhhw4YCH1NKSoo9++yzrgij4pLa3O/pUosAAAAAAACFQUvzqe6kGpo6fOekcuXKduaZZ7palSbveV2aVE9S0Eg1IdV9FKKKFmDRRD3V3hRW+uqrr9x7KkCk2puCTqeeempoImNuNBbVeFTDU91H4ahy5cq5yYOq8ShkpU7oqvVs3LjRDj30UPd7L774oluKUDUs1YkUrNJkRtXN9JoKAZUqVarQxu1NoNR7qG7XoUMHFw5S/U6TPTV+TagUbZPqleHhH4WP1MFJ41CoTbUwddtX9ySvi75qg972FhZNRlUn+M8//9ztN41JE1orVaoUmqyZkwcffNBt5/jx4139TmEpbcfs2bPdsoqq32q/awlEUThM9T4FsFSz9F5fHfdVR1UtWIE21TFzqrtqfBqngmyaZKqxakKqR3U7hcEUstL5deCBBxbYPgMAIF7QiQoAgARy/PHHuxbOWq5ORR1ddCtMpdlkhx12mAsPack+FRki6WJdhSPN7tKFumZU6cJdM8ReffVVVygJL6IUBhVFVBA499xzXUFKM89UMFEgSMGovFDg6euvv3ahHc1CU/tydVpSKEyFARVfvO3Q686YMcMVuiKLPQoaaX+p5Xnnzp1d16ZY1O69efPmrpCh94ucASheCEvHRV2pCovaeatIpgKgijnaB2oTruKYAmS6X8dWxaVatWq5/aHgnNqia6ZiYSy5p33ZsmVL973GxLJ+AAAAAAAgHnjdhHLrQuXxampats1bik01Fa/zkeo+CqpEo8CS6naqvSkcM2HCBBe+0eQ2BYvU/cfrGp8XmqzXsWNHN4FONTQFbRRuUlfwoUOHukCMKGjlUeBHASRNJlTNSzUi1Q81eVHhGYkcQ0GPWwEg1drUSV77U7+rEJf2qTq4q7anbvp9+/Z1waLI39U4FTDSBEx11dc26H6FyVTbPOecc6ywaV88/fTTLkTmvb+6Zw0cONDt49wo0NSrVy838VA1WQWqVFPU/Zogqe3Q9ok6cmk/iya4aiJtOHWhUlcqheIU7suJuv2r+77Caqq9hnfB8mqzquMJS/kBAEqqpGD4OjYAAABxSDOgGjVq5GaLRQsglQQqiqj4owKXQlcAAAAAAABAUVGn9lWrVrmu9arBRVIXc4V0VLdS/Qq7e/jhh23w4MFuAqs3YbAkUeeyCy64wAUBv//+e7+HAwBAoaATFQAAgE+0HKFohp5moqmV+MUXX+z3sAAAAAAAAJBg1NFIHbO0TJvXRcujn99++233vR5H4khPT7esrCzbsWOHdenSxXWxb9Gihd/DAgCg0KQW3ksDAAAgJ/fcc4/rrOWFqZ577rlCXxIRAAAAAAAAiKRl5i6//HL79ttv7cILL7TatWtb+fLlbdOmTTZjxgwXptFSckwATCxamlFLIWp5R4WptEwjS/kBAEoyQlQAAAA+qVmzpk2ZMsWOOOIIu/POO+3KK6/0e0gAAAAAAABIUK+88oqdd955bkm6xYsXu+5U5cqVs7p167oAFV2oEjNcpzDd1q1b7eyzz7Znn33WSpcu7fewAAAoNEnBYDBYeC8PAAAAAAAAAAAAAAAAAPEt2e8BAAAAAAAAAAAAAAAAAICfCFEBAAAAAAAAAAAAAAAASGiEqAAAAAAAAAAAAAAAAAAkNEJUAAAAAAAAAAAAAAAAABIaISoAAAAAAAAAAAAAAAAACY0QFQAAAAAAAAAAAAAAAICERogKAAAAAAAAAAAAAAAAQEIjRAUAAAAAAAAAAAAAAAAgoRGiAgAAAAAAAAAAAAAAAJDQCFEBAAAAAAAAAAAAAAAASGiEqAAAAAAAAAAAAAAAAAAkNEJUAAAAAAAAAAAAAAAAABIaISoAAAAAAAAAAAAAAAAACY0QFQAAAAAAAAAAAAAAAICERogKAAAAAAAAAAAAAAAAQEIjRAUAAAAAAAAAAAAAAAAgoRGiAgAAAAAAAAAAAAAAAJDQCFEBAAAAAAAAAAAAAAAASGiEqAAAAAAAAAAAAAAAAAAkNEJUAAAAAAAAAAAAAAAAABIaISoAAAAAAAAAAAAAAAAACY0QFQAAAAAAAAAAAAAAAICElur3AAAAKCrVqlXbo+dPmTLFDjzwQCtOFixYYMcff3y2+xo2bGirVq2y5557zv773/9acT4mnpEjR1qlSpUsUaxcudIaNWoU9bGUlBQrU6aMHXzwwVa9enW76qqr3DGPZtKkSXbLLbe472fPnm2pqXv3T8FgMGiLFy+2Y489do9+r0WLFjZ58mS766677MEHH9xtG3/88Uc7+uijrSjs3LnT/vrrr2zn06BBg+yRRx6xQw891MaOHVsk4wAAAAAAoDB517p7qk6dOvbpp59avJo/f75dd911dskll9irr76a43O//vpr69evn/sdOeaYY6xJkybWrFkzS05OzndN64ILLrB3330319/5/vvv7f777w/9XBC1maKu6XiysrLsp59+cts0c+ZM27BhgyUlJdkhhxxitWrVsqZNm1rdunWtJIr3uhE18PirgQMAihdCVACAhFOlShWrUKFCrs9TOKW4WL9+vb388ss2depUGzNmjBUXtWvX3u2+9PR0++OPP9z3J5xwgu2///67PUehoUQVuU8CgYBt27bNVqxYYcuWLbPhw4fbOeecY2+88YYdcMABhTYOFcieffZZF3bKrUgZr4YOHWqvvPKKtWvXjuIKAAAAAKBEq1ixYtQ6zJo1a9ytdOnSVqNGjah1iHi1efNma9++vWVkZOT6XNUw+vbt676vWrWqq/spxKTbqFGjXAiqVKlS+RrH+PHj7Z9//olawwr33XffWTzY25qOwleaFPfnn3+6n/fdd19Xb83MzHST5L755ht3U7DtxRdfdI+j6FEDBwAgfwhRAQASTps2bdwMtZJk3LhxNmzYMDcDKlKfPn1cMUkzweKNZv9FCu9I9Pjjj5fYWWv5FWufKHw2ZMgQV5zS+dC2bVv78MMPXRHUc8opp4QKdns70/Hzzz93Rbf8dIxSsUMdoMqXL29+6tatm61bt263+xs3bmynnnpqvounAAAAAADEm/PPP9/dInXv3t3efvtt1+E6Wp0mXq1evdruvvtu15EmL52DFKDSZDOFpc444wx3vybxqUu26ig9evSwBx54YI/HofqKajLqmn711VfHfN727dvjJvSxNzUddS1q3bq17dixw4Xu7rvvvmzn1a5du6x///725ptvui5VCrp99NFHvnXcSmTUwAEAyJ89608KAACKncqVK7vW3IXZlQj+U1hK3ZTee+89N4NMy+V9/PHH2Z6zzz77uHMhv63aC8oRRxzhxpCX2XB+0GdF49NnBwAAAAAAxBdNELv22mtDnZByW3bunXfecd937NgxFKAShYDUoVpUQ1Gn7z1Vr14991WBoZz8/PPPLmBUvXp1K64UiOrQoYMLUKkLusJYkcG8smXLWsuWLV0oTcv7TZo0KdQBDChM1MABAAWFEBUAAEAJcuaZZ9oNN9zgvv/ggw9cgQ4AAAAAAKAkuPHGG91Sclu2bLGLL77Y3XKiZb+WL1/uuk1H6xRVv35915FJwSB1k9pTWrLO65CjJf1i8TqDX3bZZVZcvfHGG66jt5bnU/isTJkyMZ971lln2aWXXuq+7927twUCgSIcKQAAQP4RogIAIBdaXq5atWrutmzZsqjPadiwoXtc7cE9mmml+66//nrXSlitq6+66iq3TJhmvd1yyy02YsSImO+7YcMG1/r6yiuvtFq1atlpp53mZtkpGKM24R69xyOPPOK+VyHDG2vk2L788svd3uPvv/92LduvueYa9x4amwocWm5Na8xH0vbptVSsUnFJxRMVq2rWrOmWmFMLdBWnCtPixYtD2zh79uyYz9O49ByvSPXwww+7n9XaedGiRXbPPfe4MWu7tf2acZiWlpZju3K1KNdMO81UVDFIS+b9+uuvMX9H7aVbtWplderUcb+jwtztt99u33zzTaEWj7wQlQqK4cfDOyd1y8zMzPY7v//+u2tbf+6559rJJ5/swlg6d99///1sRUDvNQYPHux+Hjp0qPu5RYsW2T4vZ599tjsf1eJdywhqH2i2oui5eo6W04tG++bTTz+1K664wp1b2tf333+/zZo1a7fn5rRNHu9xPddbqkA/r1q1KrREon7W/eHn+XnnnRf19XTM27VrFzoXNOv0jjvusB9//DHq873PoM47dQjTPtG5p23T5+2tt95ybf0BAAAAAIhXP/zwg7v21TWwroV1Taxr41h1Ee9afOvWrfb111+7mpbqTvo91Y90fZwfM2bMsMMPP9xee+01dz2tQE9OfvvtN/dVHaDUoTua2rVru6/5GdORRx7p6h6q1Y0aNSrqc1RX+eWXX1ynHD03J0uWLLGnnnrKGjdu7Pbz6aef7uozqmfFmihXUDWdnKhmpnqWNG3aNE/dxVV70zH66quvLDk5ebcOYapV6r01Xm1rgwYN7KGHHopa7/PqTarVqG702WefuXqezimdk3ov1V1k06ZN9uyzz7rX0+uqW9YzzzyzW6cxb38oXKfjpzpno0aNXL1GtRzVi2LVgnOyJzVE1XQ1Bm3H0qVLd3tcdVs9rvqlzo3CRA28YGrgOg81To3H+wzrfVUH/euvv2LuBwBA/CBEBQBAIdPF45133hm6KFNbYRUKdIGpC/x+/frt9jvTpk1zF/A9e/Z0oaGjjjrKDjvsMJs7d66b6aUgjncRqUJPlSpV3PeaVaefveJPTtTyXCEVBUfmzZvnij7HHHOMm52ni1095oVOIqkApqCO2qHrQvK4445zX9WaXBfGo0ePtsJStWpVd7ErQ4YMifqc6dOnu8LDQQcdZBdeeGG2x7StWvZOswsPOeSQ0H594YUXXOApWuv2V1991W6++WZXMNR+P+GEE1zxR6+hFuV6PNKLL77oQkMTJkyw/fff3114p6amupmJKggp1FVYTjzxRPeeeS0AKvxz00032fDhw935qrGqGDZz5kxXlNQsT6/oppbYOr8qVqzoftbz9LP2STjtJ52n2n6d82rhrnMsL5544gl77rnnXBFFr6vXUlt8FWNUeNtbKrZqzFoCUTTjVD/r/tyoCKdjrn2mfaV9rc+diqEqHqtoqfujURFHn4+JEyfaoYce6vadPt9qca99xaxMAAAAAEC80TXuvffe60IhuvZVbUPXwprIpGtjXSOrBhKLQjSdO3d2dRrVj/R7Xv3oww8/3OPxPP30064+o7pVXnhhENXWYvHqFdFCLHnhdVyKtaSfAiSqbeTWhUohJYVP+vfv72qIqon85z//cSEp7WPVs9auXVvoNZ1Y4TXV/kQT5/JCx1vBE21DOI2nefPmLqSkupXGpXGrJqd9oJCWQmPRqHaiiXYKRSkspZqOXk/7uFmzZm6cqqlqqUEtLXjEEUe4fabQleqzwWBwt9fUOakJb6pzKix2/PHHu7CL6jjXXXedq+Pk1Z7WEB977DF3biogp+/Dx6f6pmrD8uSTT7q6bTyjBv7v50Tnr0JYOp91LqkGOH/+fHv33XddOGzNmjX53MMAgKJCiAoAgEI2Z84cV+zQRbIuunURNXbsWNeVSDSTJbyDjmbGqBigi3XNrtLFmAoIKsTo4l0FDhUYFLwQXYC2adPGfa/H9HO0i9JwKi7oolYXtAokqeCirkmaGThmzBi74IIL3Dh0gbtixYrdfl9BoM2bN7tilwpomsGmYoAKHro4jtVhqKA0adLEff3222/d+0XSdsjll18eCsp4tP/LlSvnxqwZdyoyqTilgo4u3HWBHk6P9erVyw488ED3mPa9XkPbre3UjEc9Hj7LSTOOVOxRW/NPPvnEzURU+Ee/o0KCiicKgHmzIQuDVwBcvXp1js9T8UmFJ52DCneNHz/ebZ+KPRqzzqkFCxa44pM3c1Pnl9elSYUz/azgU2SRQSEoHQvta227ClJ5nbF39913u/NMY9CYVBDUWDUb05tZmF8qZmjMBx98sPtZnwX9rPtzosJK3759XcFYxSvNIBw4cKDbNn2OdS7ofNIxjkbt61Us0fboM63Ptl7HK7LEmrEKAAAAAIBfXnrpJfvpp5/cNa+6xehaXdfCurbVNa2ukVUDiRV6UadpdZjRtbN3ja9JSAqLqM6ioMieUCgop2XkIiloIzl1TlKdSFTryg8t6afJY7GW9FP9SnIKUal2qO41CoxoEll4fUa1FYVHFMRQRyOvjlhYNZ1oFHDxKES3Nzp27OjqIKrLhNfNVGfR9mm7FBqL1vFbtSY9X+elapiqr2ib1WVMtUzVj1TjU31GtVS9hiZOit5TNadICxcudDVb7X/VbL3arbpS6Xi2b98+6qTLSPmpIWoSZNeuXS0lJcV1NlLYS/S+Oqaqe+rzo3pSvKMG/u+kWoWs1GFNn0c9X6sk6DOpz7A6aCmQBQCIb4SoAAAJx2uTHOuWlxbWe0qz9XTB69EMK10Ie0uuhbdj/uKLL1xBQCEYzZDxgh6ilsGPPvqo+14XYfntXKPiiS4eVVR47733ss3G032aJaiZUioQaJZMNCqUqS21R12dNDPRm+FTmMuTqeikwsPGjRvdxWw4zRhToUQ0WyySAkya3XTSSSeF7tNFtBd80UW6LmhFhStviTcVXDQb0KPimMbhHUc9zysEaFaTaFaTWjyHU/tmzYzTLKfwltQFbb/99gudX7kVE3W+iYp0Ktp41AJebavVzcsrKO4JFa40Q0sUZvO6Y+VG+0YdnTSrTFQc1fmm9tdeW/CipvPKK3Lo86wZk+Gt6DXrVN2zvM+XWqBHUpFR55E+/945pNfxZnwqxAcAAAAAQLxQBx8FQ7zOzAoLeVQ/0DWtQhCipbKi1YJUy1LNxasJ6PdUP9K1v4JUXkCisOzcudN9zSl4pY5FEmu5vNyo25GWB1PtQB1qwqkuo3CQ6iPhS49FUi1OdSXV2rSvw2soqmFpaTONU0vdeaGswqzpRFLQxJOXpfxi0YRCbx9pm8PrZqod6XxS5x+J1vldNAlOoSLVVUR1FQWeROeUwn5exyJvMqY32VBBn2jUJUo3r9aj7vYKyFSqVMmFfHIL6+S3hijqpuRNPFT3MHUq0jmg2pKWgOzSpYvlBzXwoq+B62fvnAuf2Kv3VUc+hbby2qkfAOAfQlQAgISji2iv3W+0W15aWO8pXSBFUkvj8K49Hq+QoFbGXhEnnNpga7aMZrCEhzj2hNfxRoEeFQUi6SLPu5DWcyNbXaso481ai7VN0WbeFWRAyCvcRS7pp9lA2p86jrrgjlSvXr2oM+Z0MazCiC7KvWOgGWoKaun9vGJMJBVFdBwUvPIKMWol7l04q1AY2Q5eF98qitSpU8cKi7eknFdQiqV8+fKhc8CbCRhemFARTgVNfd1TCj3lh9qeR9J2eGPQTLGiptmAOq80w1ZF4mhUEFOLbs1Ei7akZYMGDaIeD+9zk5dZjQAAAAAAFBV1kVHYQ+GGWF2UdA2vSVC6plXXmEha8io83BPeUUq0jFZhTsSL9t6x5FZDyc+SfuripRpNTl2o1LnGW05M+ysahTAUiPJqX4Vd04mkTk+RNaf88Gpup5xySsyl2G677bbQUozqvhWtvhLJC6ZoQqOCR5EUfMmpXtmqVavd7lPwzusA5e3zWPJbQ/QolKM6ps4FLWGn2q8+V6+//nqeJyVGogZe9DVwryasTvoKT4Z/Vho2bOiCWl43LQBA/Er1ewAAABQ1XahE61BUmBSsiBR+cRi+JJ3WY8+pNbYu7sK7KOWHN+tHs9Ji8R7TrDbNFFJhxqOLzmgXt+Gz+sJnVBUGzehRW2gVMXSx6hUUvKX8Yh1jFWli0SwszfLyQk9qeS664I0VnPEuqFWkUmtzvb72nWZdablAdU3STcUcta9WWOvcc8/NdwEkr7xAjlqI50RjV6FNrdsVTtJNx1czAdXWXYWpww47LF9jCJ9BtidinZfejE3NUlPRJbdtK0he23oVQ2IdOxVb1RpfxbDwmXWRBbtI3mcp2tKUAAAAAAD4xbsWVh0qVohBncIVXFHYRdfCkSGKWHUY7xpfNRfVYnLq0rQ3ND5Rl6hYvA5U0WpdexKi0hJzWvJLoTCvQ7iW8pLLL7885u9qGTEvbFGjRo2Yz9NjWorMqzkUZk0np5qGljfzti+/51RONUmFf1R7Ub1P2xoZ9jn88MN3+x2vm3msLlne45EhGW/botVuw+uzkRMkI+W3hujRpD0tAajQ1qJFi9x96iQWbYJoXlEDL/oauLpu3X333W5ZQ3U2039/zjzzTDvrrLPc5zG8QxoAIH4RogIAoAh4F+qxhF/Ae8uveUWewuDNkPGWFYsmPCii4k/4BWRu2xOrKFGQzjjjDHfhqSKGZiQpVKVwjZb3U+EhvG12uGizjjzePvdmRXlBJLXknj59eq5jCp9NpcKHul5peUBdOK9atcoGDhzobrrQ1izATp06ZWvtXFA0Xr1f5MyoWDQWhYN69+5tEyZMcC3af/zxR3dTMOj888+3p59+eo8Lb/kpPurcirVPwgt0asdflCGqvHxmwj830WbR5nasC/szAwAAAABAUV8Lx6rDhNe9CrMzs1fP8upt0SgUJBUrVtyr8EitWrVc/UgddrRcoZaBU4cphTRyCk+Ed7LJS60ufD8XVk0nkoJy4YEhdXPPjcJC8+bNcwE5L4SX13NKNSA9N9o5Fd4VK1J+OhbltNyhd57mdo7uTQ3Ro+OoZR9nzZqVY7goniV6DVxdq1T77dWrl+tSr9fzAo4vvvii69r/zDPPuOMMAIhfhKgAANgDsUIOarVcUFQI0IV3YbYyVyFCRZWcCgB6PPz58UizqdTWWh2fFKL69ttv3Ywmtc2OVfjK6Vh5F9be73pFGRW71PVqT6hQ1bRpU3fTTCYVzdTWXhfNCjh9+umn7nmPP/64FbSZM2eGZjDGao0eSbMUddPsSy1dN2XKFDd7cvbs2e6iX7PX1OVrb1rb54XGrYJTtMBR+PkaLUAV7fNZUJ9N7zOQW9HMK4LF62cGAAAAAICivBbWJKjwUIIn/DVjdQ8qCN7kMm+yWTTeY3vbJUbdqBSg0ZJ+ClFp0p/qVDl1oYrcb9ovsWpaXq0ucj8XRU1HHYHUZV37avz48VGXbYukSYVatlFBOoW8VF/L6znlPV4U9ZWcakfeOHI7R/emhuhRJ3sFqBQEUwDtkUcecTXPnCaEFhZq4LZXnxXVq1Xj1GdANWEFHPXfhmnTprkOVQo5FmZ4DACwd/K3iCwAAAlEXY08CndEUoGiIGfMeQUbrw10JF2ANWvWzO677z7X7js/qlat6r6qmBLLH3/84b7qQj1asSseaD17tcFWcUizl3766Sd3f06tqmPtV/nzzz/dV282kDfLTt2uYi1PqKLCxIkT3XO880NhLO0/r0W5Ci0qpD311FNu+UEdPxkyZIgVBnW/8tqRq2V0TjRmtQnXRb3XPUpLDqpluIo+uuj39o1mDxYFb79FmjNnjvtauXLlUHFKxz+nz+f69esLZEzeZ2bZsmXZZoiGU4HLG6NmDwIAAAAAUJx518Jz585117zR6BrZW+os2rVwrDqMV4NRkEDhnMLiLZmm6/VodQOZMWOG+6pOUnvj4osvdgEYb0m/4cOHu+DSZZddluPvqc7h1R+9elw03mPefi7qmo63HYMHD3ZdtnLz2Wefua/aJ8cff3yea5LaJi+sUxT1lTVr1sSs9ejcl9w6B+W3hujRMXrjjTfc9127dnVLGK5bt87VEosKNfC9q4ErMKm6oerUXhcrraRwzz33uM+CbvrvgVZSUKgKABC/CFEBAJCHls7eTK1o4Y5Ro0bFvDjOD7XZFs00inbBOnbsWDdzRQUZb2aa16o6r8uBebPFNAstfLaNR+/br18/9/25555r8Uqt0jU+7X8Vh1T00j7RGvOxqBOULlYjqdW6iibqgNSwYUN3nwJIaveswlesWWQ6TrfeeqsLSa1du9bd99Zbb7nOWC+//PJuz9e5VL9+/dDFdUFTt6tvvvnGfd+6detsIaNodD6pCKbnRjvfzjrrrND34eP1PhOFsQTdV199tdt9em/vnPSOj4QXN6J9Pr1gXTR7sg1qt61iis41rwgYSZ3QdG7pdeP5cwMAAAAAQF5oaSoFK3St+91330V9Tt++fd21siY71alTZ7fHtbRVNN41vmpUZcqUscKiYJSWslNHrGiT2RRmUPBBS3o1btx4r+tU6giusIlqG+oKpfc//PDDc/w9Bcnq1avnvv/kk0+iPkchEtUgvePiR01HHa0OPvhgFzh67LHHLC0tLeZzR4wY4Wpm3u95Hce9mqS6qMda9q5Pnz7uq46blgIsbNo3CoZFCj9nLrnkkhxfI781RNF+fOihh1xoSEG8K6+80l544QVX01MQr7AmYUaiBr53tTyFwS666CJ3jKPVnvXfAq/TVaxQKgAgPhCiAgAgF5rFVb16dfd99+7d3Swgz7hx49w65gXppptuchetKuB07NgxtD68V2DwZiBpJo7X9tf7qovBWDOnwul3VdjZuHGjK2SEz+bRTLL777/f5s+f7y7s2rVrZ/FMYSXv2KjocdVVV2WbORWtANK2bVsXmPKorbJaZIsKTyp6ePtVP8vzzz/vCmDhF7kqCHnHQwUQzRwUjUFFB7VM/+CDD0JL68nq1avt3XffzVYsKAgq0ijco+OpMSqo5XW8yokKbwoi6Tzr3LlztvNN55IXBFPBz5s1KN5Fv7anoGmpQ22Lt681jk6dOrlZYwoy3Xbbbdlm+nmFFM3U85YQUDFFRZgePXrEfB/vc5NTS3+PisHeuaCQXPj4RC36n3zySff99ddfH5qBCAAAAABAcaVagK5x5YknnnDL1Hl0Tfz555+7eoyo1uLVU8Jp2ao333wzFL5QjaRbt27uOlrBmnvvvbdQt0H1GXWCkRdffNHV8jyqM6gWIi1atIg6/j2l+pCoq5D2UW5L+Xm0H1TP0vi0r8Pre+pSdOedd7qwzYknnug6s/tR09H+efbZZ12HHU1GbN68uRtveKBF79uzZ0974IEHQkGuW265JVuQxKuHqcOQanLhgRbVXAYMGOB+Vi1ob5Yg3BOvvfZatol4mzZtcuPTPlKNJ6eu93tTQ/TeW3VYHcsuXbq4+2rWrGm33367+177vDDqb5Goge9dDVyfTXUQU326ffv22YJyOrf13z2NWdugDlUAgPgV+y+MAAAgRBf+d999ty1cuNAuvPBC18JZF2sKX+iiVrPMtExbQVAg5O2333bFJxWUVJRQoUPhkJUrV7rChFpz6yLPo1lZmomjYopmRmkZtw8//DBmC+IDDzzQBXl0ca/uTZolo21SsUazZlTQ0kWsLuK91srxSjOKtFyeihuSW1FD26NW3DqOurBVe3Cv7fwVV1zhLqjDqUilC2wVcB599FF75ZVXrFKlSq6Q4C0Vpy5FKpB4atSo4c4ZXRzr+e+99577HQW49FoqHKpY8vDDD+/x9j733HNudqRHr6VzQ6/rzSpUpya9b05hMo8KlipmqjCjWaU6jzU2nU96Te0fBYheeuml0KxBOemkk9xXzQjTOafzR+ft3lIhTue3CjPvvPOOK3Ro9pvGoYKGimm6z6Nxal+rwKguXCrEqbilY6NZXzo/dG54re3DqTCkQomCbupQps+BPnexaB/pM6gZahqfCkpHHXWUK4p454JmDGo2JgAAAAAAJYEmnakGonqBalGqOalDkGoGmzdvds+5+eabXf0kGtVeFKpR4ErX0Po9hSUU2FCoyVtuqzD997//dTUDTbbStb1qQ6pxqAamOpvCSAUV5lJdQDUiTXZTJ6HcOhiFh4v0e48//rirQanL+LHHHuvqIUuWLAntS9VevPqMHzUd1VlUc1TAaNasWe69VWdU3Us1Ko3Vm0yoOpu2KbJLuibB3XXXXa4mqYCVlnNUbU+/q5CJnq9aT14DaAVB56bOAY1FNVGdGwq+HHHEEa4WFb7/YslPDVGd0LzuY5qcp/3gUahHx1TLGyok9/HHH4c6MRUWauB7R7XgG2+80f33RvtPx1+fQW2PtkvntmqK4ccZABB/CFEBAJAHKqao2PP++++7Vty6kNRFkAoGukDWhXFBUgvoYcOGuYtAhTv0frrIOuWUU1znJRV/wi+ajz76aFd4UuhEF7UK0+hrTuu4K0Ci99CFumZDLV++3M3uUgBFIRzNBgoPq8QrhW5UlNF2KLykglJOdMH/6quvugLItGnT3EWz2s1rZpJaoEfSPtGMLxXB+vfvb7/99psLYanV/Gmnnebe+4YbbtitmKJikC7KVTjRzEaFdVQgVKFK7eE1w9GbPbUn9DrhdB7oYlxFR22bumB5ywXmVd26de3LL7+03r17u32iUJn2i4qiKlao85OKRuE061HhJrUUVyFARYeCaEWt/a1wUq9evVwr9Xnz5rnzWMdG+1RFrUiaFauxqt27ZqqpuKTzWIE4zYrULRoVoBRsU8FKhTr9Xm5j04xAHT/998A7FzQ+FRGbNm3qCiQAAAAAAJQUqneoy7OWFVN3nT/++MNdC2tZN3UZUk1EdYVYdO2tTjOakKRrfAUnVHe64447XEioKOh6XoEWjVd1Go1DgR8FNq6++mq3/FZeJqLlhfaLuswoRKF603/+8588/65qLartqL6hWoVCHqodKbii+pPqDpFLHxZkTSevAR29pzqMaalG1S1VT9FYVbvUeykopPplrG47Cq2oC7nqPgqL6XhoIpzqkArGqI7jdUQqKhqPwjY6z1WHVZhKY9G5kVN9dW9qiAonaYKlwkIK90TWJfU8LeunmqXOJ9WJY4UVCwo18L2jWrDOa23Pr7/+6jqI6fgq7KV6YqtWrbJ1hQMAxKek4J4uegwAABBnNDNLxRvN2IoVmFFRQhexV155pQtRAQAAAAAAoHCoY4wo3KPwEhBvtJSgt9SgJkAWVJAOAAAUb4Xb9xEAAKCQaaaa2j2rG5O6MAEAAAAAAAAAAADAniJWDQAAip1169bZrl27bMeOHfb000+7tuNqh33AAQf4PTQAAAAAAAAAAAAAxRAhKgAAUOxMmTLFOnToEPr54IMPtnvvvdfXMQEAAAAAAAAAAAAovljODwAAFDtVq1a1ihUrWtmyZa1+/fr2ySefWPny5f0eFgAAAAAAAAAAAIBiKikYDAb9HgQAAAAAAAAAAAAAAAAA+IVOVAAAAAAAAAAAAAAAAAASGiEqAAAAAAAAAAAAAAAAAAmNEBUAAAAAAAAAAAAAAACAhEaICgAAAAAAAAAAAAAAAEBCI0QFAAAAAAAAAAAAAAAAIKERogIAAAAAAAAAAAAAAACQ0AhRAQAAAAAAAAAAAAAAAEhohKgAAAAAAAAAAAAAAAAAJDRCVAAAAAAAAAAAAAAAAAASGiEqAAAAAAAAAAAAAAAAAAmNEBUAAAAAAAAAAAAAAACAhEaICgAAAAAAAAAAAAAAAEBCI0QFAAAAAAAAAAAAAAAAIKERogIAAAAAAAAAAAAAAACQ0AhRAQAAAAAAAAAAAAAAAEhohKgAAAAAAAAAAAAAAAAAJDRCVAAAAAAAAAAAAAAAAAASGiEqAAAAAAAAAAAAAAAAAAmNEBUAAAAAAAAAAAAAAACAhEaICgAAAAAAAAAAAAAAAEBCI0QFAAAAAAAAAAAAAAAAIKERogIAAAAAAAAAAAAAAACQ0AhRAQAAAAAAAAAAAAAAAEhohKgAAAAAAAAAAAAAAAAAJDRCVAAAAAAAAAAAAAAAAAASGiEqAAAAAAAAAAAAAAAAAAmNEBUAAAAAAAAAAAAAAACAhEaICgAAAAAAAAAAAAAAAEBCI0QFAAAAAAAAAAAAAAAAIKERogIAAAAAAAAAAAAAAACQ0AhRAQAAAAAAAAAAAAAAAEhohKgAAAAAAAAAAAAAAAAAJDRCVAAAAAAAAAAAAAAAAAASGiEqAAAAAAAAAAAAAAAAAAmNEBUAAAAAAAAAAAAAAACAhEaICgAAAAAAAAAAAAAAAEBCI0QFAAAAAAAAAAAAAAAAIKERogIAAAAAAAAAAAAAAACQ0AhRAQAAAAAAAAAAAAAAAEhohKgAAAAAAAAAAAAAAAAAJLRUvwcAAAAAAAAAABJYuNzSe/b3exgAAADIg7Kvd/J7CAAAFCg6UQEAAAAAAAAAAAAAAABIaISoAAAAAAAAAAAAAAAAACQ0QlQAAAAAAAAAAAAAAAAAEhohKgAAAAAAAAAAAAAAAAAJjRAVAAAAAAAAAAAAAAAAgIRGiAoAAAAAAAAAAAAAAABAQiNEBQAAAAAAAAAAAAAAACChEaICAAAAAAAAAAAAAAAAkNAIUQEAAAAAAAAAAAAAAABIaISoAAAAAAAAAAAAAAAAACQ0QlQAAAAAAAAAAAAAAAAAEhohKgAAAAAAAAAAAAAAAAAJjRAVAAAAAAAAAAAAAAAAgIRGiAoAAAAAAAAAAAAAAABAQiNEBQAAAAAAAAAAAAAAACChEaICAAAAAAAAAAAAAAAAkNAIUQEAAAAAAAAAAAAAAABIaISoAAAAAAAAAAAAAAAAACQ0QlQAAAAAAAAAAAAAAAAAEhohKgAAAAAAAAAAAAAAAAAJjRAVAAAAAACIC8FgsFi8ZiIqrP3o9/Hx+/0BAAAAAAAQPwhRAQAAAAAA340cOdI6d+5coK85bdo0a926dYG+ZqLZunWrderUyaZOnVqgr5uenm4vvPCCDR061ErSOQcAAAAAAIDiixAVAAAAAADwXZ8+fWzNmjUF+ppffvmlLVq0qEBfM9HMnTvXhgwZYoFAoEBfd/369fbxxx9bZmamlaRzDgAAAAAAAMUXISoAAAAAAAAAAAAAAAAACY0QFQAAAAAA8FWLFi1s8uTJ7latWjWbNGmSbdmyxZ588kk766yzrGbNmnb99dfbr7/+mu33xo8f7+6vVauWnXnmmXb33XeHOk89/PDDNnjwYFu1apV7zUGDBuV5PHp+9+7ds92nn3W/Z9OmTdahQwc7++yz3fiuvvpq+/rrr7P9zurVq619+/ZWp04dO/XUU+3WW2+1OXPmhB5fuXKle83evXvbJZdc4p7z1Vdf2a5du6xLly523nnnWY0aNdxjH374YY5j1vZqPw4cONAuuOACt0/0fn/++ad7XPtT43z99dez/d7OnTvt9NNPt3feeSf0Ot526jjccsst7nt91et7RowYYdddd517Te2D5557znbs2BF6PKdt0HY3atTIff/II49Yw4YNbU/MmDHDmjdvbqeddpo1aNDAdbRq2bKlG7snLS3Nunbtaueff757/yuvvNK+++67HM+5vPCOWeT5pPcO347ly5fbXXfdZXXr1nXH9YYbbrAxY8Zk+5358+dbmzZtrHbt2u52zz332IoVK0KPa0x6r/79+7tjqufonM/LuZfX7Rg+fLjdd9997nzRefr4449nO44AAAAAAACJhBAVAAAAAADw1VNPPWXVq1d3ty+++MJOPvlkFwAaOXKkPfjgg/b222/bYYcdZnfccUcoSKWwSdu2bV1ARgGg559/3pYsWWKtW7d2S8/pMQVoDj74YPeaCtsUpIceesgFtp5++mnr1auXG3vnzp1t4sSJ7nEFXW688UabPXu2PfHEE/baa6+5cSn8E7nEoAJad955pwv9KBjzwgsv2NixY93rKXikwJEeU8Aqt6X3unXrZvfee6+98sortnnzZrv55pvd0nnlypWzCy+80IYOHWrBYDD0Oz/99JMLzVxzzTXuZ+037S/RcVCQTfRVx0n0Ggr8VK1a1Xr06OHe75tvvnG/6712TttwyCGHuGMqCr553+eF9p0CU6JAWLt27ez999+3adOmhZ6jMWh8Ch+1atXKnR8KCelc8sJG0c65gqLjrHCUAmra5p49e7r9r21dtmyZe47OVZ0ff/31l7388svu/NU53axZM3dfOO0f7UcdA21HbufentB+OPLII90Yb7/9dhfC8wJ1AAAAAAAAiSbV7wEAAAAAAIDEdtxxx9n+++/vvld3oQEDBrgOSvqqLj6ijkbqHvTqq6+6IM7MmTNdtyOFVQ499FD3HAWtFLxSKKhy5cpWoUIFK126tHvNgqYORgrqKJgk6uKjoIzeT9QdSd2f+vXr50Iq3jZcdtll9uabb9pbb70Veq1LL73UmjRpku21Faa6/PLL3c/qZrTvvvtaxYoVcxzTtm3b7N1337UzzjjD/XzKKae48X3yySfWsWNH9x7qxqQOR/Xq1XPPUahI3b4OP/xw97P2m26iY6JjI/qqmwJKOgbnnnuu++qpUqWKCzep25ICazltg/bRSSedFHo/hYDy6r333rMDDjjAPvjgA9tnn33cfQpzKZDkmTBhgv3yyy8uUKb9LRqvQk0a8xVXXLHbOVeQFIJavHhxKMjnHQuFodLT093P+l7j79OnT2gc9evXd8dL26ZQlOemm25ynbzyeu7tCY3Pey+9vzpdjR492nW6AgAAAAAASDSEqAAAAAAAQFxRtyl1kFJ3oMzMzND9WtJMnX3+/vtvF64qU6aMNW3a1AVMFFBSUEdhlaKg91IHKS3Pp4BOeBjF2wYFhRTw8rYhOTnZjVNdm8J5gaLw11YXpbVr17rX1U2hmdxUqlQpFKASdXxS56IpU6a4nxWWOuKII2zIkCEuRKXX1zjVtSqvFA7S7ym8Fn5stJyiwkAK4ShEld9tyI26LWkfegEq0TZ6QTXRNiUlJbn3DB+jltvTvl+wYMFu+7wg/ec//3EhLXUgGzdunJ1zzjluzFq6MHw7FH4qW7ZsaIzafzp+CoHldn7kdO7ticgAmYKIWgITAAAAAAAgERGiAgAAAAAAcUUdnDZs2BBziTU9ppBK37593VJuWoJM3ZYOPPBA17XngQcecCGawqQuR+r6NHz4cPvhhx9cQEohpWeeecYFerQNWrot1jaoK5JHHZrCPfbYYy7MosDPs88+624KCnXp0sVOPPHEmGPyOnKFU+cnLSkoGuN1111nvXv3dsu4KUyl4E7jxo3zvN3aLtFScrpF0tKBe7MNudEyidE6cim4FD5GdcyqXbt21NfQGAszRKVz76OPPnLL4mm5RHX7KlWqlOscpX120EEHuTGqK5hukdRBLVzk+ZHbubcnwsNootcKX+4RAAAAAAAgkRCiAgAAAAAAcUXLtWl5uPDl4iI7LkUukTZt2jT74osvXLhEIR0tkbc3srKysv2sJQIjx/jQQw+5m7ozaRnBnj17upCMgl16XJ2GOnXqFPX1c1p6TY/dfffd7rZ69Wr7+eef3WtribVvv/025u9t3rx5t/s2btyYLXSkEFWPHj1s7NixLoSj5e7U0SuvFFQTbZe2L5ICQnuzDblRMEvbFG0JPS3rJ9r3Ch4pWBfN0Ucfne/398J5uZ0fCrQpMKawmpam/P77761Xr15Wvnx5d5/GqOBTq1atdnuP1NScy3W5nXsAAAAAAADIn+R8/h4AAAAAAECBUQccj8I5a9asceGfmjVrhm5aKu6DDz6wlJQU69Onj1veTwEqBXbq16/vuh2JQjuRr7kn1J1p3bp12e6bPn166Hstd6Yl1BSMEYV37rzzTheK8d5b27BkyRI75phjsm2Duj+pc5a2IZpdu3bZxRdf7DoZiZbfa968uV1++eWh145l6dKltmjRotDP2oYZM2a4feNRpyL9rIDR3LlzXagqJ5Hj1LbquKxcuTLbdik09Nprr7kl5vKyDbG2PzdaNvCXX36xtLS00H16T43Ho32vUJM6KoWPcf78+S5AFr68Yn7ODQk/PzIyMmzmzJmhn7XPdS7oPoWu1PXqwQcftBNOOCHb+bFw4UL3mDe+GjVquPNa3atiycu5BwAAAAAAgPyhExUAAAAAAPCdOhwpfPLrr7+65eW0VJ+69Nx11112+OGH24QJE1wnn5tvvtktjVavXj3Xqeqee+5x9ymU079/fxeoUrjKe011LRozZowLqxxyyCF5GkuDBg1ct6RTTz3VdS0aNGiQW5ovPIikjkjPPfec/fPPP1a5cmX7448/3Pu0adPGPadly5YuMKWvt912m+tApKXbBgwYYI888kjM9y5btqxbAlAdtrSd1apVc2GswYMHu2BSeHBI26plDT0KDWl/KbCj/aHXUGeoFi1aZHuPpk2bWvv27e3YY4912xhu+fLlbsm80047LdT1SEaPHu1eS12+9PpPPvmkew/t661bt7pOSAoWaex52QbvdXW8o40jFm2f9uMdd9zh9qve+80333SBKK9LlEJGClu1bdvW3fT6CjS99dZbdu6554aWyws/56pXrx7qopUTPUfLEn766afu3NDPCqQpOOYtu6fX0j5Qt6527dq5pQZ1/iq0dsstt7jnaFw33nijO1+aNWvmuoGpk9qIESPcOGPJy7lXkNauXetu2iave1rkuadxKBCmsUQuRQgAAAAAAFCcJAVVYQMAAAAAAPDRxIkTXbhow4YN9uKLL7rOOupspPDOtm3bXHhE4R8FZ7wOQuPGjXOdhdRhSMurqZPP/fff7wI0ovv184oVK+y+++6z1q1b52ksCl6pq5WWvNPSalryTq/9+OOP27x589xzNM7XX3/djUHL6Cno1aRJE/ce3vgUSNI2KKSjzklaolCBJm2HqHtSo0aN3PaGd4RSKOWNN95wy7TpfdT5SWPQtiicIw0bNnT7RGEeefjhh23y5MmuK5H2yc6dO90+7Ny5c2j5w/DXP+OMM6xjx44ujBROr6Owk7edgUDALRun7kgKyQwbNszdryCTuoItWLDAhYdq165tDzzwgAtM5XUbXnrpJRccUtBKXcb0NS+mTp1qXbt2daEkva7CQ++8845ddNFF7hiJOlEpXKWOTVrqT52y1AlLoTtv+cLIc+7KK6/M0/ur45fOD41Dnal0PLVNX375pY0aNSr0HB17LTOpoJd37G+44YbQ68yePdu6devmupypPKdOVTp/dE7IpEmTXOhKIa26deuGfi8v515uYp173nnkbUf37t1dGE7H0TuPIs89b5yRr5VfgYXLLb1n/71+HQAAABS+sq9HX74cAIDiihAVAAAAAABAMRcZfsmJAlDqkqTuRQohFScKpClspRCYRyElBca0TV6nJxRfhKgAAACKD0JUAICShuX8AAAAAABAiaeOSrrlRp2nSiotFTdr1iy37KE6BsVTgCozMzPX56jLkro3abk7LUeoJQO3bNlivXv3dssDXnHFFZbo54c6suU2X1LLHmopRgAAAAAAAGQX35UfAAAAAACAAqAl7rQsWW7Cly0rabSE28cff2ynn366W6IvnigQlZtrr73WXnjhBUtPT7d+/frZmjVr3FKCderUcUvJVahQId/v/+ijj7plDHPjLXMYr1q2bOk6kuVES/HlpWMZAAAAAABAomE5PwAAAAAAUOKtW7fO1q9fn+vzqlWrZqVLly6SMeH/qUNWbsqXL19oATcFzDZv3pzr82rWrGnxbPHixbZ9+/Ycn6PzW+d5vGI5PwAAgOKD5fwAACUNISoAAAAAAAAAcYEQFQAAQPFBiAoAUNIk+z0AAAAAAAAAAAAAAAAAAPBTqq/vDgAAUESCaelmO9MsuCvNbFeaBXemmaWl/3t/WoZZur7X1wyzzEyzQNAsEDDXtDMQCP3svga9n//3fVKSWWqKWWqqWUqKJZX63/e6L0Xf677//ZyaakmlS5ntW9aS9i1rts//vu67jyXpcQAAAAAAAAAAAABFjhAVAAAotoI7dllw6z8W3LbdbOt299W7uZ/12D87zHbs+jcAFe+8cNU+ZUNfXcBq/30t6aADLKmcbvu77+2A/SxJ4S0AAAAAAAAAAAAAe40QFQAAiFsuBLVxiwX/2mKBjZst+NffFty0xYJ//2OmoFRmlpUo6oKVnmHBLdvcj8GcnqsOVwfu92+wKhSw+t/3FQ6ypIPLW1LZMkU1cgAAAAAAAAAAAKBYI0QFAAB8EwwEXUAqqICUC0v9Lyil+zb9/W+oCNFlZZlt3mpB3WI9RyGrgytY8sEVLOmQ8u77pEMqWFKFcpaUkly04wUAAAAAAAAAAADiGCEqAABQJLSsXmDNBguu3mDBNRv+/X7dXwSlCpNb0nC7ZS1akf3+lGRLqlju325VClYd9h9LPvJQSzqsoiWpwxUAAAAAAAAAAACQYAhRAQCAAhXMzLTgmo3/hqT+dwus2fjv8nuID1kBC67f5G5mi/7//tSU/w9UVTr0369HHGxJpUv5OVoAAAAAAAAAAACg0BGiAgAAeyWgpfeWrrbAsn9vwdXrXUgHxVBmlgVXrrOslevMJv3vvuSkf7tVHXmoJVc65N+vRx1mSWXL+DxYAAAAAAAAAAAAoOAQogIAAHkWTEu3wPI1FvxfYCqwbI3ZPzv8HhYKUyDoll3ULTB9zv8Hqw4/2JKPqWTJxxxpyVUrWdJBB/g9UgAAAAAAAAAAACDfCFEBAICYglv/scCCZRZYtPLfLlPrNrpQDRKcglWr1luWbuOmu7uSKhxkSVX/F6o6ppIlHVrRkpKS/B4pAAAAAAAAAAAAkCeEqAAAQEhwZ5oFFi23wPxlLjyl7kNAXgQ3/e1ugamz/71jv30sucoR/3arOuFotwwgoSoAAAAAAAAAAADEK0JUAAAksGBGpgWWrPq325RCUyvX0mkKBWP7TgvMXuRuoVDV8UdbcrUqlnJCFUsqf6DfIwQAAAAAAAAAAABCCFEBAJBgAqvXW2Du4n+7TS1ZZZaZ6feQkCihqt/+dDedcUmHVLDkE4+x5JOOteRjK1lSKv8sBQAAAAAAAAAAgH/4axUAACVcMCtggUUrLDB7obtpyTXAb8H1myxLt7HTzEqXsuTjKlvySVUt5aSqllThIL+HBwAAAAAAAAAAgARDiAoAgBIouDPNAn8utqw/FrqvtjPN7yEBsaVnWGDOIndzXaqOPMRSTqlmyaecYMmHVvR7dAAAAAAAAAAAAEgAhKgAACgh1GEqS92mFJxavMIsK+D3kIB8Ca5ab5mr1psN/8WSDq3owlQpNU+w5EqH+j00AAAAAAAAAAAAlFBJwWAw6PcgAABA/gS3bLOsGXPdLbhynd/DAQpVUsVyllzzeEs55QRLOvoIS0pK8ntIAAAAAAAAAAAAKCEIUQEAUMwEt++0rN/nWdb0ORZcstKM/5MjER20v+tOlVLrREs+ppLfowEAAAAAAAAAAEAxR4gKAIBiIJiW7pbpy5oxxwLzlrJUHxDRoSrljJMtWbeK5fweDgAAAAAAAAAAAIohQlQAAMSpYFaWBf5cYlnT51pg9kKz9Ay/hwTEtySzpGMquUBVymknWlLZMn6PCAAAAAAAAAAAAMUEISoAAOJMYPUGy5o00y3XZ9t3+j0coHgqlWrJJx9nKWfWsORqVSwpOdnvEQEAAAAAAAAAACCOEaICACAOBHelWdaMuZY1caYFV6z1ezhAyXLAfpZS+yRLqVPTkg8/2O/RAAAAAAAAAAAAIA4RogIAwEeBZWss69ffLOu3P1muDygCSVUrWerZtSz5lBMsKSXF7+EAAAAAAAAAAAAgThCiAgCgiAXT0i1r2hwXngquWu/3cIDE7U5V9xRLrX+qJZU/0O/RAAAAAAAAAAAAwGeEqAAAKCKBtRsta9x0F6CytHS/hwNAkpMsufpxlqLuVCccbUlJSX6PCAAAAAAAAAAAAD4gRAUAQCHLmrfEskZPtcC8JX4PBUAOkg4ubyln1bKUOjUsaZ+yfg8HAAAAAAAAAAAARYgQFQAAhSCYmfnvkn1jplpw7Ua/hwNgT5QuZSm1T7KUBmda8iEV/R4NAAAAAAAAAAAAigAhKgAAClDwnx2WNX6GZU74zWzbdr+HA2BvJCVZco3jLLVhXUs++gi/RwMAAAAAAAAAAIBCRIgKAIACEFj3l2WNnuK6T1lmpt/DAVDAkqpWcmGqlOrH+j0UAAAAAAAAAAAAFAJCVAAA7IXAohWWOXKiBeYtMeP/qECJl3T4wZZ6QR1LrnWSJaUk+z0cAAAAAAAAAAAAFBBCVAAA5EPWgmWW+eMECy5a4fdQAPih/IGWet4ZllLvFEsqU9rv0QAAAJQYgYXLLb1nf7+HAQAAgDwo+3onv4cAAECBSi3YlwMAoGTLmrf03/DUkpV+DwWAnzZvtcwhoyzzpwmWck5tSz3/TEvap4zfowIAAAAAAAAAAEA+EaICACAPsuYudmGJ4NLVfg8FQDzZscuyfpxgWb9Mt9QGZ1rKeafTmQoAAAAAAAAAAKAYIkQFAEAOsuYs+rfz1PI1fg8FQDzbucsyh/9imWOnWmrDupZydi1LKl3K71EBAAAAAAAAAAAgjwhRAQAQRdbshf+Gp1as9XsoAIqT7Tstc+hoyxw9xVIvrGcp9U+1pFT+yQ0AAAAAAAAAABDv+IsOAABhAktWWsbQ0SzbB2DvbNtumYNHWubPky21cX1LqXOKJaUk+z0qAAAAAAAAAAAAxECICgAAhafW/2WZw8Za4I8Ffg8FQEmyZZtlfvmjZY2abKkXnWXJp1e3pGTCVAAAAAAAAAAAAPGGEBUAIKEF1S3mh/GWNXGmWSDg93AAlFDBv7ZYRr/vLEmdqa66wFJOPMbvIQEAAAAAAAAAACAMISoAQEIKpqVb1ugpljl6sllaht/DAZAggms3Wsb7X1rWiVUt9eoLLPnQin4PCQAAAAAAAAAAAISoAACJJhgIuK5T6j5l27b7PRwACSrw52JLn7/UUuqfaqmXnGNJ++3j95AAAAAAAAAAAAASGiEqAEDCyJq90DKHjrbg+k1+DwUA3BKiWeNnWNb0OZbauL6lnHO6JaWm+D0qAAAAAAAAAACAhESICgBQ4gU2brbMwSMtMHex30MBgN3tTLPMb0Zb1oTfLPWKBpZyygl+jwgAAAAAAAAAACDhEKICAJRYwfQMyxw50bJ+nmyWmeX3cAAgR8GNWyyjz9eWeexRVurqCyy50mF+DwkAAAAAAAAAACBhEKICAJRIWbMWWOaQURbc9LffQwGAPRJctMLSu31qKWedZqmXn2dJZcv4PSQAAAAAAAAAAIASjxAVAKBECWz439J9f7J0H4BiLBi0rPEzLGvWfCt1TSNLOe1Ev0cEAAAAAAAAAABQohGiAgCUCCzdB6BE2rrdMj75xrImz7LUJo0tuWI5v0cEAAAAAAAAAABQIhGiAgAUe1l/LLDMr1m6D0DJFfhziaV3/chSG59lKRecaUkpKX4PCQAAAAAAAAAAoEQhRAUAKLaC27ZbxsCfLDBrvt9DAYDCl5Fpmd+Ntazpc6xU04ssuWolv0cEAAAAAAAAAABQYhCiAgAUS1lTZ1vG1yPNduzyeygAUKSCazdaeo/PLaVOTUu9ooEl7beP30MCAAAAAAAAAAAo9ghRAQCKleCWbZYx8AcLzFns91AAwD9Bs6xJsyzrj4VW6tpGllK7ut8jAgAAAAAAAAAAKNYIUQEAio3MX3+3zKGjzXal+T0UAIgP23daRt9hlvX7PLfEX9IB+/k9IgAAAAAAAAAAgGKJEBUAIO4FNv1tmQO+t8D8ZX4PBQDiUmDWAktbvNJKXXehpdQ6ye/hAMBeCQaDlpSUFPevmYgKaz/6fXz8fn8AAAAAAADEh2S/BwAAQE5/zMj8Zbqld/2IABUA5KUr1adDLb3P1xb8Z4ffowGAfBk5cqR17ty5QF9z2rRp1rp16wJ9zUSzdetW69Spk02dOrVAXzc9Pd1eeOEFGzp0qJWkcw4AAAAAAADFEyEqAEBcCvy1xdJ79LPMwSPM0jP8Hg4AFBuBmfMtretHlvXHAr+HAgB7rE+fPrZmzZoCfc0vv/zSFi1aVKCvmWjmzp1rQ4YMsUAgUKCvu379evv4448tMzPTStI5BwAAAAAAgOKJ5fwAAHEna+psy/jqJ7O0dL+HAgDF0z87LOOjwRaoU9NSr2loSWXL+D0iAAAAAAAAAACAuEYnKgBA3AjuSrP0vkMt4/NvCVABQAHImjzL0l/tY4GFy/0eCgDkqkWLFjZ58mR3q1atmk2aNMm2bNliTz75pJ111llWs2ZNu/766+3XX3/N9nvjx49399eqVcvOPPNMu/vuu0Odpx5++GEbPHiwrVq1yr3moEGD8jwePb979+7Z7tPPut+zadMm69Chg5199tlufFdffbV9/fXX2X5n9erV1r59e6tTp46deuqpduutt9qcOXNCj69cudK9Zu/eve2SSy5xz/nqq69s165d1qVLFzvvvPOsRo0a7rEPP/wwxzFre7UfBw4caBdccIHbJ3q/P//80z2u/alxvv7669l+b+fOnXb66afbO++8E3odbzt1HG655Rb3vb7q9T0jRoyw6667zr2m9sFzzz1nO3b8/5KyOW2DtrtRo0bu+0ceecQaNmxoe2LGjBnWvHlzO+2006xBgwauo1XLli3d2D1paWnWtWtXO//88937X3nllfbdd9/leM7lhXfMIs8nvXf4dixfvtzuuusuq1u3rjuuN9xwg40ZMybb78yfP9/atGljtWvXdrd77rnHVqxYEXpcY9J79e/f3x1TPUfnfF7OvbwYNmyYXXXVVXbKKadYvXr1rGPHjrZu3bo9fh0AAAAAAICSgBAVACAuBJas+vcP/dPn+j0UAChRgpv+tvR3+lvGsDEWzCrYZZgAoCA99dRTVr16dXf74osv7OSTT3YBoJEjR9qDDz5ob7/9th122GF2xx13hIJUCpu0bdvWBWQUAHr++edtyZIl1rp1a7f0nB5TgObggw92r6mwTUF66KGHXGDr6aeftl69ermxd+7c2SZOnOgeV9DlxhtvtNmzZ9sTTzxhr732mhuXwj+RSwwqoHXnnXe60I+CMS+88IKNHTvWvZ6CRwoc6TEFrHJbeq9bt25277332iuvvGKbN2+2m2++2S2dV65cObvwwgtt6NChFgwGQ7/z008/ufDTNddc437WftP+Eh0HBdlEX3WcRK+hwE/VqlWtR48e7v2++eYb97vea+e0DYcccog7pqLgm/d9XmjfKTAlCoS1a9fO3n//fZs2bVroORqDxqfwUatWrdz5oVCZziUvbBTtnCsoOs4KRymgpm3u2bOn2//a1mXLlrnn6FzV+fHXX3/Zyy+/7M5fndPNmjVz94XT/tF+1DHQduR27uWF9lenTp3soosucq+hMJt+X+EsAAAAAACARMRyfgAAXwUDAcv66VfL/GmCWeD//5ADAChAQbOsUZMssHillW5xpSWVP9DvEQHAbo477jjbf//93ffqLjRgwADXQUlf1cVH1NFI3YNeffVVF8SZOXOm63aksMqhhx7qnqOglYJXCgVVrlzZKlSoYKVLl3avWdDUwUhBHQWTRN2mFJTR+4m6I6n7U79+/ezII48MbcNll11mb775pr311luh17r00kutSZMm2V5bYarLL7/c/axuRvvuu69VrFgxxzFt27bN3n33XTvjjDPcz+owpPF98sknrsuQ3kPdmNThSJ2HRKEidfs6/PDD3c/ab7qJjomOjeirbgoo6Rice+657qunSpUqLtykbksKrOW0DdpHJ510Uuj9FALKq/fee88OOOAA++CDD2yfffZx9ynMpUCSZ8KECfbLL7+4QJn2t2i8CjVpzFdcccVu51xBUghq8eLFoSCfdywUhkpP/7frrr7X+Pv06RMaR/369d3x0rYpFOW56aabXCevvJ57eQ1RlS1b1oUOvd/Ta8yaNcsd46SkpALaGwAAAAAAAMUDISoAgL/dUT4bZsElq/weCgAkhODSVZb2ah8r1exSS6lxvN/DAYAcqduUOkipO1BmZmbofi1pps4+f//9twtXlSlTxpo2beoCJgooKaijsEpR0Hupg5SW51NAR2GZ8OCLtkFBIQW8vG1ITk5241TXpnBeoCj8tdVFae3ate51dVNoJjeVKlUKBahEHZ/UuWjKlCnuZ4WljjjiCBsyZIgLUen1NU51rcorhYP0ewqvhR8bLaeoMJCWm1OIKr/bkBt1S9I+9AJUom30gmqibVIISO8ZPkYtt6d9v2DBgt32eUH6z3/+40Ja6kA2btw4O+ecc9yY1e0pfDsUflKQyRuj9p+On0JguZ0fOZ17eaHjpZCZAmUXX3yxew2N0wt9AQAAAAAAJBpCVAAAX2RNn2MZA38y25Xm91AAILHs3GUZHw22wDm1LfWqBpaUyiUBgPikDk4bNmyIucSaHlNIpW/fvm4pt4EDB7puSwceeKDr2vPAAw8UeicdBVDU9Wn48OH2ww8/uICUQkrPPPOMC/RoG7R0W6xtUFckjzo0hXvsscdcVy0Ffp599ll3U1CoS5cuduKJJ8Yck9eRK5w6P2lJQdEYr7vuOuvdu7dbzk5hKgV3GjdunOft1naJlpLTLZKWDtybbciNlkmM1pFLwaXwMaqbUu3ataO+hsZYmCEqnXsfffSRW0ZQyyWq21epUqVc5yjts4MOOsiNUV3BdIukDmrhIs+P3M69vNCx0GdHnbB0Puh77cO77rrLdXwDAAAAAABINPzFBABQpIJp6Zbx1U8WmPrvH3EAAP7IGjfdAktXWakWV1nyweX9Hg4A7EbLtWl5uPDl4iI7LkUukablyb744gsXLlFIR0vk7Y2srKxsP2uJwMgxPvTQQ+6m7kxaRrBnz54uJKNAih5Xp6FOnTpFff2cll7TY3fffbe7rV692n7++Wf32h06dLBvv/025u9t3rx5t/s2btyYLXSkEFWPHj1s7NixLoSj5e7U0SuvFFQTbZe2L5ICQnuzDblRMEvbFG0JPS3rJ9r3Ch4pWBfN0Ucfne/398J5uZ0fCrQpMKawmpam/P77761Xr15Wvnx5d5/GqOBTq1atdnuP1FxCzrmde3mlLlbeMofqjKX99dxzz7kub0XV0Q0AAAAAACBeJPs9AABA4gis32Tpb/YlQAUAcSK4cp2lv/6x6w4IAPFA3XQ8CuesWbPGhX9q1qwZummpuA8++MBSUlJcBx0t76cAlQI79evXd92ORKGdyNfcE+rOtG7dumz3TZ8+PfT9qlWr3LJnCsaIwjt33nmnC8V4761tWLJkiR1zzDHZtkHdn9Q5S9sQza5du9zyaupkJFp+r3nz5nb55ZeHXjuWpUuX2qJFi0I/axtmzJjh9o1HnYr0swIzc+fOdaGqnESOU9uq47Jy5cps26XQ0GuvveaWmMvLNsTa/rwsQ/fLL79YWtr/d7XVe2o8Hu17hZrUjSp8jPPnz3cBsvDlFfNzbkj4+ZGRkWEzZ84M/ax9rnNB9yl0pa5XDz74oJ1wwgnZzo+FCxe6x7zx1ahRw53X6l4VS17Ovbx4+eWXrUmTJm4faWlEfZa8JQH35HUAAAAAAABKCjpRAQCKRNasBZbR71uzXel+DwUAEE4dAvsOs8CCZZZ67YWWVLqU3yMCkMDU4Ujhk19//dUtL6el+tSlR8uLHX744TZhwgTXyefmm292S6PVq1fPdaq655573H0K5fTv398FqhQI8V5TXYvGjBnjwiqHHHJInsbSoEED1y1JHXnUtWjQoEFuab7wIJI6Iqlrzz///GOVK1e2P/74w71PmzZt3HNatmzpAlP6etttt7kORFq6bcCAAfbII4/EfO+yZcu6JQDVYUvbWa1aNRfGGjx4sAsmhQeHtK1a1tCjQIz2lwI72h96DXWGilyerWnTpta+fXs79thj3TaGW758uVsy77TTTgt1PZLRo0e711KXL73+k08+6d5D+3rr1q2uE5KCRRp7XrbBe10d72jjiEXbp/14xx13uP2q937zzTddIMrrEqWQkcJWbdu2dTe9vgJNb731luu85C2XF37OVa9ePdRFKyd6jpbC+/TTT925oZ8VSFNwzFt2T6+lfaBuXe3atXPL5On8VWjtlltucc/RuG688UZ3vjRr1sx1A1MntREjRrhxxpKXcy8v9PnRMn4PP/ywXXXVVS4IpoBiuXLl3GOydu1ad9P2eJ3TIs87jUFhMI0jchlCAAAAAACA4iQpqOoaAACFJBgIWOZ3v1jWz5PM+D8OAMS1pMP+Y6VaXmPJh/AHUAD+0HJiChdt2LDBXnzxRddZR52NFN7Ztm2bC48o/KPgjNdBaNy4ca6zkDoMaXk1dfK5//77XYBGdL9+XrFihd13333WunXrPI1FwSt1tdKSd1paTUve6bUff/xxmzdvnnuOxvn666+7MWgZPQW91NlH7+GNT4EkbYNCOuqcpCUKFWjSdoi6JzVq1Mhtb3hHKAVT3njjDbdMm95HnZ80Bm2LwjnSsGFDt08U5hGFYSZPnuy6EmmfaIk27UN1F/KWPwx//TPOOMM6duzowkjh9DoKO3nbGQgE3LJx6o6koMywYcPc/QoyKXSzYMECFx6qXbu2PfDAAy4wlddteOmll1xwSEErdRnT17yYOnWqde3a1YWS9LoKD73zzjt20UUXuWMk6kSlcJU6NmmpP3XKUicshe685Qsjz7krr7wyT++vjl86PzQOdabS8dQ2ffnllzZq1KjQc3Tstcykgl7esb/hhhtCrzN79mzr1q2b63KmEp06Ven80TkhkyZNcqErhbTq1q0b+r28nHt5oWOpbmEKuCmAdvrpp7tzwjuG3bt3d0E4HUPvHIo877wxRp7D+RVYuNzSe/bf69cBAABA4Sv7evSlywEAKK4IUQEACk3wnx2W8ek3Fliw3O+hAADyqmwZK3XzFZZS/Vi/RwIA2ENeiMoL8eREASh1SVL3IoWQihMF0hS2UgjMo5CSAmPaJq/TE4onQlQAAADFByEqAEBJw3J+AIBCEVi22tI/HmK2ZZvfQwEA7IldaZbx4SALXnKOpTau7/doAKBAqaOSbrlR56mSSkvFzZo1yy17qK5B8RSgyszMzPU56rKk7k1a7k7LEWrJwC1btrhl6bQ84BVXXGGJfn6oI1tucybVdUpLMQIAAAAAAOD/xXfVBwBQLGWOn2GZX49S9d7voQAA8iMYtMzhv1hg9XordeOlllSmtN8jAoACoSXutDRZbsKXLitptHzgxx9/7JZt0xJ98USBqNxce+219sILL1h6err169fP1qxZ45YSrFOnjltOrkKF/C9J++ijj7plDHPjLXMYr1q2bOk6kuVEy/HlpWMZAAAAAABAImE5PwBAgQmmZ1jGwB8tMHW230MBABSQpMMPtlK3XWvJFcv5PRQA2Gvr1q2z9evX5/q8atWqWenSBEiLmjpk5aZ8+fKFFnBTwGzz5s25Pq9mzZoWzxYvXmzbt2/P8Tk6v3WexyOW8wMAACg+WM4PAFDSEKICABSI4JZtlv7RIAuuXOf3UAAABW3fslaqxVWWUq2K3yMBAAAlHCEqAACA4oMQFQCgpEn2ewAAgOIvsHyNpb3xCQEqACipduyyjF5fWubPOS8NBAAAAAAAAAAAUFyl+j0AAEDxljVjrmX0H26Wken3UAAAhSkQtMyhoy2wcp2VuuESSypdyu8RAQAAAAAAAAAAFBhCVACAfNFqsJk/jLesHyf4PRQAQBEKzJhr6X9tsdK3X2dJB+zn93AAAAAAAAAAAAAKBMv5AQD2WDAz0zL6DiVABQAJKrh8jaW/9ZkF1m/yeygAAAAAAAAAAAAFghAVAGCPBP/ZYenvfGGBGX/6PRQAgI+Cf22x9Lf6WmDxSr+HAgAAAAAAAAAAsNcIUQEA8kwdR9Lf7GvBJav8HgoAIB7s2GXp735hWb8RrAUAAAAAAAAAAMVbqt8DAAAUD4FFKyy992D3B3MAAEIysyzj028suOlvS21Y1+/RAAAAAAAAAAAA5AshKgBArrJmzreMvkPdH8oBANhN0Cxz2BgLbt5qqdc2sqRkGt4CAAAAAAAAAIDihb9uAABylDnxd8v4ZAgBKgBArrLGz7CM3oMtmJ7h91AAAAAAAAAAAAD2CCEqAEBMmSMnWuaAH8wCQb+HAgAoJgKzF1l6j34W3Lbd76EAAAAAAAAAAADkGSEqAMBugsGgZQwZZZnfjvV7KACAYii4Yq2ld//MLe8HAAAAAAAAAABQHBCiAgBkE8wKWEb/4ZY1ZqrfQwEAFGPBjVssrftnFtiwye+hAAAAAAAAAAAA5IoQFQAgJJiRaRl9Bltgyh9+DwUAUBJs2Wbpb/ezwOoNfo8EAAAAAAAAAAAgR4SoAABOcGeapb83wAKzF/k9FABASbJtu6X36GeBZWv8HgkAAAAAAAAAAEBMhKgAABbUH7h79rPg4pV+DwUAUBLt3GXp735hgYXL/R4JAAAAAAAAAABAVISoACDBBf/WUkufW3DVer+HAgAoydLSLb3XQMuau9jvkQAAAAAAAAAAAOwmKRgMBne/GwCQCIJbtln6O/0tuGGz30MBACSKlBQrdfMVlnJqNb9HAgAAAAAAAAAAEEKICgASFAEqAIBvkpOs1A2XWsqZNfweCQAAAAAAAAAAgEOICgASNUDVs58FN27xeygAgESVZJba9GJLrX+q3yMBAAAAAAAAAACwZL8HAAAoWgSoAABxIWiWOfAHy5ryh98jAQAAAAAAAAAAIEQFAImEABUAIK4EzTL6D7es6XP8HgkAAAAAAAAAAEhwhKgAIJECVD0IUAEA4kwwaBmff2dZv8/zeyQAAAAAAAAAACCBEaICgEQKUP1FgAoAEIcCAcvoO9Sy/ljg90gAAAAAAAAAAECCIkQFACUcASoAQLGQFbCMj7+xrLmL/R4JAAAAAAAAAABIQISoAKAEC27faenvDSBABQAoHrKyLKP315Y1f5nfIwEAAAAAAAAAAAmGEBUAlFDBtHRL7zXQguv+8nsoAADkXWamZXw0yAKLVvg9EgAAAAAAAAAAkEAIUQFACRTMVCePwRZcvsbvoQAAsOfSMyz9g4EWWLrK75EAAAAAAAAAAIAEQYgKAEqYYCBoGZ8NswBLIQEAirO0DEvv9ZUF1m70eyQAAAAAAAAAACABEKICgBImc+APFvh9nt/DAABg7+3cZenvf2nBLdv8HgkAAAAAAAAAACjhCFEBQAmSMWyMZU2c6fcwAAAoOFu2/Ruk2rnL75EAAAAAAAAAAIASLCkYDAb9HgQAYO9l/jzZMoeO9nsYAAAUiqSqlax0m+stqVSq30MBAACFKLBwuaX37O/3MAAAAJAHZV/v5PcQAAAoUHSiAoASIHPyLAJUAIASLbh4pWX0HWbBAHNAAAAAAAAAAABAwSNEBQDFXNYfCyxzwPd+DwMAgEIXmDXfMgeP8HsYAAAAAAAAAACgBCJEBQDFWGDlWteVw+jKAQBIEFnjZ1jmT7/6PQwAAAAAAAAAAFDCEKICgGIquGWbpX8wyCw9w++hAABQpDKH/+KWsgUAAAAAAAAAACgohKgAoBgKpqVb+odfmW39x++hAADgi8wBP1jWnEV+DwMAAAAAAAAAAJQQhKgAoJgJBoKW8elQC65a7/dQAADwTyBgGZ9+Y4HVG/weCQAAAAAAAAAAKAEIUQFAMZM5ZJQF6LwBAIBZWoZlfDTIgv/s8HskAAAAAAAAAACgmCNEBQDFSOb4GZb1yzS/hwEAQNwIbvrb0vt8bcGsLL+HAgAAAAAAAAAAijFCVABQTGT9ucQyB4/wexgAAMSd4OKVljnwJ7+HAQAAAAAAAAAAijFCVABQDATWbLCMT4aYBYJ+DwUAgLiUNWmmZY6lWyMAAAAAAAAAAMgfQlQAEOeC27Zb+gdfme1K93soAADEtcxvRlnWvKV+DwMAAAAAAAAAABRDhKgAII4FswKW/sk3Zpu3+j0UAADiXyDoOjcG1m/yeyQAAAAAAAAAAKCYIUQFAHEsc9hoCy5a4fcwAAAoPnamWcZHgyy4c5ffIwEAAAAAAAAAAMUIISoAiFNZv/1pWWOm+j0MAACKneD6TZbxyVALBgJ+DwUAAAAAAAAAABQThKgAIA4F1m60jC+G+z0MAACKrcC8JZY5bIzfwwAAAAAAAAAAAMUEISoAiDPBXWmW0edrs7QMv4cCAECxljV6imXNnO/3MAAAAAAAAAAAQDFAiAoA4kgwGLSMft+5ZYgAAMDey+j/nQU28P9VAAAAAAAAAACQM0JUABBHskZNssCsBX4PAwCAkmNXumX0GWLBdDo8AgAAAAAAAACA2AhRAUCcyJq/zDKH/+L3MAAAKHGCazZYxlc/+T0MAAAAAAAAAAAQxwhRAUAcCG7eahmffmMWCPo9FAAASqTAlD8sc+JMv4cBAAAAAAAAAADiFCEqAPBZMCtg6R8PMdu+0++hAABQomUOHmGBNRv8HgYAHwSDwWLxmiVNYe2jkrTvS9K2AAAAAAAAFHeEqIAS4Pfff7frr7/eTj31VDvzzDPtyy+/tHgxadIkmzhxYujnlStXWrVq1axZs2a+jiueZH4/zoLL1/g9DAAASr6MTMv4eIgF09L9HgmAIjRy5Ejr3Llzgb7mtGnTrHXr1gX6miXJ2rVr3f5ZtWpVgb7u1q1brVOnTjZ16lSLJ927d3fXuSVhWwAAAAAAABIZISqgmAsEAnbvvfe6INWFF15oN9xwg51yyikWD/r162e33HKLrVixInTfgQce6MbbpEkTX8cWL7IWLLOsUZP8HgYAAAkjuH6TZXz1k9/DAFCE+vTpY2vWFOykBU1cWbRoUYG+ZkkyYcIEGzNmTIG/7ty5c23IkCHuOri4K0nbAgAAAAAAUFKk+j0AAHtn3bp1tn79ejv++OPttddes3iycePG3e5TiKpdu3a+jCfeBLfvtIzPv9X6DX4PBQCAhBKYOtsyjz3KUuvGR/AcAAAAAAAAAAD4j05UQDGXnv7vcjTly5f3eyjYQxlffG/29z9+DwMAgISUOXikBTZs8nsYAApZixYtbPLkye6m5da03PiWLVvsySeftLPOOstq1qzplkb/9ddfs/3e+PHj3f21atVyS6bffffdoc5TDz/8sA0ePNgtVafXHDRoUJ7Ho+dr6becloLbtGmTdejQwc4++2w3vquvvtq+/vrrbL+zevVqa9++vdWpU8ct637rrbfanDlzdltGvXfv3nbJJZe453z11VdR94+2591333X74/TTT7e2bduGluFbsGCBe50vvvgi2++ps9dJJ51k33zzTeh1GjZs6L7X/njkkUfc940aNXKvH97B6/LLL7caNWpYgwYN3LZnZWXladt17NTpWPRV75lXGoM3vsh95B0/vb5+HjdunDVv3tx1eL7ooovs888/z/Z7aWlp9uKLL7ox6vzQtuq+SNrW6667zk477TT3WtqW4cOH57otI0aMcL+n7dd7PPfcc7Zjxw7bE9ombYu2MZz2QfjxyOk8z+t4dAwbN25sb7/9tjsfzznnHPv777/3aLwAAAAAAADxghAVUIyp0Kqirnh/FNB9uun7ZcuW7fY75513XrYCvVc4fuaZZ2zatGnWsmVLq127tiuiqpir4m4033//vXtcRdIzzjjDFV6HDRuWrTirIqo8/vjjoQKu937NmjXL9noqnH/66ad27bXXugK/3v/GG2/c7Y8F3mtfccUVtnbtWnvooYesfv36rqB71VVXWf/+/a04yJwwwwJ/LPB7GAAAJK70DMv47FsLZrGMElCSPfXUU1a9enV3UxDo5JNPdoGjkSNH2oMPPuiuWQ477DC74447QkEqLUeuIJGCPu+88449//zztmTJEmvdurVbek2PnX/++XbwwQe711QYqCDpGkdBlqefftp69erlxt65c2ebOHFiKGika6XZs2fbE0884ToSa1wK/kQGYBRwufPOO61r164uABON9oVCN7pu03tqmTldU+7cudN1PNb1mZadC6frtH333Td0Par97F3/aX8ojCO6T/tL3nvvPTdeXb8ptKXxavt0X162XcdO4TfRV71nYdB5offt0aOHC5ZpLOFBKo1xwIAB1qZNG3vjjTdcYEhLRob77LPP3BgvvPBCt92vvvqqlS5d2jp27OiuY2Nty9ChQ+2ee+6xqlWruve/9957XVBN+zBYwB2MczvP92Q8CvVp+cZu3bq5UNlBBx1UoGMFAAAAAAAoKiznBxRjChwpkKTw0ZFHHul+1lfNit5T06dPd4VgzZK94YYbbPny5W7Gqe5XwVgzZz0qwH/44Yeu+5VmFh9wwAH2ww8/uBnDKsSqYK6AlYrxCnddcMEFrkispfy2bt0atZuWfkczfjX+a665xjIyMlwRVgVzvcYLL7yQ7XdUqNY4y5Yt62Yy79q1y7799ltXfNYsYP1hJF4F1m60zCE/+z0MAAASXnD5Gssa8aulXhw9WACg+DvuuONs//33d9/rWkfXPH/++af7qnCQN9FEoSEFXdStaebMme76QiGZQw891D1HQStd36gDT+XKla1ChQouFKPXLGi6/lFwRQEc0cSVcuXKufeTjz/+2HXT6tevn7t+8rbhsssuszfffNPeeuut0Gtdeuml1qRJkxzfT2EphaiOOuoo97MCM7q2VFBKk1/0+7rO0rWe9xw9puswXY95+9mjfaN9JOpWValSJdu2bZv17NnTXcMprCXqWKTt0s+tWrVyga2ctl3H0XsffQ1/z4KkrkqPPfaY+/7cc8+19evXu7FrXyxcuNBd+3bp0iU0MUjPufLKK91jHu2r22+/PRQgEx0rdXTS5CXtu8htUShJ56BeT189VapUcZOddH1ckIG93M7z/fbbL8/jyczMdNfummAFAAAAAABQnBGiAooxFWC13IIXomrXrp27Pz8hKs02VtHztttuC92n4rtmm+oPDF6ISqEqBahU4P7oo4/skEMOcfer0K1Cu2YaqzCuoqoK5SqCK2j13//+1z0vWohKs3YVoFIBVjNXNaPZm2GtYrr+kKHZyipMe1TI1qzn119/3UqVKuXuU3cqhac06zdeQ1TBzEzL+HSoWUam30MBAAD6w+9Pv1ryiVUt+ejD/R4KgCKgblPqIKVJHgp+eDTxQ5NFNFlD4aoyZcpY06ZN3VJ4CijVrVs328SSwqT3UgcpLc+nAIu6XulaLXwbFE5S8MXbhuTkZDdOb3k9j56XG3Ui9sJRoi5M+nnKlCkuKKTAj5avUzcqdSLSNeHSpUvtpZdeyvM2zZgxwwV21FU4fL97S+xpWTldY+a27UVB17XhdN2pYJG6NE2dOjXbuL19f/HFF2cLUXlL5un6d/Hixa5LtNflWZOIotHz1KVKoabwfaRl9hQg0z4qyBBVbue5OoLtyXjycq4BAAAAAADEO0JUABx1k1L3qHCa/asQlZbg83jLODzwwAOhAJWoXb9m6y5YsMAVx/eEQlIqPGtJQS9A5c1g1mtqVriWyQgPUYmWGfACVFKvXj23HeHjjTeZQ8dYcM0Gv4cBAAA8gYBlfD7MSndoaUml///fFQBKJnVw2rBhgwtRRaPH1BWob9++9v7779vAgQPtk08+cV11b7rpJncdlJSUVKhj1MQSLXc3fPhw1/VI10paVk7XS5o8o21QKCfWNqizlCf8+ioWrwtRuIoVK7pAmSgwo5CNAloKUakL1THHHOOWYM8rjdm7hotGk2Tysu1FIXJ//B979wHeVnm2cfyW5BmP2Imz9yIhJEBIIAPChkKBMlv23rtl06+ltMxCS8ts2QVKy2gZLVBWwggQAiSQkEDIdpazp+Mtne963iBjO463cyT5/7suXbalo3Oe90h2YuvW89i5MHY+oufEujJXZcG8qqyzs43ps8Cb/c5q3b2GDBnibtveWL7oObLxgXbZ3jlqKdYhrK7neWPrsc5VAAAAAAAA8Y4QFQDHxi0kJVX/kWCBpJrvlLWOVaa2P5hbxym7NMaWLVvcu5jtj/C1/fHe3hUdCoXcO5Frsj9E12Q1WwescDjs7hdLwt/MV3jSVL/LAAAANXir16viP+8p+YRD/S4FQCuz3xdsHFnV8WQ1gyXGuvFYl137XcjGr9mbOizcY0EYG5HXHPa7SlU2Oq1mjddee627WHci64Jk4+QsyGKBF7vdxtxdd911te4/OvavodavX7/NdWvWrKkcyWdspJ91PLYRcBZuslF1jWHhHGPn3c5/TXl5eQ1ae1NZ8K2+8171fFRd+9q1ayvDVNHwlJ2f7t27V24TDRyZSCRS+YYfCydZhyb7Xds6VUXflFTXObLH1R7fmuyNS41Zb7SWmr9/V1XX8zw6brAl6gEAAAAAAIgXQb8LABAbrI3/9v7wWvWdstE/DkcDVs1VWFhY5/7sj83Wkarqu6kbW3Ms8LYUq/z5N/0uAwAAbEf4k69c4BlA4rFuRlEWBikoKHCBmOHDh1debDTZY4895t6IYePGbbyfBUsskGSjxW+55RZ3/+XLl2+zz8awrk4rV66sdp2Nx4tatmyZG2H35ptvVr5x5Pzzz3fdmKLHtjXYaDl7I0rVNVhAx0I7jX0ziYVnqgapZs6c6br72rqrjnCz8NPdd9/t3rRy9NFH17nPmufHRsdZqMjWXrVm+33PRrTb8Rqy9qa+Uca6JNkaS0tLq627Nu+++261r60e64JlwSrrfhy9rqr33nuv8nM7jj0+NiYvukbz4YcfVgs21VyLrdeel3Yuqp4je7PRH//4x1rfWFTX88zYOL4oG89XNexV3/O8JesBAAAAAACIF3SiAhJYzXedmtrCSI0RHQdhfziPjjWIsj++Woip6oi9+kRb/td8IaHqGixolZOTo3hW/vK70ubq7/oFAACxxQLPwWvPViCz/vFXAOKHdfj58ssv3Wi1Qw45xI0wO/vss3XRRRepW7du+uSTT/Too4/qtNNOc7/LWFDGOiZdeuml7joLuzz33HMuaGKhk+g+rRvRBx984DoNVR11Xpf9999fr7/+ugsV9enTRy+99JIbzRdlYZ2uXbvq1ltvdb8HWXDHQk12nAsvvNBtc9ZZZ7nAlH0855xzXHekN954Qy+88IJuvPHGOo//1VdfuTepVO20ZL8jnnfeebr44otdpyIbqbfTTjvpyCOPrHZf60Zl4Zl99913my7C1mXJfh8cOnRo5fkx77zzjtt+wIAB7hj33nuvW9fo0aPd74D2tf0OaZ2P7I019a09+uab999/33VCio7Iq489bs8884wbF2/hpjlz5ujJJ5+sNZRl19sbdnbffXe9/fbbLiBl6zb2mJ144onuHFVUVLjH3h6L7777rvL+9nuyPY7PPvusW4+di0mTJrlxedHzvb21/OIXv3BjAK0uq3nTpk2uE5edq+2Nb6yNnd+0tDTdeeeduvLKK93jet9991X7vbq+57l93VL1AAAAAAAAxAs6UQEJKDq+oWar/nXr1rnwU3NE/0g9ffr0bW6zP9rbOAAb81C1K1R975C1P0SvWrXKjfWrycZF2B+Z7Y/48So8c64i07aOQQQAADFs8xaVv/iW31UAaGGnnnqqC0dZV6PPPvvMhVtGjhzpuirZdRaUufrqqysDSPY7j400syDPVVddpcsuu8x18HniiScqR4ofd9xxLihjAZRXXnmlwbXYMSyM8vvf/15XXHGFe5OKHbsqG682fvx4FzCykNQ///lPV4Mdy1iAycIudvybb77ZhcHs96bbbrvNBavqYgEgC8FUNWrUKFeTBYxuv/1215HIAj81xwJal6jo2muycXtWY9UQj3WQsvCRrdX8/Oc/1w033OCCVXbe7fzb42ChtmigqL61Dxo0yIW77DG85pprGnze9957b11//fWu+5Qd20JndqzaQlS//OUvXXDLQmX2e6+Fj6oGyn7zm9+4fVjdVltJSYl7DKqyc2yPk63X1m37+ctf/uKeP1988cV21/LTn/7UnTPrTmb7tMfXRkxaAKxXr14NXq8Ft+6//343wtDOnZ1P+zhs2LDKbRryPG+pegAAAAAAAOJFwIu1mVcAGsXetXzooYe6kQ72h0xjfzy3P3rbH0Evv/zyym2tNb/9oddE3ylrrfkPOugg7bHHHu4P1FXVdtunn36qM888073D2P64au96NhbOsncm2wiGCRMmuHfc2h9k7R269s5Ve+Fie/t8+OGH3QgH+8O2/SE72u3KxiBccMEF7gUB+8P7Mccc464/8MAD3XFmzZpVORohqq7b/OAVlaj0rselTXShAgAgXiSddLiS9hrudxkA0OpOP/109zH6u2RdHnnkETcCzjon1QxYJYIpU6bojDPOcL9LWwgM/onMW6yyh57zuwwAAAA0QNo91/ldAgAALcr/hAGAFmfvLraAkr371cYq2DtFP//8cxe4so5ONrqgqazlv/2h3f7IftRRR7l3LNsf0O3d29ZN6te//rULUBkbjWGeeuopFRQUVP6BviZ7h7GN1vj444/dO3Ft3IONRrA/zq9evdq90zkaoIo35a9OJEAFAECcqXhlokJD+imQnel3KQDigI0gr22Uek2x8CaPprBOw/Y75D/+8Q9dcsklMRWgst8b6xMMBt0lEVhnqfreC2kdoWvrsAUAAAAAAID6xedf8ADUaeDAga5LlLXvtzEENrrC3kl71113uUtzQlTmV7/6lYYPH+6CWv/973/dCwY777yzG3tw+OGHV25nn0+aNMl1prIRBVZDv379ttmf1ffoo4+6bWwUhv2R3q6z8QI2/qDq6IR4Ev5mviKfz/S7DAAA0FglpSr/97tKOTs+Q9wAdqwHH3zQddStj/1eZG9wiTezZ8924wMPOeQQ9waYWBHtclyfmh2a45k9BtZ5uS5Vu1QDAAAAAACgcRjnBwCtwCspVeldT0gbNvtdCgAAaKLks45RaNed/C4DQIxbuXKl68pbn8GDB8dUF6d4V1ZWVjmmvi6dO3dWly5dlAhsvbbuumRkZKh///6KZ4zzAwAAiB+M8wMAJBo6UQFAK6h49T0CVAAAxLnyl95VcFAfBdJT/S4FQAyzgE6ihHTiiQXSrENyW2JBPAAAAAAAALSeYCvuGwDapPB3ixSeMsPvMgAAQHNtKlTFa+/7XQUAAAAAAAAAANgBCFEBQAvySstU/sKbfpcBAABaSPjT6YosWOJ3GQAAAAAAAAAAoJURogKAFlTx+ofS+k1+lwEAAFqKJ5W/8Ja8igq/KwEAAAAAAAAAAK2IEBUAtJDI0hUKf/Kl32UAAIAW5q1ap4p3JvtdBgAAAAAAAAAAaEWEqACgBXgRT+Uvvi1FPL9LAQAArSA8cYoiK9b4XQYAAAAAAAAAAGglhKgAoAWEJ38lb8kKv8sAAACtJRxR+fNvuuA0AAAAAAAAAABIPISoAKCZvM1bVPHGh36XAQAAWpmXv1zhKdP9LgMAAAAAAAAAALQCQlQA0Ezl/31fKi71uwwAALADVLwxSV5xid9lAAAAAAAAAACAFkaICgCaIbJwqSJTZ/ldBgAA2FG2FKvizY/9rgIAAAAAAAAAALQwQlQA0EReJKLyf78reX5XAgAAdqTwx18qsmKN32UAAAAAAAAAAIAWRIgKAJoo/MlX8pav8rsMAACwo0Uiqnhlgt9VAAAAAAAAAACAFkSICgCawCssUsX/PvK7DAAA4JPInHyFv57rdxkAAAAAAAAAAKCFEKICgCaoeGOSVFzidxkAAMBHFf95T15Fhd9lAAAAAAAAAACAFkCICgAaKbJijcKfzfC7DAAA4DNv7QaF3/vc7zIAAAAAAAAAAEALIEQFAI1U8d/3pYjndxkAACAGVEz4VN6GzX6XAQAAAAAAAAAAmokQFQA0QnhuviLfLvC7DAAAECvKylX+2vt+VwEAAAAAAAAAAJop4Hke7VQAoAHsx2XZn56Wt3Sl36UAAIAYk3LFqQr27eF3GQAAAAAAAAAAoInoRAUADRSZ9g0BKgAAUKvy1z7wuwQAAAAAAAAAANAMhKgAoAG8igqVvzHJ7zIAAECM8hYsVfib+X6XAQAAAAAAAAAAmogQFQA0QHjSNGn9Jr/LAAAAMazif5Pc+F8AAAAAAAAAABB/CFEBQD28ohJVvPup32UAAIAY5y1bpciX3/pdBgAAAAAAAAAAaAJCVABQj4p3PpGKS/wuAwAAxIGK/30kLxz2uwwAAAAAAAAAANBIhKgAoA6RtRsU/uhLv8sAAABxwrP/O0yZ4XcZAAAAAAAAAACgkQhRAUAdKt76WKKbBAAAaISKtz+RV1budxkAAAAAAAAAAKARCFEBwHZEVq9TZNo3fpcBAADizaYtCk+a5ncVAAAAAAAAAACgEQhRAcB2VLwzWYp4fpcBAADiUMXEKfKKS/wuAwAAAAAAAAAANBAhKgCoRWT1erpQAQCApisuUcWEKX5XAQAAAAAAAAAAGogQFQDUIvwuXagAAEDzhD+aJq+wyO8yAAAAAAAAAABAAxCiAoAaImvWKzyVLlQAAKCZyspV8eFUv6sAAAAAAAAAAAANQIgKAGoIv/upFIn4XQYAAEiUblTFpX6XAQAAAAAAAAAA6pFU3wYA0JZE1m5Q+ItZfpcBAAASRUmpwh9PU9LBY/2uBACAuBCZt1hlDz3ndxkAAABogLR7rvO7BAAAWhSdqACgivA7k+lCBQAAWpSN9PPKyv0uAwAAAAAAAAAA1IEQFQB8jy5UAACgVRQWKfzpdL+rAAAAAAAAAAAAdSBEBQDfC79LFyoAANA6Kt7/XF5F2O8yAAAAAAAAAADAdhCiAgBJ3sbNdKECAACtZ4P9X2Om31UAAAAAAAAAAIDtIEQFANYdYtI0KUwXKgAA0HrCE6fIo+slAAAAAAAAAAAxiRAVgDbPKy1TePJ0v8sAAAAJzluzQZGvZvtdBgAAAAAAAAAAqAUhKgBtXvizr6XiEr/LAAAAbUDFhCnyPM/vMgAAAAAAAAAAQA2EqAC0aV7EU/jDqX6XAQAA2givYLUisxf6XQYAAAAAAAAAAKiBEBWANi0yc668tRv8LgMAALQh4UkEuAEAAAAAAAAAiDWEqAC0aRUffO53CQAAoI2JfLdQkVVr/S4DAAAAAAAAAABUQYgKQJsVyV8ub+Eyv8sAAABtjWfdqKb5XQUAAAAAAAAAAKiCEBWANqvifbpQAQAAf4S/mCmvpNTvMgAAAAAAAAAAwPcIUQFokyLrNiry9Ry/ywAAAG1VabnCU772uwoAAAAAAAAAAPA9QlQA2qTwh19IEc/vMgAAQBsW/miaPP4/AgAAAAAAAABATCBEBaDN8UrLFP6Mzg8AAMBf3toNinw73+8yAAAAAAAAAAAAISoAbVH4y9lSSZnfZQAAACg8aZrfJQAAAAAAAAAAAEJUANqi8KfT/S4BAADAicxZpMiKNX6XAQAAAAAAAABAm0eICkCbElm2St7iAr/LAAAAqBT+iG5UAAAAAAAAAAD4jRAVgDYlPPkrv0sAAACoJvzFLHmljBoGAAAAAAAAAMBPhKgAtBn24mR42jd+lwEAAFBdWbnCX872uwoAAAAAAAAAANo0QlQA2gz34mQJXR4AAEDsCX/2td8lAAAAAAAAAADQphGiAtBmhD+d7ncJAAAAtfIWLVNk1Vq/ywCAFvfpp5/qRz/6kYYNG6bzzjtP999/vwYPHux3WQAAAAAAAMA2kra9CgAST2TZSnmLC/wuAwAAYLvCU75W8Kj9/S4DAFrUXXfdpUgkokceeUQdO3ZU+/btNX78eL/LAgAAAAAAALZBiApAmxCeTBcqAAAQ28JfzFLSj/dVIETDYACJY8OGDdpzzz01bty4yuu6du3qa00AAAAAAABAbfjrPICE55WWKTztG7/LAAAAqNvmLYrMXuB3FQDaCM/z9Le//U2HH364dt11Vx1yyCF6/PHH3fXm448/1imnnKKRI0dq9OjRuvrqq1VQ8EN335deeklDhw7V9OnTdeKJJ2r48OE64IAD3D7M0qVL3di+ZcuW6ZVXXnGfT5kypdZxfnafgw46yNVx0kknaeLEiZXbb8+BBx6oP/3pT7r99ttdSMtqvO6661xoy7z//vtuHx999FG1+33xxRfu+qlTp1bu5/TTT6+8/YYbbnBf/+tf/3LrGTFihM4880zNnj272n4+//xznXvuue7YNqrQ9mNrs65bVdf/5JNP6rDDDtNuu+2mf//73yopKdHNN9+sfffd193Pbouesyhbw0033eSCZ3Zef/azn2ny5MlqCjv3xx57rDv+/vvvrz/+8Y8qKyurvP3rr79267Dzt8cee+iiiy7S3LlzK2+3x8DW8dxzz7nzYdvYc2PdunXuObH33nu7Go8++mh3LAAAAAAAgHhGJyoACS8yY45U8sMfiQEAAGJ5pF9ol4F+lwGgjYzZe+qpp3T22We7IIyFaf7whz+ooqJCXbp00fXXX68jjzxSF154odavX6/77rvPhaVefvllN5bPWGDo5z//uc466yz30YJHtt+ddtrJhXKef/55XXbZZS5sdckll2jgwIH67LPPqtXxwAMP6MEHH3RBnjFjxmjSpEluXw3xj3/8Q3369NEdd9zhQj0WEMrPz3eBHxsZ2LlzZ7366qvaZ599Ku9jQZ++ffu6cFj0+CkpKdX2++2332rBggW66qqr3PhBW/tpp52mN954w+3TAlW2ZgtAWZDLgmf//e9/3b769++vI444onJfFqz6v//7P2VmZrogk4W+LNhl5zcvL08ffvihO2c5OTk6/vjjVVpa6kJba9as0S9+8Qt3PAtfnXfeeXrsscc0duzYBj/Gzz77rH73u9/ppz/9qVvLkiVL3LE2btzorv/000/dfu2xsrrs2A8//LALsr3wwgsaMGBAtcfpV7/6lQuBWbDs8ssv19q1a/Xb3/7Wrc3Os63JuozZ4wgAAAAAABCPCFEBSHjhqbP8LgEAAKBBIt/Ol7d5iwJZGX6XAiCBbdq0SU8//bQLBl177bXuOut6tHr1atdhyUJCFjyyUFKUdSD68Y9/7LomWccnY+EhC0dZSMdYMOmdd95xXaAsxLT77ru7gFKHDh3c5zUVFRXp0Ucf1amnnqprrrnGXWfHLS4udgGs+gSDQdfpKSsry31tx7n00ktdEMs6PVkHpmeeeUZbtmxRRkaGCwD973//0wUXXFC5Dwt41bR582b99a9/1ahRo9zX1iHr4IMPdufM6rTzY+fr7rvvdjUYC6JZBy3r3FQ1RGWdviwcFWUhMts2uo0FmNq1a1cZTLMwku3fQkwWujK2FuuOZSE3C1Q1hAXcLJxmdd96662V19u5ff3111VeXu4eXwuhPfLIIwqFQpXn37qSWXDs3nvvrbyfdSWz0FjVddi5tv2bvfbaywXBagbSAAAAAAAA4gnj/AAkNG9ToSLzFvtdBgAAQMOEIwTAAbS6r776ynWcOvTQQ6tdb52GbrzxRhemsi5UVfXu3dt1IKrZScqui4oGpiwc1dA6LNhUNZxjah57e2yEXjRAFf06KSnJBcGMhZesFgt2GftoXx9zzDF17rdnz56VASpj3aBsndH92v0t/GVBJAs8vfXWWy50FA6H3XVV7bzzztW+ttCUBaTOP/98/f3vf3fdoSyMZKP2jI3t69Spk3bZZRf3GNnF9muj9GbOnOm6SDXEwoULXacoC0RVZR2/bBSj1WndxyzkFQ1QmezsbHesmo9zbeuwLltXXHGFXnzxRdc5yzpRWdgOAAAAAAAgXtGJCkBCC385W4p4fpcBAADQYOHPZipp/738LgNAAtuwYYP7aIGn7d1mo+Zqsuu++eabatelpaVV+9o6M1mHqoawEXy11RHtylQfGztY89i5ubmVQSPrsmQdkmyEnwWf7KN1kKp5v/r2G61p1qytIVcLft1yyy2ua5SFnCx0ZSErC3DVXLt1marKRvvZyLv//Oc/bh92sfvefPPNGjJkiDv/FmKzEFVt7DYbMVif6OO4vXNp3bas1u09znZ7XeuwMYbWrcs6e1mIzM69nVsbE9ijR4966wMAAAAAAIhFhKgAJLTwtOp/4If/KiIRPbXga/136VwtLd6stGCSds/trAsGjdCuuZ2rbfvtxjV6fN50fbFuhTaXlyk3JU1jO/XQhYNGqGe7H95xvj2HT3xey4sL69xmVIeuenzs1lEaEc/TvbM/1ytL5she+hiT113X7zJWHVPTq92nNFyhoz/4l8bl9dRNu+7TpPMAAMD2eCvWKLK4QMHe3fwuBUCCsm5D0RBT//79K69fvny5vvvuO/e5dRaqLcBjIaWWYmEiYx2TqtYRDVfVZ/369dW+to5Ndl3VUJZ1o/rlL3+p+fPnuy5PNhKvsfuNno9oIOm2225zwaE///nPLjgUDRiNHTu23n1bt66LL77YXex8v/fee3rooYd09dVXuzF71lmrb9++263TAluNfYxrrs2CcBbcCgQC232cbTRfXaxOGwVplwULFmjChAluHb/97W/deEAAAAAAAIB4xDg/AAkrsnqdvCUr/C4DNVwzbaLu++4LhT1PJ/bZWft26aXJa5br7Mmv65PVSyu3m7x6mU7/5L96b2W+Czqd2m8XDcrO1X+WztXJH72i+Zu3fWGjJrvPRYNG1Hrpkpbhttkrr3vl9s/nf6u/LfhaO7fP02Hd++v9lYt11dR3t9nvPxd9ow1lpbp4J0ZVAABaB0FwAK1p1113VXJysgvwVPXEE0+4sXQ2Tu61116rdpuNnbPxey05rs06L1kYJzpuL+rtt99u0P0//PBDlZWVVX5tQR7rDFU1zPSjH/1I6enprtNTRkaGDj744Hr3u2jRIhe6ilq5cqW+/PLLyv1OnTrVjbOzfUUDVDZqzwJLkUhku/u1DlZWj51n0717d5166qk64ogjXKDKWOesgoICF9gaPnx45eXjjz/WY489Vm30Xl0slGaBt5qPsXXPuuCCC9w4v2HDhrlOUhY+i7IOVO+//75Gjhy53X0vW7ZM++23n958883KY9l4QguURdcBAAAAAAAQj+hEBSBhhafy4mOssWCUhaJ2aZ+nJ8ceodTQ1n+Gjum5ky6c8qZun/mJXjvgZwp7Ef3260muM9RjY36sPTpsfYe6eXnJHN08Y5Jum/mJnvi+g9T2nNZvWK3Xv1uwUCtLtmjvTj11wcDdK6//1+LZ6p+Zo7/s9SP3rmwLWlngyzpiWbDKbCov1ePzp+v0fsPUKa36SAsAAFpK+KvvlPSTAxUIBvwuBUACsk5NZ5xxhv72t7+5zkgW3Jk+fbr++c9/6rrrrnPBphtvvNF1R/rJT37iuhc98MADbozc2Wef3WJ1ZGZm6rzzznPBLQs6WR2fffaZq8PYiDhjQSnrnmSdq6Ldq4yFjayjk63FPr/nnns0fvx4F3CKsv1aSOn555/XySef7NZble3Xrhs4cGDldTbm7qKLLtIvfvELF1qKrv3000+vDKFZ+MjqHDBggGbPnq2//OUv7neI4uLi7a7XRh/amD7bn4XYBg8erIULF+rll1924Spz3HHH6e9//7s7z1ZDt27d9Mknn+jRRx/Vaaed5u7XEFb35Zdf7sbrWSDrwAMPdMeyc23BLVuPPb7nnnuuC1WdcsopLlhlXaTsfF966aXb3beN67PH4dZbb1VhYaF69+7tQmQffPCBLrzwwgbVBwAAAAAAEIsIUQFIWJEvv/W7BNTw9YZV7uMRPQZWBqii3aD6ZrbXgsINWltarMVbNqmgeIsO7NKnWoDKHNtrJz027ytN+37EX1Zy9RdB6mP7/+3XHykrKUW/23W8e6EjaumWTdqvS+/K64Zkbx3XsbRoc2WI6tG5XykpENRZA4Y340wAAFCPTYXyFixRYGBvvysBkKBsDJuFa5577jnX4cjGxP3617/WSSed5G63rk0PP/ywC9NY2MnCSVdddZXrUtWSLHRjoSULOT3++OPabbfddM011+iOO+6o7PK0atUqnXjiibrssstcMCjKwlE2tu7nP/+52/bYY491waea9t9/f7d/CyjVZPu0UNAzzzxTeZ11iDrnnHN0++23u1CUdViykFR0xN0NN9zgAkc2zs8CR3buLMw1b948TZw4sVpnp5os1GT3s25UNjbPHoMTTjhBV155pbvd1vHss8/qj3/8o+6++27XGcrqs8CT1dQYFpay/dl5tfVb8Mk6RtnFWGetJ5980gWr7LG1MNmoUaP0+9//XoMGDapz3xYEs9Davffe60J2Fvayc2mBLAAAAAAAgHgV8OwvVQCQYCKLC1T25x/+CI7Y8EL+t66D1Gn9dtG1Q8dUXl8eCevQCc9pU3mZJv/oDK0o2aJ3VyzUwMxc7dtl2xePj/3g3y5w9fZBJ1WO5Wuo3834SP9e8p3+b9g4/azPztVusxp2yu6gB/Y81H391vIFuu7L9/TI6MM1Oq+7lhdt1tEf/FtX77yXTuo7tMnnAQCAhgiN213JJ2z9NwkAEpGN3rOxgdY5ykI4URYisi5HU6ZMcSGp2lhnJetcdeedd9Z7nN/85jeu09Yrr7xS77YWkLJuWBaGgj8i8xar7KHn/C4DAAAADZB2z3V+lwAAQIuiExWAhMQov9h0aLd++sucaXohf7YGZ3d0naY2V5Tpz7M/17qyEp3Zf7hSQiH1zsjWOQN2q3Ufczev06LCjcpNSVOn1MaN07P72jjAfhntdXzvwdvcvltuZ32wcrG+WrdSfTLbu9BXu1CyBmd3cLc/MGequqZn6ITeQ5p4BgAAaLjwjDlKOvZgBUJbx1kBQKJJSkpyY+qeeuop18kpNzdXc+bMcZ2ajjnmmO0GqBrq6aef1oIFC/TCCy+4rk6JwN4LWVenq6rj/Kp23QUAAAAAAED9CFEBSDheJKLwV7P9LgO1yElJ09PjjtKvp3+49VLltssHj9S52wlORZVHIrr1608UkeeCTMFGvijw9IKZ7r7nDtxNocC2L0hfNnikvly3UmdOfs19nRQI6FfD93F1z964Vm8sm68/7HGgkoJb7xvxvEbXAABAgxUWKTIvX6HB/fyuBABazV//+lc3Fu7mm2/Wpk2b3Ci9M8880435a64vvvhCkyZNcvs78sgjlQhefvll3XjjjQ0KkFmHLwAAAAAAADQc4/wAJJzwnEUq/+sLfpeBWpSFw7pl5sd6bek8191pZMeu2lhWqokr82X/Gt04bKx+0nPQdgNU13/5niasWOTu+8y4o5QaangWeE1JkQ5773l1Ts3Qf/Y/oTIIVZPV8/7KfBVWlLsRfgOzct31F075n4orKvT03kdpRXGhfjNjkj5fW+A6VR3Xe7CuGDxqu/sEAKCpQmN2VfLPDvO7DABAjFi/fr2WLl1a73b9+vVTZmam4hHj/AAAAOIH4/wAAImGTlQAEk5kxhy/S8B2/PHbz/SfpXN1at9ddO3Q0ZXjJQqKC3XWJ6/ppukfqn9mjobldKp2vy0VZbpm2kR9snqZerfL1gN7HtqoAJV5Y/l8F8Q6oc/gOsNO7VNSdXSvnapd98nqpfp0zXI9OfYI9/X/ffWB8rds0l0jDtTKki2659spap+c6jpcAQDQksJfz1XSCYcqQFAXACC5kYd2AQAAAAAAQMvjL/EAEoo11wvPmud3GaiFjb57ecl3ykpK0S923rMyQGW6pWe6UXrWGvGlJd9Vu591fTrzk9dcgGqnrA56YuwR6pyW0ejjv7cyX3bEw7r1b/Rz6s+zP9cBXXprjw5dNX/zen2xboXOHjBcB3frq1P77aLxnXvr7wtnNromAADqtaVYkXlL/K4CAAAAAAAAAICER4gKQELxlq6QNhb6XQZqsa60WKWRsHq2y1JyMLTN7YOyOlR2pYqas2mdTvv4v5q7eb3G5HV3naA6pbVr9LFtRN/09as0PKeTurfLatR9X1s2zwWnrhyyp/t6YeFG97FPRvvKbfpmtte6shJtLi9rdG0AANQnMqN6wBgAAAAAAAAAALQ8QlQAEkp4Jl2oYlV2cqpSgiEtK96s8kh4m9vzt2wNJ+Wlbg1JLSzcoAum/E+rS4v0k56D9MCeP1JmckqTjv31hlUKe57rJNUYZeGwHpozTcf0Gqx+mTnuurAXcR8rPK/adib4Q3MtAABaTHjGHHmRrf/+AAAAAAAAAACA1kGICkBCiRCiilkpoZAO6tpHm8rL9MB3U7fpUvXgnGnu8yN7DHQhq6unTtD6shId12sn/W7X8UoONv2frFkb17iPQ9vnNep+/1z0javh4kEjKq/r/32Y6st1Kyqv+2r9SnVOa6eMpKaFvAAAqFNhkbz85X5XAQAAAAAAAABAQkvyuwAAaCmRtRvkFaz2uwzU4dqhY1yg6W8Lvtbnaws0qmM3N2rv/ZX52lBeqjP6DdPovO761+LZml+4QUmBoHJT0vXXuV/Wur9T+u6i9imp7vO/L5zpxulZ16oeNUb2LdmyyX3snJbR4Fo3lZfqsflf6Yz+w5VXZYTgoOwO2j23i575/ngrS7a4NV03dHQTzwoAAPULf7NAwX49/S4DAAAAAAAAAICERYgKQMKIzKILVazrmJquf+x9tB6fP10TVizSPxbNciP+hmR31Ml9h+qQbv3cdh+tWuo+VngRt+32HNFjYGWI6tmFs7S8uNAFs2qGqKyblMlqxDjAx+dNdyGus/oP3+a2e0YepNtmfqLXl81Tu6RkXTRohE7uu0uD9w0AQGNFvpkvHbGv32UAAAAAAAAAAJCwAp7neX4XAQAtoeyh5xSZt9jvMgAAAFpF6k0XK5BTPSgMAECisd/r7fd7AAAAxL60e67zuwQAAFpUsGV3BwD+8IpKFFmwtXsRAABAIgp/O9/vEgAAAAAAAAAASFiEqAAkzoibSMTvMgAAAFpN5JsFfpcAAAAAAAAAAEDCIkQFICGEZ83zuwQAAIBWFZmbL6+iwu8yAAAAAAAAAABISISoAMQ9LxxRZPZCv8sAAABoXWXlisxf4ncVAAAAAAAAAAAkJEJUAOKel79cKi3zuwwAAIBWx0g/AAAAAAAAAABaByEqAAkx2gYAAKAtiHwz3+8SAAAAAAAAAABISISoAMS98BxCVAAAoG3w1m5QZNU6v8sAAAAAAAAAACDhEKICENe80jJ5i5f7XQYAAMAOE/mWkX4AAAAAAAAAALQ0QlQA4lpk/hIpHPG7DAAAgB0mMo8unAAAAAAAAAAAtLSkFt8jAOxAkTmL/C4BAABgh4osWCov4ikQDPhdCgAALS44sLfS7rnO7zIAAAAAAEAbRCcqAHEtMnex3yUAAADsWMWl8pav8rsKAAAAAAAAAAASCiEqAHHL27xF3orVfpcBAACww0XmEyQHAAAAAAAAAKAlEaICELcic/Ilz+8qAAAAdrzIvCV+lwAAAAAAAAAAQEIhRAUgbkXm5vtdAgAAgC8iC5bKi5AmBwAAAAAAAACgpRCiAhC3woSoAABAW1VcIq9gld9VAAAAAAAAAACQMAhRAYhLkXUbpfWb/C4DAADAN4z0AwAAAAAAAACg5RCiAhCXvIVL/S4BAADAV5H5hKgAAAAAAAAAAGgphKgAxKXIouV+lwAAAOCryIIl8jzP7zIAAAAAAAAAAEgIhKgAxKXIwmV+lwAAAOCvohJ5Bav9rgIAAAAAAAAAgIRAiApA3PFKSuWt4AVDAACAyHxGHAMAAAAAAAAA0BIIUQGIO5HFBVKE0TUAAACRJQV+lwAAAAAAAAAAQEIgRAUg7niLlvtdAgAAQEzwlqzwuwQAAAAAAAAAABICISoAcSeymBAVAACA8Vatk1da5ncZAAAAAAAAAADEvSS/CwCAxorkM7YGAADA8TzXjSowsLfflQAA0CIi8xar7KHn/C4DAAAAQC3S7rnO7xIAoFXRiQpAXIms3SBtKfa7DAAAgJgRYaQfAAAAAAAAAADNRogKQFzx8hnlBwAAUBUhKgAAAAAAAAAAmo8QFYC4ElnMKD8AAICqbJwfAAAAAAAAAABoHkJUAOJKZOlKv0sAAACIKd7aDfIYdwwAAAAAAAAAQLMQogIQV7yCNX6XAAAAEHMY6QcAAAAAAAAAQPMQogIQN7wNm6XiEr/LAAAAiDmM9AMAAAAAAAAAoHkIUQGIG5Hlq/wuAQAAICZFlhT4XQIAAAAAAAAAAHGNEBWAuOEVrPa7BAAAgJgUWUbYHAAAAAAAAACA5iBEBSBuRJYTogIAAKjV+k3ySkr9rgIAAAAAAAAAgLhFiApA3KATFQAAwPZ5K9f5XQIAAAAAAAAAAHGLEBWAuOBVhOWt4oVBAACA7YmsXON3CQAAAAAAAAAAxC1CVADigmcvCkYifpcBAAAQs7yVa/0uAQAAAAAAAACAuEWICkBc8JYzyg8AAKAuLnQOAAAAAAAAAACahBAVgLgQKSBEBQAAUBdvBZ2oAAAAAAAAAABoKkJUAOKCV0BnBQAAgLp46zfJKyv3uwwAAAAAAAAAAOISISoAccFbvc7vEgAAAGKb58lbRTcqAAAAAAAAAACaghAVgJjnhcPyNmzyuwwAAICYx0g/AAAAAAAAAACahhAVgJjnrdsoRTy/ywAAAIh5kZWEqAAAAAAAAAAAaApCVABinrdmg98lAAAAxAVv5Rq/SwAAAAAAAAAAIC4RogIQ8whRAQAANIy3er3fJQAAAAAAAAAAEJcIUQGIed5aXgwEAABoCG/9Jr9LAAAAAAAAAAAgLhGiAhDzvLV0ogIAAGiQsnJ5hUV+VwHscJ7nxew+W6O2eNFaa0+kc7oj15JI5w0AAAAAAKA1EKICEPMY5wcAANBwdKNCWzNhwgRdf/31LbrPqVOn6oILLmj0/Q488EDdcMMNlV8/9NBDevzxx9UWtdbaX3zxRf3+979XLFm6dKkGDx6sl156KWbWwnMRAAAAAACg8QhRAYhp9k5Zb+1Gv8sAAACIG946/u+EtuVvf/ubCgoKWnSfFm6ZP39+o+/3wAMP6JJLLqn8+t5771VxcbHaotZa+1/+8hdt2JAYb7RpzbXwXAQAAAAAAGi8pCbcBwB2nI2FUkWF31UAAADEDTpRAf4ZOnSo3yUADs9FAAAAAACAxqMTFYCY5q1Z73cJAAAAcYUQFdqS008/XZ999pm72Di1KVOmuM4+N910k8aNG6fhw4frZz/7mSZPnlztfh9//LG7fsSIEdpzzz118cUXV3aeshFoL7/8spYtW9boEW1VR6jZfaMdgaKfmzlz5ujCCy/UHnvs4S6XXnqplixZUnm7rcG2t5ptfbvuuqv2339/1x1r1apVuuyyy1zd++23n+vCVdVTTz2lww47zK17/Pjxuvnmm1VYWLjdem1tdqzp06fr2GOPdcc66qij9Oabb1Zuc/zxx+ukk07a5r5nnXWWzj777Gr7sdqbs/b61mDn1x4Xe3xsvzZGryGi5zRaX5SdX7tE2f7/9Kc/6fbbb3fPi9GjR+u6667bplvU22+/rZ/85CfufNl5mz179jbHtOvssRozZox22WUXt5Zbb71VJSUlda5l+fLluuqqq7TXXntpt91205lnnqlvvvlGjeX3cxEAAAAAACAeEaICENMiaxNjTAMAAMCOwjg/tCW/+c1vXMcduzz//PMurGKhkwkTJugXv/iFC4107dpV5513XmWQykIiNuZs2LBhbpzabbfdpoULF+qCCy5QJBJxt1kopFOnTm6fFhppCruvOeGEEyo/t+NYIGnt2rX6/e9/745t9Zx88snuuqosSGNBmIcfflj9+vVzaz3jjDM0aNAgPfTQQy7Qcscdd2jGjBlu+9dee0133323Tj31VD3++OMuEPPqq6/qlltuqbdWC9IcdNBB7nzZsX7+85/rgw8+qKz/yy+/VH5+fuX2Nj7RAjbHHXec+9rOUfT8N2ft9a3B6rPHxR4f22/nzp3V0v7xj39o2rRp7txeffXV7jzY+bFR82bixIm64oorXLjowQcf1OGHH65rr7222j4sYGRrsPF5d955px599FEdccQReuaZZ/T0009vdy3r1q1z52jWrFn69a9/rT/+8Y/uOWn7asp4Sb+eiwAAAAAAAPGKcX4AYn+cHwAAABqMTlRoSwYOHKjMzEz3+e67764XXnjBdQCyj9bFx+y7776ui84f/vAH/fvf/3ZBD+sGZMGYLl26uG0saGXBq6KiIvXu3VsdOnRQSkqK22dTRe9r+45+bsGZ9PR017UnWvfYsWN18MEH67HHHtP1119frQNUtNNTu3btXOcsC6tceeWV7rohQ4a4jkgW+LHrrRtXz549XeAmGAy6TkZ2v40b6w9W2vmxwJKxjknWXckCQhbwOfLII10QyMJMFh4y9nlGRoYOOeQQ97WdL7s0d+31rcHCcva42LGa89jUxY775JNPKisrq3Jtdm4mTZrknkt2Xux8W9grer6MBZ6qdnjaeeedde+991au1TqjWQc0C59ZYK+2tVgXLut69c9//lM9evRw19kxf/zjH7t93XfffXHxXAQAAAAAAIhXdKICENO8TYSoAAAAGsNbTycqtF3Wbcq6+1hHpIqKCncJh8M64IADNHPmTBfGsXBVamqq68pj3XcsHGMhEOtcFQ2TtJZPP/3UBYPS0tIq67Njjho1Sp988km1bW1MWlTHjh3dx2gwzOTm5rqPmzdvdh9tbJx1F7LuUBaQ+frrr91ovqrj6rbHQlNRgUDAhaOiYTMLEx166KH6z3/+U7mNjaCzYI+toyXX3pw1tBTruBQNUEW/TkpK0ueff+7Oh3WJsudTVdaNqqp99tlHf//7393zbN68eS6gZ13PrNNUWVlZnc9fC19ZuC96jizUZUGqms+PWH4uAgAAAAAAxCs6UQGIad6mLX6XAAAAEF+KS+UVlyqQnup3JcAOZ118Vq9eXTlWria7zbpXWcDlkUce0b/+9S83Xi07O1unnHKKG2NnIaLWrO+NN95wl5qqdnIytQW6rHPQ9lioyUa/2Tg6G7F2//33u25G11xzjbutLjXH4llQxsbXbdq0yYVsLHBmIaovvvhCoVBIixYtciPgWnrtzVlDS4l2J4uyEJOFhCyAZxc7L9HQ0PbOn63hnnvu0bPPPuu6m3Xr1s11aLJQVX3nyMYmbu/5a+MB63oOxMpzEQAAAAAAIF4RogIQ07zNhKgAAACa0o0qkF79RX2gLbAOQn379nWj+2pjo+KMBVqs05F1BZo6daqef/55/fWvf3UdqWp2FWrp+mysW3Q0WlXW7ai5bPSeXawj0EcffaRHH31U1157rUaOHLlNOKhmoCYvL6/y6zVr1riwVE5OjvvaOhbZmMM333zThYr69+/f6HF6DV17U9dQl2gwzsJNVW3ZssWNJaxq/fr11b62TmZ2nQWL7HzY+u381Dx/VVlAz8bk/fa3v3VdvKKdrSyMVhfbzs71ddddV+vtNv4vXp6LAAAAAAAA8YhxfgBiGuP8AAAAGs/byP+h0HZYqCXKAigFBQWuk9Lw4cMrLx9//LEee+wxFwyycIuNY7MAlYVSxo4dq1tuucXdf/ny5dvss6Vqi9Zn491sZFu0tmHDhrma3nnnnWYdy7poXXrppZUBGQuDXXLJJW5M26pVq+q877vvvlv5uXVaevvtt11oKRrasRCSjdiz7SZOnFht/F9Lrr0ha2jKYxPtpLRixYrK66yr1Pz587fZ9sMPP6w2cs9G8dnx7XlinaRstJ2dHztPUXZOqrJgnnU8O/744ysDVCtXrtScOXOqBblqO0c2zrBfv37Vnr+vvvqq65pmz994eC4CAAAAAADEK0JUAGIbnagAAAAar7DI7wqAHcZG8VnwZPLkyTrkkEPUvXt3113n5Zdf1qeffurGqt17771u5FpycrLGjBnjxvpZWOeDDz5w3Y5uvPFGFxiycFV0n9ZtyG6vL4BUX23Tpk3T559/7kI3FghavHixLrzwQhdImjRpki6//HK9/vrrrgtWc9i6bJ82Zs/OxVtvveXWbZ25ovu2Y3/11Vfb3Peuu+7SU0895QJEV1xxhQsXXXnlldW2sRCVnQsLmh199NHVblu3bp3bb2FhYbPW3pA12H6/+eYbffbZZyopKWnQuRk8eLAbqffggw+6gJAd47zzzqt1JJ2F8C6++GL32D/33HP61a9+pfHjx2v06NHu9quuusqdn8suu8ydLztv9913X7V9WKez7777znWksjpffPFFnXrqqS6cZSP5qp6jqms566yzXMjKPtqYPTsHv/71r/XMM8+4YFVz7MjnIgAAAAAAQLwiRAUgZnlbiqWKsN9lAAAAxB1vCyEqtB0WTrFw1Pnnn+/CKM8++6zronT33Xe766xr0NVXX+2CUsYCIja6zwI/FoixMIyNY3viiSfcmLpoYKhHjx4uaPXKK680ubaLLrpIM2fOdHVYOMeObfVZZycb2WaBJQt0WbjHxr41x0knneQCPxbssePedNNNGjBggFuXnR/z0EMP6cQTT9zmvjfffLNeeOEFdy6sHrvPqFGjqm1jo/Ss/n322WebsXrvv/++2++sWbOatfaGrOGcc85xAbdzzz3X7b8hrIOTBZ1sZKE95rfddpuOOOKIWs+5XW+jC60r1v333++6btnoxyg7LzZi0DpL2fmyUZC33357tX1YMOnkk0/W008/7db/+OOPu+CZbT937lxt2rSp1rXYebXglj337DGxczBjxgxXrwWrmmNHPhcBAAAAAADiVcCr2n8cAGJIZMUald31hN9lAAAAxJ3QgaOVfOR+fpcBIMa99NJLLlxmI+t69uxZ57YWGrJOXRZGOvjgg5WIDjzwQDfm7s477/S7lDYtMm+xyh56zu8yAAAAANQi7Z7r/C4BAFpVUuvuHgCaztvEKD8AAIAmYZwf0GJsvJpd6pOUlJh/Yvn2229dyMpG69lYPQsaxYpwOOxG09XFOi1ZJ6pE0NafiwAAAAAAAK2Nv6oAiF2bCv2uAAAAIC4xzg9oOTberOo4t+1pSDeneFRaWqonn3zSjZq75557FAwGFStsxJ2NcKyLjcabOHGiEkFbfy4CAAAAAAC0Nsb5AYhZFROnqOK1D/wuAwAAIO4E+nZX6hWn+V0GkBBsjN2qVavq3W7w4MFKSUnZITVhqwULFmjLlro7GNtjYo9NImgrz0XG+QEAAACxi3F+ABIdnagAxCxvM+P8AAAAmoRxfkCLsQ5MdkHs6d+/v9oSnosAAAAAAACtK3Z6sANATcWlflcAAAAQl7zCYr9LAAAAAAAAAAAgrhCiAhCzPEJUAAAATVNSKq8i7HcVAAAAAAAAAADEDUJUAGJXKSEqAACAJtvCSD8AAAAAAAAAABqKEBWAmOWVlPldAgAAQNzytjDSDwAAAAAAAACAhiJEBSB2ldCJCgAAoKm8ohK/SwAAAAAAAAAAIG4QogIQszxCVAAAAE1XVu53BQAAAAAAAAAAxA1CVABiF+P8AAAAmo4QFQAAAAAAAAAADUaICkBM8iIeL/wBAAA0g8f/pQAAAAAAAAAAaDBCVABiUymj/AAAAJqlvMLvCgAAAAAAAAAAiBuEqADEpmJCVAAAAM1CJyoAAAAAAAAAABqMEBWAmOSVlPldAgAAQHwjRAUAAAAAAAAAQIMRogIQm0oJUQEAADSHR4gKAAAAAAAAAIAGI0QFICZ5FRV+lwAAABDfCFEBAAAAAAAAANBghKgAxKZIxO8KAAAA4ls5oXQAAAAAAAAAABqKEBWA2BQmRAUAANAcXhnjkQEAAAAAAAAAaKikBm8JADsSnagAAACap4xOVACA+BMc2Ftp91zndxkAAAAAAKANohMVgNgU8fyuAAAAIL5VEKICAAAAAAAAAKChCFEBiE10ogIAAGgeQukAAAAAAAAAADQYISoAsSlMiAoAAKBZPEJUAAAAAAAAAAA0FCEqALGJF/0AAACaxeP/UwAAAAAAAAAANBghKgAxyWOcHwAAQPOQoQIAAAAAAAAAoMEIUQGITYzzAwAAaB46UQEAAAAAAAAA0GBJDd8UAHYgOlEBiHElOdLMPTapIMVTQaBQEfFzC0Bs6dZOOtHvIgAAAAAAAAAAiBOEqADEpgidEwDEtrQNUnrRcuUum67slHba1Km3VmW00xJt1sIt+SqLlPpdIoA2buf03QlRAQAAAAAAAADQQISoAMSmYMDvCgCgXn0Kdtb6tOkKlRUpd9ls5UoabDnQYJK25A3QmuwcLQ2WaEHJEhWWb/K7XABtTCDA9HYAAAAAAAAAABqKEBWA2BTiRT8AsS8z31OnsXtp9brPql0fjFQoa9UCZa2S+knax8b/deiltbl5Wp4U0YLS5Vpbutq3ugG0DUFCVAAAAAAAAAAANBghKgAxKZDEjycA8aH3wv5akzNVnhfe7jbWWy993VL1tIukvSSVZXXW+o7dVJAa1KKKNVpetFSeGGUKoOUERYgKAAAAAAAAAICGIqUAIDbRiQpAnEhf4alLv3FasW5So+6Xsnm1uthF0u6SKtKztDGvl1amp2lxZIPyi/JV4VW0Wt0AEh+dqAAAAAAAAAAAaDhCVABiUyjkdwUA0GA95/TUys7J8iLlTd5HUvFmdVzyjTpKGiopkpSizZ36a3VmlpYGijS/aJFKwsUtWjeAxBYgRAUAAAAAAAAAQIMRogIQm5IIUQGIH2lrI+o+aLyWrZ/YYvsMVpSpfcFctZc0UNJ+gaCKOvbTmva5WpZUrgUlS7SxbEOLHQ9A4qETFQAgHkXmLVbZQ8/5XQYAAACAWqTdc53fJQBAqyJEBSA2EaICEGd6fNNZK3q1U7iiqFX2H/AiylizyF36SBonqSSnu9bldlFBiqeFZSu0smRFqxwbQHwKihAVAAAAAAAAAAANRYgKQEwKEKICEGdSNnnqmTle+Rve2mHHTNtQoO52kTRSUllGB23M66kVaUnKD6/Tki2LFVFkh9UDILakhFL9LgEAAAAAAAAAgLhBiApAbAoRogIQf7rNyNWygdmqKNvky/FTtqxXJ7tIGi6pIrWdNuf11qqMdlrsbdaiokUqi5T5UhuAHa9dcqbfJQAAAAAAAAAAEDcIUQGITXSiAhCHkoo99U7bVwvKXlMsSCotUu6y2cqVNFhSJJikLZ0GaXV2tpYGirWgeIm2VGz2u0wAraRdEiEqAAAAAAAAAAAaihAVgNhEJyoAcarL9AwtG5qn0uI1ijXBSIWyVs5T1kqpv6Txkko69taa9h21PDmsBaXLta409urGVuEiT2smlmvzNxUqX+8pKTOgrF1Cyjs4xX1el1Vvl2nNO+X1HmPgjelK6RB0nxd+V6GV/y1T2VpPqV2C6nx4sjIHb/vrw8rXyrThi3INvKGdQml114EdixAVAAAAAAAAAAANR4gKQGyiExWAOBUqk3oH99FcvaJYZ3GX9LVL1MsukkZLKs3qrPUdu2lFalALy1eroHiZPHl+l9rmhYs9LXywWGWrPGUMDCpraJJKV0W07uMKbfo6rH6Xpyk5Z2v4qTYZA7b/72rJ0ogKvw0rtUtASVlbQ1AVmz0teapUoYyAcsclqXB2WIufKNWAq4IuUBVVvsFqKFfnI1IIUMUgxvkBAAAAAAAAANBwhKgAxKRAaorfJQBAk3Wanqqlu3VX8Zblijepm1erq10k7W5hmvRsbczrpZXtUpQf3qjFRfmq8Cr8LrPNWf1OmQtQdTokWZ0O/eHfSAswrXilTKveKlePE1PrDFHVFqSy7lYL/lSsYKrU88w0BZO3BqE2TquQVy71PD1V7XqHVL5vRHNvK9b6T8vV9egfjrPqzXIltQ+ow1h+rYhFdKICAAAAAAAAAKDheLUDQGxKT/O7AgBosmBY6lMxRrP1kuJdUvEmdVwySx0lDbXQTVKqNncaoNWZmVoS2KKFRfkqCRf7XWbCK1/nKZQZUMf9k6td336PJBeiKs4PN2m/K14pVfkGT92OS1Fqpx86TJWtjbiPad22XpfcPui6Utlov6iS5REXtupxaqoCIbpQxaIMOlEBAAAAAAAAANBghKgAxKSAjfNLSZbKyv0uBQCapOPXScoc1U+FmxYqkYQqSpVTMEc5kgZJ8oJBFXXsrzXtc7U0VKoFxUu1qXyD32UmnF5n1R4utpF+Jim78SGmooVhbfwyrPTeQeWMqf5rQajd1v1FyqRgsuR5niJlnkLpP2yz8vUypfUMKntXRvDGKsb5AQAAAAAAAADQcISoAMSu9FRCVADiVsALqE/hKM1SYoWoagpEIspYvdBd+kja2zoU5fbQ2tzOKkiOaGHZSq0qWeF3mQnHxvBtmRfWyv9ayknKO6jxY3BX2H0ldTkqRYFA9RBWep+tHajWvlfuRgiu/7xCXpnUrt/WwFTh3LC2zAmrz0Vp29wXsYNxfgAAAAAAAAAANBwhKgAxK5CeJm9jod9lAECT5X4bVPvRQ7Rxw2y1JWnrl6uHXSSNslF0GR21vmMPrUxP0qLwWi3dskQRbe2ghMZbN7lcK17aGoCyAFWPk1OVOahx3aC2zA+rZElE7QYG1a7vtvfN2jlJWbtWaO0H5e5iMnYKKWevJNeVatXrZcrcOaSMAT/c14t4CgQJVMUSOlEBAAAAAAAAANBwhKgAxK52tY8uAoB40mfNbpqR1LZCVDUlb1mnznaRNNy6KKVmaGNeb63KSNdib5MWFeWr3ObGoUGSMgLqeECyKjZ52jyzQsv+UaryDRHl7d/wblRrP9wajOpURwerXqenqXB2hUpXekrpFHChKes6tfHLCpUURDTg5HQXqFr9VrnWfVKuSKl1qgqq2/GpSu20tZMV/JVBJyoAAAAAAAAAABqMEBWAmBVIT5XndxEA0EzZ86UOY3bXuvVf+V1KzAiVblGHZd+qg6Qh1sEolKzCToO0OitbS4PFml+0WEUVdCLcnuxdk5S969bPy9Yla+H9JVr1ernrCpXeq/6OVBVbPBXODiulc0AZA+vePnNIkjLtQfqeV+Fp1f/KlDMqSaldgtrwebnWTChX3iHJSu8V1MrXyrT0qRL1vyqdrlQxgE5UAAAAAAAAAAA0HCEqALErnU5UABJDn+VDtC59ukVQ/C4lJgXC5cpaMU9ZK6T+ksYHAiru0EdrczpqWVKFFpQu0/rStX6XGZNSOgSVt3+yCy9tnhVuUIhq86wK2TTF9rs3/leBdZ9UqKLQU6dDk7d+PblCad2D6nzo9x2twtKSp0pVOCesrCH8quGnlFCakoJbHycAAAAAAAAAAFA/XtkAELMChKgAJIiMxZ46jd1Lq9dN8buUuBDwPLVbu9hdekkaI6k0u6vWd+yqghRpUflqLS9eprYiUuGpaEFEiniuM1RNyR23dnwKb2lYSK/wm7D7mL1b434VCBd7WjOhTB33TVZy+63j+spWRZQ55IfgVkrn769f7W1tMwbfMMoPAAAAAAAAAIDGIUQFIGYF2hGiApA4ei/spzU5X8jztgZY0Dipm1aqq10kjZBUnp6jjXk9tbJdqvLD67W4KF/hBD23XoW0+PESBVOkwb8JKZBUfUxeybKI+5iStzXAVJ+i/IhCmQGlfh94aqg175VLAanj/j90N/IiUtXT7pVvDXIFmOTnu/SkDL9LAAAAAAAAAAAgrhCiAhC76EQFIIGkr/DUpd84rVg3ye9SEkJy8UblLdmoPEm7WLempDRt7txHqzIytDhQqIVF+SoNlygRhNICyhoa0uaZYa16p1xdDv9+dJ6k4qVhrf2wXMFUqf2I+kf5lW+IKFxoHa3q37bm/dZNKleXI1JcPVEWxCpeEpEX9hQIBVS06PtAVyMDWmh57ZLpRAUAAAAAAAAAQGMQogIQs+hEBSDR9Pquh1Z1TVEkXOZ3KQknWFGi9su/U3tJg6wjUjCoLXn9tSY7R8tCZZpfvESbyzcqXnU9OkUlS0u0dmK5ihaG1a53SOXrI9o0K+y6PvU4NVVJ2VuDS1vmh90lrXtQ2cOq/3e/bM3WTlFJ2Y1rFbXqrXIl5wSUO7b6/uzrgn+VadFfS5TWI6gNn1W4jxmDCFH5jXF+AAAAAAAAAAA0DiEqALErI93vCgCgRaWu89R9p/Faun6C36UkvEAkosxVC5W5SuoraZyNvcvtofW5nbUsOaKFZQVaXbJK8SI5J6h+V6Zrzbtl2jwrrLX55QqlS9nDQso7MFlp3X/oLGUBqjXvlKv9yKRtQlQVW7aGqELpDQ9RlRREtHFqhXqemuq6TVWVOzpZ4WJP6yZVqGRphTIGhdTt2BQFmOfnu4yUbL9LAAAAAAAAAAAgrhCiAhCzAtl0UACQeHp801kFvdopXFHkdyltikV60tcvd5fukva0rkyZedrQsYcK0kLKr1ijZUVLFdHWcXSxKCkzoK7HpKrrMXVv1/nQFHepTfvdktylMdK6BTX0rozt3p63f4q7ILZ0TOvkdwkAAAAAAAAAAMQVQlQAYlagPSEqAIkneVNEPTP2Vf7GN/0upc1LKVyrznaRtJukcGqmNnTqpdXt0rXY26iFRfmqiJT7XSbQJB3TuvhdAgAAAAAAAAAAcSXodwEAUOc4vxA/pgAknm5ft1dyanu/y0ANodJCdVz6rYbMmaZD587X+SuCOt0bpMMyR2pY1lClJ22/GxMQazqkWzyw7Vi7dq2effbZatedfvrpGjx4sPLz83doLddcc4077pQpU3bocdEyPM+L2X22Rm3xorXW3tbOaVtbLwAAAAAAQGORTgAQswKBgJTFC9YAEk9SsdQrZbzfZaAewXCZslfM04C507TfnG919tJinVXeV0e120N7ZA9XbkoHv0sEtqstjfOzANWhhx6q1157ze9SEOcmTJig66+/vkX3OXXqVF1wwQWNvt+BBx6oG264ofLrhx56SI8//rjaotZa+4svvqjf//73igf333+/C2c2xksvveTus3TpUvf13LlzdfLJJ7dShQAAAAAAAImBEBWAmBbIZqQfgMTUdXqmUtPbTsghEQQ8Txlr8tV7/pca+91MnZK/XucVddNxabtrbPYIdU3v7neJQJsc51dcXKzCwkK/y0AC+Nvf/qaCgoIWD+rMnz+/0fd74IEHdMkll1R+fe+997rnelvUWmv/y1/+og0bNihR7b///nr++efVufPWzoRvvvmmvvzyS7/LAgAAAAAAiGlJfhcAAHUJtM+Sp5Z9IQMAYkGw3FPvwDjN1at+l4JmSN24Qt3sImkPSRXtcrU+r6dWpqcoP7xOi4sWK+KF/S4TbVCHNtSJCkhEQ4cO9bsExLkOHTq4CwAAAAAAABqOTlQAYlogJ8vvEgCg1XSenqb0zB5+l4EWlFS0QZ0Wz9Sw76bpiHmLdMHqVJ0aHKJDskZqSNZgpQRT/S4RbUB2So6SQym+Hd9GkNkIqZUrV+quu+7Svvvuq1133VXHHHOMJk6c6Laxjz/96U+122676YADDtCtt96qLVu2VNvPjBkzdOmll2rMmDEaNmyYfvSjH+nPf/5zte1sxNVBBx3kPp82bZo7rl1X1caNG93+x48fr+HDh+uwww7TE088oUgksk3t1qXFuv+MHj3aHfPggw92477Wr1+/zbZWxx/+8Ad3fFvfT37yE/3vf/9rsfOIHev000/XZ5995i72PJoyZYrrUnTTTTdp3Lhx7rnzs5/9TJMnT652v48//thdP2LECO255566+OKLKztP2ffCyy+/rGXLlrl92ni1pozzi45xs+5UVUe6zZkzRxdeeKH22GMPd7HvlyVLllTebmuw7a1mW589T607kXXHWrVqlS677DJX93777ee6cFX11FNPue8VW7d979x88811dnyLjo6bPn26jj32WHeso446ynU/ijr++ON10kknbXPfs846S2effXa1/VjtzVl7fWuw82uPiz0+VUfe1ce2s+2ffPJJt2/7Gfbvf/+7wTXNnj3bnXf7ubbLLru4uuznU0lJSeU2paWluuOOO7T33nu7x+fGG2901zVW1XF+9nPRzmH0nEZ/TtrPwUceeUSHHHJI5c/ZZ555ptp+7Llj3wc2VtHqtTWff/75WrNmjVu73dfqtMexoecRAAAAAAAgVhGiAhDTArmEqAAkrkBE6lM2xu8y0IpC5cXKWfaddpozTQfNmaNzC8I6IzxAR2SM1G7Zw5SZnO13iUhAsTLKz8Ikb7zxhgsa2OW7775z4YG7775bl19+uXr06KFTTz1VycnJ7kX722+/vfK+dr+TTz5Zn3zyiXvR3l6c79ixoxu/dcopp1QGIfbaay+dccYZ7vNu3bq5/dt1Net45513XDjAQhzr1q1zwah77rmn2nYWBrB9f/jhhy7gYLXl5ua6wJXdr+qYNws0WLDg0UcfVU5Ojqu1U6dO+vnPf65PP/20lc8sWsNvfvMb1/3JLjYCzQIuZ555piZMmKBf/OIXLoDStWtXnXfeeZVBKgvIWOjOwif23Lztttu0cOFCXXDBBS6cYrdZQMmeG7ZPCzA1hd3XnHDCCZWf23EskLR27Vr3fLZjWz32XLTrqrrqqqtcaOjhhx9Wv3793Frt+2bQoEEuGGOBJwvtWHDRvPbaa+771L4HHn/8cRcGevXVV3XLLbfUW6uFiCxYaOfLjmXfEx988EFl/RZUzM/Pr9zevq8sMHXcccdVG0Fn5785a69vDVafPS72+FQdeddQFkKyIJEFRS3s1JCaLLhm9dhowjvvvNP9/DjiiCPcz7+nn366ct/XXnutXnjhBXcuLThqQdCaIbfGstCqncPoObWvjQXL7rvvPhcC/etf/+p+VtvP4gcffLDa/e182vPe1vV///d/7vPTTjvN1X399dfrd7/7nQvQ2UcAAAAAAIB4xjg/ADEtkMOLywASW8eZIWWO6q/CTQv8LgU7QDASVtaqBcpaJfWVtLekkg69tDank5Ynh7WwrEBrSlb5XSbiXF67rooFmzdv1n/+8x9lZ2/9/5yFFCw08Nhjj7nOJxZeMBY4sW5U0YCDhZx++ctfunDSc889p169elXu04IPFl744x//6IIg1jHKwlj2Qr6FqCycVVOXLl3c7ZmZme5rC0pZVyzrxmPhkmAwqOXLl7swQVZWlgsrREepeZ7nQgwWLrDggAWqjH2cNWuWTjzxRHc/24f55z//6b5G/Bk4cGDlc2T33Xd3IRbrGmQfrfOOsa5qFp6zDmQWurPQkXUQsrCLPc+MBa0seFVUVKTevXu7cWopKSlun00Vva/tO/q5fS+kp6e752u07rFjx7ruafY9ZsGWKAsBRjs9tWvXznXOsuDUlVde6a4bMmSI3n77bdfNza63blw9e/Z0gR97blsw0e5nYZ762PmxwJKxAKR1pbJAjn2/H3nkkS48ZN/rV1xxhdvGPs/IyHDdjGobQdfUtde3Bvset8fFjtWUx+bwww935zXq6quvrrcm61S188476957763cxrqcWTczC5LZz8K5c+fqrbfecj9HLIAVPY/W1WvevHlqKjt/dql6Ti34Zc9v+zloxzb77LOPAoGAC9zZz0oLkpqKigp33tu3b+++tufLpEmT9O6771b+jP7qq6/c4wkAAAAAABDP6EQFIKYxzg9Aogt4AfXdPNLvMuCTgKT0dUvVc8GX2uu7GTpx4WqdX9hJJ6Tuqn2yR6hnu14KuK2Ahuuc3l2xwIIa0QCVGTly6886CxFEA1TGwlIDBgxQeXm569TyyiuvuE4tFkypGqAyF110kQs92Da2fUNYOCAaWDA77bSTC7fYqLZooMLCXmVlZTr33HMrA1TGwgQWzOrTp48LOkRHc1lQwDpoXXPNNZUBKmOhh6r3R/yyTjvWqcg6IlmAxC7hcNgF/mbOnOmeOxauSk1NdR1+rEOPhUoskGSdq6o+51qDdTyzYFBaWlplfXbMUaNGuQ5uVdmotSjr6GaiwTATDcpY8NFYJzYL2Fh3KAvOfP311y7EYwGp+lhoqur3j4WjomEzCykeeuih7vstysbp/fjHP3braMm1N2cNDWE/xxpbkwWU/v73v7vnjAWiLGxnHcwsOGo/f8wXX3zhPlrnsCj7GWOd9Fqa1WxBUTtWtGa72NfWbW/q1KmV29rP6GiAyuTl5bnnTdWf0fazPPocAgAAAAAAiFd0ogIQ0+hEBaAtyJkdVPvRQ7Vxwzd+l4IYkLJ5jbrYxV7ktu4PaVnalNdLK9ulKd/boPyixaqINCw8grapS7vYCFHZKK+qrAuMsQBTTdbBxdgL9xZ2MPbRuk7Vtq2FDhYtWuTGkTW2DmMv/lvAwroF2efffLP15691tqopKSnJhVBsBNm3337rgjV2X+tcVDUkVjUsFt0f4peF7FavXl05Vq4mu82eAxaKsc5q//rXv1zHM3tOWAcfG2NnIaLWrM/GXtqlpqqdnExtga7o91xtLNRk4wj/8Y9/uHF/9n1oHd8sNGi31aXmWDwLbVlQZ9OmTS5gZIEzC1FZWCgUCrnvYxt/19Jrb84aGiL686wxNVk9Nkb02WefdT97rHuedf6yUFVUNNgZDbZF2c+dlmY1GxspWJuVK1fW+RyqeQ4AAAAAAAASASEqALEtO1NKCkkVYb8rAYBW1Wf1cM1I5kV3bCupZLM6LP1G9hKs9b2IJKVoc6fBWpOZqSWBLVpQtFjF4SK/y0QM6RwjIartvcBuI7TqYmELU7VbTW0aMlrM1NXhxsIdJto9xTrl1CY6qs2CD9Hjbq/TUNVuLYhf9lzo27evG91XGxsVZywEY52OrJOQde55/vnn3fhH60hlI99asz4bBRcd01cz+NdcNnrPLva98dFHH7lRnNdee60LCUa/H7YXzLEuRVFr1qxxYSnrUmSsW5MFKd98803XYal///6NHqfX0LU3dQ1N0ZCaLGxn4/5++9vfuo5c0Z83FiyLioan7Lx17959m8BTS4qGQJ966ik3UrGmqscHAAAAAABoKwhRAYhpgWBAgY458lau9bsUAGhV2QukDmNGaN36L/0uBTEuWFGm9gVzZDGNAZL2CwRV1LGv1rbvoGVJ5ZpfslQby9b7XSZ8FCshqqaKvpj/wgsvVBs51pqigSjrvGJjq2qq2h0mGgaJhr1qsqAV4pOFeqxbUDTs8/7777tOSlXDJBaQso5kFq6yQIwFUN566y0XDhw7dqyGDRum//3vf1q+fHnlPluqtqqsPhsJZ2PloiEdCwVapyUbP1lz3FxjWBctG5f54IMPuqCPhcFsfOWll17qRm7WFUB69913ddJJJ1XW8/bbb7vQUjQ8ad25bMSehc2sbhv72Rprb8gaWuqxaWhNFrKz7mXHH3985f3sZ86cOXM0fPjwyjGExkJm55xzTuV27733XrNrrLleGzVo1q9fX3lc88EHH+iZZ57RjTfeWDn+EQAAAAAAoK1oub8YAUArCXSqPo4CABJVn2WD7aee32UgzgS8iDLW5Kv3/C819ruZOi1/g84t6qZj03bXmOzd1TU9vgM1aHshqmj4Y/r06bXebuOwHn744cqwUkuMTBs6dKj7+Nlnn9V6e/R6Gx9oo7d22mknN97PusXUNGPGjGbXA39YZx4b1Th58mQdcsghLjxlnYVefvllffrpp+65d++997qRdRbIseCJjfWzYI4FT6zbkQVPLDB0wAEHVO7Tnid2u4V3mlPbtGnT9Pnnn7twziWXXKLFixfrwgsvdMGlSZMm6fLLL9frr7/uumA1h63L9mlj9uxcWEjM1m2duaL7tmN/9dVX29z3rrvucsGyDz/8UFdccYXmz5+vK6+8sto2FqKyc2FBs6OPPrrabTaq0/ZbWFjYrLU3ZA22Xxu9ad/fJSUlzTpnDanJupZ99913riOVHfPFF1/Uqaee6rqYFRcXu20scHXiiSfqT3/6k9vO9mNBLLtfS3Weeu2117RkyRINHjxYP/nJT/TrX/9ajz32mHuO//Of/3TduuxxsHMFAAAAAADQ1hCiAhDzAp22jjQAgESXscRT5w6j/S4DCSBt4wp1XzhdI7+bruMXFOiCTR30s+Th2i97D/XJ6KtgIOR3iWglGclZ7hLPLFRhARXrILNgwYJqt/397393ASoLRETHBUa7vljXmaayIIEd08IfFqqo6qGHHnJ1WCgj2pHIuueEw2Hdeuut1Y5rHYi++OKLJtcBf1mgxZ4H559/vgu5PPvss66L0t133+2us65KV199tQtKGQvHWGcqC/xcddVVuuyyy9zYtSeeeMKNqYsGhnr06OGCVq+88kqTa7vooos0c+ZMV0dBQYE7ttVnIcLrrrvOBZYs0GXfNzYqrjmsk9SvfvUrF4Sy4950002uQ5uty85P9PvCwj413Xzzza6LnJ0Lq8fuE+14FGVdoKz+ffbZZ5uuVtb9y/Y7a9asZq29IWuwTk8WcDv33HPd/pujITVZwOrkk0/W008/7dby+OOPu593dq7mzp1b2d3uN7/5jbvdft7ZbRbwsjU0l9VhHa9uuOEGd2xzxx13uKDgc889p/POO889n3/84x+782RjGAEAAAAAANqagGdv4wOAGFbx6QxVvPCm32UAwA5R0iWgqbkvyvPCfpeCBBZOaadNnXprVUY7LfE2a2HRIpVFyvwuCy2gf/sh+uN+//C1BnuB3jr3PPnkkxo3blzl9VOmTNEZZ5yho446yo1Cq+r00093oRULqVgnFuvQYqEHCzscfPDB6tatmxuh9vHHH6t9+/YuhBDt7mIhJgu6VFRUuICCHfOggw7aZp9V2XbW2WbChAnq2bOnuy56TAsO2P27du3qOuLYxUIwNt7KPhoLUFnIweqxrlQ2xm3p0qWaOHGievfu7bpUWY2jRxOMRdvw0ksvuXBZ1e+p7bERdtap67777nPf30BNkXmLVfbQc36XAQAAAKAWafdc53cJANCqtr5lFwBiWJBOVADakLSVnrr231sF6z70uxQksFBZkXKXzZb9C2tDJCPBJG3pNFBrstprabBE84sXa0vFZr/LRBsc5Rf105/+VP369XPdUiyoZKP7LNRkHaAuuOAC9erVq3JbC1r97ne/05///Gc9//zzblsLQTX1mDbWysZ/2Xgt6zxl3WOsU42Ft6IsaGUdsWxb6y5kI7Bs21tuucWFqaybC1BTJBJxl/pEu6slGgtCWsjKOsnZqLgDDzxQscKCkfW9x9C6TMVCdyYLjNYnGAy6CwAAAAAAABqHTlQAYp63qVClNz/kdxkAsMOU5gY0tdvLioRL/S4FbZT9glDcsafW5uSpICmiBaXLtbZ0td9loQF+utP5OmXIxX6XAaAW999/vx544IF6t2tIN6d47ERlXd0skGgj/O65557KbnKxINq5ri7Wic66zflt8GCLP9ft2GOP1Z133ql4RScqAAAAIHbRiQpAoiNEBSAulPzyz1IJY4YAtB2LxqzR0vUT/C4DqFSWlaf1HburIDWoRRWrtbxomTwXt0IsuXbUXRrXnfFYQCyyMXarVq1qUEgmJSVlh9SErRYsWKAtW7bUuY09Jg0JMLW2r7/+ut5tcnNz4y6IVxUhKgAAACB2EaICkOgSs0c8gIQTyMuVt3Sl32UAwA7TY1YnFfRpp3B5kd+lAE7K5jXqYhdJu9s4ofQsbczrrZXpqVrsbVD+lnxVePWPGELr6pM90O8SAGyHdWCyC2JP//79FS+GDx/udwkAAAAAAAAJixAVgLgQ6NSBEBWANiV5s6ee7fZV/sY3/S4FqFVS8WZ1XDJLHSUNlRROSlVhp/5anZmlJYEtWlCUr5Jwsd9ltikpwVR1zejldxkAAAAAAAAAAMQlQlQA4kKgU67fJQDADtdtRo6W79Re5aUb/S4FqFeoolTtC+aqvSTrhbR/IKiijv20JqeDloVKtaBkqTaWbfC7zITWM6ufQoGQ32UAAAAAAAAAABCXCFEBiAvBTh0U9rsIANjBkko89U7ZV/NL/+t3KUCjBbyIMtYscpc+ksZJKsnpoXW5nVSQIi0sW6GVJSv8LjOh9Mke5HcJAAAAAAAAAADELUJUAOJCoGue3yUAgC+6fNVOS4d3VmnRKr9LAZotbcNydbeLpJGSyjI6aGNeT61IS9Ki8Fot3bJEEUX8LjNu9cmyHmAAAAAAAAAAAKApCFEBiAuBrh2lUEgK048KQNsSrJD6eOM0R6/4XQrQ4lK2rFcnu0gaLqkitZ025/XRqox0LfY2aVFRvsoiZX6XGTf6ZBOiAgAAAAAAAACgqQhRAYgLgVDIBam8ZXRiAdD2dJqRoqUjeqqocKnfpQCtKqm0SLnLvlWupMGSvFCyNucN1Jrs9loaKNaC4sXaUlHod5kxi3F+AAAAAAAAAAA0HSEqAHEj2KOLwoSoALRBgUhAfUpH61sRokLbEgiXK3vlfGWvlPpLGi+ppGNvrWmfp+XJFVpQulzrStf4XWZMyE7JUW4a448BAAAAAAAAAGgqQlQA4kagRxdJX/tdBgD4osOskDJHDVDhpvl+lwL4JiApfe0S9bKLpNGSSrO7aH2HrlqRGtTC8tVaXtw2w4a9GeUHAAAAAAAAAECzEKICEDeCPTr7XQIA+CbgBdR300jNFCEqoKrUTavU1S6SdpdUkd5eG/J6alW7NOWH1yu/KF9hL6xE1yeLUX4AAAAAAAAAADQHISoAcSPQvdPWFhSe35UAgD9yvgsoZ/Qu2rBhlt+lADErqXiT8pZ8IxtsN1RSOClVmzsN0uqsDC1RoRYWLVZJuFiJpg+dqAAAAAAAAAAAaBZCVADiRiAtVYG8XHmr1/tdCgD4ps+q4dqQQogKaKhQRalyCr5TToFkvZq8YFBbOvbXmvY5WhYq04LipdpUvkHxjhAVAAAAAAAAAADNQ4gKQFwJ9OhMiApAm5a10FPHMXto7fppfpcCxKVAJKLM1QuVuVrqK2lvScW53bUut4sKkj0tKCvQ6pKViicBBdQ7ixAVAAAAAAAAAADNQYgKQFwJdu+iyFff+V0GAPiq99KdtDbjS+abAi0kfX2BethF0ihJZZl52tCxu1akJSk/vFZLtyxRRBHFqi7teigtKd3vMgAAAAAAAAAAiGuEqADEXScqAGjrMpZ66jx2jFatm+x3KUBCSilcq852kbSrpHBqhjbm9daqjHQt9jZpUVG+yiNlihV9sm1QIQAAAAAAAAAAaA5CVADiSrBnF79LAICY0Ht+H63u8Jk8L+x3KUDCC5VuUYdl36qDpCHWAy6UrMJOg7Q6K1tLAsVaULxYRRWFvtU3KHeYb8cGAAAAAAAAACBREKICEFcCWRlSbra0fpPfpQCAr9JWeeo6YB8VrPvA71KANicQLlfWinnKWiH1l7RvIKDijn20pn1HLU+q0ILSZVpfunaH1bNzh9122LEAAAAAAAAAAEhUAc/zPL+LAIDGKHvmv4p8+a3fZQCA70pzApra/WVFwqV+lwKghtLsLlrfsasKUgJaWL5SBcXLW+U4SYEkPfvjSUoJpbbK/gEAAAAAAAAAaCvoRAUg7gT79yREBQCSUjd46jFkvJasf9fvUgDUkLpppbraRdIISeXpOdqY10sr2qVocXidFhctVrgFxnH2az+EABUAAAAAAAAAAC2AEBWAuBPs28PvEgAgZnSfmaflfTMULt/idykA6pBcvFF5SzYqT9IwSeHkdG3u1EerMtppSaBQC4vyVRouafR+h3TYtVXqBQAAAAAAAACgrSFEBSDuBLp1ktJSpRLGVwFAcqGnXu321aKN//O7FACNECovVs7y2cqRtJOkSDCkLXn9tTY7V0tDJVpQvFSbyzfWu5/BHXbbIfUCAAAAAAAAAJDoCFEBiDuBYEDBPt0V+W6h36UAQEzoNiNbywbnqrxkvd+lAGiiYCSsrFUL3aWvpL0lleb21NrcTlqeHNHCshVaXbJym/sNySVEBQAAAAAAAABASyBEBSAuBfv3IEQFAN8LlUi9k8Zrvv7jdykAWkhAUtr6ZephF0l7SirL7KT1HbtpRVqS8ivWqNSrUMf0zn6XCgAAAAAAAABAQiBEBSAuBfray4kAgKgu09O1bHgXlRRt26kGQGJIKVyjLnaRZP2nOu90pN8lAQAAAAAAAACQMIJ+FwAATWHj/BTkRxgARAUrpD7eOL/LALADdejCKD8AAAAAAAAAAFoKCQQAcSmQkqxAD8bXAEBVeTOS1S6zl99lANhBcrvv4XcJAAAAAAAAAAAkDEJUAOJWsH9Pv0sAgJgSiATUp3S032UA2AFS2nVURk5fv8sAAAAAAAAAACBhEKICELeC/QhRAUBNHWYFlZU90O8yALSy3G4j/S4BAAAAAAAAAICEQogKQNwKDuglBQJ+lwEAMSXgBdRnEyO+gESX243vcwAAAAAAAAAAWhIhKgBxK5CRrkCvrn6XAQAxJ+e7gHJyhvldBoBWlNOdTlQAAAAAAAAAALSkpBbdGwDsYMHBfRVeXOB3GQAQc/qsHKYNqTP9LgNAK0hOy1Vmbn+/ywAAoFVE5i1W2UPP+V0GAAAAgFqk3XOd3yUAQKuiExWAuBYa0s/vEgAgJmUt8pTXgU41QCLq2HOM3yUAAAAAAAAAAJBwCFEBiGuB3t2ltFS/ywCAmNR78SApwH/3gEST12cfv0t1UMfGAACLoklEQVQAAAAAAAAAACDh8KoagLgWCAUVHNTb7zIAICa1W+apSy4da4BEEgiE1LHXOL/LAAAAAAAAAAAg4RCiAhD3goMZ6QcA29NrXh8Fgkl+lwGghbTvsquSU7P9LgMAAAAAAAAAgIRDiApA3AsOIUQFANuTtjqibjmM/gISBaP8AAAAAAAAAABoHYSoAMS9YIf2CnTK9bsMAIhZPb/tqmBSmt9lAGgBeb3H+10CAAAAAAAAAAAJiRAVgITASD8A2L6UDZ56ZO7rdxkAmikts5syOwzwuwwAAAAAAAAAABISISoACSE4uK/fJQBATOvxdQclpWT5XQaAZsjrzSg/AAAAAAAAAABaCyEqAAkhOLC3lBTyuwwAiFlJRZ56pjMGDIhneX34HgYAAAAAAAAAoLUQogKQEAKpKQru1MfvMgAgpnWbnq2UtA5+lwGgCYJJacrtPsrvMgAAAAAAAAAASFiEqAAkjODwnfwuAQBiWqjUU+8kxoEB8ahD9z0VSkr1uwwAAAAAAAAAABIWISoACSM0bJAUDPhdBgDEtM5fpSutXVe/ywDQSIzyAwAAAAAAAACgdRGiApAwAhnpCvbv5XcZABDTgmGpd2Sc32UAaKS83nv7XQIAAAAAAAAAAAmNEBWAhMJIPwCoX6cZycrI6u13GQAaKLPDIKVl0kEOAAAAAAAAAIDWRIgKQEIJDR8kMdEPAOoU8KQ+xXv5XQaABsrrvY/fJQAAAAAAAAAAkPAIUQFIKIGcLAV6dfO7DACIeR1mhZTVfpDfZQBogE79DvC7BAAAAAAAAAAAEh4hKgAJJ7QrI/0AoCH6bhjhdwkA6tGufW+177yL32UAAAAAAAAAAJDwCFEBSDjB4YSoAKAh2s8JKCd3uN9lAKhDl4GH+V0CAAAAAAAAAABtAiEqAAkn2ClXgW6d/C4DAOJCn4KhfpcAoA7dBh3udwkAAAAAAAAAALQJhKgAJCRG+gFAw2TlS3kd9vS7DAC1yO401I3zAwAAAAAAAAAArY8QFYCEFNx9iN8lAEDc6J0/QArw30Ig1jDKDwAAAAAAAACAHYdXywAkpGCXjgr06up3GQAQF9ot99Qld4zfZQCoKhBU1wGH+l0FENc8z4vZfbZGbfGitdYer+d0R9Ydr+cIAAAAAABgRyFEBSBhhUbt4ncJABA3es/trUAwye8yAHyvQ/dRSs3o5HcZQNyaMGGCrr/++hbd59SpU3XBBRc0+n4HHnigbrjhhsqvH3roIT3++ONqi1pr7S+++KJ+//vfK9409TnVEPacs+dea35PAAAAAAAAJBpCVAASVmjEzlKIH3MA0BCpazx1yxnvdxkAvtd14OF+lwDEtb/97W8qKCho8aDO/PnzG32/Bx54QJdccknl1/fee6+Ki4vVFrXW2v/yl79ow4YNijdNfU41hD3n7LnXmt8TAAAAAAAAiYZ2AwASViCznYJD+ikyq3X+KA0AiabnN120omeaIhUlassef61EC5aHddsFGdvctnJdRK9PLnO3FxZ76tQ+qNG7JOmAEckKhQINPsaKdRH9b3KZvlsSVkmZp47tg9pr5yQduEeykpOq7+fdL8o0cWq5Sss99e8e0k8PSFXn3G1Dwnf9o0jpqQFdfnx6E1eOWBEMpapz/x+6hwCIb0OHDvW7BLRBvXv39rsEAAAAAACAuEOLFgAJLTSSkX4A0FApGz31zNxXbdkbk8s0bU5FrbctWRXWnc8W6au5FRrQPaR9d0tWUpL08odleuClEoXDXoOOMW9ZWL+3/cyr0JA+IY3fLVkWm/rPR2V6/PUSed4P+/l6QYXbf25WQGOHJWtRQVgPvlSs8orqx7KaF6+M6JjxKc08A4gFeb33UVJKpt9lAHHr9NNP12effeYugwcP1pQpU1yXoptuuknjxo3T8OHD9bOf/UyTJ0+udr+PP/7YXT9ixAjtueeeuvjiiyu7BNlotJdfflnLli1z+3zppZeaNM7P7musQ1D0czNnzhxdeOGF2mOPPdzl0ksv1ZIlSypvtzXY9lazrW/XXXfV/vvv7zoZrVq1Spdddpmre7/99nMdh6p66qmndNhhh7l1jx8/XjfffLMKCwu3W6+tzY41ffp0HXvsse5YRx11lN58883KbY4//niddNJJ29z3rLPO0tlnn11tP1Z7c9Ze3xrs/NrjYo+P7Xfp0qUNfGTk9nHLLbe4fe6+++5uXe+//37l7bbv22+/XWeeeaY7D//3f//nrm/I82ndunX67W9/qwMOOEDDhg3TXnvt5dYWrW97z6nS0lLddddd7rG0+9m5f+ONN9SccX61fU80dB22/T//+U+3v5EjR7p13HrrrSopKXEjFMeMGaPRo0e7c2O1AwAAAAAAxDNCVAASWnDYQCk91e8yACBudP+6g5JSstTWWCjp2bdLXJep7Xn27VKVV0iXHpems49I03H7peq6U9I1YlBIc5aE9fns2sNXVZWVe3rqf1s7ff38p+k66/A0Hb9fqm48Ld0Fqr6eH9Y3i8KV2380o1ztUqUrf5quE/ZP1YkHpWrNRk+zFv6wjYW3/vNRqfYckqRenUPNPhfwX9eBh/ldAhDXfvOb37juT3Z5/vnntcsuu7gQzIQJE/SLX/zChXi6du2q8847rzIwYqEdG39moRUbDXfbbbdp4cKFuuCCCxSJRNxtFmrp1KmT26cFmJrC7mtOOOGEys/tOBZIWrt2rQul2LGtnpNPPtldV9VVV13lgjEPP/yw+vXr59Z6xhlnaNCgQXrooYdc0OeOO+7QjBkz3Pavvfaa7r77bp166ql6/PHHXYjn1VdfdcGh+liw6aCDDnLny47185//XB988EFl/V9++aXy8/Mrt7dRcRbOOe6449zXdo6i5785a69vDVafPS72+Nh+O3fu3KDHIhwO65xzztF///tft1Y7f/3793f7/+KLLyq3e/bZZ13AyG632i0oVN/zyQLRtk8L5l1zzTWubgu62e32mJnanlN2Pzv+c88958Jo9ly0cJwd55VXXlFLfk80ZB1Rdv5TUlLcNsccc4yeeeYZ99Ee8z/84Q8upPWvf/3LXQ8AAAAAABDPGOcHIKEFkpIU2m2wwp9ufREBAFC3pCJPvdLGa2FZ4zsexKuv51foxfdKtXaTp136haoFlKI2F3kKR6TBvUMa3PuH/0IHAgHtuXOyvpwb1sKCsMbsklznsaz71LpNno4Ym6J+3X8IPNkoQLsuJ7NcVRpRac2GiBvdl5K8dcRfz+9DUms2Riq3mTSjXOs3e7riBLpQJQLrQJXXZx+/ywDi2sCBA5WZubWbm3UXeuGFFzR79mz3cbfddnPX77vvvi74YQGQf//73y50ZJ11LPjSpUsXt40FSixgUlRU5EajdejQwQVJbJ9NFb2v7Tv6uQVT0tPTXQepaN1jx47VwQcfrMcee0zXX3995f2tU1K001O7du1c5yALTl155ZXuuiFDhujtt9/WtGnT3PXWeahnz54ugBQMBl0XIbvfxo0b663Vzo8Feox1arKuVA8++KAL/hx55JG68847XZjpiiuucNvY5xkZGTrkkEPc13a+7NLctde3BgsG2eNix2rMY/Phhx+6blu2Jjuesa5KFuL69NNPNWrUKHdd9+7dXRAqqiHPJ+sOZuuy+qP7sW5NixcvrgyQ1facstDVpEmT9Kc//Uk//vGPK899cXGx27ed9yRrg9nM74mGrqPq/X/3u9+5z+38Wwe08vJyt53Vs88+++itt95yzzsAAAAAAIB4RogKQMILjRpGiAoAGqHrjGwtG9JBZSXr1BZ8MrNcJWWe6/I0ftckXfanLdtsk9UuoP87o12t91+5bmugKTuj/iavsxZsDWiNHLztf8P7dw+5S1UZ6QEVbW1c5ZSUbk1YtUvdGqqyuv/3abn22z1ZHbJpMpsIOvc7SMEQgTigJVlXHev2Y913Kip+6BpoY9ZsbJqFcSxEkpqa6joN2dg4C5NY6MWCSK3NAjsWTElLS6uszwIvFr755JNPqm1rXYmiOnbs6D5GAzAmNzfXfdy8eXNlKMhCO9YdyoJCFoCy8XAWAq6PhaaibHsLR91///0ubJaVlaVDDz1U//nPfypDVDaazoI/to6WXHtz1lCXqVOnKjk5uXLknbGQlnWBqmrnnXdu9PPJgnhPP/206yxl4/usY9eCBQtcyKisbPtdL23fti5bY9V9W412rufOnbtNPU3VkHW0b99+m+ddKBRyzzO7X9VAV05OTuXzDgAAAAAAIF4RogKQ8AL9eijQMUfe2g1+lwIAcSFU6ql3aLzm6VW1BQfskawzD09TWkrDX4y1F0U3bvE0bU6FGwHYPiOgfXat/7/WS9dEFApKHbIDemNymT77dmsXqdysgMYNS9bBo5IVDP5QR79uIb37Rbm+mlvhumBNnFYuuzkatnrn8zJFIp4OG03oJlEwyg9oeRs2bNDq1asrx8rVZLdZp52///3veuSRR9xYMgvAZGdn65RTTnFj7Job2KmvvjfeeMNdaqrayclEuwlVZR2PtsdCTTaO8B//+IcbR2chqB49erjOStFOR9tTcyyehbbs379Nmza50JMFzizYY6PvLFizaNEiN5KvpdfenDXUd2wL/lhwqi7W9aqxzycLH9m5ueeee9zIOzuOhZ/qC5jZvu0c77HHHrXebh2uWipE1dB1bO95V/O8AAAAAAAAJAJCVAASnr3gERw5VOG3q7+LGwCwfZ2np2npbt1UsqVAiW6nXo3/L/GTb5Rq6ncVlV2qLjs+Te0b0IlqY2FEKcnSgy+VaOnqsHYdkKTU5IBmLqzQqx+VKX9lWOcdmVb5Yv0he6a4cYOP/veHdlQ29q9rx6Db18Sp5TpiXIrapW3d3l54bc0X+tG60rK6K7fH1rFPAFqOdU3q27evGz1WGxsVZ6zrlI2Xs05B1qXIuh/99a9/dSPyDj/88Fatb9y4cZVj+qpqyui2mmwEnF2sS9BHH32kRx99VNdee61GjhxZObpweyGbvLy8yq/XrFnjwlIWCDLWQcpG0r355psuiNS/f/9Gjzps6Nqbuob6jh0NLVX9t/Obb75x120vXNSQ55MFy2yUn43GO/fccytrtA5P9tyqqyYLJ1mIrzZ9+vTRjv6+AAAAAAAAaEuY+QGgTQjtOUziNWUAaLBgWOoTHut3GTGrV+egDtkzWcP7h1RY5Ome54v13eIfRuFsT2m5VFwqrVgX0Y2ntdMZh6W5MYK/PL2dencJ6qu5YX0x+4f9ZKYHdMNp7XTW4ak6fr8UXXtyun48dmvXKeuAldku4Eb5FZd6euy/xfr5fVv0i/sK9cxbJW7UH+JLz52PUyDAr2hAS6jaXcjCPtYNyDopDR8+vPLy8ccf67HHHnPBoL/97W9ujJkFqFJSUjR27Fjdcsst7v7Lly/fZp8tVVu0vnnz5rkOQ9Hahg0b5mp65513mnUs66J16aWXVoZmLAx2ySWXuPFt1tWoLu+++27l5xYqevvtt11oyc6PseCRjdiz7SZOnFht/F9Lrr0ha2jKY2MjA8vLy/Xhhx9WW+eNN96ohx9+eLv3a8jz6csvv3Tdsy6//PLKAFU4HK4cUWi3be98FBUVuTqq7nvOnDl68MEHq43da6zajlXfOgAAAAAAANoa/kIPoE0IdsxRcKd+fpcBAHElb0ayMrL6+l1GTLIOUceMT9VFx6TromPSVFK6tTtVWXndwaXopL4fj0lRx/Y//Fc8PTWgn+yz9UXpL77vcBWVkhzQnjsn68CRKerbbesLmivWRjR5ZoWOGpei5KSAXnyvVN/mh3XKIakulGXj/176oLTlF45WEwylqPuQY/wuA0gYNopv4cKFmjx5sg455BB1797ddTt6+eWX9emnn7oxa/fee68bWZecnKwxY8a48WUW1vnggw9ctyML01hgyMJV0X1aNya7vb4AUn21TZs2TZ9//rkLy1ggaPHixbrwwgtdIGnSpEkufPP666+7LljNYeuyfdqYPTsXb731llu3dSCK7tuO/dVXX21zX+ua9NRTT7mQ0RVXXKH58+fryiuvrLaNhajsXFjQ7Oijj65227p169x+CwsLm7X2hqzB9msdpD777DOVlPzQvbEu+++/v0aMGKEbbrjBdR2zgJN9bus877zztns/W3N9zyframZ+97vfudutZtt+9uzZ7noLStX2nNpvv/205557uvNi4wunTJnium7dfPPNLgRVc7xjU78nNm7c2KB1AAAAAAAAtDWEqAC0GaG9GzdaAgDauoAn9SlitFh9hvVP0rD+IW0u8rSgIFznthaWMn26bvvf8F6dtwakVm/Y2p2iLq98VKoenYLac+ck14Xq89kVGjssWaOHJmvMLsnucwtZ0Y0qfnTud5BS0nP9LgNIGKeeeqoLgZx//vkuWPPss8+6Lkp33323u866Kl199dUuKGUsjGOj+yzwc9VVV+myyy5zo96eeOIJN6bOWOikR48eLmj1yiuvNLm2iy66SDNnznR1WCcgO7bVZ52drrvuOhdYskCXdR469NBDm3UeTjrpJP3qV79yQSg77k033aQBAwa4dUVDMg899JBOPPHEbe5rwZ0XXnjBnQurx+5j3Zuqsi5LVv8+++yzzVi9999/3+131qxZzVp7Q9ZwzjnnuDCSjc6z/TeEdVqygJIdx4JD9rjm5+e7/UZDULWxcXv1PZ9Gjx7t6rSOVHb7nXfe6QJLNi7SREf61XxOWVDqkUce0RFHHOG6Ydl6nnvuORd0+tOf/qSW+p6wc9mQdQAAAAAAALQ1Ac/e+gcAbYAXiaj01oelDZv9LgUA4sqMvb7Spo3fqa249J5C5WQGdNsFGZXXbS6KaFFBRDlZgcqwU1X/eq9U731ZrrN/nKpRQ7bfueGe54s0f1lEV52YrgE9qu9nY2FEv3ykyI0KtBF+2zNvaVh/eqFYlx+fpiF9krR4ZVi/f7bYdaDad7etx540vVzPTSjVjaenq2cnxvHEg1FHP6Gcrrv5XQYA6KWXXnIhmgkTJqhnz551brty5UrXqeu+++7TwQcfvMNqRGKLzFussoee87sMAAAAALVIu+c6v0sAgFZFJyoAbUYgGFTSWF6cBIDG6rOen535KyL666sl+s9HZbXevnjV1g5UnXPr/u/1Tj23Bppm51dse4yVWztQWYepurwyqVQ79wm5AJWJfN+4KhL54b0R5eGtn38/PRAxLrPjYAJUQJyJRCKqqKio95Kovv32W9dVycbe2Vi9Aw88ULEiHA7X+7jYNvHI3gfZkOcd75cEAAAAAABomq2vvABAGxEas5sq3v5ECtc/KgkAsFX7uQHljtlV69fPUFs1uHdI7TMC+nZRWLMWVmiXfj/8N9q6Pll3qd5dgq6LVF1szN67X5Rr4rRyjdgpSd3ztoaqiko8/ffjMhd62nv49jtZTZtToUUrIrrhtPTK6yy4FQzI1bD/iK3XLVgWVigodcrhPRPxoOfQE/wuAUAj2bi56Gi2ujSkm1M8Ki0t1ZNPPulG+N1zzz1uDF2sOOuss9wIx7rYCL2JEycq3ti6zjjjjHq3u+OOO9yoQAAAAAAAADQO4/wAtDllT7+qyFdtZywVALSEwj7SV2nPq62O8zPf5lfor6+UuM5Puw0MqUN2UItXRjR3adht//OfpVcLLU2eVa51GyPadWBStRGAk2eW69l3SpUckgtSpaUENGN+hdZv9nTQyGQdt19qrXWFI55u/VuR+nUP6YzD0qrd9uQbJfpidoVGDU6S/ed+6ncVOmCPZJ2wf+37QuxISsnU+NPeVCj5h2AcgNhnY+xWrVpV73aDBw9WSkrKDqkJWy1YsEBbtmypcxt7TOyxiTeFhYVauHBhvdtZcC83N1fxinF+AAAAQOxinB+AREcnKgBtTtK4ESojRAUAjZKZL3Uau5dWr6u7s0Mi27lPkq49JV3/+7RMc5aEVVK2NTx1wIhk/Wh0srLaVe/CMWVWueYujahD+2C1EJV1o+qUG9RbU8pceMomCnXtGNRRe6do9NDtd6H6eMbWoNUVe2/7Yvwph6S6UNaXcysUCEj77paso/fhRft40G2nIwhQAXHIOjDZBbGnf//+SlSZmZkaPny432UAAAAAAAAkLDpRAWiTSn//uLyVa/0uAwDiSnG3gKa1f1GeF/a7FCBhjP3Zv5SR28/vMgAAiBl0ogIAAABiF52oACS66m+XB4A2IjRuhN8lAEDcSS/w1Dl3jN9lAAkjt/soAlQAAAAAAAAAAMQIQlQA2qTQnrtIKdsfmQQAqF2vOb0UCPLzE2gJPXf5qd8lAAAAAAAAAACA7xGiAtAmBdJSFRq1i99lAEDcSVvrqXvOeL/LAOJeartO6tR3f7/LAAAAAAAAAAAA3yNEBaDNCu07Ugr4XQUAxJ8eszorlJTudxlAXOu+87EKBpP8LgMAAAAAAAAAAHyPEBWANivYuaOCQwf4XQYAxJ2UTZ56ZO7rdxlA3AoEQ+q583F+lwEAAAAAAAAAAKogRAWgTUvafy+/SwCAuNR9Rq6SUrL9LgOIS10HHq7UjE5+lwEAAAAAAAAAAKogRAWgTQsO6KVAr65+lwEAcSep2FOv1PF+lwHEn0BQfUec7XcVAAAAAAAAAACgBkJUANq8pP339LsEAIhLXWdkKiW9o99lAHGlc78DlJHT1+8yAAAAAAAAAABADYSoALR5wd0GK9Axx+8yACDuhMqkPsF9/C4DiCt9R5zjdwkAAAAAAAAAAKAWhKgAtHmBYFAhulEBQJN0mp6mtIxufpcBxIWOvfZWdt4Qv8sAAAAAAAAAAAC1IEQFANZNZa/hUlaG32UAQNwJhqU+FeP8LgOIC/32oAsVAAAAAAAAAACxihAVAFg3quQkJY0f6XcZABCX8r5OUkZWX7/LAGJaTrc9lNN1d7/LAAAAAAAAAAAA20GICgC+F9p7hJSW4ncZABB3Ap7UdwtjUYG69Btxtt8lAAAAAAAAAACAOhCiAoDvBdJTFRo3wu8yACAu5X4bVHbOEL/LAGJSVt7O6tiLsZcAAAAAAAAAAMQyQlQAUEXSAXtJqXSjAoCm6Lt2V79LAGJSvxHn+F0CAAAAAAAAAACoR8DzPK++jQCgLSl/Y5LC7072uwwAiEuzxszW+vXT/S4DiBkZOf005mcvKhAI+F0KAAAAAAAAAACoA52oAKCGpP33lNJS/S4DAOJSn+U7W07f7zKAmNF3xNkEqAAAAAAAAAAAiAOEqACghkC7NCXtN8rvMgAgLmUu9tSpw55+lwHEhPSsHuoy8Ed+lwEAAAAAAAAAABqAEBUA1CJkIap2aX6XAQBxqffC/goEQn6XAfiuz+5nKBhM8rsMAAAAAAAAAADQAISoAKAWgbRUJe2/l99lAEBcSl/hqUvuOL/LAHyVltVd3Qf/xO8yAAAAAAAAAABAAxGiAoDtCI3fQ8ps53cZABCXes7pqWAoxe8yAN8M2PNivgcAAAAAAAAAAIgjhKgAYDsCqSlKOpBuVADQFGlrI+qWvY/fZQC+yMobrK4DD/e7DAAAAAAAAAAA0AiEqACgDqFxI6SsDL/LAIC41PObLgol0dEPbc/A0VcqEAj4XQYAAAAAAAAAAGgEQlQAUIdASrKSDhrjdxkAEJeSN0XUM3Nfv8sAdqgOPceoY8/RfpcBAAAAAAAAAAAaiRAVANQjNG43KTfb7zIAIC51m9Feyant/S4D2DECQQ0ac6XfVQAAAAAAAAAAgCYgRAUA9QgkJSn5CDqpAEBTJBVLvVLG+10GsEN0G3S4sjru5HcZAAAAAAAAAACgCQhRAUADhPYYqkCf7n6XAQBxqev0TKWm5/ldBtCqgqFUDRh1sd9lAAAAAAAAAACAJiJEBQANlHz0AX6XAABxKVjuqXdgb7/LAFpVr2EnKi2rm99lAAAAAAAAAACAJiJEBQANFOzbQ8Hdh/hdBgDEpc7T05Se0cPvMoBWkZzaXn1HnON3GQAAAAAAAAAAoBmSmnNnAGhrko/cT6Uz50kVFX6XAgBxJRCR+pSP0Wz92+9SgBbXd8TZSk7N8rsMAAASQmTeYpU99JzfZQAAAACoRdo91/ldAgC0KjpRAUAjBDq0V2jfkX6XAQBxqePMkDKz+/tdBtCi0jK7uVF+AAAAAAAAAAAgvhGiAoBGSjp4jJTZzu8yACDuBLyA+hQSREViGbDnJQqGUvwuAwAAAAAAAAAANBMhKgBopEBaqpIO29vvMgAgLuV+G1T7nJ39LgNoEVl5g9V10OF+lwEAAAAAAAAAAFoAISoAaILQmN0U6JrndxkAEJf6rNnV7xKAFhDQTuOuVSAQ8LsQAAAAAAAAAADQAghRAUATBIJBJR19gN9lAEBcyp4vdcjd3e8ygGbpNvgo5XYb4XcZAAAAAAAAAACghRCiAoAmCg3up+DwQX6XAQBxqc+yIa6TDxCPktPaa9CYK/0uAwAAAAAAAAAAtCBCVADQDMnHHiylJvtdBgDEnYwlnjp32MvvMoAmGTj6SqWk5fhdBgAAAAAAAAAAaEGEqACgGQI5WUr60T5+lwEAcanXgn4KBEJ+lwE0Sk7XEeo++Cd+lwEAAAAAAAAAAFoYISoAaKbQviMV6NHZ7zIAIO6kr/TUNXdvv8sAGiwQTNKQ8TcqEGAUJQAAAAAAAAAAiYYQFQA0UyAYVPIJh0q8oAoAjdbzux4KhlL9LgNokN7DT1VmhwF+lwEAAAAAAAAAAFoBISoAaAHBPt0VGrub32UAQNxJXRdR92zGoiL2pWV2U/+R5/tdBgAAAAAAAAAAaCWEqACghSQdsa+UleF3GQAQd3rM6qRQcju/ywDqNHif6xRKTve7DAAAAAAAAAAA0EoIUQFACwmkpyn5J/v7XQYAxJ3kzZ56ttvX7zKA7erUd3916sNzFAAAAAAAAACAREaICgBaUGjkLgoO6uN3GQAQd7rNyFFyanu/ywC2YV3SBu99rd9lAAAAAAAAAACAVkaICgBaWNLxh0hJIb/LAIC4klTiqVfKeL/LALbRf+QFSsvs6ncZAAAAAAAAAACglRGiAvD/7d0HmFx19T/gM1vSSEIKEEogQMDQQkvoHaRLR0WKFKWD9CaKIMUKiCIIIkWqgFQBEVCadERAmhTpvffU/T/ny2/3vwmpsJvZ3Xnf5xlmZ+bOveeW3SyZT84J2lbdbAOiYe0Vq10GQKcz+4O9o3vPWatdBrToPfArMffwb1W7DAAAAAAAYAYQogJoB/VrLReVuXWtAJgedWOaYkisVO0y4DOVulh4le9HXV1DtSsBAAAAAABmACEqgHZQqauLxq03NNYPYDrN+lD36Nl7rmqXATHvEt+OmQcNr3YZAAAAAADADCJEBdBO6gYNjIb1Vq52GQCdSmV8xJBRy1e7DGpc74HDYv6Ru1W7DAAAAAAAYAYSogJoR/WrLxuVeXVUAZgeAx+pj959h1a7DGpUXX23WGzNo6OuvrHapQAAAAAAADOQEBVAO6rUVaLxW+tHdPNBLMC0qjRVYt73R1S7DGrU0GX2iN4DhPgAvoimpqZqlwAAAAAAX5gQFUA7q5t1QDRssGq1ywDoVPo9UYmZ+y1S7TKoMf3nHBHzLL5ttcsAaDOXXXZZDBs2LF588cXyeLvttiu3tvbqq6/GLrvsEi+99FLLc2uuuWYceuih5eu777671JH3TCjPTR6bPFedyW9+85tS96TONwAAAEBn1VDtAgBqQf0qS8f4h/8b459+odqlAHQaQ94YHg81PlrtMqgR9d1mikVXPyoqlUq1SwFoM6uvvnr86U9/itlmm61dt3PHHXfELbfcMsFzJ598cvTu3btdt0v1fP3rX49VVlml2mUAAAAAtCmdqABmgPxAtmGr9SO6G+sHMK36PhMxoP9S1S6DGjFsxYOiR585ql0GQJsaMGBALLnkktGtW7cZvu1FFlkk5plnnhm+XWaM2WefvVxbAAAAAF2JEBXADFI3sF80bLR6tcsA6FSGvJRjYnQGon3NOt+aMeewjapdBtCFXXLJJbHhhhvGYostVrpD5Si0cePGlddyBNp3vvOd0jHqq1/9aiy++OKx1VZbxf/+97/4xz/+ERtttFEsscQSpfPPY4899rn1br755iXMku/bZJNN4rrrrpvsOL8vYlJj2lqvN78+7LDDyvNrrbVWy7JTGu/26aefxpFHHhmrrrpqOSbrrbde/OEPf5hiHbmuHEV46aWXxhprrBFLLbVUbL/99vH444+X1999990YPnx4nHDCCRO875NPPokRI0bEqaee2rKe1mPoxo8fHyeeeGKpN2vJ++OPPz7GjBnTssyoUaPi5z//eay22mplmTwn11577eeO069//ev42c9+FiuuuGI5H3len3322QmW+9vf/hYbb7xxeX2zzTZrqX96Zd2nn356rL322qWmddddN84999wJlsnjdcQRR8Qpp5xSukbldbTzzjvHm2++GX/+85/Le/M47rDDDhNcI3lt5rq/9rWvlTrz+spr8q677prsOD8AAACArsA4P4AZqGHFpWL8o0/H+EefqXYpAJ3CTC80xWwrLBevv/3/P7SDttSt18BYeJXvV7sMoAs77bTTSkhn2223LWGjDEJlAOWVV16J4447rizzwAMPxOuvv14CPhnYyYDRLrvsUjrafu9734uePXvGj370ozjwwAPjmmuuKe85//zz45hjjom99967hITee++9+P3vf1+WyWBMdgqaETIUtvvuu5eQUo7wm5ZgTe737bffHoccckjMMsssceutt5aQUr9+/WKLLbaY7Pvy2D3zzDOx//77x8wzz1xCS3lcM9CUIwszhHb11VfHfvvt1zKe9YYbboiPP/44Nt100/J4jz32KIGgZnnMLrzwwlLL3HPPHQ8++GA5X42NjeXYNzU1xZ577hn/+te/yuOhQ4eWdeY2Ro8e3bLe9Mc//rGci5/85CflfBx77LFlvRmQS3//+9/LOjKEddBBB5X9yfsvIq+RDLDtuuuu5Xzfe++95bi+//77pd5mf/nLX2LRRRcttbz66qvx4x//uByz7t27l9oyZJZBq3w+g1Ppl7/8ZTkmBxxwQDmfr732Wvz2t7+NffbZJ26++eZyPQIAAAB0RUJUADNY41YbxKjjz45478NqlwLQKczz9LzxxoB7o6nps44d0JYWWfWH0a1n/2qXAXRRH3zwQekC9M1vfjN+8IMflOdWXnnlEhbKxzvuuGN57qOPPopf/epXJaCT7rnnnrjooovi7LPPjhVWWKE899xzz5UuRxmS6du3b7zwwgul01GGgprNNddcpTPV/fffXzpfzaiRgc1j+xZeeOEYPHjwVN+T+7fSSiu11LjccstFr169YuDAgVM9nr/73e9i5MiR5XF2ScrgVIaXMjyWAawMVN19992x/PLLl2WuuOKK0hlqjjk+G9matbYeM5i1ZCen5vDWsssuW0JCffr0KY/vuOOOuO2220qwaoMNNijPZVenDB9l2Ci7NTU0fPbXa3le8nzX19eXx88//3wJzL3zzjvRv3//EkTKmn/xi1+0rCdl56vpkV3KLr744hImy7Bd83WVwbEM7W299dZle2ns2LEl3Jahs+ZOWLk/N954YwmNpX//+99x5ZVXtqw/A30ZEstOVs0ydJWBvSeeeMIYPwAAAKDLMs4PYAar9O4V3bb5WsT//ctoAKasx+tNMXv/latdBl3QXAtvHrMM+ewDbID2kB2mcnRdjnrLMEvzLR+nf/7zn+U+Ay7NAaqU3ZlSjl9rlsGrlCGqlF2rMjiUj5tDMNmdKmWHpI4sQ1MZAsrRcuedd14JhGX3pOxqNSUZ0GoOUKXsPtXchSllWGrOOedsCQRl56U777yzjM2bUi15HjJ4dMYZZ8RTTz1VOjXlaMSU789wUo7ym/gcvvHGG/Hkk0+2rCvHCTYHqFJzN7AMXOV18Mgjj5RRhK2tv/7603n0oozVyw5Zk7quspNZhuia5XXVHKBqvrYyYNUcoGq+tjKg1ixDXTkq8e2334777ruvjP676qqrOsW1BQAAAPBl6EQFUAV1C8wT9WuvEOP+dke1SwHoFAY/Pke8Nkf3GD9uVLVLoYvo2XdwfGWF/atdBtDFvfvuu+W+uVvQxLLjT+rdu/ckX8/uTJOTXY5yDFuGfHL03Pzzzx8LLbRQeS0DNh3Z4YcfXgJGGcw5+uijyy3DUDmirnkfJmXQoEGfey67V2U4KdXV1ZVOXGeddVYZf5hhqjy2a6+99mTX+d3vfjdmmmmmEhTKzlLZJWrBBRcsncKym1WewzyeSy+99GTPYXbgShOPuct60vjx48t4v1xPc4eo1kGwL3pdTa7bWI7fazapa2tK11V6+OGH46ijjir3uU8LLLBACad1hmsLAAAA4MsQogKokoZ1VozxTz0fTc+8WO1SADq87u80xZzDVokX37mx2qXQBVTq6mPRNY6O+sYJP+wGaGs53i1lOGfeeef93OvZFeikk06a7vVmKCeDWRmeuvTSS0uIJ0fKZRel1mPZ2sq4cROO1P3444+/1Pq6desWu+++e7m9/PLL8Y9//KOMwTvggAPimmuumez7cizexN58880JxgBmiCrH5t16661x3XXXlRF8OYpucjLotM0225TbW2+9FbfccksZGZij67JDVY71y9BRjgyclCFDhkzTPme3p9xW1jupQNQXua7OOeecEgCbWHPg6Yv48MMPS7Bs2LBh5VxkOC/rzuNy/fXXf+H1AgAAAHQGxvkBVEmlri66bbtRxEw+wAWYFnM9MkvUN37+g0KYXkOX2TP6zb54tcsAakCO48ugU3YGylFvzbcMPJ1wwgnx4otf7B9UZJjof//7X2y55ZYt60sZHGoOWbWV7GSUY/Faaz0urnXHpWmRY+3WXXfdOPPMM1sCPxlgyq5KGaiakmeffTaefvrplsd5XHNk4gorrNDy3FxzzVUeZ+jpscceK6GqKdlqq63imGOOKV9nGCuXz3pyTGIGipZddtkSGssOTK3P4X//+98S1soxetMig1zZbetvf/vbBN2c/v73v8f0ah5pmNdB65py/F6G8r5IMKvZM888U97/7W9/u3Sgaj637XFtAQAAAHQ0OlEBVFGlX59o3Gr9GPOHy6pdCkCH1/hBUwzutWo899511S6FTmyWIavGkCW+Xe0ygBqRo9uyq08GWzKQs9xyy5XgTz6uVCpTHF03JRn2ybDQ+eefX8biZWei2267raVb0ieffNJm+7DGGmvEaaedVm4ZCsvQz1133TXJzkg33HBDrLrqqjF06NDJrq9Hjx6x6KKLxsknn1wCZtnxKANhl19+eQlXNXv00UdLx6oM8jTL8NFuu+0W++23X9TX15d1zDzzzLHddttNsI0Ml+2///6ljqx54jGIGTZacskly+NlllmmBLqyK1iGnPL85DjADE8NGDAgVltttbLMHnvsUW65zoceeih+/etfxyqrrFKWmVZZ0/bbbx977bVXfPOb3yz7nV2vplces4033jh++MMfxksvvRSLLbZYWdeJJ54YgwcPnmTXs2k133zzleBc1pXhvLxlB6rseNbW1xYAAABARyNEBVBl9YsuEONXHRHjbp3wX3MD8HlzPtQ3Xv5Kvxgz6ot3WKB29egzZyy6xlEluAAwo+y7774x66yzxgUXXBBnnHFGCf1kp6QM1OSouC8qx98de+yxceihh7aEjU499dQ47rjj4r777vtcsOiL2nXXXUvo6A9/+EOMGTMmVl999bLdHMXXLMNhK664Yhx//PFx5513xumnnz7Fdf74xz+OX/3qVyW89MYbb5RQWAaf9tlnn5ZlMmiUQbFzzz235bnsWrXTTjuVfcwwT24z9zlH5bWWwaf8WT+pLlR53DKw9cQTT5THuc08fn/+859LZ6k8J2uuuWYZLZiyE1PuTwbfMkiWI/8GDRoUO+64Y+y5557T3UHq97//felClvuXgafclwyGTa+f/OQnpZ6LLrqodArLY5ijC/N6y4DZF5X7n8fo5z//eTk2OS4wx0Wed955sfPOO5drK48PAAAAQFdUaWrdQxyAqmgaOy5G//q8aHrxtWqXAtDhvTLi43j6w6urXQadTKWuMUZu8oeYebZFq10KAF9AhsXuueeeaRp/d+2118bBBx8ct9xySwkX0bmMf+r5GH3KRdUuAwAAmIQeJxxc7RIA2pVOVAAdQKWhPhq32zhGn3BOxKjR1S4HoEMb9GCveGn4oPj0Y8FTpt1XVthfgArg/+S/pxs3btxUl8uORp2pe9+NN94YDz/8cOnOlF2oOluAavz48eU2NTliDwAAAIC2529dADqIuln7R+O3Nogx51wRoUcgwGTVjY2Yp2nF+G9cXu1S6CQGDV0n5l7sG9UuA6DDyHF2hx122FSX++Mf/1hG9XUWL774YpxzzjkxYsSIOOigg6Kz+f73v1/OzdQ0jyIEAAAAoG0Z5wfQwYy57rYYd8Od1S4DoENrqmuKB5a6Iz7+8MVql0IHN1P/+WOZzc6JhsZe1S4FoMN45513SuBoauabb77o3bv3DKmJz0JgeW6mZvjw4dGVGecHAAAdl3F+QFenExVAB9Ow7srR9NJrMf7RZ6pdCkCHVRlfiSGjlo/H4tJql0IHVt9tplh8nV8KUAFMpH///uVGxzJ48OByAwAAAKA66qq0XQAmo1JXicZtNorKrD7UAJiSAY/URZ++Q6tdBh1WJRZd48cxU78h1S4EAAAAAADoBISoADqgSs/u0bjT5hHdu1W7FIAOq9JUiSHvj6h2GXRQ8y61U8w27+rVLgMAAAAAAOgkhKgAOqi6QQOjcesNs5EGAJPR74lK9Ou3aLXLoIMZOPeKMXSZ3apdBgAAAAAA0IkIUQF0YPXDF4z6r65Q7TIAOrQhry9W7RLoQHr2nSsWW+vYqFT8rw4AAAAAADDtfLIA0ME1rLdy1C0ytNplAHRYff4XMXCAsX5E1DfOFEusc3w0du9b7VIAAAAAAIBORogKoIOrVCrRuM3XojJr/2qXAtBhDXl+wfyJWe0yqKJKXX0svvZPo/fAvBYAAAAAAACmjxAVQCdQ6dk9GnfaPKJn92qXAtAh9XqpKQYNWL7aZVBFC618aAyce8VqlwEAAAAAAHRSQlQAnUTdoIHRuMOmEfX11S4FoEOa+6khUalrqHYZVMGQJbePuRbePDqDF198MYYNGxbf+ta3ql0KAAAAAADQihAVQCdSv+CQaPzmetUuA6BD6vFGU8zRb6Vql8EMNmj+tWOBZfeudhkAAAAAAEAnJ0QF0MnUj1w0GtYVEgCYlLkemyPq6o0+rRUzD1oiFlnjqKhUKtUuBQAAAAAA6OSEqAA6oQxR1S87vNplAHQ43d9tirn6rlrtMpgBevYdHEuse3zUNwjNAQAAAAAAX15DG6wDgCpo+Po60fTu+zH+v89VuxSADmXO/wyMV+btHWPHfFjtUmgnjd1njiXX/3V069k/OpoxY8bEOeecE1dffXU899xz0bt371h00UVjzz33jMUXX3yy7/vggw/i7LPPjptuuqm8L9czyyyzxIorrhh77bVXzDnnnC3Ljh07Ns4888y47rrr4tlnny2duIYOHRqbbbZZfOtb35qgM9djjz0Wv/3tb+ORRx6JN954IwYMGBArrLBC7L777jHvvPO2+/EAAAAAAIDOQogKoJOq1NdH4w6bxuhfnx9Nr75Z7XIAOozGD5ticK9V49n3rq12KbSDuvpusfi6x8dM/YZERzN69OjYfvvt41//+lfMN998scUWW8Snn34a11xzTfzzn/+MM844IwYPHvy593388cex1VZbxdNPPx0rrbRSueX77rjjjvjzn/8cd911V1x77bXRo0ePsvwRRxxRnl966aXL+zJwleGro446Kl599dXYf//9y3LPPPNMCVU1NDTEOuusEwMHDizbuOqqq+Lmm28uQa/ZZptthh8nAAAAAADoiISoADqxSo/u0W3nLWPUSedFvK/jCkCzOR7qEy8N6x9jPn2n2qXQpiqxyOo/iv5zLBUd0VlnnVUCVF/72tfiJz/5SXTr1q08n0Gnb37zm+W57Ao1sYsuuiieeuqp0q3qe9/7Xsvz48ePj6233joeeOCBuPvuu2O11VaLDz/8MK644ooYOXJknH/++S3LZreq9ddfP84999zYe++9o7GxMS655JL45JNPSoer7D7V7JRTTomTTjopLrvssthtt93a/bgAAAAAAEBnUFftAgD4cir9+0a3724R0b2x2qUAdBj1n0bM07BKtcugjQ1dZveYfYH1oqPKcFN2fTr88MNbAlRp+PDhcfDBB8fmm29eRvFNLEf2HX300bHDDjtM8HxdXV0ss8wy5eu33nqr3Dc1NZVw1SuvvBIvvvhiy7L9+vUr3aluu+22EqBqXjbdf//9LV+n3E52otpll13a/BgAAAAAAEBnpRMVQBdQN3hQNH57kxhz5mUR48ZXuxyADmHQv3vGS4sPik8/fq3apdAG5hi2ccy39Heioxo1alQZnzd06NAYMGDA515vDki1Dj41W2ihhcot1/HQQw/Fs88+Gy+88EI88cQTZZRfGjduXLnv06dPbLzxxnHllVeWEX2LL754Gf+38sorxxJLLFGCV80ytJVdrn7zm9/EhRdeWMJaueyqq64ac8wxRzseDQAAAAAA6HwqTa3/STIAndq4fz0aY86/JltPVLsUgA7hjSVGxxOfXl7tMviSBs6zUiyxzvFRV99xuy6+9tprJZy05JJLxp/+9KfJLpchqrXWWiuWXnrpEmxKo0ePjpNPPjkuuOCC+OCDD8pzvXv3Lh2s8rXsJHXMMcfE17/+9fJadrPKcFSO43v00UdbukwNGjQo9t9//9h0001btvfkk0/G73//+9J56r333ivP1dfXx5prrhlHHnlkzDLLLO16XAAAAAAAoLPQiQqgC6lfepFo+mRUjP3zDdUuBaBDmOXhxnhh6Xni4w+er3YpfEED5lo2Fl/7Fx06QJV69epV7ptDUBP75JNPokePHpN87Re/+EX88Y9/jOWXXz522mmn0pUqA1Hpl7/8ZQlRtZYjA7fddttye/vtt0u3qgxJXXvttXHIIYfE4MGDY+TIkWXZBRdcMH7+85+XTlaPPPJI3HHHHaWL1Q033BAfffRRnHXWWW18JAAAAAAAoHP6/7MeAOgSGlZaKhrWX6XaZQB0CJXxlRjyybLVLoMvqN/sS8YS654Q9Q3do6PLMXtzzTVXPPfcc/Huu+9+7vUMN+XoveaxfK1dccUVJYSVHaNWW221lgBVeuqpp8p9c7epp59+Oo4//vj4xz/+UR7n6MANNtigBKV222238tx9991X7rNb1dFHH13em92ncvu5zJ///OeyvXvvvbedjgYAAAAAAHQ+QlQAXVDD2itE/erLVLsMgA5h4CP10WfmBatdBtOp76yLxpLrnxT1jT2js8gxejlq72c/+1m5b5YdoDL0lB2iMsw0se7du8eoUaNKV6nW/vKXv5QOU2nMmDHlvq6uLk4//fQ48cQT49NPP/3cqMA099xzl/sMSZ133nlx9dVXT7Dcm2++WbaX9QAAAAAAAJ8xzg+gi2rceI2IT0fHuLserHYpAFU377tLxcOVJ6tdBtOo98CvxFIbnhwN3XpHZ7LrrrvG7bffHpdddlkJTi233HJlvF+O2atUKqVb1KRsscUW8bvf/S623HLLWG+99aKxsTEeeuih0lFqlllmKaGn5u5W8803X3zrW9+KCy+8MNZff/1YY401ypjABx98sCy/1FJLxTrrrFOW3XPPPePWW28tXbCuu+66GDp0aFnP9ddfX7pTHXjggTP0+AAAAAAAQEdWaWqeCwFAl9M0vinGXHhNjL//0WqXAlB1/1nukXj33f9UuwymYqZ+88WIjX8f3Xr2j84ou0P94Q9/KF2kXnjhhRJwGjlyZOy9996x6KKLlm5Ra621Viy99NIlCJWya9XZZ59dwlcvvfRS9O7du3ST+trXvharr756WT5H8V1yySUty1966aXlltv45JNPSlepHOu30047lVF9zXL8X3auyoDV66+/Xl7LoNXOO+8cI0aMqNpxAgAAAACAjkaICqCLaxo/Psacc1WMf/i/1S4FoKo+GBLxYI8/VbsMpqBn37lj5Ma/j+4zzVrtUgAAAAAAgBpTV+0CAGhflbq6aNxuo6hbaP5qlwJQVX2ei5hlwMhql8Fk9Og9R4z42qkCVAAAAAAAQFUIUQHUgEpDfTTuuGnUfWXeapcCUFXzPLdApkurXQYT6d5r1lj6a6dGjz5zVLsUAAAAAACgRvkECaBGVBobovG7m+tIBdS0Xi83xaD+y1e7DFrp1nNACVD1mnnuapcCAAAAAADUMCEqgBpSaWiIxp02i7pFF6h2KQBVM/dTQ6JS11DtMoiIxu4zx1IbnhIz9Z+v2qUAAAAAAAA1TogKoBZH++2wSdQN/0q1SwGoih5vjI85+q1S7TJqXkO33rHUhidHn4ELVrsUAAAAAAAAISqAWlSpr4/Gb28cdUsuVO1SAKpi8KODoq6hR7XLqO0RfhudFn1nXaTapQAAAAAAABRCVAA1qlJfF43bfi3qRvgAG6g93d5risG9V612GTWpe+9BMWLjM6LvLIK8AAAAAABAx1FpampqqnYRAFRP0/imGHvxX2PcPQ9XuxSAGWpsr4j7hl4bY0d/UO1SakavfkNi6Q1PiR69Z692KQBABzX+qedj9CkXVbsMAACAmtfjhIOrXQLMcDpRAdS4Sl0lGr65XtQvv0S1SwGYoRo+jhjcY5Vql1Ez+swyLEZu/AcBKgAAAAAAoEMSogIgKpVKNHx9nahfeelqlwIwQ83xUN/o1mNAtcvo8vrNvlSM+Npp0a1n/2qXAgAAAAAAMElCVAC0BKkaN/9qNKy7UrVLAZhh6kc1xTwNulG1p4FzrxRLbXhyNHTvU+1SAAAAAAAAJkuICoAJZIgqu1JFXaXapQDMELP9u0f06GXEXHsYNHSdWGLd46O+oUe1SwEAAAAAAJgiISoAPqdhhSWjcYdNIxoaql0KQLurGxcxZPyK1S6jy5lr4c1jsbWOjbr6xmqXAgAAAAAAMFVCVABMUv1iC0a33b8R0VP3EKDrm+Whxpipz5Bql9FlDFly+1h41cOjUvG/GwAAAAAAQOfgUw0AJqtuvsHRbe+tI/r1qXYpAO2q0hQx5ONlql1Gl7DAsnvFgst9r9plAAAAAAAATBchKgCmqG72WaL797aNyqCB1S4FoF0NeLQ++s78lWqX0WlVKvWx0Crfj3mX2rHapQAAAAAAAEw3ISoApqrSr09023ubqMw3V7VLAWhXQ95ZqtoldEoN3XrHkhv8OgYvskW1SwEAAAAAAPhChKgAmCaVXj2i267fiLrFFqh2KQDtZuYnI/r3X7zaZXQqPfsOjmU2PTsGDl6+2qUAAAAAAAB8YUJUAEyzSrfGaNxhs6hffZlqlwLQboa8ski1S+g0+s0xIpbZ7JyYqf981S4FAAAAAADgSxGiAmC6VOoq0bjxGtGw1foR9fXVLgegzfV+rilmGSAsOjVzDtsklt7wt9GtR79qlwIAAAAAAPClCVEB8IU0LDs8uu3xzYjevapdCkCbm+fZoZkarXYZHVOlLhZcfp9YZPUjoq6+sdrVAAAAAAAAtAmfDAHwhdXNNzi677tdVOaYtdqlALSpXq80xez9V6h2GR1OfWOvWGKd42PIEt+udikAAAAAAABtSogKgC+lMmDm6Pa9baJusQWqXQpAm5r7yXmiUqfTUrMevWePkZucGbPOu2q1SwEAAAAAAGhzQlQAfGmV7t2iccfNon6t5atdCkCb6f7m+Jhz5pWrXUaHMPNsw2OZzf4YfQYuWO1SAAAAAAAA2oUQFQBtolKpROOGq0bjNhtGNDRUuxyANjHXY7NHfUPPqGWzL7BeLL3RadG918BqlwIAAAAAANBuhKgAaFP1IxaNbntuFdG3d7VLAfjSur03PubqvUrUpkrMP3K3WGytY6O+oXu1iwEAAAAAAGhXQlQAtLm6IXNG9wO2j7oFh1S7FIAvbc6HB0RDtz5RSxp79IulNvh1zD9i52qXAgAAAAAAMEMIUQHQLip9ZorGXb8R9eusmLP+ql0OwBfW8HFTzN1j1agV/WZfKpbb8sIYOPeK1S4FAAAAAABghhGiAqDdVOoq0bjeytG485YRM/WsdjkAX9jsD/WJbj0GRNdWiXmX3CFGbHRa9JhptmoXA9SopqamTrHOWtRex7ErnZ+utC8AAAAAtUiICoB2V7/QfNH9gB2iMu+c1S4F4AupH9UU89SvEl1VY4+ZY8n1T4oFlts7KnX11S4HqFE33XRTHHLIIW26zvvvvz922WWXNl1nrXn//ffj4IMPjvvuu69N1zt69Og47rjj4uqrr46O5LLLLothw4bFiy++2On3BQAAAIDpI0QFwAxR6dcnuu35rahfdUS1SwH4QmZ7sEf0mGmO6Gpmnn2JWG6LC2OWeVaqdilAjTv77LPjlVdeadN1XnLJJfH000+36TprzWOPPRZXXnlljB8/vk3X+/rrr8c555wTY8eOjc6uK+0LAAAAQC0TogJghqnU10fjpmtF4/abRPToVu1yAKZL3biIIWNXiK6jEkOW2D5GbHR69Og9qNrFAAAAAAAAVJUQFQAzXP0Sw6Lbft+OypyzVbsUgOkyy8ONMVOfeaOza+w+cyy53omx4PLfi7q6hmqXAxDbbbdd3HPPPeWWo9TuvvvuePfdd+OII46IFVdcMYYPHx7f+MY34s4775zgff/85z/L80sttVQss8wysfvuu7d0njr00EPj8ssvj5deeqmsM8e0Tatc/je/+c0Ez+XjfL7Z22+/HQcccECstNJKpb5NNtkkrrjiigne8/LLL8f+++8fyy67bCyxxBKx/fbbx6OPPtryeo6My3WeddZZsd5665Vl/vznP8enn34aRx55ZKy66qqx2GKLldf+8Ic/TLHm3N88jpdeemmsscYa5Zjk9h5//PHyeh7PrPOEE06Y4H2ffPJJjBgxIk499dSW9TTvZ56Hb3/72+XrvM/1N7vxxhtj8803L+vMY3DMMcfExx9/3PL6lPYh93uttdYqXx922GGx5pprTuOZ+fx5mNQ5az6u11xzTey2227luK6++urx29/+doKOWvn1KaecUl7LZfbYY4947733Prfu3Nett966HNPmfTn//POnui85AnHbbbct685rIMdV5nUzPfIcNH9PtJbnovX5+M9//lPOd57LrHOHHXaIf//73xO8Z2r15PfIIossUjq45TnNZZ566qnpqhcAAACgMxOiAqAq6mYdEN322faz8X6ValcDMG0qTRHzfrRMdGYzD1o8ltvygphlyCrVLgWgxY9+9KMS3sjbn/70p1h00UVLIOSmm26K/fbbL04++eSYffbZ47vf/W5LkOqFF14ooZcMtWQA6Nhjj43//e9/scsuu5RwTL622mqrxayzzlrWmUGZtnTQQQeVwNZRRx0Vv//970vtGUq56667yusZTtlqq63ikUceiR/+8Idx/PHHl7q22Wabz40YzPDPzjvvHD//+c9LeOW4446LW2+9tawvg0cZ0snXMmA1tdF7J554Yuy1117xi1/8It55550Smslxc/369YuvfvWrcfXVV0dTU1PLe2644YYSftp0003L4zxuebxSnocMsqW8z/OUch177rlnzD///CWYlNu76qqrynub1z2lfZhtttnKOU0ZfGv+uq1liKt3797l+GbILbeT56FZHqOsf8sttyyv5TFq/Xq6+eaby77mscjAVa5r7rnnjh//+Mfx4IMPTnZf7r333hJk6tGjR/zqV7+K73//+yUkmGG0DJi1pQ8//LB8b/Tv37/Ul9dAhuO+853vxAcffDBd9YwbNy7OPPPM8v2UobChQ4e2aa0AAAAAHZl/dg5A1VQaG8p4v7pFhsaYC6+NeO/DapcEMFX9H6uLvssOi/ffeyI6l0oMWXzbGLrcXrpPAR3OAgssUMIuackll4yLL764dFDK++yak7KjUXbe+eUvf1mCOA899FAJf+y6664xaNBnY0kzaJXBqwwFzTPPPDFgwIDo1q1bWWdbywBKhmsymJSya0+GcHJ76Zxzzindny688MKYa665WvZhgw02iJNOOil+/etft6xr/fXXjy222GKCdWeYasMNNyyPl1tuuejVq1cMHDhwijVlYOZ3v/tdjBw5sjxefPHFS31//OMf48ADDyzbuPbaa0tXo+WXX74sk92zstvXHHPMUR7ncctbynOS5yblfd4yJJXnYJVVVin3zeadd94S0rnllltKYG1K+5DHaOGFF27ZXgbQ2kMGn5przGOf10Welww7ZaDt3HPPjR133LGEwFLuUwbObrvttpZ1ZCemzTbbLA4//PCW57LTU+5PHse8Pie1LxnGmm+++eK0006L+vr68lwum8cjr98M07WVrDEDcxmIWnrppctzGXDLMNxHH30Uffr0ma56sntXW4cOAQAAADoDn54AUHX1X5k36g7aKcZccn2Mf7CzhRKAWjTv20vGQ/Wd5+dVt16zxCKr/kD3KaDTyG5T2UEqQzBjx45teT7H1GU3oxy5lgGQ7t27ly5COV4tQzIZbMng0IyQ28quPzmeL8M32fUquy613ocM12TAq3kf6urqSp3Ztam15hBO63VfdNFF8eqrr5b15i0DW1MzePDglgBVyi5JGfjJLkQpw1JzzjlnXHnllSVElevPOrMj07R65plnyvsyvNb63OQ4xQxd5YjFDOB80X1oS83dtZqtu+66JVD2wAMPlDDYmDFjyjXVWgbaWoeossNTyjBSdjp7/vnn4+GHHy7PjR49epLbzS5Q2aUqO0HldpqPU3awys5OeYzaMkS14IILlsBghp/yeyGvxwywZbe0L1LPxNcjAAAAQK0QogKgQ6j06hHdtt8kxt33SIy57IaITyf9gQRAR9D3qYj+yy8R77zzYHR0sy+wfgxb6aBo7DFztUsBmGbZwemNN94oIapJydeyK9J5550Xp59+elx66aUlHNO3b9/YeuutY999941KpX1nRufItOz6dN1118X1119fAlIZUsoxb9l5Kvfhueeem+w+ZLClWXZoai27HmVXrQxbHX300eWWYagcT7fQQgtNtqbmjlytZeenHCmYssbNN988zjrrrDKaL8NUGXxae+21p3m/c79SjjHM28Syk9OX2Ye2NPHxyKBRyhBe89jBHIHXWob3WsuxjHmsbrzxxnJNDRkypCWo1nosYmvvv/9+6XSVYx7zNrEM/7WlmWaaKc4///wy1jKvx+xAlWP7coThD37wg+muZ+LrEQAAAKBWCFEB0KHUj1w06uYfHKMvuCaannmx2uUATNaQVxaOd3p03BBVt54DY6FVDovZ5puwwwZAZ5Djx3I8XOtxcRN3XErZderkk08uHYHuv//+Eh7JYFOGdLKj0Jcxbty4CR7nKLiJa8xOP3nL7kw5RvCUU04pwaIMduXrOeLv4IMPnuT6m8f+Te61HDmXt5dffjn+8Y9/lHUfcMABcc0110z2fTnSbWJvvvnmBGMAM0T129/+Nm699dYSuMnxgtMT6smgWsr9yv2b2Mwzz/yl9mFqmsNxeX6ax9Jll6hpOR5vvfVWuc/j0Xx+87kcfTdxSKxZjkHM83v22WeXEFjuVwbgctTklEJNWWeON2weZ9haz549p3t/MwTVWu5zbqdZ7kN2FMv9ylGXGZDLUZI5YnCrrbZqs3oAAAAAurK6ahcAABOrDJg5uu3xrWjYcNWIen9UAR1T7+eaYtYBn//wuCMYNHSdWP4bFwtQAZ1KdklqluGcV155pYRdhg8f3nLLsWNnnHFGCc9kqCVHsWWAKoMtK6ywQul2lDK0M/E6p0d2Z3rttdcmeO5f//pXy9cvvfRSGU/317/+tSXAsvPOO5dOVM3bzn3I8W/zzTffBPuQ4ZbsnNUcAJrYp59+WsbOnXnmmeVxjt/LUWsZfmle9+Q8++yz8fTTT7c8zn3I0XV5bJpll6x8nJ27HnvssRKqmpKJ68x9zfPy4osvTrBf2fXp+OOPL+MNp2UfJrf/03JuUo4JbJYBuknJ7lGtZcewDAzlKMgMRGW3puZz2CzDXq3lutdZZ50ynrA5+JYBtNbBpon3JWtcZJFFSviq9THKsXs5AvLuu+/+UvubnbRan+fchxzPmB3aspbmjl8ZeMvj3Zb1AAAAAHRlOlEB0CFV6irRsNbyUTdsvhhz/l+i6bXP/tU4QEcyz//mjzf73R9NTRN2K6mWxh79Y6FVDo1B83+12qUATLcMfGTg58477yzj5XJU34477hi77bZbzDHHHHHHHXeUUWTbbrttNDY2ltBIdqrac889y3MZHrnoootK0CXDVc3rzE5Mt9xySyy88MIx22yzTVMtq6++eumWlGGbHN922WWXldF8rYNIOarumGOOiQ8//LB0+/nPf/5TtrPrrruWZbLrTwam8n6nnXYqY+Ouvfba0sHosMMOm+y2M9iTIwCzw1bu57Bhw0oY6/LLLy/BpGYZVsp9zbGGzXK8XB6v/fbbrxyPXEd2htpuu+0m2MaWW24Z+++/fwwdOrTsY2vPP/98GWG35JJLlsfZUSvdfPPNZV3Z5SvXf8QRR5Rt5LHOcXHZZSpDW1n7tOxD83rzfE+qjsnJ8NpPfvKTsv3vfOc7JWyXnbVad2Vqlp22MvCV77nnnnvKyLusvXlc3R577BG/+tWvSrAqr6c8fxOHqLLb2dVXX132J895humy01h2dmoeyTipfcnju8suu5TOWxtvvHHpEJWhsgcffLBsd1rlscvrP/cxw1C53dNOO22C7lFLL710CXTl90JuM49F7vsHH3xQAmDpi9aT1/dTTz1VrvHmcYgTXyPp3//+d3k9lwMAAADorCpN+TdsANCBNY0dG2P/dmeM+8fdEeMmHGMBUG1PrfByvPr2bdUuI2abb60yvq9bz/7VLgXgC7nrrrtKuCi76WRIJrs6ZWejDO9kGCSDSxn+yUBSc4ep22+/vYRL/vvf/5ZQyGKLLRb77LNPLLPMMuX1fD4fv/DCC/G9732vhEimRQavsqtVdhxqaGgoI+9y3T/4wQ/iiSeeKMtknSeccEKpIcfGZdBliy22KNtori/DJrkPGa4ZNWpUGVGYgabcj5TdnNZaa62yv607QmVwJcM9OSIwt5NBoKwh9yUDSmnNNdcsx+Tcc88tjw899NASFMqOWHlMMuCTx/CQQw5pGX/Yev0jR44so+q++93vTvBarifDTs37meGcHFl4ww03lIDMX/7yl/J8BsKyK9iTTz5ZQkkZ5Nl3331L6Gda9+GnP/1pGcGYQavsMpb30+KKK66IU089tXQEy9BSjhbM85Wdrvbee++W45qBqTwm9913Xzk/GWj71re+NcG68vidc845JQCWHZxyDGR2ccq687jlNnLduY6U5/Db3/52XHXVVWX0X3YVm9y+5HnPIFkG7PJxBrGyvjz20yPH8x133HHxyCOPxCyzzBLbb7996SqVwbTm85/LnHTSSWVbee6zy1QG6jKQ2Gxq9WRYML8Hm/c9ZZeq3N/W1+jE10jK877ZZpuV4/BljX/q+Rh9ykVfej0AAAB8OT1OOLjaJcAMJ0QFQKcx/uU3YszFf42m51+pdikALT4dWBf3z3ZpNI0fU5XtN/aYOYatdEjMvsD/704CQO1pDlH9/e9/n+qyGYDK4FF2XspwU1czuXAanYMQFQAAQMcgREUtMs4PgE6jbs5Zo9v3to1xt90fY6+7LWJ0dQILAK31eGt8zLngKvHSO1P/0LqtzTrvarHQKodH915d7wNwgLaWHZXyNjXZeaqruvHGG+Phhx8uYw8zXNSRAlRjx46d6jLZ4au5y1dnl53TpvbvGnN0X45MBAAAAGDG6Lp/MwhAl1Spq0TDaiOjbviCMfaS62P8E89WuySAmOvR2eLVuXvFuLEfz5DtNXTvG8NWPCjm+MoGM2R7AF1BjrjLUWZT03qUWVfs0JSj60aMGFFG9HUkOVpuatpqXFxHkKMFs3PYlOS4xmnpLAYAAABA2zDOD4BObdy9/4kxV/0j4qNPql0KUONeWO7deO7d69t9O7MvsF4suPy+0X2mWdt9WwBdyWuvvRavv/76VJcbNmxYdOvWbYbUxP+XHbKmpn///l0m4PbMM8/ERx99NMVl8jrM67HWGOcHAADQMRjnRy0SogKg02v68OMYc/lNMf6Bx6pdClDDxvasxH0LXBtjR7/fLuufacDQWGilQ6L/nCPaZf0AAB2BEBUAAEDHIERFLTLOD4BOr9K7V3TbbqMYN2KRGHv5TdH01rvVLgmoQQ2fNMU8PVaNZ0b/pW3X2613zD9y1xi86Deirs6v7wAAAAAAAO3BpzAAdBn1iwyNuq8MiXE33xtjb7wrYvSYapcE1JhBD84ULy0yS4z65M02WFsl5vjKBrHAcvtE914D22B9AAAAAAAATI4QFQBdSqWhIRq+ukLUj1wsxlx9sxF/wAxVPzpinrqV48m44kutp/fAr8RCKx8S/WZfss1qAwAAAAAAYPKEqADokir9+pQRf+NXWjLGXHZTNL38erVLAmrErA92jxeXmDM++ejl6X5vQ7c+MXSZ3WPwIltGpa6+XeoDAAAAAADg8+om8RwAdBl1888d3fb/djRssXbETD2rXQ5QA+rGRQwZu/x0vqsScwzbOFbc6rKYe7FvClABAAAAAADMYDpRAdDlVerqomGlpaJ+yYVi7F9vj3F3/jtifFO1ywK6sIEPN0TvkfPFh+//b6rL9plloVho5UNj5kHDZ0htAAAAAAAAfJ4QFQA1ozJTz2jcYu2oX2GJGHvl32P8k89XuySgi6o0VWLIhyPjkZh8iKpbr1li/hG7xlwLbxqVigaxAAAAAAAA1SREBUDNqZtztui2+1Yx7rFnYuxfbommV96odklAF9T/sbqYebmF4r13H5/g+YZuvWPIEtvHPMO/FfWNxowCAAAAAAB0BEJUANSs+oXnj7ph88X4fz0aY667LeKd96tdEtDFDHlziXio4bMQVV19txi86Ndj3qV2im49+lW7NAAAAAAAAFoRogKgplXqKlE/ctGoW3JYjLv9gRh7010RH31S7bKALqLv0xEDVlgqus8yZwwduXv06DNHtUsCAAAAAABgEoSoACDDVA0N0bD6MlG//OIx7pb7YuzN90aMGl3tsoBOrm6xBWOJVXaI+tlnq3YpAAAAAAAATIEQFQC0UunRPRrWXSnqV166dKXK7lQxdmy1ywI6mRwV2rDBylE3t85TAAAAAAAAnYEQFQBMQmWmntG48RrRsOrIGPuPe2LcXQ9GjBGmAqasMv/gaNxglaibf+5qlwIAAAAAAMB0EKICgCmo9OsTjZutFQ1fXT7G3nJfjPvnA8b8AZPuPPXV5aNuqPAUAAAAAABAZyREBQDToNJnpmj82mrRsOZyMe62+2PsbfdHfPxptcsCqqlSibrhC34Wnho8e7WrAQAAAAAA4EsQogKA6VDp1SMa1l0p6ldfpnSlyu5U8cFH1S4LmJHq6qJuxCIlVFk3aGC1qwEAAAAAAKANVJqampraYkUAUIuaxoyNcXc/FGP/cU/EO+9XuxygPTU2RP1yi0fD6stEZcDM1a4GAAAAAACANiREBQBtoGncuBh33yMx7pb7ounVN6tdDtCWenSL+hWXiobVRpbRngAAAAAAAHQ9QlQA0MbG/fe5GHfbfTH+0Wci/DELnVZlYL+oX3mpqF928aj07F7tcgAAAAAAAGhHQlQA0E7Gv/lOjLv9XzHunocjPh1d7XKAaVGJqPvKvFG/yoioW2j+qNRVql0RAAAAAAAAM4AQFQC0s6ZPR8W4e/9TAlVNb7xT7XKASeneLeqXWax0nqqbbWC1qwEAAAAAAGAGE6ICgBkk/8gd/9gzMe62+2P8E89WuxwgfxmetX/Ur7R01C+7WFR6GNkHAAAAAABQq4SoAKAKxr/2Voy7898x7v5HIz76pNrlQG2pVKJuofmifuWly32lYmQfAAAAAABArROiAoAqaho7LsY/8lSMu/uhz7pT+WMZ2k1lYL/Scap+5GJR6d+32uUAAAAAAADQgQhRAUAH0fTuBzHu3odj3N0PR9Pb71W7HOgaujVG/RLDon7Z4VGZf7CuUwAAAAAAAEySEBUAdDD5R/P4p54vYarxD/03YuzYapcEnU5lvsGfdZ1acqGodO9W7XIAAAAAAADo4ISoAKADa/rk0xj3r8di3L3/iabnX6l2OdCxzdy7jOrL8FTdrAOqXQ0AAAAAAACdiBAVAHQS499+L8b/+/EY9+/Ho+nF16pdDnQMM/WM+uELRt2SC0XdAvNEpa6u2hUBAAAAAADQCQlRAUAnNP6Nd2L8g4/HuAcej6ZX3qh2OVCd4NQS/xecqhecAgAAAAAA4MsRogKATm78a2/9/w5Vr71V7XKg/YJTi7XqOCU4BQAAAAAAQBsSogKALmT8y2/EuAcfj/GPPB1NL79e7XLgy+nVo9WoviGCUwAANWD8U8/H6FMuqnYZAAAAUHN6nHBw1LqGahcAALSdujlnLbdYf5Voeuf9GPfYMzH+0afLBxExeky1y4Opqswxa9QtPH/ULzJ/VOadKyp1glMAAAAAAAC0PyEqAOiiKv37RsOKS0asuGQ0jRlbglQZqBr36NMR77xf7fLgM90bo27BIVG38NCoX3j+qPTrU+2KAAAAAAAAqEFCVABQAyqNDSWgkrfGLdaO8a+8EeMffSbGPfZ0ND37UsR4032ZcSqzDSjdpspt/rmj0lBf7ZIAAAAAAACocUJUAFCD6nJk2hyzRsNay0XTp6Ni/DMvftap6qnno+nl14WqaFt9Zoq6oXN/dltovqgb2K/aFQEAAAAAAMAEhKgAoMZVenSP+kWGlltq+iRDVS98Fqp6+oVoeun1iCahKqZDvz6lw1RLcGq2AdWuCAAAAAAAAKZIiAoAmEClZ/eoX3SBcktNn3xawlTlVjpVvSFUxQQqA2aOSnNgKm86TQEAAAAAANDJCFEBAFNU6dkj6hdbsNxS06jR0fTiazH+hVdi/POvRNPzr0bT2+9Vu0xmlO7dojJ4UNTNPftnt3nnikr/vtWuCgAAAAAAAL4UISoAYLpUMkTzfx2HmjV9+HGMf+HVaHr+lf8LV70a8eHHVa2TNtCtMSpzzRZ1gz8LTFXyNtuAqFQq1a4MAAAAAAAA2pQQFQDwpVV694r6heePyNv/aXrn/dKpavzLr0fTK29G06tvRNNb7xkF2FH16hGV2WeJujlmLWGpEpoaNDAqdXXVrgwAAAAAAADanRAVANAucsRbfd6WGNbyXNPoMdH02psxPkNVr731/285DlC4asbo3Ssqsw6IukEDSmiqMvusUTf7wKj07V3tygAAAAAAAKBqhKgAgBmmkuPh5p4j6uaeY4Lnm8aOjabX34mm19+KprfeLaGqprffj6Z3PruPsWOrVnOnk5P2es9UQmzlNrBfGcFXl2P4Zh0QlZl6VrtCAAAAAAAA6HCEqACAqqs0NERlzlkj8jaRpuxQ9cFHrUJVzbf/e/z+RxGfjoqaUV8flX59WkJS0RyW6j9zVPr/3/MNfsUDAAAAAACA6eETNgCgQ6tUKhF9e382bm7eOSe5TNPYcREffhxNH30cTR9+/NnX5fZJxIcflfuW50eNjhg95rNbR+ga1b1bVGbqFTFTz8+6ROV9jtxr/nqm1l/3jOjVMyp1+UYAAAAAAACgrQhRAQCdXqWhPiK7M/XrM83vKR2u/i9M1dQcqpr461FjIsaNm/iN/3ff8p+Wu/JFXV1Eji1sbCj30dj8dcNnX5fn8uuGz74GAAAAAAAAqk6ICgCo3Q5X3bt91gmq2sUAAAAAAAAAVVVX3c0DAAAAAAAAAABUlxAVAAAAAAAAAABQ04SoAAAAAAAAAACAmiZEBQAAAAAAAAAA1DQhKgAAAAAAAAAAoKYJUQEAAACdRlNTU6dYZy1qr+PYVc5PV9kPAAAAgK5KiAoAAADoFG666aY45JBD2nSd999/f+yyyy5tus5a8/7778fBBx8c9913X5uud/To0XHcccfF1VdfHR3J3XffHcOGDSv3nXk/AAAAAJiQEBUAAADQKZx99tnxyiuvtOk6L7nkknj66afbdJ215rHHHosrr7wyxo8f36brff311+Occ86JsWPHRkey6KKLxp/+9Kdy35n3AwAAAIAJNUz0GAAAAACYjN69e8eSSy5Z7TIAAAAAaGM6UQEAAAAd3nbbbRf33HNPuTWPUnv33XfjiCOOiBVXXDGGDx8e3/jGN+LOO++c4H3//Oc/y/NLLbVULLPMMrH77ru3dJ469NBD4/LLL4+XXnqprPOyyy6b5npy+d/85jcTPJeP8/lmb7/9dhxwwAGx0korlfo22WSTuOKKKyZ4z8svvxz7779/LLvssrHEEkvE9ttvH48++mjL6y+++GJZ51lnnRXrrbdeWebPf/5zfPrpp3HkkUfGqquuGosttlh57Q9/+MMUa879zeN46aWXxhprrFGOSW7v8ccfL6/n8cw6TzjhhAne98knn8SIESPi1FNPbVlP837mefj2t79dvs77XH+zG2+8MTbffPOyzjwGxxxzTHz88cctr09pH3K/11prrfL1YYcdFmuuueY0npko53GRRRYpXcZyu3lsn3rqqWmqKd18881lmcUXXzzWXXfd+Mtf/hJrr712y/meeJzfF92PHH+47bbblnOaNeaoyrxmpmU/pibP0cTHrPlaan2dZ4esrDePxyqrrFL248MPP5zmYw0AAADQlehEBQAAAHR4P/rRj+Kggw5q+XqBBRaIbbbZJt58883Yb7/9YrbZZivhou9+97txxhlnxAorrBAvvPBC7LHHHrHFFluUoNL7779fAkK77LJL3HDDDeW1DK1kaOnkk0+OeeaZp01rznrfeuutOOqoo0r3ohx5l0GZ2WefPZZffvmy7a222ip69uwZP/zhD8t9hlpyvzLoNHTo0JZ1ZYDn8MMPL+vJ0M1xxx0Xt99+e1nfLLPMErfeemv8/Oc/j379+pX9ndLovWeeeaYcj5lnnjl+/etflyDPtddeW47hV7/61bj66qvLMa1UKuU9eawyaLTpppuWx3ncsu6UI+0yyPbjH/+43C+33HLl+VzHgQceGBtttFHsu+++Jah24oknlhBQBsJy3VPah3xfnpO99tqrBN/WWWed6Tr248aNizPPPDOOPfbYeOedd8qxnJaa7rrrrrJ/GTLbZ5994rnnnivX26hRoya7rS+yH/fee2/suOOO5Tr41a9+Fe+9916cdNJJJYiW575Hjx6T3Y+2kuGwX/ziF6XuDFfldfGzn/2shObyHgAAAKDWCFEBAAAAHV6GpjJAlHKU2sUXX1w6KOV9hopSdgLKTki//OUvS6DqoYceKl2Cdt111xg0aFBZJgNMN910UwkFZWhqwIAB0a1bt3YZz5Zds/bcc88STErZSSiDNbm9lIGp7P504YUXxlxzzdWyDxtssEEJ1GTAqdn6668/QTgq153diTbccMPyOMNLvXr1ioEDB06xpg8++CB+97vfxciRI8vj7LaU9f3xj38sAaPcRgaqsstSBnxSds/Kbl9zzDFHeZzHrTlwluckz03K+7w1NTWVc5CdjfK+2bzzzhs77LBD3HLLLbH66qtPcR/yGC288MIt28uOTNNrt912K9tJ01pThtUWXHDBEnxqDpFlPRk6m5wvsh/HH398zDfffHHaaadFfX19eS6v41xHXrsZpJvUfrSlrHvw4MFlW3V1deX6zLoz0AUAAABQi4SoAAAAgE4nx/bNOuuspRPS2LFjW57PDkLZBSiDIBlK6d69e2y55ZZlZFkGlDLgksGhGSG3laGc7HSV4Z3VVlutdP1pvQ8ZsMmAV/M+ZJgl67zqqqsmWFdzEKf1ui+66KJ49dVXy3rzloGtqcnQTHOAKmX3qRzrl52RUoal5pxzztI1K0NUuf6sMzsWTavsaJTvy/Ba63OT4xQzdJUjFjMU9EX3YVq1PmbTUlPu+wMPPFBqaA5Qpbx2Dj744MluZ3r3Izs9Pfjgg/Gd73ynhLua65l77rlLp6mspXWIauJz31by/P7pT38qowszSJd1Z+es1vsOAAAAUEuEqAAAAIBOJzs4vfHGGyVENSn5WnZFOu+88+L0008vI9Ky21Lfvn1j6623LuPc2jsskqPisuvTddddF9dff30JSGVQJ0ffZeep3IccFze5fciwTbPsENRajvbLrloZtjr66KPLLcNQRx55ZCy00EKTram5I1dr2THpkUceKV9njRmqyfF2OcYuw1QZMlp77bWneb9zv1KOMczbxF5//fUvtQ/TqvUxm5aacpkcnzdxN6/sFJUdxCZnevcjx0qOHz8+fv/735fbxDL4N7n9aEvZ8SzruOCCC+KUU04pgb+8LrMjWb4GAAAAUGuEqAAAAIBOp0+fPmUUW+vRbBN3XErZdSpHs40ePTruv//+0nkng00ZbskReV9GBm5ayxGBE9d40EEHlVt2QsoxghlWyRBPBrvy9RyhNrkuR81j/yb32u67715uL7/8cvzjH/8o6z7ggAPimmuumez73nnnnc899+abb04QHMoQ1W9/+9u49dZbSwAsAzUTB3umJINqKfcr929iM88885fahy9iWmrKY9DY2FiOR2sZNGoOYU3K9O7HTDPNVAJ8OUaweQRgaz179owvK9c/teszfe1rXyu3HPN4++23l1BXXq8jRoyYZOAOAAAAoCurq3YBAAAAANMiuyQ1yyDMK6+8UoIvw4cPb7nlKLQzzjijdA86++yzy3i/DFBl0GWFFVYoXYJShl0mXuf0yO5Mr7322gTP/etf/2r5+qWXXirj0f7617+Wx/PPP3/svPPOpRNV87ZzH/73v//FfPPNN8E+ZPen7JyV+zApn376aay77rpx5plnlsc5fi/Hv2Ugp3ndk/Pss8/G008/3fI49yFH2OWxaZbdiPJxdu567LHHSqhqSiauM/c1z8uLL744wX5lKOf4448v4w2nZR8mt/9fxLTUlNtbeumlS9ittb///e8TjABs7YvsR147iyyySAnWta5lwQUXLN2g7r777i+9vxnUysDcqFGjWp7LEGFr2Y2teexgBvoyVLjHHnuUfW3uFgYAAABQS3SiAgAAADqF7CaUgZ8777yzjJfLUX077rhj7LbbbjHHHHPEHXfcUTrpbLvttqWj0PLLL186VWVQJJ/LMMtFF11UAlUZrmpeZ3YeuuWWW2LhhReO2WabbZpqWX311UuXoSWWWCKGDBkSl112WRnN1zqIlCPejjnmmPjwww9jnnnmif/85z9lO7vuumtZJjsRZWAq73faaafo379/XHvttXHxxRfHYYcdNtlt9+jRo4wAzA5buZ/Dhg0rYazLL7+8BHqaZTAo9zXHGjZramoqx2u//fYrxyPXkV2Ytttuuwm2seWWW8b+++8fQ4cOLfvY2vPPPx9vv/12LLnkki0BnHTzzTeXdWWXr1z/EUccUbaRxzpH2GV3pgxtZe3Tsg/N683zPak6pkfWMbWa0ve+971yLPI+j0EGoU466aTy2qTGP37R/chju8suu5RuVRtvvHHpGpVBrAcffLAEmb6s3L9zzz23jBrM/fjvf/9bRjS2DnTl90eObPzZz34Wq666ajkeuR/Z4a15DOHE5zr9+9//jgEDBpRrOuXruVxeZxkQAwAAAOishKgAAACATiE7/GQQKTs6/eQnP4nzzz+/dBH6xS9+UcaRZXApQykZSEoZBMnRfTmaLkMrGVRZbLHFSlglOxOl7LKUwaYMWmVwJoMt0yJDTtmxJwMoDQ0NZeRdbvsHP/hByzIZSDnhhBNKCCe7AmXQa6+99mrZRnZBylBX7sORRx5ZugZlgOXYY48twZcp+fGPfxy/+tWvyr688cYbpctSvmefffZpWSa3lcckwzTNslNSHp/jjjsuPvnkk9IZ69RTT41+/fpNsP7sopWhoUl1ocrgUYaEnnjiifI4OyjlSLg8H7fddlv85S9/ia9//eulG1J2BcsRir169SpdnjLUNvfcc0/TPmQgJ0Ny+f48R9llLINKX9S01DRy5MjSDSrPWYaZ8vj98Ic/LAGsfO8XOReT2o+VV145/vCHP5RrJK+73K8MY2XQqXVg6YtaaaWV4pBDDinn/vrrr28Jem211VYty+TXY8aMKdfgBRdcUAJh2YEsx/k1H+eJz3X65je/GZtttln89Kc/bQnP5fdDdi5bbrnlvnTtAAAAANVSacp/gggAAABAl3booYfGPffcU8bTTU12xDr44INL6CdDQbUiR/llB7HmzlTpySefLCGxDBSttdZaVa2vFox/6vkYfcpF1S4DAAAAak6PEw6OWqcTFQAAAECGN8aPL7epyc5TXdWNN94YDz/8cOlOlF2oOlKAKjt/TU1dXV25fVG33357CZAdeOCBMd9885VRf9mpKzuXZfeoWjgGAAAAALWq6/6tHwAAAMB0yLF/OfJsWroVDR48OLqiF198Mc4555wYMWJEGevWkbTuDjU5rcfMfRE5Ai/H2mVw6vXXXy9jDldZZZUyqrF79+5R7XMzLZ2wcozj3nvvPUNqAgAAAOhKjPMDAAAAiChdhzI4MzXDhg2Lbt26zZCa+P+yQ9bU9O/fv8sG3EaPHh1PPPHEVJebbbbZYtCgQdFZGecHAAAA1dHDOD+dqAAAAABSBk86c/ikqxs+fHjUsgzu1foxAAAAAGhPde26dgAAAAAAAAAAgA5OiAoAAAAAAAAAAKhpQlQAAAAAAAAAAEBNE6ICAAAAAAAAAABqmhAVAAAAAAAAAABQ04SoAAAAAAAAAACAmiZEBQAAAAAAAAAA1DQhKgAAAAAAAAAAoKYJUQEAAAAAAAAAADVNiAoAAAAAAAAAAKhpQlQAAAAAAAAAAEBNE6ICAAAAAAAAAABqmhAVAAAAAAAAAABQ04SoAAAAAAAAAACAmiZEBQAAAAAAAAAA1DQhKgAAAAAAAAAAoKZVmpqamqpdBAAAAAAAAAAAQLXoRAUAAAAAAAAAANQ0ISoAAAAAAAAAAKCmCVEBAAAAAAAAAAA1TYgKAAAAAAAAAACoaUJUAAAAAAAAAABATROiAgAAAAAAAAAAapoQFQAAAAAAAAAAUNOEqAAAAAAAAAAAgJomRAUAAAAAAAAAANQ0ISoAAAAAAAAAAKCmCVEBAAAAAAAAAAA1TYgKAAAAAAAAAACoaUJUAAAAAAAAAABATROiAgAAAAAAAAAAapoQFQAAAAAAAAAAUNOEqAAAAAAAAAAAgJomRAUAAAAAAAAAANQ0ISoAAAAAAAAAAKCmCVEBAAAAAAAAAAA1TYgKAAAAAAAAAACoaUJUAAAAAAAAAABATROiAgAAAAAAAAAAapoQFQAAAAAAAAAAUNOEqAAAAAAAAAAAgJomRAUAAAAAAAAAANQ0ISoAAAAAAAAAAKCmCVEBAAAAAAAAAAA1TYgKAAAAAAAAAACoaUJUAAAAAAAAAABATROiAgAAAAAAAAAAapoQFQAAAAAAAAAAUNOEqAAAAAAAAAAAgJomRAUAAAAAAAAAANQ0ISoAAAAAAAAAAKCmCVEBAAAAAAAAAAA1TYgKAAAAAAAAAACoaUJUAAAAAAAAAABATROiAgAAAAAAAAAAapoQFQAAAAAAAAAAUNOEqAAAAAAAAAAAgJomRAUAAAAAAAAAANQ0ISoAAAAAAAAAAKCmCVEBAAAAAAAAAAA1TYgKAAAAAAAAAACoaUJUAAAAAAAAAABATROiAgAAAAAAAAAAapoQFQAAAAAAAAAAUNOEqAAAAAAAAAAAgJrWUO0CAAAAAIDadcUVV8Qf//jH+N///hc9evSIlVZaKfbbb7+Ya665ql0a7WzfffeNf/3rX3HrrbdWuxTayUcffRSnnXZa/O1vf4uXXnopGhsbY5FFFontt98+1l577WqXRzt49913yzn/+9//Hq+88koMHDgw1lprrdhjjz1iwIAB1S6PGeCuu+6KHXbYITbddNP46U9/Wu1yaAcXXnhhHHnkkZN9/c477/T93gXdcsstcdZZZ8XDDz8clUolhg4dWv4832CDDapdGm1o2LBhU11ms8028/O9ixk7dmyceeaZcfnll8cLL7wQPXv2jKWWWir23HPPWGKJJaLWCFEBAAAAAFVx4oknxu9+97tYYIEFYuutty4fuF977bVx++23xyWXXBJzzz13tUuknZx88slx3XXXxaBBg6pdCu3kww8/LN/XTzzxRCy66KLl6w8++KAEqvbaa6/Yf//9Y9ddd612mbShPL95np9++ulYYYUVSnjqmWeeiXPPPTeuv/76uPjii2OOOeaodpm08/f997///Whqaqp2KbSjxx57rNxnWK53796fez0/fKdrOfvss+MnP/lJCcZusskmMX78+PJzPf/hw6uvvho77bRTtUukjeTvaJOSP9fzOsiA/PLLLz/D66J97bPPPnHjjTfGkCFDyu9y77zzTvl/tTvuuKP8//rKK68ctaTS5DcZAAAAAGAGe/zxx8uHMCNGjCh/Id+tW7fy/A033FD+8n6NNdYof2FL1zJq1Kg4+uijS0guZYhKJ6quHZLcaqutSseS7FqRXnvttdhiiy3i7bffLh/O5Ic1dA35AXv+PN97770n+BD2vPPOK9/3m2++eVmGruuwww6Lyy67rHytU0nX9Y1vfKMEZB944IGoq6urdjm0szzX+fM7/7zOUGwGqdKbb75Zfpd/7733SvexPn36VLtU2lF2KfrZz34W3/zmN+PHP/5xtcuhDf3zn/8sQcjFFlssLrjggujevXtLZ8kdd9wxBg8eXP4fvZb4kw0AAAAAmOFyhF/KEQHNAaqUI76WWWaZuPnmm0vYgq4jx3utv/76JUC12mqrVbsc2lkGpDI4dcABB7QEqJqDc9/61rdi3LhxZTQQXceLL74Ys8wyS3znO9+Z4Pn8kD1l4IKu/TM+A1RrrrlmtUuhHWUHov/+97+x4IILClDViAxO5aivo446qiVAlfLnfXaiyoBVBqroup588sk44YQTSpfgDMvStTz44IMtv681B6hSdhybf/754/nnn4+33noraolxfgAAAADADJf/srWhoaEEpiaWf2F77733lmWaP3yn87v00kvLCJAf/ehHJUSz0EILVbsk2tH2229fxrv17dv3c681ByfzeqDr+O1vfzvJ53O8X5p11llncEXMKNlZ7oc//GEsu+yyse2225ZAFV3Ts88+G5988ok/w2tI/sOG/Pk9qd/Zt9xyy3Kja8sukmPGjCk/543r7Hr69+9f7l966aUJnh89enQZ69fY2FhzneZEhAEAAACAGSr/Qvbll1+O2WeffYIuVM3yXzmnZ555pgrV0Z6hmptuuim23nrrCToT0TVts802sdtuu33u+aampvjb3/5Wvh42bFgVKmNGyRFP119/felUkqHZPfbYo9ol0U5yZOfHH38cxx13nJ/vNTCOOeV5zu/tVVZZJRZffPESpPnLX/5S7fJoh4DkG2+8EV/5ylfi9ddfj8MPPzxWWmmllnN+4403VrtE2ll2Dc1xb3nedZLtmtZbb73SZS5H+V1++eXx4Ycflv9XP/TQQ0sHqu22226S/8/elQlRAQAAAAAz/IP1DFLMPPPMk3y9+V+6Zhcbuo7lllsuevfuXe0yqLL8gOahhx4qYcn88J2u6cILLyxdib73ve+V0aw///nPY4UVVqh2WbSDq666qoTlDjzwwJYQNF0/RHXxxReXD9c33njjMoo5O87l+NYc+UXXkcGplKGKHNt39913l8BFjmfOc55juXPcH13XGWecUe4Fobt2J6qLLroohg8fXoJTI0aMiDXWWCOuueaaEpY9+OCDo9YY5wcAAAAAzFA5DiJN7l+0Nj8/atSoGVoX0L6uvfbaOPbYY0tXop/+9KdlPAhd04ABA2LnnXcuHUyy81gGbF555ZX47ne/W+3SaEMZkDv66KNLQC67DNL1ZQh+rrnmir333js222yzludfeOGFMqr3tNNOi1VXXTVGjhxZ1TppG81jdx988MEybvvUU0+NXr16led22WWX+PrXvx4/+9nPYs011yzXBV3Lo48+Gvfcc0/5fvY93bW7RJ9yyinxwAMPxKKLLlrOdf6jpxtuuKH8TB80aNAEP+9rgU5UAAAAAMAM1aNHjwnCVJP6i9zU/CEN0DU6UGWXkpQfuPowrmtbd911S3Aqz/XVV19dQlW/+MUv4uGHH652abSh73//+zFu3LgSjjTGrzbkz/G///3vn/tAPbuQZee55u5kdA319fUtX//whz+c4HfzoUOHljFf+ft8dqOj67nssstaRjTTdeXvajnGb9ttt40///nP5c/2fC5HtGbn6MMOO6x0ka0lQlQAAAAAwAyVI93q6uomO66v+fnmsX5A5zV+/PjSdeqoo44qHah+9atfxde+9rVql8UMNHjw4JYOVDfddFO1y6ENRzbefvvtccghh+hAQ7H44ouX++eff77apdBGmn8Xz/BUhqYmtsgii5T75557bobXRvvLP7Pz3OdoN7ru7+mXXHJJ+V4/6KCDJghEzznnnLHvvvuWDoSXXnpp1BIhKgAAAABghspxfdmx4OWXX55kN6ocCZMWWGCBKlQHtJXsKrfPPvvEWWedFf369Sv366yzTrXLop3O9T//+c+49dZbJ/l6/sxPb7/99gyujPYcz5mOOOKIGDZsWMttxx13LM9nV4t8fOihh1a5Utryw/b//Oc/ZbzXpHz88ccTdByl88uf3RmAHjt2bAlSTKz59/iePXtWoTra0+OPP17+Xy0DVM5v1/XWW2/FqFGjYp555in/jz6xYcOGlfuXXnopaklDtQsAAAAAAGrPsssuW/7V67/+9a9YbrnlJnjtzjvvLP8Kdumll65afcCXkyO+MkCVY5+yE9Hvf//7mH/++atdFu0Yotp5551Lx4o77rjjcx/EPfLII+V+vvnmq1KFtLUc55Z/lk8qCH3llVfGQgstFF/96ldj4YUXrkp9tI8c3/bJJ5+U0OTAgQMneO2+++4r98OHD69SdbS1/Fm+5JJLlnN77733fu539uYRrfn9TteS/4+WjF/u2nJcX36fv/jii+V3uYl/f/vf//5X7mebbbaoJTpRAQAAAAAz3BZbbFHuTzzxxPj0009bnr/hhhvKBzVrrrlmzD777FWsEPgyTj/99BKgylEgF1xwgQBVDYxpXWuttco41pNPPnmC17Jzzdlnn10CVkY5dh2bb7557L333p+7bbrppuX1DE/l4wxS0TXkKOb11luvdCT6xS9+UTpTte5ac9ppp5Xv8y233LKqddK2tt5663Kfo3lbj+LOc37RRReVTpO+z7ue/LM7LbbYYtUuhXaUoansEvvee+/FSSedNMFrb7/9dstzG2+8cdQSnagAAAAAgBluqaWWim222SbOP//82GSTTcqH76+99lpcd911Mcsss8Rhhx1W7RKBL+jdd98tIarmIMXFF188yeWyu8EKK6wwg6ujvRx++OHlQ9cMUmQYdoklliijgG666abSXTBDs7POOmu1ywS+hAMPPDDuv//+Mq7xiSeeKJ2J8ve3G2+8sYSq8vt80KBB1S6TNrThhhvG7bffHpdddln5OgMXH374Yfz1r38tXSePPfbYEqSla3n++efLve/nri//vzt/fzvjjDPirrvuKl0mM1SVv7/l7/Q77bRTzf2+Xmma1ABTAAAAAIB2ln81mSGqP/3pT/Hss8+Wf8meH8blCLC555672uXRzoYNG1Y+mLn11lurXQptLD9M33PPPae63G677Rb77bffDKmJGSO7Fpxyyinlg7fXX389+vbtW36u57k27qk25DjHHXfcsYz7y841dD354fqpp55auodmgGqmmWaKZZZZpnyf61rTdX9nzxDVhRdeGE899VTpXpNB2d1339347S5qgw02iKeffjoeeOCB0mGOri27zGUIPn+uv/TSS+V7fJFFFoltt922dCCsNUJUAAAAAAAAAABATaurdgEAAAAAAAAAAADVJEQFAAAAAAAAAADUNCEqAAAAAAAAAACgpglRAQAAAAAAAAAANU2ICgAAAAAAAAAAqGlCVAAAAAAAAAAAQE0TogIAAAAAAAAAAGqaEBUAAAAAAAAAAFDThKgAAAAAAAAAAICaJkQFAAAAAAAAAADUNCEqAAAAAAAAoEtoamqqdgkAQCfVUO0CAAAAAAAAoCsZN25c3H777XHllVfGo48+Gq+++mp5fq655ooVV1wxtttuu5hnnnmis7vsssvisMMOi7XWWitOOeWUGbbdYcOGlft77703+vbtW77+5JNP4vTTT4+ePXvGLrvs0m7bfuutt+Lcc8+NW2+9NV544YWy3X79+sVCCy0UX/3qV2PzzTePbt26tdv2AYD2oxMVAAAAAAAAtJEM1my99dYlyHPddddFjx49YqWVVoqllloq3nnnnfjjH/8YG2ywQVxzzTXVLrVLOemkk0qQa9SoUe22jbvvvjvWXnvtOPXUU+O9996LZZZZJtZcc80YPHhw3HXXXfGjH/0oNt5443jttdfarQYAoP3oRAUAAAAAAABtIDtOff3rXy9hqezOdPDBB8e8887b8vro0aNLiOqXv/xlHHTQQdG9e/fSvYjpc+2115b73r17T9D9qz198MEHsffee5fOUz/72c9i0003neD1DE7l+c4w1T777BMXXXRRu9YDALQ9nagAAAAAAACgDRx44IElQLXuuuvGySefPEGAKuWYt+9+97ux++67l9BPhnHGjh1btXo7q6FDh5ZbXd2M+6jzpptuKt2n1lhjjc8FqNKgQYNKN6wMxj3wwAPx2GOPzbDaAIC2IUQFAAAAAAAAX9KDDz4Y9957bwnRHH744VMM+HznO9+JRRZZJJZeeul44403JnjtzTffLOGqDGINHz48Ro4cGdtuu21cccUV0dTU9LnxcsOGDYsjjjiijBE84IADYvnll48ll1yydMS6+eaby3IvvfRSy2u5zW984xstrzV78cUXy7q+9a1vxVtvvRWHHHJIWT7HEG6++eZx8cUXf277U5LbzPF2Oe5uscUWK+vaY489SsCotccff7y8ntu+/vrrJ3gtg2ZbbbVVeS3X1Swf5+39999veZwdvlKG1/Lxb37zmzj33HPL13m8JyU7gy233HLlOL/77rtT3J88L6lSqUx2mX79+sVOO+0UW2655STPf+77fvvtF6uuumosvvji5RwfddRRkxz/90Wug7zu8vXVV1+9vCfHRua5bHb//ffHXnvtFSuuuGI55hkIy2vn5ZdfnuK+A0CtEKICAAAAAACAL+nqq68u98sss0zpSjQlOYbu8ssvLyGZOeaYY4JA0de+9rU488wz4+OPP24Jw2RAK0NN3/ve9ybZueqZZ54pQaccJTdixIiYe+6546GHHiodry655JLyWgZtMhA1zzzzlPXtuuuuccstt0xybN3WW29dRuZl0CbDO08++WT88Ic/LCMIp0WGyTbZZJMy0q6hoaHsR3bl+vvf/17W/ac//all2YUWWqiMv0tHH3106fbU7NRTTy3BowUXXDAOO+ywyW5vo402ivnnn798/ZWvfKU8zlDRxhtvXEJtd9xxxySDSjfccEMJT62zzjolADUlGXpr7kh1+umnl+M0Kfvuu28ce+yxZfutZaBrm222Kcd11llnLcckw1AXXHBBOT8Zgvuy18F9990Xhx56aMw+++yxwgorxMwzzxwDBw4sr5199tll+zfeeGO55jLc1qNHj3IuNttss3K9AECtE6ICAAAAAACALymDTCmDSl9EdkXKTk05DjCDRhnWyW5KZ511VgneZAjpb3/7W+m0NKnQUnaYypDSb3/727jqqqtirbXWivHjx8cPfvCDEoTKwFCGkrJTUXapShdeeOHn1pWBqU8++aQsd8YZZ8Tvf//78vVss81WgmLNYbHJyRBUhnwyZJRdjrK7VNacgaoMEvXq1St+/OMfx6OPPtrynuwUlTVmV66f/vSn5bkM9WS9GYI6/vjjS+Bncn75y1/GyiuvXL7OQFQ+zvsMEWUnpzwOV1555efed+mll5b77Bw1Ndm9KTs3ZfAp68mQ0nbbbVdG+N1+++0l7DQ5Odov96u+vr4EsP785z/Hr3/967juuutK56/sOpXH5MteB88++2zsvPPO5Vjnds4///yW6yO337dv3zjvvPMm2P73v//9EiTbe++949NPP53qcQCArkyICgAAAAAAAL6k5k5Hs8wyyxd6fwZacgRedmbKrk/dunVreS07S2VwJ51zzjmTDLvkezJw1DxyLjsZNX995JFHRs+ePVuW3XDDDVtCN5OSI+aGDh3a8ji/bu4E1RzMmZzsfPX222+X7Wfno9bj77JL12677Va6KGWXpWY5+i67cs0000xx2WWXxT/+8Y/S9SqXy85LE3d1mh7f/OY3y312/motj3V27srOXDlqcFpk8Cjrz2M5ZsyYuOeee+KUU04pIbBll1223GegamIZVst92XHHHWO11VZreT5DVbl/8803X1lfBqi+7HWw/fbbt3zdPFIwg3AZ/jrwwANLWG3i5XO84KuvvjrVgBwAdHVCVAAAAAAAAPAl5di6NKkxa9MiAzlpgw02aAm/tJaj9TJskx2PHn744Qley/FwgwcPnuC5AQMGlPvsIJWvt5YdmlKGdibWp0+fCYI+zXL8W4Z+cqTcRx99NNn9uPPOO1s6N01KdnNKGWBqLes//PDDy9d77bVXCXjlNjOI9WVkaChH/WWnsBwN2CzDWtmhaosttpgg6DUlGWjab7/9SlDqxBNPjG984xvlnKQMQeXzGaTK0FqGlprlKMX01a9+9XPrzEDWX//61zJuL9f/Za6DPNcTh/jGjRvXss7snjUpOS5wUucEAGrNZ7/NAQAAAAAAAF9YBpUef/zxeOutt77Q+19//fWWbkOTk6/973//a1l24lBUa83BoP79+0/2tUnJzkyTCu/kOL0MZuXIvbxl16hJeeWVV8p9jonL2+TkOjJ41NjY2PJcBppyZF2GkTJQdOyxx0ZbyLBTjrPLblQ5bjHDU/l1hsI222yz6V5f7969S8gpbynP+R133BEXXHBB/Otf/yqdpxZddNGWsYnN52vOOeds1+ugX79+n1s2R/XleMbJhbhae/nll6daHwB0ZUJUAAAAAAAA8CUNHz48brvttgm6HU3JRRddVMJMK6+8csw111wTdC6anAz/pNYj3lp3wWoLGSyanOYap7RMc405Im5S4a7WsmtX6xDVm2++GY888khLl6yrrroqdthhh/iyNtlkkzIGLwNaP/jBD+K+++4rI/OyK9agQYOm+v6s87///W+89957k+zmNHDgwNhoo43KCMNDDz00rrjiirjyyitbQlTN3cmmpePVl7kOJhV+a142r5H1119/iuvN6xAAapkQFQAAAAAAAHxJ66yzTpxyyilx//33lw5BOVptcrIz0C9+8Yv48MMP46ijjoqtttqqZfkXXnhhsu97/vnnW0I77eXVV1+d5PM5Pu7tt98uYZwpBY+yI1d2Scrw00orrTRd285xfu+88045ljfffHOccMIJZR0LLrhgfBnZQWvttdcuIaoMuuW605ZbbjlN788Q1Oabb14CTrfeeutk9z9DUhmcyhBVdoBqfUwytJVduiZ17m644YbSlSsDWm19HWR3qgyq5Vi/7OzVvXv3adpnAKhFn48jAwAAAAAAANNl4YUXLl2lsoPScccdN8WOQr/61a9KgCrDPdm9KC277LLlPoM+zd2DWnvooYdKeKZPnz6x2GKLtdt+ZADs0Ucf/dzzf/vb30pdyy+//Oc6ILW23HLLlfubbrppkq/netZbb7047LDDJnj+T3/6Uwk35ai6n//857HXXnvFqFGj4qCDDioBo6mZWpenHOmXrrvuulJbBptWX331mBY5yjDH86Wzzz57istmgCwNGzas5bkRI0aU+3/84x+TDGgdccQRsd9++5VOV219HWSAqnmE4aS2n372s5+Vbl1//OMfp7o+AOjKhKgAAAAAAACgDRx55JEl3JJBnb333jtefPHFCV7/9NNP48QTT2wJ4vzwhz+M3r17l6832GCDmHPOOePxxx8vIazWwaHsSnTwwQeXr7/5zW9OMcTUFrIjVHadavbEE0+UYFPaaaedphpWmmmmmcq4wvPPP3+CMNnTTz8dxxxzTAkazTvvvC3PZyjopz/9aQlC5es9e/aM73znOyWY9thjj8Wvf/3raQo6pQwiTUqGv4YMGRLXXHNNvPXWW7HZZptN1xjEffbZp4zLO/PMM0vo6IMPPvjcMhlSyg5jud4dd9yx5fntttuuvPcPf/hD3H333S3PZ3eo3O881hmeymPSHtdBHsv04x//eILtN4fazj333LK99gznAUBnYJwfAAAAAAAAtIHsonThhRfGrrvuWka0ZcejRRZZJOaaa64yDu/BBx+M999/vwR+svtQBmaaZSDmN7/5Tey8884l1JLhliWXXLJ0rLr33ntLh6s111wz9t1333bdh6zjtddeK+PvsqtUBr/uueeeEubZY489pjqiL8fR5Ri+DB1laCdDR9mVKUNHOeowg0O5H81hrHycwaA8PhkMyrBTyiBSjp/LUNYZZ5xRukY1d3SalPnnn7/cX3zxxWVs3mqrrdbSfSplQCvH9x1//PEtX0+PVVddtQS8jj766LJPeY6GDx9e9jc7ZmUIKbebAbAMnLUOJC2++OKlo1Y+v/3225fOULPMMksJiGUwKrti5b6213WQxy7PXY6b/Pa3v12uycGDB5dtZw3pwAMPjKWXXnq6jgkAdDVCVAAAAAAAANBGFlxwwbjqqqvi0ksvjb///e/x5JNPloBNjlXLkFWGd7bddtsSrJpYBm+uvPLKEhrK0Xb5/uzqlOGWfN9GG23U7vV37969jNbLsNHtt99eAkcjR44snZUymDStoZ0rrriidF6644474tZbb42+ffuWMNDXv/71sh/NXaBOP/30eOCBB2KOOeZo6bLULEfoZdgqlznkkEPKscnjMSk5FjFH3WWnqdxeLtc6RJWaQ1jLLLNM6Uo1vbbYYosSIssuW3fddVfpoPXwww+XUFx2j9pwww3Luc19mVjuR+7PWWedVfY3a80A1jbbbFMCThmqas/rIENt2e0qR/b9+9//LtdlhrfWWGONcm6bxzACQC2rNE1pIDMAAAAAAADQ5eXowbXWWquMI7zvvvuiK8ouUuedd14JiGXoCgCgtboJHgEAAAAAAAB0ETmOMGVHrOwONmjQoFh33XWrXRYA0AEZ5wcAAAAAAAB0SXvuuWfprNUcpjrmmGPKaEUAgInpRAUAAAAAAAB0ScOHD4+mpqaYc84540c/+lFstNFG1S4JAOigKk35WwMAAAAAAAAAAECN0okKAAAAAAAAAACoaUJUAAAAAAAAAABATROiAgAAAAAAAAAAapoQFQAAAAAAAAAAUNOEqAAAAAAAAAAAgJomRAUAAAAAAAAAANQ0ISoAAAAAAAAAAKCmCVEBAAAAAAAAAAA1TYgKAAAAAAAAAACoaUJUAAAAAAAAAABATROiAgAAAAAAAAAAapoQFQAAAAAAAAAAUNOEqAAAAAAAAAAAgJomRAUAAAAAAAAAAEQt+39lNncHxDdgNQAAAABJRU5ErkJggg==", + "image/png": "iVBORw0KGgoAAAANSUhEUgAACVEAAAbHCAYAAAB5LbTXAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAXEgAAFxIBZ5/SUgABAABJREFUeJzs3QmYXGWVMOBT3Z2EhARCRJAdAgoCapCAbKOiiCwuA6IgCCguKKKiIygu4+i4Ii6gIosD7hv8iAtugApCQGDYiSAYdlSUsCQEknR3/c+5mZtUKtXpvau7632fp57urrr39ldVt27de77zna9SrVarAQAAAAAAAAAA0KLamt0AAAAAAAAAAACAZpJEBQAAAAAAAAAAtDRJVAAAAAAAAAAAQEuTRAUAAAAAAAAAALQ0SVQAAAAAAAAAAEBLk0QFAAAAAAAAAAC0NElUAAAAAAAAAABAS5NEBQAAAAAAAAAAtDRJVAAAAAAAAAAAQEuTRAUAAAAAAAAAALQ0SVQAAAAAAAAAAEBLk0QFAAAAAAAAAAC0NElUAAAAAAAAAABAS5NEBQAAAAAAAAAAtDRJVAAAAAAAAAAAQEvraHYDAAAAoJnuvPPOuPTSS2POnDnxwAMPxCOPPBJPPPFErLXWWjFjxox4znOeEzvttFO8/OUvjzXXXDPGmg9+8IPxk5/8ZKX7jj322HjXu94VY8E///nP4v25/PLL469//WvMnz8/HnvsseK9mD59emy11VbF+7P33nvHhhtu2OzmjnsveclLis9JrW9/+9vxghe8IMair3zlK/HVr351pfsOOOCA+OxnP7va9bq7u+P//b//F+uuu27sueeeMVbke7fXXnsV7a81ZcqU+OMf/xhTp06N8ezwww+Pq6++eqX7PvOZz8SBBx4YrbT/AgAAAI1JogIAAKAlzZ07N770pS/FZZdd1vDxhx9+uLjdcccdcf755xcd7Ycddlgcc8wxMXHixBFvb6vJ5Kmvf/3r8eMf/ziWLl26yuOPPvpocbv77rvj4osvjs9//vOx7777xvHHHx/rr79+U9pMa7jhhhviv//7v+OWW24pjgtjSSZ+1SdQpUWLFsXPf/7zeP3rX9+UdgEAAACMBqbzAwAAoOWcccYZReWRnhKoGnn88ceLpJ6DDjoo7rrrrmFtX6vLijiZEPW9732vYQJVI52dnUUSyKte9aqichUMR2JfVnY75JBDigSqsSaTp+qr0tU699xzR7Q9AAAAAKONJCoAAABaRrVajQ996EPxxS9+sfh9IG6//fZiSqj7779/yNtHxHnnnRdHH310LFiwYEDrZ3WqrBb2+9//fsjbRmt7//vfXyQhDfTY0WxXXHFFPPjggz0+fuutt8bNN988om0CAAAAGE1M5wcAAEDLOOuss4rprBrZZZddYu+9947NNtssJkyYEPfee29cdNFFDasaZUWanDbu+9//flQqlRFoeWv43//93/jYxz4WXV1dqzy25ZZbxitf+crYeuutY6211oqHHnqoSArJ6lOLFy9epSpVVgz6xS9+EU9/+tNH8Bkw1rz2ta+Nf/u3f1vpvhkzZjRcttE0eGMtQbE3OX3mc57znBFpDyO7/wIAAAC9k0QFAABAS7jxxhvjy1/+8ir3Z0LOySefHC960YtWuv8FL3hB0UGdU/4dd9xx8cQTT6z0+HXXXRe//e1v4+Uvf/mwt70VZOWp9773vUUCVK1MUvuP//iPOOqoo6K9vX2lx/bbb79429veVlSeuvPOO1epSHX66afHRz/60RFpP2PTM57xjOI23j3yyCNxySWX9LpcJh5mAuKaa645Iu1icFpl/wUAAICRYjo/AAAAWsKpp566SoWjrDh19tlnr5JAVeuFL3xhfOUrX2lYceq73/3usLS1Ff3gBz+If/zjH6vcn9MvvvWtb10lgaqUlcPOOeechtVXsurYokWLhqW9MJb89Kc/jaVLl65039Oe9rRVjmv5eclEKgAAAIBWpBIVAKPGwoUL44ILLojf/e53cfvttxfVAyZOnBibbLJJ7LrrrnHIIYfEFltsEeNRjvb+yU9+UkxRk5UwRtv/v+OOO+KZz3zmsP3/P/3pT3HEEUc0fCw7tydNmhTrr79+PO95z4sDDzwwdtppp4bLnn/++XHiiScWy2bVkMHKShj33Xdfv/e7l7zkJfHAAw/EJz/5yaKCSf1zvPXWW6OjY2ROw/JzlB1mtVMZZSLAV7/61Xj+859fdFiPNvfff3+89KUvLX7PCi/ZOd4M5f60OnmMWmeddeJZz3pWsW9mRZRma7T/ARG33XZbXH755avc/+Y3v7lPU1ftvvvuseeeexbnKSkTD2bOnFlMMZeJWT0l+JRuuOGG+OUvf1lUr7rnnnuKRIWpU6cWx+cddtihSOLKz29bW9/HOuXUYrnNX//613HLLbfEww8/XFTVyunuXv3qVxff6/3ZXr2cxjC3nW3OqfOq1WqRqLTVVlvFHnvsUfyPtddeO4bCkiVL4tvf/vYq9++4445x+OGH97r+euutF0cffXR85jOfWem+2bNnF6/LlClTVrt+ft9n4sicOXNi3rx58dhjjxXH+Ewyefazn11Ml5XH+N6q85TfsbV+9KMfxaxZs4rn+LOf/ayYfvCvf/1rPP7448U5y84771w8x2222Wal9XKZ/J7+4x//GH//+9+L57DRRhsVU04edNBBq52yK/eBWnkOldO0pdz/chrKfK75nZvnJBtvvHGxf+f5dr5uw2Ew+1O2NSuR5Tq18v351a9+1XC9//zP/yxe+3of/vCHVzrvbPSeHXDAAfHZz352lfOSRvJcoTxfyPcnjxH//u//Hn/+859XWm7//fePL37xi7E62Y5sT/17mfvNYDWaxvQ1r3lNcWy6+uqrV7o/X7eDDz64X9cRtcrztzxGZfWrfDyPwTkNah6j8riZFfzy/6+xxhp9+j9XXnll8V7nsS7Pc8rKgLl+HkfzWiUTXvO4l9cOA/XpT386vvWtb610X34m8tpidVO3XnPNNfGGN7xhpfvys5Wf3/rPalbdy2N3fif95S9/ifnz5xffCXndM23atNh8882L8/RXvOIVvV6D9bb/1svP0FVXXVV8FvOaJF/LvA7P+/P4tsEGGxTHor322qs4JvT23QZQEtNr3Zhes9XHFPP1eNOb3tTrep/4xCfie9/7XvH7UMXHhiMe8+STTxbXM3m+PlijIR440JhfT3HVnvb/8nooB9vstttuw/aaAjA+SaICYFT4/e9/X3Q+5DQTafr06UVSQnZg5dQsGYDJC9tjjz023v72tze7uS3jrrvuKi78M6g/UhfX22+/fRFoK2XHdO4H2eGXnYmZ2JKdbNmu2uWGWnZq5P/IDp6cWmgs+uY3vxmnnXZaMXVVbRIV/ZcBpkayEyw/J9lBlrc//OEPcdJJJ414+4DeZed7vUwwOvTQQ/u8jewgzyBvJubkcWF1SSylPI/5+Mc/vkqSQsrOpbxlx0YmuOS5TyZ47LLLLr1u9+677y6mGKxP1PjXv/5V3K644oriu/tLX/pS9FcmFGUw+tprr13lsewUyFsmxGQQ/t3vfnefkpx6k/8rEyzqHXbYYatNXKhPUsmEhEy2zvcoO+16k6//5z//+SLwXl+lLJOQM1Hj3nvvjd/85jdFAkyei2ab+ivblVMS5s9aue28ZZWgj3zkI0UHYzrzzDOLymm1lYOeeuqpItni5ptvLhLO8jv+uc99bp/bkEkS3/jGN4rzgvopE+fOnVvc8twhz8mHMgl3KPan7PjIz993vvOdle7Pzo/83v3Upz61SsJNmTRWv52h2F97k4nV9W3K6518D1eXNJT7Wb1MyBqsm266aZV9L2WSzqabbrrK8Sk7pnJ/2HbbbQf8Px988ME44YQTiuSiRseo7AjL/TH340xU7Ekum+fijY6hKT8jeT6WyY/5+p111llFMmVP5259ee/qk6gy6e9///d/i+NKf967TL6s/57I76L/+q//Ko499fJzmZ16+f/y+eZxID+LeWwYiuue/Kzle9Los1j7nZTfK3lMzO+k/A7JREeA1RHTG52aEdMbDTJRuLckqjzvb/TdPdrk4Iu8VnnXu95lkNwQ8ZoC0BeSqABoupxC53Of+1zx+7777hvvfOc7VxohlUHkr3/968WI+QziZudDdhoydN73vvcV0+TkyOdaWZEhk4kG2gkxEKecckrDkUDZiZlBt+xQzI7G7GT4whe+sFLH6ste9rKi0kKO4h6sM844owg4DUR2QGaHznBVcuir2moctbLzN6tpTJ48ecTbNFatLuCYgeIMTObnJffNrFaTiX7A6NKo0zgTd7MSUF/l5ztvfXXxxRcXiTN57tIXmeSQ1XY+8IEPxJFHHrna5XIUbtlR1ZPrr7++WK4/I2wzeSLPCTI5pTdZSSmPf5kEliO5B6M+0aJMcstKKH2VCcNZRaav8nv+LW95SzEaui8ygSmfZ76u+X/6mtSQHYd5zpIdiT3J84ZMrMhKRpkAlyOmVycTzvJ9yoSMviTzpRyZnUkrq5PnW5mwkYkUuf3BGsr96f3vf39xXlp/fpYVlrLyTpngkh2F+Rzqq1ZltaqsztPXpLzByJHwmdxVmwSX7cpksUzQ7ykxsj7RKasAZaLTYJ177rmr3Jed2zlCf8MNNyxe76yUVuuHP/zhgD/Xf/vb34rjWFZQ6y3RKjs5sypTo/04q5pk0lsmSPVVvo65z2USXVa86q+swrTddtsV+26t/Kz1lESV+1pWUqj3qle9aqW/83nmdVf9vtmTrOSVVcHy85NVIwaz7+bxK1/LTKTqq9wf87oh959MtgNoREyv+UZTTK/ZsjrRjTfeWJyLZHXFnmSyciZqD7WhjgfmZ6bRdOcDNZbjgTl4JM+lUl+q+5fL5rnucL6mAIxPA6/rDwBD1KFZltrNQEuOjK8vMZ0Xnh/72MfimGOOWZ7cktM4MHTyNc5OhmYn/axOTi/xtre9bXnn6IUXXrhKVZEMGOXzaHaQP/9/tqM+gDVaZCdVtq8+kMDA5HR+mbCWU6+kVhrhCWNFJt5mJZZ6q6t+MhTnONlB1NcEqtpR0fld12jqrZTby6osvSVQlbLKUU6F1heZOJMVAvqS8FIrO/nrKwT1VyYmNfo+7W0avsEkFORUjn1NoKofvZxTxfVVJqKsLoGqlIkVeT7cWwJV7fv1ta99rc/JEL0lUNXKqltZzWkwhnp/ygpOOWq8vtMkX7e8ViiTgDJhrdH7mklq/UmaHOy5QU7n0peKeLVVE+rl9EeDPT/P5K08b26U6JXyfLVRsmJ2vOa6A5HJo70lUJXyWPY///M/DR/L97I/CVS1yVf1U9z1txpVvaxWkUlNPR2/6jvj8nWtnQYy25T7YF8TqOoTcs8777wYjPxM9yeBqvZz3Nv01kDrEtMbHcZCTG+kZEXf/K7trcpUeU42mKqbjYgHDp9M/Mq29zVJvlx2LCaMAdB8kqgAaJq8qM0OqOwsnDVrVjF9x+q84x3vKEYRZfC6r51LjD85ovtFL3pR8ftgOkdgKGU1kpwiKGUFDWB0yU76+iorqT8Vmvpj8eLFxfRltVVoSjkSPJOkvvvd7xbfYzlVV1ZcqpedTTmNbb2srpLTotSbNGlSUdElE2VyBHSOSO9rhaLahIWsDFMrK59kQkEm6+R2P/rRjzZMVs7klv4my9RqlHDRl+n4BiqnWmuUUJCVoLKCTj7XfC2PPvromDp16irL5VRXfU1qKKfOy8o///3f/11MxZf7QKPOi9x3Sln1LEdK5/LZ8dio0ubvfve7PrUhpwgrvfCFLyze69wHsx1Zka1enm8PNOFjOPen5zznOcU1Qb38TOT7lZ25Wbm0XlZzylH3A5EdkpnYlbdGHW3ZnvLx2nPTRok4WYmq9r2o1aizbygqW2ZyVlYYq38faitclQlVtXKdRslXfVFWdsjPUx4L89otp2vcY489ekwSqpfvf6MKWplYlvtWvs+53dyHGh0rGlW366t8beorzWX1t56mwWv03u2zzz7Fcbl02WWXrZJMmdNdZaJhJhRkhZb8mdfE66677irby6n9Biqvtxu9lzkFanksyCkM83iw4447rrJcPu+enjvQusT0GI3y+7en5PTac/OsILnWWmsVU+8CANSTRAVA0/zv//7v8s7BvkwXkoHsDOxmsCU7oOplULrsjNxhhx2Kad2ylHiWFc/y4fXOP//8YgqLnBokRwZnZ02OFs7OmUzSyf+R96fbbrutCAjliKbsaMrtZsdPfcdSdg7kNrNjLkcjZydcJlZkW7LjJtu3YMGCfr1OGZDKjrqcjmfnnXcu/n+ObM8Og5yuor7jLYPh2Yb8Wd9hnO3N6YHy8ewsKTvqsnOjfC1Sjt7Pv8uOoOuuu674O/9vTrWSJZTz70bTVpSyIzeXGUzAvycHH3xw8TP3n9opXcr3NDsH6/3xj3+Mt7/97UXHS07R8YIXvKCY0iI7YGpfp3IbWdo7nX766cXf+RqlP/3pT8Xfr3vd64r///rXv77YZ3K7ZQn7fJ1ymUYdPyn/X762e++9d7FutjdHeDeaPnB1z6n2vcpbWXWhfD/r34vcVu1+mm3vqSMopzcq9/fs8HrXu97VY0WK8v/n/nTRRRcVr2tOd5L7fX4ey3LmA5EB1qxGkZ1Z+Vrl5+k973lP3Hzzzau8v9mGfG976sTP6i3ZMZTLZXn3oVYmQTTqcM4g3QUXXFDsgxmky+eSx6mc0icDz43e+3wds63Z6ZbHoHze+fzzPcljVR4Ps5JKX+Wy+TqWn//BJDvAWNNTFaCscjgc8vh/3333rXJ/HgOyWt1rXvOa2GmnnYppaPO746yzzlqpsz3lcTNH89drVO0un0d2wOfxP48x+Z2UyT85xWhfqzNm0kMepxpVL8lqe3vttVex3Te84Q1FZ3x9h0N+B2SC11C+R8P1/mRVpqyyUy+TlvL+nFIxn2s+x0xGy9exUZJGTjFcm/S0OrntrC6W5w95DpL7QH4f9yS/A3J6nDx/zOXzO6BR52QmKTVKEOxJVjHL/S2/D3IfzHbk+9Zoyrg8z8zvoIEYzv0pP0d5Llovz9lOOOGEVb6Hs8M2kxIHKq9BsnM4b40S6vIzVj5em2SVzymnmKyVlZ1+//vfr7KNPF7MnTt3pfuyClseIwarUbJfJnPWJvHltU9Od1gvE8MGKs8j8/OU56F5/pLnvZno1qjq1T333LPKuWImpW+22WYrVR7LfSarVuX+mueaud3chxpdb2TSU18/n/UyualRJbFyWph6ja6J6hPgGlVHy+u5PMd+8YtfXJyj5s+s5JLfIWUFi6yekOe3uX9lVaiByHPA+qpieX6fn8fyWJDvVx4PMqEq36vy3DaPffme1SfiAYjp9c14j+llLCuXa5TkXvrZz35WLJPfJ2VVx3xd8vol41L5HVjGnvJ7sNG5Ul/lOWYOPLjhhht6rIqZsa0cZJPnWY0GKdTGkDJmWJ7LZBvzHCq/O3OK6EZTwjWKB9bGEfN8J8/xc4Bo7ld5PpP7Rn1CebkvloM+cqrq/Lv++iFjl8cff3zxvPNcIduY56A9xfB6igeW7c7PdG4zZwLIa5D8POXnJa97ejoXyM9nDvw46KCDin08z1vy5yGHHFI819VVZu5rzK/2dcxbOUhldcply6rMq3tNcxrr/D2fc0/xy5wiMitZ5/m+6QABxj9JVAA0TXkR097eXgQy+iIvpvJWP7VLBkTygisvfG6//fZi1PMWW2xRTGGTF2z5WF5sNZIXzhkwzqB+BnWyQyEvtDOAnIkkl1xySXEh+Ic//KGYAiRHKuW0EtkBlIHnRvJiKtfJzqMMgGcHQCZJZPsyAaiv01vkBWq2IQMi2f6cxiSrGGQAPTuWMjhfG/TIDtgMHGUQIEfk10/xks/xqquuKoLx2TFb32Fbu50MDGSnU8oOo/w7L8bz+ZcdOtmp2Eg+v/w/+d4OxQj6erUjpMtkp9XJCg75OmYgJjtittlmm6JjNtfNKXZyOp8M4KSnPe1pxXMtO8nyNci/y6naajsjMnj15z//ObbaaqsieFW/TE8yGJH7QnZm5PuZQawMAOZrlclAg5XtyDaX8n/k3/ncVicDBTkaPoOL2Y7ytSpH6b3xjW8s9vue5D6V62dp/qzukq9xvj65TnZqDkQGFj/5yU8WHWH5PDKImCMKM/hUO9VVdk7ne5VtbdQxnjLBK4OoWc47g1VDKd//PFakDPjWyoBRdshnADb3wfx85nPJzsoMmmYHZVarqO88LWUHdh5PMqiW0wPl88ygaFYMyKBUGRhenTzO5fuXHZIZ8MnPRG/7A4wneZxtpL7SyFBplPyRx6lMYGkkOwxy6r9Gx63ahMc8v2g0tVWu26iaUFbQyeBwX+Txqb6jJtvcqHpPvm4f/vCH+5xg0BeNOqRG8v3JY2J+jzWaPjC/07JjoF6+H32pBJVVfzJhtv755HtWn2STsgpN2QlWq1HySerLVIEpOzMyAalenq9lR2Oj74WBJlEN5/6U5ycnnXTSKlNz5HdxfXWxfO3zPCTPX0daT+fBjSojNLovE1kGO/1IHi+yk7tefeWpfA/Kyg21sgMrr7P6K8918nWv/zzl+5HnI/WyU7j+OJ3Xh5lgl1PlZedzdlbm8Sxf13ozZ85sWHmvp2N/XzSqJJbH5PKaoZRTxdZXXMtr0ewUrdVoWp88t2vUxrwezWvRfDyff14n5DVeJncNRKP/ndfMt9566yr3Z+JUVqHL/5n/O9uQCYplJWCAkphe71ohpld+X2YMqadk3/L/lBV483s/r4s+/vGPFwleeQ6aCSz5HZvfO3m+esopp8RA5PuV11b5P3qqRlWeY2aiWk8y5vfa1762iBlmMlK+htnG3HczrpLJgAcccECf94Uy5pYJh2ViYMam8jnnvpHJY7WDZcpYZHn9kPtg7XuasppkDrzIJLXc1/J8KPf/bHsZw+tvQnwmf2VSV77/+XnJ86v8vOS+mLHT+qmNM1ktX8c8V8iBKnn9mVN65nJ5HpHPtTbmOtCY31BY3Wuax5j8fOY+nJVje9qP83nlNc1ITREOQPNIogKgacpOwAyONBrV3VeZQJAXoXkBmskLeaGYSRQZ7MgLn+xwys6lvCBtVBXi8ssvLy4280LxV7/6VVGFJ0fHpbzgy6SQrBaTAaK8YMrOpAzQpExEaDSiJreRHTk5si1/zwvabFMmt+SonkYdRT1dTOb/zQvQbF/+7wxo5wV8BhXyf2cnW16oljJBoqxUkAGWTGJJmdhSBiHy/69uDvns0CsrZaS8kM2/c+RRymBSyte3UZCkvLDMwMVwXFhmB0K5z9R3WtTLjomTTz65+D0DZBnYyQvx7PTMkex5kZzJVGVwJTsI8rmWlQQyYJR/13c65r6Ugat8f7NjJ7ebAaG+yCBRdqaWbcn3NTvKcp/J97M/1YUaKSud1I4MzL976/zIzqnsHMqgUO4r+dnI6gVXXHFF0d7stMx9Om+NZHAzK59ksCU/f/n8MmGsDFKV+2J/5FQsOaIx25KvVbbl0EMPLfav2qmuMhBXvv49BQLLihiNOsUGI/fBHOWXo9KyHfX7Slb8yKBYJkDl5zj3vXwuGcTNv/Pzlgl1GXRqJEflZZAmO6SzMzHfo9NOO60IaGblht6mk8rjXyZxZTA6R/Zl8lW2BVpJTx0MPU2rNRjZ6ZKft3qNEgdqZVJkfYdSBv9rk2sbjcjN404G8HuSI5H78pnP76Z6tQm59bJjq75yTR6TB/qaNkqYGo73p6fEoPxuWF2iTR4/MwmpXl+Sn/O16inRulESVVafzPOTerWdJrX6WomqPH9rJPe9RglOeS48EMO9P+XyOeq+N5nwntWLmqWnKf3qqwIN11R+jTqfsmO2UcJUVkRoZCDVqPKarNF0leV710hPVaPy2JDn5Xmcy4EL9R3n2dmayVWNEjEHWgk15XVMdgTWV1irH8DRqIM2k9QyYaxWo/0wrz0zmSA7F/O6LTsiy89zDmTIKlD12xmIPJ7Uf/6yszL3z+z4zESCTDIor0GyMzurSDQ6DgGUxPR61woxvUwazqqc+Z2br3+9/L7J55vfZ+U1S54/5+uaCTr52uZ7nucs+V5mFdiUU9z2J0Gpr1P65fdsnjvkd93qkv8yYT/fl0y0ye3UtjHfl4wH5mCXjK/0VQ6cy6roGaPMuFnuC7lPlOcImRhXVljK9yjfs/JaIT8j+Xf53mWMKauE5bVg7u8ZK8vtZTvzO728bsl9pj7xaXXK5LDcXr43GbfKeGD5eaodQJKJUXk+nnHXrISV72v52c33/D/+4z+K5XJK4J6umfoa8xsKq3tN8xhWVuLM591Ixn6HI6YIwOgkiQqApilHzTcaNdwfWf45gy05aj8vsmunW8n7MkiQAYMMrPeUpPChD31opWlB8oKoDJpnQCgvnsugUCaSZPAmZcCjUUWIMiGlNlieAY5MfMgL3Lw4zCD56uRIvEyYyAvzTPapbV92BueorSypnIGd3G6tHOmWF8x58Z3BlQxKZWAmgxq5To6mGowMNOTrkttrVCVgJC4syyl+epvWIkcL5muUHXP1nYMZEMoknwyora6Ed08yYagMKGV7euqkr5cX6ocddtjyTpHstM0RZBl4yueTZaRHWganyv+b1ShqO9cyWSfbmyW1U5aEb1TGO4ObGfAqX4dcL6ujlJ2ijTpUe5OjwXIb5fuT284ATlYjK8uglzJAmK9pjqqvD7RkUkMGLwdaHS1LndffMtCSJc/zeWfwMTug83OfU6LUyv+bn/sM3tZPP5R/l2XUawOntTK4l8ex2o68nKagnOJxda9rHvey9HwG6zIgnUHgZlTjgGbrqXrHcExP1CiBKo9N9VVJ6uUxJDut69UezxpNZZJVkhpVGSnl8ad2iteeZFJmvXLKg55u9RWQMpCeI7OH6j0ajvcnz92yqkG9+mN3I42W6UtgP9+jnjRKUsjOmkZ6qkrUaBrZRhpVK6vVaP9rtM/1xUjsT3lukudyPckOy7Lzplny/D+nVqnfB2unqclk7PoEyTy/7GtVj57kdUCjxPJ8zRolVua5VZ7f1/v5z3/e74TG1U0j2mjawNRbB1+e9+U5T5775flmnr/ntVY5/V2jhKn+dBrWy3PGRgMk6juIG02F1Gi97HjPZNl62e68NszKI1ndJL8rsqpEVnzo6dxwIPJasFEVr6x0kueHxxxzTPF65rVinmtnp2l/pgoFWo+Ynpheqk2OapR8kkk1eU5XJlulssplxihqr1PyeyrjbBmPylhQX6ut1suEnkzCzveoftq1fO8y6SfPIxp9L6Z8XTK5J59bDkqsHwyRg1TK+GJ/v6szQa62Imhex5UDAzIemDHMvsikpIyTZVWxjIXlfll6xjOesTx+l4letZWNe5NJ3JmUVV5f5muQ59z5GUy1FU7zfcw252ud1aRqz/GybRlvLT/PPb1O/Yn5Dbcy6TDP0+srhea+lJXk85o143EAjH+SqABomrIjaDAjhFM5CiaD1Y2C8nkxl4Hoctn6jqa8ICyTEWrvKzsRsgJM/YV1bTJDo6m0svMrkyvqZdCl7IArp/7qSVabSRk46WnkV5kMkiOXaksj58VzlkzOi95MKMkAS16I53PKBJnBytenDKbUd87kqKr8X3lh2eg1GCrlftPb6OzsuMwgWQZfsoR6/ZQkGTzLoFw54mig0wr2RwYgGu2n5fvZU+no4ZT7UAbockRWo0oU6Q1veEMR2MjgZaNpFBu93/nZKTuDBzKlSv7PevmeZ2nv+tcqgzPl56usOlU/kjI/642qfvQmO+3qb9nhmdMGZWdkBr3yM9soQStHtuVUL406zmqPhY1GwKYM3DZK0CtHnjaqvFAem7ICVR4DcvrCDNwOZoQwjGXZudPo+6JRMs1gNUruze/jRtPE1Wt0fKoNejc65+hLYmRfKlENtJOiXm/JzT1pNJVco0Scwcrn2SjpqC+VM3t7f3qyuvcoz1H6mvTXU0dPX/W2rzTqBB3ofjFS+9OnPvWphq9hmbQ+XFNC9kejDsjaRJxGSTjZuVbbGTYQmQST1R/qZWdldgTV3/IcvtF0x3me0d+pOntKlEr9HbiQVUeyAzkrNmXieV7jZKd0dmT1NYFwoBpV+aud0i+T1OuromQneU/VtrJiVlZXWJ3sTM/z7Lw+yf2gnIJqsPK6JTvpV/fepEwmyOpj2Ymd5805eKKnc1SgtYnpienVfl9mm7NS0f33399rRfAyKSnjOZk4l1W9a2X1pEx868tAkEYy7pGJTo2m9OvLVH55rpLvb74WL37xi1d5PLdbXtv19zuy0fTctVXF+ho3y6S6jEllEnZvAzX608Z8vo2umxvFn3IARiab5a3R9WYmY5ef6Z4S8vsT8xtuL3jBC4q4Yra7/ty3TCzMpK/RcH0BwPBrHGkCgBFQdkQNtLOtVI7SaTR6vlQ+llMU5P+rvbjLoESjxIIywN+oQ6k2+N8oeJ9TvvQkgwBZdjkD/6tTjrzPkt1lpZqepr3ISg05uqp22oz8PUfvZHJHBsOzgymrHa2uWkV/ZJAkR0hnp0t2cpaJMmWAJIP+w3lhWV6499YRkJ2yOYovRyxm2/KW+16OvMvklwy2DXTk5ECScXKd+qlBakd8paEsV91X5ejLZz/72T122mWQKDuFcgRZfu7qgz89BQbL4E1tULCvevpcl8G07BzMIFPZMZwjx7LjKasmZJWCMvhTBgYHWh2ttrJMBlQySJTBqiytn5+9DNDlKNme5DEjO5TL0WvZ4ZY/c/2cGmZ11RJ6e13Lcu/1shR8GSzLTv6hmA4GxnInT1alqR8B26hq1OpkJ0aOSs/RzTnqt9F0VT0ldPRFo3OK3hIp+nJs7UvyTU/Hkv7qKbGzN5l4kAmntbJCT3Zs9TUBNJ9DBuLzOz6To8upeYcqEWkg789AkkYGUh2zL3qrKtPoe2igr9dI7U85FUxP/ysTRnI/6KmC10jJ5PQc0V/bgZWdpeW+3WiqmaGYyq+n6X7znLinSh49+fGPf7x8dH5frO4aoD/7VCabZQWIRh1veazN6f3y2JEJQjk1TqOkscGYOXNmUSWjdlrLvJ7MKXiyU76/0zDmZzunpsnEqExUygS6nJJwdbKDNBOacmrKrLQyGNkxmv8z942sDNLbVNvZtqwglx2JOV3RQK59gPFLTE9Mr3bK6Ux2zipPGYvJ6dnKa60cyJixpKz8VMrkrEwuy9jNF7/4xeKW37m5jYyt9DSQrD+yYlcmQuV5Vn6Hlq93JuJlpaa+DIrMNmS8JpOp8v3OBLF8L/L7sxww0N+ql43iO7UJT/2Jm2WMJ285XV5Wlsw4Uw4Syte9djBKf9rYU7xydXG9fCxfl0wuz/+f7cj2ZDvKfbynNvQ35jecyqpqmcieMcRyIGReQ5UDIEzlB9A6JFEB0DTlCN2cRiw7SPoSCMiAyaJFi1aaFqUcNba69WsDKhmcqA249NaxMpBR4D1VEEjlaKXeRheVnUZ9Lb2c26vvzM3gfj6/7HjI16C2LPpg5Qi47KTMqcry4jJLUteO1hnOC8u8IC9HO2agpTdZJj2nsPnud79bBBfyIjwDO3nLQFR2bmVwqr/BqEZT8PR1GsLVPdaM0d59+RzVfpYaTbHUW6dvf6sF5PZ6CtrVvo65f5cBlSz7niMzcyRjBjZzH83Opwzg5Oe+0ai//so25WcrqzVkMDSTMjIo973vfW+lEYS1r21Wysj9rXaUbj6/DBhl4lqWYh/qzvTcjzIwmUHpDPZl0ld23EGrylHj9UlUGejN40UG/vsiR5RnsD9vmRSR3y2ZTPXGN75x+XdCo1G4eRzIY1Vv5xyNpk6rrdDUKHG4TMRcnd466VOjzqdMXsjnNlLvT35P139vZEfHq171qj5tIxNcM9khb1//+teLc5V8f7J6QXnumN8XeW5XH8jP175MZu7P+zPYKWwaGa6k1+ycazRdW6lRJ2hvyerN3J+ysyY73XqSnV2ZWPPRj340minPrXI/zPOAUtmJlyPe66cDyvOCcsqUgcp9NRO1hkq2MTvC+loRYrBV01J2up5wwgkrJf/leXuee2VyXCZP1Z6LZ/L4cMjksdokqpQdaY2SqPKcraeKrrXy/O8Tn/hE/Nd//VfRMXvllVcWx698nfNat5FMYsrjZO5Lg5HXqTnAJG+ZqHrFFVcU58xZZTUrrDaSAzzyWimPqwAlMT0xvVq5fH0SVTmYLeM0tTGc/D7PStkZQzn//POLa7Q8r8tbXg/kc83vqbe//e0DPi/ORK1Mgsrv8DwHzuSlrGqU+09On9vbdjNumN/Teb5We92Q70cm2WUyUe3Udn01VHGzXC5fw6zkVbsv5vPKz2YmdTea1rk3vSXO1bcvz2Pydcrr6lr5GX3Ri15U3F9fnWwwMb/hlvtxVuHM86KMPednLveBTJrL8+DVJXsCML6Yzg+ApinnEM8LzxzN2xfnnntusV6OYCoD6uWF1epGqtdOKbK6JJah0lPwuzZA1GjamlplICin48pOi95ujTr+crRyXmxm0Cg7xgY7erleOSK97BTKgET+n2xLo+oPQ6U2UPH85z+/T+tkh0N2PmQnQXYAvOlNbyoSsLJ6wc9+9rNidN9IaJR8VCr34UbBgZ4CKT2VxO6vvnyOUhmcGYnPUSYc9VQ1o7adta9XdqaVZdnL/bIMHOVIyqGs7pGBvSwzn0HUTFB417ve1fD9OOaYY4rAYHYo5n6XnXw5DU0G87IKwUCmkuyLDLieddZZxdQx5bSCfT3WwnjUqOM5j60//OEP+5yYWF/ZJUeW52erNvjbKLk3A++ZxNvbuUN98DnVJlM0qnyVAf7VdczkeVZW0OpNbWfWcE532JMced5oysO+vj/p29/+9kp/Z0LAN7/5zZUqFeV71agDKhMYetOoo2SwyS4jqT4RpF6jqjSN9rm+GO79KffrnKa5t8Tz7JzLBJVma1TFKRNxsipQ/TleTmc0WDnlyEAqgPZWjWokfeMb31jlPDAT4vK8JpPE6wczrO76a7CVLOo76DOhNo/XZfWUUlbP6E9iZV6jZaWrPFc855xziu+JPG/N65JGlSD+3//7fzGU8vOdU0RlsmF2EGZSfyYm5vG4Xk4pmMkPACUxPTG9WlmpN2MzmXib35F5/ZNVD3uaHjfPyTM+kv87/29OX5gJLFnhO1/jjJvkefxA5X6SlefzPKtMei4TxHpLeM5k9xwod/HFFxfPKZPCsmpXVrXK64HvfOc7y6d1bJZsTw6UyxhdPp+slpzXqtm+PMfMc4vhlu/1EUccUbzfWR30Ax/4QHE+k4n8eUzIaparq2I5kJjfcCurqjWKKapCBdBaJFEB0DTZgZWVXFKOnulttE1eWJXB++ygLDssy87K1XUQZidnOZq+UYWIoVaW7V5dB1VeYPZlVN/qtpWJG3mBnKOI61+/7NTNYHd2SJ599tlFACcDE9///vdjKDuk8zXNTrEcLZ4dCiNxYVl2Yuf+09tIvOxcy7blrUx8yRFp2fGWgYX/+I//KO7//e9/P+ApiPojK4b0NGKx3IdrO2TLkfw9BRYaVcUYiPJzlPtnT2W2M5BVlqwvS72P1DSD9cpEg0033XSVjq0yEJil2zOgmz9r7x9K+bqV+1AGkLITqlZWFMjEvZQjBHO/y864/PyXCV05cnc45P/JDsYc9ZkBzTxGfPjDHx62TkYY7XJaiEYjR/McpLcpjVImTTaaKioTNGtHuOco580333yV5XrrBMikyvpEzNxuJkSWZs2a1XDUdCYD9yS/m/syzUp5Tla/bk/fP9kZkdX93vrWtxadHtm5Xz8dX39kcLycMqFWnuf05dwlv8czCaDR86p/P7L6T71Mdl3deUCeS2YFsnrZOTNWZMdlbUXEWvk+N5qaLPe5gRju/enMM88sRr7Xq0+Wzu++rIA1VOd4jT5/fUlWykoP9VXAslpDJjvVyvO+Mhl8MIY62aY8zoxktdRGiY2ZcNTT+WJtB/tQymuH+oT3PKZmJam+TuWXnbHZmZjHsk9+8pNFh3pej9RXfsr3Pzuus/pGmQRfq3Zqnv7ICh/ZEZgd0llpJL+38jNULxO3cv/LJPz6Dsu8PsiKDAAlMT0xvVpZ9ak8h8nzuoyDZAWo3E/qE47yOztjJVkROOX0eplE/pnPfKZ4zmUF8YFUUqqPiaRMfso4SG47Y1mrm64xZfJUxneyYlZeox133HFFTCXf0zJGN1xxnL7I8/n8zKV3vvOd8aUvfalIVMvnVSYZjkT7cqBqnhvmZzjjtHl+kwlItVMW5j4w1DG/4VbGDvPzkPtNVu3Ma4y+VkcGYHyQRAVAU+UoquyMKKddWZ1MTsgSwNmhWDuipry4vuCCCxoGzzNQk8GHcnTwSMgAT5m0Uyvvy5LAKUferU75vHL0fF68N/KFL3whDj300GKamtqAS46Kzg6o9P73v7/oOM6L/nTSSSetMmq6t46inoJhGSR5xStesTwokQGdvLDMwPxwyfe57FTJ0t69yYBHdmjkiO5Gz6N2pHVtJ9hwTaWTbciO2kYJSmVHWnaqlMoAYe7bjSqNlEGugbx/9Z3AGSDKBIFydF69LKue1TwygJEVAEZCo07AfJ/Kz3Tta1XKQO4zn/nMIiCZIwQzIJmjKHubpmmgDjvssJg9e3bxewY0ayt91JYtz2m/6mXCRFalKp/XcCmnqyyn9YNW9Z73vKdhEDqnGOtpBH0eQ0877bSi86JedmrkCOp6jb4HM2EiE7Eaye/6RlNR5aji2ulE8nNcHm9qnXrqqcXUpY063LPDvq+dKPXffZmom4kC9cm1eezK0c95fM2Rxvna5Dldo6SC/sjXstFULjlNa1aZ6un7LM8/3ve+9zV8LDsW+vL+ZJJzTv/bqKJgPs9G28+kmLGURJXnf/laNnods9OqUWfLQKfBHc79Kc+nc/lGn5c8762XHXQ5re5QaFTRsi/Jyfla1FdhyGuU+g7jPC9d3Yj9vshkv0bJNjnVSl8qYeQtPwv1chBADkAYKY3Oexv9/0yQ66kyR3+nku5Jo0T8+spumXTU6Ly0/J5529veFh//+MeLc9PsjMsEqqwa0dP5X05FXa9Rtb6+yET+/Gzk9XZ2bGdSVX7OysER9fJY0Kh67kD/PzB+ien1rBVjerXJJ7m9lOc/9eeEud/klHqZtFsv/38ZbxpsjCTfgxxYlvtnJvnkOWeZWLU6ZRwnE5IaDY7J64ZMyBqKNg7kPcxYV3n+2dP0cjl4olRblXcolcngW265ZcNEpzzfyfP71b1OA4n5DVZvn4tMmMtr8EzkysTPTIZ/8YtfPCzTuAMwekmiAqCpcnT70UcfXfyeHYtZ0aV+lFZevGbQIEe4lJ1htaOGXv/61xejXPIiNrdVO0I2g+/ZYZqB4rz4zem2RkJeiOUo39rnksGWY489tngsgwh5kbk62Um6xx57FBe7OSq/DNSUQaTs0C0vivPxsgpGLp8JQxkcyMBDBmRSlljO0dt5fz7el4vocgRTdnr1tHwZJMn3J0dlZ5BiOC4sM0iQHWblqOx8DftyMZ0BkgzC5D7w6U9/eqWOrpySIkdslYk3tR3VZSdB/QjxoZDTZJQBpXI/zX2zHKV30EEHLX8s25Xtz/0m219WAMjOmHzNVze1SvkcyqBFbyWrX/e61y2fKqW2fdnZmclBWYo7ZcCzUSf3cMiOppyKp+xwzWSzE044oeh0zBGTOdJtdftlmbAwnNXRMgCTHb35PmU7cx8tK23UTuuV+29tBZDsHMvPbtmBNVRTMzaSx8h83ZJp/WhlL3rRixomPeX3V07ZkJ/J/G7Nzo685XE2R0X3lPyUx8NGU3lkcmXtd0opv7vzezmTaTMhOEc5Z4W6N7/5zatUeMmAf55L1Mvv83r53Zb/MztbsvMj2/7Vr361OBY2qp7VSH7/ZHC4Xr4e2eYyiTl/5rlXJlrU6+mY3FdZBSWfQ31HSx5bMwkm34uc4iufY7Ylk48zoTqTExolsuT7nbd6eX7UKBk4p7LKjqSchiKPk5n4lucJOeq4UVJKJprUTuU4FmRyeXZa5WuXr2FOs5L7VKOqBpl8PNCk6eHan/L7Nb/P6itq5ectv3+zE7JR0nI+3/y8DVajJJJMMs99J5NTsjO0J7n/9pak31Mlo/6on3Y05X7a29Q1tfI8u6y0UL//jJRG09llMlCep2bHZd4ygTSrRPU0VeVQVc7Kz0GjKSprZeXPno4HWc2qUYWxnM4xz/vzXDf3oTx252cir18bJQr2dRrzevmZb3Rtlef+mVyfnd35ecz25DEv76/v7MyBHY06koHWJqbXs1aM6eX7mpXVM2ksKyA2SiKvPd/J84r83qtNZsnXPONAqdF5fH/P23IbeS1RDljpS8XPMo6TSX35utS2Lyto5fVkWel3OOM4PcUm8/0przWz2nFt1eGMc2bifDmVYhquSqJltbVMlqqduj73tfz/tUn5PbVhoDG/wegt3pvnc2Ui4UjEFAEYnTqa3QAAyIuqvPjLAG5eZOUtR2BnOecc8Vx2WmWCQgZPMrhQP+r39NNPLzrQMoCegfQsq51VdfLiOztZcvvZqTFSgd9sewam86IrK+LkBXcmTOTPnM4jp9Tqixypl0GknK4kA0sZvM+LyAwqlVPCZfWM2ulvstM0q1HkRWEm3ZSdNRmQyb+zAycfz8B8o4octZ797Gcvv7DM1zU7MzIBo7YDKEc9ZSdbOUpvsBeW2abaDogMLmVAINtQBi4ysJ+Vdfoi25zPO4NMWcUiO5ayHHR2DGTJ8hxRlJ0C9RUKsnJRTg2UgZ/s2MsA2Mc+9rEYrKxakQGPfJ4bbrhh8b9zP83nmft9vi+1HXT5fmfneu7j+dnIDpbcD/L1yNcl94ucvqhRiex8Dtkhkgk++b5l8K02QateTneT28np77J9+drlvpz7W+7P6Q1veMMqn8Hhkp/5DDpm+3NUawZWs9R3dpRnMDA7zmrLhNcH5fIzn8vmdsrRlcMlA6j5Wc3PX37W8/3KoGu+B5nIl5UTcsR/Jk7k+5fvXTm6MafqyqBTjvjPgFF2tA2H1772tcX+nBUqcuRn/l4GVaGVZCdOJi/mMb5eVsHJW1+89KUvLaZcaiSP7XnsymNp/QjXnLIjb73J76VGU6dmhZ+sflTfzvw+y+NMTxWz+lItJ48NOfVG/bJ5ftVTkkIpz2/6k6Sxutc1qz41SkapnZ63L9+35Qj+RrJCV55P1E91mMfmrA7Tl6SE4ay8OZzyvLLRVHi1MoEmO2AGYzj2p/yebZRwlcmIZUJjvrd5vlPfWZjnjpmEMphk/0bTSOf5ZHksyOuPvLapneKzdt3sDC2n+a2X38n5+R6MrMrUaFrG7BDNc8q+yvOrPM7UHyfzfcvz1ry+GW7Z6Vmf3JcdbDmAYHWDCGoN1RR/ZSdwOaBgIAlwWUEkz9nrjzlZ5aAvVfyywkMmCQ5E7nf5eaqvNpuvTyam9kV2GDeqxAYgptezVozp5fp5Lp3xjayglXGvetmWPA/P7/MPfOADxTl7DuzLeEieV+Xr/NznPrdP1ed7k0nOeW6U7cn3MpO8epMDNjNhLffHfM2zYlaeG+XglIyZ5euX1UPnzJlTJKhle4ermn3GlDKJsBxIkq9dDuTJ9z4rXGZ8Jwcu5Gcj44r5ectz4Fwvq7HmfpwVJnuqWDUYmeCUn/f8HzmgJ9uQ57N5PZXnGLkPl69jo4q3g4n5DcdrWp9cmAle2ZZ11113TFUfBmBoqEQFwKiQQdkM6maySI5cyo7ADCjnSLS86M8Ls3y8p+SNvADKC7cc0ZYXxRmQyA7SHBWTF90/+9nPiguzkZJBghxRlhfreYGdlYDyeeUFbs5b39cqPtkJmyNy8oIyg9/ZMZIdRxlMyo6FHLmWiS+lvDA988wzi9+zA7K+oydHU5VVLXIkd186sHIEUHZEZmAgL4TzPalXjizLQNlgy6tn2fQcoVfe/vznPxfBpQzq5EV5JkHlVDT9CeJnBYm8+M1y6xmgy1FxGUTKzukMaOW+Vd8ZlPtaJp1ksC73pUYddgORCWI5ki336Qy05IV7vm5ZASX306233rphUDKDbzvuuGMRQMzS7blvZ5BydR2cGezJBJ3cX3KdnqbsqG1bBuJyBHp+XjIAk69/dtrkaL1MQsvR/8MVHKqX/yc7qzI4lG3I9yATjLJj9Kc//Wmxf/YkO0jLIEcGwMppEYdT7kvlaNT8HJajVjPYm/tsHgPyPc/nka9tdmjm5zATHsrAYnauDefrmR3LWd0m93/T+tGq8piY35+NKjr1VSZm5mjm1R0P8zsnP3P97XTO9uWxvafkz/yf2THR2+j3Ugae89jdF5lknK9NTu3RH/mdVFZ2HArZiZbfewOt8pTfpdlBtLpjf54DZIfIQKZOy86hvr6mo0l20vXlOzyXyQSo7PQYjKHen7IDslHCR57r1FY5yGuHRhXnsprFYBPiezvPzU6r1VV/W13HZB4z8jt6MPJ6qNFI/0ZVIHqT58GNjFQ1qryG60/iVx476/U0fdJANJqOqJSd4nme3tuxODvGB5Isn0mNmVibn6mByvUHWskqk1vzOh2gJ2J6jbViTC/jb+X1z+rOP/K1zOmkX/CCFxRJ0vm6ZKJxfp9m4nsmUg/FALOMu5QDFfs64CO/dzNul4Nvcv/NalMZu8v3LbeR72l5jpttrq0yNtQyySzPETMmlnG98twmB0lmFao8D879MeNPea6b1ezz9csEtbKSV6PBQ0P1OcnPZiYIZgJVJm1lGzPpKBO/87FyGspGAysGE/Mbjte0Vr7vGYcu9+lG55kAjG+Vak8TvwIA/ZYXfxkczwB1OX97K8jO3Jz6JgNm5ZRh0GzZUZklwDMIOdgy8MD4lFO25RSrvVXlKeUI6Qym96e6XSYHZ1JrX6pPZaA2k3Oy+mFvcsRvVlnMCoU9ySSYk046qegwqU8qyelIepoS5aabbioSufIY2pusnJPJYo2mLxysHEmdyWpZza8voYvsIMlzkeyg62viTia8ZMJWVuern76qXnYIZJC/nP52deeCtbIDqafqVtnBkCPIa2WHUk/JNo2SrbOCZP1UY42Wy6m6srMtO616qkyWSSu5D66uylYmJ9dPf5GJ1tkJNlz7UyYGZaWf+oTw7PzI966+kzGXz+eQ1Qzq5WeitmpQf9+z7LxsVO2plJ1W2YHVSHbCZWdXVkOolx1hWbFhMHLUfB5zamWFrqxc19/On/w85PlTfVJY7iN53Ck/Y1kFLKdL7OvxpT/7cU6Zk9vqbVrS7NDMzrD6ihy5P9W/t/39zNUnIuaUe/XKihB9kZ2c2bnZ1w7X7PjOz0RWvGikP/tvJvHnd15OQVk/JWYj2Qmex9R8D1ShAlqBmJ6YHpQDI/I8OJMOL7zwwqI6HgCtRfosADAoOcIwRxflCKKeRqzDSMuO2rxlwsNIjlgFxpYc3ZoJD5lYkqX8c4RsjjafP39+kUCQo3qzA3v77bcvpknI40mOTO6PXDdHUue0GzkCP5OpMjkop6vIaQpyxHd21GRiSv6Pvlb7y5Ht5RQEOVVoJoLl6ONMPsmRs5kkkqPns73l9KF9ldNnZOXHTJTICnn5+mQAOadlyEo5Oeo425wd9bNmzYrhktWisiJRjmDOEdSXX355UZkgn2cmo+RI5Xz98vlm8kkmUfR3mtJcP6cQyQSIrICQCRKZ5JCjyjNpIBNQsjpCVjfMRI3aKXfHopwCJpP0Mukp952cWiMrfmUSUu6DOap9MNPdDdf+lIlujSpq5vvWaIq93G5Wfcikl3qZkJIJXzlVz0BkYt8FF1xQJA7l1De5L+ZrlglAuZ80ak9t0lcedzJhqFa2packtL7KttQnUKVM+hzI6Pk8dmRiUVa6qJXvWyY25r403HJ/yI6rH/7wh8UxIKd4yWNnfg5zv8lktWxjJoxmglAeE/Lx0h/+8IciAWsgFecayWN0oySqrFDQV1lhJTvmr7322iIZL78b8jshq5OkPIbl+Wse18rvhaFKYMrPeia95eciX9dMJsvjXSbl5jVd7p/5HZJTHe20005FIuJQvXYAjE5ierCqvGbJ65U8x5RABdCaVKICgCHUKqPWMtCeHczlVGXZEZQlsk8//fRmN40Wlh3rKQMd2UGUna1ZpjunDgCAVtJTJapMTKN5MtEnkzEzEalWVk/LKneMbvk+ZVWvWpnIlcm4AIx9YnpierSuTNbPSqs5xV/GEjO2eOqppxYDdQBoPSpRAQD9lskphxxyyPK/c9RyJq1AM2WFl5yipJSj6N/whjc0tU0AAKVvfetbqyRQpdrpBRmdcmrBrIZXz3sHwFgjpgfRcGrtH/3oR8v/zoEPEqgAWldbsxsAAIw9OU1JTjuSU0Lk6OtzzjknNt9882Y3ixaXVTfWXnvtYoqXvfbaK84+++xiHwUAaLacji4rXDSa7jCneGN0VyY4/vjjo7u7e5VpI/fff/+mtQsABkJMD1a13XbbFfHEtdZaq5gu+pRTTml2kwBoItP5AQAAAIwjpvNrvhNPPLFIvsnqDg8++GDcc889DZfLKpoScUaXnMIpp+jL5PysHHb77bdHV1fXKssdfPDB8YlPfKIpbQQAAACGh+n8AAAAAGAITZgwoZgCbnW233772G+//UasTfRNViCYO3fuapfJSgXvfOc7R6xNAAAAwMgwnR8AAAAADKGcJmd1ZsyYEV/4wheiUqmMWJvom/XXX3+1j7e3t8dnPvOZXpcDAAAAxh5JVAAAAAAwAklUbW1tseeeexbTxW2++eYj3i4GlwC3zTbbxNlnnx377LPPiLYJAAAAGBmVarVaHaH/BQAAAADj3uOPPx5/+tOf4oEHHohFixbFpEmTYqONNooddthBBaNRrru7O6644oq49957i/cxK089/elPL6ZffOYzn9ns5gEAAADDSBIVAAAAAAAAAADQ0kznBwAAAAAAAAAAtDRJVAAAAAAAAAAAQEuTRAUAAAAAAAAAALQ0SVQAAAAAAAAAAEBLk0QFAAAAAAAAAAC0NElUAAAAAAAAAABAS5NEBQAAAAAAAAAAtDRJVAAAAAAAAAAAQEuTRAUAAAAAAAAAALQ0SVQAAAAAAAAAAEBLk0QFAAAAAAAAAAC0NElUAAAAAAAAAABAS5NEBQAAAAAAAAAAtDRJVAAAAAAAAAAAQEuTRAUAAAAAAAAAALQ0SVQAAAAAAAAAAEBLk0QFAAAAAAAAAAC0NElUAAAAAAAAAABAS5NEBQAAAAAAAAAAtDRJVAAAAAAAAAAAQEuTRAUAAAAAAAAAALQ0SVQAAAAAAAAAAEBLk0QFAAAAAAAAAAC0NElUAAAAAAAAAABAS5NEBQAAAAAAAAAAtDRJVAAAAAAAAAAAQEvraHYDAAAAxqr7778/5syZU/xcvHhxTJo0KTbeeOPYfffdY6ONNmp28wCAEbDkrvujeuWNUX1iUVTWnBKVXZ8XE7fYuNnNGhOqS5ZG9dEFEZ2dER0dUZk+LSoTJzS7WQAADIHuhYuiev8/orp4cVQmTYrKxutH29QpzW4WwGpVqtVqNcagzs7OOPvss+MnP/lJ3HfffTF58uTYYYcd4p3vfGc873nPa3bzAACAcezuu+8urkXmzZvX4zIzZ86MAw88MDbbbLMRbRsA1DruuOPiuuuui8suu2yVxxYtWhTf+MY34sILL4y//e1vse6668b+++8fxxxzTBFrq3fHHXfEKaecEtdff32x7rOe9ax485vfHHvvvXe0oiU//V10z7k+YmnXqg9OaI+23XaIia9+STOaNupV5z8WXbffFd1z50V0d694oK0t2radGe1bbxGVGWs3s4kAAAxQ97z7Y+mV10f1L/dEdNekIrRVovKszWLCrjtE20yDDoDRacwmUWWy1MUXX1x0SLz4xS+ORx55JH71q18Vj51++umxxx57NLuJAADAOHTLLbcUAzqWLl0abW1txSCOWbNmxZQpU4oO5RtuuCFuvPHG6O7ujgkTJsRRRx0V22+/fbObDUAL+upXvxpf+cpXYv31118liWrJkiXxlre8Jf70pz8VcbRtt922+A67+uqri4GK3/72t2PixInLl7/11lvj8MMPjwwlvvKVr4w11lijiMU99NBD8ZGPfKR4rFXka9f96bMiHn+i94XXWjPaPvTWlV7LVpb7T9etd0b3nBsyNB0xdXJUOlZMllDNilQLFxW/t+02K9q32yoqlUoTWwwAQF9lLKzzV3+M7qtuWnbHpIlR6Whf/ni1syti8eLiPLBtl+dGx77/VsTWAEaTMZlEdcUVVyzviPj+979fTJmRrrrqqnjTm95UTJ9x0UUXNbuZAADAOKxAdeqppxYJVNttt128/vWvj7XXXrVKwmOPPRY/+MEPig7nTKR6z3veoyIVACMmp5j97//+7zj33HOLvxslUWWS1Kc+9akiker4449ffn/el4998IMfLOJspayu+Je//CXOO++82GabbYr75s+fHwcffHD84x//KGJx+X9awVP/9bW+JVCV1loz1vivdw5nk8aMzlvuiK7Lr4vKtKlRmbAieapedWlnVBcsjPY9doyO7bca0TYCADAwSy68NLrn3BgxedJKyVP1imSqJxdH2+6zYuJ+LxzRNgL0Zkymduao7vTqV796eQJV2mWXXYopM+699954+OGHm9hCAABgPMop/MoEqre+9a0NE6hS3p+P53K5/Pnnnz/ibQWgNf3ud7+Lfffdt0igetGLXtTjcmWlqXe84x2rTP+XU/n98Ic/XH7ftddeWyQGv/zlL1+eQJVmzJgRb3/724ukrfyObJUp/PqVQJUefyKW/OL30epyCr+sQNVbAlXKx3O5nC6x+sjjI9ZGAAAGPoVfUYGqlwSqVDw+eVJ0X3ljdN/9wIi1EWDcJlGts846xc8HHnhglVLaOa1fjvSeNm1ak1oHAACMR/fff3/MmzevKDOeFaja21cfEMrHc7lcPterv34BgOGQlaKeeOKJ+NjHPhZnnHFGw2XyO+m+++6L5z73uTF16tSVHltzzTWL+7P64t///vfl1d/Trrvuusq2yvvKZca7TOoZ0Hp/vC5aXdftdxVTt/SWQFUql+u6bd4wtwwAgMFaeuWy8+TeEqhKy5arxtIrnCcDo8uYTKLaZ5994mlPe1oxlV+Oclu4cGE8+OCDRZnxrEB1+OGHFyPpAAAAhsqcOXOKn8973vN6rEBVL5fL5ctpyQFguB155JFxySWXxKGHHhqVSqXhMpkglTbddNOGj2+yySbFz0wCTnfdlckv0XBq2mc84xnFgMZy2fFsyV33RyztGtjKS7uWrd+iqkuWRvfceRFTJ/dvxalTivVyfQAARqfuhYui+pd7Iib1s39+0qRivVwfYLQYs5WosqT4c57znCJxascdd4w999wzLrzwwnjve98bJ5xwQrObCAAAjMNKVGnWrFn9Wq9cvlwfAIbTC17wglWqS9V79NFHi5/Tp09v+HhZ4f3xxx9faflGScRZcTGrVy1YsCDGu+qVNzZ1/bGs+uiCiO7uqHT0rQpVqVi+u2vZ+gAAjErV+/8R0V3tcxWqUrF8d3XZ+gCjRP+uWkeJnLbvtNNOi+uvvz622267mD17djz22GNx0UUXFWXK119//TjggAOa3UwAAGAcWbx4cfFzypQp/Vpv8uTJK60PAM22dOmyqj49VXIv7y+/u3pbPitRtUQS1ROLmrr+mNbZOYiVK4NcHwCA4VQdZMxrsOsDRKsnUX3uc58rpvE74ogj4kMf+tDy0uTvec97ilLlJ554Ymy55Zbx3Oc+t9lNBQAAxolJkyYVPxct6l8H6JNPPrnS+gDQbOV3Ug5UbKS8PytMpTXWWGOlZKp6eX9/k4zHosqaU6I6yPVbVj8rUK2sOsj1AQAYTpVBxrwGuz5AS0/n193dHeeee25RVvz4449fnkCVNtxwwzjuuOOiWq3Geeed19R2AgAA48vGG29c/Lzhhhv6tV65fLk+ADRbOY1fT9WjyvvLaQHLafzK6f3qY3VPPPHE8ikAx7PKrs9r6vpjWWX6tJz7Mar9rChVLN/Wvmx9AABGpcrG60e0VaLa2dWv9Yrl2yrL1gcYJcZcEtXDDz9clBLfdNNNG5YQ33rrrYufDzzwQBNaBwAAjFe77bZb8fPGG28sphPvi1wul0+77777sLYPAPpq5syZxc9777234ePl/VtttdVKy993332rLPu3v/2tqESVVeHHu4lbbBwxoX1gK09oX7Z+i6pMnBBt286MWLisQmefLVxUrJfrAwAwOrVNnRKVZ20WsbhxpdseLV5crJfrA4wWYy6JKke+ZfLU/fff37Dk+F133VX8XG+99ZrQOgAAYLzKSlLZiZwVN37wgx9EV9fqR9fl47lcLp/rbbTRRiPWVgBYnfXXXz8222yzuOmmm1aZpjarSt18883F4+uuu25x384771z8vOqqq1bZ1pVXXln83HHHHaMVtO22w8DW+7fnR6tr33qLYmq+6tK+VaMql2vfZlkSHwAAo9eEXZedJ/e1GtWy5SoxYXfnycDoMuaSqDKBau+99y5GdJ9yyikrPTZ//vzl973qVa9qUgsBAIDx6oADDogJEybErbfeGmeddVaPFany/nw8l8vlDzzwwBFvKwCszkEHHRRPPvlkfPnLX17p/vw77z/00EOX3/f85z+/SAj+xS9+USRe1cbizjjjjJg0aVKxvVYw8dUviVhrzf6ttNaaMfEVe0arq8xYO9p2mxXVBQt7TaTKx3O5TFqrrLPWiLURAICBaZu5cbTt8tyIJxf3mkhVPP7U4mjb9XnRtrlBh8DoUqlWq9UYY/71r3/FYYcdFnfffXdsv/32xWi47KS45JJL4tFHH42jjjoqPvCBDzS7mQAAwDh0yy23xNlnn11MXdTW1hbPe97zYtasWTF58uSi0/mGG24opvDLClSZQJXXJ3ndAgDNsPXWWxeVpy677LKV7s8K74ccckiR8Juxtfwuy++wq6++OmbPnh3nnHNOMZixdO211xbfaZVKJV7xilfE1KlT45e//GU89NBD8Z//+Z9FrK5V5GvX/emzIh5/oveF11oz2j701pVey1aWoeiuW/8a3XOuX3ZHTv3S0bHi8c7OYgq/lAlU7dttWexzAACMfhkL6/z15dF95Y1FBdKYNCkqHe0rJ08tXlxUoMoEqo599ihiawCjyZhMokoLFiwoRrpddNFF8cADDxSBiG233Tbe8IY3xD777NPs5gEAAOPYPffcE+eff37Mmzevx2WyYkdWoMrpkABgtCVRpYULF8ZXv/rV+PWvfx0PP/xwbLDBBrHvvvvGW9/61iJJql5O83fqqafGddddV/z9zGc+M9785jfHy172smhFS37x++j+43URSxuMtJ/QXkzhpwJVY9VHHo+u2+ZF99x5Ed3LpnIpOtra2qNt25nFFH4qUAEAjE3ddz8QS6+4Lqp/uSeiuyYVoa0SlWdtVkzhpwIVMFqN2SQqAACAZssBHVdccUXcf//9sXjx4mI6o4033jh233332GgjwSAAaAVL7ro/qlfeGNUnFkVlzSlR2fV5MXGLjZvdrDGhumRpVB9dEJEVqDo6ojJ9WlQmTmh2swAAGALdCxdF9f5/RHXx4qhkVaqN14+2qVOa3SyA1ZJEBQAAAAAAAAAAtDSTjAIAAAAAAAAAAC1NEhUAAAAAAAAAANDSJFEBAAAAAAAAAAAtTRIVAAAAAAAAAADQ0iRRAQAAAAAAAAAALU0SFQAAAAAAAAAA0NIkUQEAAAAAAAAAAC1NEhUAAAAAAAAAANDSJFEBAAAAAAAAAAAtTRIVAAAAAAAAAADQ0iRRAQAAAAAAAAAALU0SFQAAAAAAAAAA0NIkUQEAAAAAAAAAAC1NEhUAAAAAAAAAANDSJFEBAAAAAAAAAAAtTRIVAAAAAAAAAADQ0iRRAQAAAAAAAAAALU0SFQAAAAAAAAAA0NIkUQEAAAAAAAAAAC1NEhUAAAAAAAAAANDSJFEBAAAAAAAAAAAtTRIVAAAAAAAAAADQ0iRRAQAAAAAAAAAALU0SFQAAAAAAAAAA0NIkUQEAAAAAAAAAAC1NEhUAAAAAAAAAANDSJFEBAAAAAAAAAAAtTRIVAAAAAAAAAADQ0iRRAQAAAAAAAAAALU0SFQAAAAAAAAAA0NIkUQEAAAAAAAAAAC1NEhUAAAAAAAAAANDSJFEBAAAAAAAAAAAtraPZDQAAAAAAGKuqS5ZG9dEFEZ2dER0dUZk+LSoTJzS7WQAAAEA/SaICAAAAAOin6vzHouv2u6J77ryI7u4VD7S1Rdu2M6N96y2iMmPtZjYRAAAA6IdKtVqt9mcFAAAAAIBWleHUrlvvjO45N2R4NWLq5Kh0rBirWs2KVAsXFb+37TYr2rfbKiqVShNbDAAAAPSFJCoAAAAAgD7qvOWO6Lr8uqhMmxqVCT0X+q8u7YzqgoXRvseO0bH9ViPaRgAAAKD/2gawDgAAAABAS07hlxWoekugSvl4Ltc95/qoPvL4iLURAAAAGBhJVAAAAAAAfdB1+13FFH69JVCVyuW6bps3zC0DAAAABksSFQAAAABAL6pLlkb33HkRUyf3b8WpU4r1cn0AAABg9JJEBQAAAADQi+qjCyK6u6PS0bcqVKVi+e6uZesDAAAAo5YkKgAAAACA3nR2DmLlyiDXBwAAAIabJCoAAAAAgN70swLVyqqDXB8AAAAYbpKoAAAAAAB6UZk+LaKtLar9rChVLN/Wvmx9AAAAYNSSRAUAAAAA0IvKxAnRtu3MiIVP9m/FhYuK9XJ9AAAAYPSSRAUAAAAA0AftW29RTM1XXdq3alTlcu3bzBzmlgEAAACDJYkKAAAAAKAPKjPWjrbdZkV1wcJeE6ny8VyubbcdorLOWiPWRgAAAGBgOga4HgAAAABAy2nfbqtMp4ruOddHNe+YOiUqHSvCrNXOzmIKv2LZPXaM9u22bF5jAQAAgD6rVKvV4lofAAAAAIC+qT7yeHTdNi+6586L6O4qEqtyqr9oa4+2bWcWU/ipQAUAAABjhyQqAAAAAIABqi5ZGtVHF0RkBaqOjqhMnxaViROa3SwAAACgnyRRAQAAAAAAAAAALa2t2Q0AAAAAAAAAAABoJklUAAAAAAAAAABAS5NEBQAAAAAAAAAAtDRJVAAAAAAAAAAAQEuTRAUAAAAAAAAAALS0jmY3AAAAAAAAYKRUlyyN6qMLIjo7Izo6ojJ9WlQmTmh2swAAgCaTRAUAAAAAAIx71fmPRdftd0X33HkR3d0rHmhri7ZtZ0b71ltEZcbazWwiAADQRJVqtVptZgMAAAAAAACGS3aDdN16Z3TPuSG7RSKmTo5Kx4ox5tWsSLVwUfF7226zon27raJSqTSxxQAAQDNIogIAAAAAAMatzlvuiK7Lr4vKtKlRmdDzBB3VpZ1RXbAw2vfYMTq232pE2wgAADRfW7MbAAAAAAAAMFxT+GUFqt4SqFI+nst1z7k+qo88PmJtBAAARgdJVAAAAAAAwLjUdftdxRR+vSVQlcrlum6bN8wtAwAARhtJVAAAAAAAwLhTXbI0uufOi5g6uX8rTp1SrJfrAwAArUMSFQAAAAAAMO5UH10Q0d0dlY6+VaEqFct3dy1bHwAAaBmSqAAAAAAAgPGns3MQK1cGuT4AADDWSKICAAAAAADGn35WoFpZdZDrAwAAY40kKgAAAAAAYNypTJ8W0dYW1X5WlCqWb2tftj4AANAyJFEBAAAAAADjTmXihGjbdmbEwif7t+LCRcV6uT4AANA6JFEBAAAAAADjUvvWWxRT81WX9q0aVblc+zYzh7llAADAaCOJCgAAAAAAGJcqM9aOtt1mRXXBwl4TqfLxXK5ttx2iss5aI9ZGAABgdOhodgMAAAAAAGg91SVLo/rogojOzoiOjqhMn2b6NIZF+3ZbZTpVdM+5Pqp5x9QpUelY0T1SzX1w4aJly+6xY7Rvt2XzGgsAADRNpVqtFtcMAAAAAEDrefzxx+PrX/96/OY3v4l//vOf8YxnPCP23nvveMtb3hLrrLPOSss++OCDceqpp8aVV14Zjz76aGy++eZx2GGHxete97qmtZ+xpzr/sei6/a7onjsvort7xQNtbdG27cxi+rWsHgRDrfrI49F127z/2/e6isSqnOov2tqX7XvbzFSBCgAAWpgkKgAAAABoUZkI9frXvz7mzZsXW2yxReyxxx4xf/78+O1vfxsbbrhhfPOb3yx+pgceeCAOOeSQeOSRR2K//faLddddNy6++OK455574k1velN88IMfbPbTYZTLUHTXrXdG95wbliWvTJ3cYzWgnH4tqwdVKpnkAkNLFTQAAKARSVQAAAAA0KI+8pGPxLnnnltUnvrCF74QEydOLO6/7rrr4vDDD4/dd989zjzzzOK+Y489Ni666KLi7xe96EXFfU899VQceeSRceONN8Z5550X22+/fVOfD6Nb5y13RNfl10Vl2tSoTFiRPFWvurQzqgsWFtOqdWyf07ABAADA8Gsbgf8BAAAAAIwyXV1d8ctf/jImTJgQH//4x5cnUKXnP//58apXvSouvfTS+Mtf/lJUocqqUzvssMPyBKq0xhprxHvf+96iwtCPfvSjJj0TxsoUflmBqrcEqpSP53Ldc64vpl8DAACAkSCJCgAAAABa0MMPPxxPPPFEbLbZZjFjxoxVHt92222Ln9dcc01cffXVRaLUrrvuuspyO+64Y5GIddVVV41Iuxmbum6/q5jCr7cEqlK5XNdt84a5ZQAAALCMJCoAAAAAaEFl5aklS5Y0fHzBggXFz/vvvz/uvvvu4vdMuKqXCVQbbLBBsVxP26K1VZcsje658yKmTu7filOnFOvl+gAAADDcJFEBAAAAQAuaPn16kRR13333xS233LLSY93d3XHJJZcsT6Z65JFHit/XXnvthtuaNm1asc7ChQtHoOWMNdVHF+ROFZWOvlWhKhXLd3ctWx8AAACGmSQqAAAAAGhRb3vb24pp+t71rnfF7373uyIJ6p577okPfOADMW/esmnU8vGlS5euVL2qv1WtaHGdnYNYuTLI9QEAAKBv+jf0BwAAAAAYNw466KD4+9//Hqeddlq84x3vWH7/FltsEf/1X/8VJ5xwQkyePDm6urqK+8tkqnpl8tSUKVNGqOWMKf2sQLWy6iDXBwAAgL4Zk1efW2+9da/LHHDAAfHZz352RNoDAAAAAGPVscceG69+9avjsssuiyeeeCKe+cxnxh577BF//OMfi8ef/vSnx5NPPln8/vjjjzfcRk75V6lUYurUqSPadsaGyvRpEW1tUe3s7NeUfrl8tLUvWx8AAACGWcdYDew0kqXFv/nNbxbBnl122WXE2wUAAAAAY9Emm2wShx122Er33XjjjcXPTKrKaf7Svffeu8q6WZ3qb3/7W1G9qq2tbYRazFhSmTgh2radGd033xnRn4SohYui7TnPLNYHAACA4TYmk6je9a53Nbz/7LPPLhKoDj744Pj3f//3EW8XAAAAAIwlOV3fH/7wh7j44otjrbXWWn5/d3d3/PrXvy6m59t5552LJKqsNPWnP/1plQGO1157bZFIteOOOzbhGTBWtG+9RXTffEdUl3ZGZULvYelcrlhvm5kj0DoAAACIGDdDw+6444744he/WIyaO/HEE5vdHAAAAAAY9bbaaqt47LHH4rvf/e5K95922mlx9913x+GHH15M0feMZzwjdt9997j66quLhKvSU089FV/+8peL3+srWUGtyoy1o223WVFdsHB5glRP8vFcrm23HaKyzorkPgAAABhOlWrOgTcOHHXUUXHFFVfEmWeeGS960Yua3RwAAAAAGPWefPLJOPDAA2PevHnxkpe8JGbOnFlM43fNNdcUFagy1jZ58uRi2bvuuisOOeSQWLBgQey7776x/vrrxyWXXFIkW735zW8uqlrB6mQouuvWv0b3nOuX3TF1SlQ6VlSlqnZ2FlP4pUygat9uy6ICGgAAAIyEcZFEdemll8bb3va2YjRcTukHAADjTZ62L1mypNnNgDFt4sSJOmIBGpg/f36ccsop8cc//rH4feONN45Xv/rVRRWqNdZYY6VlM2EqK09deeWVsXjx4th8882LClQHHXSQYyx9Vn3k8ei6bV50z50X0d2VYeq8N6KtPdq2nVlM4acCFQAAACNtXCRRZUAnS4l/73vfi9mzZze7OQAAMKTylP1LX/pSUf0BGLisrnLcccfp5AeAUaK6ZGlUH10QkRWoOjqiMn1aVCZOaHazAAAAaFEraiWPUXPnzi0SqDJ5SgIVAADjlaQPAADGm0yYqqw3o9nNAAAAgPGRRHX++ecXP7NsOAAAjNcEqqyeYzq/0SmnMvrwhz9c/P6pT30qJk2a1Owm0QPT+QEAAAAAMG6TqC655JKYMmVK7Lnnns1uCgAADJtM/JCcM/rle+R9AgAAAACAsactxrDbbrstHnzwwSKBavLkyc1uDgAAAAAAAAAAMAaN6SSq6667rvg5e/bsZjcFAAAAAAAAAAAYo8b0dH633HJL8XP77bdvdlMAAAAAgBZUXbI0qo8uiOjsjOjoiMr0aVGZOKHZzQIAAABaKYnq3nvvLX6uv/76zW4KAAAAANBCqvMfi67b74ruufMiurtXPNDWFm3bzoz2rbeIyoy1m9lEAAAAoFWSqObPn1/8nDZtWrObAgAAAAC0gGq1Gl233hndc26IiErE1MlR6VgRZq12dkb3zXcUt7bdZkX7dltFpVJpapsBAACAcZ5E9ctf/rLZTQAAAAAAWkgmUHVdfl1Upk2NyoSOqHZ3R/WpxcuqUbW1RUycEJXpa0V1aWexXCZadWy/VbObDQAAAIznJCoAAAAAgJGcwi8rUGUCVSZNdT/0cFQfeTzLU61YqFKJyjprRWXtacVy3XOuj+pG6xX3AQAAAKNXW7MbAAAAAAAwFnTdfldkulR14RPRfdf9RVJVtLdHJatP/d8t/y6SrfLxhU8Uy3fdNq/ZTQcAAAB6IYkKAAAAAKAX1SVLo3vuvKh2dkb17/+K6OhYljjVVllpufy7SKbq6CiWy+WL9ZYsbVrbAQAAoE/XvQ/Nj+4HHyp+tuJ1rOn8AAAAAAB6UX10QVQXL4n416MRE1ZNnqqXj1cnTCiWr647vVi/st6MEWsvAAAA9EVWU87Ky91z5xVT1y/X1hZt286M9q23iMqMtaMVSKICAAAAAOhNZ2fEwkXFr70lUK2USJW/LHxy2foAAAAwSlSr1ei69c7onnNDXsFGTJ0clY4VaURFZeWb7yhubbvNivbttopKpW/Xw2OVJCoAAAAAgF5UqxHVTKJaY1L/Vsxp/RYuKtYHAACA0SITqLouvy4q06ZGZcKq6UNFQtX0taK6tLNYLhOtOrbfKsaztmY3AAAAAABg7KgOYHkZVAAAAIyuKfyyAlVPCVS18vFcrnvO9VF95PEYzyRRAQAAAAD0opixYOqUiKVd/Vsxl5+65rL1AQAAYBTouv2uorJUbwlUpXK5rtvmxXgmiQoAAAAAoDcdHVGZOjljzFHt7u7TKsVylVi2Xk6DAAAAAE1WXbI0uufOi8hr1f6YOqVYL9cfryRRAQAAAAD0ojJ9WlQmTYpYd3rEks5eE6mKx5d2Fsvnerk+AAAANFv10QUR3d1R6edgn0ou3921bP1xShIVAAAAAEAvKhMnRNu2M6PS3hGVDdaN6OyK6uKlqyRT5d95fz5eeca6UWlvX7bexAlNazsAAAAs19k5iJUrg1x/dFNDGgAAAACgD9q33iK6b74jYs01ozJlclQffbwYgVtd2rViobZKVGasFZXpa0W0tUU8sSjat5nZzGYDAADACoOabr46rqerH7/PDAAAAABgCFVmrB1tu82Krsuvi8q0qdG2/rpRXXdGxJKlxVQIRdLUxAlRaW+L6tLOqC5YGO177BiVddZqdtMBAACgUEw339YW1c7Ofk3pV80KVG3t43q6etP5AQAAAAD0Uft2WxWJUVlhKitRRbU7KpMnRWXNycXP/Lu4PytQ7bFjtG+3ZbObDAAAAKtMVx8Ln+zfigsXjfvp6lWiAgAAAADoo0qlEh3bbxXVjdaLrtvmRffceVHtXpSPLJvWoK092p7zzGIKPxWoAAAAGM3T1WcV5cqE3lOHqks7l603zqerl0QFAAAAANBPmSDVseusqO64XVQfXRCR0xp0dBTTGoznUbkAAACMr+nqY9rU1SZSVVtounpJVAAAAAAAA5QJU5X1ZjS7GQAAANDv6eqzqnL3nOuzrnLE1ClR6ViRRlTNwUILs/JytMx09ZKoAAAAAAAAAACghZiuflWSqAAAAAAAAAAAoAWZrn4FSVQAAAAAAAAAANDCKqarj7ZmNwAAAAAAAAAAAKCZJFEBAAAAAAAAAAAtTRIVAAAAAAAAAADQ0iRRAQAAAAAAAAAALU0SFQAAAAAAAAAA0NIkUQEAAAAAAAAAAC1NEhUAAAAAAAAAANDSJFEBAAAAAAAAAAAtTRIVAAAAAAAAAADQ0iRRAQAAAAAAAAAALU0SFQAAAAAAAAAA0NIkUQEAAAAAAAAAAC1NEhUAAAAAAAAAANDSJFEBAAAAAAAAAAAtTRIVAAAAAAAAAADQ0iRRAQAAAAAAAAAALU0SFQAAAAAAAAAA0NIkUQEAAAAAAAAAAC2to9kNAACguarVaixZsqTZzYAxa/HixQ1/BwZm4sSJUalUmt0MAAAAAKDFVKrZawYAQMvKpI/3v//9zW4GABROPvnkmDRpUrObAdBn1SVLo/rogojOzoiOjqhMnxaViROa3SwAAACgn1SiAgAAAADop+r8x6Lr9ruie+68iO7uFQ+0tUXbtjOjfestojJj7WY2EQAAAOgHSVQAACz3nqdtGRMqbc1uBgAtZmm1O055+K/NbgZAn2Rh/65b74zuOTdkof+IqZOj0rEizFrt7Izum+8obm27zYr27bYyTSkAAACMAZKoAABYLhOoJkqiAgCAHmUCVdfl10Vl2tSoTFg1vFokVE1fK6pLO4vlMtGqY/utmtJWAAAAoO/0kAEAAAAA9HEKv6xA1VMCVa18PJfrnnN9VB95fMTaCAAAAAyMSlQAAAAAAH3QdftdRWWplRKoFi6I9k99aMUynzolom3Z2NVcrpr33TYvOnad1YwmAwAAAH0kiQoAAAAAoBfVJUuje+68iKmTV7q/NoGq+PvD71n+e9fHPh8xdUqxXnXH7aIyccKItRcAAADoH0lUAAAAAAC9qD66IKK7OyodNSHVp55c7TrtHz9+2S9dXVHdftOovGD2MLcSAAAAGKhldaUBAAAAAOhZZ+eq962xclWq1am87S0Rs2cvu1122dC2DQAAABg0SVQAAAAAAL2prUBVo+u4lafz61Gl5vf3vW9FQtXJJw9N+wAAAIBBkUQFAAAAANCLyvRpEW1tUa2vSLX+BtH1ma9E16e+3HjFanVZBlV7e+PHf/jDFQlVb37z0DccAAAA6JPGw6cAAAAAAFiuMnFCtG07M7pvvjMiE6rqtbUXyVSl9hPfteyXru6oTJkUlUptKaoe3HjjsmSqNGWKaf8AAABgBEmiAgAAAADog/att4jum++I6tLOqExYfWg1E6pyuXhiUUz4/mkRCxf0758tWrQioSpdc01EXxKxAAAAgAExnR8AAAAAQB9UZqwdbbvNiuqChcsSpFYjH8/l2nbbISp/+H3Etdcuu+2118D++U47rZj2LxOsAAAAgCGlEhUAAAAAQB+1b7dVplNF95zro5p3TJ0SlY4VYdZqZ2fEwmVJTu177Bjt22258gY++9kVv//oRxGf/3z/G/HCF674/bzzIjbfvP/bAAAAAFYiiQoAAAAAoI8qlUp0bL9VVDdaL7pumxfdc+dFtTuTpnKqvWpEW3u0PeeZ0b7NzKiss9bqN3bwwctu6dZbI448sv8NOuigFb+ffHLEi1/c/20AAAAAkqgAAAAAAPorE6Q6dp0V1R23i+qjCyKyAlVHR1SmT4vKxAn93+B22y2b7i/Nnx+x997938b737/i9yOOiHj3u/u/DQAAAGhRkqgAAAAAAAYoE6Yq680Y2o3OmLEioSqTs3bZpf/b+Pa3l93SbrtFnHrq0LYRAAAAxhlJVAAAAAAAo1VHx4qEqjR7dv+3MWfOivUqlYhrrhm69gEAAMA4IYkKAAAAAGCsGGxCVbW68nqZUJWJVQAAANDiJFEBAAAAAIz1hKp3v3tZxan+2mmnFb//8Y8RkycPTdsAAABgjJFEBQAAAAAw1p166orfv/3tlf/uq3/7txW/X3BBxMYbD03bAAAAYAxoa3YDAAAAAAAYQkccsaxKVd7+538Gto1///dl0/7lbSAVrgAAAGCMUYkKAAAAAGC8et7zVkz799BDEfvt1/9t5FSBpaOPjnjrW4eufQAAADBKqEQFAAAAAC2qs7MzzjzzzNh3331j++23j5122ine9ra3xY033rjKso888kh88pOfjJe+9KXx3Oc+N/bZZ58466yzim0wRqy33ooKVQOtLnXGGSsqVH3gA0PdQgAAAGgalagAAAAAoEW95z3viYsvvjg222yzOPTQQ4tEqV/96lcxZ86cOP3002OPPfYolnv88cfj8MMPjzvvvDP23nvv2HTTTeOKK66Ik08+OW6++eY49dRTm/1U6K+JE1dUqEqZFNVfl1yyYr211or43e+Grn0AAAAwwiRRAQAAAEALyiSoTKDKClTf//73Y9KkScX9r3nNa+JNb3pTfPzjH4+LLrqouO9rX/ta3HHHHfGxj32sSLZK733ve+O4446L3/zmN/Hb3/62SK5iDKtNqNpllyxT1r/1H3985USsa66JqFSGrn0AAAAwzEznBwAAAAAtqJyy79WvfvXyBKq0yy67xMyZM+Pee++Nhx9+OJ566qn48Y9/HBtssEEccsghy5drb2+PE044ofj9hz/8YROeAcPmqqtWTPu3++4D28ZOO62Y9m/JkqFuIQAAAAw5lagAAAAAoAWts846xc8HHnhgpfuXLFlSTOs3YcKEmDZtWtxwww2xaNGieNnLXhZtbSuPydxkk01i4403jmuuuSa6urqKxKpWU12yNKqPLlhWuamjIyrTp0Vl4oQYN045ZcXv3/pWxFe+0v9t7Lbbit9/+cuI9dYbmrYBAADAEJJEBQAAAAAtaJ999omvfOUrxVR+22yzTZEk9fjjj8fJJ59cVKA66qijYuLEiXH33XcXy2+66aYNt5OJVPfff39x22yzzaJVVOc/Fl233xXdc+dFdHeveKCtLdq2nRntW28RlRlrx7hy5JHLbuV0fe94R/+3sd9+K34/44yIHXccuvYBAADAIEiiAgAAAIAWrUSV0/B98IMfXH4rvfe9742jjz66+P3RRx8tfk6fPr3hdrJaVcoErFZQrVaj69Y7o3vODRFRiZg6OSodK8Ks1c7O6L75juLWttusaN9uq6hUKjHu5HR9Od1feuihlZOj+ur/9rFCTg35utcNXfsAAACgnyRRAQAAAEALymn7TjvttLj++utju+22i9mzZ8djjz0WF110UZxxxhmx/vrrxwEHHFAsl7IqVSPl/YsXL45WkAlUXZdfF5VpU6MyYdXwapFQNX2tqC7tLJbLRKuO7beKcS2n5ysTqp56KmKPPfq/jZNOWnZLr351xEc/OrRtBAAAgF5IogIAAACAFvS5z30ufvKTn8QRRxwRH/rQh5ZXS3rPe94Thx56aJx44omx5ZZbxhprrFHcv3Tp0obbKZOs1lxzzWiFKfyyAlVPCVS1isenTY3uOddHdaP1orLOWtEScn8pE6qq1WUVq/rrpz9ddkvPelbE978/tG0EAACABtoa3QkAAAAAjF/d3d1x7rnnFlPxHX/88StNN7fhhhvGcccdV0xbd95558Xaa6+92un6FixYUPycOnVqjHddt99VVJbqLYGqVC7Xddu8aEm5X2VCVXkbiL/8JWL27BU3AAAAGCaSqAAAAACgxTz88MPF9Hubbrppw2n6tt566+LnAw88EDNnzix+v/feextuK++fMmVKkXw1nlWXLI3uufMipk7u34pTpxTr5fotrzah6tnPHtg2ahOqOjuHuoUAAAC0MElUAAAAANBisrpUJk/df//9y6fjq3XXXVlxKWK99daL7bffvpiq7+qrry4qWNW67777ikSrWbNmRXt7e4xn1UcXZAmvqHT0rQpVqVi+u2vZ+qzwne+sSKg69tiBbWOXXVYkVM2fP9QtBAAAoMVIogIAAACAFpMJVHvvvXc89thjccopp6z02Pz585ff96pXvSomTZoUr3jFK4qEq29/+9vLl+vq6oqTTjqp+P2www6LcW9QVY8qqiatzhvfuCKh6rTTBraNvfdekVB1661D3UIAAABaQP+GTQEAAAAA48KJJ54Yt9xyS3zjG9+Iq666KnbeeeciqeqSSy6JRx99NI466qjYddddi2WPO+64uPzyy+Mzn/lMsexWW20Vc+bMiVtvvTX23XffeOlLXxrjXj8rUK2sOsj1W8jOOy9Lpkp/+1vEK1/Z/20ceeSK3//zPzMbcOjaBwAAwLhVqVar1WY3AgCA5lm8eHG8//3vL35//7rPjIkVxUoBGFlLqt1x8r/uKH4/+eSTi6o3wMhYsGBBnHHGGXHRRRcV0/Jlhaptt9023vCGN8Q+++yz0rIPPfRQUaHqD3/4Q7HexhtvHAceeGAcccQRxXrjXXXJ0lj6nZ9HTJ7Uryn9qlmB6snFMeHwV0Zl4oRhbeO4tmhRxAtfOLhtHHJIxP9d+wAAAEA9SVQAAC1OEhUAzSaJChgrOq+8IbpvvjMq06f1eZ3qo49H23OeGR27zhrWtrWUDGnvtNPgtvH850eceeZQtQgAAIBxQA1pAAAAAIA+aN96i+i++Y6oLu2MyoTeQ6u5XLHeNjNHoHUtpFJZMeVfmj27/9u47rqV16vdHgAAAC1JmQEAAAAAgD6ozFg72nabFdUFC5cnSPUkH8/l2nbbISrrrDVibWxJmQBV3rLC1EBkQlV56+oa6hYCAAAwBozpSlSXXnppnHPOOXHzzTdHpVKJLbfcMo488sjYb7/9mt00AAAAAGAcat9uq0yniu4510c175g6JSodK8Ks1c7OiIWLli27x47Rvt2WzWtsK6qdou+MMyLOOqv/23jBC1b8fvHFEdOnD03bAAAAGNXGbBLVN7/5zfjMZz4TT3va0+LVr351dHd3x29+85t473vfG3//+9/jqKOOanYTAQAAAIBxJgdzdmy/VVQ3Wi+6bpsX3XPnRbU7k6YqmUIV0dYebc95ZjGFnwpUTXb00ctu6dJLI/7jP/q/jb32WvH7t74Vsd12Q9c+AAAARpVKtVotBkyNJbfffnsceOCBsdlmm8V3vvOdIpEq/etf/yoSqh577LG48sorY9q0ac1uKgDAqLd48eJ4//vfX/z+/nWfGRMrZnwGYGQtqXbHyf+6o/j95JNPjkmTJjW7SQB9Vl2yNKqPLojIClQdHVGZPi0qEyc0u1mszv33R/z7vw9uG5/8ZMQ++wxViwAAABgFxmQlqkyc6uzsjI9//OPLE6jSuuuuW1Siuummm4qEKklUAAAAAMBwyoSpynozmt0M+mPjjSOuvXbZ7wsXRrz4xf3fxkc+suyWDj444vjjh7aNAAAAjLgxmUT1hz/8IZ7+9KfHTjvttMpjBx10UHEDAAAAAIDVmjp1RUJVd3fEzjv3fxs/+tGyW9pqq4gf/nBo2wgAAMCIGHNJVPPnz49//vOfsfvuu8dDDz0Up5xySpFUtWDBgnjWs54Vb3/722Ov2nnqAQDos0XdnbHEdH6jU7UaS2PMzcQNo8qEqERUKs1uBg10Vrub3QQAiGhrW5FQlWbP7v827rxz5fVqtwcAAMCoNuaSqDJxKi1cuDAOPPDAWGONNWKfffYp/v7tb38b73znO+MjH/lIHH744c1uKgDAmHPa/Lua3QQAAIDRoTYBat99I/75z/5vozah6uqrlyVqAQAAMCqNuSSqJ554ovh54403xi677BJf//rXY8qUKcV9b3vb2+K1r31tfO5zn4uXvOQlsdFGGzW5tQAAAAAAjHm/+tWK3086KeLHP+7/NmqnCvzd7yLWWmto2gYAAMCQqFSr1TE1J8gNN9wQBx98cPH7hRdeGFvlHPM1vvSlL8Xpp58eH/jAB+Koo45qUisBAMaOPB1csmRJLF68uNlNoRf5PgEDN3HixGY3gV5MmjSpeJ8qpl0EYKy4+OKID35wcNv4/vcjnvWsoWoRAAAArVKJatq0acXPrD615ZZbrvL4tttuW/y85557RrxtAABjUXZUZ6d13gAAAOiHvfZaMe3fX/8a8X8DgPvl0ENX/P7pT0fsvffQtQ8AAIA+G3MTsG+yySbR0dERnZ2dRdWEekuXLi1+Tp48uQmtAwAAAACgJeWg30yoyltO1zcQH/pQxOzZy25f+9pQtxAAAIDxlESVZf1nzZpVTGVyzTXXrPL4zTffXPzcZpttmtA6AAAAAABa3lprrUiouvrqgW3jnHNWJFQdeeRQtxAAAIA6lWqjck6j3IUXXhjve9/7iqn7vv3tby+f4u+2226Lgw8+ONZYY4245JJLYurUqc1uKgAAAAAArJBJUYNVTiEIAABAaydRpRNPPDHOP//8WH/99WPvvfeOhQsXxq9//etimr8vf/nLsVfORQ8AAAAAAKPVa18bcdddg9tGVrpqG3OTTgAAAIw6YzaJKpudSVQ/+MEP4s477yym+Xve854X73jHO+L5z39+s5sHAAAAAAB9d8YZEWedNbht/O53y6YSBAAAoHWSqAAAAAAAYFy68MKIj31scNs4//yITTcdqhYBAACMe5KoAAAAAABgtLrppoijjhrcNk47LWLnnYeqRQAAAOOSJCoAAAAAABgLHnss4qUvHdw2jj464q1vHaoWAQAAjBuSqAAAAAAAoE73wkVRvf8fUV28OCqTJkVl4/WjbeqUGDU6OyN22WVw29hyy4gf/WioWgQAADCmSaICAAAAAID/0z3v/lh65fVR/cs9Ed014fO2SlSetVlM2HWHaJu5cYw6s2cPbv2JEyPmzBmq1gAAAIw5kqgAAAAAAGh53d3d0fmrP0b3VTctu2PSxKh0tC9/vNrZFbF4cYbVo22X50bHvv8WbW1tMSrtt1/EQw8NbhvXXBNRqQxViwAAAEY9SVQAAAAAALS8JRdeGt1zboyYPGml5Kl6RTLVk4ujbfdZMXG/F8ao99//HfHTnw5uG5deGrHmmkPVIgAAgFFJEhUAAAAAANHqU/gtOecnq1Sf6smyqlRLYuKbD4y2zTeKMeOCCyI++cnBbeNnP4vYcMOhahEAAMCoIYkKAAAAAICWtvh7P4/qbXdHZc3JfV6n+sSiqGyzRUw67JUxJt14Y8Sb3zy4bZx2WsTOOw9ViwAAAJpKEhUAAAAAAC2re+GiWPL5syMmTOhTFaqVqlEtXRoTjz8q2qZOiTHtX/+K2GefwW3j3e+OOOKIoWoRAADAiJNEBQAAAABAy+q67a5Y+r1f9KsKVan6xJMx4bBXRPs2W8S4sWRJxG67DW4bu+4a8ZWvDFWLAAAARkTHyPwbAAAAAAAYfaqLFzd1/VFn4sSIa69d8ffs2f3fxpVXrlivrS3i6quHrn0AAADDRBIVAAAAAAAtqzJpUlPXH/VqE6qywtTSpf1bv7t75USsa66JqFSGrn0AAABDRBIVAAAAAAAtq7Lx+hFtlah2dkWlo73P6+XyuV6xfqvIClOlD3844je/6f82dtppxe+XXx6xxhpD0zYAAIBBqlSr1epgNwIAAAAAAGPV4u/9PKq33R2VNSf3eZ3qE4uiss0WMemwVw5r28aEH/844qSTBreNn/88YoMNhqpFAAAA/SaJCgAAAACAltY97/5Ycs5PIiZN7FM1qqIK1eIlMfHNB0bb5huNSBvHjOuvj3jrWwe3jTPPjHj+84eqRQAAAH0iiQoAAAAAgJa35MJLo3vOjRGTJ602kapIoHpqcbTtNism7vfCEW3jmPOPf0Tsv//gtnHCCRGve91QtQgAAKBHkqgAAAAAAGh53d3d0fnry6P7yhszVSpi0srJVMuqTy3OsHq07fq86Nhnj2hra2tqm8eUfO12331w29hnn4hPfnKoWgQAALASSVQAAAAAAPB/uu9+IJZecV1U/3JPRHdN+LytEpVnbRYTdn++KfwGK7sldtppcNuYNi3i978fqhYBAABIogIAAAAAgHrdCxdF9f5/RHXx4qhkVaqN14+2qVOa3azx6YADIu67b3DbuPbaoWoNAADQoiRRAQAAAAAAo8Oxx0ZcddXgtnHllRETJgxViwAAgBYhiQoAAAAAABh9Tj894hvfGNw2fvvbiBkzhqpFAADAOCaJCgAAAAAAGN1uuCHiLW8Z3Db+538inve8oWoRAAAwzkiiAgAAAAAAxo5774048MDBbeN974s49NChahEAADAOSKICAAAAAADGpkWLIl74wsFt47DDIt773qFqEQAAMEZJogIAAAAAAMa+7O7YaafBbWPixIg5c4aqRQAAwBgiiQoAAAAAABh/Zs8e/DauvXYoWgIAAIwBkqgAAAAAAIDx7ZhjIq6+enDbuOqqiI6OoWoRAAAwykiiAgAAAAAAWseXvxzx3e8ObhsXXRSxzjpD1SIAAGAUkEQFAAAAAAC0piuuiHjPewa3je98J+LZzx6qFgEAAE0iiQoAAAAAAGDevIjXvW5w2/jQhyIOPHCoWgQAAIwgSVQAAAAAAAC1FiyI2HPPwW3jP/4j4vWvH6oWAQAAw0wSFQAAAAAAQE+6uyN23nlw29hpp4ivf32oWgQAAAwDSVQAAAAAAAB9NXv24Ldx7bVD0RIAAGAISaICAAAAAAAYiKOOirjppsFt4+qrI9rahqpFAADAAEmiAgAAAIBh8thjj8Xaa6/dp2UvvfTSeNGLXjTsbQJgmOR0ff/zP4Pbxu9/HzFt2lC1CAAA6AdJVAAAAAAwTF784hfHySefHLNXM/XTU089FZ/+9Kfj3HPPjT//+c8j2j4Ahsn110e89a2D28YFF0RsvPFQtQgAAOiFJCoAAAAAGCbbbLNNtLe3x9FHHx3HHntstNVN13TTTTfF8ccfH/fcc09MmDAhbr755qa1FYBhMm9exOteN7htnHFGxI47DlWLAACABiRRAQAAAMAw+d73vhef//znY/HixbHDDjvEF77whdhggw2iu7s7vvrVr8aZZ54ZnZ2d8ZznPCc+9alPxbOe9axmNxmA4bRgQcSeew5uGx/8YMRBBw1ViwAAgP8jiQoAAAAAhtFf//rXotrU3LlzY6211op3v/vdccEFF8Qtt9wSa6yxRvH3G9/4xlWqVAEwznV3R+y88+C28cxnRvzgB0PVIgAAaGmSqAAAAABgmGW1qaw8ddZZZxVVqNLs2bPj05/+dGyyySbNbh4Ao8Guu0YsXTq4bVx77VC1BgAAWo7hbQAAAAAwzBYuXBh///vfo6urK3JMY94eeOCBuPfee5vdNABGiyuvXJYElbeXvGRg25g9e8Xt/5J2AQCAvlGJCgAAAACG0S9/+cv41Kc+FfPnz4911lknPvKRj8Tvf//7+PnPfx6VSiUOOOCAOPHEE2PatGnNbioAo9GFF0Z87GOD28Zll0VMmTJULQIAgHFJEhUAAAAADJNjjjmmSJjKENyee+5ZJFPNmDGjeOzXv/51fOxjH4vHH3881ltvveL3lwy08ggAreHqq/PLZXDbuOCCiI03HqoWAQDAuCGJCgAAAACGyTbbbBNTpkwpKk299rWvXeXxf/7zn8Vjl19+ebS1tcXcuXOb0k4AxqD8zjjiiMFt43vfi9h666FqEQAAjGmSqAAAAABgmBx66KHxuc99LjbZZJPVLve9730vTj755Lj++utHrG0AjCOPPhqx116D28aHPhRx4IFD1SIAABhzJFEBAAAAwDDJ0FulUunTsvfcc09sttlmw94mAMa57u6InXce3DY23zzivPOGqkUAADAmSKICAAAAgBHwxBNPxI033hgPPvhgbLDBBrH77rvHXXfdFVtssUWzmwbAeLb//hH/+MfgtnHttUPVGgAAGLUkUQEAAADAMFq6dGl88YtfjB/+8Ifx1FNPFfe98pWvjJNOOqmY7u/xxx+PU045JbbccstmNxWgJVSXLI3qowsiOjsjOjqiMn1aVCZOiJbwtrdFXHfd4LZxzTURfayyCAAAY0nHUG9wyZIl8bOf/Syuuuqq+Nvf/hY77bRTHHfccfHd7343tt9++5g1a9ZQ/0sAAAAAGJU6Ozvj6KOPjiuvvDI6OjqK+NjNN9+8/PGFCxfGnXfeGUcccURccMEF8fSnP72p7QUYz6rzH4uu2++K7rnzlk15V2pri7ZtZ0b71ltEZcbaMa6deeaK37///YgvfrH/29hppxW/X3FFxKRJQ9M2AABosrah3FgGgF7+8pfHRz/60fjFL34R1113XVGePJ133nnx+te/Ps4+++yh/JcAAAAAMGpl9ak5c+bEzjvvHBdffHGce+65Kz3+ox/9KPbff/94+OGH45vf/GbT2gkwnuWEHJ233BFLz/ttdN98Z8TkSVFZe9ryW/7dffOyx3O5lpnA49BDl03Tl7eTThrYNnbfPWL27GW3/+sPAgCAaPUkqqw69Za3vKX4+W//9m/xn//5nytdaOy6667R3t4en//85+Nac2cDAAAA0AJ+8pOfxFprrRVf/epXY/3111/l8cmTJ8dnPvOZeNrTnhaXXXZZU9oIMN513XpndF1+XcSaU5ZN3dex8iQd+Xdl+lrF47lc161/jZbzkpesSKj6xjcGto1XvWpFQtWttw51CwEAYOwkUZ1++unx2GOPxYc//OE488wz49AcwVDjAx/4QHzxi18sEqvOOeecofq3AAAAADBqzZs3L2bPnh3Tpk3rcZmJEyfG8573vHjggQdGtG0ArTKFX/ecG6IybWpUJqycPFUvH8/luudcH9VHHo+WNWvWioSq3/52YNs48sgVCVWXXDLULQQAgGGx+iuGfvjjH/8YW265ZRx++OE9LrP33nvHs5/97Pjzn/88VP8WAAAAAEatSqUSixcv7nW5J554olgWgKHVdftdeTTuNYGqlMvlHBtdt82Ljl1nDXv7Rr0ZM5YlU6XOzohddun/Nj7wgRW/779/xMc/PnTtAwCA0ViJ6p///GdstdVWvS63ySabxL/+9a+h+rcAAAAAMGrloMObb765qODek/nz58ctt9wSM2fOHNG2AYx31SVLo3vuvIipk/u34tQpxXq5PjVyGsSyQlXe1lqr/9u48MIVFaoyoQoAAMZjJaq11lorHnzwwV6Xu//++1dbvhwAAAAAxotXvepV8alPfSpOOOGE+PznP1/E0GpllaoPfehDsWjRothvv/1GtG1bb711r8sccMAB8dnPfnb534888kh87Wtfi9///vfFoMoNN9wwXvOa18Sb3vSm6MjOdYBRpProgoju7qj08/iUy1e7FxXrV9abMWztG/N+97sVvx9/fMTvf9+/9f/xj2XJVKVrrskSjkPXPgAA6Kchi2zssMMO8bvf/S6uv/764vdGrr766pg7d2689KUvHap/CwAAAACj1iGHHBK/+tWv4tJLL42XvOQl8exnP7u4PytPHX/88TFnzpx4+OGHY9ttt43DDjtsRNt27LHHNry/Wq3GN7/5zWKKwV1qpm16/PHH4/DDD48777wz9t5779h0003jiiuuiJNPPrmotnXqqaeOYOsB+iCnnxuwyiDXbzGf//yK3885J+JrX+v/NnbaacXvV14ZMWHC0LQNAABGOokqR5tdcskl8fa3v70IAO26667LH1uyZEn84Q9/iE984hNRqVSKYAsAAAAAjHcTJkyI//mf/4lPfvKT8dOf/jSuySobETFv3rzilrGyl7/85UXcbOLEiSPatne9610N7z/77LOLBKqDDz44/v3f/335/VmB6o477oiPfexjceihhxb3vfe9743jjjsufvOb38Rvf/vbIrkKYNQYVIW86iDXb2FvetOyW7rssoj3va//26jpY4qLL46YPn3o2gcAAD2oVHNo2RDJEWqf+9znVrqvvb29GL3W3d1d/HznO9/ZY4AGAAAAAMarnP4uk6gefPDBIla23nrrxU477RQbbbRRjBaZJJVT+D3jGc+In//85zF58uTi/qeeeqoYNLn22msX1ejb2tqWr3PffffFXnvtFbvvvnuRgAUwWlSXLI2l3/l5xORJ/ZrSr5oVqJ5cHBMOf2VUJqqGNGTmzo044ojBbeNnP4vYcMOhahEAAKxkSIdRvPGNb4ztttsuzjrrrCIg9OSTT0ZnZ2cx4m7HHXeMN7/5zfGiF71oKP8lAAAAAIwJT3/602O//faL0ewzn/lMLF26ND760Y8uT6BKN910UyxatChe9rKXrZRAlTbZZJPYeOONi3hgV1dXMagSYDTIBKi2bWdG9813Rkyf1vcVFy6Ktuc8UwLVUNt224hrr132+/z5EQOpXviqV634/bOfjdhrr6FrHwAALW/Ikqjmz58fM2bMKEbP5S1H0z366KPFz+nTp0eHsrcAAAAAMGpdeumlccUVVxQVpeoHQt59993Fz0033bThuplIdf/99xe3zTbbbETaC9AX7VtvEd033xHVpZ1RmdB7P0UuV6y3zcwRaF0LmzFjRUJVVv7aZZf+b+ODH1zx+2teE3HiiUPXPgAAWtKQZTYdfvjhsc4668R3v/vd4u8ckZZJVQAAAADQKnbeeecBr1upVOJPf/pTNMs3vvGN4ucxxxyzymM5WDLlYMlGpk1bVuHl8ccfH9Y2AvRXZcba0bbbrOi6/LqIaVNXm0iVCVTVBQujfY8do7LOWiPazpaWg/DLhKoyIeqee/q3jf/3/5bd0syZET/+8dC2EQCAljBkSVT33XdfMeIMAAAAAFpVX5KIcrq7HICY0+aV8u9MomqWuXPnxtVXXx2zZ88ubvWWLFlS/Jw4cWLD9cv7Fy9ePMwtBei/9u22ynSq6J5zfVTzjqlTolIze0Y1KyEtXLRs2T12jPbttmxeY1mRDJW+/OWI/xu832fz5kWU32XPelbE976XmcpD20YAAMalIUuietrTnhaPPfbYUG0OAAAAAMacSy65ZKW/n3rqqTjuuOPib3/7Wxx77LGx9957x4Ybblg89sgjjxTLf/GLXyymySsrQTXD+eefX/w87LDDGj6+xhprFD9rE78aJVmtueaaw9ZGgIHKJNWO7beK6kbrRddt86J77ryodmfSVCbWVCPa2qPtOc8spvBTgWqUOe64Zbd00UX9n7LvL3+J2GmnFX9fddWyylcAANDAkJ0pvuc974kTTzwxvvSlL8WRRx5pKj8AAAAAWs5GG2200t9f/vKX46677orvf//78dznPnelx9ZZZ5046KCD4jnPeU685jWvKZb9yEc+Es2QyVxTpkyJPffcs+Hja6+99morbS1YsKD4OXXq1GFsJcDgZIJUx66zorrjdlF9dEFEVqDq6IjK9GlRmTih2c2jNy972bJb+tnPIj7xif5vY5ddVvz+hz/kF9fQtQ8AgDFvyJKo/vd//zc222yzOPPMM4vbeuutF9OnTy9KkTca9VGObgMAAACA8epnP/tZ7LjjjqskUNXaeuut4wUveEH85je/aUoS1W233RYPPvhg7L///jF58uSGy8ycObP4ee+99zZ8PO/PJKyyyhbAaJYJU5X1DAQf0171qmW3dNNNEUcd1f9tvPjFK37/xS8invGMoWsfAACtnUR17rnnrvT3P/7xj+LWSCZRAQAAAMB49/DDD8f222/f63KTJk2KhQsXRjNcd911xc/Zs2f3uEw+h5yq7+qrr47u7u6VBk7ed9998cADD8Ruu+0W7e3tI9JmAFguE5WvvXbZ7489FvHSl/Z/G694xYrf//u/I/bdd+jaBwBA6yVRffvb3x6qTQEAAADAuLDxxhvHNddcE0888USRhNTIv/71r/jTn/4Um2++eTTDLbfcUvxcXbJXJnm94hWviB/96EdFHPCNb3xjcX9XV1ecdNJJxe+HHXbYCLUYAHqQ08+WCVVLl0bsumv/t/HRjy67pUMPjXjf+4a2jQAAjFqVarVabXYjAAAAAGA8+vrXvx6nnHJKMV3fZz/72dhggw1Wevyvf/1rHH/88fHnP/+5mMqvGYlIb3jDG4pEr8suuyzWX3/9HpebP39+HHTQQUXVqT333DO22mqrmDNnTtx6662x7777xpe+9CUV6AEYnbIrbKedBreN170u4oQThqpFAAC0ShLVkiVL4qabboqHHnooJk6cGOuuu25st912MWHChKH+VwAAAAAwaj311FNx5JFHxo033lhMdbflllsWiVQZkstkpHnz5hW/v/jFLy4SrpqRhLTffvsVyVzXX399TJkyZbXLZrwvk8L+8Ic/xIIFC4pKWwceeGAcccQRRRwQAMaEM89cdhuo5zwn4pxzhrJFAACMtySq7u7u+OpXvxrf+ta3YtGiRSs9Nm3atDjkkEPiPe95TxEwAgAAAIBWkHGyjJn9+Mc/joULF6702Nprr10kIB199NHR0dHRtDYycNUlS6P66IKIzs6Ijo6oTJ8WlYkGkwKMGd/7XsSXvjS4bfzpTxH6vgAAxrwhTaJ697vfHRdddFExem6LLbaITTbZJLq6uuK+++6Le++9txhJ99KXvrQIGgEAAABAK+ns7Ixbbrkl/vGPfxR/P+MZz4jtt9/egMMxqjr/sei6/a7onjsvR5eueKCtLdq2nRntW28RlRlrN7OJAPTXeedFfPazg9vGZZdF9FLZEQCAcZ5EdcEFF8QHP/jB2HzzzeMLX/hCMX1frZze74QTToh77rmneDzLhAMAAAAAjCUZTu269c7onnNDhlcjpk6OSk0VsWpWpFq4rEp/226zon27rZoyTSMAg3TddRFve9vgtvHTn0ZstNFQtQgAgLGSRHX44YcXiVIXXnhhbLzxxg2XyYpU+++/f8yePTvOPvvsofi3AAAAADDqPfzww3HHHXfEk08+Gd21VYvqZBV3RrfOW+6Irsuvi8q0qVGZ0PMUjNWlnVFdsDDa99gxOrbfakTbCMAQ++c/I/bdd3DbyApXe+01VC0CAGAY9HyV30+33XZbkRzVUwJVyun9dtppp5g7d+5Q/VsAAAAAGLW6urri4x//eJx33nlFBaPe/PnPfx6RdjHwKfyyAlVvCVSpeHza1Oiec31UN1ovKuusNWLtBGCIPf3pEddeu+z3JUsidtut/9v44AdX/P6mN0W8851D1z4AAEZXEtXixYtjzTXX7HW5XOaJJ54Yqn8LAAAAAKPWt771rfjxj39c/J6DD9dbb71ob29vdrMYoK7b7yqm8OstgaqUy2XqXNdt86Jj11nD3j4ARsDEiSsSqjJBev/9Ix56qH/bOOecZbe0994Rn/700LcTAIDmJVFtuOGGceONN0ZnZ2d0dDTebD6Wy2ywwQZD9W8BAAAAYNT6yU9+Em1tbXHqqafGXqbwGdOqS5ZG99x5EVMn92/FqVOK9ao7bheViROGq3kANEOlEvHLX674+6tfjfjmN/u3jd/+dtktzZ4dcfrpQ9tGAAD6rC2GyJ577hkPPfRQfDbndO5BPpbL5LIAAAAAMN7dc889seOOO0qgGgeqjy6I6O6OSg8DSHtSLN/dtWx9AMa3Y49dVqUqb0ce2f/1c71MpCpv3d3D0UoAAHpQqVaz1ujgPfzww7H//vvHY489Fs9+9rNjn332iU022aR47L777otf/epXcdttt8WMGTPipz/9aay77rpD8W8BAAAAYNTaddddY9asWfH1r3+92U1hkLoffCg6L7wsKmtP6/e61ccWRMf+L4y2DdcblrYBMMp9//sRX/ziwNdfY42Iiy9e9hMAgNGfRJUySeqYY46JBx98MCpZwrRG/puc8u8rX/lKbLfddkP1LwEAAABg1Hr3u98d1113XVxyySUxadKkZjeHQeh+aH50/vR3A0yiejw6Xv3SaFtvxrC0DYAx5OqrI445ZnDb+MlPIv6vkAEAAKM0iSotWbKkqDp1zTXXFFP35ebXW2+92HnnnWPfffeNiRMnDuW/AwAAAIBR684774yDDjooXvH/2bsTOKvq8n/gz70zDIvDIiomCgZiIqhRuCS5477grmnupT+zNFM0l1zKTDPKv6aWZWZmaqbmkrviTookrgipuOCSqMgmCjNz7//1PTdAkmVmmH3e79/rvO65957vuQ/1C2bO/Zzn2XXXOPPMM10ba8WK86qi6s+3R3TuWKeRfsXq6ohP5kaHg3eLXEWHRq0RgFZm6tSInXdevnP88pcRW27ZUBUBALRrDR6iSqqqqqJDh4UXBKZPnx4zZ86Mvn37NvRHAQAAAECL9dvf/jaeeeaZePjhh2OFFVaIddddN7p16/a5Lu5Jei11caflqv7nM1F4/pXI9ah9N6ri9JmRX3/tKN90SKPWBkArN3duxNe/vnzn+L//izjyyGirYebi9FkRKZxcXp79WyycDAC06BDV22+/HT/5yU+iuro6/vCHPyx4PXWmOuGEE7JuVD/96U+jTwO0GL3uuuvi7LPPXuL7//znP6NnT+2xAQAAAGg+AwcOzMJRtbkEl4576aWXmqQu6qc4bUZU3XhvxApdItdh2d2oilXVER/PiQ777hC5Fbs1SY0AtAHp54bddov4z3/qf46DDoo4/vhoC//21kx6LQoTJkcUCgvfyOcjP6h/lK3TL3I9uzdniQBAG1L7vtPL8N5778X+++8fH3zwQfTv33+R91JXqh49esSTTz4ZBx10UPz9739f7oDT/AtKhx12WFRWVn7u/c6dOy/X+QEAAABgeZ133nnNXQINKH1Jmx82JGoeezqia+VSg1QpQFWcNTvKNhsqQAVA3aSOlf/4x8LnF14Y8Ze/1O0c11xT2pJhwyIuvjhakxRAr3nxlSiMeSb9BxJR2XmRcbppXG7h+ZezLf3bXDZ4wGI7fQIANEsnqtSB6tprr40DDzwwTj755OjUqdMi79fU1GQXja655posSPWjH/1ouT5vv/32i0mTJsX48eMjn88vZ/UAAAAAALX9UvfVKIwZX3qhssvnvtSN2XOy/fywr0TZ4LV8qQtAwzn55IjRo+u/vlu3iPvvzzo5tWTVL7ychZZzdQgtl683oElrBADangYLUe24447ZBYS77757iRcFCoVC7LDDDlmgavRy/ICXzvPVr341BgwYEDfeeONyVA0AAAAAUHfFj2ZGzcTJ/x0vVFPqkhHFiHxZabzQwP46UAHQuK66KuKSS+q/vnv3iLvuiqioiJbE+FwAoNWP83v33Xdjq622WupdValj1LrrrrtcAark9ddfj08++SQGDhy4XOcBAAAAgIb0zjvvLNf63r17N1gtNK70JW35pkOiOHRwFKfPikgdqMrLI9eja+QqOjR3eQC0B4cdVtqSF1+MOPTQuq2fMaM06m++m2+O6Ns3mlvNpNeycHJtAlRJOi51jEjh5vRvMwBAs4eoevToUauLRB988EF07dp1uT5r4sSJ2WMKbP3gBz+IcePGxYwZM+JLX/pSHHbYYbHrrrsu1/mhqaUubvPmzWvuMqBVq6ioMB4BAABodsOHD6/32vQ7zYQJExq0HhpfCkzlevVs7jIAaO8GD44YN660P3VqxM471/0ce+21cP/iixcNWDWR4ryqUpfHys51W1jZJVuXws3CzABAs4eo0ni9NMrv0Ucfjc0333yxx4wdOzbGjx+fdaxqiBDVDTfcEJtsskmMGDEi/vOf/2Qdrk488cT497//HSeccMJyfQY0ZYDqwgsvjNdeS3dWAPXVv3//OP744wWpAACAZv89vznWAgAs0KvXwkDVnDkRW2xR93Mcd9zC/Z//PCXFoylk3R0LhciV1+0rzHR8sTAnWy/cDAA0e4jq0EMPjXvvvTe+973vxeGHHx7bbrvtgvbj8wNOf/jDH7Ivt4844ojl+qx0QWn11VePY489Nvbcc88Fr0+ZMiUOOOCAuPzyy2OLLbaIDTfccLn/XNAUhD4AAACgbZh/8x8AQIvQpcvCQFWhEPGd70T86191O8cPf7hw///+L+LII6PRpPG49ZZbzvUAQHuXKzbgLW5//vOf4+c//3nU1NQs/sNyuTj55JOzkXuNJXWnOuOMM2L//fePn/zkJ432OdCQjPNr2ebOnRunn356tn/uuedGx44dm7skFsM4PwAAAACAOnabGjNm+c4xP6DVQApTp0X1raMj171rndcWZ8yM8t2HR14nKgCguTtRJQcffHBstNFGce2112aj+6ZOnRrV1dWxyiqrxNChQ+Oggw6KDTbYIBrT/PO/+eabjfo50JBS8EMwp3VI/z357woAAAAAgFbv4osX7h9zTMTYsXU/x/ypMBUVEY8/nr7wWK6Scj26RuTzUayurtNIv3R85MtK6wEAWkKIKhk4cGCjdoAqFAoxYcKEmDNnTmy88cafez+9nnTq1KnRagAAAAAAAIA247LLFu7/7nelrS7StI2NNlr4/JFHSqME6yhX0SHyg/pH4flXIuoSiJo9J/Lrr52tBwCor3y0Qqnj1SGHHBIffvjh594b99+2oeuvv34zVAYAAAAAAACt2FFHlcb0pe2z4aq62GKLUpeqtE2eXKelZev0S72lolhVXavj5x9XNrB/vUoFAGjQENXEiRPj5Zdf/tzrN910UxZ42m233eKkk07KOkgtr3w+HzvuuGMUi8X4xS9+kXWm+mwdl19+eXTp0iX22Wef5f4sAAAAAAAAaLfSVJj5garbb6/fOfbbb2Gg6v77l3l4rmf3yA8bEsVZs5cZpErvp+Pyw74SuRW71a8+AID/yhVTGqmepk6dGscff3yMHz8+Cy2dc845C95LI/2uu+66LOw0X3l5eRZ82mmnnWJ5pA5UBxxwQLzxxhsxaNCg2GSTTeK9996L+++/PwtVXXjhhbH99tsv12cAzDd37twYOXJktj9q1Kjo2LFjc5cEAAAAAADNZ8aMiOHDl+8c6br7N76x2LfS94s1L74ahTHjSy9UdolcefnC96ursxF+SQpQlQ1eK3K53PLVAwC0e/UOUVVVVcWIESPitddeywIF3/rWt+K4447L3nv88cez5+mHld133z323XffmDx5chY+mDdvXtx9992x6qqrLlfhM2bMiN/85jdx3333ZQGqFVZYITbaaKM4+uijY7311luucwN8lhAVAAAAAAAsQZoas9lmEfPm1f8cBx4YccIJn3u5+NHMqJk4OQoTJkcUatJXm9mov8iXRX5Q/2yEnw5UAECzh6j++te/xllnnRWbbrpp/L//9/+ie/fuC95LAaoUpBo6dGj85S9/WfD6gw8+GN/5znfiqKOOihMW84MQQEskRAUAAEB9zZw5M7p188UeANCOpLF9y2OllSLuuWeRl4rzqqI4fVZE6kBVXh65Hl0jV9Fh+T4HAOB/5KOe0ui8ioqK+PnPf75IgOqTTz6JJ598MutCdWBKjX/G1ltvHauttlo88sgj9f1YAAAAAGg1Nt988zjppJNi7NixzV0KAEDTGDdu4VafEXsfflgKYqVtxIg02y8LTOV79Yx8717ZowAVANCiQlQTJ06MwYMHR69evRZ5/emnn47qlAKPyLpU/a+BAwfGO++8U9+PBQAAAIBWo1OnTnH77bfHoYceGjvssEP87ne/i/fff7+5ywIAaBpPPbUwULX11nVfn75T3GijhaGqTz9tjCoBAJYvRDV9+vRYddVVP/f6v/71r+yxX79+0bNnz8+9n8ZgfeoHHAAAAADagUcffTR++ctfxte+9rWYMmVKXHjhhVm39u9+97vx4IMPRqFQaO4SAQCaxi9+sTBQ9bOf1e8cm222MFAlmA4ANLDy+i7s3Lnzgo5TnzVu3LhslN+GS5h3PHXq1OjWrVt9PxYAAAAAWo2KiorYZZddsi11Z7/pppvi73//ezzwwAMxevToWGWVVWLPPfeMffbZJ/r06dPc5QIANI3tty9tyeTJEfvtV/dz7LTTwv1rrknjcBquPgCgXap3J6p0UWfSpEmLvDZ79uwYP378Ekf5pfefe+45F4QAAAAAaHd69+4dxx57bBaguvLKK2PfffeNmpqabMRfGvV32GGHxZ133pm9BgDQbvTvv7BD1QMP1O8cBx20sEPVs882dIUAQDtR7xDV5ptvHm+99VbcdtttC1679tpro6qqKjp16hRbbLHF59Zcdtll2UWgxQWsAAAAAKA9SF3cN9poo2ys37Bhw7LnaazfE088ESeeeGJsu+22WZgKAKDd6d59YaDqySfrd45vfWthoOruuxu6QgCgDcsVi8VifRZOmzYtu6Azd+7c7IJPutiT7qJLp/u///u/OP744xcc+/7778dVV10Vf/jDH7IxgHfffXesuuqqDfnnAGg06e+5kSNHZvujRo2Kjh07NndJAAAAtFLPPvts3HzzzXHXXXfFrFmzsmtpa665ZjbOb+jQoXHHHXdkI//S76Jnn3127L///s1dMgBAy5BCUcvjmGMijjiioaoBANqgeoeokieffDJrQT5z5swFr2211Vbx61//Ojp06JA9/+c//xlH/PcHkhS0Ovfcc2PPPfdsiNoBmoQQFQAAAMtj6tSpceutt8Ytt9wSkydPzoJT6drZdtttF/vtt1987WtfW+T4MWPGZNfTVl999eymRQAA/scJJ0Q88kj91lZURPzkJxHDh6cvLxu6MgCgFStfnsWbbLJJjB49Ou6///748MMPY9CgQZ8b1dejR4/swtB6660X3//+97MxgAAAAADQHhx55JFZKCqN60vXyPr3758Fp3bfffdYccUVF7smjfjr1KlTdr0NAIDF+NWvFu7fe2/EaafVfu28eRGnnLLwed++ETfcEFG+XF+bAgBtwHL/NFBZWRl77LHHEt//0pe+lLUp17kFAAAAgPbm0Ucfza6L7bDDDll4asNajKFJHZHTaL8NNtigSWoEAGjVtt++tCUvvhhx6KF1W//mmxGf7QyaQlk9ezZsjQBA2x/nB9AeGOcHAABAfV1zzTUxYsSI6NatW3OXAgDQvrz+esQ++yzfOW67LaJ374aqCABo4fLNXQAAAAAAtFXTp0+PsWPHLvO4v/3tb3HKZ8fKAACwfL74xYhx40rbo49GfOtbdT/HiBERqZNo2lKXKwCgTROiAgAAAIBGcskll8S9aSTMMjz88MNx1113NUlNAADtTufOEd/5TilQlQLuu+5a93OkMYHzA1U33NAYVQIAzay8uQsAAAAAgLbiiiuuiE8//XSR1yZNmpSFqZZk5syZ8eijj0aXLl2aoEIA2pvivKooTp8VUV0dUV4euR5dI1fRobnLguaTz0ecfXZpKxYjttoq4uOP63aOCy4obckvfxmx5ZaNUioA0LSEqAAAAACggcyZMycuu+yyyOVy2fP0+O9//zvblqSYvryLiH333bfJ6gSg7StOmxE1k16LwoTJEYXCwjfy+cgP6h9l6/SLXM/uzVkiNL/0M9vDDy98fswxpU5VdXHiiQu7XZ11VsS22zZsjQBAkxGiAgAAAIAGctRRR2VBqsJ/v6y++uqrY6211oqvf/3riz0+haw6deoU/fr1i912262JqwWgLUrh3JoXX4nCmGfSvzQRlZ0jV77w66BidXUUnn852/LDhkTZ4AELwr/Q7l122cL9NJL5tNNqv/aTTyJOOWXR1554IusABwC0Drni/FvdllNqO96tW7eGOBVAizJ37twYOXJktj9q1Kjo2LFjc5cEAABAKzFw4MAYMWJEXDB/3AsANLLqF16OmseejlzXysh1WHJ4o1hVHcVZs6Nss6FRvt6AJq0RWp3nnos44ojlO8cDD0R01/0NAFqyBos+b7755rH99ttnbcc33njjhjotAAAAALRaEydObO4SAGhnI/xSB6plBaiS7P2ulVEYMz6Kq/eK3IpulIcl2mCDiHHjSvtvvx2x++51P8fw4Qv377gjYtVVG64+AKBlhahS2/Hbb789/vGPf0Tfvn1j7733jj333DNWWWWVhvoIAAAAAGjRZs+enT1WVlYu8ry25q8DgPqomfRaNsJvWQGq+dJxaVxJzcTJUb7pkEavD9qE1VdfGKiaOzfiD3+IuPLKup1jl10W7v/5zxHrrtuwNQIAzTvOb968eXHffffFjTfeGE8++WQ2c7usrCy23HLL2GeffbLHfD7fEB8F0KSM8wMAAKAu4/vSNbA77rgj+vXrF+vW4QuxXC4XEyZMaNT6AGi7ivOqourPt0d07hi58trfQ1+sro74ZG50OHi3yFV0aNQaoU1L/1vaZ5+It96q/zlGjYrYaquGrAoAaI5OVBUVFbHLLrtk2zvvvBM33XRT/P3vf48HHnggRo8enXWkSp2pUqCqT58+DfWxAAAAANCiFAqFBft1uX+xge51BKCdKk6flf4RqlOAKknHFwtzsvW5Xj0brT5o89L/9m65pbSffq7baKO6n+O/N3RnUnerNEYQAGh9nagWJ536n//8Z9x9991ZmGratGnZHXUbb7xx7LfffrHDDjtk3aoAWjKdqAAAAACAlq7wztSovuORyHXvWue1xRmzonyXLSLfu1ej1Abt3hFHRDz3XP3X77dfxMknN2RFAMBiNOp8vRSY2mijjWLrrbeOYcOGZc/TnXhPPPFEnHjiibHtttvGnXfe2ZglAAAAAAAAtH117EC1qOJyrgeWKnWVGjeutP34x3Vff8MNERtuuHCrqWmMKgGg3Wu0n4ifffbZuPnmm+Ouu+6KWbNmZV2p1lxzzWyc39ChQ+OOO+7IRv6lMFV6f//992+sUgAAAAAAANq0XI+uEfl8FKur6zTSLx0f+bLSeqDx7bJLaUuefjriqKPqfo5NNlm4P3p0RLduDVcfALRjDRqimjp1atx6661xyy23xOTJk7PgVIcOHWKnnXbKxvd97WtfW3DsV7/61Rg+fHgcccQR8bvf/U6ICgAAAIBWb+ONN6732tTF/cknn2zQegBoP3IVHSI/qH8Unn8loi6BqNlzIr/+2tl6oIl99aul7lTJm29G7LVX3c+xzTYL9++6K2KVVRquPgBoZxosRHXkkUfGmDFjsnF9KTzVv3//LDi1++67x4orrrjYNWnEX6dOneLDDz9sqDIAAAAAoNnMnDmzuUsAoB0rW6dfFJ5/OYpV1ZHrsOyvgNJx2bqB/ZugOmCp+vZdGKj69NOI3/8+4k9/qts5dtpp4f6110Z86UsNWyMAtHENFqJ69NFHo2PHjrHDDjtk4akN0zzeZZg7d2422m+DDTZoqDIAAAAAoNk88MADzV0CAO1Yrmf3yA8bEjWPPR3RtXKpQaoUoCrOmh1lmw2N3IpGgUGL0qlTxLHHlrZ58yKGD4/45JO6nePAAxfu/7//F7HZZg1eJgC0NbliahvVAK655poYMWJEdDNzF2hjUuBz5MiR2f6oUaOywCgAAAAAQEuUvvapefHVKIwZX3qhskvkyheGqYrV1dkIvyQ/7CtRNnitbKQs0Aqkr3U32qj+6/v1izj77IjBgxuyKgBoM/INdaLp06fH2LFjl3nc3/72tzjllFMa6mMBAAAAAAD4rxSIKl9vQHTYd4fIr792xCdzozhjZhRnzMoe0/P0eno/HSdABa1I+t9rGvk3f9tjj7qtf+21iEMPjUgThdJ2wQWNVSkAtO9OVAMHDsw6UV2wjH9sv/e972Wj/5599tmG+FiARqcTFQAAALW15557Zl9GX3LJJdG7d+/seW2ldTfffHOj1gdA+1OcVxXF6bMiUgeq8vLI9egauYoOzV0W0NBuvTXinHOW7xypYUa+wXpwAECrs+Rh2MtwxRVXxKeffrrIa5MmTcouEC3JzJkzswBVly5d6vuxAAAAANBivfTSS1kYKt2QM/95bekEAkBjSIGpXK+ezV0G0Nh23720JaNHR5x8ct3PsfHGC/cfeyyiU6eGqw8A2nKIas6cOXHZZZctuLiTHv/9739n25LMb3q177771vdjAQAAAKDFuvrqq7PH1IXqs88BAKDJbLNNadxf8u67ERdeWApW1cVmmy3cv/feiJ7CmAC0ffUOUR111FFZkKpQKCy4ILTWWmvF17/+9cUen0JWnTp1in79+sVuu+1W/4oBAAAAoIXa+LN37y/mOQAANKnVVou44ILS/iefRPzwhxFjxtTtHNtvv3D/qqsi1luvYWsEgBYiV5zfHmo5DRw4MEaMGBEXzP9HGKCNSCMYRo4cme2PGjUqOnbs2NwlAQAA0EqlLu7vvfdelJeXZ92q1lxzzeYuCQCA9ujTTxftNlUfqevqoEENVREAtN5OVP9r4sSJDXUqAAAAAGgz5s2bF5dffnlcd9118dFHHy3y3mqrrRZHHHFEHHTQQc1WHwAA7VCnTgtH/qXJQ/XpoHrIIaXH/v0jzj5boAqA9huimj17dvZYWVm5yPPamr8OAAAAANpygOrwww+Pp59+OlJD+F69emUdqNL+22+/He+8806ce+658cwzz2TdjwEAoMnl8wsDVcmvfhVx7bW1Xz958sJAVbL11hG/+EXD1ggALTlEteGGG0Y+n4877rgj+vXrFxtttFGt1+ZyuZgwYUJ9PxoAAAAAWoU//elP8a9//Su+9KUvZWGp9ddff5H3x44dG2eccUZ2jW2TTTaJfffdt9lqBQCAzAknlLbkppsizjuvbusffDB9mbzw+dixpaAWALRwy/WvVSG1dvyvdPdcbbfPrgMAAACAtuq2227LOrJfddVVnwtQJRtvvHFceeWV0alTp7j++uubpUYAAFiivfcudalK2//7f/U7RxoVmEJV22yTWrU2dIUA0PydqCZOnLjU5wAAAADQ3r3xxhux+eabR8+ePZd4zOqrr551oXriiSeatDYAAKiTzTZbOPZv2rSIX/4y4p57ar9+5syIYcMWPr/vvogVV2z4OgGgnpqlb+Inn3zSHB8LAAAAAE2qR48etboWljq3d+nSpUlqAgCA5ZZuEjj33FKoavTo+p1ju+1KHarS9tprDV0hADRfiOrHP/5xzKtF+8Wnn346dt9994b6WAAAAABosXbccccYO3ZsTJgwYYnHTJkyJetCNXz48CatDQAAGkS3bgtH/j30UP3Ose++pTDVVltFvPNOQ1cIAE0borruuutin332iVdeeWWx79fU1MSFF14YBx98cHZhCAAAAADamtmzZy+yHXHEEfHFL34xDj/88Lj66qtjxowZC46tqqqKhx56KA499NDsmJEjRzZr7QAAsNwqKxcGqsaOrfv62bMjRowoBarS4wMPNEaVALBYuWKxWIwG8I1vfCOeeeaZ6NSpU/zwhz+MAw44YMF7r776apx00knx0ksvRVlZWXbx6IQTTmiIjwVodHPnzl1wIXvUqFHRsWPH5i4JAACAFmrddddd5jGVlZXZ75bTp0/PbjxMVlhhhaioqIgxY8Y0QZUAANAMzjsv4qab6r8+/az95z83ZEUA0DghqkKhEJdddln89re/zS7+pPbj55xzTtx2221ZB6pPP/00u4h07rnnxqBBgxriIwGahBAVAAAAtTVw4MDlWj9x4sQGqwUAAFqs666L+OUvl+8cTz0Vkcs1VEUA0HAhqvmee+65rOvUm2++md09N2/evOjQoUN873vfi29961tZJyqA1kSICgAAAAAAoJE89ljE8cfXf32vXhG33BJRUdGQVQHQDuUb+oQbbLBBnHrqqVlYKgUPkq222ioOPfRQASoAAAAAaGEefvjhOOyww2Lo0KGx4YYbxv777x933nnn54776KOP4qc//WnWgT5dA9xxxx3j97//fVRXVzdL3QAAtBGbbRYxblxpu+eeiO23r9v6qVMjhg2L2HDD0jZzZmNVCkAb16AhqlmzZsVpp50W3/nOd7KLJ5tttln06NEj7rvvvhgxYkQ8lVoqAgAAAACLmDlzZvztb39r8s+96qqr4qijjop///vfsfvuu8euu+6adZj/wQ9+EFdeeeUi9R188MFxzTXXxODBg+OQQw6Jzp07Zx2bTzjhhCavGwCANmqllSJ+9rNSoOquu+p3jm22WRioSgErAGjqcX4pKPWTn/wkPvjgg+jSpUucfvrpsddee2XP0366oy2fz2d3sqVxf+kYgNbAOD8AAACWR+rq9Kc//SnefvvtqKqqis9ejisUCtnvnfO7Ob300ktNVtekSZOy63drrrlm/PnPf46V0hdWEdn1vBSomjFjRvzzn/+Mrl27xnnnnZcFrs4666w48MADs+Nqamri+OOPj3vvvTd+/etfx/Z17RgAAAC1lbpLpXBUfZ1zTqnjVdeuDVkVAG1Mg4WoBg4cmD2mlt8///nPY/XVV1/k/b/+9a9x/vnnx6effhqrrbZajB49uiE+FqDRCVEBAABQX48++mgceeSRyzwu3XC46aabxqWXXhpN5Uc/+lHW/Sp1l9poo40Wee/GG2+M5557Lg4//PDsWl6qrXv37tk1vXSj5HxTpkyJbbfdNr7+9a8v0rkKAAAaTU1NxOabR8ybV7d15eURffpEpO95zjwz4ktfaqwKAWjv4/w6dOiQdZhKd639b4AqSR2obrvttvjyl78c7777bkN9LAAAAAC0WOlaWZK6N91yyy3xne98JwshpZDSzTffHN///vezm3VWXHHFuOCCC5q0toceeihWWWWVzwWokn322SfrOt+vX78sTDVnzpzYeOONFwlQJX369Ik11lgjnnrqqawzFQAANLqysogxY0oj/9K2++61W5e6v772WsTEiekH9IUj/37728auGID2FqJKF36+9a1vRS6XW+Ix6aLKtddem10cAgAAAIC27oUXXojevXtnXZ9SJ/ctttgiG+GXbjIcNGhQFqpKo/LSqL80Lq+pTJs2Ld5///340pe+FFOnTo3TTz896ya1wQYbZAGq+++/f8Gxr7/+evbYt2/fJV7zmzdvXrz11ltNVj8AACxwxhkLA1WHHlr39VdcsTBQlTpUNcwgJwDac4hqnXXW+dxr6e6zNAZrkQ/M5+Poo49uqI8FAAAAgBZr5syZ2XWz+R2c1l577ezxxRdfXHDMzjvvnAWU7rvvviarKwWnktmzZ8dee+0VTz75ZOy4446x0047xauvvhrf/e53F3TRmj59evbYo0ePxZ6ra9euC/6sAADQrI49dmGg6q9/jTjmmNLovw4darf+zjsjUqfWFKhK4SzdVgHalfKGPuHEiRPjyiuvjCeeeCK7m23EiBHx85//PE477bSs/fcRRxwRZanFIgAAAAC0cZ07d15kBF5lZWV07949XktjRD4jBa0ef/zxJqvr448/zh6fffbZ+NrXvha/+c1vokuXLtlrRx11VOy7777ZNb1tttkm6zKVVFRULPZc81//35spAQCgWa21VmlL5syJuP76iMsuq/36u+4qbcmgQRGXXpruIGicWgFoW52okr/97W9Zu+/bbrstu5utWCxmWzJ+/Pj41a9+lY3ySy3LAQAAAKCtS6PuJk2atMhrX/ziFxfpRJV88sknTXrN7LM3OZ5xxhkLAlTJWmutFQcffHBUVVXFPffcE506dcpeT88XZ37IaoUVVmj0ugEAoF7Sz7tHHFHqUPXgg3VfP2FCxNZblzpU7bxzasPaGFUC0FZCVM8880ycddZZ2UWVkSNHxj/+8Y9F3v/BD34Qq6yySjzwwANx++23N9THAgAAAECLtfnmm8fbb78d55xzTsyaNSt7bYMNNsheu//++7Pnr7/+ejz11FPRu3fvJqtr/gi+FJ5Koan/NSjdaR8Rb7zxRtY5a2nj+ub/uVKXLQAAaPHSz8LzR/498kjEZzrH1koajb3NNhGnnBJxzz2pzWtjVQpAaw1R/f73v88ef/vb38a3v/3tGDBgwCLvb7/99vHHP/4xa1+eOlYBAAAAQFt36KGHxsorrxzXXnttnHjiidlrBxxwQPZ4/PHHZ2Pz9txzz6yb03bbbdekHbLKy8ujurp6QSf5z5rfdSqNI+zfv3+2/+abby72XOn1FMZqyhAYAAA0WIeqsWNLgar0uPvutV+bboo4/fSILbcsdag69NCIF15ozGoBaC0hqqeffjqGDBkSG6Z/IJYg3dU2dOjQ7O46AAAAAGjrevbsmQWott122+jbt2/2WgolnXrqqVl46fnnn89G+a233npx1FFHNVldFRUV2bW8FN5KXbD+V6orGThwYFZbGtU3duzYz40cnDJlStZVK53rsyMCAQCg1Ukdqc44Y2GXqmOOqdv6NLL7sMNKgaq0XXFFY1UKQEsPUc2ePTu7q642rcKX1PobAAAAANqa1PXp17/+dfzoRz9a8NohhxwS9913X/zqV7/Kurf/9a9/zYJKTenAAw/MHs8///wFI/mSiRMnxvXXXx89evTIwl8dO3aMXXfdNd566624+uqrFxxXU1MTF1xwQbb/zW9+s0lrBwCARnfEEQsDVT/5Sd3X//a3iwaqFtMBFoCWpbyhTtSrV6+YNGnSMo9Lx6yyyioN9bEAAAAA0Cql8XfNOQJvl112icceeyxuvvnmbH/77bfPbpS8++67s4DUueeeG5WVlQtGD6ZjzzvvvHjiiSdiwIABMWbMmHjxxRdjp512iuHDhzfbnwMAABrdzjuXtmTatIhHHol48MGIxx+vfaAqbcluu5U6XqXOVwC0zRDVZpttFjfccEN2l9o3vvGNxR6TWpenO9b222+/hvpYAAAAAGjxUijpnXfeyUb3/e9IvM9K4/Oa0s9+9rPYcMMN47rrrosbb7wxG/O30UYbxXe+85346le/ushYwnTd76KLLoqHHnooC1CtscYacdJJJ2VdtXK5XJPWDQAAzaZnz4g99ihtH3wQcd55EQ8/XPv1t99e2pLUjfbuuyM6d260cgGovVyx2DB9A9NFoBEjRsTHH38cu+22W2y66aZx6qmnxpZbbhmHHXZYPPDAA9mFlg4dOsQtt9wSa665ZkN8LECjmzt3bowcOTLbHzVqVDbGAAAAAGrr8ssvjyuuuCLr8rQ0KYg0YcKEJqsLAABoQO++W+oytTzjA7/97YiKioasCoDmCFElTz31VBx33HHx0Ucffe7us/QxK6ywQvzqV7/KglUArYUQFQAAAPWVujv96Ec/yvZTl6cVV1wxysrKlnj86NGjm7A6AACgUaQbKLbaqu7runRJI6Ai0vfpqTPsKqs0RnUANPY4vyS1+r7nnnuysX5PPPFEvPvuu1l78lVWWSU23njj2H///bN9AAAAAGgPUmf2dLNh6th+wAEHZF3aAaCtK86riuL0WRHV1RHl5ZHr0TVyFf4NBNqRysqIceNK+zU1ET/+ccSddy573Zw5EffeW9o+64ILIrbZpnFqBaBxOlEBtEU6UQEAAFBfQ4YMiS996UvZTYcA0NYVp82ImkmvRWHC5IhCYeEb+XzkB/WPsnX6Ra5n9+YsEaB5pa/mf//7iN/9rv7n+P73Iw4+uCGrAuC/8vN3AAAAAICGlUb49erVq7nLAIBGle7Xr37h5ai68d4oPP9KROeOkevedcGWnheeL72fjnN/P9Bu5XIRRx1V6lKVtrPPXvS92rjooogNNyxtf/pTo5UK0B7Ve5zf9773vXp/aGph/utf/7re6wEAAACgNVh//fVjwoQJUSgUIp93PyMAbVPNi69EzWNPR65rZeQ6fP6rp1x5eUSPblGsqs6Oi8hF+XoDmqVWgBZl111LWzJtWsTDD0dcfXXElCm1W5++c5//vftee0WcckrW/Q+AJh7nN3DgwOUKUb300kv1Xg/QlIzzAwAAoL7+9a9/xcEHHxxHH310HHfccc1dDo2gOK8qitNnRVRXR5SXR65H18hVdGjusgCadIRf6jAVK3RZbIDqc8dXVUd8PCc67LtD5Fbs1iQ1ArQ6//lPxM9/HvHoo/Vbv/HGERdeGOE7LYCm6UR13nnn1XcpAAAAALQL77zzTmy77bbxm9/8Ju644474yle+Et26dctuMvxf6bVT0p3jtJrQQM2k16IwYXJEobDwjXw+8oP6R9k6/SLXs3tzlgjQJNLfhamzVG0CVEk6Lt3dXzNxcpRvOqTR6wNolb7whVIIKnnrrYg99qjb+rFjI77+9YXj/zbaKM0ab/g6AdqYeneiAmgvdKICAACgvlI39xSOqs0lON3bW4f032UaW1UY80wWGojKzqUxVfPfTx2pZs/J9vPDhkTZ4AGLDc0BtIXue9GlU1T/9e6Izh0X+btwmedJ6z+ZGx0O3k33PoC6mDkz4rDDIt58s27runSJ2GSTiLKyiJNOilhppcaqEKB9dqJalk8++STef//9KCsri169ekWHDn4IBgAAAKB9+e53vytA08akAFXNY09HrmvlYruuZCGCHt2ycVXpuBS0Kl9vQLPUCtDY3fey0Xyz50RutVXq9I1T+ruyWJiTBbJyvXo2TtEAbVG3bhE331zar6mJOPPMiHvuWfa6OXMiHnywtH///Qtf/9WvIrbYopGKBWh9GrwTVWpLfs0118Rzzz0Xhf/+IJ2CVJtuumkcccQR2SNAa6ITFQAAADA/RFB1470RK3Sp1diqLFzw8ZzosO8OkVuxW5PUCNCU3fcKM2dH8Y13IjqUR27VlbK/63LpuNqce8asKN9li8j37tWIfwKAdiJ95X/++RE33VT/c6Tvwr7xjYasCqDVyTfkyU4++eQsaDB+/Pjs+UorrZRtKUz16KOPZiGqSy65pCE/EgAAAACgSaQuLClEUJsAVTL/uJqJkxu5MoDG7b6XhUd7dP3cyL5cmkKS/q5LnaX+80EUP5pZh7MXSyMBAVh+qfvtqadGjBtX2i64IGKXXSK+/OXSe7UxalTEhhuWtmuuaeyKAVqkBvvp9G9/+1vcdttt2ei+U045JYYPH76gW0sa7XfPPffEBRdcEJdeemkMGTIkNttss4b6aAAAAABoEa6++urscc8994yuXbsueF5bhxxySCNVxvIqzqsqjbGq7Fy3hZVdsnXFoYMjV9GhscoDaJTue6kD1ZLGl2bS32vZl/PFiA4dovjeh1FcoXPkKiqWfu7q6oh8WRbMAqARbLNNaUs+/LA0AvDyy2u//v/9v9KW7LtvxEknReQbtD8LQNse57f33nvHK6+8Erfcckv069dvscdMmjQpO26TTTaJP/zhDw3xsQCNzjg/AAAAamvgwIGRy+XizjvvzK6RzX++LOkSXTrupZdeapI6qbvC1GlRfevoyHWv+xf+xRkzo3z34ZHv1bNRagNoDNX/fCYKz7+yzKBT4b0PojhtZuQ6dsgCp7me3SPfa6WlrilOnxn59deO8k2HNHDVACzVO+9EjBhR//XDhkX86lc6CQJtVoP97TZ58uT42te+tsQAVbLOOutkAaoXXnihoT4WAAAAAFqMPfbYIwtDpS5Un31OG5C6ptRbbjnXA7Tc7nu5Ht2yMX7FQqE01i/tr7xi5JbQsaRYVfr7sGxg/wavG4Bl6N27NO4veeON1CmlbuvHjIn42tdS692IrbeO2GijrBMhQFvRYCGqTp06ZXfMNdRxAAAAANDanH/++Ut9Tiu2XHfbF92tD7QqxemzIgqFyNXi765cx4rI9Vopiv/5IKKiPLVXjJhXFdGp42IDVMVZs6Nss6GRW7FbI1UPQK2suebCQNXs2RH/939ptFTt1v7976Vtvu23jzjxxIiVlt6JEKCla7DBpVtssUU8+eST8frrry/xmGnTpmXHbLbZZg31sQAAAAAAjS4bZ5XPR7GOHaWy4/NlyxyHBdCi1PHvuhSIyq22ckR1TUQKSqUQ1f/8XZhG+MXHc7IAVdngtRq4YACWS2VlxF/+UgpV/fOfEdtsU7f1994bscMOERtuWNpSxyqAVqjBbn/64Q9/GM8880wcdthh8eMf/zi23HLLRd6fOHFinHbaaVknqhNTChUAAAAA2onJkyfH22+/HVVVVYt0aU/7c+fOjffffz/uu++++Ev64oIWKVfRIfKD+kfh+Vci6hKImj0n8uuvna0HaDXq2D0vja7Nrdg9il06R+HdqVknquKMmaVxpqkbX74s+7swjfDTgQqghUvj+S64oLSffndJ3XVvuqlu5zjuuIX7v/xlxP9kBwBaqlyxgWbrffOb34yZM2fGyy+/nP2w3LVr1+jbt2+UlZXFf/7zn5g6dWp2XEVFRXTsuGgL13R86lAF0BKli9kjR47M9keNGvW5v8MAAABgab9THnvssfHoo48u9bh0iS5dI3vppZearDbqrjhtRlTdeG/ECl0i12HZAYM0tip1Xemw7w5CA0CrkjpJVf359ojOHWs10m/ButTB6pO5Ub7/jhFzPi11tCovz7rxCZMCtAGTJ0c8/njEgw9GPPdc3dYee2zE1ltH9O3bWNUBtJxOVP/6178WueiTAlUvvPDCYi8cpQ0AAAAA2ro//vGP8cgjj0R5eXmsvfbaMWPGjHj33Xdjww03zPZfffXVqKmpibXWWit+8IMfNHe5LEOuZ/fIDxsSNY89HdG1cqlBqhSgKs6anY2tEqAC2lv3vXxll4i0AdC29O9f2g4+OGLKlIiTTop45ZXarf31r0vbWmuVwlR9+kTsvHPquNLYVQM0fYjqgQceaKhTAQAAAECbcO+992Ydpq666qosOHXrrbfGKaecEmeeeWYWqnrnnXfie9/7Xvz73/+O1VdfvbnLpRbKBg/IxlMVxoxPA6qykMBnu7RkXVhmzykdu9nQKBu8VvMVC7AcytbpF4XnX85CobXuvpfWDezfBNUB0OxSCOr660v7qSvVEUfUbt2rr5a25KyzSo9XXBGxwQYR+XwjFQvQxCGq5r7I88QTT8Rhhx0We+yxR5yf5rICAAAAQDN74403Yv31188CVEnaT13cx48fn4WoevfuHRdddFHsuOOOWdeqCy64oLlLZhlSKK58vQFRXL1X1EycHIUJk6NYSKGpdAd9MSJflnVhSSECHaiA1kz3PQBqLQWgxo1bOPJvv/3qtv7b347o2TNiq60ittkmYujQiA7GwAKtOETVnGbPnh2nnXZadgEKAAAAAFqKuXPnZkGp+fr27Rv5fD7rPDVfnz594stf/nKMm/+lA61CCgmUbzokikMHR3H6rIjUgaq8PHI9umZjsADaAt33AKizNO5v/u82VVWl/QcfjHjooYhp05a8Lr13882lrWvXiM03L3W72nffiB49mqx8oH1r0BDVo48+Gtddd128/vrr2QWipd2tdf/99zfY55577rnx9ttvN9j5AAAAAKAh9OjRI2bNmrXgeXl5eXzhC1+IV+ePr/ivVVZZJV544YVmqJDllQJTuV49m7sMgEah+x4AyyV1k9p009J2yikRzz9fCkndccfS16Xfoe68s7R/+eWlx002iTj99IjP3KQC0GJDVA8//HAcffTRteoGlX7obiijR4+Om2++ObbZZptsHwAAAABainXXXTfrMDVt2rTomcZTZDdm949nnnkm5s2bFxUVFdlrU6ZMiS5dujRztQCweLrvAbDc8vmIL3+5tJ19dilI9ctfRvTqFfE/N5ks1pNPRowYUdpPgaw0+m/llRu9bKB9abAQ1WWXXZYFqPbdd9/YZZddonv37g0allqcdPHpjDPOiI033jgOOuggISoAAAAAWpQRI0Zk3dv333//+MEPfhA777xzbLXVVvHYY49l17WOOuqouO+++2LChAnx1a9+tbnLBYCl0n0PgAaRcgS77lrakjffLI37S2P/UreqZTn//Iif/zxi/fUjtt66tK2xRqOXDbR9DRaieuWVV2LQoEFxzjnnRFM5++yzY86cOfGzn/0su1sPAAAAAFqSXXfdNbvx76677oq77747C1Htvffecfnll8dtt92WbUm6GfHwww9v7nIBAACaXt++EYccUtqmTk1jsEohqaVJE7Kee660XXRRRL9+EW+8UepytdNOpaAWQB3lo4Gk1uOrrbZaNJV0gemee+6JkSNHRp8+fZrscwEAAACgtlI46sILL4zf/OY3WYAq6dy5c1x99dWxySabZNfUVl111Tj99NNju+22a+5yAQAAmlca77fvvhHjxkXcfHPEhhvWbt1rr0UUChFnnhmx0UalUYEpYJVeA2jqTlTDhg2Lp556KubOnRsdO3aMxvTee+9lHa823XTTOPDAAxv1swAAAABgeW2dxkt8Rr9+/eKqq65qtnoAAABaRYeq3/62tD9tWsQ//hHx739HPPpoxMcfL33tddeVtpVWithqq4httokYOjSivMEiEkAb1GCdqE444YSYN29enHTSSfHhhx9GYzrttNOipqYmzj333OxuPgAAAABoiU499dT429/+tszj0ni/Q9LoCgAAAD6vZ8/SuL+f/jTivvsiLr44Ys89I1ZccenrUnbhppsivvvdiNT9N3W2OuusiBkzmqpyoBVpsJjl6quvHieeeGKcccYZcf/990evXr1ixSX8hZWCTzen1nv1cN1118Vjjz0WP/nJT7LPBAAAAICW6u9//3t2M+C+aRzFUowfPz6eeeaZJqsLAACg1aqoSKOyStupp0Y88UTEcccte92sWaXHO+4obcmmm5bO0bt349YMtAq5YrFYbIgTPfzww3HMMcdkF4WW+aG5XLz00kv1+pyDDz44xo4du8zj9txzzzj//PPr9RkAn5XGlI4cOTLbHzVqVKOPLAUAAKD1+tnPfhaz5l+Y/2+Iqm/fvjE0jY1YgpkzZ8bo0aNjlVVWiUceeaSJKgUAAGhjCoVSl6rJkyMefLD0WFtf+1pp5N+WW5ZGAALtUoN1orr00kuzANXw4cNj1113jZ49ezbKqL0Ujtp4440/9/qUKVPi1ltvjYEDB8a2224b6667boN/NgAAAAAsTe/evRe5sS9dH3vzzTezbVn233//Rq4OAACgDcvnI3bYobT/ne9EvPFGKUyVthdfXPra1M0qbeedF7H++qVA1dZbp5FcTVI60MY6UX3lK1/J7qpLQabmMGbMmDj88MN1oAIanE5UAAAA1Fa6yfC6667LHtNlt3Sdar311ovddtttscenkFWnTp2if//+seGGGzZ5vQAAAO3Ce+9FnHJKxPPP1y+cdc45Edtvn36Ja4zqgLbWiSpd7EkhKgAAAABor8rKyuKggw5a8Pzqq6/OwlGHHnpos9YFAADQrq26asQf/1jaTx2qfvrTiPHjaz8m8PTTIy66KGLHHUtdqgYNKoWrgDalwUJUw4YNiyeffDLmzZsXFRUVDXVaAAAAAGi1Ro8e3dwlAAAA8Flrrhnx+9+X9ufMiXj88dLIv8ceKz1fkqlT050ypa1Xr4ittiptQ4emO2qarHygFYzzmzJlSuy9994xdOjQOPPMM2O11VZriNMCNDvj/AAAAFheabzfO++8E5988kkU0l3MSzBw4MAmrQsAAID/mjcv4qmnSoGq+++PmD27butHjIg4/viIbt0aq0KgtYSozj777Hj11Vdj3Lhx2fOVV145evToEeXln292lcvl4uabb26IjwVodEJUAAAALI/LL788rrjiipi9jAvw6ZrZhAkTmqwugM8qzquK4vRZEdXVEeXlkevRNXIVHZq7LACA5pF+JvrTnyJ+85v6rd9++4jTTouorGzoyoDWMM7v+uuvX+T5+++/n21LuiAEAAAAAG3djTfeGBdeeGG2X1FRESuuuGKUGfMAtCDFaTOiZtJrUZgwOeKznfLy+cgP6h9l6/SLXM/uzVkiAEDTS81ivvWt0pb60kycWOpQlbbXXlv2+nvvTfPdIzbeOGLrrSO23DKiZ8+mqBxoCZ2oxo4dW6fjN05/WQC0AjpRAQAAUF/77LNPvPjii3HqqafGAQccEB066OoCtAzpq4GaF1+Jwphn0lcFEZWdI/eZyRLF1H1h9pxsPz9sSJQNHuAGaQCA5PXXFwaqattNOP0cNWRIKVD15S9HDB7c2FUCzRmiAmirhKgAAACoryFDhsSXvvSluOGGG5q7FIBFVL/wctQ89nTkulZGrsOSh1YUq6qjOGt2lG02NMrXG9CkNQIAtHjPPhtx9tkRU6bUfW1FRcQVV0Ssu24pZAW0nXF+nzVv3rx47rnnYurUqVmb8pVXXjkGDx7sTjsAAAAA2pV0baxXr17NXQbA50b4pQ5UywpQJdn7XSujMGZ8FFfvFbkVuzVZnQAALV7qKvX3v5f205i/n/60FKxK2YiqqqWvnTcv4pBDIvr2LXWo2mabUqAqn2+S0oFGDlEVCoW45JJL4k9/+lPMmVNq8ztf165d4xvf+EZ8//vfj7Kysob8WAAAAABokdZff/2YMGFCdt0s70I40ELUTHotG+G3rADVfOm4NNKiZuLkKN90SKPXBwDQKvXrF/GHP5T2P/444vHHSyP/0uP/5CcW8eabEX/6U2lLN+FstVVp9F96TN2qgNY5zu+4446L++67L5ul3q9fv+jTp0/U1NTElClT4s0338zmpQ8fPjwLWgG0Fsb5AQAAUF//+te/4uCDD46jjz46u3YG0NyK86qi6s+3R3TuGLny2t9nXayujvhkbnQ4eLfIVZg6AQBQa6nj1JNPRtx/f8Qdd9R9/V57RRx7bOpc0xjVAY3RieqWW26Je++9N774xS/GL3/5y2x832el8X4nn3xyPPDAA3HnnXfGzjvv3FAfDQAAAAAt0jvvvBPbbrtt/OY3v4k77rgjvvKVr0S3bt2ymw3/V3rtlFNOaZY6gfajOH1WGitRpwBVko4vFuZk63O9ejZafQAAbU7qJrX55qXt9NMjrroq4ne/i+jRI2L69GWvv/nm0pb87GcRX/96xAorNHrZ0B41WCeqdEddCkqli0FrrLHGYo9JHal22WWX2HDDDePKK69siI8FaHQ6UQEAAFBfAwcOzMJRtbkEl4576aWXmqQuoP0qvDM1qu94JHLd697JoDhjVpTvskXke/dqlNraQpevLKSWunaVl0euR1dduwCAJUu/J6bfAUePLm1prF9tdOgQsdFGEdtsE7HFFhE9BdyhxXWimjhxYhaOWlKAKknj/TbaaKOYMGFCQ30sAAAAALRY3/3udxfbdQqg2dSxA9Wiisu5vm0qTpsRNZNei8KEyVmXrwXy+cgP6h9l6/SLXM/uzVkiANASpd8VBw0qbd/9bsRrr0U89FDEZZctfV1VVcSYMaUtn48YMiTi008jfvCDiK98pamqhzapvCE7taxQi5Zx6ZiPP/64oT4WAAAAAFqsY489trlLAFhE6o6UvmwrVlfXaaRfOj7yZaX1ZFKXwZoXX4nCmGfSf7IRlZ0X+c80/WdWeP7lbMsPGxJlgwcI1gIAi5d+Rujfv7QdcUTE009HnHVWxLvvLn1dCnCnY5Mjjyw9HnBAxF57RfTr1/h1QxvTYCGq3r17x7PPPhvV1dVRvoRfvNJ76ZjVVlutoT4WAAAAAACopTReLnVHKjz/SkRdAlGz50R+/bWNp/uMFKCqeezpyHWtjFyHz38vkgWqenSLYlV1dlwKWpWvN6BZagUAWpmvfjXi9ttL+6++GnHNNREffhgxdmxpdPDSXHddafviFyO23rq0rbtuKagFNE2Iauutt46rrroqzj///PjRj3602GPSe1OnTo1DDz20oT4WAAAAAFqMq6++Onvcc889o2vXrgue19YhhxzSSJUBLJTGy6XuSCncs7jwz/9Kx2XrBvZvgupazwi/1IFqSQGqz8re71oZhTHjo7h6r8it2K3J6gQA2oC11ip1pUpmz454/PGI0aNL4/w++WTJ615/PeKPfyxtq64a0a1bKVB12GERFRVNVj60Jrli6jfbAD788MPYZZddYsaMGbHuuuvGjjvuGH369MnemzJlStx1110xceLE6NmzZ9x6662x8sorN8THAjS6NK505MiR2f6oUaOiY8eOzV0SAAAALdTAgQOzUU133nln9OvXb8HzZUmX6NJxL730UpPUCVD9wstL7aL02QBVcdbsKNtsqC5Kn1H9z2eybl51GW9YnD4z6+ZVvumQRq0NAGgn5s6NeOKJiBNPrN/6vfdOM+gjKisbujJotRqsE9VKK62UdaI65phjYsKECZ+74JMuBKWRf7/+9a8FqAAAAABok/bYY48sDJW6UH32OUBLUzY4BaJype5I6YXKLqXxc/9VTGNiZs8pHbvZ0CgbvFbzFdvCFOdVRWHC5IjKznVbWNklW1ccOthYRABg+aXGD1tuGTFuXClQ9Yc/RMyYEfHooxFTpy57/U03lbbtty91qPr61yO6dGmKyqHtd6Kab968eXH33XfH2LFjs9F96fS9evWKjTfeOHbaaaeo0BYOaGV0ogIAAACgrSp+NDNqJk4uhYIKNVmwKlKsKl8W+UH9sxF+xs8tqjB1WlTfOjpy3WvfhWq+4oyZUb778Mj36tkotQEARKEQMWFCxIMPlrY336zdupTl2GSTUqBqiy0ievRo7Eqh7YeoANoaISoAAAAA2kN3peL0WRGpA1V5eTamTrekxSu8MzWq73ikniGqWVG+yxaR792rUWoDAFhEioO89lrEKadETJ5c+3X5fCmM1adPxI9/HLHBBo1ZJbStcX6FQiHef//9WHXVVT/33rvvvhuPPvpo7LrrrtFF6zcAAAAA2qHJkyfH22+/HVVVVVnn9vnSfrp5J11bu+++++Ivf/lLs9YJtF8pMJXTHal2PjP2sO6Ky7keAKAO0nj5/v0jbrih9DyN/jvzzGWP+0sBqmTKlIgjjojo2TPiwANLXarWXLPx64Zmstw/qY8ePTp+/vOfx1e/+tU477zzPvd+ClCdddZZcfHFF8cZZ5wRO+yww/J+JAAAAAC0Cikgdeyxx2bXyJYmhaly6eI2AC1e6tKVujMUq6sjV4dAVDo+jUnM1gMANIcNN4y4887S/rvvRvzzn6WRf089VepIuiTTpkVccklpS6GsrbYqBaoGDiwFtaCNyC/P4jvvvDOOO+64eOONN2LSpElLvAC0wgorxAcffBDHH3983HLLLcvzkQAAAADQavzxj3+MRx55JMrKymLgwIGx2mqrZa9vuOGGsfbaa0c+fQlfLMZaa60Vv/71r5u7XABq2bUrP6h/xOxP6rZw9pxsnTGJAECLkH4/3WuviPS76H33RZxzTsQ220R06rT0dWks4JVXRhx8cMRGG5WCWX/4Q0RVVVNVDi0vRDVlypT44Q9/GDU1NXHMMcfE1Vdfvdjj9t9//3jsscfi0EMPzS4I/fjHP85G/AEAAABAW3fvvfdmHaauuuqq+Pvf/x7f//73s9fPPPPMuO2227IRfoMGDcpuUlx99dWbu1wAaqlsnX7ZaL5i1VI6NnzG/OPKBvZv5MoAAOqha9eInXaKuOCCiAceiBgxom7rf/ObiE03LQWqfvUrgSraX4jqz3/+c1RVVcVJJ52UdaOqrKxc4rGdOnWKU089Nf7v//4vPvnkk/jLX/5S348FAAAAgFYjhaPWX3/9rPNUkvbTjYbjx4/Pnvfu3Tsuuuii7LXUtQqA1iHXs3vkhw2J4qzZywxSpffTcflhX4ncit2arEYAgHrp2DHd+RMxblzE449HXHZZxL77Rqy8cu3WX3ttxLbbRpx+eimQNWdOY1cMzR+iGjNmTKy88spxyCGH1HpN6ljVrVu3ePTRR+v7sQAAAADQasydOzcLSs3Xt2/fbITfv//97wWv9enTJ7785S/HuHSBGoBWo2zwgCjbbGjEx3OiOH1mFKsXDVOl5+n19H46rmzwWs1WKwBAvQNVG28c8cMfRtx5Z5pZH5EyImussfR1H38ccc89pXUpUHXCCRG33x7xwQdNVTnUS3n9lkW8/fbb8dWvfjXKy2t/io4dO7ogBAAAAEC70aNHj5g1a9aC5+la2he+8IV49dVXFzlulVVWiRdeeKEZKgSgvtK41vL1BkRx9V5RM3FyFCZMjmIhdVrIZaP+Il8W+fXXzkb46UAFALR6+Xxqr1zajj024sEHI045JaJQWPq6efMiHnmktM33xS+WRgf2N+qYNhKiSrp06VKvNWkMIAAAAAC0deuuu252Q+G0adOiZ8+e2Wv9+/ePZ555JubNmxcVFRXZa1OmTKnXtTYAml8KSJVvOiSKQwdHcfqsiNSRqrw8cj26Rq6iQ3OXBwDQ8HK5iG22iRg7tvQ8PaYRgKnTVHqvWFz6+tdfj9hvv4j11ovYeuvS1rdvk5QOjTLOL90xl7pR1VVa07179/p+LAAAAAC0GiNGjIhPPvkk9t9//7gzjT6IiK222ipmz54dZ5xxRtaR6re//W1MmDAhC1cB0HqlwFS+V8/I9+6VPQpQAQDtRhr5d/fdEWkq2V13RZx6asTXvhZRVrb0dakj869/HbHXXhH77x/x299GPPfcskNY0NJCVOkuukmTJmV3ydUlQJUuCK299tr1/VgAAAAAaDV23XXX2GmnnbJraHenC8oRsffee2fj+2677bbs/YsuuigbCXX44Yc3d7kAAACwfFZeOf3iG3HJJRH33Rfxk5+UOk0tSxp7f8UVEUccEbHRRhEbbhjxxz+WunxCSw9R7b777lFTUxMXpDmVtXT++edHsViMrWvzPxAAAAAAaOVSOOrCCy+M3/zmN7Hzzjtnr3Xu3Dmuvvrq2GSTTbJxfquuumqcfvrpsd122zV3uQAAANBwunWLSL8L/+IXEfffX9qvi0svLXW0SoGqMWMiqqoaq1LI5Iop1VQPhUIhDjjggHjuuedixx13jFNPPTV69eq12GM/+OCD+NnPfpa1LF999dXj9ttvjy5dutTnYwGa3Ny5c2PkyJHZ/qhRo6Jjx47NXRIAAAAAAABA65TCUP/6V8SDD0Y89FDEhx/Wbt0KK0Rsvnmps9Wmm0bIndBSQlRJakO+7777xowZM7JQwUYbbRRDhgzJ2pFXVVXFtGnTYvz48fGvf/0rCyF07do1rr/++lhrrbUa9k8B0IiEqAAAAAAAAAAaQaEQ8cILEaNHR1xzTe3XVVSUglQrrhhx2GERa6zRmFXSTixXiCp577334sQTT4xx48aVTpjLLfL+/NNvttlmcfbZZ8ca/h8XaGWEqAAAAKitW265ZbnW77HHHg1WCwAAALQqKV9y550RZ51Vv/UHHhhx8MERq6zS0JXRTix3iGq+NNYvjembPHlyFqwqLy/POlKtv/76sf3228fAgQMb4mMAmpwQFQAAALWVroH9702GdfHSSy81aD0AAADQao0ZE3HppaWuU88/X/t1669fGvmXtj59GrNC2pjyhjrRBhtskG0AAAAA0N5VVFTEhhtuGJ06dWruUgAAAKB1GjastCVTp0Y8/HDEgw9GpElpaQzgkqTAVdouvjhiwICI/v0jvv71iJ13TuPVmqx82nEnKoC2SicqAAAAaus73/lOPPbYY1FVVRUrrLBCbLfddrHbbrvFsGHDlqtDFQAAAPBfM2dGPPpo/cf+HXdcxDe/GVFW1tCV0coJUQEsgxAVAAAAdTFjxoy4++674x//+EeMS3fHRsRKK60Uu+66axaoGjx4cHOXCAAAAG3DtGkRv/xlxPTpES+8EPHxx7Vfu9deEcOHRwwdGlHeYIPcaMWEqACWQYgKAACA+vrPf/4Tt99+exaomjRpUtaN6otf/GKMGDEiC1X16dOnuUsEAACAtqGqKuKppyIeeqi0pYBVbXTtGrH55hFbbx2x6aYRnTo1dqW0UEJUAMsgRAUAAEBDePXVV+O2226LO+64I956660sUPXlL385C1TttNNOseKKKzZ5Tdddd12cffbZS3z/n//8Z/Ts2TPb/+ijj+LSSy+NBx98MN5///3o3bt37L333nH44YdHuTt2AQAAaEkKhYjnnotIv/O+9Vbt16XvgufOjfja1yJOOy2id+/GrJIWRogKYBmEqAAAAGhoTz/9dNad6p577olp06ZFWVlZbLbZZvHb3/62Ses488wz469//WscdthhUVlZ+bn3v/3tb0fnzp1j5syZceCBB8Yrr7wS22+/ffTt2zcef/zxmDBhQuywww5x8cUXN2ndAAAAUGspFvOPf0T8+Md1X5u6Uv3gBxFbbhmx8sqNUR0tiBAVwDIIUQEAANAYCoVCPProo3HBBRdkXapSZ6qXXnqpSWvYb7/9sjGD48ePj3w+v8TjzjvvvLjqqqvirLPOysJUSU1NTRx//PFx7733xq9//essXAUA0BiK86qiOH1WRHV1RHl55Hp0jVxFh+YuC4DWavz4iOefjxg9OuKFF2q3JpeLWH/9iG22KY39W331xq6SZqDPNgAAAAA0oSeeeCLuvPPOLHw0Y8aMSPc4du/ePevo1NQhrn//+9+x9tprLzVA9emnn8YNN9wQq622WnzjG99Y8HrqnnXyySdnf47rr79eiAoAaHDFaTOiZtJrUZgwuTSWab58PvKD+kfZOv0i17N7c5YIQGv0la+UtkMOiZg6NeKhhyIefDDiX/9a9N+bz0r9idJ4wLT9v/9Xei39Lv2Tn0Sk3+dTyIpWT4gKAAAAABpZ6vR0xx13ZOP7Pvjggyw4lcbk7bzzzrHbbrtlo/zKy5v2Ut3rr78en3zySQwcOHCpxz333HMxZ86c2G677T4XturTp0+sscYa8dRTT2WdqVKwCgBgeaWflWpefCUKY55JrT8iKjtH7jM/KxWrq6Pw/MvZlh82JMoGD8i6egJAnfXqldo0l7YZMyLOOCNizJjarU2Bqx/9qLQlJ5wQkW4+WsqNSrRsQlQAAAAA0AgmTJiQBafuuuuuePfdd7MvA1NQaquttopdd901hg8fHp06dWq2+iZOnJg9pi8cf/CDH8S4ceOyzlhf+tKX4rDDDstqnB+2Svr27bvY86Qg1VtvvZVta665ZhP+CQCAtioFqGoeezpyXSsj1+HzX2dmgaoe3aJYVZ0dl4JW5esNaJZaAWhDunePuPji0v6HH0Y8+WTE449HPPZYxMcfL3v9r34VcdVVC0f+DR2ajaGl9fDfFgAAAAA0kFdffTULTqVxfW+88UYWnErdmzbaaKOs41QaeZdG97UE80NUaVTfJptsEiNGjIj//Oc/MXr06DjxxBOzUX8nnHBCTJ8+PTuuR48eiz1P165ds8eZM2c2YfUAQFse4Zc6UC0pQPVZ2ftdK6MwZnwUV+8VuRW7NVmdALRxK60UsfPOpW3evIhx4yJGj454+OGIjz5a8rpp0yJuvLG0desWsdlmpVDV174W0Yw3UlE7QlQAAAAA0EB22WWXrLNTCk+tt956WTen9Noqq6wSLU2qcfXVV49jjz029txzzwWvT5kyJQ444IC4/PLLY4sttoh56WJxRFRUVCz2PPNfnzt3bhNVDgC0ZTWTXss6Sy0rQDVfOq6Y1k2cHOWbDmn0+gBoh9LvvcOGlbbTTou45ZaIn/1s2evSzUZ33lna5pt/ji98oVFLpn6EqAAAAACggaVuUzU1NXHrrbdmW22k8NXNN98cTSV1m0rb4sbzHXfccXHGGWfEbbfdtmCMX1VV1WLPMz9ktcIKKzRyxQBAW1ecVxWFCZMjKjvXbWFll2xdcejgyFV0aKzyACAin4/Ya6/SVihE3HZbxE9/Wvv1Y8ZE7LprqTNV6lC11VYRPXs2ZsXUgRAVAAAAADRwh6cZM2ZkW12kEFVLscEGG2SPb775Zqy//vpLHdc3a9as7LGysrIJKwQA2qLi9FnZF9K58rp9hZmOLxbmZOtzvXwRDUATBqr22KO0JW+8EfHgg6WxfxMmLH3tE0+UtvPOS7+ELwxUrb56k5TO4glRAQAAAEADufrqq6M1KBQKMWHChJgzZ05svPHGn3s/vZ506tQp+vfvvyBQtTjp9S5dukTv3r0buWoAoM2rrl6OxbnlXA8Ay2nNNSMOO6y0vfdexEMPlQJV//rXktcUixHPPlvaLryw9FpZWcQ550Rst12646rJykeICgAAAAAazOICSS3VwQcfHJ988kk8/vjjsdJKKy3y3rhx47LH1IVqvfXWy0b1jR07Ngtf5dOdtv81ZcqUePvtt2PYsGFRli7yAgAsjzp2oFpUcTnXA0ADWnXViP33L22vvRZx7rkRzzxTu7U1NRGnnVbakt/9LmLIkFLnKxqV/4QBAAAAoJ1JQagdd9wxGz34i1/8IgtHzTdx4sS4/PLLs+5S++yzT3Ts2DF23XXXeOuttxbptFVTUxMXXHBBtv/Nb36zWf4cAEDbkuvRNfuCuFjHjlLZ8fmy0noAaGn69Yu44op0x1LEww9H/OxnEdtvH9GlS+3WH3VUxC67RKTfwceO1XmxEeWK6UoJAEs0d+7cGDlyZLY/atSo7OIxAAAAtHYffvhhHHDAAfHGG2/EoEGDYpNNNon33nsv7r///ixUdeGFF8b26aJuREybNi0LVKWuU1tvvXUMGDAgxowZEy+++GLstNNO2bE5IwYAgAZQ/c9novD8K3UKRBWnz4z8+mtH+aZDGrU2AGhQ8+aVQlFp5N9tt9V+XbduEVtsEbH22hG77VZ6ToMQogJYBiEqAAAA2qoZM2bEb37zm7jvvvuyAFUa27fRRhvF0UcfnY3x+6ypU6fGRRddFA899FDMmjUr1lhjjdhrr73ikEMOiYqKimb7MwAAbUtx2oyouvHeiBW6RK7DssfzFauqIz6eEx323SFyK/oSGYBWHKi66qrS6L76OOSQiCOOiKisbOjK2hUhKoBlEKICAAAAAFh+xXlVUZw+qzSCprw86zSUq+jQ3GXRAlW/8HLUPPZ05LpWLjVIlQJUxVmzo2yzoVG+3oAmrREAGk2hEHHzzRHnnx/Rt2/Em2/Wbl15ecTGG0dsvXXElltG9OzZ2JW2OUJUAMsgRAUAAAAAsHydhWomvRaFCZNLXwrOl89HflD/KFunX+R6dm/OEmlh0teXNS++GoUx40svVHaJXPpieP77KYg3e062nx/2lSgbvJbRwgC0Xa+9FvHgg6XtpZdqtyafj/jylyO++tWITTYpPbJMQlQAyyBEBQAAAABQ3yDMK1EY80z6SiqisvNSgjBDomzwAEEYFlH8aGbUTJz83wBeTen/j6IYkS8rBfAG9jfCD4D25d13Ix56KOKXv6z72oqKiHPOidhmmwg/cy2WEBXAMghRAQAAAADUnZFsNBSjIAFgMSZPjvjpTyP+85+Ijz6KqKqq/dr99ovYZZeIQYMEqj5jyT+xAgAAAAAAQD1H+KUOVMsKUCXZ+10rs9FtxdV76SzE56TAVK5Xz+YuAwBalv79I668srT/8ccRjz9eGvn32GMRn3yy9LU33FDaevWK2GqrUneqr3wloqws2jMhKgAAAAAAABpUzaTXstFrywpQzZeOS6NT0ui28k2HNHp9AABtygorRGy/fWmbNy/iySfTmKWIt99e+rqpUxcGqrp3j6ipKZ3jhz9sl4GqfHMXAAAAAAAAQNsavVaYMDmisnPdFlZ2ydal9QAA1FNFRcTmm0fcemvEmDER3/527dbNmBExe3bEzTdHHHlkxJw50d4IUQEAAAAAANBgitNnRRQKkSuv20CU7PhCTWk9AAANE6g6+uiIceMixo6NOO20iMMOi+jbd+nrnnuuNBawnTHODwAAAAAAgIZTXb0ci3PLuR4AgMXK5yP22qu0/93vRrz2WsSDD0aMHh0xadLnj+/ZM9obISoAAAAAAAAaTh07UC2quJzrAQBYplwuon//0vatb0W8806pS9ULL0T06xex/fYRX/1qtDd+CgUAAAAAAKDB5Hp0zTodFKur6zTSLx0f+bLSegAAmk7v3hFXXRXtXb65CwAAAAAAAKDtyFV0iPyg/hGzP6nbwtlzsnVpPQAANDUhKgAAAAAAABpU2Tr9stF8xarqWh0//7iygf0buTIAAFg8ISoAAAAAAAAaVK5n98gPGxLFWbOXGaRK76fj8sO+ErkVuzVZjQAA8Fm1H0QNAAAAAAAAtVQ2eECKU0VhzPgophcqu0SufOFXU8Xq6myEX3bsZkOjbPBazVcsAADtnhAVAAAAAAAADS6Xy0X5egOiuHqvqJk4OQoTJkexkEJTuWzUX+TLIr/+2tkIPx2oAABobkJUAAAAAAAANJoUkCrfdEgUhw6O4vRZEakDVXl55Hp0jVxFh+YuDwAAMkJUAAAAAAAANLoUmMr16tncZQAAwGLlF/8yAAAAAAAAAABA+yBEBQAAAAAAAAAAtGtCVAAAAAAAAAAAQLsmRAUAAAAAAAAAALRrQlQAAAAAAAAAAEC7JkQFAAAAAAAAAAC0a0JUAAAAAAAAAABAuyZEBQAAAAAAAAAAtGtCVAAAAAAAAAAAQLsmRAUAAAAAAAAAALRrQlQAAAAAAAAAAEC7Vh6t1PTp0+Pyyy+P0aNHx7vvvhsrrbRSDB8+PI455pjo2bNnc5cHAAAAAAAAAAC0Eq2yE9WsWbPiwAMPjCuvvDJWW221OOigg2KdddaJP//5z7H77rtnoSoAAAAAAAAAAIA224nqkksuiVdffTWOPfbY+N73vrfg9WuuuSbOOeecuPjii+O8885r1hoBAAAAAAAAAIDWoVV2onrrrbdi5ZVXjm9961uLvJ66UCXjx49vpsoAAAAAAAAAAIDWplV2orr00ksX+3rqTpWsssoqTVwRAAAAAAAAAADQWrXKENX/mjFjRjzxxBNx/vnnR3l5eRxzzDHNXVKLUSwWY968ec1dBrRqc+fOXew+UHcVFRWRy+WauwwAAAAAAACAReSKKWXTil133XVx9tlnZ/tlZWXxi1/8InbZZZfmLqvFSIGPkSNHNncZAJAZNWpUdOzYsbnLAAAAAAAAAFhEPlq5nj17xpFHHhl77LFH9qVsCgxdccUVzV0WAAAAAAAAAADQSrT6TlSf9dZbb8X+++8fH3zwQdx4442x/vrrR3v32U5U319preiQa/W5OQBamapiIS768NVsXycqAAAAAAAAoCUqjzZkjTXWiG9/+9tx/vnnxwMPPCBE9T9SgKpCiAoAAAAAAAAAAFp3iGrevHnx1FNPRU1NTWyxxRafe79Pnz7Z47Rp05qhOgAAAAAAAAAAoLVplSGqI488Mrp06RJjxoyJioqKRd5/8cUXs8d+/fo1U4UAAAAAAAAAAEBr0upmu1VWVsbw4cNj1qxZcckllyzy3gsvvBBXXXVVFrDaddddm61GAAAAAAAAAACg9Wh1naiS008/PQtMXX755TFu3Lj48pe/HO+880488MADkcvl4sILL4xVVlmlucsEAAAAAAAAAABagVYZovrCF74QN910U1x22WVZcOrZZ5+Nbt26xbbbbhtHH310DBw4sLlLBAAAAAAAAAAAWolWGaJKevbsGT/60Y+yDQAAAAAAAAAAoN2FqAAAAAAAAIDmV5xXFcXpsyKqqyPKyyPXo2vkKjo0d1kAAHUiRAUAAAAAAADUWXHajKiZ9FoUJkyOKBQWvpHPR35Q/yhbp1/kenZvzhIBAGpNiAoAAAAAAACotWKxGDUvvhKFMc9ERC6isnPkyhd+7Visro7C8y9nW37YkCgbPCByuVyz1gwAsCxCVAAAAAAAAECtpQBVzWNPR65rZeQ6fP7rxixQ1aNbFKuqs+NS0Kp8vQHNUisAQG3la30kAAAAAAAAEO19hF/qQLWkANVnpffTcYUx46P40cwmqxEAoD6EqAAAAAAAAKCNKM6risLUaVF4Z2r2mJ43pJpJr2WdpZYVoJpv/nE1Eyc3aB0AAA3NOD8AAAAAAABoAx2iUsCpMGFyRKGw8I18PvKD+kfZOv0i17P78ge00vkrO9dtYWWXbF1x6ODIVXRYrhoAABqLEBUAAAAAAAC0UsViMWpefCUbsZc6RKWAU6584VeAxerqKDz/crblhw2JssEDIpfL1e+zps/KAlqfPX9tpOOLhTnZ+lyvnvX6bACAxiZEBQAAAAAAAK1UClDVPPZ05LpWLnbEXhZ46tEtilXV2XEpaFW+3oD6fVh19XJUmlvO9QAAjSvfyOcHAAAAAAAAGmmEX+pAtaQA1Wel99NxhTHjo/jRzPp9XjGiOHdeFD/+JIqfzI1iTaEuqyPq2MEKAKAp+UkFAAAAAAAAWqGaSa9lHZ6WFaCaLx1XTOsmTo7yTYfUKayVPqvw4itRnDotivnpEflcRC4XuR5dI9ejW+Q6Vix5fepAlS/LjgUAaKl0ogIAAAAAAIBWpjivKgoTJkdUdq7bwsou2bq0fpmfUSxG9QsvR9WN90bh+VciunSOXK+eWYAqV9EhoiwfxWkzo/DaW1GYNiM7frFmz4n8oP6lNQAALZQQFQAAAAAAALQyxemzIgqFyNVxRF52fKGmtH4Zal58JWoeezpihS6ljlPl5ZHrXuomVSwUI5fPR65jh4jysij+54MoTv/8mMBiVXX2WDawf53qBABoakJUAAAAAAAA0NqkEXn1llvm+jTCrzDmmch1rVxkXGAa25dbdaWIqqosSJW9ls9HVJRH8b0Pozh33sJzVFVHcdbsyA/7SuRW7LYc9QIANL66RdMBAAAAAACA5lfHDlSLKi5zfc2k17Kw1WcDVPPND0Rloan/1pKCVMVi6nA1M2KlHtkIv6Rss6FRNnit5agVAKBpCFEBAAAAAABAK5PG60UKLlVX12mkXzo+8mWl9Us6Zl5VFCZMjqjsvPjPTv+3YvcortA5GwtY/GhmFKuLEcViFN+fFtGpY5Stv3Y2wk8HKgCgtRCiAgAAAAAAgFYmV9Eh8oP6R+H5VyKWEoj6nNlzIr/+2tn6JUnBqCgUlhnOylVURK7XSlFcecWIeVXZmuLsOVG+8xZRtnqvuvxxAACaXb65CwAAAAAAAADqrmydftlovmJVda2On39c6hC1VKlbVR2kUX65Th0j16Vz5DpWRC5Xp+UAAC2CEBUAAAAAAAC0Qrme3SM/bEgUZ81eZpAqvZ+Oyw/7yrJH7NVhPOBiPmk51wMANA8/wQAAAAAAAEArVTZ4QIpTRWHM+BRfiqjsssgYvmLqKjV7TunYzYZG2eC1lnnOXBoPmM9na5c10u+zss/Kl5XWAwC0MkJUAAAAAAAA0ErlcrkoX29AFFfvFTUTJ0dhwuQoFlJoKs3UK2ahpvz6a2cj/JbZgWr+OSs6RH5Q/yg8/0pEXQJRs+dkn5XWAwC0NkJUAAAAAAAA0MqlgFT5pkOiOHRwFKfPikhdocrLs65Q9Qk1la3TLwrPv5yNAcx1WPZXivPHCaawFgBAa5Rv7gIAAAAAAACAhpF1kerVM/K9e2WP9e0KlevZPfLDhkRx1uwFAaklSe+n4/LDvlLrblcAAC2NTlQAAAAAAADA55QNHpCNBSyMGZ8GA0ZUdolc+cKvF4up29XsNDowomyzoVE2eK3mKxYAYDkJUQEAAAAAAACfk8vlony9AVFcvVfUTJwchQmTo1hIoalcilBF5Msiv/7a2Qg/HagAgNZOiAoAAAAAAABYohSQKt90SBSHDo7i9FkRqQNVeXnkenSt97hAAICWRogKAAAAAAAAWKYUmMr16tncZQAANIp845wWAAAAAGhtnnjiiRg4cGCccsopn3vvo48+ip/+9KcxfPjw2GCDDWLHHXeM3//+91GdOlEAAAAAtHI6UQEAAAAAMXv27DjttNOiWCx+7r2ZM2fGwQcfHK+88kpsv/320bdv33j88cdj1KhR8fzzz8fFF1/cLDUDAAAANBSdqAAAAACAOPfcc+Ptt99e7HuXXnppvPzyy3HmmWdmgamRI0fGjTfemAWq7rnnnrj33nubvF4AAACAhiREBQAAAADt3OjRo+Pmm2+ObbbZ5nPvffrpp3HDDTfEaqutFt/4xjcWvF5WVhYnn3xytn/99dc3ab0AAAAADU2ICgAAAADasWnTpsUZZ5wRG2+8cRx00EGfe/+5556LOXPmZO/n84teTuzTp0+sscYa8dRTT0VNTU0TVg0AAADQsISoAAAAAKAdO/vss7OQ1M9+9rPI5XKfe//111/PHvv27bvY9SlINW/evHjrrbcavVYAAACAxiJEBQAAAADt1G233Rb33HNPjBw5MgtDLc706dOzxx49eiz2/a5du2aPM2fObMRKAQAAABqXEBUAAAAAtEPvvfdenHPOObHpppvGgQceuMTjUpeppKKiYrHvz3997ty5jVQpAAAAQOMTogIAAACAdui0006LmpqaOPfccxc7xm++Tp06ZY9VVVVLDVmtsMIKjVQpAAAAQOMTogIAAACAdua6666Lxx57LH74wx/G6quvvtRju3fvvtRxfbNmzcoeKysrG6FSAAAAgKZR3kSfAwAAAAC0EHfeeWf2eOaZZ2bb//r73/+ebXvuuWfsu+++2WtvvvnmYs+VXu/SpUv07t27kasGAAAAaDxCVAAAAADQzqRw1MYbb/y516dMmRK33nprDBw4MLbddttYd911Y7311stG9Y0dOzYKhULk8/lFjn/77bdj2LBhUVZW1sR/CgAAAICGI0QFAAAAAO3MXnvttdjXx4wZk4WoUnjq2GOPXfD6rrvuGn/961/j6quvjsMOOyx7raamJi644IJs/5vf/GYTVQ4AAADQOISoAAAAAIClOv744+Oxxx6L8847L5544okYMGBAFrh68cUXY6eddorhw4c3d4kAAAAAy2Vh720AAAAAgMXo2bNnXH/99bHPPvvE888/n3Wk+vTTT+Okk07KulHlcrnmLhEAAABguehEBQAAAABkhg0bFpMmTVrse7169Ypzzz23yWsCAAAAaAo6UQEAAAAAAAAAAO2aEBUAAAAAAAAAANCuGecHAAAAAAAAQKtXnFcVxemzIqqrI8rLI9eja+QqOjR3WQC0EkJUAAAAAAAAALRaxWkzombSa1GYMDmiUFj4Rj4f+UH9o2ydfpHr2b05SwSgFRCiAgAAAAAAAKDVKRaLUfPiK1EY80xE5CIqO0eufOFX4MXq6ig8/3K25YcNibLBAyKXyzVrzQC0XEJUAAAAAAAAALQ6KUBV89jTketaGbkOn//qOwtU9egWxarq7LgUtCpfb0Cz1ApAy5dv7gIAAAAAAAAAoK4j/FIHqiUFqD4rvZ+OK4wZH8WPZjZZjQC0LkJUAAAAAAAAALQqNZNeyzpLLStANd/842omTm7kygBorYSoAAAAAAAAAGg1ivOqojBhckRl57otrOySrUvrAeB/CVEBAAAAAAAA0GoUp8+KKBQiV167LlTzZccXakrrAeB/CFEBAAAAAAAA0HpUVy/H4txyrgegrRKiAgAAAAAAAKD1qGMHqkUVl3M9AG2VEBUAAAAAAAAArUauR9eIfD6KdewolR2fLyutB4D/IUQFAAAAAAAAQKuRq+gQ+UH9I2Z/UreFs+dk69J6APhfQlQAAAAAAAAAtCpl6/TLRvMVq2rXjWr+cWUD+zdyZQC0VkJUAAAAAAAAALQquZ7dIz9sSBRnzV5mkCq9n47LD/tK5Fbs1mQ1AtC6lDd3AQAAAAAAAABQV2WDB6Q4VRTGjI9ieqGyS+TKF34FXqyuzkb4ZcduNjTKBq/VfMUC0OIJUQEAAAAAAADQ6uRyuShfb0AUV+8VNRMnR2HC5CgWUmgql436i3xZ5NdfOxvhpwMVAMsiRAUAAAAAAABAq5UCUuWbDoni0MFRnD4rInWgKi+PXI+ukavo0NzlAdBKCFEBAAAAAAAA0OqlwFSuV8/mLgOAVirf3AUAAAAAAAAAAAA0JyEqAAAAAAAAAACgXROiAgAAAAAAAAAA2jUhKgAAAAAAAAAAoF0TogIAAAAAAAAAANo1ISoAAAAAAAAAAKBdE6ICAAAAAAAAAADaNSEqAAAAAAAAAACgXROiAgAAAAAAAAAA2jUhKgAAAAAAAAAAoF0TogIAAAAAAAAAANo1ISoAAAAAAAAAAKBdE6ICAAAAAAAAAADaNSEqAAAAAAAAAACgXROiAgAAAAAAAAAA2jUhKgAAAAAAAAAAoF0TogIAAAAAAAAAANo1ISoAAAAAAAAAAKBdK49W6uOPP47LL7887r333nj77bejQ4cOMWjQoDj00ENju+22a+7yAAAAAAAAAACAVqJVdqKaPXt2HHDAAVmIqkuXLnHggQfGjjvuGBMnTozvfe972esAAAAAAAAAAABtthPV73//+5g0aVJ84xvfiLPPPjtyuVz2+ve///3Ye++946KLLspCVWuuuWZzlwoAAAAAAAAAALRwrbIT1V133ZUFp0488cQFAapk1VVXzTpU1dTUxMMPP9ysNQIAAAAAAAAAAK1Dq+xEdeihh8asWbOiW7dun3uvoqIie/z444+boTIAAAAAAAAAAKC1aZUhqm9+85uLfb1YLMa9996b7a+zzjpNXFXLN69YaO4SAGiH/PsDAAAAAAAAtHStMkS1JNdee20899xz0adPn9h8882bu5wW5+IPX23uEgAAAAAAAAAAoMXJRxtx5513xrnnnhvl5eVx/vnnR4cOHZq7JAAAAAAAAAAAoBUobysdqM4555zI5XLx85//PDbccMPmLqlFOm6ltaIi12ZycwC0onF+uiECAAAAAAAALVmrDlEVCoW44IIL4o9//GNUVFTEL3/5y9h+++2bu6wWKwWohKgAAAAAAAAAAKCNhKjmzZsXJ554Ytx7773Ro0ePuPTSS3WgAgAAAAAAAAAA2keIqqamJr7//e/H6NGjY4011ojf//730b9//+YuCwAAAAAAAAAAaIVaZYjqd7/7XRag6t27d1x77bWx6qqrNndJAAAAAAAAAABAK9XqQlTTp0/PQlTJuuuuGzfccMNij0uj/TbddNMmrg4AAAAAAAAAAGhtWl2Iaty4cTFnzpxs/4EHHsi2xTn66KOFqAAAAAAAAAAAgLYXotp2221j0qRJzV0GAAAAAAAAAADQRuSbuwAAAAAAAAAAAIDmJEQFAAAAAAAAAAC0a0JUAAAAAAAAAABAuyZEBQAAAAAAAAAAtGtCVAAAAAAAAAAAQLsmRAUAAAAAAAAAALRrQlQAAAAAAAAAAEC7JkQFAAAAAAAAAAC0a0JUAAAAAAAAAABAuyZEBQAAAAAAAAAAtGtCVAAAAAAAAAAAQLsmRAUAAAAAAAAAALRrQlQAAAAAAAAAAEC7JkQFAAAAAAAAAAC0a0JUAAAAAAAAAABAuyZEBQAAAAAAAAAAtGtCVAAAAAAAAAAAQLsmRAUAAAAAAAAAALRr5c1dAAAAAADQPKZPnx6XX355jB49Ot59991YaaWVYvjw4XHMMcdEz549Fzn2o48+iksvvTQefPDBeP/996N3796x9957x+GHHx7l5S4zAgAAAK2bTlQAAAAA0A7NmjUrDjzwwLjyyitjtdVWi4MOOijWWWed+POf/xy77757Fqqab+bMmXHwwQfHNddcE4MHD45DDjkkOnfuHKNGjYoTTjihWf8cAAAAAA3BLWIAAAAA0A5dcskl8eqrr8axxx4b3/ve9xa8noJS55xzTlx88cVx3nnnZa+lDlQvv/xynHXWWVnwKvnBD34Qxx9/fNxzzz1x7733xvbbb99sfxYAAACA5aUTFQAAAAC0Q2+99VasvPLK8a1vfWuR11MXqmT8+PHZ46effho33HBD1q3qG9/4xoLjysrK4uSTT872r7/++iatHQAAAKCh6UQFAAAAAO1Q6i61OKk7VbLKKqtkj88991zMmTMntttuu2lB3nIAAQAASURBVMjnF70ns0+fPrHGGmvEU089FTU1NVmwCgAAAKA10okKAAAAAIgZM2Zko/nSmL7y8vI45phjstdff/317LFv376LXZeCVPPmzcs6WwEAAAC0VjpRAQAAAEA7d91118XZZ5+d7aduUr/4xS9i0003zZ5Pnz49e+zRo8di13bt2jV7nDlzZpPVCwAAANDQdKICAAAAgHauZ8+eceSRR8Yee+wRHTt2jJEjR8YVV1yRvZe6TCUVFRWLXTv/9blz5zZhxQAAAAANSycqAAAAAGjndthhh2xLjj322Nh///2zblSbbLJJdOrUKXu9qqpqsWvnh6xWWGGFJqwYAAAAoGHpRAUAAAAALLDGGmvEt7/97Wz/gQceiO7duy91XN+sWbOyx8rKyiasEgAAAKBhCVEBAAAAQDuTukc9/vjj8cgjjyz2/T59+mSP06ZNi/79+2f7b7755mKPTa936dIlevfu3YgVAwAAADQu4/wAAAAAoB2GqI488sgs/DRmzJioqKhY5P0XX3wxe+zXr1+st9562ai+sWPHRqFQiHx+4X2ZU6ZMibfffjuGDRsWZWVlTf7nAAAAAGgoOlEBAAAAQDuTRu8NHz48G8V3ySWXLPLeCy+8EFdddVUWsNp1112jY8eO2eNbb70VV1999YLjampq4oILLsj2v/nNbzb5nwEAAACgIelEBQAAAADt0Omnn54Fpi6//PIYN25cfPnLX4533nknHnjggcjlcnHhhRfGKquskh17/PHHx2OPPRbnnXdePPHEEzFgwICsg1XqWLXTTjtlgSwAAACA1kyICgAAAADaoS984Qtx0003xWWXXZYFp5599tno1q1bbLvttnH00UfHwIEDFxzbs2fPuP766+Oiiy6Khx56KAtQrbHGGnHSSSfFIYcckoWuAAAAAFqzXLFYLDZ3ETSeuXPnxsiRI7P9kSuvHRU5ExwBaFrzioUY9cHL2f6oUaOyUSAAAAAAAAAALYlEDQAAAAAAAAAA0K4JUQEAAAAAAAAAAO2aEBUAAAAAAAAAANCuCVEBAAAAAAAAAADtmhAVAAAAAAAAAADQrglRAQAAAAAAAAAA7ZoQFQAAAAAAAAAA0K4JUQEAAAAAAAAAAO2aEBUAAAAAAAAAANCuCVEBAAAAAAAAAADtmhAVAAAAAAAAAADQrglRAQAAAAAAAAAA7ZoQFQAAAAAAAAAA0K4JUQEAAAAAAAAAAO2aEBUAAAAAAAAAANCuCVEBAAAAAAAAAADtmhAVAAAAAAAAAADQrglRAQAAAAAAAAAA7ZoQFQAAAAAAAAAA0K4JUQEAAAAAAAAAAO2aEBUAAAAAAAAAANCuCVEBAAAAAAAAAADtmhAVAAAAAAAAAADQrglRAQAAAAAAAAAA7ZoQFQAAAAAAAAAA0K4JUQEAAAAAAAAAAO2aEBUAAAAAAAAAANCuCVEBAAAAAAAAAADtmhAVAAAAAAAAAADQrglRAQAAAAAAAAAA7ZoQFQAAAAAAAAAA0K4JUQEAAAAAAAAAAO2aEBUAAAAAAAAAANCuCVEBAAAAAAAAAADtmhAVAAAAAAAAAADQrglRAQAAAAAAAAAA7ZoQFQAAAAAAAAAA0K4JUQEAAAAAAAAAAO2aEBUAAAAAAAAAANCuCVEBAAAAAAAAAADtmhAVAAAAAAAAAADQrglRAQAAAAAAAAAA7ZoQFQAAAAAAAAAA0K4JUQEAAAAAAAAAAO2aEBUAAAAAAAAAANCuCVEBAAAAAAAAAADtWnlzFwAAAAAAAAAALUFxXlUUp8+KqK6OKC+PXI+ukavo0NxlAdAE2kyI6vjjj4+nn346HnnkkeYuBQAAAAAAAIBWpDhtRtRMei0KEyZHFAoL38jnIz+of5St0y9yPbs3Z4kANLI2EaK65JJL4q677opVV121uUsBAAAAAAAAoJUoFotR8+IrURjzTETkIio7R6584dfoxerqKDz/crblhw2JssEDIpfLNWvNADSOVh2imjt3bpxzzjnxt7/9rblLAQAAAAAAAKCVSQGqmseejlzXysh1+PzX51mgqke3KFZVZ8eloFX5egOapVYAGlc+WqnRo0fHTjvtlAWottxyy+YuBwAAAAAAAIBWNsIvdaBaUoDqs9L76bjCmPFR/Ghmk9UIQNNptSGqG2+8MT7++OM466yz4vLLL2/ucgAAAAAAAABoRWomvZZ1llpWgGq++cfVTJzcyJUB0Bxa7Ti/Qw89NC644IKorKxs7lJajapioblLYCmzlqui2NxlQKvWIf2SYwZ5i+TfHwAAAAD4/+zdB3hUVff24ZVCEaWrKCIioigCCirNhiAW7MorIKJgw4INFHsvKBZUxIYFRakK9oKAooBUERSkS+9NOikz3/VsvzP/STKTRpIzyfzu682VZOo+ZXw5K89e2wDEmGBKqgXmLjE7YL+8PfGAcu55wZOOt4TSpQpreAAAHxTbEFXTpk39HkKx8+qmxX4PAQAAAAAAAAAAAAB8F9y63SwQsITkvP3JXI8PBna55yccXKXQxgcAKHrFdjk/AAAAAAAAAAAAAADyJS1tH56csI/PBwDEomLbiQq5U7p0aXvxxRf9HgZysZxfSkqK38MAiv1/71jOr3gcJwAAAAAAAAAAfJfHDlQZBffx+QCAWMR/2Us4BQrKlCnj9zCQC2XLlvV7CAAAAAAAAAAAAEBcSKhU3iwx0YJpaXla0k+Pt8Sk/54PAChRWM4PAAAAAAAAAAAAABBXEkqXssR6tc127M7bE3fscs/T8wEAJQshKgAAAAAAAAAAAABA3Emqe6Rbmi+Ymparx3uPSzq2diGPDADgB0JUAAAAAAAAAAAAAIC4k1CloiW2ONGC23fkGKTS/XpcYotGllC5QpGNEQBQdHK/uCsAAAAAAAAAAAAAACVI0vF1FKeywKSZFtQNB5SzhOT/+zN6MC3NLeHnHnvaSZZ0/FH+DRYAUKgIUQEAAAAAAAAAAAAA4lJCQoIl169jwcMOtvR5Sywwd4kFAwpNJbil/iwxyRIbHO2W8KMDFQCUbAnBYNAFagEAAAAAAAAAAAAAiGfBlFQLbt1upg5UycmWUKm8JZQu5fewAABFgBAVAAAAAAAAAAAAAAAAgLiW6PcAAAAAAAAAAAAAAAAAAMBPhKgAAAAAAAAAAAAAAAAAxDVCVAAAAAAAAAAAAAAAAADiGiEqAAAAAAAAAAAAAAAAAHGNEBUAAAAAAAAAAAAAAACAuEaICgAAAAAAAAAAAAAAAEBcI0QFAAAAAAAAAAAAAAAAIK4RogIAAAAAAAAAAAAAAAAQ15L9HgAAAAAAAAAAf+zcudPefvttGz16tK1atcpKlSpl9erVs2uvvdbatGmT4bFbtmyx/v37208//WQbNmyw6tWr2xVXXGFdu3a15GTKjAAAAAAAoHhLCAaDQb8HAQAAAAAAAKBo7dixw6666iqbP3++HX/88XbKKafY9u3bXaBK33v06GHdunVzj922bZt77KJFi+ycc86xmjVr2sSJE23u3Ll27rnn2muvveb35gAAAAAAAOwTQlQAAAAAAABAHOrbt6+99dZb1qFDB3v88cctISHB3b5u3TrXYWrz5s323Xff2RFHHGG9e/e2gQMH2mOPPebCVJKenm533XWXC13169fPhasAAAAAAACKq0S/BwAAAAAAAACg6CkgpeBUz549QwEqqVatmnXs2NGFpMaPH2979uyx4cOH26GHHuoCV56kpCTr1auX+3no0KG+bAMAAAAAAEBBSS6wVwIAAAAAAABQbFx77bVu2b4KFSpkua906dLu+86dO2327Nm2a9cua9OmjSUmZpyTefjhh1uNGjVs2rRpLnSlYBUAAAAAAEBxRIgKAAAAAAAAiEOdOnWKeHswGHRL9EndunVt6dKl7ueaNWtGfLyCVCtXrnRfWvoPAAAAAACgOGI5PwAAAAAAAAAhgwcPdt2nFI46/fTTbevWre72SpUqRXx8+fLl3fdt27YV6TgBAAAAAAAKEiEqAAAAAAAAAM63335rzzzzjCUnJ9tzzz1npUqVspSUlAxL/GXm3b53794iHSsAAAAAAEBBIkQFAAAAAAAAwHWg6tmzp/v5+eeft5NPPtn9XLZsWfc9NTU14vO8kNX+++9fZGMFAAAAAAAoaMkF/ooAAAAAAAAAio1AIGB9+vSxDz74wHWVeumll+ycc84J3V+xYsVsl+vbvn27+37AAQcU0YgBAAAAAAAKHiEqAAAAAAAAIE6pi5S6T40ePdoqVapk/fv3D3Wg8tSuXdt9X758ecTX0O3lypWz6tWrF8mYAQAAAAAACgPL+QEAAAAAAABxKD093e68804XoKpRo4YNGTIkS4BK6tev75bqmzp1qutaFW7FihW2atUqO/HEEy0pKakIRw8AAAAAAFCwCFEBAAAAAAAAceidd96xcePGuQ5SgwcPDnWcyqxMmTJ24YUX2sqVK+2jjz7KEMLSMoDSqVOnIhs3AAAAAABAYUgIBoPBQnllAAAAAAAAADFp69atdtZZZ9muXbusdevWdtxxx0V8nDpTNW/e3DZv3mzt2rVzXaf0vDp16tikSZNszpw5dv7551vfvn0tISGhyLcDAAAAAACgoBCiAgAAAAAAAOLMmDFj7LbbbsvxcTfffLPdfffd7uf169fbq6++aj///LNt377dLQF4+eWX2zXXXGOlS5cuglEDAAAAAAAUHkJUAAAAAAAAAAAAAAAAAOJaot8DAAAAAAAAAAAAAAAAAAA/EaICAAAAAAAAAAAAAAAAENcIUQEAAAAAAAAAAAAAAACIa4SoAAAAAAAAAAAAAAAAAMQ1QlQAAAAAAAAAAAAAAAAA4hohKgAAAAAAAAAAAAAAAABxjRAVAAAAAAAAAAAAAAAAgLhGiAoAAAAAAAAAAAAAAABAXCNEBQAAAAAAAAAAAAAAACCuEaICAAAAAAAAAAAAAAAAENcIUQEAAAAAAAAAAAAAAACIa4SoAAAAAAAAAAAAAAAAAMQ1QlQAAAAAAAAAAAAAAAAA4hohKgAAAAAAAAAAAAAAAABxjRAVAAAAAAAAAAAAAAAAgLiW7PcAAKA46N+/v7322mtWunRp++WXX6xy5cp+DwkAAPioX79+9vrrr2e5vUyZMnbggQdas2bN7JZbbrHDDz/cl/EBAICCd9ddd9nvv//u6gK5tWXLFldT+Omnn2zDhg1WvXp1u+KKK6xr166WnExptjgf2yuvvNJmzZoV8b6WLVva22+/XYAjRG7t3LnT7fvRo0fbqlWrrFSpUlavXj279tprrU2bNrl6jdWrV7s64G+//WZbt261WrVqWadOndwxR/E+tqeeeqpt3Lgx4n06xo8++mgBjxq5oc+Zju24ceNszZo1VrVqVWvdurXdeuutVqVKlVy9Bp/bkn18+ezGvsmTJ1uXLl3s0ksvteeeey5Xz+FzW3KPLZ/Z2DVkyBB7/PHHo96vz2OVHP7bHA+fXa7UASAHwWDQRo0aZeXKlbNdu3bZyJEj7frrr/d7WAAAIAY0adLEfXn/Zti9e7f9888/9vnnn7vi/rBhw+yoo47ye5gAAGAfKTz93XffWbVq1XL9nG3btlnnzp1t0aJFds4551jNmjVt4sSJ9uKLL9qff/7pCs8onsc2EAjYggULrEaNGu4PSpnpDwkoejt27LCrrrrK5s+fb8cff7z7efv27e7f5d27d7cePXpYt27dsn0NhXM6dOjgApBt27Z1EyTGjBljjzzyiC1ZssTuv//+ItseFOyxVZBVf9BV8KpVq1ZZ7m/YsGEhbgGi0XHU8Vy8eLE1b97chWv0WRs0aJD98MMPNnz4cDv00EOzfQ0+tyX7+PLZLR7/jX7wwQddXSy3+NyW3GPLZza2/f333+67gnEHHHBAlvv322+/bJ8fL59dQlQAkIMpU6bYihUr7Oabb7YPP/zQ/cP+uuuus4SEBL+HBgAAfKYA1e23357l9q+//tp69uxpL7zwgr311lu+jA0AAOy7vXv32lNPPWUjRozI83PVgWrhwoX22GOPuT8gyt133+26HukPh/rjv8JVKH7HVqF5hec1yz7SvwXhjwEDBriQjf6woxn2Xu3uzjvvdB3gXn31VTvvvPPsiCOOiPoavXv3tvXr19s777xjZ555prvtjjvucN2OBg4caBdeeKHVr1+/yLYJBXdsvT8a6nE5Ba5QtEFWBWz031IF4jwff/yx+2+0Asf6XGaHz23JPr58dmPfM88844IVecHntuQeWz6zsW3evHlWtmxZu++++ywxMTHPz+8dJ5/dvO8ZAIgzn332mft+9tlnu/9DWLp0qWtRCAAAEM0FF1zgZvMojA0AAIonLTtz/vnnu5CNVyDOrT179oS6K+iP/p6kpCTr1auX+3no0KEFPmYU/rEVhTmkbt26hTA65Jc6iilco8kM4ZMf1WWsY8eOlp6ebuPHj4/6fP2RUDPpGzVqlOG80B+aFIBUFwZ1mkXxO7beHw3l2GOPLfTxIvdWrlzpulhkXvnhkksucd9nzpyZ7fP53Jbs4yt8dmP/31RavSVSx6Fo+NyW3GMrfGZjl9dN9+ijj85XgGpVHH126UQFADm0qtTMUP1DX8lZJWi///57t2ZsixYt/B4eAACIUSrs64+kyclccgEAUFx9+umntnPnTtdJSn+kz8sfAmbPnm27du2yNm3aZClQH3744W4ZuGnTprk//OvfDCg+xzZ8hj1/HIotmgGvpaMqVKiQ5b7SpUu77zru0UydOtX98UdLTmV20kknWalSpWzy5MkFPGoUxbEV/qgbm9S1MRJ1L5KDDjoo2+fzuS3Zx1f47MauzZs3uyW81KX96quvdqGb3OBzW3KPrfCZjV1qEqJuuvk9NlPj6LNLRR8AsqGleDR7tH379u6PoUrWVqpUyf2DQe0KDz74YL+HCAAAYpBC1//++6916tTJ76EAAIB9+KN9nz59XHfJ/BSopWbNmhHvV5BK3Rn0ld3yU4i9Yxseopo7d649//zzbtlGBTk04U7LWRx55JEFPGLkRrR/e+uPPZokmVP3MO9zG+kzqT8KqbOcPrMpKSmh4A6Kx7H1PrflypVzy6lq5YFly5a5/wa0bNnSfW6p88YGXUfrD7DPPfecm5R06623Zvt4Prcl+/gKn93YpeVVNWng2WeftRUrVuT6eXxuS+6xFT6zscsLuOnv3eocNX36dPff5WOOOca6dOniGolkZ2kcfXZZzg8AcrGU36WXXuq+6z/6bdu2tbS0NNfyHQAAxDfNwOnXr1/o68UXX3RFwB49elizZs3snnvu8XuIAAAgn5o2bZrvkM3WrVvdd03EiqR8+fLu+7Zt2/ZhhPDj2Ib/AaJv375Wu3Ztt2Sj/vjw7bffWrt27VwnMsSOwYMHu2Oi8OLpp58e9XFbtmxx3ytWrBj1c6tlUNS5HsXr2GqSrP6Iqz8Iv/HGG3bCCSfYlVde6ZYDVI33iiuucH/0g7+0+oO6nuiP7OvWrXNh10jdLsLxuS3Zx5fPbuz68ssvXUhGdS/9Nzgv+NyW3GPLZza2edcwWnZ+06ZNdvHFF7vOyeoOqCWTX3755WyfvyWOPrt0ogKAKBYtWuQuwrU2bL169UK3X3bZZe4CXf+Hf/PNN9N2HwCAOA9R6SuSypUruwtSzb4CAADxRbNvJdoMXO/2vXv3Fum4sO/0RyHNoK9ataq9+eabVr169dB9Q4cOdUsE3nvvvS5QRc3IfzoOzzzzjOt4os4nmiUfTWpqaq4+t97nG8Xn2G7YsMHq1KnjlgN8/fXXQwFXdbJSGPLtt9+2hx9+2AYOHFiEW4DMqlSpYjfeeKM7Xuowpj/gr1mzxm644Yaoz+FzW3zk5/jy2Y1NCsE99dRTLgR31VVX5fn5fG5L7rHlMxvbdBwOO+wwu/32293fuj3qNqYlznV8zjjjDDv55JMt3j+7dKICgBy6UF1yySUZbm/YsKGbZah/4P/8888+jQ4AAMSC7t272/z580NfCmCPGTPGtUTWrC1dgKqAAAAA4kvZsmUzFJoz8wrL+++/f5GOC/tOAfmRI0faF198kSFAJepI1ahRI7fUBd2o/KdJkJpVL1p2MdofhPL6uWWSRPE7tuqkoc4aH3/8cYYOgVrORl1x9Fn+7bffbP369YU+dkR37rnnumCNjulXX33lQjcvvPCC/fnnn1Gfw+e2ZB9fPrux6cEHH7T09HQXZNWxyCs+tyX32PKZjW36t9O4ceMyBKi846bjIzp+0cTTZ5cQFQBEoOX6vP+j0LI8devWzfC1ZMmS0AxDAAAAT5kyZdyFp7pVXnPNNS5ANWjQIL+HBQAAipi3xEG05fq2b9/uvu/LknKITZp8J8uXL/d7KHFLy4ioM9ETTzzhuhS98sorduGFFxbI51Z/BORzW/yObXb0Ot4qBHxuY0eNGjVCHYrGjh0b9XF8bkv28c0On13/lmWcMGGC3Xfffa6jTX7wuS25xzY7fGaL/zVMxTj67LKcHwBEoA5TGzdutFq1alnTpk2jdqrSPyi0fq/+0Q8AABCuRYsWrj21t948AACIH+pgnV0RWrdrhm7mTkaIfVu2bHGT69RB48gjj8xy/+7duzPM1EbR0gx4zbLXUlHqgNC/f/8cuxTl5nOrGffqSq9jnpjI3PTidmy1PJGOq2q4hx56aJb7+dz6d0ynTZvmup5o+aDMNEFJNm/eHPU1+NyW7OPLZzc2l1KVRx991H1lNmrUKPelTjcKvUbC57bkHls+s7EdRJ87d65bmrxJkyZZ7tftOR2b2nH02SVEBQARfPrpp+57t27d7PLLL4/4GIWsNEti+PDh1qNHjyIeIQAAKA5/YJPy5cv7PRQAAFDE6tev75bqmzp1qitYhxeSV6xYYatWrXKB66SkJF/HibzTEiRaurlly5b29ttvZ7hPx/r33393M7AbNGjg2xjjlf5Qf+edd7plSvTHuwEDBoT+2JMb+oOSjt2UKVPcst3hpk+f7v44dNJJJxXCyFHYx1YrDmi1gU6dOmX5w/DOnTttzpw5tt9++9nRRx9dCKNHdiGbG2+80YWKJ02aZKVLl85wv46LRAqsevjcluzjy2c39ihAEymAoX/faqnjY4891s4++2w77rjjor4Gn9uSe2z5zMa2zp07uyDbxIkTrWrVqlk+e5LdNUyTOPrsFv8YGAAUMC278+uvv7p/3Gud7miuvPLKUOAq2vqvAAAgPmn2zkcffeR+btOmjd/DAQAAPizxqyWm1L3a+zeBFwTo06eP+1l/XEDxo24aCsn/8ssv7g8Q4dQZZ9GiRe7ff3QZK3rvvPOOC9lo3w8ePDhPIRs55JBD7NRTT3XhxzFjxoRu37Nnj1s2TvjcFs9jqxqvlhEaOXKkzZ8/P3R7WlqaPfvss7Z161br0KGD+283io6W+2ndurVb/uf111/PcN9ff/3lOjurRp/dko18bkv28eWzG3vUdOD222/P8nXppZe6+xWw0e8K20TD57bkHls+s7FLk3rOO+88CwaD9sILL7jJHx6toqDJIfpvcrt27aK+Rjx9dhOC2lMAgBDNZFJSOruWlKL/g2nVqpVrT9i3b19r27ZtkY4TAAD4p1+/fq4IqBk44bO0dHmlbpU//vija0mvgqH+mKZZOgAAoHirW7euVatWzYVnwv3999+uiHzYYYdl6GatfwuoCK2uU2eddZbVqVPHdWLQDOzzzz/f1RL4N0LxPLZa7uSee+5xPyswpeVKZs6caX/88YcLd3z88cdZZnejcOmPcvqcaTKD/g0erUuCln9r3ry5m0GvPwDpceF/DPznn3/cH/f0R399TnVeqBP90qVL7frrr7devXoV4VahII/t+++/b88//7xbpkZ/RKxQoYJNnjzZFixY4LomvPfee647BorW2rVrrWPHjrZ69Wp3HE444QT3sz53+v9I/X+ldxz53Mbn8eWzWzzo37hdu3bN8nc1Prfxd2z5zMauTZs2uf8mL1u2zOrVq2dNmzZ1SzDqekd/89Z/k8855xz32Hj/7LKcHwBkooS06B8EOaV2VQzVH1GHDBlCiAoAgDiki0l9ebQkjzoTHHPMMW42pf6twB9HAQAo2RS08cLV4UGbKlWq2NChQ+3VV1+1n3/+2f0BQstQ3XvvvXbNNdfwb4RifGxVA1JHnLfeesst76dwh36/6aabrFu3bq77BoqWlhDRcRD9IUdfkdx8880uaKN/w+vYqv4X/ochLSs1bNgwN5t+woQJtnfvXqtVq5Y9/fTT2c7MR+wf2+uuu86OOuoo98ddTXrRygJHHHGE9ezZ07p06ZJlqTEUDXW1+Oyzz+yNN95wx3bWrFnuD+46djqmWj7Kw+c2Po8vn93ijc9tycVntvjRJI8RI0bYm2++6Y6NJn5oCfozzzzT/TdZS9J7psb5Z5dOVAAAAAAAAAAAAAAAAADiWqLfAwAAAAAAAAAAAAAAAAAAPxGiAgAAAAAAAAAAAAAAABDXCFEBAAAAAAAAAAAAAAAAiGuEqAAAAAAAAAAAAAAAAADENUJUAAAAAAAAAAAAAAAAAOIaISoAAAAAAAAAAAAAAAAAcY0QFQAAAAAAAAAAAAAAAIC4RogKAAAAAAAAAAAAAAAAQFwjRAUAAAAAAAAAAAAAAAAgrhGiAgAAAAAAAAAAAAAAABDXCFEBAAAUkWAw6PcQAAAAAAAAACAi6pcAgHhHiAoAgDiTnp5u48ePtx49eth5551nJ554ovu64IIL7JlnnrHly5dbSTBy5EirW7eu3XrrrUX6vnpPfW3bti102+7du+3VV1+1AQMGFOq2Rvs6/vjjrVmzZtaxY0f75JNPLC0tzfxw//33u/EMHDjQl/cHAAAAAADYVykpKa7OohrH5Zdf7vdwSqw1a9bYW2+9Ze3bt7fTTjvN6tevby1atLDrr7/ePv/8cwsEAlYStGrVyp1Lf//9d5G9Z79+/dx7qhYc7o8//rB27doV2TgAAIhFyX4PAAAAFJ0VK1bYPffc4y6IExMT3cXyqaeeart27bL58+fbRx99ZEOGDLHnn3/ehapQMBSg+uCDD6x79+6F+j5Vq1Z1xaTMtm/fbkuWLLHff//dfU2YMMH69+/vzgEAAAAAAADk3pgxY2zLli1WpkwZmzNnjquzaYIiCq4TkmqUL774ogusqd511FFHWaVKlWzVqlU2ceJEV9saPny4vfPOO3bAAQf4PeQSYceOHdahQwc6UQEA4h4hKgAA4sTatWvtf//7nyvytG7d2nr16mW1atUK3a+ihFeguPfee10h6Oyzz/Z1zMXRt99+676HF3DU/asoqKCk4xeNZumpG9S4cePs+++/t7Zt2xbJuAAAAAAAAEqKESNGuO/qiPTGG2+4rt+EqArOyy+/HApHPfnkk3bhhRdaqVKlQvcvWrTIevbsaTNmzHDHQPs/OZk/d+ZFp06dXF1QwTSPOnsRoAIAgOX8AACIG+pApQDVueeea6+//nqGAJWULl3abrjhBrvllltc6EfdqPxa9q04U5BJX7HY5enSSy+1c845x/08duxYv4cDAAAAAABQ7Lq8//bbb3bYYYe5Olq5cuXcRLXNmzf7PbQSQft2wIABLjQ1cOBAu+yyyzIEqKROnTr2/vvvuwCQuoB9+eWXvo23uKpSpYqrX6rLFwAAyCj2/roHAAAK3KxZs2zatGmuu9RDDz2UbcBHM7jq1atnjRs3tg0bNmS4b+PGjS5cpSBWgwYN7OSTT7arr77adTjKPFNpypQpbrnARx991BWYNEOsWbNmbmaeOmL9/PPP7nFqw+3dp/e88sorQ/d5Vq5c6V6rY8eOtmnTJrvvvvvc4xs1amSXX365a9+dl5lSes/HHnvMWrVqZfXr13evdeutt9rMmTMzPG7evHnufr33Dz/8kOE+Bc3U4lr36bU8+l1f27ZtC/2uDl+i8Jp+79evnw0aNMj9rP0diTqDNW3a1O3nrVu3WkFRkU8ivaaW+tOx0H5p2LChnXDCCdamTRt74oknXCezcCNHjnTj14zLhQsX2h133OH2o8Z70UUX2XvvvZfrEJ4CXdrP+lJLfAAAAAAAgFj06aefuhqUuvjsv//+rkamGo5qU5knM6pu8u6770Z8HS0DqPu9yW4ehbH69OkTqr2dcsopdt1119n48eOzvEZ4bUbBo+bNm7tajupuqampoSXa1NVJNawmTZrY8ccf77537tzZvvrqq4hj0xhU/1NNSPUh1Yleeukl27Vrl6sZ6vdIz8ntuLOjepL2b/v27d3rRKPwj0Jsqp152xpO9SXV3LStqjdpzKrfqcaYmfaF9uP69ett6NChdvHFF7vtPu2009xztA9Fx/iSSy5x+9h7vX///TfDa6kDvF5r0qRJbv/q8XqtM8880923bNmyXO8L7QfVXFV7Pemkk9zrqCtX//793bEI16NHD/e+Cp1lrsepzqr7VHf13l+1Sd32zDPPhH7XMctc39S+PfXUU93PCqxFonNc9+v4AwBQEhCiAgAgDnhFEV0MV6tWLdvHqlX2qFGjXLHk0EMPzRAo0oW6ZnrpQr1ly5aumKGAlkJNCtFECs0sWbLEBZ0mT57sLvgPP/xwmz17tut4pfbnuk+BKwWiatas6V6vW7duEYss27dvt6uuusotmacCiEJcCvA88sgjbgnC3FCYTAUMFUXU6lvboa5cWuJOrz1s2LDQY4899li788473c9PPfVUhsLIm2++6UJXRx99tD3wwANR30+Botq1a7ufjznmGPe7CgsqyCjUpqLKunXrsjzvxx9/dEEnFdPCW2vvCx2fCRMmhLYt3ODBg932f/PNN3bwwQe7/aKikMam+1SAixS80vFq166da6GugJyeo2Oiwsnjjz+e45h0nLWPExISXMGGJSQBAAAAAEAs0oQ6BZdE9Sy54oor3HfVmXS/x7v/66+/jvhaX3zxRahrePgydfpdQaI9e/a4EM9xxx1nU6dOtZtuusleeeWViK+lTkwKOanepPpajRo1XPcm1XE0WVH3KTyk+1TvqVy5sntNBb0UsAqnx6kGpPqfwmF6vOpEelyXLl0iTmLM77gjBbFUJxPVz3Jy4403uomLClyF04TO2267zXW1Ut1OgaekpCR3jFQTVB0yEoWiVMtSbVSBtJ07d7rnqG6lCYa6f7/99nOhInX7130aQyRaYlD7V/tD+7Bs2bKu3qoamuqiOdG5pPdVzfWvv/5y4bUzzjjD7aPXXnvNTTTVGMLHrprv3Llz3XEI36eaUOvtlyOOOCLi++ncOf/880O/a//rS+eRglninfuZffbZZ+67zhsAAEqEIAAAKPG6du0aPOaYY4L9+vXL1/P37t0bPOuss9xrPP744+53z/Lly4PnnHOOu69v376h2ydPnuxu09dNN90U3LNnj7s9EAgEb7nlltB9t956a3DXrl2h5z300EPu9m7duoVuW7FiRejxp59+enDRokWh+/Tzaaed5u778ssvQ7d/9tln7ja9l2fr1q3BZs2auds//vhjNxbP1KlTg40bNw7Wq1cvOGfOnNDt6enpwauuuso95/7773e3zZo1yz2uQYMGwXnz5mXYV944//3339BtTz/9tLvttddey/DYe+65x93+9ttvZ9nnXbp0cfdNmjQpx+PjbevVV1+d5T6NX2OZNm1a8LrrrnOPa9KkSXDt2rWhx2zcuNFty/HHH+8eF27dunWhY//JJ59keU9vv4Qfw9GjR7vb69atG1y/fn3o9vvuu8/d/sEHH7jfJ0yYEKxfv757759//jnH7QQAAAAAAPDL2LFjXV2jY8eOGW4/77zz3O0//vhjhnrMmWee6W5fuHBhhsenpaUFTz31VFc3WbVqlbstNTU19DovvfSS+92zYMECVw/TfRpDpNrMkCFDMry39O7dO1RjS0lJCd2vethbb73l7mvevHnEGuIDDzyQof6nuo3qN7pPdSJPfsYdzYwZM9xjVXMLf5280H7Qa7Ro0SL4119/Zdgn3jafcsopwU2bNoXuUz1Nt6suFl6H0/N1jLz7pkyZErpv6dKlof0R/j5e7Utfzz//fOhY6Ptzzz3nbm/btm2G7fPqbnPnzg3d1r9/f3fbZZddFjpHZPfu3cEePXq4+7p3755h21Vn03g1rsWLF7vbdOz12J49e2Z4rGqUul01S4/qh97Yw2lb9bonn3xyqL7rmT59unu8aqcAAJQUdKICACAOeJ2ODjzwwHw9/7vvvnNL4Kl7kbo+lS5dOnSfOktpRpt8+OGHboZVZnqOui6JOg6po5X3s2Z4aRaX54ILLnDfly5dGnEsmvl11FFHhX7Xz14nKM3yyo46X2kGlt6/U6dO7v096tJ18803u25Nmm3n0dKH6sqlFu2acfXTTz+5rld6nGaDaaZWfnkz5TQTLZz2tTp3qTOXlsjLLc3w89pte1+a+adt0/aqC5U6eGmWXnhHMi3bqBbtmlGo7l7hNNvQ6w6lcWWm/eLNxPPotTTrUbMTNRsxEm2fllDU/lVXL7U1BwAAAAAAiFXekn3qJhTO68Dz8ccfh25TvUNdjyTzsnnqtqRajJaiq169eqgjubq5a8k1Lc2m7ukedVPSUnCiZfsi1WbCx6T3lvLly7vuRapjqaOQR/UwdSOXTZs2hWp56kI/ceJE15le9brw+p/qNpG6Lu3LuKPVL9UpK/x18sLrwqSuS1q6MHyfqPP9WWed5TrNq4tUZqoXqgOVR8/3usur45iWBvSoo5O33GCkGqbqb9rv3rHQd/1ep04dVytTXSwadQAbOHCg+1k1V+8cEXW0Urf8KlWquH0f/t7qkKX63969e12tTuer6piq3eamW3w02ladq9u2bXPLJIajCxUAoCQiRAUAQBzwCg+RltvLbThH2rZtG7r4z1wYOPLII90yf3/++WeG+w466CAXqAmnC30voKP7w1WsWDFUMMhMxZ9IYRuvLbeWllOr7WjUxltatGgR8X4VUiRzIUPj91pfd+/e3RUo9J4qTOwLBZZUjFGxSUsDehTWCgQCrkATHvTKSdWqVUPttlX4CQ9Eab+pVbyKG5mDXwrHqSijNuMeBaDWrFnjljlUEU1SU1OzvKdCWirgZKZjKzonMvv999/dco4q0qm9uoo8AAAAAAAAsUoBn19++cUt9Ra+7JloKTuFlFR3Wrx4cY5L+mn5PfGWSQuvWYWHeMKprqOanGpfu3fvznDfMcccEzF0pJqLwkvhkxG92p23nGB4vUcBKlHNKzxA5VFdMLN9GXdmXtArUv0pN9auXWvLly93E/1at24d8THeMoGRQkwnnnhiltu8GqZqn5lVqFDBfVdoKTPV5TLX9LQfvImK3rKFkWhJPgW9FJ5SvTWzcuXKuUCXaneZlyZUUEu1RtVyNRFV58XLL7/sztt9oWUhMy/ppxqsJt6qXnveeeft0+sDABBL8hflBgAAxYqCSgrCaHZZfqxfv95918ylaHTfP//8E3ps5lBUOK+IoJll0e6LRJ2ZIoW4FOJRUUOz+PSlGXiRKBQkDz74oPuKRq+hgk34LD0Fmr799lvXzUmFpGeeecYKgooQzz33nOtG1ahRIxee0s8KhYUX03JDRbEXX3wxw20qUt100002fvx4V3yJNvNM76vAlAp5CxcutJUrV4aCbN4xUXEmWsEoM694F+k5P/zwQ+h+zdLs0KFD1NcBAAAAAADwm8Ij6enprl6jiWGZqVakWtKQIUPs4YcfDnXwUYcmTSbTl35WiEndfFS7Ovfcc7PUrPr37+++sqPam17bU6lSpWyDRRrTtGnT3KRArzYYXn/zajerV69238M7H4WLVBfcl3Fn5k20VIBIE0Hz2o3Kq0mqk1a053rbkLl+WdA1zFq1akW8XWML77oViXcc9D2nDvjeY8NrpL1793bd77UP1XW+YcOGtq/UdV77QOEvjV0d7lUn1fncsWPHiBMsAQAorghRAQAQB9Re+tdff83Q7Sg7ammtQsBpp51mhx12WMQgTKQQjmSeqZbf9tuRqFAVjTfG7B7jjVGtzCMVRsKp0BAeotq4caPNmTPH/axwkcJGKkTsK7V2VxcoFR5UZJs+fbpbNk9dscKX3MuvE044wV577TU3VhXNtKSjummFU0eo6667zmbMmOGOV7169dzMPIWyVGhRcOytt96K+Pp56ZQVPmNOr6cvFV9U3NEXAAAAAABArFHNyVu2TAEfr/tSJJoYd/fdd4cm+KkblQJUWtJPISotwabgiW5Xx6TMNatTTjnFDjnkkGzHE16vkkgTDr1JbD179nThLgWUVONRlyJ1JFcno8zd3r0OUN5YIu2HzPZl3Jlp+b8yZcq4zk5//PFHhg7r2QXE9N7qhJWb+qWCcBKp01ZO48uLaMfEG2N29VLvMaoLhi8hGIm33GC4n3/+OcM5oDqgukXtC+0vdVz74IMPXBczTdj0ulKxlB8AoKQhRAUAQBw455xz7I033nAhGc208pZai0SttV944QXbsWOHa/usLkHe41esWBH1eWqX7S0pV1hUHIlExafNmze7AkR2wSMVjNQtS4GivC4hp+X8tmzZ4valihFqha3XUIFnX6iDlmZzKUSloJtX6GjXrp0VlKZNm9qNN95ob7/9tjsPVFg66aSTQve///777txQEU3BJm9WXHjBpSBpxqbGpJmNam+uoota4SvcBgAAAAAAEEsUmlJNTBMNx44dG3FCmcJELVu2dF16FDK56qqr3O2qd6ibuWorjzzyiAtThS/15/FqbxdffHFo6bR9oVqZalkKRul9O3XqlGHcW7duzfIcrx6kyX256XpU0OPWpDtN6NQ+/v7773MMUamepDqWgmuqp3ljUXesaJ2svPqlJhkWpmidptT5PbtuX+EdufSYzB3nc6Lw2TvvvONCfApg/fTTT/bkk0+6Wu++UlhKISot4adJoZqse9xxx9nxxx+/z68NAEAsiRyFBgAAJYouaFWEUAelZ599NtuZWa+88ooLUCnco4CLeLOeFPSJNBtt9uzZrgihWU3169cvtO1QAGzu3LlZbh89erQbV7NmzSLOJPMouCMqxkSi1znvvPPsgQceyHD7sGHDXDFGLb/79OnjZnBpVty9994bmqWXnZy6NXlFJhUhNDYVS1R4K0gac506ddyMO3W88pbqE82I9MaROUClopO6RUluZvTlhneMtD9vv/129/Ojjz7qzjsAAAAAAIBYMmLECPdddbJoNR51Hrrsssvcz+qO5DnggAPs7LPPdsvoqeajQJbqIZkDQl7tLVrN6s8//3ST8G6++WZXq8nJwoULbfv27W4JtquvvjrLuH/55ZfQz16tz5twOH78+Ij1LnXRyqygx33DDTe4sapL/t9//x31cQq1ffTRR+5nbZ/2v2pa2reaIDpu3LiIz/vmm2/cd9UQC5PCS5mpJqelHCW7iYRaUUBdyv7666+IYSzV5zp37uzqeFOnTs0QnOvVq5d7H9Usn3/+eRcWUzd9hdL2tX6pjvU6b1Wb1YRMjYMuVACAkogQFQAAceLxxx93IScFdRRc8WY+hS/p1rdvXxs4cKD7XbPUVOiRtm3butlP8+bNcyGs8EKKiha6QJf27dtnG2IqCJpFp65Tnvnz57tgk2hJuuyouKCZWCrEfPLJJxlCQYsXL7ann37adaqqVatW6HaFw5577jlXSND9KmJcf/31LpimYo6WystJ2bJlQy3fI1Hh5ogjjnCFHBXVVHQryGUQRcdFM8+0HUuWLMmwPJ8Kal6BJ7ygtXPnTnvwwQfdvhEFxwpa165d3Yw1zRLUfgYAAAAAAIgV6kruhYfUbSk7V1xxhau7LFiwIEO4xes6pY5UqrtoWbTMgRXV3hQC0iQ+TXAMr71pUqHqM6pRqdtSbmpGXq1H458+fXqG+xTk0lg8Xr1Hy/0pJKMajWpI4WPQa7z55ptZ3qegx60lDxWK0usoKPT1119nCV8pmKWwlbZNNaVrr702dJ9XG9T4w0NYqgGqQ7sCYhUrVnSdlAqTQlxe+E4UbFJNdenSpa47/Iknnhj1uao9duzY0e0D1XDDVwbQ66irlM6vZcuWZZjMqrqabtMkUq0soO1UfVcee+wxdzyyo6UUPdFqmF5oSgE21TsvuuiiXO0PAACKE5bzAwAgTmgmlmbCdevWzRV/NEOsXr16rhW5ZirNmjXLtm3b5i6A1RVIRZDwAE6/fv3cknCDBg1yHZt0sa/OQdOmTXNdjVq1amV33XVXoW6DxqEZWJrBpoKAgl8qGqiocOutt+a4RJ8KNlqG784773TFFM2aqlu3rpuZp+XsVIjQdngFF/2ugJj2jwJi3iw1FX1UbFIo691333Vdo8KXx8usdu3a7vvw4cNdIerMM8/M0OJchTMt3/fSSy+Ffi4MGqPeV5211Nr7ggsucLPIrrnmGheu03KCWq5QBShtszpU6fsxxxzjCoAbNmwo8DElJSXZU0895YowKi6pzX1el1oEAAAAAAAoDFqaT3Un1dDU4Ts7NWvWtFNOOcXVqjR5z+vSpHqSgkaqCanuoxBVpACLJuqp9qaw0meffebeUwEi1d4UdDrhhBNCExlzorGoxqManuo+CkdVqlTJTR5UjUchK3VCV61n48aNVq1aNfe83r17u6UIVcNSnUjBKk1mVN1Mr6kQUKlSpQpt3N4ESr2H6nY9e/Z04SDV7zTZU+PXhErRNqleGR7+UfhIHZw0DoXaVAtTt311T/K66Ks26G1vYdFkVHWCHzx4sNtvGpMmtNaoUSM0WTM7d999t9vOiRMnuvqdwlLajjlz5rhlFVW/1X7XEoiicJjqfQpgqWbpvb467quOqlqwAm2qY2ZXd9X4NE4F2TTJVGPVhFSP6nYKgylkpfOrQoUKBbbPAACIFXSiAgAgjhx99NGuhbOWq1NRRxfdClNpNtkhhxziwkNask9Fhsx0sa7CkWZ36UJdM6p04a4ZYi+++KIrlIQXUQqDiiIqCJx++umuIKWZZyqYKBCkYFRuKPD0+eefu9COZqGpfbk6LSkUpsKAii/eduh1Z86c6QpdmYs9Chppf6nl+X333ee6NkWjdu+dOnVyhQy9X+YZgOKFsHRc1JWqsKidt4pkKgCqmKN9oDbhKo4pQKbbdWxVXGrUqJHbHwrOqS26ZioWxpJ72pddunRxP2tMLOsHAAAAAABigddNKKcuVB6vpqZl27yl2FRT8Tofqe6joEokCiypbqfam8IxkyZNcuEbTW5TsEjdf7yu8bmhyXr33HOPm0CnGpqCNgo3qSv4V1995QIxoqCVR4EfBZA0mVA1L9WIVD/U5EWFZyTzGAp63AoAqdamTvLan3quQlzap+rgrtqeuul//PHHLliU+bkapwJGmoCprvraBt2uMJlqm6eddpoVNu2LJ554woXIvPdX96xPP/3U7eOcKNA0YMAAN/FQNVkFqlRT1O2aIKnt0PaJOnJpP4smuGoibTh1oVJXKoXiFO7Ljrr9q/u+wmqqvYZ3wfJqs6rjCUv5AQBKqoRg+Do2AAAAMUgzoFq3bu1mi0UKIJUEKoqo+KMCl0JXAAAAAAAAQFFRp/ZVq1a5rvWqwWWmLuYK6ahupfoVsrr//vtt1KhRbgKrN2GwJFHnsrPOOssFAb///nu/hwMAQKGgExUAAIBPtByhaIaeZqKplfi5557r97AAAAAAAAAQZ9TRSB2ztEyb10XLo99ff/1197PuR/xISUmx9PR027Vrlz3++OOui33nzp39HhYAAIUmufBeGgAAANm57bbbXGctL0z19NNPF/qSiAAAAAAAAEBmWmbuggsusG+++cbOPvtsa9y4sVWuXNk2b95sM2fOdGEaLSXHBMD4oqUZtRSilndUmErLNLKUHwCgJCNEBQAA4JMGDRrYtGnTrHr16nbjjTfaRRdd5PeQAAAAAAAAEKdeeOEFO+OMM9ySdEuWLHHdqSpVqmRNmzZ1ASq6UMVnuE5hum3bttmpp55qTz31lJUuXdrvYQEAUGgSgsFgsPBeHgAAAAAAAAAAAAAAAABiW6LfAwAAAAAAAAAAAAAAAAAAPxGiAgAAAAAAAAAAAAAAABDXCFEBAAAAAAAAAAAAAAAAiGuEqAAAAAAAAAAAAAAAAADENUJUAAAAAAAAAAAAAAAAAOIaISoAAAAAAAAAAAAAAAAAcY0QFQAAAAAAAAAAAAAAAIC4RogKAAAAAAAAAAAAAAAAQFwjRAUAAAAAAAAAAAAAAAAgrhGiAgAAAAAAAAAAAAAAABDXCFEBAAAAAAAAAAAAAAAAiGuEqAAAAAAAAAAAAAAAAADENUJUAAAAAAAAAAAAAAAAAOIaISoAAAAAAAAAAAAAAAAAcY0QFQAAAAAAAAAAAAAAAIC4RogKAAAAAAAAAAAAAAAAQFwjRAUAAAAAAAAAAAAAAAAgrhGiAgAAAAAAAAAAAAAAABDXCFEBAAAAAAAAAAAAAAAAiGuEqAAAAAAAAAAAAAAAAADENUJUAAAAAAAAAAAAAAAAAOIaISoAAAAAAAAAAAAAAAAAcS3Z7wEAAFBU6tatm6fHT5s2zSpUqGDFycKFC+3oo4/OcFurVq1s1apV9vTTT9v//vc/K87HxDN27FirUaOGxYuVK1da69atI96XlJRkZcqUsYMOOsjq1atnF198sTvmkUyZMsWuueYa9/OcOXMsOXnf/ikYDAZtyZIldtRRR+XpeZ07d7apU6fazTffbHfffXeWbRw9erQdccQRVhR2795tmzZtynA+jRw50h544AGrVq2a/fLLL0UyDgAAAAAACpt3vZtXTZo0sUGDBlmsWrBggV1++eV23nnn2YsvvpjtYz///HMbMmSIe44ceeSRdsUVV1jHjh0tMTEx33Wts846y956660cn/P999/bnXfeGfq9IOozRV3X8aSnp9uPP/7otmn27Nm2YcMGS0hIsIMPPtgaNWpk7dq1s6ZNm1pJFOu1I+rgsVcHBwAUH4SoAABxp1atWlalSpUcH6dwSnGxfv16e/7552369Ok2fvx4Ky4aN26c5baUlBT766+/3M/HHHOMHXDAAVkeo9BQvMq8TwKBgG3fvt1WrFhhy5Yts++++85OO+00e+WVV6x8+fKFNg4Vx5566ikXdsqpQBmrvvrqK3vhhRfs9ttvp7ACAAAAACjxqlatGrEWs2bNGvdVunRpq1+/fsRaRKzasmWL9ejRw1JTU3N8rOoYH3/8sfu5du3arvanEJO+xo0b50JQpUqVytc4Jk6caDt27IhYxwr37bffWizY17qOwleaGDdv3jz3e7ly5VzNNS0tzU2U+/LLL92Xgm29e/d296PoUQcHACDvCFEBAOJOt27d3Oy0kmTChAn29ddfu9lPmQ0cONAVkjQLLNZo5l9m4R2JHn744RI7Yy2/ou0Thc+++OILV5jS+XDrrbfae++95wqgnoYNG4aKdfs6y3Hw4MGu4JafjlEqdKgDVOXKlc1Pffv2tXXr1mW5vU2bNnbCCSfku3AKAAAAAEAsOvPMM91XZv369bPXX3/ddbmOVKuJVatXr7ZbbrnFdaTJTecgBag04UxhqZNPPtndrol86pStWkr//v3trrvuyvM4VGNRXUad0y+55JKoj9u5c2fMhD72pa6jrkU33XST7dq1y4Xu7rjjjgzn1Z49e2zo0KH26quvui5VCrq9//77vnXcimfUwQEAyLu89SYFAADFTs2aNV1b7sLsSgT/KSylbkpvv/22mz2m5fI+/PDDDI/Zb7/93LmQ3zbtBaV69epuDLmZCecHfVY0Pn12AAAAAABA7NEkscsuuyzUCSmnZefefPNN9/M999wTClCJQkDqUi2qo6jbd141a9bMfVdgKDs//fSTCxjVq1fPiisFonr27OkCVOqErjBW5mBe2bJlrUuXLi6UpuX9pkyZEuoABhQm6uAAgIJAiAoAAKAEOeWUU6x9+/bu53fffdcV5wAAAAAAAEqKDh06uKXktm7daueee677yo6W/Vq+fLnrOB2pU1Tz5s1dRyYFg9RNKq+0ZJ3XIUdL+kXjdQdv27atFVevvPKK6+qt5fkUPitTpkzUx7Zo0cLOP/989/MHH3xggUCgCEcKAACQP4SoAADIgZaXq1u3rvtatmxZxMe0atXK3a/W4B7NstJtV155pWsjrLbVF198sVsmTDPerrnmGhszZkzU992wYYNre33RRRdZo0aN7MQTT3Qz7BSMUYtwj97jgQcecD+riOGNNfPYRowYkeU9/v33X9eu/dJLL3XvobGpuKHl1rS+fGbaPr2WClUqLKlwokJVgwYN3BJzan+uwlRhWrJkSWgb58yZE/VxGpce4xWo7r//fve72jovXrzYbrvtNjdmbbe2X7MN9+7dm22rcrUn1yw7zVJUIUhL5v32229Rn6PW0l27drUmTZq456god/3119uXX35ZqIUjL0SlYmL48fDOSX2lpaVleM6sWbNcy/rTTz/djj/+eBfG0rn7zjvvZCgAeq8xatQo9/tXX33lfu/cuXOGz8upp57qzke1d9cygtoHmqkoeqweo+X0ItG+GTRokF144YXu3NK+vvPOO+3PP//M8tjstsnj3a/HessU6PdVq1aFlkjU77o9/Dw/44wzIr6ejvntt98eOhc04/SGG26w0aNHR3y89xnUeacOYdonOve0bfq8vfbaa66lPwAAAAAAseyHH35w17+6Dtb1sK6LdX0crTbiXY9v27bNPv/8c1fXUu1Jz1MNSdfI+TFz5kw79NBD7aWXXnLX1Ar0ZOePP/5w39UBSl26I2ncuLH7np8xHXbYYa72oXrduHHjIj5GtZVff/3VdcrRY7Pzzz//2GOPPWZt2rRx+/mkk05yNRrVtKJNliuouk52VDdTTUvatWuXqw7jqr/pGH322WeWmJiYpUOY6pV6b41X29qyZUu79957I9b8vJqT6jWqHX3yySeupqdzSuek3ku1F9m8ebM99dRT7vX0uuqW9eSTT2bpNObtD4XrdPxU62zdurWr2aieo5pRtHpwdvJSR1RdV2PQdixdujTL/ard6n7VMHVuFCbq4AVTB9d5qHFqPN5nWO+rWuimTZui7gcAQGwgRAUAQCHTheONN94YuiBTS2EVCXRxqYv7IUOGZHnOjBkz3MX7G2+84UJDhx9+uB1yyCH2999/u1leCuJ4F5Aq8tSqVcv9rBl1+t0r/GRH7c4VUlFwZP78+a7gc+SRR7qZebrQ1X1e6CQzFb8U1FErdF1E1qlTx31XW3JdFP/8889WWGrXru0udOWLL76I+Jjff//dFR0qVqxoZ599dob7tK1a9k4zCw8++ODQfn322Wdd4ClS2/YXX3zRrr76alcs1H4/5phjXOFHr6H25Lo/s969e7vQ0KRJk+yAAw5wF93JycluVqKKQQp1FZZjjz3WvWdui38K/1x11VX23XffufNVY1UhbPbs2a4gqRmeXsFN7bB1flWtWtX9rsfpd+2TcNpPOk+1/Trn1b5d51huPPLII/b000+7AopeV6+llvgqxKjotq9UaNWYtQSiaLapftftOVEBTsdc+0z7SvtanzsVQlU4VsFSt0eiAo4+H5MnT7Zq1aq5fafPt9rba18xIxMAAAAAEIt0ndu9e3cXCtH1r+obuh7WZCZdH+s6WXWQaBSiue+++1ytRjUkPc+rIb333nt5Hs8TTzzhajSqXeWGFwZRfS0ar2YRKcSSG17HpWhL+ilAovpGTl2oFFJS+GTo0KGujqi6yIEHHuhCUtrHqmmtXbu20Os60cJrqv+JJs/lho63gifahnAaT6dOnVxISbUrjUvjVl1O+0AhLYXGIlH9RJPtFIpSWEp1Hb2e9nHHjh3dOFVX1VKDWlqwevXqbp8pdKUabTAYzPKaOic16U21ToXFjj76aBd2US3n8ssvd7Wc3MprHfGhhx5y56YCcvo5fHyqcao+LI8++qir3cYy6uD/fU50/iqEpfNZ55LqgAsWLLC33nrLhcPWrFmTzz0MACgKhKgAAChkc+fOdYUOXSDrglsXUL/88ovrSiSaxRLeQUezYlQI0IW6ZlbpQkzFAxVhdOGu4oaKCwpeiC4+u3Xr5n7Wffo90gVpOBUWdEGri1kFklRsUdckzQocP368nXXWWW4curhdsWJFlucrCLRlyxZX6FLxTLPXVAhQsUMXxtE6DBWUK664wn3/5ptv3Ptlpu2QCy64IBSU8Wj/V6pUyY1Zs+1UYFJhSsUcXbTr4jyc7hswYIBVqFDB3ad9r9fQdms7NdtR94fPcNJsIxV61NL8o48+crMQFf7Rc1REUOFEATBvJmRh8Ip/q1evzvZxKjyp6KRzUOGuiRMnuu1ToUdj1jm1cOFCV3jyZm3q/PK6NKlopt8VfMpcYFAISsdC+1rbrmJUbmfr3XLLLe480xg0JhUDNVbNxPRmFeaXChka80EHHeR+12dBv+v27Kio8vHHH7tisQpXmj346aefum3T51jngs4nHeNI1LpehRJtjz7T+mzrdbwCS7TZqgAAAAAA+Om5556zH3/80V33qluMrtd1PazrW13X6jpZdZBooRd1m1aHGV0/e9f5moiksIhqLQqK5IVCQdktI5eZgjaSXeck1YpE9a780JJ+mkAWbUk/1bAkuxCV6ofqXqPAiCaShddoVF9ReERBDHU08mqJhVXXiUQBF49CdPvinnvucbUQ1WbCa2eqtWj7tF0KjUXq+q16kx6v81J1TNVYtM3qMqZ6pmpIqvOpRqN6ql5DkydF76m6U2aLFi1ydVvtf9VtvfqtulLpePbo0SPixMvM8lNH1ETIPn36WFJSkutspLCX6H11TFX71OdHNaVYRx38v4m1Clmpw5o+j3q8VkrQZ1KfYXXQUiALABC7CFEBAOKO1yI52ldu2lfnlWbq6WLXo9lVugj2llwLb8U8bNgwVwxQCEazY7ygh6hd8IMPPuh+1gVYfjvXqHCiC0cVFN5+++0MM/F0m2YIapaUigOaIROJimRqSe1RVyfNSvRm9xTm8mQqOKnosHHjRnchG06zxVQkEc0Uy0wBJs1sOu6440K36QLaC77oAl0Xs6KilbfEm4otmgnoUWFM4/COox7nFQE0o0k0o0ntncOpdbNmxWmGU3g76oK2//77h86vnAqJOt9EBToVbDxq/66W1erm5RUT80JFK83OEoXZvO5YOdG+UUcnzSgTFUZ1vqn1tdcSvKjpvPIKHPo8a7ZkeBt6zThV9yzv86X255mpwKjzSJ9/7xzS63izPRXiAwAAAAAglqiDj4IhXndmhYU8qiHoulYhCNFSWZHqQapnqe7i1QX0PNWQdP2vIJUXkCgsu3fvdt+zC16pY5FEWy4vJ+p2pOXBVD9Qh5pwqs0oHKQaSfjSY5mpHqfakupt2tfhdRTVsbS0mcappe68UFZh1nUyU9DEk5ul/KLRpEJvH2mbw2tnqh/pfFLnH4nU/V00EU6hItVWRLUVBZ5E55TCfl7HIm9CpjfhUEGfSNQlSl9evUcd7hWQqVGjhgv55BTWyW8dUdRNyZt8qO5h6lSkc0D1JS0B+fjjj1t+UAcv+jq4fvfOufDJvXpfdeRTaCu33foBAP4gRAUAiDu6gPZa/Ub6yk376rzSxVFmamcc3rXH4xUR1MbYK+CEUwtszZTR7JXwEEdeeB1vFOhRQSAzXeB5F9F6bOY21yrIeDPWom1TpFl3BRkQ8op2mZf000wg7U8dR11sZ9asWbOIs+V0IayiiC7IvWOg2WkKaun9vEJMZiqI6DgoeOUVYdRG3LtoVpEwcyt4XXirINKkSRMrLN6Scl4xKZrKlSuHzgFvFmB4UUIFOBUz9T2vFHrKD7U8z0zb4Y1Bs8SKmmYC6rzS7FoViCNRMUztuTULLdKSli1btox4PLzPTW5mNAIAAAAAUJTURUZhD4UbonVR0nW8JkLpulZdYzLTklfh4Z7wjlKiZbQKczJepPeOJqc6Sn6W9FMXL9VpsutCpc413nJi2l+RKIShQJRX/yrsuk5m6vSUue6UH17drWHDhlGXYrvuuutCSzGq+1akGktmXjBFkxoVPMpMwZfsapZdu3bNcpuCd14HKG+fR5PfOqJHoRzVMnUuaAk71X/1uXr55ZdzPTExM+rgRV8H9+rC6qav8GT4Z6VVq1YuqOV10wIAxKZkvwcAAEBR00VKpA5FhUnBiszCLwzDl6TTWuzZtcXWhV14F6X88Gb8aEZaNN59mtGmWUIqynh0wRnpwjZ8Rl/4bKrCoNk8agmtAoYuVL1igreUX7RjrAJNNJqBpRleXuhJ7c5FF7vRgjPexbQKVGprrtfXvtOMKy0XqK5J+lIhR62rFdY6/fTT8138yC0vkKP24dnR2FVkU9t2hZP0peOrWYBq6a6i1CGHHJKvMYTPHsuLaOelN1tTM9RUcMlp2wqS17JehZBox06FVrXFVyEsfFZd5mJdZt5nKdLSlAAAAAAA+Mm7HlYtKlqIQd3CFVxR2EXXw5lDFNFqMd51vuouqsdk16VpX2h8oi5R0XgdqCLVu/ISotISc1ryS6Ewr0u4lvKSCy64IOpztYyYF7aoX79+1MfpPi1F5tUdCrOuk11dQ8ubeduX33Mqu7qkwj+qv6jmp23NHPY59NBDszzH62gerUuWd3/mkIy3bZHqt+E12syTJDPLbx3Ro4l7WgJQoa3Fixe729RJLNIk0dyiDl70dXB13brlllvcsobqbKb//pxyyinWokUL93kM75AGAIhNhKgAACgC3kV6NOEX797ya16BpzB4s2O8ZcUiCQ+KqPATfvGY0/ZEK0gUpJNPPtlddKqAodlIClUpXKPl/VR0CG+ZHS7SjCOPt8+9GVFeEEntuH///fccxxQ+k0pFD3W90vKAumhetWqVffrpp+5LF9maAdirV68MbZ0Lisar98s8KyoajUXhoA8++MAmTZrk2rOPHj3afSkYdOaZZ9oTTzyR56JbfgqPOrei7ZPw4pxa8RdliCo3n5nwz02kGbQ5HevC/swAAAAAAODH9XC0Wkx47aswuzN7NS2v5haJQkFStWrVfQqPNGrUyNWQ1GFHyxVqGTh1mFJII7vwRHgnm9zU68L3c2HVdTJTUC48MKSO7jlRWGj+/PkuIOeF8HJ7TqkOpMdGOqfCu2Jllp+ORdktd+idpzmdo/tSR/ToOGrZxz///DPbcFEsi/c6uLpWqf47YMAA16ler+cFHHv37u069z/55JPuOAMAYhMhKgAA8iBayEFtlguKigC66C7MNuYqQqigkt3Fv+4Pf3ws0kwqtbRWxyeFqL755hs3m0kts6MVvbI7Vt5FtfdcryCjQpe6XuWFilTt2rVzX5rFpIKZWtrrglkBp0GDBrnHPfzww1bQZs+eHZq9GK0temaaoagvzbzU0nXTpk1zMyfnzJnjLvg1c01dvvalrX1uaNwqNkUKHIWfr5ECVJE+nwX12fQ+AzkVzLwCWKx+ZgAAAAAAKOrrYU2ECg8leMJfM1r3oILgTTDzJpxF4t23r11i1I1KARot6acQlSb+qVaVXReqzPtN+yVaXcur12Xez0VR11FHIHVa176aOHFixGXbMtPEQi3bqCCdQl6qseX2nPLuL4oaS3b1I28cOZ2j+1JH9KibvQJUCoIpgPbAAw+4umd2k0ILC3Vw26fPimrWqnPqM6C6sAKO+m/DjBkzXIcqhRwLMzwGAMi//C0gCwBAHFFXI4/CHZmpOFGQs+W8Yo3XAjozXXx17NjR7rjjDtfqOz9q167tvquQEs1ff/3lvusiPVKhKxZoLXu1wFZhSDOXfvzxR3d7dm2qo+1XmTdvnvvuzQTyZtip21W05QlVUJg8ebJ7jHd+KIyl/ee1J1eRRUW0xx57zC0/qOMnX3zxhRUGdb/yWpGrXXR2NGa1CNcFvdc9SksOql24Cj664Pf2jWYOFgVvv2U2d+5c971mzZqhwpSOf3afz/Xr1xfImLzPzLJlyzLMDg2n4pY3Rs0cBAAAAACguPOuh//++2933RuJrpO9pc4iXQ9Hq8V4dRgFCRTOKSzekmm6Zo9UO5CZM2e67+oktS/OPfdcF4DxlvT77rvvXHCpbdu22T5PtQ6vBunV5CLx7vP2c1HXdbztGDVqlOuylZNPPvnEfdc+Ofroo3Ndl9Q2eWGdoqixrFmzJmq9R+e+5NQ5KL91RI+O0SuvvOJ+7tOnj1vCcN26da6eWFSog+9bHVyBSdUOVav2ulhpNYXbbrvNfRb0pf8eaDUFhaoAALGJEBUAALlo5+zN0ooU7hg3blzUC+P8UItt0SyjSBerv/zyi5u1omKMNyvNa1Od2+XAvJlimoEWPtPGo/cdMmSI+/n000+3WKU26Rqf9r8KQyp4aZ9offlo1AlKF6qZqc26CibqgNSqVSt3mwJIavWsole0GWQ6Ttdee60LSa1du9bd9tprr7nOWM8//3yWx+tcat68eejCuqCp29WXX37pfr7pppsyhIwi0fmkApgeG+l8a9GiRejn8PF6n4nCWILus88+y3Kb3ts7J73jI+GFjUifTy9YF0letkGttlVI0bnmFQAzUyc0nVt63Vj+3AAAAAAAkFtamkrBCl3vfvvttxEf8/HHH7vrZU14atKkSZb7tbRVJN51vupUZcqUscKiYJSWslNHrEgT2hRmUPBBS3q1adNmn2tV6gqusInqG+oKpfc/9NBDs32egmTNmjVzP3/00UcRH6MQieqQ3nHxo66jjlYHHXSQCxw99NBDtnfv3qiPHTNmjKubec/zuo57dUl1Uo+27N3AgQPddx03LQVY2LRvFAzLLPycOe+887J9jfzWEUX78d5773WhIQXxLrroInv22WddXU9BvMKaiJkZdfB9q+cpDHbOOee4Yxyp/qz/FnidrqKFUgEA/iNEBQBADjSDq169eu7nfv36uRlAngkTJrg1zAvSVVdd5S5YVby55557QmvDe8UFb/aRZuF4LX+977oQjDZrKpyeq6LOxo0bXREjfCaPZpHdeeedtmDBAndRd/vtt1ssU1jJOzYqeFx88cUZZk1FKn7ceuutLjDlUUtltccWFZ1U8PD2q36XZ555xhW/wi9wVQzyjoeKH5o1KBqDCg5ql/7uu++GltaT1atX21tvvZWhUFAQVKBRuEfHU2NUUMvreJUdFd0URNJ5dt9992U433QueUEwFfu8GYPiXfBrewqaljrUtnj7WuPo1auXmzGmINN1112XYZafV0TRLD1v+QAVUlSA6d+/f9T38T432bXz96gQ7J0LCsmFj0/Unv/RRx91P1955ZWh2YcAAAAAABRnqgfoOlceeeQRt0ydR9fFgwcPdjUZUb3Fq6mE07JVr776aih8oTpJ37593bW0gjXdu3cv1G1QjUadYKR3796unudRrUH1EOncuXPE8eeVakSirkLaRzkt5efRflBNS+PTvg6v8alL0Y033ujCNscee6zrzu5HXUf756mnnnIddjQhsVOnTm684YEWve8bb7xhd911VyjIdc0112QIkng1MXUYUl0uPNCiusvw4cPd76oH7csShHnx0ksvZZiMt3nzZjc+7SPVebLrfL8vdUTvvVWL1bF8/PHH3W0NGjSw66+/3v2sfV4YNbjMqIPvWx1cn011EFONukePHhmCcjq39d89jVnboA5VAIDYFP0vjAAAIEQX/bfccostWrTIzj77bNe+WRdqCl/oglYzzLRMW0FQIOT11193hScVk1SQUJFD4ZCVK1e6ooTacusCz6MZWZqFo0KKZkVpGbf33nsvavvhChUquCCPLuzVvUkzZLRNKtRoxoyKWbqA1QW811Y5Vmk2kZbLU2FDcipoaHvUhlvHURe1ag3utZy/8MIL3cV0OBWodHGt4s2DDz5oL7zwgtWoUcMVEbyl4tSlSMURT/369d05owtjPf7tt992z1GAS6+loqEKJffff3+et/fpp592MyM9ei2dG3pdb0ahOjXpfbMLk3lUrFQhU0UZzSjVeayx6XzSa2r/KED03HPPhWYMynHHHee+azaYzjmdPzpv95WKcDq/VZR58803XZFDM980DhUzVEjTbR6NU/taxUV14VIRToUtHRvN+NL5oXPDa2sfTkUhFUkUdFOHMn0O9LmLRvtIn0HNTtP4VEw6/PDDXUHEOxc0W1AzMQEAAAAAKCk08Ux1ENUMVI9S3UkdglQ32LJli3vM1Vdf7Wookaj+olCNAle6jtbzFJZQYEOhJm+5rcL0v//9z9UNNOFK1/eqD6nOoTqYam0KIxVUmEu1AdWJNOFNnYRy6mAUHi7S8x5++GFXh1Kn8aOOOsrVRP7555/QvlT9xavR+FHXUa1FdUcFjP7880/33qo1qvalOpXG6k0oVK1N25S5U7omwt18882uLqmAlZZzVH1Pz1XIRI9XvSe3AbSCoHNT54DGorqozg0FX6pXr+7qUeH7L5r81BHVCc3rPqYJetoPHoV6dEy1vKFCch9++GGoE1NhoQ6+b1QP7tChg/vvjfafjr8+g9oebZfObdUVw48zACC2EKICACAXVEhRoeedd95xbbh1EakLIBULdHGsi+KCpPbPX3/9tbsAVLhD76cLrIYNG7rOSyr8hF8wH3HEEa7opNCJLmgVptH37NZwV4BE76GLdM2EWr58uZvZpQCKQjiaCRQeVolVCt2oIKPtUHhJxaTs6GL/xRdfdMWPGTNmuAtmtZrXrCS1P89M+0SzvVQAGzp0qP3xxx8uhKU28yeeeKJ77/bt22cppKgQpAtyFU00q1FhHRUHVaRSa3jNbvRmTuWFXieczgNdiKvgqG1TFyxvucDcatq0qY0YMcI++OADt08UKtN+UUFUhQp1flLBKJxmPCrcpHbiKgKo4FAQbai1vxVOGjBggGujPn/+fHce69hon6qglZlmxGqsavWuWWoqLOk8ViBOMyL1FYmKTwq2qVilIp2el9PYNBtQx0//PfDOBY1PBcR27dq54ggAAAAAACWJah7q9KxlxdRd56+//nLXw1rWTV2GVBdRbSEaXX+r04wmJek6X8EJ1Z5uuOEGFxIqCrqmV6BF41WtRuNQ4EeBjUsuucQtv5WbyWi5of2iLjMKUajmdOCBB+b6uaq3qL6jGofqFQp5qH6k4IpqUKo9ZF76sCDrOrkN6Og91WFMSzWqdqmaisaq+qXeS0Eh1TCjddtRaEWdyFX7UVhMx0OT4VSLVDBGtRyvI1JR0XgUttF5rlqswlQai86N7Gqs+1JHVDhJkywVFlK4J3NtUo/Tsn6qW+p8Uq04WlixoFAH3zeqB+u81vb89ttvroOYjq/CXqopdu3aNUNXOABA7EkI5nXBYwAAgBijWVkq3Gi2VrTAjAoSuoC96KKLXIgKAAAAAAAAhUcdY0ThHoWXgFijpQS9pQY1CbKggnQAAKD4KtyejwAAAIVMs9TU6lndmNSFCQAAAAAAAAAAAADyikg1AAAodtatW2d79uyxXbt22RNPPOFajqsVdvny5f0eGgAAAAAAAAAAAIBiiBAVAAAodqZNm2Y9e/YM/X7QQQdZ9+7dfR0TAAAAAAAAAAAAgOKL5fwAAECxU7t2batataqVLVvWmjdvbh999JFVrlzZ72EBAAAAAAAAAAAAKKYSgsFg0O9BAAAAAAAAAAAAAAAAAIBf6EQFAAAAAAAAAAAAAAAAIK4RogIAAAAAAAAAAAAAAAAQ1whRAQAAAAAAAAAAAAAAAIhrhKgAAAAAAAAAAAAAAAAAxDVCVAAAAAAAAAAAAAAAAADiGiEqAAAAAAAAAAAAAAAAAHGNEBUAAAAAAAAAAAAAAACAuEaICgAAAAAAAAAAAAAAAEBcI0QFAAAAAAAAAAAAAAAAIK4RogIAAAAAAAAAAAAAAAAQ1whRAQAAAAAAAAAAAAAAAIhrhKgAAAAAAAAAAAAAAAAAxDVCVAAAAAAAAAAAAAAAAADiGiEqAAAAAAAAAAAAAAAAAHGNEBUAAAAAAAAAAAAAAACAuEaICgAAAAAAAAAAAAAAAEBcI0QFAAAAAAAAAAAAAAAAIK4RogIAAAAAAAAAAAAAAAAQ1whRAQAAAAAAAAAAAAAAAIhrhKgAAAAAAAAAAAAAAAAAxDVCVAAAAAAAAAAAAAAAAADiGiEqAAAAAAAAAAAAAAAAAHGNEBUAAAAAAAAAAAAAAACAuEaICgAAAAAAAAAAAAAAAEBcI0QFAAAAAAAAAAAAAAAAIK4RogIAAAAAAAAAAAAAAAAQ1whRAQAAAAAAAAAAAAAAAIhrhKgAAAAAAAAAAAAAAAAAxDVCVAAAAAAAAAAAAAAAAADiGiEqAAAAAAAAAAAAAAAAAHGNEBUAAAAAAAAAAAAAAACAuEaICgAAAAAAAAAAAAAAAEBcI0QFAAAAAAAAAAAAAAAAIK4RogIAAAAAAAAAAAAAAAAQ1whRAQAAAAAAAAAAAAAAAIhrhKgAAAAAAAAAAAAAAAAAxDVCVAAAAAAAAAAAAAAAAADiGiEqAAAAAAAAAAAAAAAAAHGNEBUAAAAAAAAAAAAAAACAuEaICgAAAAAAAAAAAAAAAEBcS/Z7AAAAAAAAAAAggUXLLeWNoX4PAwAAALlQ9uVefg8BAIACRScqAAAAAAAAAAAAAAAAAHGNEBUAAAAAAAAAAAAAAACAuEaICgAAAAAAAAAAAAAAAEBcI0QFAAAAAAAAAAAAAAAAIK4RogIAAAAAAAAAAAAAAAAQ1whRAQAAAAAAAAAAAAAAAIhrhKgAAAAAAAAAAAAAAAAAxDVCVAAAAAAAAAAAAAAAAADiGiEqAAAAAAAAAAAAAAAAAHGNEBUAAAAAAAAAAAAAAACAuEaICgAAAAAAAAAAAAAAAEBcI0QFAAAAAAAAAAAAAAAAIK4RogIAAAAAAAAAAAAAAAAQ1whRAQAAAAAAAAAAAAAAAIhrhKgAAAAAAAAAAAAAAAAAxDVCVAAAAAAAAAAAAAAAAADiGiEqAAAAAAAAAAAAAAAAAHGNEBUAAAAAAAAAAAAAAACAuEaICgAAAAAAAAAAAAAAAEBcI0QFAAAAAAAAAAAAAAAAIK4RogIAAAAAADEjGAwWi9eMR4W1H/0+Pn6/PwAAAAAAAGIDISoAAAAAABATxo4da/fdd1+BvuaMGTPspptuKtDXjDfbtm2zXr162fTp0wv0dVNSUuzZZ5+1r776ykrSOQcAAAAAAIDiiRAVAAAAAACICQMHDrQ1a9YU6GuOGDHCFi9eXKCvGW/+/vtv++KLLywQCBTo665fv94+/PBDS0tLs5J0zgEAAAAAAKB4IkQFAAAAAAAAAAAAAAAAIK4RogIAAAAAAL7r3LmzTZ061X3VrVvXpkyZYlu3brVHH33UWrRoYQ0aNLArr7zSfvvttwzPmzhxoru9UaNGdsopp9gtt9wS6jx1//3326hRo2zVqlXuNUeOHJnr8ejx/fr1y3Cbftftns2bN1vPnj3t1FNPdeO75JJL7PPPP8/wnNWrV1uPHj2sSZMmdsIJJ9i1115rc+fODd2/cuVK95offPCBnXfeee4xn332me3Zs8cef/xxO+OMM6x+/fruvvfeey/bMWt7tR8//fRTO+uss9w+0fvNmzfP3a/9qXG+/PLLGZ63e/duO+mkk+zNN98MvY63nToO11xzjftZ3/X6njFjxtjll1/uXlP74Omnn7Zdu3aF7s9uG7TdrVu3dj8/8MAD1qpVK8uLmTNnWqdOnezEE0+0li1buo5WXbp0cWP37N271/r06WNnnnmme/+LLrrIvv3222zPudzwjlnm80nvHb4dy5cvt5tvvtmaNm3qjmv79u1t/PjxGZ6zYMEC69atmzVu3Nh93XbbbbZixYrQ/RqT3mvo0KHumOoxOudzc+7lxtdff20XX3yxNWzY0Jo1a2b33HOPrVu3Ls+vAwAAAAAAUBIQogIAAAAAAL577LHHrF69eu5r2LBhdvzxx7sA0NixY+3uu++2119/3Q455BC74YYbQkEqhU1uvfVWF5BRAOiZZ56xf/75x2666Sa39JzuU4DmoIMOcq+psE1Buvfee11g64knnrABAwa4sd933302efJkd7+CLh06dLA5c+bYI488Yi+99JIbl8I/mZcYVEDrxhtvdKEfBWOeffZZ++WXX9zrKXikwJHuU8Aqp6X3+vbta927d7cXXnjBtmzZYldffbVbOq9SpUp29tln21dffWXBYDD0nB9//NGFny699FL3u/ab9pfoOCjIJvqu4yR6DQV+ateubf3793fv9+WXX7rneq+d3TYcfPDB7piKgm/ez7mhfafAlCgQdvvtt9s777xjM2bMCD1GY9D4FD7q2rWrOz8UKtO55IWNIp1zBUXHWeEoBdS0zW+88Ybb/9rWZcuWucfoXNX5sWnTJnv++efd+atzumPHju62cNo/2o86BtqOnM693ND+6tWrl51zzjnuNRRm0/MVzgIAAAAAAIhHyX4PAAAAAAAAoE6dOnbAAQe4n9VdaPjw4a6Dkr6ri4+oo5G6B7344osuiDN79mzX7UhhlWrVqrnHKGil4JVCQTVr1rQqVapY6dKl3WsWNHUwUlBHwSRRtykFZfR+ou5I6v40ZMgQO+yww0Lb0LZtW3v11VfttddeC73W+eefb1dccUWG11aY6oILLnC/q5tRuXLlrGrVqtmOafv27fbWW2/ZySef7H5XhyGN76OPPnJdhvQe6sakDkfqPCQKFanb16GHHup+137Tl+iY6NiIvutLASUdg9NPP91999SqVcuFm9RtSYG17LZB++i4444LvZ9CQLn19ttvW/ny5e3dd9+1/fbbz92mMJcCSZ5JkybZr7/+6gJl2t+i8SrUpDFfeOGFWc65gqQQ1JIlS0JBPu9YKAyVkpLiftfPGv/AgQND42jevLk7Xto2haI8V111levkldtzL7chqrJly7rQofc8vcaff/7pjnFCQkIB7Q0AAAAAAIDigRAVAAAAAACIOeo2pQ5S6g6UlpYWul1Lmqmzz7///uvCVWXKlLF27dq5gIkCSgrqKKxSFPRe6iCl5fkU0FFYJjz4om1QUEgBL28bEhMT3TjVtSmcFygKf211UVq7dq17XX0pNJOTGjVqhAJUoo5P6lw0bdo097vCUtWrV7cvvvjChaj0+hqnulbllsJBep7Ca+HHRsspKgyk5eYUosrvNuRE3ZK0D70AlWgbvaCaaJsUAtJ7ho9Ry+1p3y9cuDDLPi9IBx54oAtpqQPZhAkT7LTTTnNjVren8O1Q+ElBJm+M2n86fgqB5XR+ZHfu5YaOl0JmCpSde+657jU0Ti/0BQAAAAAAEG8IUQEAAAAAgJijDk4bNmyIusSa7lNI5eOPP3ZLuX366aeu21KFChVc15677rqr0DvpKICirk/fffed/fDDDy4gpZDSk08+6QI92gYt3RZtG9QVyaMOTeEeeugh11VLgZ+nnnrKfSko9Pjjj9uxxx4bdUxeR65w6vykJQVFY7z88svtgw8+cMvZKUyl4E6bNm1yvd3aLtFScvrKTEsH7ss25ETLJEbqyKXgUvgY1U2pcePGEV9DYyzMEJXOvffff98tI6jlEtXtq1SpUq5zlPZZxYoV3RjVFUxfmamDWrjM50dO515u6Fjos6NOWDof9LP24c033+w6vgEAAAAAAMQbQlQAAAAAACDmaLk2LQ8Xvlxc5o5LmZdI0/Jkw4YNc+EShXS0RN6+SE9Pz/C7lgjMPMZ7773Xfak7k5YRfOONN1xIRoEU3a9OQ7169Yr4+tktvab7brnlFve1evVq++mnn9xr9+zZ07755puoz9uyZUuW2zZu3JghdKQQVf/+/e2XX35xIRwtd6eOXrmloJpou7R9mSkgtC/bkBMFs7RNkZbQ07J+on2v4JGCdZEcccQR+X5/L5yX0/mhQJsCYwqraWnK77//3gYMGGCVK1d2t2mMCj517do1y3skJ2dfssvp3MstdbHyljlUZyztr6efftp1eSuqjm4AAAAAAACxItHvAQAAAAAAAIi66XgUzlmzZo0L/zRo0CD0paXi3n33XUtKSnIddLS8nwJUCuw0b97cdTsShXYyv2ZeqDvTunXrMtz2+++/h35etWqVW/ZMwRhReOfGG290oRjvvbUN//zzjx155JEZtkHdn9Q5S9sQyZ49e9zyaupkJFp+r1OnTnbBBReEXjuapUuX2uLFi0O/axtmzpzp9o1HnYr0uwIzf//9twtVZSfzOLWtOi4rV67MsF0KDb300ktuibncbEO07c/NMnS//vqr7d27N3Sb3lPj8WjfK9SkblThY1ywYIELkIUvr5ifc0PCz4/U1FSbPXt26Hftc50Luk2hK3W9uvvuu+2YY47JcH4sWrTI3eeNr379+u68VveqaHJz7uXG888/b1dccYXbR1oaUZ8lb0nAvLwOAAAAAABASUEnKgAAAAAAEBPU4Ujhk99++80tL6el+tSlR8uLHXrooTZp0iTXyefqq692S6M1a9bMdaq67bbb3G0K5QwdOtQFqhQI8V5TXYvGjx/vwioHH3xwrsbSsmVL1y1JHXnUtWjkyJFuab7wIJI6Iqlrz44dO6xmzZr2119/uffp1q2be0yXLl1cYErfr7vuOteBSEu3DR8+3B544IGo7122bFm3BKA6bGk769at68JYo0aNcsGk8OCQtlXLGnoUiNH+UmBH+0Ovoc5QmZdna9eunfXo0cOOOuoot43hli9f7pbMO/HEE0Ndj+Tnn392r6UuX3r9Rx991L2H9vW2bdtcJyQFizT23GyD97o63pHGEY22T/vxhhtucPtV7/3qq6+6QJTXJUohI4Wtbr31Vvel11eg6bXXXnOdl7zl8sLPuXr16oW6aGVHj9FSeIMGDXLnhn5XIE3BMW/ZPb2W9oG6dd1+++1umTydvwqtXXPNNe4xGleHDh3c+dKxY0fXDUyd1MaMGePGGU1uzr3c0OdHy/jdf//9dvHFF7sgmAKKlSpVcvfJ2rVr3Ze2x+uclvm80xgUBtM4Mi9DCAAAAAAAUJwkBFVdAwAAAAAA8JmWE1O4aMOGDda7d2/XWUedjRTe2b59uwuPKPyj4IzXQWjChAmus5A6DGl5NXXyufPOO12ARnS7fl+xYoXdcccddtNNN+VqLApeqauVlrzT0mpa8k6v/fDDD9v8+fPdYzTOl19+2Y1By+gp6KXOPnoPb3wKJGkbFNJR5yQtUahAk7ZD1D2pdevWbnvDO0IpmPLKK6+4Zdr0Pur8pDFoWxTOkVatWrl9ojCPKAwzdepU15VI+0RLtGkfqruQt/xh+OuffPLJds8997gwUji9jsJO3nYGAgG3bJy6Iyko8/XXX7vbFWRS6GbhwoUuPNS4cWO76667XGAqt9vw3HPPueCQglbqMqbvuTF9+nTr06ePCyXpdRUeevPNN+2cc85xx0jUiUrhKnVs0lJ/6pSlTlgK3XnLF2Y+5y666KJcvb86fun80DjUmUrHU9s0YsQIGzduXOgxOvZaZlJBL+/Yt2/fPvQ6c+bMsb59+7ouZyrRqVOVzh+dEzJlyhQXulJIq2nTpqHn5ebcyw0dS3ULU8BNAbSTTjrJnRPeMezXr58LwukYeudQ5vPOG2Pmczi/AouWW8obQ/f5dQAAAFD4yr4ceelyAACKK0JUAAAAAAAAJYAXovJCPNlRAEpdktS9SCGk4kSBNIWtFALzKKSkwJi2yev0hOKJEBUAAEDxQYgKAFDSsJwfAAAAAACIC+qopK+cqPNUSaWl4v7880+37KG6BsVSgCotLS3Hx6jLkro3abk7LUeoJQO3bt3qlqXT8oAXXnihxfv5oY5sOc2ZVNcpLcUIAAAAAACA/xPbVR8AAAAAAIACoiXutDRZTsKXLitptHzghx9+6JZt0xJ9sUSBqJxcdtll9uyzz1pKSooNGTLE1qxZ45YSbNKkiVtOrkqVKvl+/wcffNAtY5gTb5nDWNWlSxfXkSw7Wo4vNx3LAAAAAAAA4gnL+QEAAAAAgLiwbt06W79+fY6Pq1u3rpUuXbpIxoT/ow5ZOalcuXKhBdwUMNuyZUuOj2vQoIHFsiVLltjOnTuzfYzOb53nsYjl/AAAAIoPlvMDAJQ0hKgAAAAAAAAAxARCVAAAAMUHISoAQEmT6PcAAAAAAAAAAAAAAAAAAMBPyb6+OwAAQBEJpqSa7dxtwZ27zVJSLLg31Uy3paZZMCXFLCXN/e4e9/+/gqmpZmkB7xXc/6L/HDRLSDBLSjJLTrKE5GT33X2VKmUJpUuZlU42K+39XNpsvzKWUG4/S9i/rNn++/33HAAAAAAAAAAAAABFjr/UAQCAYsmtSLx9pwW3bLPgvzssuHOX2Q6FpHb9F5QK/9kFp1It5ilcVa6sJShQVW4/s/3L/v/v+1nCAeUsoWJ5S6hc3hIqVTDT7wptAQAAAAAAAAAAANhnhKgAAEBMCqal/ReQCvsyfd+6zYKbFZzabpaWbiWK1wFr6/b/a3QVjbpdVSxvVkmhqv+CVf99V9CqgiVUrWQJZUoXzbgBAAAAAAAAAACAYo4QFQAA8JUCQ4F1myy4Xl+b3ffAus1m23eELZmHLNLSLbhpq9mmrZF3k5pUVSxviQdVsYSDKlvCwfpe5b/vlStaQiJdrAAAAAAAAAAAAAAPISoAAFDogoGgBTdstuDajS4oFVBgSsGpDZvN9haDZfaKIyWrFFDbut1s4bKM9yUnW8KBlUKhqsRDD7SEw6r99zvhKgAAAAAAAAAAAMQhQlQAAKBABdMDFly30QIr11lw5br/vq9e/99SdYgNWipRgba1G92voUURS5eyhOoHWaICVYcd/N93BayS+ScjAAAAAAAAAAAASjb+IgYAAPItmJ5uwTUKTK0NC0xtcCEdFEMpqRZcutrSl67+v9sSEy2hWlVLqFHNEhWsOvwQS9AXwSoAAAAAAAAAAACUIPz1CwAA5Fpw9x4L/LPKAktWWuCflRZcsdYsLdTHCCVRIGDBNRvcV2Da/78tOckSahxiiUce9t9XrcMs4YByPg8UAAAAAAAAAAAAyD9CVAAAIKrgv9v/C0z9/y+3/Fsw6Pew4Le0dAsuXWXp+vrpv5sSDq7iAlUJR9ZwoarEg6v4PUoAAAAAAAAAAAAg1whRAQCAkMCmrRZYuOy/wJS+Nv/r95BQTATXb7b09ZvNpvz53w0HlLNEBarqHmGJdY+0xKqV/B4iAAAAAAAAAAAAEBUhKgAA4lhw997/QlMLllpg/lILbtrq95BQUuzYZYE/F7gvSahayRLr1rLEY2pZ4tFHWMJ+ZfweIQAAAAAAAAAAABBCiAoAgDgSDAYtuHKtBf7+x9LnLbHg8jVmAZbnQ+FTQC990h/uyxITLKHmoS5QlVS3liXUrG4JSYl+DxEAAAAAAAAAAABxjBAVAAAlXHD3Hgv8vcTS5/1jgXn/uA5BgK8CQQsuXW3p+ho9yaxsaUs8upYl1a9jicfXsYRyZf0eIQAAAAAAAAAAAOIMISoAAEqg4Padlv7nwv+WU1u03Cw94PeQgOj2pPzf0n+JiZZ4VA1LrH+0JdU/2hIqV/B7dAAAAAAAAAAAAIgDhKgAACghgpv/tfQ/F1j67IUWXLpKa/f5PSQg7wIBCyxc7r7SRo21hBrVLKnB0S5UlXjoQX6PDgAAAAAAAAAAACVUQjDIX1gBACiuAus2WWD2AheeCq5c5/dwgEKVcGCl/zpUNaxribWq+z0cAAAAAAAAAAAAlCCEqAAAKGYCm7ZaYMZcS5/5twXXbfJ7OIAvEqpUtMRGx1lS4+PoUAUAAAAAAAAAAIB9RogKAIBiILh7j6X/Mc/Sp8+14NKVZvy/NxCScMiBltS4niWdVM8SKlfwezgAAAAAAAAAAAAohghRAQAQo4Lp6Rb4e4mlT59jgbmLzdLS/R4SENsSzBJrH26JJx9vSSfUtYSyZfweEQAAAAAAAAAAAIoJQlQAAMSYwNLVlj5jjus8ZTt3+z0coHgqlWyJx9expKYNLPGYWpaQkOD3iAAAAAAAAAAAABDDCFEBABADgjt3W/rUPy198iwLbtji93CAEiWhSkVLatbQkpo0sIQKB/g9HAAAAAAAAAAAAMQgQlQAAPgo8M9KS5v0hwVmLTBLS/N7OEDJlpT4X3eq5ifQnQoAAAAAAAAAAAAZEKICAKCIBffstfQZcy190h8WXLPB7+EAcSmhaiVLatrQLfeXUH5/v4cDAAAAAAAAAAAAnxGiAgCgiARWrrP0STMtfebfZntT/R4OgPDuVC1OtKRjavk9GgAAAAAAAAAAAPiEEBUAAIUomJ5ugZnzLG3C7xZcvsbv4QDIRsIhB1rSGSdb0sn1LCE52e/hAAAAAAAAAAAAoAgRogIAoLCW7Jv0hwtP2dbtfg8HQF4cUM6ST21kSac2soQDyvk9GgAAAAAAAAAAABQBQlQAABSg4JZtlvbLdEufPNtsb4rfwwGwL5KTLemkepbU8hRLrFbV79EAAAAAAAAAAACgEBGiAgCgAARWrrW0n6ZZYNZ8s0DA7+EAKEgJZol1j7SkM0+xpLq1/B4NAAAAAAAAAAAACgEhKgAA8kn/Fxr4e4ml/zzNAouW+z0cAEUg4dCDLPmsJpbY+DhLSEz0ezgAAAAAAAAAAAAoIISoAADIo2AgaIFZ8yztx98suHaj38MB4IOEgypbUutmlnTS8ZaQRJgKAACgoGiCSsobQ/0eBgAAAHKh7Mu9/B4CAAAFKrlgXw4AgJKL8BQAT3DDFksb+p2l//ibJbVuakmn1LeEpCS/hwUAAAAAAAAAAIB8IkQFAEAOCE8BiCa4aaulDf/B/fchWZ2pmjSwhGTCVAAAAAAAAAAAAMUNISoAAKIgPAUg17Zss7RPR1vamN8suVVTS2rW0BKS+ac2AAAAAAAAAABAccFfdgAAyITwFIB827rd0kaOsbQxk//rTNXiBJb5AwAAAAAAAAAAKAYIUQEAECb9r4WW9u2vhKcA7JttOyxt1BhL/2W6Jbc93RJPPNYSEhL8HhUAAAAAAAAAAACiIEQFAICZBZatsdSvfrLgkpV+DwVACRLctNVSB31lCT9NteQLW1rSMUf4PSQAAAAAAAAAAABEQIgKABDXApu2Wto34y3wx3y/hwKgBAuuXGepbw2z9Lq1LPnCMy3xsGp+DwkAAAAAAAAAAABhCFEBAOJScOduSxs9ydIn/WGWnu73cADEicD8pZayYKklNqr33zJ/VSr6PSQAAAAAAAAAAAAQogIAxJtgapql/zLd0sZOMduz1+/hAIhHQbPA73MtZdZ8Szr1REtu08IS9t/P71EBAAAAAAAAAADENUJUAIC4EAwGLTB9jqV+96vZ1u1+DwcAXBe89F9mWPq0OZZ83mkuUJWQmOj3qAAAAAAAAAAAAOISISoAQIkXWLnWUj8bY8Flq/0eCgBktXuPpY0aY+mTZ1mpK862xNqH+z0iAAAAAAAAAACAuEOICgBQYgV37bG0b3+x9N9mqRWV38MBgGwF12ywlNeHWGKj46zUxS0toWJ5v4cEAAAAAAAAAAAQNwhRAQBK5NJ96VNmW9o3v5jt3O33cAAgTwIz/7a9cxdZ8tktLOnMky0hOcnvIQEAAAAAAAAAAJR4hKgAACVKYIWW7vvRgsvX+D0UAMi/vamW9s14S58625IvO9uSjj3S7xEBAAAAAAAAAACUaISoAAAlQnDnbkv77leW7gNQogQ3bLHUd0ZYev06lnxpa0usUtHvIQEAAAAAAAAAAJRIhKgAACVg6b4/XccWlu4DUFIF/lpkKQuWWfL5p1nS6SdbQmKC30MCAAAAAAAAAAAoUQhRAQCKrcCGzZY2/AcLLF7h91AAoPClpFraFz9Z+sx5Vqr9eZZ46EF+jwgAAAAAAAAAAKDEIEQFACh2gukBS/95mqX9MNEsLc3v4QBAkQouX2MpL39oSa2aWnKbFpaQnOT3kAAAAAAAAAAAAIo9QlQAgGIlsGqdpQ773oIr1/k9FADwj8KkP/5mgdkL/utKVeswv0cEAAAAAAAAAABQrBGiAgAUC8G0dEv7cZKlj51iFgj4PRwAiAnBdZsspd9gSzq1kSVfcIYllCnt95AAAAAAAAAAAACKJUJUAICYF1ixxlKHfGfBtRv9HgoAxJ5g0NIn/G7pcxZZqXbnWNJxtf0eEQDEnGAwaAkJCTH/miVNYe2jkrTvS9K2AAAAAAAAFHeJfg8AAIBogmlplvr1eEt59WMCVACQky3bLHXAp/8tebo3xe/RAEDMGDt2rN13330F+pozZsywm266qUBfsyRZu3at2z+rVq0q0Nfdtm2b9erVy6ZPn26xpF+/fla3bt0SsS0AAAAAAADxjBAVACAmBdZssJS+gyx9nJbvC/o9HAAoNtKnzLaUlwZaYOlqv4cCADFh4MCBtmbNmgJ9zREjRtjixYsL9DVLkkmTJtn48eML/HX//vtv++KLLyxQApb3LknbAgAAAAAAUFIQogIAxNxyFmm/THcBquCaDX4PBwCKpeDGrZby+ieW+v0EC6bzx1kAAAAAAAAAAICcEKICAMSM4LYdlvrOp5b2+TiztDS/hwMAxVsgaOmjJ1lKv08ssGGz36MBAF907tzZpk6d6r603NqUKVNs69at9uijj1qLFi2sQYMGduWVV9pvv/2W4XkTJ050tzdq1MhOOeUUu+WWW0Kdp+6//34bNWqUW6pOrzly5Mhcj0eP19Jv2S0Ft3nzZuvZs6edeuqpbnyXXHKJff755xmes3r1auvRo4c1adLETjjhBLv22mtt7ty5oftXrlzpXvODDz6w8847zz3ms88+i7h/tD1vvfWW2x8nnXSS3XrrraFl+BYuXOheZ9iwYRmep85exx13nH355Zeh12nVqpX7WfvjgQcecD+3bt3avX54B68LLrjA6tevby1btnTbnp6enqtt17G75ppr3M/6rvfMLY3BG1/mfeQdP72+fp8wYYJ16tTJGjZsaOecc44NHjw4w/P27t1rvXv3dmPU+aFt1W2ZaVsvv/xyO/HEE91raVu+++67HLdlzJgx7nnafr3H008/bbt27bK80DZpW7SN4bQPwo9Hdud5bsejY9imTRt7/fXX3fl42mmn2b///pun8QIAAAAAAMQKQlQAgJiQ/tdC2/vCBxaY/4/fQwGAEiW4fI2lvPShpf32h99DAYAi99hjj1m9evXcl4JAxx9/vAscjR071u6++24X/DjkkEPshhtuCAWpVqxY4YJECvq8+eab9swzz9g///xjN910k1t6TfedeeaZdtBBB7nXVBioIN17770uyPLEE0/YgAED3Njvu+8+mzx5ciho1KFDB5szZ4498sgj9tJLL7lxKfiTOQCjgMuNN95offr0cQGYSLQvFLp5+OGH3XtqmTmFenbv3m1HH320C2Bp2blwCjaVK1fOhYy8/ax9KdofCuOIbtP+krffftuNt3nz5i60pfFq+3RbbrZdx07hN9F3vWdh0Hmh9+3fv78Llmks4UEqjXH48OHWrVs3e+WVV1xgSEtGhvvkk0/cGM8++2y33S+++KKVLl3a7rnnHlu7dm3Ubfnqq6/stttus9q1a7v37969uwuqaR+qY29Byuk8z8t4FOrT8o19+/Z1obKKFSsW6FgBAAAAAACKSnKRvRMAABEEU1Jd56n0ybP8HgoAlFz6b+2I0RaYu9hKXXmeJZTf3+8RAUCRqFOnjh1wwAHuZ3UEUvhl3rx57rvCQXLGGWe40JCCLurWNHv2bNuzZ48LyVSrVs09RkErhY3UgadmzZpWpUoVF4rRaxY0dc1ScEUBHFF3n0qVKrn3kw8//NB10xoyZIgddthhoW1o27atvfrqq/baa6+FXuv888+3K664Itv3U1hKIarDDz/c/a7AzGWXXeaCUh07dnTPV8hHoRvvMbpPHaXKli0b2s8e7RvtI1G3qho1atj27dvtjTfesPbt27uwlqhjkbZLv3ft2tUFtrLbdh1H7330Pfw9C5K6Kj300EPu59NPP93Wr1/vxq59sWjRIvvhhx/s8ccfd797j7nooovcfR7tq+uvvz4UIBMdK3V0mjFjhtt3mbdFoSSdg3o9fffUqlXLunTp4kJKBRnYy+k833///XM9nrS0NBd2O/nkkwtsfAAAAAAAAH6gExUAwDeBlWst5eUPCVABQBEJzFnsuv6lz83YqQQA4oW6TamDlDoBKfihLy0nd9ZZZ9lff/3lugopXFWmTBlr166d687z66+/2rHHHus6FHmBrMLUtGlT10HqjjvucEvCbdy40QVUGjduHNoGhZMUfPG2ITEx0QWpJk2alOG19Lic6HW9cJSoC5N+nzZtmvvdC0t53ah+//13W7p0qQta5dbMmTNdYEfLyXlj1pe3xJ6WlcvNtheFzNulblsbNmxwXZqmT5/ubgtfGlD7/txzz83wHC2Zp65T27Ztsz/++MPtO3WnkpSUlIjvu2TJEtelKvM+0jJ7Ou+8fVRQcjrP8zqe3JxrAAAAAAAAsY5OVACAIqdZ1uk/TbW07341S/9vqQgAQBHZsctS3/vMAi2bWHLbMywhiXkVAOKHOjgpEKMQVSS6T12BPv74Y3vnnXfs008/tY8++sgqVKhgV111ld11112WkJBQqGPUkmha7u67775zXY8U0tGyck8++aTrZqRtWLZsWdRtUGcpj5bcy4nXhShc1apVXaBMFJg577zz3DJuWs5NXaiOPPJIa9SoUa63SWMWLRUXibo95Wbbi0Lm/aF9Idof3j6pXLlyhscomBdu+fLlbpk+Bd5KlSrlunspoCTRluXz9pGWD9RXtH1UUNQhLLvzPK/jUecqAAAAAACA4o4QFQCgSAV377HUwd+4bigAAJ8EzYVZA/+sstKdL7KEyhX8HhEAFIny5cu75cjClyfLHCyRhg0b2uuvv+66Bmn5tWHDhrlwj4IwWiJvX6jzVTgtnZZ5jPfee6/7UjcgLa+m5eQUZFHgRfdrmbtevXpFfH1v2b/c2rJlS5bb1AHKW5JPtKTfqFGj3BJwCjdpqbq8UDhHtN+1/zM78MADc7Xt+aXgW077PXx/hG/7pk2bQmEqLzyl/VO9evXQY7zAkQQCARcWU3hK4SR1aEpOTnbL/XndvLLbRzquOr6ZVaxYMU/b640l3M6dOzP8nt157i03WBDjAQAAAAAAKC6Ydg4AKDKBless5eWPCFABQIwILl1le7WsKsv7ASjB1M3IozDImjVrXCCmQYMGoS8tTfbuu+9aUlKSDRw40C3vp2CJAknNmze3p556yj1/9erVWV4zL9TVad26dRlu0/J4nlWrVtmZZ55p33//vftdHYxuvPFG143Je29tg5aWUzeo8G1QQEehHW1DXig8Ex6k0rKGK1eudNvt0RJuCj+98MILtn37drvkkkuyfc3M+0dLxylUpG0PH7PCRS+//LJ7v9xse163LbxLkrZx7969GbY7kjFjxmT4XeNRFywFq5o1axa6LdxPP/0U+lnvo+OjZfK8bZRffvklQ7Ap87Zoe3Veal+E7yN1xnrppZds7ty5ud5eb9lJLcfnWbx4cYawV07neUGOBwAAAAAAoLigExUAoEik/TbL0kaNNUtL83soAIBwO3f/t7zfWU0tue3plpDPYAAAxCp1+Jk5c6ZbWq1NmzZuCbOuXbvazTffbIceeqhNmjTJBgwYYFdffbUL+igoo45Jt912m7tNYZehQ4e6oIlCJ95rqhvR+PHjXaehgw8+OFdjadmypX3zzTcuVHTEEUfYyJEj3dJ8HoV1DjnkEHv66adtx44dLrijUJPep1u3bu4xXbp0cYEpfb/uuutcd6Rvv/3Whg8fbg888EC27//HH39YlSpVMnRa0vJ/N9xwg91yyy2uU5GW1DvmmGPswgsvzPBcdaNSeOaMM87IsuSduiwpjFOvXr3Q/pEff/zRPf6oo45y7/Hqq6+67WratKkLVOl3dU1S5yN1ocpp2/UY+fnnn10nJG+JvJzouA0aNMgeeughF25asGCBffDBBxFDWbq9TJkyduKJJ9ro0aNdQErbLTpm7du3d/soLS3NHXsdi/nz54eer+CRjuMnn3zitkf74tdff3XL5Xn7O9q23H333W4ZQI1LY962bZvrxKV9FW35xki0f8uWLWvPPfec3Xnnne64vvbaa1apUqXQY3I6z/V7QY0HAAAAAACguEgIBoNBvwcBACi5gimplvrZjxaY9pffQwEA5CCxTk0rpeX9yu/v91AAoMBMnjzZhYs2bNhgvXv3dp2NFIpReEVdlRR4UbBGgSSvg9KECROsf//+LmyjZeDq16/vwijqyCS6Xb+vWLHC7rjjDrd8W24oeKVuP+pKpA5Fbdu2da/98MMPh4I4Gqe6M2kM6mqkoJcCTHoPb3zLly9326BgmLorqUtU586d3XaIuge1bt3abe/ll18eev+6devaZZdd5sI1oueoLKRAjUJG0qpVK7eEm7d0nUfju/jii+2VV17JsqShXkedpMaNG+d+V2ine/fuNm3aNLe/vaX4FCwaPHiwC44pOKTuRz169AgtjZfTtquLk5b6UzhLIauvv/461+fB+++/77ZRx0ABoEceecQ6dOjglgrUPpoyZYpdc8019thjj7mlC+fNm+e6Md1666127rnnhl5H54PODXX9+vfff+300093r6f94h1DPfeZZ55xITCFkrQ0nkJ7zz77rAuoKTwWbVsUiFNXtIULF1q5cuWscePGdtddd7ljlxc6x3SOqAOVznEdj88//9wOOuig0PHP6TzPzXj69evnlgQMD5Ltq8Ci5ZbyxtACez0AAAAUnrIvR15mHACA4ooQFQCg0AQ2bLbUgV9YcM0Gv4cCAMitCgdY6WsutsTaNfweCQCgkCn8JF6AKjsKQmkJOIXPFAwqabwQlTpGqZMT/EOICgAAoPggRAUAKGlYzg8AUCjSZy+w1KHfmu1J8XsoAIC82LbD/eEy+aKWlnzmyX6PBgBinjoK6Ssn6jxVHKkrkzoVqYOUujLFUoBKS+rlRB2svA5exZ26ReU0F1LLI0ZaphAAAAAAAAA5K54VPABAzAoGApb29XhL/3ma30MBAOSX/lv+xTjXSTC53TmWkMwfYwEgGi2HpuXMcjJ27FirUaP4dfnT0nRDhw61Nm3auCUPY4W3ZGFOtIzd7bffbiWBjoGWTcxOkyZNctVZDAAAAAAAAFmxnB8AoMAEd++11EFfWmDeP34PBQBQQBJqHWalu15qCeX393soABCT1q1bZ+vXr8/xcXXr1o2pLk7FXUpKis2fPz/Hxx188MFWrVo1Kwm0vdru7Oy///5Wu3ZtK85Yzg8AAKD4YDk/AEBJQ4gKAFAgAhu3WOp7Iy24bpPfQwEAFLRK5a30dZdbYo2S8UdoAAAQuwhRAQAAFB+EqAAAJU2i3wMAABR/6QuXWcorgwhQAUBJtXW7pbw+2NL/mOf3SAAAAAAAAAAAAApFcuG8LAAgXqRN+sPSRo0xSw/4PRQAQGFKSbXUj760wJoNlnzeaZaQkOD3iAAAAAAAAAAAAAoMISoAQL4EAwFL+3ycpU/43e+hAACKUPqPv1lw7UYrddUFllCmtN/DAQAAAAAAAAAAKBAs5wcAyLPg7j2W+s6nBKgAIE4F/lxoKa99YsHN//o9FAAAAAAAAAAAgAJBiAoAkCeBDVss5dWPLbBgqd9DAQD4KLhmg+3V/x+sXOf3UAAAAAAAAAAAAPYZISoAQK4Flq2xlNc+tuD6zX4PBQAQC7bvtJT+Qyx9/j9+jwQAAAAAAAAAAGCfEKICAORK+tzFlvLmULOdu/0eCgAgluxNsdR3P7P0aX/5PRIAAAAAAAAAAIB8S87/UwEA8SJt6p+WNvwHs0DA76EAAGJResBSh3xrwX+3W/LZzf0eDQAAAAAAAAAAQJ4RogIAZCttzG+W9u2vfg8DAFAM6P8vglu3W/LlbSwhMcHv4QAAAAAAAAAAAOQaISoAQETBQNDSPh9r6RN+93soAIBiJH3SHxbcttNKXX2hJZQu5fdwAAAAAAAAAAAAciUxdw8DAMSTYFqapQ76kgAVACBfAn8ttJS3hllw526/hwIAAAAAAAAAAJArhKgAABkEd++1lLdHWGDWfL+HAgAoxoJLV1tKv0/c8n4AAAAAAAAAAACxjhAVACAkuH2npbw+2IKLV/g9FABACRBcv9n9/0pg01a/hwIAAAAAAAAAAJAtQlQAAEedQlL6D7Hgmg1+DwUAUIIEN//7X5Bq/Sa/hwIAAAAAAAAAABAVISoAuTZr1iy78sor7YQTTrBTTjnFRowYYbFiypQpNnny5NDvK1eutLp161rHjh19HVex+gO3AlTrN/s9FABASfTvDkt5fYgFVhPUBQAAAAAAAAAAsYkQFYBcCQQC1r17dxekOvvss619+/bWsGFDiwVDhgyxa665xlas+L8l6CpUqODGe8UVV/g6tuJASyztVYCKpZYAAIVpxy5LeWOIBVas9XskAAAAAAAAAAAAWSRnvQkAslq3bp2tX7/ejj76aHvppZcslmzcuDHLbQpR3X777b6MpzgJrN9sKW8OdR1CAAAodLv2WMqbw6z0je0s8cjD/B4NAACIQYl1alrZl3v5PQwAAAAAABCH6EQFIFdSUlLc98qVK/s9FBSQwNqNbgk/AlQAgCK1Z6+lvD3c0hcu83skAAAAAAAAAAAAIQnBYDD4f78CQFadO3e2qVOnZritSZMm7rtuHz16tB1xxBEZ7j/jjDNc96r58+e731euXGmtW7e2Tp062QUXXGD9+vWz2bNnm/4T1KBBA7vtttusadOmWd77+++/t8GDB9u8efPckoK1a9d2S/ddeOGF7v5WrVrZqlWrMjxn7Nix7rver3Hjxm65P096erp7vZEjR9qSJUssMTHR6tatax06dLBLL700w+votcuVK2fvvvuu6741YcIE27Fjhx155JF21VVXuecUV4FV6y3lrWFmO3f7PRQAQLxKTrZSXS+1pONq+z0SAAAAAAAAAAAAOlEByNlll13mglRy2GGHWffu3d1t+fH777/btddea2lpada+fXtr0aKFTZkyxa6//noXqgrXp08fu/POO23BggUuEHX55Ze7YFbPnj3tzTffdI9RoMoLdJ111llubFrKL1o3rZtuusmefvpp+/fff11o6vzzz7cVK1bYfffdZw8++GCW5+hxGqfGpvDXJZdc4h7/2GOP2YcffmjFUWDFmv+W8CNABQDwU1qapb4/ytLnLPJ7JAAAAAAAAAAAAJbs9wAAxD6Fl0466SQbNGiQC1Hdfvvt7vZRo0bl+bX+/vtvF1i67rrrQre99tpr1r9/fxs+fLg1bNgwFLZ677337Oijj7b333/fDj74YHe7OlYpwPX666+7cFOXLl1s+/btriOWglb/+9//3OO2bduW5b0HDhzoukm1bNnS+vbt67pMyebNm61r16722WefWfPmze2iiy4KPWf9+vV2zjnn2Msvv2ylSpVyt6kLloJgn3zyiftenASWrXFLKGkpJQAAfJeebqkffmF2/RWWVLeW36MBAAAAAAAAAABxjE5UAIpU+fLlXfeocGeffXZoyT/PF1984b7fddddoQCVVKxY0R566CEX5NqzZ0+e3lshKS3f9+STT4YCVFKlShX3mjJs2LAsz1P3Ki9AJc2aNXPbET7eYrOE3zsjCFABAGJLWrqlfjDKAotX+D0SAAAAAAAAAAAQxwhRAShSNWvWtOTkjE3wFEjyltsL71gljRo1yvIa6jh18803W/Xq1XP9vjt37rSlS5faEUccYdWqVctyf+PGjS0pKcnmzp2b5b7atWtnuU1jTk9Pd1/FQWDdpv86UO3OW/AMAIAikZJqKe9+aoGlq/0eCQAAAAAAAAAAiFOEqAAUqTJlymS5LSEhwX0PBoOh27Zu3ZohYLWvduzYke3rKdiljlS7d+/O95hjVWDTVkt5a5jZjl1+DwUAgOj2prqOiYEVa/0eCQAAAAAAAAAAiEOEqADss0AgkOW2SGGkvPCW29u+fXuW+9SxKjU1NU+vt//++7vv69ati7oNClpVqlTJSpLg1u2W+uYws3//C5EBABDT9ux1nRMDqzf4PRIAAAAAAAAAABBnCFEByLfSpUuHlsoLt3nz5ojhp7w49thj3fdZs2ZluW/48OHWsGFDGzVqVIauUNk54IAD3FJ+69evd8v6ZTZ79mwX/DrmmGOspAhu3+k6UAU3/+v3UAAAyL1de9z/f2kpWgAAAAAAAAAAgKJCiApAvtWuXdt9/+mnnzLc3r9//31e5u7SSy913/v162dbtmwJ3a5w1kcffWSJiYnWvHnz0FJ8Xoeq7FxxxRVuXE8++aTt2vV/S9vp9Z955hn382WXXWYlQXDnbkt5a7gF12/2eygAAOTdjl2W8uYwC2z8v38DAAAAAAAAAAAAFKb/kgcAkA/t27e3IUOG2BtvvGGLFi2yGjVq2LRp02zZsmWuo9OCBQvy/drNmjWzzp0726BBg+yiiy6ys846y3W+Gj16tOsm9cgjj9ghhxziHnvooYe67x9++KGtWbPGPS+S6667zn777TebOHGiXXjhhXbGGWdYWlqa/fzzz7Zhwwa7/PLLQ+Gt4iyopZDeGWHBNSyFBAAoxrbtcEGqMrd3soRK5f0eDQAAAAAAAAAAKOHoRAUg3+rUqWPvv/++nXzyyTZ+/Hi3zN7BBx9sw4YNs8MPP3yfX//hhx+2Pn36uHDWV199ZSNGjLDq1avbK6+8YldffXXoceeff74LWikI9cknn0QNb5UqVcoGDBhgDzzwgFWoUMEtB/j9999brVq17KWXXrLevXtbcRdMSbWUdz+z4Iq1fg8FAIB9t2Xbf8Hg3Xv8HgkAAAAAAAAAACjhEoL7uuYWACAmBANBSx04ygJ/LfJ7KAAAFKiE2jWs9M1XWsL/X8IXAAAAAAAAAACgoBGiAoASIvWzHy194ky/hwEAQKFIPKGulep8sSUkJvg9FAAAUIgCi5ZbyhtD/R4GAAAAcqHsy738HgIAAAWK5fwAoARIGzuFABUAoEQLzJpvaZ+P9XsYAAAAAAAAAACghCJEBQDFXPqMuZb27Xi/hwEAQKFLn/C7Cw4DAAAAAAAAAAAUNEJUAFCMpS9cZqlDvzNjYVYAQJxQcDh9+hy/hwEAAAAAAAAAAEoYQlQAUEwF1myw1A8+N0tP93soAAAUnaBZ6rDvLH3+P36PBAAAAAAAAAAAlCCEqACgGApu3W4pAz4127PX76EAAFD00gOWOvBzC6xc6/dIAAAAAAAAAABACUGICgCKmeCevf8FqLZu93soAAD4Z2+qpQz4zAWLAQAAAAAAAAAA9hUhKgAoRoL/v/NGcM0Gv4cCAID/tu+0lPdHWjAl1e+RAAAAAAAAAACAYo4QFQAUI2mfj7XAgmV+DwMAgJgRXLnOUod+6/cwAAAAAAAAAABAMUeICgCKibSJMy194ky/hwEAQMwJ/DHf0n6Y6PcwAAAAAAAAAABAMUaICgCKgfSFyyxt1Fi/hwEAQMxKGz3R0mcv8HsYAAAAAAAAAACgmCJEBQAxLrBxi6V++IVZIOD3UAAAiF1Bs9TB31hg1Tq/RwIAAAAAAAAAAIohQlQAEMOCe1Ms9f1RZrv2+D0UAABiX0qqpbw/yoLbd/o9EgAAAAAAAAAAUMwQogKAGBUMBl1HjeDajX4PBQCA4mPLNkv54HMLpqX7PRIAAAAAAAAAAFCMEKICgBiVPnqSBf5c6PcwAAAodoJLV1nqiB/8HgYAAAAAAAAAAChGCFEBQAxK/2uhpY2e6PcwAAAotgLT/rK0iTP9HgYAAAAAAAAAACgmCFEBQIwJbNjslvGzoN8jAQCgeEv7YpwFVqzxexgAAAAAAAAAAKAYIEQFADEkmJpmqR9+abYnxe+hAABQ/KWlu/9fDe7a4/dIAAAAAAAAAABAjCNEBQAxJG3UWAuuXu/3MAAAKDGCm/+11CHfWDBIi0cAAAAAAAAAABAdISoAiBHpM+Za+uRZfg8DAIASJzBnsaWPm+r3MAAAAAAAAAAAQAwjRAUAMSCwbpOlfvqD38MAAKDESvvuFwssWu73MAAAAAAAAAAAQIwiRAUAPgumpFrqh1+Y7U31eygAAJRcgaClDPrKgtt3+j0SAAAAAAAAAAAQgwhRAYDP0kaOseDajX4PAwCAkm/7Tkv96EsLBgJ+jwQA4sbkyZPt3HPPtfr169sNN9xg/fr1s7p16/o9LAAAAAAAACCL5Kw3AQCKStrUPy196p9+DwMAgLgRWLzC0r6fYKXanuH3UAAgLvTp08cCgYC98847VrVqVatYsaKdfvrpfg8LAAAAAAAAyIIQFQD4JLB2o+tCBQAAilb62MmWWKemJR1Ty++hAECJt3XrVjvllFOsRYsWodsOOeQQX8cEAAAAAAAARMJyfgDgg2BKqqV++IVZSqrfQwEAIP4EzVIHf2vBnbv9HgkA+CYYDNrAgQPt/PPPt4YNG1qbNm3svffec7fLxIkT7aqrrrKTTjrJmjZtaj179rQ1a9aEnj9y5EirV6+ezZo1y9q3b28NGjSws846y72GrFy50i3bt2rVKvv888/dz1OmTIm4nJ+e07p1azeODh062Lhx40KPj6ZVq1bWt29fe/bZZ11IS2Ps1auXC23Jzz//7F5jwoQJGZ43ffp0d/uMGTNCr9O5c+fQ/ff/P/buAzqO8mrj+LOrVS/uvdsYU2wDppreQ+glCRBC753Q+UIoAUJLSGgOvRN6L6GajsGAMcYG994ky5ZcZLXdne/c16yQZFldnt3V/3fOHkmzszP3nR0ZYT2+98or3dcvvviiW88222yjE088UVOnTq1xnG+++UannnqqO7eNKrTj2Nqs61b19T/66KM64IADtNVWW+mll15SWVmZrrvuOu2+++7udfZc7JrF2BquueYaFzyz6/qHP/xB48aNU3PYtT/iiCPc+ffcc0/985//VEVFRdXzP/74o1uHXb9Ro0bprLPO0owZM6qet/fA1vHss8+662H72L2xYsUKd0/ssssursbDDjvMnQsAAAAAACCR0YkKAHwQfvMTefnL/S4DAID2a9UaVT73P6WdcqTflQCAb2P2Hn/8cZ188skuCGNhmn/84x8Kh8Pq0aOHrrjiCh188ME688wzVVRUpLvuusuFpV555RU3ls9YYOiiiy7SSSed5D5a8MiOu+mmm7pQznPPPafzzjvPha3OOeccbbLJJho/fnyNOu655x7de++9Lsiz00476bPPPnPHaoz//ve/GjBggG6++WYX6rGA0Lx581zgx0YGdu/eXa+99pp23XXXqtdY0GfgwIEuHBY7f1paWo3j/vzzz5o9e7YuvvhiN37Q1v6nP/1Jb7/9tjumBapszRaAsiCXBc/eeOMNd6zBgwfroIMOqjqWBav+8pe/KCcnxwWZLPRlwS67vl27dtWnn37qrlnHjh111FFHqby83IW2CgsL9ec//9mdz8JXp512mh566CGNHj260e/x008/rb/97W/6/e9/79ayYMECd66VK1e67V999ZU7rr1XVped+/7773dBtueff15Dhgyp8T5dffXVLgRmwbLzzz9fy5cv1/XXX+/WZtfZ1mRdxux9BAAAAAAASESEqABgI4tMm6vIFxP8LgMAgHYvOnmmwl9OVGjnrf0uBQA2qlWrVumJJ55wwaDLLrvMbbOuR8uWLXMdliwkZMEjCyXFWAeiAw880HVNso5PxsJDFo6ykI6xYNL777/vukBZiGnrrbd2AaXOnTu7z2tbu3atHnzwQR133HG69NJL3TY7b2lpqQtgNSQYDLpOT7m5ue5rO8+5557rgljW6ck6MD355JMqKSlRdna2CwD973//0xlnnFF1DAt41bZ69Wrdd9992m677dzX1iFr3333ddfM6rTrY9fr9ttvdzUYC6JZBy3r3FQ9RGWdviwcFWMhMts3to8FmLKysqqCaRZGsuNbiMlCV8bWYt2xLORmgarGsICbhdOs7htvvLFqu13bt956S5WVle79tRDaAw88oJSUlKrrb13JLDh25513Vr3OupJZaKz6Ouxa2/HNDjvs4IJgtQNpAAAAAAAAiYRxfgCwEdnYoMpn3nZjhAAAgP/Cr3+kKN0hAbQzEydOdB2n9t9//xrbrdPQVVdd5cJU1oWquv79+7sORLU7Sdm2mFhgysJRja3Dgk3Vwzmm9rk3xEboxQJUsa9DoZALghkLL1ktFuwy9tG+Pvzww+s9bt++fasCVMa6Qdk6Y8e111v4y4JIFnh69913XegoEom4bdVtvvnmNb620JQFpE4//XQ99dRTrjuUhZFs1J6xsX3dunXTlltu6d4je9hxbZTe5MmTXRepxpgzZ47rFGWBqOqs45eNYrQ6rfuYhbxiASqTl5fnzlX7fa5rHdZl64ILLtALL7zgOmdZJyoL2wEAAAAAACQqOlEBwEZU+dJ7bnwQAACIExWVqnz6TaVd+CcFqv0SGQCSWXFxsftogacNPWej5mqzbT/99FONbRkZGTW+ts5M1qGqMWwEX111xLoyNcTGDtY+d6dOnaqCRtZlyTok2Qg/Cz7ZR+sgVft1DR03VtOUKVPc5xb8uuGGG1zXKAs5WejKQlYW4Kq9dusyVZ2N9rORd6+//ro7hj3stdddd50222wzd/0txGYhqrrYczZisCGx93FD19K6bVmtG3qf7fn61mFjDK1bl3X2shCZXXu7tjYmsE+fPg3WBwAAAAAAEI8IUQHARhL5boqiE6f5XQYAAKjFW5iv8HtfKvW3u/ldCgBsFNZtKBZiGjx4cNX2xYsXa9q0df/PYp2F6grwWEiptViYyFjHpOp1xMJVDSkqKqrxtXVssm3VQ1nWjer//u//NGvWLNflyUbiNfW4sesRCyTddNNNLjj073//2wWHYgGj0aNHN3hs69Z19tlnu4dd748++khjxozRJZdc4sbsWWetgQMHbrBOC2w19T2uvTYLwllwKxAIbPB9ttF89bE6bRSkPWbPnq0PP/zQreP666934wEBAAAAAAASEeP8AGAj8IpWqfLlD/wuAwAAbEDkw68UnbvY7zIAYKMYOXKkUlNTXYCnukceecSNpbNxcm+++WaN52zsnI3fa81xbdZ5ycI4sXF7Me+9916jXv/pp5+qoqKi6msL8lhnqOphpt/85jfKzMx0nZ6ys7O17777NnjcuXPnutBVTH5+vr7//vuq43733XdunJ0dKxagslF7FliKRqMbPK51sLJ67Dqb3r1767jjjtNBBx3kAlXGOmctWbLEBbZGjBhR9fjiiy/00EMP1Ri9Vx8LpVngrfZ7bN2zzjjjDDfOb/jw4a6TlIXPYqwD1ccff6xtt912g8detGiR9thjD73zzjtV57LxhBYoi60DAAAAAAAgEdGJCgDamI1IqHzmbam03O9SAADAhkQ9Vf73TaVdcpIC6Wl+VwMAbco6NZ1wwgl67LHHXGckC+788MMPeuaZZ3T55Ze7YNNVV13luiMdeuihrnvRPffc48bInXzyya1WR05Ojk477TQX3LKgk9Uxfvx4V4exEXHGglLWPck6V8W6VxkLG1lHJ1uLfX7HHXdot912cwGnGDuuhZSee+45HXvssW691dlxbdsmm2xS4//hzjrrLP35z392oaXY2o8//viqEJqFj6zOIUOGaOrUqfrPf/7jOjuVlpZucL02+tDG9NnxLMQ2bNgwzZkzR6+88ooLV5kjjzxSTz31lLvOVkOvXr305Zdf6sEHH9Sf/vQn97rGsLrPP/98N17PAll77723O5ddawtu2Xrs/T311FNdqOqPf/yjC1ZZFym73ueee+4Gj23j+ux9uPHGG7VmzRr179/fhcg++eQTnXnmmY2qDwAAAAAAIB4RogKANhb55FtFZ873uwwAANAAr7BY4Tc+Vurv9ve7FABoczaGzcI1zz77rOtwZGPi/vrXv+qYY45xz1vXpvvvv9+FaSzsZOGkiy++2HWpak0WurHQkoWcHn74YW211Va69NJLdfPNN1d1eSooKNDRRx+t8847zwWDYiwcZWPrLrroIrfvEUcc4YJPte25557u+BZQqs2OaaGgJ598smqbdYg65ZRT9Pe//92FoqzDkoWkYiPurrzyShc4snF+Fjiya2dhrpkzZ2rs2LE1OjvVZqEme511o7KxefYe/O53v9OFF17onrd1PP300/rnP/+p22+/3XWGsvos8GQ1NYWFpex4dl1t/RZ8so5R9jDWWevRRx91wSp7by1Mtt122+nWW2/V0KFD6z22BcEstHbnnXe6kJ2FvexaWiALAAAAAAAgUQU8+5sqAECbiC4tVMUdj0vhDf8lOgAAiCMBKe2cYxUc0s/vSgAg6dnoPRsbaJ2jLIQTYyEi63L09ddfu5BUXayzknWuuuWWWxo8z7XXXus6bb366qsN7msBKeuGZWEo+MP+EVLFmGf9LgMAAACNkHHH5X6XAABAq6ITFQC0Ec/GAj37PwJUAAAkEk+qfP4dpV16sgKp/O8SALSlUCjkxtQ9/vjjrpNTp06dNH36dNep6fDDD99ggKqxnnjiCc2ePVvPP/+86+qUDOzfQtbX6ar6OD8bLwgAAAAAAIDG47cCANBGIp99J2/+Er/LAAAATeQtK1L4nc+VesiefpcCAEnvvvvuc2PhrrvuOq1atcqN0jvxxBPdmL+W+vbbb/XZZ5+54x188MFKBq+88oquuuqqRgXIrMMXAAAAAAAAGo9xfgDQBrwVK1V+2yNSRaXfpQAAgOYIBpR24fEK9uvpdyUAAFQpKirSwoULG9xv0KBBysnJUSJinB8AAEDiYJwfACDZ0IkKANpA5YvvEaACACCR2Vje595R2p9PUCAl6Hc1AAA4NvLQHgAAAAAAAGh9/DYAAFpZ5Nspik6d43cZAACghbzFBYqM/drvMgAAAAAAAAAAwEZAiAoAWpG3Zq0qXxvrdxkAAKCVhN//UtH85X6XAQAAAAAAAAAA2hghKgBoRZWvjpVKSv0uAwAAtJZwxI3186Ke35UAAAAAAAAAAIA2RIgKAFpJ5OfZik74ye8yAABAK/PmLlLk8wl+lwEAAAAAAAAAANoQISoAaAVeeYUqX3zP7zIAAEAbCf/vM3mr1vhdBgAAAAAAAAAAaCOEqACgFYTf+VwqWuV3GQAAoK1YYPr1j/2uAgAAAAAAAAAAtBFCVADQQtGlhYp8xogfAACSnY3tjc5a4HcZAAAAAAAAAACgDRCiAoAWCr/6oRSN+l0GAADYCCpf/kAe/90HAAAAAAAAACDpEKICgBaITJqu6PR5fpcBAAA2Em/JMkU+/97vMgAAAAAAAAAAQCsjRAUAzeRVVKrytbF+lwEAADay8Dufy1td4ncZAAAAAAAAAACgFRGiAoBminw0Xipa5XcZAABgYysrV/jNT/yuAgAAAAAAAAAAtCJCVADQDN6KlQqP/drvMgAAgE8i305WdO4iv8sAAAAAAAAAAACthBAVADRD5esfSZVhv8sAAAB+8aTKlz+QF/X8rgQAAAAAAAAAALQCQlQA0ESR6fMUnTTd7zIAAIDPvIX5ioyb6HcZAAAAAAAAAACgFRCiAoAm8CJRhV/5wO8yAABAnAi/+4W8snK/ywAAAAAAAAAAAC1EiAoAmsC6TXj5y/0uAwAAxIs1axX+aLzfVQAAAAAAAAAAgBYKeJ7ntfQgANAeeOUVKr/pAffLUgAAgCppqUr/v9MVyMvxuxIAAAAAAAAAANBMdKICgEaKfPwNASoAALC+ikqF3/nc7yoAAAAAAAAAAEALEKICgEbwVpcobCEqAACAOkTG/6goI38BAAAAAAAAAEhYhKgAoBHC74+Tyiv8LgMAAMSrqKfwm5/4XQUAAAAAAAAAAGgmQlQA0IDo8mJFxk30uwwAABDnolNmKjp7od9lAAAAAAAAAACAZiBEBQANCL/9mRSJ+l0GAABIAJVvfOx3CQAAAAAAAAAAoBkIUQFAPaIL8xWd+LPfZQAAgAThzVusyA/T/C4DAAAAAAAAAAA0ESEqAKhH+K1PJM/vKgAAQCIJv/2pPLpYAgAAAAAAAACQUAhRAcAGRKbPU3TaXL/LAAAACcZbVqTId1P8LgMAAAAAAAAAADQBISoAqKeLBAAAQHNE3h9HNyoAAAAAAAAAABIIISoAqENk6hx585f4XQYAAEhQ3vJiRSf85HcZAAAAAAAAAACgkQhRAUAdwu9/6XcJAAAgCX6e8KJ0owIAAAAAAAAAIBEQogKAWiIz5smbs8jvMgAAQILzCq0b1c9+lwEAAAAAAAAAABqBEBUA1BJ5f5zfJQAAgCRBNyoAAAAAAAAAABJDyO8CACCeROcsVHTmfL/LAAAAScJbVqTo9z8rZdst/S4FAICEYP9PXjHmWb/LAAAAAFCHjDsu97sEAGhTdKICgGrC79GFCgAAtK7w++PkRT2/ywAAAAAAAAAAAPUgRAUAv4jOX6LotDl+lwEAAJKMV7BC0Yk/+10GAAAAAAAAAACoByEqAPhF+P0v/S4BAAAkKbpRAQAAAAAAAAAQ3whRAYB1oVqUr+iUWX6XAQAAkpSXv1zRyTP8LgMAAAAAAAAAAGwAISoAsO4QH3zldwkAACDJhT/5xu8SAAAAAAAAAADABhCiAtDuRZcXKzpput9lAACAJOfNWaTovMV+lwEAAAAAAAAAAOpAiApAuxf59DvJ8/wuAwAAtAPhj+lGBQAAAAAAAABAPCJEBaBd88rKFRn/o99lAACAdiL643RFV6z0uwwAAAAAAAAAAFBLqPYGAGhPIl/9IJVX+F0G6rHVWw83uM+hfYfqhq12r/p64drVunfad/qqcJFWVVaoe0aW9u45QGcNHaXc1LRGnbcyGtVTcybrrUUzNb9klQKBgIbkdNTv+m+mI/sPq7Fv1PN059Rv9OqC6bKeZjt17a0rthytLumZNfYrj4R12CcvaueufXXNyF0bfQ0AAEkk6inyybcKHrGP35UAAAAAAAAAAIBqCFEBaLe8aFThzyb4XQYacNbQbercbmElCzmVhCu1Q5deVdsXlKzSn754XcWV5dq1W18Nye2kiSvy9dScKfqqcLGe2PlgZYfqD1JFvKjO++Zdt//A7A46ot8wVXoRfZq/QNf/+Lkmr1yma0b8GoJ6bt7Pemz2jxrdtY/6Z+e5MFV+WYke3/mQGsd9Zu5PKq4o19mbjmrxdQEAJK7I+EkKHbCLApkZfpcCAAAAAAAAAAB+QYgKQLsVnTRdKlrldxlowIYCR4/P/tEFqKwz1CF9h1ZtHzN9ggtQXbz5Djpx8Ai3zfM8XTvpM722cIaenjNFZ2wgmBXz2oIZLkC1e/d+umPbfZQaTHHbV29WoZPGvamX5k/TAb0Ga4euvd32F+dP1eCcjvrPDr9xHat6ZGTrrmnf6ueVhdq8Q1e3z6rKcj086wcdP2i4umVktdr1AQAkoPJKRcb9oNDeO/pdCQAAAAAAAAAA+EUw9gkAtDfhT7/1uwQ008zVRbp72rfqm5WrS7eo+QvoH4sL3Mej+v06cs+CTX8YsLn7/Ieidc/X590ls93H84dtVxWgMjYK8KRfglmfFMyv2r6wZJWG5nZy5zGb5XVZt33t6qp9HpwxUaFAUCcNWfd6AED7Fv7sO3mRiN9lAAAAAAAAAACAXxCiAtAuReculjd3sd9loJlu/+krVUajumrL0cpMqdlUsWPautFIi0vX1Ni+rGyt+9jpl+frc0ifoTp9k601KKfDes+l/RKqWhuurNrWIS1DayPhqq/XhCvcx7zU9HW1rF2tZ+f9rDOHbtPgKEEAQDuxco2i30/1uwoAAAAAAAAAAPALQlQA2qXwp9/4XQKa6fOCBW7U3k5de2vX7v3We/7oXzpOXfPDp/ppZaFKI2F9s3yJbvvpK6UHU3TswC0aPMfBfTfRecO2rdGFKuaDpXPdx6G5nau2bdWpu8YXLtbEFfkqqijT8/N+VlZKqoblrdvnnunfqWdmths9CABATPgTfh4BAAAAAAAAACBe1GzfAQDtgFe0StFJ0/0uA8306KxJ7qN1darLIX2HKj0lpL9N+lzHfv5a1fZu6Vl6dPRB2rJjt2af+7OCBXpvyRzlhtJ0YJ8hVdstcPX9inydOO5N93UoENDVI3Z1XbGmrlyutxfN0j9G7a1QcF12Oep5Cv4y+g8A0H55iwoUnbdEwQG9/C4FAAAAAAAAAIB2jxAVgHYn/OVES7H4XQaa4eeVhfp2xVKN6txDozr3rHOfGatW6N5p36k0Uql9ew5U78wcTV21XOOXL9E1kz7T3dvtp95ZuU0+93fLl+iyCWPd538ZsXPV2EAzILuDXtr9SH2cP09rwpXasWtvbZLbyT33r6njNbJjd+3ba5CWlq7RtZM+c52xrFPVkf2H6YJh21WFqwAA7U9k3ERCVAAAAAAAAAAAxAFCVADaFS8SUeTrdZ2MkHheWzjDfTx6QN0j+daGK3XW+He0srJcj4w+SFt16lH13KsLprsA0wXfvq8XdjtCgSZ0gvpo6Txd+f1HKotGdNFm2+u3vX/tQhXTIS1dh/XbtMa2L5ctdKMHrQOW+cvETzSvZJVu22Zv5ZeV6I6fv1aH1HSduslWja4FAJBcIhOnKnTY3gpkpvtdCgAAAAAAAAAA7RqtLwC0K26M35q1fpeBZrJOT5kpIe3Ro3+dz3+SP1+F5aU6vO+mNQJU5vB+m2qHLr00Y3WRJhUXNPqcT8z+URd/96EqolFdueVonTxkZKNe53me/j31G+3Vo7/rmjVrdZHronXykBHat9dAHTdoS+3Wvb+emjO50bUAAJJQRaUi307xuwoAAAAAAAAAANo9QlQA2pXIuB/8LgHNNG3Vci0pLXEBKgtS1WVx6Rr3cXBOxzqfH5rbucZ+DYWgbpkyTv/8ebxSg0HdPmpvHTuw7g5YdXlz0UwXnLpws+3d13PWrKwa/RczMKeDVlSUaXVlRaOPCwBIzpF+AAAAAAAAAADAX4SoALQb0YLlis6c73cZaKYfitZ1j9q2c88N7tM1PdN9nFuyLrBU27xftndLz2rwfDdPGadn5v6kjqnpenCn37ruUY1VEYlozPQJOrzfMA36JdAV8aLuY9jzauxngo2fLAgASELe0kJF5yz0uwwAAAAAAAAAANo1QlQA2o3IV5P8LgEtMKW40H3cvEPXDe6ze4/+yg6l6rWFMzSleFmN5z5aOk9fLFuoPpm56436q+2tRTP13LyflRtK08OjD2pw/9osfFVUUaazh25TtS3WHev7FUurtk0sylf3jCxlh9KadHwAQPIJf0k3KqAlrItovB6zLWpLFG219mS6phtzLcl03QAAAAAAANoCISoA7YIXjijy7RS/y0ALLFi7yn200NGGdErL0HUjd1M4GtGJ497UZRPG6l8/j9d549/VRd99oKxQqm7eZg83ni/mqTmT9Z/pE7Ro7Wr3dTga1V1Tv3WfD8vrrPeXzHHP1358sGRunTWsqizXQ7Mm6oTBI9S1Wq1D8zpr60499OScyfrbpM917vh3NWVloU4aPKLVrhEAIHFFf5gur6TU7zKAhPThhx/qiiuuaNVjfvfddzrjjDOa/Lq9995bV155ZdXXY8aM0cMPP6z2qK3W/sILL+jWW29VPFm4cKGGDRuml19+OW7Wwr0IAAAAAADQdKFmvAYAEk50ykxpzVq/y0ALWGcnY92h6rN/r0HqnZmjR2ZN0jfLl2h1Zbk6pWXq0L5DdfomW6t/dl6N/Z+eM0WLS9douy691CcrV7PWFGlpWYl77tsVS92jLgf2HlLniL+HZ/6gUCBYZzjqjm330U2Tv3SdrizQddbQbXTswC2bdB0AAEkqHFbkm8kK7bm935UACeexxx5r9WNauGXWrFlNft0999yjnJycqq/vvPNOnXfeeWqP2mrt//nPf7TDDjsoGbTlWrgXAQAAAAAAmo4QFYB2gVF+ie+VPY5q9L7DO3ZzgaXG+N/eR9f4elheF/1w0Klqrj9vvoN71KVLemaj6wIAtD+Rr34gRAUkuC222MLvEgCHexEAAAAAAKDpGOcHIOl5RasUnV736DUAAIB44RWsUHT2Qr/LABLK8ccfr/Hjx7uHjVP7+uuvVVxcrGuuuUY777yzRowYoT/84Q8aN25cjdd98cUXbvs222yj7bffXmeffXZV5ykbgfbKK69o0aJFTR7RVn2Emr021hEo9rmZPn26zjzzTI0aNco9zj33XC1YsKDqeVuD7W812/pGjhypPffc03XHKigocN2ErO499thjvS5cjz/+uA444AC37t12203XXXed1qxZs8F6bW12rh9++EFHHHGEO9chhxyid955p2qfo446Ssccc8x6rz3ppJN08skn1ziO1d6StTe0Bru+9r7Y+2PHtTF6jRG7prH6Yuz62iPGjv+vf/1Lf//73919seOOO+ryyy9391R17733ng499FB3vey6TZ06db1z2jZ7r3baaSdtueWWbi033nijysrK6l3L4sWLdfHFF7sOVVtttZVOPPFE/fTTT2oqv+9FAAAAAACARESICkDSi4z/UfI8v8sAAABoUOS7KX6XACSUa6+91nXcscdzzz3nwioWOvnwww/15z//2YVGevbsqdNOO60qSGUhkXPOOUfDhw9349RuuukmzZkzR2eccYai0ah7zkIh3bp1c8e00Ehz2GvN7373u6rP7TwWSFq+fLluvfVWd26r59hjj3XbqrMgjQVh7r//fg0aNMit9YQTTtDQoUM1ZswYF2i5+eabNWnSuq67b775pm6//XYdd9xxevjhh10g5rXXXtMNN9zQYK0WpNlnn33c9bJzXXTRRfrkk0+q6v/+++81b968qv2XLFniAjZHHnmk+9quUez6t2TtDa3B6rP3xd4fO2737t3V2v773/9qwoQJ7tpecskl7jrY9fF++X/KsWPH6oILLnDhonvvvVe//e1vddlll9U4hgWMbA2lpaW65ZZb9OCDD+qggw7Sk08+qSeeeGKDa1mxYoW7RlOmTNFf//pX/fOf/3T3pB2rOeMl/boXAQAAAAAAEhXj/AAkPX4ZCQAAEkXkh2kKHbGvAqEUv0sBEsImm2yinJwc9/nWW2+t559/3nUAso/WxcfsvvvurovOP/7xD7300ksu6GHdgCwY06NHD7ePBa0seLV27Vr1799fnTt3Vlpamjtmc8Vea8eOfW7BmczMTNe1J1b36NGjte++++qhhx7SFVdcUaMDVKzTU1ZWluucZWGVCy+80G3bbLPNXEckC/zYduvG1bdvXxe4CQaDrpORvW7lypUN1mrXxwJLxjomWXclCwhZwOfggw92QSALM1l4yNjn2dnZ2m+//dzXdr3s0dK1N7QGC8vZ+2Lnasl7Ux8776OPPqrc3Nyqtdm1+eyzz9y9ZNfFrreFvWLXy1jgqXqHp80331x33nln1VqtM5p1QLPwmQX26lqLdeGyrlfPPPOM+vTp47bZOQ888EB3rLvuuish7kUAAAAAAIBERScqAEktOm+JvMKaoxcAAADi1toyRX+e7XcVQMKyblPW3cc6IoXDYfeIRCLaa6+9NHnyZBfGsXBVenq668pj3XcsHGMhEOtcFQuTtJWvvvrKBYMyMjKq6rNzbrfddvryyy9r7Gtj0mK6dOniPsaCYaZTp07u4+rVq91HGxtn3YWsO5QFZH788Uc3mq/6uLoNsdBUTCAQcOGoWNjMwkT777+/Xn/99ap9bASdBXtsHa259pasobVYx6VYgCr2dSgU0jfffOOuh3WJsvupOutGVd2uu+6qp556yt1nM2fOdAE963pmnaYqKirqvX8tfGXhvtg1slCXBalq3x/xfC8CAAAAAAAkKjpRAUhqkQk/+V0CAABAk7topowY6ncZQEKyLj7Lli2rGitXmz1n3ass4PLAAw/oxRdfdOPV8vLy9Mc//tGNsbMQUVvW9/bbb7tHbdU7OZm6Al3WOWhDLNRko99sHJ2NWLv77rtdN6NLL73UPVef2mPxLChj4+tWrVrlQjYWOLMQ1bfffquUlBTNnTvXjYBr7bW3ZA2tJdadLMZCTBYSsgCePey6xEJDG7p+toY77rhDTz/9tOtu1qtXL9ehyUJVDV0jG5u4ofvXxgPWdw/Ey70IAAAAAACQqAhRAUhaXjSqyMSpfpcBAADQJNGfZskrLVcgs/5ftgNYn3UQGjhwoBvdVxcbFWcs0GKdjqwr0HfffafnnntO9913n+tIVburUGvXZ2PdYqPRqrNuRy1lo/fsYR2BPv/8cz344IO67LLLtO22264XDqodqOnatWvV14WFhS4s1bFjR/e1dSyyMYfvvPOOCxUNHjy4yeP0Grv25q6hPrFgnIWbqispKXFjCasrKiqq8bV1MrNtFiyy62Hrt+tT+/pVZwE9G5N3/fXXuy5esc5WFkarj+1n1/ryyy+v83kb/5co9yIAAAAAAEAiYpwfgKQVnTFfWl3idxkAAABNE44o8gNBcKCxLNQSYwGUJUuWuE5KI0aMqHp88cUXeuihh1wwyMItNo7NAlQWShk9erRuuOEG9/rFixevd8zWqi1Wn413s5FtsdqGDx/uanr//fdbdC7ronXuuedWBWQsDHbOOee4MW0FBQX1vvaDDz6o+tw6Lb333nsutBQL7VgIyUbs2X5jx46tMf6vNdfemDU0572JdVJaunRp1TbrKjVr1qz19v30009rjNyzUXx2frtPrJOUjbaz62PXKcauSXUWzLOOZ0cddVRVgCo/P1/Tp0+vEeSq6xrZOMNBgwbVuH9fe+011zXN7t9EuBcBAAAAAAASFSEqAEmLUX4AACBRRb7j5xigsWwUnwVPxo0bp/3220+9e/d23XVeeeUVffXVV26s2p133ulGrqWmpmqnnXZyY/0srPPJJ5+4bkdXXXWVCwxZuCp2TOs2ZM83FEBqqLYJEybom2++caEbCwTNnz9fZ555pgskffbZZzr//PP11ltvuS5YLWHrsmPamD27Fu+++65bt3Xmih3bzj1x4sT1Xnvbbbfp8ccfdwGiCy64wIWLLrzwwhr7WIjKroUFzQ477LAaz61YscIdd82aNS1ae2PWYMf96aefNH78eJWVlTXq2gwbNsyN1Lv33ntdQMjOcdppp9U5ks5CeGeffbZ775999lldffXV2m233bTjjju65y+++GJ3fc477zx3vey63XXXXTWOYZ3Opk2b5jpSWZ0vvPCCjjvuOBfOspF81a9R9bWcdNJJLmRlH23Mnl2Dv/71r3ryySddsKolNua9CAAAAAAAkKgIUQFISl5lWNEfp/tdBgAAQLN4sxfIK1rldxlAQrBwioWjTj/9dBdGefrpp10Xpdtvv91ts65Bl1xyiQtKGQuI2Og+C/xYIMbCMDaO7ZFHHnFj6mKBoT59+rig1auvvtrs2s466yxNnjzZ1WHhHDu31WednWxkmwWWLNBl4R4b+9YSxxxzjAv8WLDHznvNNddoyJAhbl12fcyYMWN09NFHr/fa6667Ts8//7y7FlaPvWa77barsY+N0rP6d9111/XG6n388cfuuFOmTGnR2huzhlNOOcUF3E499VR3/MawDk4WdLKRhfae33TTTTrooIPqvOa23UYXWlesu+++23XdstGPMXZdbMSgdZay62WjIP/+97/XOIYFk4499lg98cQTbv0PP/ywC57Z/jNmzNCqVavqXItdVwtu2b1n74ldg0mTJrl6LVjVEhvzXgQAAAAAAEhUAa96/3EASBKRiVNV+cTrfpcBAADQbKGDdldon538LgNAEnv55ZdduMxG1vXt27fefS00ZJ26LIy07777KhntvffebszdLbfc4ncp7Vp05nxVjHnW7zIAAAAA1CHjjsv9LgEA2lSobQ8PAP6ITPjZ7xIAAABaPNKPEBXgPxuvZo+GhELJ+VcsP//8swtZ2Wg9G6tnQaN4EYlE3Gi6+linJetElQza+70IAAAAAADQ1vhbFQBJxystU/Tn2X6XAQAA0CLe0kJFlxYq2LOr36UA7ZqNN6s+zm1DGtPNKRGVl5fr0UcfdaPm7rjjDgWDQcULG3FnIxzrY6Pxxo4dq2TQ3u9FAAAAAACAtsY4PwBJJ/z1JIWfe8fvMgAAAFosdMCuCu2/s99lAO2ajbErKChocL9hw4YpLS1to9SEdWbPnq2SkpJ697H3xN6bZNBe7kXG+QEAAADxi3F+AJIdnagAJJ3ojzP8LgEAAKBVRCZNJ0QF+Mw6MNkD8Wfw4MFqT7gXAQAAAAAA2lb89GAHgFbglVcoOn2e32UAAAC0Cm9xgaKFRX6XAQAAAAAAAABA0iNEBSCpRKfNlcJhv8sAAABoNdFJ0/0uAQAAAAAAAACApEeICkBSiUxmlB8AAEi+kX4AAAAAAAAAAKBtEaICkDS8SFTRn2b5XQYAAECr8hYskbdqjd9lAAAAAAAAAACQ1AhRAUga0dkLpLVlfpcBAADQujzrtjnT7yoAAAAAAAAAAEhqhKgAJI0ov1wEAABJip9zAAAAAAAAAABoW4SoACSNyOQZfpcAAADQJqIz58krK/e7DAAAAAAAAAAAkhYhKgBJIbooXypa5XcZAAAAbSMcUXTqHL+rAAAAAAAAAAAgaRGiApAUGHEDAACSHSEqAAAAAAAAAADaDiEqAEkhMoUQFQAASG6RaYSoAAAAAAAAAABoK4SoACQ8b81aeTbODwAAIJmtXKPo0kK/qwAAAAAAAAAAICkRogKQ8KIz5kme31UAAAC0vSjdqAAAAAAAAAAAaBOEqAAkvOj0uX6XAAAAsFFEp/JzDwAAAAAAAAAAbYEQFYCEF5k+z+8SAAAANoro7AXyKsN+lwEAAAAAAAAAQNIhRAUgoUULVkhFq/wuAwAAYOOoDCs6e6HfVQAAAAAAAAAAkHQIUQFIaIzyAwAA7U102hy/SwAAAAAAAAAAIOmE/C4AAFqCEBUAAGhvotP4+QcAkLyCm/RXxh2X+10GAAAAAABoh+hEBSBhedGoojMX+F0GAADARuUtWSZv1Rq/ywAAAAAAAAAAIKkQogKQsLz5S6Sycr/LAAAA2OjoRgUAAAAAAAAAQOsiRAUgYfHLQwAA0F5FZ9GNEwAAAAAAAACA1kSICkDCisyY53cJAAAAvojOWeh3CQAAAAAAAAAAJBVCVAASkheJyJu/1O8yAAAAfOEtK5K3usTvMgAAAAAAAAAASBqEqAAkJG9hvhQO+10GAACAb6JzFvldAgAAAAAAAAAASYMQFYCExC8NAQBAe8dIPwAAAAAAAAAAWg8hKgAJKTqXEBUAAGjforMJUQEAAAAAAAAA0FoIUQFISISoAABAe+ctKpBXUel3GQAAAAAAAAAAJAVCVAASTnR5sbSqxO8yAAAA/BWNKjpvsd9VAAAAAAAAAACQFAhRAUg43hy6UAEAABh+LgIAAAAAAAAAoHUQogKQcBjlBwAAsE50zkK/SwAAAAAAAAAAICkQogKQcKJ0XAAAAHCicxfLi0b9LgMAAAAAAAAAgIQX8rsAAGgKr6xc3tJCv8sAAACID+UV8gpWKNCzq9+VAADQKqIz56tizLN+lwEAAACgDhl3XO53CQDQpuhEBSChROcvkTzP7zIAAADihrcw3+8SAAAAAAAAAABIeISoACQUbwG/JAQAAKguunCp3yUAAAAAAAAAAJDwCFEBSCjRxYSoAAAAqosuKvC7BAAAAAAAAAAAEh4hKgAJxeOXhAAAAOv9fOQx7hgAAAAAAAAAgBYhRAUgYXgVlfKWFfldBgAAQHwpK5dXWOx3FQAAAAAAAAAAJDRCVAAShrd4mUSXBQAAgPV4ixh5DAAAAAAAAABASxCiApAwoov55SAAAEBdogv5OQkAAAAAAAAAgJYgRAUgYXgLC/wuAQAAIC7RiQoAAAAAAAAAgJYhRAUgYUQXE6ICAACoS3QRPycBAAAAAAAAANAShKgAJAQvGpW3ZJnfZQAAAMSnNWvlFa3yuwoAAAAAAAAAABIWISoACcFbViRVhv0uAwAAIG5FCZwDAAAAAAAAANBshKgAJASPUX4AAAD18gpW+F0CAAAAAAAAAAAJixAVgIQQXVrodwkAAABxzStY7ncJAAAAAAAAAAAkLEJUABKCt4zOCgAAAPWJ0okKAAAAAAAAAIBmI0QFICF4y4r8LgEAACCuMc4PAAAAAAAAAIDmI0QFICEQogIAAGjAmrXy1pb5XQUAAAAAAAAAAAmJEBWAuOcVr5YqKv0uAwAAIO55Bcv9LgEAAAAAAAAAgIREiApA3IsuYzQNAABAY0QZ6QcAAAAAAAAAQLMQogIQ9xjlBwAA0DgeISoAAAAAAAAAAJqFEBWAuOfRiQoAAKBRCFEBAAAAAAAAANA8hKgAxD1CVAAAAI3jFSz3uwQAAAAAAAAAABISISoAcY9xfgAAAI3jLS+WF/X8LgNIWJ7nxe0x26K2RNFWa29v17S9rRcAAAAAAKCpCFEBiGteJCpv+Uq/ywAAAEgMkai0ao3fVQAJ6cMPP9QVV1zRqsf87rvvdMYZZzT5dXvvvbeuvPLKqq/HjBmjhx9+WO1RW639hRde0K233qpEcPfdd2vYsGFNes3LL7/sXrNw4UL39YwZM3Tssce2UYUAAAAAAADJgRAVgLjmFa+SolG/ywAAAEisn58ANNljjz2mJUuWtHpQZ9asWU1+3T333KNzzjmn6us777xTpaWlao/aau3/+c9/VFxcrGS155576rnnnlP37t3d1++8846+//57v8sCAAAAAACIayG/CwCAehWv9rsCAACAhOIVrZIG9vG7DAAtsMUWW/hdAhJc586d3QMAAAAAAACNRycqAHHNI0QFAADQ9BAVgCY5/vjjNX78ePewEWhff/2161J0zTXXaOedd9aIESP0hz/8QePGjavxui+++MJt32abbbT99tvr7LPPruo8ZeP4XnnlFS1atMgd08arNWecX2yMm3Wnqj7Sbfr06TrzzDM1atQo9zj33HO1YMGCqudtDba/1WzrGzlypOtOZN2xCgoKdN5557m699hjD9eFq7rHH39cBxxwgFv3brvtpuuuu05r1qxpcHTcDz/8oCOOOMKd65BDDnHdj2KOOuooHXPMMeu99qSTTtLJJ59c4zhWe0vW3tAa7Pra+2LvT/WRdw2x/Wz/Rx991B17q6220ksvvdTomqZOnequ+0477aQtt9zS1XXjjTeqrKysap/y8nLdfPPN2mWXXdz7c9VVV7ltTVV9nJ+NA7RrGLum9rWJRqN64IEHtN9++2n48OH6zW9+oyeffLLGcezese8DG6to9dqaTz/9dBUWFrq122utTnsfG3sdAQAAAAAA4hUhKgBxzVtJiAoAAKApCKEDTXfttde67k/2sBFoFnA58cQT9eGHH+rPf/6zC6D07NlTp512WlWQygIyNnLPwic2Gu6mm27SnDlzdMYZZ7hwij1nAaVu3bq5Y1qAqTnsteZ3v/td1ed2HgskLV++XLfeeqs7t9Vz7LHHum3VXXzxxS40dP/992vQoEFurSeccIKGDh3qgjEWeLLQzqRJk9z+b775pm6//XYdd9xxevjhh10Y6LXXXtMNN9zQYK0WItpnn33c9bJzXXTRRfrkk0+q6rdxcvPmzava38YnWmDqyCOPrDGCzq5/S9be0BqsPntf7P2pPvKusSyEZEGi2267zYWdGlOTBdesHhtNeMstt+jBBx/UQQcd5EJLTzzxRNWxL7vsMj3//PPuWv773//WypUr1wu5NdXvf/97dw1j19S+NhYsu+uuu3TooYfqvvvuc8Gwv//977r33ntrvN6up933tq6//OUv7vM//elPru4rrrhCf/vb31yAzj4CAAAAAAAkMsb5AYhr/BIQAACgabxiOlEBTbXJJpsoJyfHfb711lu7EIt1DbKP1nnH7L777q4rzz/+8Q/XgcdCR9ZByMIuPXr0cPtY0MqCV2vXrlX//v3dOLW0tDR3zOaKvdaOHfvcQkCZmZkuXBOre/To0dp333310EMPuWBL9Q5QsU5PWVlZrnOWBacuvPBCt22zzTbTe++9pwkTJrjt1o2rb9++LvATDAa1ww47uNdZmKchdn0ssGSsa5F1pbJAjoWVDj74YBcesjDTBRdc4Paxz7Ozs103o7pG0DV37Q2twcJy9r7YuZrz3vz2t7911zXmkksuabAm61S1+eab684776zax7qcWTczC5JZ+G7GjBl69913XbjJAlix62hdvWbOnKnmsutnj+rX1IJfdn9byM7ObXbddVcFAgEXuPvjH/+oTp06ue3hcNhd9w4dOriv7X757LPP9MEHH6hfv35u28SJE937CQAAAAAAkMjoRAUgrhGiAgAAaBp+fgJazjrtWKci64hkARJ7RCIR7bXXXpo8ebIL41i4Kj093XX4sQ49FiqxQJJ1roqFZNrKV1995YJBGRkZVfXZObfbbjt9+eWXNfa1UWsxXbp0cR9jwTATC8qsXr3uzw4bNWcBG+sOZcGZH3/80YV4LCDVEAtNxVgYx8JRsbBZbm6u9t9/f73++utV+9g4vQMPPNCtozXX3pI1NIaFoZpakwWUnnrqKXfPWCDKwnbWwWzFihWqqKhw+3z77bfuo3UOi7EQmI3Za21Ws+d57lyxmu1hX9v4wO+++65q3yFDhlQFqEzXrl3dfRMLUJmOHTtW3UMAAAAAAACJik5UAOIa4/wAAACaxiuiExXQUsXFxVq2bFnVWLna7DnrXmWhmAceeEAvvviiG22Wl5fnOvjYGDsLEbVlfW+//bZ71Fa9k5OpK9BlXZM2xEJNNo7wv//9rxv3Z6Pr+vTpo0svvdQ9V5/aY/EstGVBnVWrVrmAkQXOLERlYaGUlBTNnTvXjb9r7bW3ZA2NYV2tmlqT1XPHHXfo6aefdp3KevXq5Tp/WagqJtYpKxZsi7FAX2uzmo2NFKxLfn5+vfdQ7WsAAAAAAACQDAhRAYhrdFIAAABoopJSeRWVCqSl+l0JkLCsa9LAgQPd6L662Kg4YyEY63RknYSsc89zzz2n++67z3WkspFvbVmfjYKLjemrLhRq+V/12Og9e1hnoc8//1wPPvigLrvsMm277bZVows3FMyxLkUxhYWFLixlXYqMdWuyMYfvvPOO67A0ePDgJo/Ta+zam7uG5mhMTRa2s3F/119/vevIZa8xFiyLiYWn7Lr17t17vcBTa7LAn3n88cfdSMXaqp8fAAAAAACgvWCcH4C45UUi0pq1fpcBAACQcAiiA01noZ4YC/ssWbLEdVIaMWJE1eOLL77QQw895IJBFoix8X4WoEpLS9Po0aN1ww03uNcvXrx4vWO2Vm2x+mwknI2Vi9U2fPhwV9P777/fonNZF61zzz3XfW5BHwuDnXPOOW7UW0FBQb2v/eCDD6o+tw5U7733ngst2fUx1p3LRuzZfmPHjq0x/q81196YNbTWe9PYmixkZ93LjjrqqKoAlXV7mj59uutSFRtDaCxkVt1HH33U4hprr9dGDZqioqIa97iNF7zzzjvbJLgFAAAAAAAQ7whRAYhfK9fY37z7XQUAAEDCIUQFNK8zz5w5czRu3Djtt99+rhOPdRZ65ZVX9NVXX7lRbBYusZF1qampLvBiY/0srPPJJ5+4bkdXXXWVCwxZuCp2TOsqZM83FEBqqLYJEybom2++ceEkCwTNnz9fZ555pgskffbZZzr//PP11ltvuS5YLWHrsmPamD27Fu+++65bt3Xmih3bzj1x4sT1Xnvbbbe5zkaffvqpLrjgAs2aNUsXXnhhjX0sRGXXwoJmhx12WI3nLMBjx12zZk2L1t6YNdhxf/rpJ40fP15lZWUtumaNqcm6lk2bNs11pLJzvvDCCzruuONcCK+0tNTtM2DAAB199NH617/+5faz49gIQntda3WeevPNN7VgwQINGzZMhx56qP7617+6YKDd488884zr1mXvg10rAAAAAACA9oYQFYC45a3kl38AAADNsrrE7wqAhGOBFgtHnX766S7k8vTTT7suSrfffrvbZl2VLrnkEheUMhaOsdF9Fvi5+OKLdd5557nuPY888ogbUxcLDPXp08cFrV599dVm13bWWWdp8uTJrg7rkGXntvqss9Pll1/uAksW6Lr33nvdqLiWOOaYY3T11Ve7IJSd95prrtGQIUPcuuz6mDFjxriwT23XXXednn/+eXctrB57TazjUYyN0rP6d9111/XG6n388cfuuFOmTGnR2huzhlNOOcUF3E499VR3/JZoTE0WsDr22GP1xBNPuLU8/PDDLkRm12rGjBlatWqV2+/aa691zz/11FPuOQt42RpayuqwTlNXXnmlO7e5+eabXVDw2Wef1Wmnnebu5wMPPNBdJ+u2BgAAAAAA0N4EPPtnfAAQhyITp6ryidf9LgMAACDhhA7fR6Hdt/W7DADtxMsvv+zCZR9++KH69u1b7742ws46dd11113ad999N1qNSBzRmfNVMeZZv8sAAAAAUIeMOy73uwQAaFOhtj08ADSft2at3yUAAAAkJK+En6OAeBONRt2jIaFQcv5Vzc8//+xCVjZaz0bF7b333ooXkUjEjQqsj3WZiofuTOFwuMF9gsGgewAAAAAAAKBpkvNv5gAkh5JSvysAAABITGvL/K4AQC022u2ee+5pcL/GdHNKROXl5Xr00UfdCL877rgjrkI+J510khvhWB8byzh27Fj5bcstt2xwnyOOOEK33HLLRqkHAAAAAAAgmTDOD0Dcqnz5A0U+n+B3GQAAAAknuPUwpZ1wmN9lAKg1xq6goKDB/YYNG6a0tLSNUhPWmT17tkpKSurdx94Te2/89uOPPza4T6dOnRI6iMc4PwAAACB+Mc4PQLKjExWAuMUYGgAAgGaioycQd6wDkz0QfwYPHqxEMWLECL9LAAAAAAAASFrx0zsdAGrjl38AAADN4q3h5ygAAAAAAAAAAJqCEBWAuOWtLfO7BAAAgITkrSVEBQAAAAAAAABAUxCiAhC/CFEBAAA0Twk/RwEAAAAAAAAA0BSEqADELa+UX/4BAAA0Szgsr7zC7yoAAAAAAAAAAEgYhKgAxCXP86QyfvEHAADQXF4JI/0AAAAAAAAAAGgsQlQA4lNZuSWp/K4CAAAgcdHVEwAAAAAAAACARiNEBSAueaXlfpcAAACQ2CrCflcAAAAAAAAAAEDCIEQFID6VM8oPAACgJbzKSr9LAAAAAAAAAAAgYRCiAhCfwnROAAAAaJEKQlQAAAAAAAAAADQWISoA8amSEBUAAECL8PMUAAAAAAAAAACNRogKQFzyKiN+lwAAAJDQPDpRAQAAAAAAAADQaISoAMSnSn7pBwAA0CIVdKICAAAAAAAAAKCxCFEBiE9hOlEBAAC0CKF0AAAAAAAAAAAajRAVgPhUSecEAACAFuHnKQAAAAAAAAAAGo0QFYC45PFLPwAAgBbxKuhEBQAAAAAAAABAY4UavScAbExhQlQAAAAtQigdAJCAgpv0V8Ydl/tdBgAAAAAAaIfoRAUgPvFLPwAAgJappBMVAAAAAAAAAACNRYgKQFxinB8AAEDLeFHP7xIAAAAAAAAAAEgYhKgAxKdI1O8KAAAAEptHiAoAAAAAAAAAgMYiRAUAAAAAyYgQFQAAAAAAAAAAjUaICkB8CgT8rgAAACCxkaECAAAAAAAAAKDRCFEBiE9kqAAAAFqGTlQAAAAAAAAAADRaqPG7AsBGRCcqAHGueHBAswYUqyAtoKXBtSpXpd8lAUANm3bsqAP9LgIAAAAAAAAAgARBiAoAAKAZQhFPpYvfUa6knEBAZZ36qLhDFy1LC2pRZKUWli5QRbTC7zIBtGNe5zxCVAAAAAAAAAAANBIhKgBxKUAnKgBxLmuRFBgakhcNK+B5ylyx0D16SRpp4YVgUGs7D1BxXictSw1oUaRYC0sXKhylYxWAjYOfpwAAAAAAAAAAaDxCVADiE7/0AxDngmEpO2eA1qyaVefzgWhU2YXz3aOPpK0lRYMhre0ySMW5HVWQ6mlRuEiLShcq4kU2ev0Akl9AQb9LAAAAAAAAAAAgYRCiAhCfCFEBSAC5oT5ao7pDVHUJRsPKWTZXOcukvpJGWbAqJU0lXQaqKLeDCkIRLQyv0JLSxYoSrALQQkF+ngIAAAAAAAAAoNEIUQGIT/zOD0ACyCnr1OJjBCMVyi2YrdwCqb+k7SxYFcrQmq59VJSdp3wLVlUu09LSJfLktUrdANqHYCDF7xIAAAAAAAAAAEgYhKgAxCc6JwBIADmFGVJW6x83GC5T3tJZypM0QNIOksLpWSrp3EcrsnOUnxLWwooC5Zctbf2TA0gaAX6eAgAAAAAAAACg0QhRAYhP/NIPQALIXCwFh6UpGqlo83OFyteqw5IZ6iBp0C/bwhl5WtO5t1ZkZ2tpsFwLyvNVWL6szWsBkBgCCvpdAgAATRadOV8VY571uwwAAAAAdci443K/SwCANkWICkB8CvHHE4D4F4xI2TkDtHrlDF/OHypbrY6Lp6mjpMG/bKvM7KjVFqzKytTSYJnmly9VUflyX+oD4K/0lHS/SwAAAAAAAAAAIGGQUgAQn9JS/a4AABolN6WvVsufEFVdUktXqvOileosaZNftlVkd9bqTr20PDNDSwOlml++WCsrin2uFE0VWeupcGylVv8UVmWRp1BOQLlbpqjrvmnu88YomRlR4ceVKp0fUbRCSs0LKGeLFHWr4xhrpoWV/0aFKpZ7Su8RVPffpipn2Pr/+5D/ZoWKv63UJldmKSWDTpLxJCOU7XcJAAAAAAAAAAAkDEJUAOJSIJ0QFYDEkLvW+kDFt7SSInWxh6RNf9lWkdNNqzr10PLMdC1RieaXLdbqylU+V4oNiZR6mnNvqSoKPGVvElTuFiGVF0S14ouwVv0Y0aDzM5Tasf7RbcXfVGrxCxUKhKS8ESlKyQmodH5URV+EteaniAadl6FQ3rpjhFd7WvB4uVKyA+q0c0hrpkY0/5FyDbk46AJVMZXFVkOluh+URoAqDmWGsvwuAQAAAAAAAACAhEGICkB8ohMVgASRvSxdylXCSVtTqK72kDTsl23leT20qlN3FaanabHWaH7pIq0Nr/G5Uphl71e4AFW3/VLVbf+0qu0WYFr6aoUK3q1Un6PT6+1itfS1CgXTpEEXZCq9+69BqIJ3K1T4QaXy365Un2PWHWPlhLC8Sqnv8enK6p+iyt2jmnFTqYq+qlTPw349T8E7lQp1CKjzaP63Ih5l0okKAAAAAAAAAIBG47cdAOITISoACSJzaVTBThmKhsuU6NJXFaibPSRtLsmzYFWHXlrZsZsK00Na7FmwaoHKIqV+l9ruVK7wXOeoLnvW/O9jh1EhF6IqnRep9/XWSSpaLnXeLVQjQGW67Zuq5R+vGxMorQtIVSyPuo8Zvdbtm9oh6LpS2Wi/mLLFURe26nNcugIpdKGKR3SiAgAAAAAAAACg8QhRAYhLgbRfu2wAQDwLRAPKzRmolcVTlWwsFpOxcql79JC0pQWrAgGVdeyjlR26all6ihZFV2rB2oWqsIQO2ky/kzLq3G4j/Uwor/4QU1r3gLodkKrsISnrPxmQAilStOLXTSlZ645n24Kpkud5ilZ4Ssn8dZ/8tyqU0TeovJF1HBNxgU5UAAAAAAAAAAA0HiEqAPEpnU5UABJHTqC3Vir5QlR1CXieMosWu0dPSSNcsCqo0s79VZzXWcvSAloUWamFpQtVWT2Vg1Zl4/lKZkaU/4alnKSu+9QfPs7sm+IedVkzbV2Xqow+v3aoyhyw7vPlH1W6EYJF34TlVUhZg9YdY82MiEqmRzTgrAwFAnShild0ogIAAAAAAAAAoPEIUQGISwHG+QFIIDlrO6o9C3hRZS1f4B69JW1lHYyCKSrtPFDFeZ1UkCotihRp0dqFCns2Mg4tsWJcpZa+/EtALSj1OTZdOUOb1w0qUuop//V1x+q086//a5C7eUi5I8Na/kmle5jsTVPUcYeQ60pV8FaFcjZPqdHZyot6CgQJVMWTjBRCVAAAAAAAAAAANBYhKgDxiRAVgASSU5AmdfC7ivgSjEaUXTjPPfpI2sZCNimpKuk8WEW5HVSQ6mlReIUWlS5S1Iv4XW5CCWUH1GWvVIVXeVo9OaxF/y1XZXFUXfds2ijcSJmn+Y+UqaLQU85mKeq4fc3/Neh3fIbWTA2rPN9TWreAC01Z16mV34dVtiSqIcdmukDVsncrteLLStfNKmtQUL2OSld6t1+7WsE/dKICAAAAAAAAAKDxCFEBiE+EqAAkkIx8TyldsxSpXOt3KXEtEKlUzrI5ylkm9ZO0rQV5Qmla22WQinLylB+KaGHlci0tXayoon6XG7fyRoaUN3Ld5xUrUjXn7jIVvFXpukJl9mtcR6rwqqjmP1KuskVRZfYPqs9x6XWO5cvZLKSczX792gt7KvhfhTpuF1J6j6CKv6lU4YeV6rpfqjL7BZX/ZoUWPl6mwRdn0pUqDmSGsv0uAQAAAAAAAACAhEGICkD8jvOzX+Z6nt+lAECDAp6Umz1QxcU/+V1KwkkJVyg3f5Zy86X+kra3YFVqpkq69NGKnFzlp4S1sHKZ8kuXyhP/TagtrXNQXfdMdeGl1VMijQpRWRcp60AVLvaUtUlQ/U7MUEpG4wJPK74MK7zGU7f914WdV4wLK6N3UN33/6ULVkRa8Hi51kyPKHcz/lfDb3SiAgAAAAAAAACg8fjNBoD4lZEmlZb7XQUANEpOoJeKRYiqNaRUlipv6UzlSRooaUfL5qRna3XnPirKztHSlAotqMjXsrICtQfRsKe1s6NS1Mburf/je2qXdQGoSEnDIbOSmREteLxM0TKpw6gU9f59ugKhxgWoIqWeCj+sUJfdU5XaYd24voqCqBsFGJPW/ZftyzypWgcr+CODEBUAAAAAAAAAAI1GiApA3ArkZMkjRAUgQeSUdPC7hKSWUl6ijkumq6OkQZJG20i6zDwXrFqRlaWlwXLNL1+qFeWFSjZeWJr/cJmCadKwa1PWCz3ZSD6T1nVdgGlDSmZHXAcqr1Lqunequv/2l+5RjVT4UaUUkLrs+evIXS8qeZFqtVauC3LVMRkQG1lGSqaCgfrvCQAAAAAAAAAA8CtCVADiV3aWtKzI7yoAoFFy8tOkTn5X0b6ESler06Kp7rIPkbSLpMqszlrVuadWZGZqaaBM88uXqLhihRKZjdrL3SJFqydHVPB+pXpUCz+VLoxo+aeVCqZLHbbZ8Ci/cImnRU+VuwBVt9+kqtu+TQtQVRZHteKzSvU4KK3G6L/07kGVLojKi3gKpAS0dm60Rkcq+CczlO13CQAAAAAAAAAAJBRCVADiViAnUw0PJgKA+JC+LKpQj1yFK1b7XUq7lrq2SF3sIWnoL9sqsrtoVedeWp6ZrqVaq/llS7SqsliJpOdhaSpbWKblYyu1dk5EWf1TVFkU1aopEdf1qc9x6QrlrQsulcyKuEdG76Dyhq/7cd+CVuHVnoKZ67pHFbxXUed5uu2bqkBw/TZSBe9WKrVjQJ1G1/zfB/t6yYsVmntfmTL6BFU8Puw+Zg8lROU3RvkBAAAAAAAAANA0hKgAxK2AdaICgAQR8ALKyRqo4oof/S4FtaSVrFBXe0ga9su2itxuWtmppwozUrXEglWli1QSjt8AXGrHoAZdmKnCDyq0ekpEy+dVKiVTyhue4kbzZfT+tQuVBagK369Uh21DVSGqkqnrZu5FS+We25Bu+/w6qi+mbElUK78Lq+9x6a7bVHWddkxVpNTTis/CKlsYVvbQFPU6Ik0B5vn5Li/Nhl8CAAAAAAAAAIDGIkQFIH7lEKICkFhy1VPFIkSVCNJWF6qbPSRt/su28g49tbJDdxesWuyt1vyyRSoNlyhehHIC6nl4unoeXv9+3fdPc4/qBv85s9nnzegV1Ba3bXg0XNc909wD8aVjuvVjaz+WL1+ud955R8cdd1zVtuOPP17jx4/Xe++9pwEDBmy0Wi699FK98cYbeuKJJ7TjjjtutPMCAAAAAAAAAFqGEBWAuB7nBwCJJKekg98loAXSV+aruz0kbSG5kbLlHftoZccuWpYe0uLoai0oXaiySKnfpQINak8hKgtQ7b///tp0001rhKgAAAAAAAAAAGgKQlQA4laATlQAEkzO0pDUfnILSc8G0mUUL3aPHpKGW7AqEFRpp35a2aGLlqUFtSiyUgtLF6giWuF3uUANnTLazx9GpaWlWrNmjd9lAAAAAAAAAAASHCEqAPGLEBWABJNe6Cm1dwdVlq/0uxS0kYAXVdaKhe7RS9JIC1YFg1rbeYCK8zppWWpAiyLFWli6UOFopd/loh3r0I46UQEAAAAAAAAA0BqCrXIUAGgDgWxCVAAST07WQL9LwEYWiEaVXThffWb/oK2nTdRBM+fq9CXSieFBOixzG43O21r9swYoJZDid6loRzr5GKK68sorNWzYMOXn5+u2227T7rvvrpEjR+rwww/X2LFj3T728fe//7222mor7bXXXrrxxhtVUlJS4ziTJk3Sueeeq5122knDhw/Xb37zG/373/+usd/dd9+tffbZx30+YcIEd17bVt3KlSvd8XfbbTeNGDFCBxxwgB555BFFo9H1av/+++91zjnnaMcdd3Tn3HfffXXrrbeqqKhovX2tjn/84x/u/La+Qw89VP/73/9a7ToCAAAAAAAAADYuOlEBiFuM8wOQiHK9Hlr/V+1ob4LRsHKWzVXOMqmvpFGSoilpKukyUEW5HVQQimhheIWWrF2kqNYPcgAt1SG9s98l6Oyzz9aKFStcaKm4uFhvvPGGzjvvPJ188sl67LHHtN9++2n77bfXBx98oCeffNKN5bvpppvca99++21ddtllSktLc0GmHj16uJDUf/7zH3300Ud6+umnlZOTox122EEnnHCCnnjiCfXq1UtHHXWU21a7jlAo5EJY4XDYHduCUVbbpZdeWrXfSy+9pKuvvlopKSkuGNWzZ093Tgtcvfvuu+6cdg5TXl6u448/XlOmTKkKW82cOVMXXXSRunXrtpGvNDbE8zwFAoG4PGZb1JYo2mrtiXpNN2bdiXqNAAAAAAAANhZCVADiV06m3xUAQJPlrM7zuwTEqWCkQrkFs5VbIPWXtJ0Fq0IZWtO1j4qy85RvwarKZVpaukSePL/LRYLrnOF/kGf16tV6/fXXlZe37s/F7t2768EHH9RDDz2kBx54QHvssYfbfsYZZ7huVK+99ppuuOEGF276v//7P3Xs2FHPPvus+vXrV3XMe+65x3Wa+uc//6lrr73WdYzq06dPVYjq/PPPX68OC2DZ8xa6Mn/84x9dV6wXXnhBF198sYLBoBYvXqzrrrtOubm5LuC1xRZbVAUOrPvVfffdp7/85S8uUGXsowWojj76aPc6O4Z55pln3Nfw34cffujCb9YNrbV899137l6w+7gp9t57bxfuu+WWW9zXY8aMcQHB0047Te1NW63dvp9nzZrlOuElkubeU41h12L8+PFVHQDb4nsCAAAAAAAg2TDOD0DcCoRCNhfL7zIAoEmyl5JRR+MFw2XKWzpLA2Z9rx2mTdKRs5fojBVZ+pM21YHZo7Rt3kj1yOjpd5lIMAEF4iJE9Yc//KEqQGW23XZb93HzzTevClAZC0sNGTJElZWVKigo0Kuvvuq6Up155pk1AlTmrLPOUufOnd0+tn9jWEgrFqAym266qfr37++6Y9moP2Nhr4qKCp166qlVASpjHVssmDVgwAB98cUXWrBggdtuga/U1FTXySoWoDLHHntsjdfDPxaGW7JkSZsEdZrKwn82JjLmzjvvdPd4e9RWa7cudfY9nWiae081ht1zdu+15fcEAAAAAABAsuG3fADiWqBTnrw1a/0uAwAaLX2Fp7R+nVVRtsLvUpCgQuVr1WHJDHWQNOiXbeGMPK3p3FsrsrO1NFiuBeX5Kixf5nOliOdRfqFgqt9laNCg2B28TlbWunC8BZhqy8zMrBqT9+OPP7rP7aN1naprX+tWNXfuXA0dOrTJdZhOnTppzpw5Wrt2rfv8p59+ctuts1VtNgpwm2220bx58/Tzzz+7cX322k022aRGSKx6WCx2PMAQrIMf6vqzFgAAAAAAAPWjExWAuBbobL9CBoDEkpM5wO8SkGRCZavVcfE0DZ4xQTtPm6Kj5xbqjOKOOja4hX6Ts622yttSndK7+F0m4kSXjO6KB7HQVG02yqs+q1atquoOZV1Uaj8WLVrkno91kWpIRkbGBp+zcX2x0YPGxvnVxUYCGgtdxc5bvbtVdR068POr344//ng3xswew4YN09dff+26FF1zzTXaeeedNWLECNcpbdy4cTVeZ93GbLuF5rbffnudffbZVV2CbDTaK6+84u4/O+bLL7/cpHF+sTFz9lpj93LsczN9+nTXfW3UqFHuce6551Z1PjO2Btvfarb1jRw5UnvuuafrZGQd3M477zxXt3V5s45D1T3++OM64IAD3Lp32203N3JyzZo1G6zX1mbn+uGHH3TEEUe4cx1yyCF65513qvY56qijdMwxx6z32pNOOkknn3xyjeNY7S1Ze0NrsOtr74u9P3bchQsXNvKdkTuGjRG1Y2699dZuXR9//HHV83bsv//97zrxxBPddbCxnqYx95OFPa+//no3rnT48OFupKOtLVbfhu4pC5PayD17L+11du3ffvttNZUd3+rf0PdEY9dh+9uoUjuehURtHTfeeKPKysp06623aqeddnIBVLs2VjsAAAAAAEAiI0QFIO47UQFAosmNrvtlO9CWUktXqvOin7XJjAnaddpP+uPcFTp9VWcdk7Kl9svZViNyt1CHtI5+lwkfdMlM7D+DsrOz3cfnn39e06ZN2+Bju+22a7VzxgJR+fn5dT4fC05Z1yobP1g97FWbBa3gr2uvvdZ1f7LHc889py233NKFYD788EP9+c9/diGenj176rTTTqsKjFhox8afWWjFRsPddNNNruOYjYOMRqPuOQu1WCcyO6YFmJrDXmt+97vfVX1u57FA0vLly10oxc5t9dh4SNtW3cUXX+yCMffff7/rsmZrPeGEE1xXtjFjxrigz80336xJkya5/d98803dfvvtOu644/Twww+7EI+No7TgUEMs2LTPPvu462Xnuuiii/TJJ59U1f/999+7Dm0xNirOwjlHHnmk+9quUez6t2TtDa3B6rP3xd4fO2737o0LkkYiEZ1yyil644033Frt+g0ePNgd/9tvv63a7+mnn3YBI3vearegUEP3kwU07ZgWzLOxn1a3Bd3seXvPTF33lL3Ozv/ss8+6MJrdixaOs/PYGNPW/J5ozDpi7PpbANb2Ofzww/Xkk0+6j/ae/+Mf/3AhrRdffNFtBwAAAAAASGSM8wMQ1whRAUhEOavr7mQCtLW0kiJ1sYekTX/ZVpHTTas69dDyzHQtUYnmly3W6sq6wx9IDvHSiaq5Nt98c73//vuuC85WW2213vN33HGHC1rZL+2t21UgEGjxOS1Y8N5777kuLdaRpTbbbiyokp6erk033dR1KCosLFTXrl1r7BsLr8A/NmoxFoyz7kIWyJs6dar7GLundt99d3cPWQDkpZdecu+bddax4Eus85gFSixgYsE4G43WuXNnFySxYzZX7LV27NjnFkyxMZXWQSpW9+jRo7XvvvvqoYce0hVXXFH1euuUFOv0ZPe/dQ6y4NSFF17otm222WbuXp4wYYLbbvdu3759XQApGAy6LkL2usZ0crPrY4EeY52arCvVvffe64I/Bx98sG655RYXZrrgggvcPva5fW/ut99+7mu7XvZo6dobWoN9/9r7Yudqynvz6aefuj9nbE12PmNdlSzE9dVXX1UFNXv37u2CUDGNuZ+sO5ity+qPHce6Nc2fP78qQFbXPWWhq88++0z/+te/dOCBB1Zd+9LSUndsu+42YrSl3xONXUf11//tb39zn9v1tw5olZWVbj+rZ9ddd9W7777r7jsAAAAAAIBERicqAHGNcX4AElH2khS/SwCqpK0pVNcFUzRs+gTtOX2aTpi/WqeV9NAf0kZo79xttVnuMGWF6h5LhsSU6J2oDjvsMKWmprpgw+zZs2s899RTT7kOPPbL+ti4wFigwH6h31yHHnqoO6eNDPvpp59qPGfdZ6wOC1dYmMJYcMW62NhIq+rn/d///lejgw3ig3XVsW4/1n0nHA67h71/NmZt8uTJLoxjIRILyFmnIeuGZEEWCyRZh54NjW5sLRbYsWCKjZ6M1WfntPDNl19+WWNf60oU06XLujGu1cOG1i2t+ohKu2+t25N1h7LA0o8//ujGw1lQpiEWmoqxsKKFo2JhMxt9uf/++7uxmzE2ms6CP/WN0GzO2luyhvp899137vs+NvLOWEjLukBZ16jqwc6m3k8WxHviiSfc+Dsb32fhKOvSZCGjioqKDdZkx7ZrbUG12LHtYTUuW7ZMM2bMaNGam7qOuu67lJQUd5/Z66oHuqxLX+y+AwAAAAAASFR0ogIQ1+hEBSARpRV7Sh/YVeWlhX6XAtQpfVWButnDfjlsY4cklXfopZUdu6kwPaTF3hrNL12gskip36WiGbomeIjKOs7Y6KlrrrnGjYuyDjG9evXSzz//7IIIHTp00N///veq/a2Ti4VfLPxk472sk5SNIGuKPn36VJ3TAlL2euuWM3HiRPew56uf849//KM++ugjF5qyjlTWOceCEmPHjtWAAQNqjDiD/4qLi10AJTZWrjZ7zjrtWEjvgQcecGPJLACTl5fn3msbY9caHc/qq+/tt992j9qqd3IydQW6rOPRhlioycYR/ve//3WBwLvvvtvdz9ZZKdbpaENqj8Wz0JaNm7NRlhZ6ssCZhagsOGjBmrlz57qRfK299pasoaFzW/DHglP1iQU2m3I/2Z9Tdm2sc56NvLPzWBiroYCZHduu8ahRo+p83jpc1Q51NVdj17Gh+672dQEAAAAAAEgGhKgAxLVAJzpRAUhMuZkDCFEhYVg0IGPlUvew+I39OtULBFTWsa+KO3RVYXpQi6IrtWDtQlVEy/0uFw3old1Pie73v/+9Bg0apIcfftgFp2ycmoWaLOB0xhlnqF+/X9donWRszNS///1vNybL9m1qiKr6OW2EmHVosfFZ1nnKxrudeuqpVWECY4ER64hl+7766qt65pln3L4W4rIw1X333ddq1wItZ12TBg4c6EaPbSi4Z2z8nXU6sk5B1qXI7id7L60j1W9/+9s2rc/Cf7ExfdU1Z3RbbTYCzh7WJejzzz/Xgw8+qMsuu8x1SYqNLtxQyKb6uEobX2n3vgWCjHWQspF077zzjgsiDR48uMmjDhu79uauoaFzx0JL1UNyFsi0bRsKFzXmfrJgmY3ys25Z9udHrMbbbrvN3Vv11WThJAvx1cVCmhv7+wIAAAAAAKA9IUQFIK4FMtOljHSpjF/YAkgsOZEeIkKFRBbwPGUWLXKPXpJGuGBVUKWd+6s4r7OWpQW0KLJSC0sXqjK64dFE2Pj65Az09fy33HKLe9S24447atq0aXW+xsZc1WbjvOzRGNaxyh4NHTPGQk91aco5Lbx19tlnu0dtNgIO/rJQj3UvioV9Pv74Y9dJKTaS0VhAyjqcWYjksccec+McbVRkWlqa6y42fPhw121s8eLFVcdsrdqqs/pmzpzpOgzFgkMW4rFOSxaaaUnnIeuiZSMnbTymhWYsDGb37rnnnuu6GtUXQPrggw90zDHHVNXz3nvvudCSXR9jwSMbsWdhM6vbQo5tsfbGrKE57419rz/yyCP69NNP3fi82Lmvuuoqd+677rqrztc15n76/vvv3f13/vnnu5qNjcqLjSi056zmuq6H1WR1WKgv5qWXXtL7779foyNeS74nGrsOAAAAAACA9qZ1/gYQANoQI/0AJKKcleuPPQESXcCLKmv5AvWe84O2mjZRB86co9OWRHVS5UAdnrmNds7bRgOyByoU4N9q+KVDWmdlp677hT3Qntkovjlz5riuYvvtt58LiVi3o1deeUVfffWVG7N25513upF1FsjZaaed3PgyC+Z88sknrtuRhWksMLTXXntVHdO6MdnzFt5pSW0TJkzQN99848Iy55xzjubPn++6nllw6bPPPnPhm7feest1wWoJW5cd08bs2bWwkJit2zoQxY5t57axlbVZ1yQLllnI6IILLnCjKy+88MIa+1iIyq6FBc0OO+ywGs+tWLHCHXfNmjUtWntj1mDHtQ5S48ePV1lZWaOuzZ577qltttlGV155pQuCWcDJPrd1nnbaaRt8na25ofspFoCyLnn2vNVs+0+dOtVtt455dd1TFubafvvt3XWx8YVff/2167p13XXXuRBU7fGOzf2eWLlyZaPWAQAAAAAA0N4QogIQ9wKdCVEBSDzZi/kxC+1DMBpRduE89Zk9UdtMm6iDZ87TGflBnRgerEMzt9FOeVurX1Z/BQMpfpfaLvTJab1RT0AiO+6441wI5PTTT3fBmqefftp1Ubr99tvdNuuqdMkll7iglLEwjnXgscDPxRdfrPPOO8+NerOuQDamzljopE+fPi5oZWMcm+uss87S5MmTXR1Llixx57b6rLPT5Zdf7gJLFuiyzkv7779/i66DdZK6+uqrXRDKznvNNddoyJAhbl2xkMyYMWN09NFHr/daC+48//zz7lpYPfaa2p3arAuU1b/rrruu19XKuhzZcadMmdKitTdmDaeccooLI9noPDt+Y9hoQgso2XksOGTv67x589xxq3eBqs3G7TV0P1nnPavTOlLZ89adzwJLNi7SxEb61b6nLCj1wAMP6KCDDnIjQ209zz77rAs6/etf/1JrfU/YtWzMOgAAAAAAANqbgGf/9A8A4ljla2MV+eRbv8sAgCb7dpuPVbY23+8ygLgQCaVrbZe+KsrJU34oooWVy7W0dLGi+nW0EFpu3/5H6Nyt/+p3GQAS2Msvv+xCNB9++KH69u1b7775+fmuU5eNvtt33303Wo1IbtGZ81Ux5lm/ywAAAABQh4w7Lve7BABoU8zZABD3At27+F0CADRLbsYAQlTAL1LC5crNn6XcfKm/pO0tWJWaqZIufbQiJ1f5KWEtrCxUfukSeeLfeTRX7xy7ugDaWjQadY+GhELJ+dcuP//8swtZ2Zg6G6u39957K15EIhE3KrA+1vnKOlElGluXra8htjZbIwAAAAAAAJomOf82D0BSCfYkRAUgMeWEu2mZ30UAcSylslR5S2fKBvcOtPFH9svv9Byt7txbK7JzlJ9SoQUV+VpWVuB3qQmjT45dSQBtzcbNxUaz1acx3ZwSUXl5uR599FE3wu+OO+5wY+jixUknneRGONbHRuiNHTtWicbWdcIJJzS438033+xGBQIAAAAAAKBpGOcHIO55JaUq/+vdfpcBAE22cqinH4PP+10GkPDCmbla3bmPVmRlaWmwXPPLl2pFeaHfZcWle/Z+mSAVsBHYGLuCgoYDnsOGDVNaWtpGqQnrzJ49WyUlJfXuY++JvTeJZs2aNZozZ06D+1lwr1OnTkpUjPMDAAAA4hfj/AAkOzpRAYh7gexMKSdLWrPW71IAoEmyFwWlfn5XASS+UOlqdVo0Vfbr4CGSdpFUmdVZqzr31IrMTC0NlGl++RIVV6xQe5YSCKlHVh+/ywDaBevAZA/En8GDBytZ5eTkaMSIEX6XAQAAAAAAkLQIUQFICIEeXeQRogKQYEJrPWVm91ZpyWK/SwGSTuraInWxh6Shv2yryO6iVZ17aXlmupZqreaVLdbqypVqL7pn9VYomOp3GQAAAAAAAAAAJCRCVAASQrBHF0VmLfC7DABostz0/oSogI0krWSFutrDRmj9sq0it5tWduqpwoxULdFazS9dpJLwaiWjPjkD/C4BAAAAAAAAAICERYgKQMJ0ogKARJRT2VUFfhcBtGNpqwvVzR6SNv9lW3mHnlrZobsLVi32Vmt+2SKVhkuU6PrkDPS7BAAAAAAAAAAAEhYhKgAJgRAVgESVXZwlpfhdBYDq0lfmq7s9JG0hyZNU1qm3VnbopsK0FC32VmlB6SKVRUqVSHrTiQoAAAAAAAAAgGYjRAUgIQS7E6ICkJiyFwalAYFfYhoA4pF9h2YWLXGPnpKG23dsIKjSTv20skMXLUsLalFkpRaWLlBFtELxinF+AAAAAAAAAAA0HyEqAAkh0DFXykiTyuL3F5cAUJdQmaesnD5au2ah36UAaIKAF1XWioXu0UvSSAtWBYNa23mAivM6aVlqQIsixVpYulDhaKXiQZ+cQX6XAAAAAAAAAABAwiJEBSBhBHp2lTd3sd9lAECT5ab111oRogISXSAaVXbhfPfoI2lrSdFgSGu7DFJxbkcVpHpaFC7SotKFiniRjVpb54xu6pjeeaOeEwAAAAAAAACAZEKICkDCCPbtqQghKgAJKKeii/L9LgJAmwhGw8pZNlc5y6S+kkZZsColTSVdBqoot4MKQhEtDK/QkrWLFFW0zeoY3GGzNjs2AAAAAAAAAADtASEqAAkj0LeH3yUAQLNkF2VJqX5XAWBjCUYqlFswW7kFUn9J21mwKpShNV37qCg7T/kWrKpcpqWlS+TJa5VzDiJEBQAAAAAAAABAixCiApBQnagAIBFlLwooMChF3kYe7wUgfgTDZcpbOkt5kgZI2kFSOD1LJZ37aEV2jvJTwlpQUaCCsqXNOv4QQlQAAAAAAAAAALQIISoACSPQs4uUGpIqw36XAgBNklLuKSunr0pWz/O7FABxJFS+Vh2WzFAH6yQlaScLVmXkaU3n3lqRna2lwXItKM9XYfmyBo/FOD8AAAAAAAAAAFqGEBWAhBEIBhXo013e3MV+lwIATZaT2lclIkQFoH6hstXquHiaOlow6pdtlZkdtdqCVVmZWhos0/zypSoqX171mty0juqW1cu3mgEAAAAAAAAASAaEqAAk3Ei/CCEqAAkot7yL8v0uAkBCSi1dqc6LVqqzpE1+2VaR3VmrO/XS8swMZXTo43OFAAAAAAAAAAAkPkJUABJKoG8Pv0sAgGbJXp4pZfhdBYBkkVZSpC72kDRw6638LgcAAAAAAAAAgIQX9LsAAGhqJyoASETZiwMKBFL8LgNAEsrrvqXfJQAAAAAAAAAAkPAIUQFIKIGeXaRUmugBSDzBSk/ZuQP8LgNAEiJEBQAAAAAAAABAy5FEAJBQAsGgAn26y5u72O9SAKDJckJ9tEaz/S4DQBJJz+qmjOzufpcBAECrCW7SXxl3XO53GQAAAAAAoB2iExWAhMNIPwCJKress98lAEgydKECAAAAAAAAAKB1EKICkHCCg/r4XQIANEv28gy/SwCQZDr0GOl3CQAAAAAAAAAAJAVCVAASTnBQX79LAIBmyVpkY0lT/S4DQBLp2HMbv0sAAAAAAAAAACApEKICkHACHXOlTnl+lwEATRaMSDk5A/wuA0CSCIYylNdtc7/LAAAAAAAAAAAgKRCiApCQ6EYFIFHlhBhJCqB1dOg+QsEUutsBAAAAAAAAANAaCFEBSEjBwYQQACSm3NJOfpcAIEl06jXK7xIAAAAAAAAAAEgahKgAJKSo3yTFAACO7klEQVTg4H5+lwAAzZK9LMPvEgAkiY69tvG7BAAAAAAAAAAAkgYhKgAJKdizq5ST5XcZANBkWUs8BVPS/S4DQIILBFPVoccIv8sAAAAAAAAAACBpEKICkLCCg/v6XQIANFkgKuXkDPS7DAAJLq/bFkoJ0dkOAAAAAAAAAIDWQogKQMIKDmGkH4DElBvs7XcJABJcJ0b5AQAAAAAAAADQqghRAUhYwSH9/S4BAJolu7Sj3yUASHAde43yuwQAAAAAAAAAAJIKISoACSvQq6uUnel3GQDQZDkF6X6XACCBBQIp6thzK7/LAAAAAAAAAAAgqYT8LgAAmisQCCg4dICiE6f6XQoANEnmUk8pnTMVCZf6XQqABJTXfUuF0nL8LgMAgDYRnTlfFWOe9bsMAAAAAHXIuONyv0sAgDZFJyoACS242SC/SwCAJgt4Uk7OQL/LAJCguvQb7XcJAAAAAAAAAAAkHUJUABJaioWoAn5XAQBNlxvo5XcJABJUl347+10CAAAAAAAAAABJhxAVgIQWyMtRoHd3v8sAgCbLXtvR7xIAJKDUjI7K67aF32UAAAAAAAAAAJB0CFEBSHjBYYz0A5B4cvLT/C4BQALq3HdHBQL8bxwAAAAAAAAAAK2Nv30HkBwj/QAgwWQURJWSmu13GQASDKP8AAAAAAAAAABoG4SoACS8wKA+UgYdXQAkloAXUG42IVAATRFQl76j/S4CAAAAAAAAAICkRIgKQMILpKQouMkAv8sAgCbLVU+/SwCQQHK7bqr0rC5+lwEAAAAAAAAAQFIiRAUgKQQZ6QcgAWWXdPC7BAAJpEtfRvkBAAAAAAAAANBWCFEBSAopmw/2uwQAaLKc/FS/SwCQQLr0I0QFAAAAAAAAAEBbIUQFICkEOuUp0IPxNgASS8YyT6G0XL/LAJAAQul56tBzpN9lAAAAAAAAAACQtAhRAUgawRFD/S4BAJosN5txpAAa1m3AbgoGQ36XAQAAAAAAAABA0iJEBSBppIzc1O8SAKDJcr2efpcAIAF0G7S33yUAAAAAAAAAAJDUCFEBSBrBvj0V6NzB7zIAoEmy1+T5XQKAOJcSylSXvqP9LgMAAAAAAAAAgKRGiApAUmGkH4BEk72U8VwA6tel/85KCaX7XQYAAAAAAAAAAEmNEBWApJIycpjfJQBAk2Qs95Sa3tHvMgDEse6M8gMAAAAAAAAAoM0RogKQVAIDe0t5OX6XAQBNkps10O8SAMSpYEqauvbfze8yAAAAAAAAAABIeoSoACSVQCCgFEb6AUgwuV4Pv0sAEKc699lBobRsv8sAAAAAAAAAACDpEaICkHSCIzf1uwQAaJLsVbl+lwAgTnVjlB8AAAAAAAAAABsFISoASSc4pJ+Unel3GQDQaNlLQn6XACAOBQIp6jZwD7/LAAAAAAAAAACgXSBEBSDpBIJBpQzfxO8yAKDR0os9pWV28bsMAHGmY69RSsvo6HcZAAAAAAAAAAC0C4SoACSl4MhhfpcAAE2SmzHA7xIAxJmeQ3/rdwkAAAAAAAAAALQbhKgAJKXgsIFSbrbfZQBAo+VEu/tdAoA4EkxJV4/B+/hdBgDENc/zEvLYfkvmtQEAAAAAALQEISoAyTvSb9TmfpcBAI2WuyrX7xIAxJFuA3ZXKC3H7zIAxLGvv/5aw4YNcx/bozFjxujhhx9uk2O/8MILuvXWW5Vsli5dqjPOOEOLFi2q2rb33nvryiuv9LUuAAAAAACAeEGICkDSStluS79LAIBGy1qc4ncJAOJIz6EH+l0CAMS1O++8U6WlpW1y7P/85z8qLi5Wsvnyyy/1ySef1Nh2zz336JxzzvGtJgAAAAAAgHhCiApA0gr26aFAr25+lwEAjZK2ylN6FiP9AEipGR3Vpd9ov8sAALQDW2yxhfr37+93GQAAAAAAAHGBEBWApJay7RZ+lwAAjZabMcDvEgDEgR5DfqNgSqrfZQBoBs/z9Nhjj+m3v/2tRo4cqf3228+NnLPtNjLtxBNP1LXXXqtRo0bpwAMP1Pz5891IvpdffrnGcWxfG7NW3bPPPqvf/OY37rh/+tOftHjx4gbrOf74492x7rvvPu28887adtttXdeh2Di3GTNmuPM/99xzNV63ZMkSbb755nr99derjlO7nokTJ+qUU05xa9lpp5108cUXKz8/v8aoQat5r732cvt88cUX7rlvv/3W1b/VVltphx120BVXXKEVK1bUOPY333yjU089Vdtvv72GDx/uzn333XcrGo265+3YsS5Ksc/N9OnTdeaZZ7rz2ePcc8/VggUL1BR2Lrs+r7zyijv2woUL3ftjYSMb87fLLru4umfOnKlIJKIHHnhABx98sHtftt56ax1zzDH66quvqo5nddt98PHHH+uQQw5x67H38dVXX61x3scff1wHHHCARowYod12203XXXed1qxZU/W8XaPrr7/eXU87htVg67P6qrPjHnHEEe767rnnnvrnP/+piooKt4arrrrK7bPPPvtUjfCrPc5v9erVuvnmm7Xvvvu6WmxtL7744nrX6K677nIjD+2+srXb+zV37twmXWsAAAAAAIB4E/K7AABo65F+4bc/laKe36UAQINywt1U6HcRAHzXa+hv/S4BQDPddtttLgxz8sknu7DNjz/+qH/84x8Kh8NVAaL09HTde++9Wrt2rYLBxv3btqeeeko33HCDC2HtvvvuGjdunP7617826rUffvihOnXqpKuvvtqFkCxUY6Got956S0OHDnVhm9dee01HH310jSBOVlaW9t9/f/e1Bb8siBPz008/VQWhbM0WJrLjWpCmejjIQk523rKyMm2zzTYuHGXXxkJX//73v7Vy5Uo3lu+EE05wQZ2MjAxNnTpVJ510kgsU/etf/3IBtDfeeMMda/DgwTrooINc6Mvq/d3vfqff//737lxz5sxxASbbx8I9ds1tLN+xxx7r1telS5dGXS87zxlnnOFCUxY46959XadQW+Mjjzyim266SUVFRRoyZIhb+zPPPKNLLrnEBa4sRGbv7YUXXuhCU5mZme61y5Yt09/+9jedffbZ6tOnjwvWWXjMQkp2nDfffFO3336722bHmT17tluDjSu0j3YNLBxm1+vSSy9V165dNW3aNHcN7b2x45mnn37anceuiYXaLEBmNdrrLrroInd+uya1w2cx9j798Y9/1PLly3XBBRe4Wj/44AP95S9/UWFhoc4666yqfZ944gkXyrPAlR3frovVXzuQBwAAAAAAkEgIUQFIaoG8HAWHDlB0Gv8iFkD8y1mZIwX8rgKAn7I6DFCHHiP8LgNAM6xatcoFSyxcdNlll7lt1qXHAjQWHrLgiwV7LOTSs2dP93ztLkJ1sQDNmDFjXOeq//u//3Pbdt11V9elyDo9NcSCONaFqF+/fu5rCxlZpyILO1nA6KijjnJBHAvcxPax5yysZKEms8kmm9Q4pnW26tixowsVWSjMWNjIwkTW3SrGAjkWhoqxoNWgQYN0//33KyUlxW2zIJad66WXXtJxxx3nQlR23SxUFAuZWSBt7NixrsOV7Wsdn4xdx9jnFgyy0JJ1AsvJyXHbRo8e7ToqPfTQQy7g0xgWnkpLS1Pnzp2rjh1jISLr7hRTUFCgP//5zy6UFmPX4/zzz3chp9jr7T2wkJHVYwYOHOg6Sn3yyScuRDV+/Hj17dvXrd/WbF2mLMRm4aTYeWxttobtttvObdtxxx1dJ7NYaMkCchbgsvXeeOONNd5/C8zl5uZWje2zLmN2vtrsPrFuXnZfWejNWFcsu2/tHrSQmr3vJi8vz22LvY9Wi3XdsoCZhfYAAAAAAAASEeP8ALSLblQAkAiyF/OjGdDe9Rz6a9gAQGKx8XYWNol1b4qxTkwW4jEWQIkFqBrLuhJZZyAL3VRnIwMbw8baxcJRsZCQfW3BLhMLS1m3JjNhwgQ3ls2CVhvy3XffuY5YsQCVsdCNBZ0soBNT/XML8/zwww/aY489XDDMrpU9rBYLEsXG/R1++OF68MEHVVlZ6QJV7777rhsdZ52gbNuG2Ag9Cx/ZWmLHtjCVhY6+/PJLtYbq64mFwqw7mI3asy5jFgSLjUCs3rnLVA9kxe4B60ZmrDOXddI68sgjXRjMOpjZ6L9YOKtHjx5VnZ8seGfX6sknn3TvVew89nq7T2x0YHXWHczCUampDY+JtTCXdZ+KBahiDj30UJWXl7v3L8a6aMUCVNXXZO8zAAAAAABAoqITFYCkFxyxqZT+nlS+4b9wB4B4kLrGU0Z2L5WVLPG7FAA+6Tn0QL9LANBMxcXF7qN1MNqQ7OzsJh831o2odnefbt26Ner1FsCpzUbbxY5rQSPrFmXhn/POO891obJuUbWDNLXX2pjxeNZNqXqnLuuWZAEpe9QWC2TZSDkbXWihLgtCWcckqyUUCrnwVX01vf322+5RW33vSVNUX4+xsNP111/vPlqnKOvY1bt3b/dc7Vpjo/1MrMNWbB/rMmbX5r///a/r7mQdnSzMZKP77Dlj788dd9yhJUuWuDCeBbpincJi6zeNHVtYF7sn6rqvrIta7D2saz3V12TrAAAAAAAASFSEqAAkvUBaqoIjhyn6zWS/SwGABuWm9ydEBbRTnXpvp6y89ccrAUgMNt7MWFciG5kXs3jxYjfqrK4uSoHAujm+1mWpuliHourhKesyVF0sNNMQG69WW2FhYdVoN2Mj/V555RVNmjTJdX6y7kX1sdFwts7abDxd7W5N1QNktt6TTjrJdb+qLRbKsbF3VsO///1vN9YvFlyKjcKrrybb/+STT17vOQtgtTYbp3jaaadp2LBhblyevecWJLJrYPU31cEHH+weq1ev1ueff+6CZjYW0rpP2ahFG+VnnansvYkF42677TbXFaz2/Vf7/f/pp5/qDcXFdOjQQfPmzVtvu42kNIzpAwAAAAAAyY6ZMQDahdAOI/wuAQAaJady3b/0B9D+9N3iKL9LANACI0eOdCPTPvrooxrbH3nkEV188cU1Rp/FWBcok5+fX7XNwlYWZooZOHCgevXqpXfeeafGa2ufZ0MsZFM9SDV58mQ3Eq56KGn77bd357n99ttdiOewww6r95g2Is9GylUfWWdBnTPOOENTpkyp8zW2VhslaOMJbRRc7DF06FDXeenrr7+uqnfHHXfUvvvuWxWgspotHFS9y1Gs81GMjfKbOXOmC3HFjj18+HA99thjev/99xt1rTZ07LrYOizIdsIJJ7gOVLHXfPrpp03uyHTRRRfp3HPPrQqD2ajGc845x3XiKigo0Pfff++Od/7551cFqCx4FxtTaM9ZiMtCTrXvC+voZe+L3VcNrcvug0WLFrnzVWddsOzetnscAAAAAAAgmdGJCkC7EBzST4EeXeTl1/zX2wAQb3KKs6X1f8cKIMmlZXZWt4F7+V0GgBawkXEWqLHQTlpamgv1/PDDD3rmmWd0+eWX6+eff66z8491CHryySc1YMAA9/UTTzzhRtrFAkTWvcnGul1yySW6+uqr3ei9iRMnuuPWZtutjupdpkpLS13HpLPPPlslJSX617/+pU033dR1ParOulH985//1O67777eCEALJ1lgykJQxgI+Rx99tM4880y3ZqvXOkdZyGaXXXZZL4QTY2EyC/TYWg499FAXBLKQmV0nO6axY/zvf/9z6xsyZIimTp2q//znP+462FpirPPShAkT9M0337hQl73+mGOOcTUde+yxbjzgc889pw8++EB33XVXk95LO7aFwsaPH7/B4JCNPLRg2H333ec6XdnDOlC9+OKLVde9sXbaaSdde+21uvXWW931t7F599xzjwu2bbbZZlWdyf72t7+598nG7j399NPu2hh73mqxkJXtYyP99t57b82ZM8et/bjjjnP3VqxblYXK7Dx2fas78sgj3UhBC3RdcMEFbpTi2LFj9dJLL7lRj7HXAwAAAAAAJCs6UQFoN1J23trvEgCgQdmL7MezdaN9ALQfvYYdomBKqt9lAGghG79mQaE333zThYWsC9Bf//pXnXjiiRt8zS233OI6JllA6qqrrtKWW2653v4WeLLwk4WkLAxl3YYsLFObBZvGjBlTY5sFjPbaay/95S9/0d///nfXgcqCWhb0qm6PPfaoCtLUdv3117sQTYyFqSz4ZZ2SrIvSjTfe6MbO3X///esdt7pdd91VDz/8sJYuXepCOhYusw5djz76qLbeet3/r1155ZWuC5WFsiwQ9cILL7g1/+EPf3DhrNjow7POOst1qDr99NO1ZMkSFzayYJGFrey4dnwbQ3fvvfdq//33V1OccsopbuShjc6zc9TFOkbZtfY8TxdeeKE7p41ufOqpp9zowm+//bbR57Pwl73/1sXK1nXNNde4gJMFzKwDlHXmsm22fluv3TO9e/d2QSsTG+lnYSl7zrp62bWzQJ/tb7UZO46NPLSwnAW26hqpaO+r3S933nmnu+52bBuxaAEtAAAAAACAZBfw7G97AKAd8ErLVX79GKmi0u9SAKBe3436XKUli/wuA8BGE9DOx76qrLy+fhcCIMkcf/zx7qMFYxrywAMPuNDNxx9/XG8QCmhr0ZnzVTHmWb/LAAAAAFCHjDvW/SMNAEhWjPMD0G4EMtOVss3minw9ye9SAKBeuen9CVEB7UjnvjsSoALgm1deeUXTp093Y9xsJF6yBqii0ah7NMTG8gEAAAAAAKB94m+GALQrKbtsTYgKQNzLqeyiAr+LALDR9N38KL9LANCOTZ06Vc8++6z2228/N8YuWf3f//2fC4w1ZNq0aRulHgAAAAAAAMQfxvkBaHfK//2kvPlL/C4DADZo1RBpUug5v8sAsBGkZXXVrse9pWCQf98CAG1p4cKFKioqanC/ESNGbJR6sGGM8wMAAADiF+P8ACQ7/qYeQLuTsvPWChOiAhDHsm2S38Cg5DU8cgZAYuuz2WEEqABgI+jbt697AAAAAAAAABsS3OAzAJCkUrbeTMrK8LsMANiglDIpK5tf8gFJLxBU782O8LsKAAAAAAAAAABAiApAexRIS1XK9sP9LgMA6pWbRogKSHbdBuyuzNxefpcBAAAAAAAAAAAY5wegPY/0i3z6reT5XQkA1C2nvKvy/S4igT38ZplmL47opjOy13tu9VpPb35ZrsmzI+7znMyAthiYooN3SVPHnMb/G4OlK6L637gKTVsQUVmFpy4dgtph85D2HpWq1FCgxr4ffFuhsd9VqrzS0+DeKfr9Xunq3mn9c93237XKTA/o/KMym7lyJJL+I//kdwkAAAAAAAAAAOAXdKIC0C4Fu3VWcPPBfpcBABuUU0SIprneHlehCdPDdT5XUurpH8+s1eeTwurSIaA9t0lV765BjZsS1m1Pl6p4dbRR55i5KKJbn16riTPD2mxAinbbKlUWm3r98wo9/FaZPO/XlO6Ps8N65dMKdcoNaPTwVM1dEtG9L5eqMlwzyWs1z8+P6vDd0lp4BZAI8rptqU69tvG7DAAAAAAAAAAA8As6UQFot0J77qCKn2b7XQYA1ClrkRQYnCLPi/hdSsKwUNLzY8v15eS6A1Tmw+8qVLjS0x5bp+oPe6dXbX9rXIULX9nH4/bPqPc8FZWeHv9fmfv8ot9nalDvFPd5ZFdPY14t04+zIvppbkRbDlr3o/bnkyqVlS5d+PtMpaUGNLBnUI++Xa4pcyLaeui6fSIRT69/Xq7tNwupX/d1x0Ny6z/yOL9LAAAAAAAAAAAA1dCJCkC7FdykvwL9evpdBgDUKaVCysrp53cZCePHWWHd8NhaF6DactCGQ0hzl67rNLXLiJr/lmD3rVLdRxsB2BDrPrVilaf9tkurClCZlJSADhqdpp22DKlaIyoVFkfd6D4LUJm+v4SkClf+2vXqs0mVKlrt6ZBd6ELVHmTk9FT3wfv4XQYAAAAAAAAAAKiGEBWAdi201w5+lwAAG5Sb2tfvEhLGl5MrVVbh6eh90nX24RvuJJWTuS7ItHxVzVF6K0uiNZ6vz5TZ64JW2w5bv6nr4N4pOv43GRo++NfnsjMDKq/8dZ+y8nXnzkpfdy6r+39fVbruWJ3z+PG8Peg3/BgFgzQFBgAAAAAAAAAgnvA39wDateDITRXo0lHe8mK/SwGA9eSUd/a7hISx16hUnfjbDGWk1R+C2nVESN9PD+vFj8uVmRbQgJ5BLV0R1dPvlSsQkPbZruFOUAsLo0oJSp3zAm4E4Pif13WR6pQb0M7DU7XvdqkKBn+tY1CvFH3wbaUmzghrWP8UjZ1QKXvaAlfm/W8qFI16OmBHulC1Bymp2eqz+RF+lwEAAAAAAAAAAGohRAWgXQsEg0rZfTuFX/nA71IAYD05yzOlDTdVQjWb9mvcj7Wb9g/p/KMy9Pg75fr3C6VV2zPS5DpYbTmo4eOsXBNVWqp078tlWrgsopFDQkpPDWjynLBe+7xC8/IjOu3gDAUslSVpv+3T3LjBB98oqzqGjf3r2SXojjX2u0odtHOasjLW7e95XtVrkXx6b3aYQmk5fpcBAAAAAAAAAABqIUQFoN1L2XGEwu99IZX8+st0AIgHWYukwNCQvGjY71KSRtHqqAs6Fa/xtOWgFPXsHFRBUVSTZ0f0zAflOvOwgPp1X9chakNsNF80KtfB6qo/ZalLh3Uj+A4tT9NdL5Zq4oyIvp0a1vabp1aNCLzyT1n6YWZYq9d6rgPVwF7rzvHWuArlZAXcKL/Sck9Pv1emH2dHXKeqUcNC+v1e6Q1210LiCARS1H/EsX6XAQAAAAAAAAAA6rDuNz4A0I4F0lKVsvPWfpcBAOsJhqXsnAF+l5E0rMPTf14p09ylUZ1+SIbOOSJTR+6RrrMOz9R5R2VoZYnnuktVVHr1Hic2qe/AndKqAlQmMz2gQ3ddN5Lv22k1g29pqQEXqtp727SqANXS5VGNmxzWITunKTUU0AsflevneRH9cb90Hb1Puhv/9/In5a1/IeCbboP2UmZub7/LAAAAAAAAAAAAdSBEBQDWlm/XUVKI5nwA4k9uqI/fJSSNOUuiWlQY1RYDU7T10Jp/5m82IKQdNw+5TlGTZtXf+cvCUmZAz/V/lI51sVpWHG2wnlc/L1efbkFtv3nIdaH6ZmpYo4enasctUrXTlqnucwtZlVXUH+pC4hi4zcl+lwAAAAAAAAAAADaAEBUAWDeq3GylbLel32UAwHpyyjr5XULSWLFqXbCpZ5e6fwTu3W3d9hWr6g8tde+0LkQVjqz/XCSy7rVpofpH8M1cGNGPsyI6fLc0BQIBF7qyEYHdO/1aW49OQUU9qXBlw4EsxL+u/XdTXtfN/C4DAAAAAAAAAABsACEqAPhFyl47/DqjCQDiRE5hpt8lJI287HV/xhesqDuUVFAUrbHfhmzad123qanz1u9YNS9/3TGsw1R9Xv2sXJsPSHEdsIwFqNZ9/DXAVflLIIv/MiWHQdue7ncJAAAAAAAAAACgHoSoAOAXwW6dFNyWblQA4kvmYk/BlHS/y0gKQ3qnqFNuQFPmRvTj7JoBqLlLIm50Xma6NGJw/eNdbcxeaoo0dkKlFhf+2o5qbZmnN76ocKGnXUakbvD1E6aHNXdpVIfvnla1zTpQWY531qJfA16zF0WUEpS6deRH9kTXpe9odejOzxgAAAAAAAAAAMSz+n9DBADtTGi/0ar47qdfW4IAgM+CESknZ4BWrZzudykJLyUloJMOzNC9L5fq/tfKtOWgFPXqElRhcVQ/zIq48NOf9s9QduavvZ/GTanUipVRjdwkpH7d13Wg6tIhqKP3SdfT75fr9v+WaptNQ8pIC2jSrLCKVnvaZ9tUDe69bt/aIlFPb3xerh02D6lvt1/3ycoIaNSwkL6dGlbwrTJZD6rvZ0S016hUpaXSiyrRDdr2DL9LAAAAAAAAAAAADSBEBQDVBLt2Usq2WyjyzWS/SwGAKjnB3lolQlStYZM+KbryT1l69+sKTZ0X0U9zI8pKD2jkkBT9Zoc09e9RM/z09ZRKzVgYVecOwaoQVawbVbdOQXccC09FIlLPLkEdskuadtxiw12ovpi0Lmh1wS6/dqGK+eN+6a7D1fczwgoEpN23StVhu66/HxJL5z47qGPPkX6XAQBAwghu0l8Zd1zudxkAAAAAAKAdCnieZ//QHQDwi+jyYlXc/BDdqADEjWVbVWha2St+lwGgGbY95EF16j3K7zIAAAAAAAAAAEADgg3tAADtTbBLR6Vst6XfZQBAlexl6X6XAKAZOvYaRYAKAAAAAAAAAIAEQYgKAOqQst9oKYU/IgHEh8ylUQVDGX6XAaCJBo863e8SAAAAAAAAAABAI5EQAIANdqMa7ncZAOAEogHl5gz0uwwATdCh51bq3HcHv8sAAAAAAAAAAACNRIgKADaAblQA4klOoLffJQBogk12ON/vEgAAAAAAAAAAQBOQDgCADQh27qCU7elGBSA+5Kzt6HcJABqpa//d1KnXNn6XAQAAAAAAAAAAmoAQFQDUI7TfzlIoxe8yAEA5BWl+lwCgMQJBbbLjeX5XAQAAAAAAAAAAmogQFQDUI9ApTym7jvK7DABQRr6nlNQsv8sA0IBeQw9UTudN/C4DAAAAAAAAAAA0ESEqAGhAaL/RUlaG32UAaOcCnpSbPdDvMgDUI5iSpiHbneV3GQAAAAAAAAAAoBkIUQFAAwKZGeuCVADgs5xAL79LAFCPvlv+Xhm5fJ8CAAAAAAAAAJCICFEBQCOk7DJKgS4d/S4DQDuXU9LB7xIAbEAoLUcDtznF7zIAAAAAAAAAAEAzEaICgEYIhFIUOmh3v8sA0M7l5Kf5XQKADRiw1YlKyyBwDQAAAAAAAABAoiJEBQCNlLL1ZgoM6O13GQDasfRlUYXScv0uA0AtaVld1X/EsX6XAQAAAAAAAAAAWiDUkhcDQHuTeuieqrj7v36XAaCdCngB5WQNVHHFj36XAqCaIdufrZTUTL/LAAAgKURnzlfFmGf9LgMAAABAHTLuuNzvEgCgTdGJCgCaIDior4IjhvpdBoB2LFc9/S4BQDV53bZQ72GH+l0GAAAAAAAAAABoIUJUANBEoYP3kFL44xOAP3JKOvhdAoAqAW2682UKBPi5AAAAAAAAAACARMff9gNAEwW7dVbKztv4XQaAdipnKdOYgXjRc+iB6thzpN9lAAAAAAAAAACAVkCICgCaIXTALlJOlt9lAGiH0gs9pabTjQrwW0pqlobueL7fZQAAAAAAAAAAgFZCiAoAmiGQmaHQQbv7XQaAdiona6DfJQDt3qBRpyo9u5vfZQAAAAD/3959gMlVV/8DPrO76ZtAQkiAhBIChBZ6R3oHASkKUkRQOkhHEFFAwQqIIigiVYqISBEQKQIivQhIld57b6n7f87X/+4vCUlIyCY3u/O+zzPP7Mzcuffcsskm89lzAgAAgPYhRAXwOTWuMDxq88xZdRlAHerdMrDqEqCu9Zxlnphn+PZVlwEAAAAAALQjISqAz6lWq0WXrdbNL6ouBagzze/3qboEqGsLrXxgNDR2qboMAAAAAACgHQlRAUyDhrnnjMaVlqi6DKDO9HqlqeoSoG7NNs+q0X/e1aouAwAAAAAAaGdCVADTqGmTNSKae1ZdBlBHur3VEl2796u6DKg7DY1dY6GVD6q6DAAAAAAAYDoQogKYRrWe3aPLpmtWXQZQZ5p7zFt1CVB35lt65+g1q+89AAAAAADojISoANpB4/KLR23+wVWXAdSR3mMHVl0C1JVefeeP+ZbaueoyAAAAAACA6USICqCddNl6/YhGf6wCM0bz+72rLgHqSC0WWf270dDYpepCAAAAAACA6cSn/QDtpGGO/tG45gpVlwHUiV4vNVZdAtSNwYtuFbPOsWTVZQAAAAAAANOREBVAO2raYJWoDehXdRlAHej6bkt069G/6jKg0+vWc/ZYYMV9qy4DAAAAAACYzoSoANpRrakpumy7UUStVnUpQB3o3WO+qkuATm/YFw6Npq7NVZcBAAAAAABMZ0JUAO2sYb5B0bj6slWXAdSB5tEDqi4BOrXZ51szBgxZu+oyAAAAAACAGUCICmA6aNpotaj1n7XqMoBOrvk93XFgemns2isW/sJhVZcBAAAAAADMIEJUANNBrWuX6PKVDSNM9QOmo14v+VEOppcFV9g3uvWaveoyAAAAAACAGcQnbwDTScMC80TjKktXXQbQiXV5vyW69xxYdRnQ6fQbtGIMWnTrqssAAAAAAABmICEqgOmo6YtrRPTtU3UZQCfWu/u8VZcAnUpT196x6Jrfj1pNO0kAAAAAAKgnQlQA01GtW9f/jfUDmE6aRxs3Bu1p2KqHRPdmHd4APq+WlpaqSwAAAACAz0WICmA6axw2XzSuOLzqMoBOqvmdXlWXAJ3GgCHrxJwLbVJ1GQDt6pJLLolhw4bFCy+8UB7vuOOO5dbeXnnlldhtt93ixRdfbHtu7bXXjsMOO6x8fccdd5Q68p7x5bnJY5PnqiP51a9+Veqe2PkGAAAA6Iiaqi4AoB40bb52jH3i+Wh5852qSwE6mV4vNkTMXXUV0PF17TFbLLza4VWXAdDu1lxzzfjjH/8YAwYMmK7bufXWW+Omm24a77mTTz45mpubp+t2qc6Xv/zlWG211aouAwAAAKDdCFEBzAC17t2iy/ZfjJEnnx8xdmzV5QCdSNNHLdGj11zx8YcvVV0KdGiLrP7d6Nqjb9VlALS7fv36lVsVFl100Uq2y4wxxxxzlBsAAABAZ2GcH8AM0jDfXNG0/ipVlwF0Qr27zVN1CdChzTVs85h9vtWrLgPo5P70pz/FJptsEosvvnjpDpWj0MaMGVNeyxFo3/jGN0rHqHXXXTeWWGKJ2HbbbePpp5+Of/zjH7HpppvGkksuWTr/PPLII59a75ZbbhlLLbVUed/mm28eV1999STH+X0eExvTNu568+vDD/9fN7911lmnbdnJjXf75JNP4qijjorVV1+9HJMNN9wwfv/730+2jlxXjiK8+OKLY6211oqll146dtppp3j00UfL6++8804MHz48TjjhhPHe9/HHH8eyyy4bp556att6xh1DN3bs2DjxxBNLvVlL3h9//PExatSotmVGjBgRP/3pT2ONNdYoy+Q5ueqqqz51nH75y1/GT37yk1hllVXK+cjz+swzz4y33N///vfYbLPNyutbbLFFW/1TK+s+7bTTYr311is1bbDBBnHuueeOt0wer+9973txyimnlK5ReR3tuuuu8cYbb8Sf//zn8t48jl//+tfHu0by2sx1f/GLXyx15vWV1+Ttt98+yXF+AAAAAB2dTlQAM1DjuivFmMeeiZanP/8HGAATah7VP16rugjooLr3nisWWuWgqssAOrnf/va3JaSzww47lLBRBqEygPLyyy/HcccdV5a577774rXXXisBnwzsZMBot912i1qtFt/61reiR48e8f3vfz8OPvjguPLKK8t7zjvvvPjhD38Y++67bwkJvfvuu/G73/2uLJPBmBnVJShDYXvuuWcJKeUIvykJ1uR+33LLLfHtb387+vfvHzfffHMJKc0666yx1VZbTfJ9eeyeeuqpOPDAA2OWWWYpoaU8rhloypGFGUK74oor4oADDijHLl177bXx0UcfxZe+9KXyeK+99iqBoFZ5zC644IJSy9xzzx33339/OV9dunQpx76lpSX23nvvuPfee8vjoUOHlnXmNkaOHNm23nTOOeeUc/GjH/2onI9jjz22rDcDcumGG24o68gQ1iGHHFL2J+8/j7xGMsC2++67l/N91113leP63nvvlXpb/fWvf43FFlus1PLKK6/EMcccU45Zt27dSm0ZMsugVT6fwan085//vByTgw46qJzPV199NX7961/HfvvtFzfeeGO5HgEAAAA6GyEqgBmo1tAQXbffJEb8/KyIT0ZUXQ7QSfR6p2dEY9VVQAdUa4jF1jwqmrr2qroSoBN7//33SxegbbbZJr773e+W577whS+UsFA+3nnnnctzH374YfziF78oAZ105513xoUXXhhnnXVWrLzyyuW5Z599tnQ5ypBMnz594vnnny+djjIU1GrQoEGlM9U999xTOl/NCDkucJ55/tcZc5FFFonBgwd/5nty/1ZdddW2GldcccXo2bNnzDbbbJ95PH/zm9/EcsstVx5nl6QMTmV4KcNjGcDKQNUdd9wRK620Ulnm0ksvLZ2h5pxzzvI4a22tt7WW7OTUGt5aYYUVSkiod+/e5fGtt94a//znP0uwauONNy7PZVenDB9l2Ci7NTU1/e+/2PK85PlubPzfD2fPPfdcCcy9/fbb0bdv3xJEypp/9rOfta0nZeerqZFdyi666KISJsuwXet1lcGxDO1tt912ZXtp9OjRJdyWobPWTli5P9ddd10JjaV///vfcdlll7WtPwN9GRLLTlatMnSVgb3HHnusdKYCAAAA6GyM8wOYwWr9ZokuW69XdRlAJ9LrhfyR7n+dFoApN2TpXaLvXMtWXQbQyWWHqRxdl6PeMszSesvH6V//+le5z4BLa4AqZXemlOPXWmXwKmWIKmXXqgwO5ePWEEx2p0rZIWlmlqGpDAHlaLk//OEPJRCW3ZOyq9XkZECrNUCVsvtUaxemlGGpueaaqy0QlJ2XbrvttjI2b3K15HnI4NHpp58eTzzxROnUlKMRU74/w0k5ym/Cc/j666/Hf//737Z15TjB1gBVau0GloGrvA4eeuihMopwXBtttNFUHr0oY/WyQ9bErqvsZJYhulZ5XbUGqFqvrQxYtQaoWq+tDKi1ylBXjkp866234u677y6j/y6//PIOcW0BAAAAfF46UQFUoHGZRWPMo0/H2LsfqroUoBNo+qQlejYPio8+MCoUptSscy4b8y/7v84dANPTO++8U+5buwVNKDv+pObm5om+nt2ZJiW7HOUYtgz55Oi5+eefPxZeeOHyWgZsZmZHHHFECRhlMOcHP/hBuWUYKkfUte7DxAwcOPBTz2X3qgwnpYaGhtKJ68wzzyzjDzNMlcd2vfUm/Yss3/zmN6NXr14lKJSdpbJL1IILLlg6hWU3qzyHeTyXWWaZSZ7D7MCVJhxzl/WksWPHlvF+uZ7WDlHjBsE+73U1qW5jOX6v1cSurcldV+nBBx+Mo48+utznPi2wwAIlnNYRri0AAACAz0uICqAiXbZcN0Y+/WK0vPm///wGmBa9u84TH4UQFUyJLt1njeHrHBu1BnMwgekvx7ulDOfMN998n3o9uwKddNJJU73eDOVkMCvDUxdffHEJ8eRIueyiNO5YtvYyZsyY8R5/9NFH07S+rl27xp577lluL730UvzjH/8oY/AOOuiguPLKKyf5vhyLN6E33nhjvDGAGaLKsXk333xzXH311WUEX46im5QMOm2//fbl9uabb8ZNN91URgbm6LrsUJVj/TJ0lCMDJ2beeeedon3Obk+5rax3YoGoz3NdnX322SUANqHWwNPn8cEHH5Rg2bBhw8q5yHBe1p3H5Zprrvnc6wUAAACY2RnnB1CRWvdu0WX7TfJ/7KsuBegEmkf+3weHwOTUYrG1joluvWavuhCgTuQ4vgw6ZWegHPXWesvA0wknnBAvvPD5QtAZJnr66adj6623bltfyuBQa8iqvWQnoxyLN65xx8WN23FpSuRYuw022CDOOOOMtsBPBpiyq1IGqibnmWeeiSeffLLtcR7XHJm48sortz03aNCg8jhDT4888kgJVU3OtttuGz/84Q/L1xnGyuWznhyTmIGiFVZYoYTGsgPTuOfw8ccfL2GtHKM3JTLIld22/v73v4/XzemGG26IqdU60jCvg3FryvF7Gcr7PMGsVk899VR5/9e+9rXSgar13E6PawsAAABgZqITFUCFGuYbFE0bfiFGX/W//4wG+Lx6vd0zokvVVcDMb94ld4z+86xadRlAHcnRbdnVJ4MtGchZccUVS/AnH9dqtcmOrpucDPtkWOi8884rY/GyM9E///nPtm5JH3/8cbvtw1prrRW//e1vyy1DYRn6uf322yfaGenaa6+N1VdfPYYOHTrJ9XXv3j0WW2yxOPnkk0vALDseZSDsL3/5SwlXtXr44YdLx6oM8rTK8NEee+wRBxxwQDQ2NpZ1zDLLLLHjjjuOt40Mlx144IGljqx5wjGIGTZaaqmlyuPll1++BLqyK1iGnPL85DjADE/169cv1lhjjbLMXnvtVW65zgceeCB++ctfxmqrrVaWmVJZ00477RT77LNPbLPNNmW/s+vV1Mpjttlmm8WRRx4ZL774Yiy++OJlXSeeeGIMHjx4ol3PptSQIUNKcC7rynBe3rIDVXY8a+9rCwAAAGBmIkQFULHGdVaMsc++GGMf+r/fpgaYWr1erEVtSGO0tIw/agf4P7MMXCKGrrB31WUAdWj//feP2WefPc4///w4/fTTS+gnOyVloCZHxX1eOf7u2GOPjcMOO6wtbHTqqafGcccdF3ffffengkWf1+67715CR7///e9j1KhRseaaa5bt5ii+VhkOW2WVVeL444+P2267LU477bTJrvOYY46JX/ziFyW89Prrr5dQWAaf9ttvv7ZlMmiUQbFzzz237bnsWrXLLruUfcwwT24z9zlH5Y0rg08ZUptYF6o8bhnYeuyxx8rj3GYevz//+c+ls1Sek7XXXruMFkzZiSn3J4NvGSTLkX8DBw6MnXfeOfbee++p7iD1u9/9rnQhy/3LwFPuSwbDptaPfvSjUs+FF15YOoXlMczRhXm9ZcDs88r9z2P005/+tBybHBeY4yL/8Ic/xK677lqurTw+AAAAAJ1NrWXc/uEAVKLl409i5AnnRMubn3/kAsB9y90eH77/bNVlwEypqVufWHGr86NH7zmrLgWAzynDYnfeeecUjb+76qqr4tBDD42bbrqphIvoOMY+8VyMPOXCqssAAAAmovsJh1ZdAsB0pRMVwEyg1qN7dPn65jHypPMiRo+uuhygg2ruMjg+DCEqmJhF1/y+ABXAOPJ36saM+ewOltnRKDs6dRTXXXddPPjgg6U7U3ah6mgBqrFjx5bbZ8kRewAAAAC0L//jAjCTaBg0MJq2Xi9GX3h11aUAHVTvEbPFq1UXATOhuYdvFwPmW7PqMgBmKjnO7vDDD//M5c4555wyqq+jeOGFF+Lss8+OZZddNg455JDoaL7zne+Uc/NZWkcRAgAAANB+jPMDmMmM+uPVMeaOB6suA+iA3p834v7uf6y6DJip9J1r2Vh6k1OiocHvjwCM6+233y6Bo88yZMiQaG5uniE18b8QWJ6bzzJ8+PDorIzzAwCAmZdxfkBn55MEgJlM05brxdgXX4uWF/STAaZOr5dqURvaGC0tnz2aB+pB9+Y5Yvi6PxGgApiIvn37lhszl8GDB5cbAAAAADNeQwXbBGAyal2aostOm0f06F51KUAH0zCqJXr1nrfqMmCm0NDULZZY/+fRtYeAAAAAAAAA8NmEqABmQg2zzRpdtt8kolZ1JUBH09w0qOoSYKawyGrfjT6zL1J1GQAAAAAAQAchRAUwk2pcdGg0rb9q1WUAHUzvT/pVXQJUbu7h28WcC21cdRkAAAAAAEAHIkQFMBNrXH+VaFhq4arLADqQXm8aBUp96zvXcrHgSvtVXQYAAAAAANDBCFEBzMRqtVp0+erGUZtnzqpLATqIni9G1Bq6VF0GVKJ785wxfN0fR0NDU9WlAAAAAAAAHYwQFcBMrtalKbruskXErL2rLgXoABrGRDT3nq/qMmCGa2jqFkts8PPo2qNv1aUAAAAAAAAdkBAVQAdQ69McXXfZMqKr7jLAZ+vdOFfVJcAMVovF1jom+vQ3AhcAAAAAAPh8hKgAOoiGwQOjy3ab5OfEAJPV/LFOPNSXBVb8Vgycf92qywAAAAAAADowISqADqRxiYWiaaPVqi4DmMn1er171SXADDNoka1ivqW+VnUZAAAAAABABydEBdDBNK27cjQsu2jVZQAzsZ4vt0RDY7eqy4Dpbra5V4mFv/DtqssAAAAAAAA6ASEqgA6oyzYbRm2+QVWXAcykamMjmpvnq7oMmK6a+y0Yw9f9cdQaGqsuBQAAAAAA6ASEqAA6oFpTU3TdZYuozd636lKAmVTvhrmqLgGmm249Z4+lNjopmrr2qroUAAAAAACgkxCiAuigas09o8vuX4no4wNk4NN6fTxr1SXAdNHYpWcsudEvonvzwKpLAQAAAAAAOhEhKoAOrKHfLNF11y9HdO9adSnATKb5tW5VlwDtrlZrjOHrHBd9+i9cdSkAAAAAAEAnI0QF0ME1DBoQXXbZMqKpsepSgJlIj1daorGpR9VlQLsa9oVvR/95V6u6DAAAAAAAoBMSogLoBBoXmCe6bP/FbNFRdSnATKLWEtHcPF/VZUC7GbrC3jF40a2qLgMAAAAAAOikai0tLS1VFwFA+xj9r/ti9J+vrboMYCbxzEqvxwtv31B1GTDN5l1ix1hw5f2rLgMAAAAAAOjEdKIC6ESaVl06GtdbueoygJlEr49mrboEmGZzLby5ABUAAAAAADDdCVEBdDJdNlotGldcouoygJlA86tdqy4BpsmAIevEIqsdUXUZAAAAAABAHRCiAuiEmr68fjQMX7DqMoCKdX9tbDR26VV1GfC59Bu0Yiy+zrFRa2isuhQAAAAAAKAOCFEBdEK1hobosuNm0bDo/FWXAlSo1lKL3r2GVF0GTLVZBgyPJTc4Phoau1RdCgAAAAAAUCeEqAA6qVpTY3T5+peiYdh8VZcCVKh3zFF1CTBVevUbGkttdFI0dulRdSkAAAAAAEAdEaIC6MRqTU3RZectomHBeaouBahIrw9nqboEmGI9Z5knltn419Glu+sWAAAAAACYsYSoADq5Wtcu0eUbW0Vt/sFVlwJUoPlV49DoGHr0mTuW2fS30a3X7FWXAgAAAAAA1CEhKoA6CVJ13XXrqM03qOpSgBms++st0dS1d9VlwGT16DMolt30t9G914CqSwEAAAAAAOqUEBVAnah16xpdd9s6anPPUXUpwAzWu9eQqkuASeree65Y9ou/je7NA6suBQAAAAAAqGNCVAB1pNa9W3Td4ytRG6TTB9ST3i3Ck8zEAarsQNV7zqpLAQAAAAAA6pwQFUCdqfXoHl332CZqcwlSQb3o9UGfqkuAiY7wW27T06JH77mqLgUAAAAAAECICqAe1Xr1iK57bRu1eXT+gHrQ65WmqkuA8fToM3csu+nvdKACAAAAAABmGkJUAHWq1rN7dN1zm2hYYJ6qSwGms+5vtkSXbrNWXQYUPWeZN5bd7LTo3jyw6lIAAAAAAADa1FpaWlr+7yEA9aZl1OgYddalMfaRp6ouBZiOHl7psXjr7X9XXQZ1rrnfgrH0JidHt579qy4FAJhJjX3iuRh5yoVVlwEAAFD3up9waNUlwAynExVAnat1aYouu2wRDUsOq7oUYDrq3aLrD9WaZeCSsexmvxOgAgAAAAAAZkpCVABErbExuuy4aTQuv3jVpQDTSa/3elddAnVstsErxzKb/Dq6dHMdAgAAAAAAMychKgCKWkNDNG27UTR+YZmqSwGmg14vN1VdAnVq4PzrxZIbnhiNXXpUXQoAAAAAAMAkCVEB0KZWq0WXLdeNxnVWqroUoJ11e6cluvaYreoyqDODFtkyFl/3uGho7FJ1KQAAAAAAAJMlRAXAp3TZZPVo2mSNqssA2lnvHvNVXQJ1ZL6lvh6LrH5E1Gr+yQEAAAAAAMz8fKIBwEQ1rbNidPnqxhGN/qqAzqJ5zOxVl0CdWGDF/WKBFfetugwAAAAAAIAp1jTliwJQbxqXXzyiT68YddalESNGVV0OMI16v9u76hLo5GoNjbHwat+JQQt/qepSAAAAAAAApor2IgBMVuOwIdF1769G9O5VdSnANOr5cmPVJdCJNXbtFUtteFKHC1C98MILMWzYsPjqV79adSkAAAAAAECFhKgA+EwNg+eIrt/aPmoD+lVdCjANur7XEt16Dqi6DDqhbs0DY/nNfh+zzb1y1aUAAAAAAAB8LkJUAEyRhtlmja7f2iFqQ+euuhRgGvTuPm/VJdDJ9O6/cKzwpbOjebYFqy4FAAAAAADgcxOiAmCK1Xp2j667fyUallm06lKAz6l59OxVl0An0n/eNWK5zU6Pbr1cVwAAAAAAQMfWVHUBAHQstabG6LrDF2PUbLPEmGtvq7ocYCo1v9scUau6CjqDuRffNhZa5aCo1Wbu38sYNWpUnH322XHFFVfEs88+G83NzbHYYovF3nvvHUssscQk3/f+++/HWWedFddff315X66nf//+scoqq8Q+++wTc801V9uyo0ePjjPOOCOuvvrqeOaZZ6JWq8XQoUNjiy22iK9+9avlcatHHnkkfv3rX8dDDz0Ur7/+evTr1y9WXnnl2HPPPWO++eab7scDAAAAAACYOCEqAD6XLhutFg2z94tRF12Tnx5XXQ4whXq91BAxqOoq6NBqDbHQygfGPMO/GjO7kSNHxk477RT33ntvDBkyJLbaaqv45JNP4sorr4x//etfcfrpp8fgwYM/9b6PPvoott1223jyySdj1VVXLbd836233hp//vOf4/bbb4+rrroqunfvXpb/3ve+V55fZpllyvsycJXhq6OPPjpeeeWVOPDAA8tyTz31VAlVNTU1xfrrrx+zzTZb2cbll18eN954Ywl6DRgwYIYfJwAAAAAAQIgKgGnQuNxiURvYL0aeeWnEO+9XXQ4wBbp80BLde80Zn3z4ctWl0AE1dukZi6/9w5h9vjWiIzjzzDNLgOqLX/xi/OhHP4quXbuW5zPotM0225TnsivUhC688MJ44oknSreqb33rW23Pjx07Nrbbbru477774o477og11lgjPvjgg7j00ktjueWWi/POO69t2exWtdFGG8W5554b++67b3Tp0iX+9Kc/xccff1w6XGX3qVannHJKnHTSSXHJJZfEHnvsMd2PCwAAAAAA8GlCVABMk4a554xuB3ytBKlannmx6nKAKdC72zxCVEy1nrPME0tscHw0950/OooMN2XXpyOOOKItQJWGDx8ehx56aBmzl6P4JpQj+37wgx/EhhtuON7zDQ0Nsfzyy5cQ1Ztvvlmea2lpKeGql19+OV544YW2zlazzjpr6U7Vp0+fEqBqXTbdc889sdJKK7WN+fv6179eRv8NHDhwOh4NAAAAAABgcoSoAJhmtd69oute28boP18bY+54oOpygM/QPKp/vF51EXQos82zaiy+9rHRpVvv6ChGjBhRxucNHTo0+vXr96nXM7iUMvg0oYUXXrjcch0PPPBAPPPMM/H888/HY489Vkb5pTFjxpT73r17x2abbRaXXXZZGdG3xBJLlPF/X/jCF2LJJZcswatWW265Zely9atf/SouuOCCEtbKZVdfffWYc845p+PRAAAAAAAAPosQFQDtotbUGF222TBqcw2I0ZfdkDOPqi4JmITmd3pFNFZdBR1DLeZbepcYuvweUav9XxioI3jnnXfaQk5Ta+TIkXHyySfH+eefH++//79xtc3NzaWD1QILLFA6SY3ruOOOK+GpHMf373//u3SqyvdnZ6kDDzwwvvSlL5XlFlpooTLS73e/+13ceOONcfnll5dbY2NjrL322nHUUUdF//7922X/AQAAAACAqSNEBUC7alptmajN2T9GnX1ZxIcfV10OMBG9XmyImCfHiP1vtBhMTGOXnrHomkfFwPnXiY6oZ8+e5b41BDWhjz/+OLp37z7R1372s5/FOeecU0bu7bLLLqUrVeuovZ///OefClHlyMAddtih3N56663SrSpDUldddVV8+9vfLiP+lltuubLsggsuGD/96U9LJ6uHHnoobr311tLF6tprr40PP/wwzjzzzHY+EgAAAAAAwJToWL9ODkCH0LjAPNH1gK+VrlTAzKfp45bo0WuuqstgJtajz9yx/JfO6rABqtYOVIMGDYpnn322rSvVuDLclN2jWsfyjevSSy8tIazsGLXGGmu0BajSE088Ue5bWv4XQnzyySfj+OOPj3/84x/lcY4O3HjjjUtQao899ijP3X333eU+R/n94Ac/KO/N7lO5/Vzmz3/+c9neXXfdNZ2OBgAAAAAA8FmEqACYLhr6zRJdv7V9NCyzaNWlABPRu9s8VZfATGq2uVeNFbY8N5r7DY2OLsfojR49On7yk5+U+1bZASpDT9khKsNME+rWrVuMGDGidJUa11//+tfSYSqNGjWq3Dc0NMRpp50WJ554YnzyySfjLf/CCy+U+7nnnrvcZ0jqD3/4Q1xxxRXjLffGG2+U7WU9AAAAAABANYzzA2C6qXXtEl13+GKMHjp3jP7L9RHjfIANVKt51GzxWtVFMHOpNcSQpXeO+ZfbI2q1zvG7Frvvvnvccsstcckll5Tg1IorrljG++WYvVqtVrpFTcxWW20Vv/nNb2LrrbeODTfcMLp06RIPPPBA6SjVv3//Enpq7W41ZMiQ+OpXvxoXXHBBbLTRRrHWWmuVMYH3339/WX7ppZeO9ddfvyy79957x80331y6YF199dUxdOjQsp5rrrmmdKc6+OCDZ+jxgZlRfi/k9+fMvs56NL2OY2c6P51pXwAAAADqUef4dASAmVrTyktG1/13iNqAflWXAvx/zW/3qroEZiJde8wWS298cgxdfq9OE6Bq7Sh1zjnnxLe+9a3SOSqDTtddd12sssoq5evhw4dP9H377rtvHHLIIdGnT5/405/+FJdffnkZ+3fkkUfGH//4x7JMa0eq9N3vfjeOPvromG222eLKK68s3abefvvtsp4zzjijhLDS/PPPX0b6bbbZZvH444/H2WefHddee20su+yy5T3rrrvuDDoyMHO6/vrrS8iwPd1zzz2x2267tes66817770Xhx56aNto0vYycuTIOO644z7Vna9qGbwdNmxYWzfBjrwvAAAAAEydWkv+mhwAzAAtI0bGqD9dE2PvfaTqUqDujekecdt8f4poGVt1KVSs36AVYrG1fxjdes5WdSlAndtxxx3L/bnnnttu6zzssMPizjvvjBtuuKHd1llv7rjjjvja175WQqnZ0a+9ZEhpnXXWiR/96Eex5ZZbxswUojr88MNLqG9Kx6zOrPvSUY194rkYecqFVZcBAABQ97qfcGjVJcAM13l+zRyAmV6tW9fousOm0fTl9SOaTJSFKjV+EtGz15R9MEjnVKs1xvzL7xlLb/JrASoAAAAAAKDuCVEBMMM1rbzU/8b7zd636lKgrvXuKkRVr7r1GhDLfPE3Mf8y3+xU4/uAjt2FKjtG5S1HqWX3o3feeSe+973vlRGcOX7zK1/5Stx2223jve9f//pXeX7ppZeO5ZdfPvbcc8948skn27pQ/eUvf4kXX3yxrDM7DE2pXP5Xv/rVeM/l43y+1VtvvRUHHXRQrLrqqqW+zTffPC699NLx3vPSSy/FgQceGCussEIsueSSsdNOO8XDDz88XgejXOeZZ54ZG264YVnmz3/+c3zyySdx1FFHxeqrrx6LL754ee33v//9ZGvO/c3jePHFF8daa61Vjklu79FHHy2v5/HMOk844YTx3vfxxx+XsaKnnnpq23pa97O1C1XK+9ZuYSnHo2bXpVxnHoMf/vCH8dFHH7W9Prl9aO3clLLr09prrz2FZ+bT52Fi56z1uOaI1T322KMc1zXXXDN+/etfx9ix/9eFM78+5ZRTymu5zF577RXvvvvup9ad+7rddtuVY9q6L+edd95n7kuOQNxhhx3KuvMayHGVed1MjTwHrd8T48pzMe75+M9//lPOd57LrPPrX/96/Pvf/x7vPZ9VT36PLLroomWUbZ7TXOaJJ56YqnoBAAAAOjKfmABQiYa5BkTXA3eKhqUXqboUqFvNI/pXXQIVmG2eVWPFrc6PvnMtU3UpAG2+//3vl/BG3v74xz/GYostVgIhOVLtgAMOiJNPPjnmmGOO+OY3v9kWpHr++edL6CVDLRkAOvbYY+Ppp5+O3XbbrYRj8rU11lgjZp999rLODMq0p0MOOaQEto4++uj43e9+V2rPUMrtt99eXs9wyrbbbhsPPfRQHHnkkXH88ceXurbffvu2oFerDP/suuuu8dOf/rSEV4477ri4+eaby/oyeJQhnXwtA1aT88gjj8SJJ54Y++yzT/zsZz+Lt99+u4RmXnvttZh11llj3XXXjSuuuCJaWlra3nPttdeW8NOXvvSl8jiPWx6vlOchg2wp7/M8pVzH3nvvHfPPP38JJuX2Lr/88vLe1nVPbh8GDBhQzmnK4Fvr1+0tQ1zNzc3l+GbILbeT56FVHqOsf+utty6v5TEa9/V04403ln3NY5GBq1zX3HPPHcccc0zcf//9k9yXu+66qwSZunfvHr/4xS/iO9/5TgkJZhgtA2bt6YMPPijfG3379i315TWQ4bhvfOMb8f77709VPWPGjIkzzjijfD9lKGzo0KHtWisAAADAzMwsJQCqHe+346Yxeth8Mfov10eMGFl1SVBXmt/uEdG16iqYUWoNjTF0+X1i3iV3jFqtVnU5AONZYIEFStglLbXUUnHRRReVDkp5n11zUnY0ys47P//5z0sQ54EHHijhj9133z0GDhxYlsmgVQavMhQ0zzzzRL9+/aJr165lne0tAygZrslgUsquPRnCye2ls88+u3R/uuCCC2LQoEFt+7DxxhvHSSedFL/85S/b1rXRRhvFVlttNd66M0y1ySablMcrrrhi9OzZM2abbfLjVzMw85vf/CaWW2658niJJZYo9Z1zzjlx8MEHl21cddVVpavRSiutVJbJ7lnZ7WvOOecsj/O45S3lOclzk/I+bxmSynOw2mqrlftW8803Xwnp3HTTTSWwNrl9yGO0yCL/+2WK3FYG0KaHDD611pjHPq+LPC8ZdspA27nnnhs777xzCYGl3KcMnP3zn/9sW0d2Ytpiiy3iiCOOaHsuOz3l/uRxzOtzYvuSYawhQ4bEb3/722hsbCzP5bJ5PPL6zTBde8kaMzCXgahllvlfSDoDbhmG+/DDD6N3795TVU9272rv0CEAAABARyBEBUDlmlYYHg1D545RF1wVLU+9UHU5UDd6vhhRm78xWlrGVF0K01mvvvPHYmsdE31m1/0P6Biy21R2kMoQzOjRo9uezzF12c0oR65lAKRbt26li1COV8uQTAZbMjg0I+S2sutPjufL8E12vcquS+PuQ4ZrMuDVug8NDQ2lzuzaNK7WEM64677wwgvjlVdeKevNWwa2PsvgwYPbAlQpuyRl4Ce7EKUMS80111xx2WWXlRBVrj/rzI5MU+qpp54q78vw2rjnJscpZugqRyxmAOfz7kN7au2u1WqDDTYogbL77ruvhMFGjRpVrqlxZaBt3BBVdnhKGUbKTmfPPfdcPPjgg+W5kSMn/ksg2QUqu1RlJ6jcTutxyg5W2dkpj1F7hqgWXHDBEhjM8FN+L+T1mAG27Jb2eeqZ8HoEAAAAqBdCVADMFBpmmzW67vXVGHPjnTH66ltyjkTVJUGn1zgyomfz3PHh+89UXQrTS60h5hn+1Ri6/N7R2NSt6moAplh2cHr99ddLiGpi8rXsivSHP/whTjvttLj44otLOKZPnz6x3Xbbxf777z/du+7lyLTs+nT11VfHNddcUwJSGVLKMW/ZeSr34dlnn53kPmSwpVV2aBpXdj3KrloZtvrBD35QbhmGyvF0Cy+88CRrau3INa7s/JQjBVPWuOWWW8aZZ55ZRvNlmCqDT+utt94U73fuV8oxhnmbUHZympZ9aE8THo8MGqUM4bWOHcwReOPK8N64cixjHqvrrruuXFPzzjtvW1Bt3LGI43rvvfdKp6sc85i3CWX4rz316tUrzjvvvDLWMq/H7ECVY/tyhOF3v/vdqa5nwusRAAAAoF4IUQEw06g11KJp7RWjYeEhMeq8K6Pl5derLgk6vd5dBseHIUTVGXVvnjMWW+vo6DvXslWXAjDVcvxYjocbd1zchB2XUnadOvnkk0tHoHvuuaeERzLYlCGd7Cg0LcZMEOrPUXAT1pidfvKW3ZlyjOApp5xSgkUZ7MrXc8TfoYceOtH1t479m9RrOXIuby+99FL84x//KOs+6KCD4sorr5zk+3Kk24TeeOON8cYAZojq17/+ddx8880lcJPjBacm1JNBtZT7lfs3oVlmmWWa9uGztIbj8vy0jqXLLlFTcjzefPPNcp/Ho/X85nM5+m7CkFirHIOY5/ess84qIbDcrwzA5ajJyYWass4cb9g6znBcPXr0mOr9zRDUuHKfczutch+yo1juV466zIBcjpLMEYPbbrttu9UDAAAA0Jk1VF0AAEyoYa4B0fWAr0XjWivkpwZVlwOdWvOI/3VkoHOZc9hmsdKX/yhABXQo2SWpVYZzXn755RJ2GT58eNstx46dfvrpJTyToZYcxZYBqgy2rLzyyqXbUcrQzoTrnBrZnenVV18d77l777237esXX3yxjKf729/+1hZg2XXXXUsnqtZt5z7k+LchQ4aMtw8ZbsnOWa0BoAl98sknZezcGWecUR7n+L0ctZbhl9Z1T8ozzzwTTz75ZNvj3IccXZfHplV2ycrH2bnrkUceKaGqyZmwztzXPC8vvPDCePuVXZ+OP/74Mt5wSvZhUvs/Jecm5ZjAVhmgm5jsHjWu7BiWgaEcBZmBqOzW1HoOW2XYa1y57vXXX7+MJ2wNvmUAbdxg04T7kjUuuuiiJXw17jHKsXs5AvKOO+6Ypv3NTlrjnufchxzPmB3aspbWjl8ZeMvj3Z71AAAAAHRmOlEBMFOqNTVGl03XjMbFhsao86+Klrferbok6JSa3+wR0b3qKmgvXXvMFousfkTMPt8aVZcCMNUy8JGBn9tuu62Ml8tRfTvvvHPsscceMeecc8att95aRpHtsMMO0aVLlxIayU5Ve++9d3kuwyMXXnhhCbpkuKp1ndmJ6aabbopFFlkkBgwYMEW1rLnmmqVbUoZtcnzbJZdcUkbzjRtEylF1P/zhD+ODDz4o3X7+85//lO3svvvuZZns+pOBqbzfZZddyti4q666qnQwOvzwwye57Qz25AjA7LCV+zls2LASxvrLX/5SgkmtMqyU+5pjDVvleLk8XgcccEA5HrmO7Ay14447jreNrbfeOg488MAYOnRo2cdxPffcc2WE3VJLLVUeZ0etdOONN5Z1ZZevXP/3vve9so081jkuLrtMZWgra5+SfWhdb57vidUxKRle+9GPflS2/41vfKOE7bKz1rhdmVplp60MfOV77rzzzjLyLmtvHVe31157xS9+8YsSrMrrKc/fhCGq7HZ2xRVXlP3Jc55huuw0lp2dWkcyTmxf8vjutttupfPWZpttVjpEZajs/vvvL9udUnns8vrPfcwwVG73t7/97Xjdo5ZZZpkS6MrvhdxmHovc9/fff78EwNLnrSev7yeeeKJc463jECe8RtK///3v8nouBwAAANBR1Vryf9gAYCbW8smIGH3ZDTHmjgerLgU6nbFNEbct+OdoGTu66lKYRrMPWTsWWe070bVH36pLAfhcbr/99hIuym46GZLJrk7Z2SjDOxkGyeBShn8ykNTaYeqWW24p4ZLHH3+8hEIWX3zx2G+//WL55Zcvr+fz+fj555+Pb33rWyVEMiUyeJVdrbLjUFNTUxl5l+v+7ne/G4899lhZJus84YQTSg05Ni6DLltttVXZRmt9GTbJfchwzYgRI8qIwgw05X6k7Oa0zjrrlP0dtyNUBlcy3JMjAnM7GQTKGnJfMqCU1l577XJMzj333PL4sMMOK0Gh7IiVxyQDPnkMv/3tb7eNPxx3/cstt1wZVffNb35zvNdyPRl2at3PDOfkyMJrr722BGT++te/luczEJZdwf773/+WUFIGefbff/8S+pnSffjxj39cRjBm0Cq7jOX9lLj00kvj1FNPLR3BMrSUowXzfGWnq3333bftuGZgKo/J3XffXc5PBtq++tWvjreuPH5nn312CYBlB6ccA5ldnLLuPG65jVx3riPlOfza174Wl19+eRn9l13FJrUved4zSJYBu3ycQaysL4/91MjxfMcdd1w89NBD0b9//9hpp51KV6kMprWe/1zmpJNOKtvKc59dpjJQl4HEVp9VT4YF83uwdd9TdqnK/R33Gp3wGkl53rfYYotyHKbV2Ceei5GnXDjN6wEAAGDadD/h0KpLgBlOiAqADmPM48/G6D9dEy1vvlN1KdCp/Hv5u+OD9/5vJAwdr/vUQqscFHMs8H/dSQCoP60hqhtuuOEzl80AVAaPsvNShps6m0mF0+gYhKgAAABmDkJU1CPj/ADoMBoXmjcaDtk5Rv/91hhz4135a/FVlwSdQu+mwfFBCFF1RHMN2zwWXHn/6NKtT9WlAMz0sqNS3j5Ldp7qrK677rp48MEHy9jDDBfNTAGq0aM/uytmdvhq7fLV0WXntM/6vcYc3ZcjEwEAAACYMTrv/wwC0CnVunaJLl9cIxqXXjhGXXRNtDz/StUlQYfX++O+8XLVRTBVes4ybyy8+nei31xTNw4IoJ7liLscZfZZxh1l1hk7NOXoumWXXbaM6JuZ5Gi5z9Je4+JmBjlaMDuHTU6Oa5ySzmIAAAAAtA/j/ADosFrGjo0x/7wnRl99S8TIUVWXAx3Wh3PX4r6eRqZ0BLWGpph3yZ1iyDLfiMamblWXA9ChvPrqq/Haa6995nLDhg2Lrl27zpCa+D/ZIeuz9O3bt9ME3J566qn48MMPJ7tMXod5PdYb4/wAAABmDsb5UY90ogKgw6o1NETTGstHw/CFYvTFf4+xjz5ddUnQIfV4qSUahnWLsWNGVF0KkzHLgOGxyBrfjeZ+C1RdCkCHNHDgwHJj5jR8+PCoJ/PPP3/VJQAAAAAwASEqADq8hn6zRNfdvhxj7nk4Rl12Q8QHH1VdEnQoDWMimpvnjffefbzqUpiIxi69YoEV9o7Bi305arWGqssBAAAAAADolISoAOg0GpddNBoWnT9G/+1fMeZf90WMHVt1SdBhNDfMFe+FENXMpRZzLrRxLLDit6Jbz/5VFwMAAAAAANCpCVEB0KnUenSPLlusE40rLxmjL70+xj7+bNUlQYfQ++O+VZfAOPrMvmgMW/XQmGVgfY02AgAAAAAAqIoQFQCdUsMc/aPrHtvEmAf/G6MvuyFa3nq36pJgptbr9W4Rvauugq49+sXQFfaJuYZtFrVarepyAAAAAAAA6oYQFQCdWuPwBaNh4SEx5sa7YvT1t0eMHFV1STBT6vHK2Gjo2z3Gjv6k6lLqUq2hKeZebJuYf9ldo6mbNBsAAAAAAMCMJkQFQKdX69IUTeutHI3LLx6jrrgxxt73SNUlwUynNrYWvZvni3ffebTqUupOv8ErxbBVDo5efYdUXQoAAAAAAEDdEqICoG7UZu0dXXfcNMauulSMuuwf0fL8K1WXBDOV5tpc8W4IUc0ovWYdEgusuG/MPt8aVZcCAAAAAABQ94SoAKg7DfPPHV333zHG3v9YjL76n9Hy+ttVlwQzheaPZq26hLrQrdfAmH+53WKuhTaNWkNj1eUAAAAAAAAgRAVAvarVatG41MLRMHyhGHPHAzH677dGvPdB1WVBpZpf6xoxS9VVdF5N3frEfEt9PeZefJtobOpedTkAAAAAAACMQ4gKgLpWa2yIplWWisblFosx/7wnRt9wR8THI6ouCyrR/dWWaOzfM8aM+qjqUjqVhsZuJTg139I7R5dufaouBwAAAAAAgIkQogKADFN17RJN66wUjSsvFaOvvz3G3HJvxKjRVZcFM1StJaJ3r/ninXcerrqUTqFWa4w5h30x5l929+jePLDqcgAAAAAAAJgMISoAGEetZ/fosuma0bTasjH67/+KMXc+GDG2peqyYIZprs0Z74QQ1bSpxYAha8fQ5feMXn2HVF0MAAAAAAAAU0CICgAmojZr7+jylQ2jce0VY0x2prr7oYgxY6suC6a75g9nqbqEjqvWEAPnXy+GLPONaO43tOpqAAAAAAAAmApCVAAwGQ39+0bDNhtF0/qrxugb7ogxdzwQMXpM1WXBdNP8ateIvlVX0fHG9g1cYIMYsvQuOk8BAAAAAAB0UEJUADAFan37RJet1oum9VaO0f+4M8bcdn/EyFFVlwXtrtvrY6NpYO8YPfL9qkuZ6dUaGmOOBTcp4ames8xddTkAAAAAAABMAyEqAJgKtT7N0WXztaNpnZVi9E13x5hb7o0YMbLqsqDd1Fpq0dxzvnhn5INVlzLTqjV0ibkW+mLMt/TO0aPPoKrLAQAAAAAAoB3UWlpaWtpjRQBQj1o++iTG/POeGH3zPREff1J1OdAunl3xrXj+nWurLmOm09ilV8y18OYx7/DtonvvOasuBwAAAAAAgHYkRAUA7aBlxMgYc8eDJVDV8uY7VZcD0+TNxcfEI6MurrqMmUb35jli7sW3jUGLbBFNXZurLgcAAAAAAIDpQIgKANpRy9iWGPvg42XUX8szL1ZdDnwuI/rX4q7ZLox612f2xWKeJbaPAfOvEw0NpmADAAAAAAB0ZkJUADCdjH32pTLmb+wDj0WMGVt1OTBV7ljibzFqxLtRd2oNMfu8q8c8S+wQfedcuupqAAAAAAAAmEGEqABgOmt59/0Yfeu/Y8xt90d88FHV5cAUeWilR+Ptt++PetHYpVfMudAXY57hX42es8xddTkAAAAAAADMYEJUADCDtIweHWPufSTG/Ou+aHn+larLgcl6bsW347l3/h6dXe/+C8egRbaKORbcMJq69Ky6HAAAAAAAACoiRAUAFRj74msx5o4HYsw9D0V8PKLqcuBT3lp0TDw85uLojBqbesTABTaIwYtuFX1mX7TqcgAAAAAAAJgJCFEBQIVaRo6KsQ88HqNvvz9annqh6nKgzYh+tbhr9gujM2nut2AMWnTLmHPBjaOpa3PV5QAAAAAAADATEaICgJnE2NfejDG3PxBj7n4o4oOPqi4H4s4lr42Rn7wVHVlDU/cYOP86MWiRrWPWOZaouhwAAAAAAABmUkJUADCTaRk9Jsb+579l3N/Yx5+N8Fc1FXl4pcfjrbfviw6n1hD95lo+5lho4xgwZO1o6tKz6ooAAAAAAACYyQlRAcBMrOW9D2LMvx+NMfc+Ei3PvVx1OdSZ51d4N55992/Rkcb1zbnQxjHHAhtFt16zV10OAAAAAAAAHYgQFQB0EGPfeDvG3vfI/wJVr75ZdTnUgbcXGRMPjb04Zmbdes4ecyywYcyx0CbRe7YFqy4HAAAAAACADkqICgA6oLEvvhZj7n24dKmKt9+ruhw6qZGz1OLOOS6MmU2X7rPG7POuEQMX2CD6DVo+arWGqksCAAAAAACggxOiAoAOLP8ab3n6xRiTHaoeeiLinferLolO5q6lro8RH79RdRnRrdeAmH2+NWPAkLWi75zLRq2hseqSAAAAAAAA6ESEqACgExn7wisx5j9PxNj/PBEtL71WdTl0Ao+u/GS88dbdlWy7R5/BMWDI2uXWZ8DiUavVKqkDAIAZZ+wTz8XIU2a+bqgAAADQ2XU/4dCod01VFwAAtJ+GwXOUW2z4hRj71rslTDX2oSdi7JPPR4wdW3V5dEDNowfEjOxD1dxvgZh9vrViwPxrR+/ZFpqBWwYAAAAAAKCeCVEBQCfV0G+WaFh92YjVl42Wjz+JsQ8/FWMe+m+MffTpiE9GVl0eHUTze83Tdf1NXXtHv8ErxGxzrxKzDV45ujcPnK7bAwAAAAAAgIkRogKAOlDr0T0al1203FrGjI2W516KsY8/G2Mef7Z8HWN0qWLier3UEDFXe66xFn1mXyRmm3vlEpyaZcDwqDU0tucGAAAAAAAAYKoJUQFAnak1NkRtyOBoGDI4mjZYNVpGjCzj/sY+/kwJVrW8MiOHtzGz6/J+S3TvOTA++ejVz72Orj37R79B2W1q5dJtqmuPvu1aIwAAAAAAAEwrISoAqHO1bl2jcdGh5ZZa3vsgxv732f91qvrvsxHvvF91iVSsd/d5pypE1aP3oJh1zqVj1jmXib5zLhM9Z5l7utYHAAAAAAAA00qICgAYT61PczQuu1i5dclQ1dvvxdhnX4qxT78YY595MVpees34vzrTPHr2eH2Sr9aiV98hJTSVgalZ51g6ujcPnKH1AQAAAAAAwLQSogIAJqvWt0805m2phcvjlpGjouWFV2Ls0y+VUFUGrOKDj6ouk+mo+Z1eEQ3/+7qxS6/oM/si0WfAYjHLgMVLaMp4PgAAAAAAADo6ISoAYKrUunaJ2vxzR8P8/zeibezrb0dLdqt68dVoefG1GJvdqj76pNI6aQd5rueaPfrMPSAWXXDREprqOeu8Uav9/0QVAAAAAAAAdBJCVADANGuYvW/E7H2jcbnF2p4rYwBfeq2M/xv70uvRkgGrN9+JaKm0VCZlluZoGNg/anPMFg2D54ja4IFRGzBb1Bpq5eUeVdcHAAAAAAAA05EQFQAwXccAxmILtD3XMmJktLz0+v/CVa++GS1vvB0t2cXq7XcjxkpXTXeZh5q1T1tYqjZwtv/7unu3qqsDAAAAAACAyghRAQAzTK1b16gNGRQNQwaN93zL6DHR8tY7/wtU5a2Eq94qYwLj3fd1r5oa2Tlqlt4lxFbrN0u5b5i9XwlM1Qb0K+cAAAAAAAAAGJ8QFQBQuVpTYxkdF3mbQMvIUdHy1rvR8s770fLOe+U+xvm65b0PIz4ZEXWja5eo9e4VMWvvtpDUePez9olaY0PVVQIAAAAAAECHIkQFAMzUahkamqN/RN4moQSt3vsg4r0PSqiq5cOPIz7+JFo++iTio//dt3z8/7/+//cxclRUrktTRHbn6toloke3qPXqGdHcM2q9e0at+f9/XW69Iv7/c2VZAAAAAAAAoF0JUQEAnSNo1b9vRN6mUI4QjI8+jpYRoyJGj47Ix6NHR8uoMeM/zvtR///xmDH/NzKv1hBRy/va/388zq2hFrW8z5BU1pYj9Lp1iejaNWp5n4/z63wfAAAAAAAAUDkhKgCgbkcIRp/mEGMCAAAAAAAAGqouAAAAAAAAAAAAoEpCVAAAAAAAAAAAQF0TogIAAAAAAAAAAOqaEBUAAAAAAAAAAFDXhKgAAAAAAAAAAIC6JkQFAAAAdBgtLS0dYp31aHodx85yfjrLfgAAAAB0VkJUAAAAQIdw/fXXx7e//e12Xec999wTu+22W7uus9689957ceihh8bdd9/drusdOXJkHHfccXHFFVfEzOSOO+6IYcOGlfuOvB8AAAAAjE+ICgAAAOgQzjrrrHj55ZfbdZ1/+tOf4sknn2zXddabRx55JC677LIYO3Zsu673tddei7PPPjtGjx4dM5PFFlss/vjHP5b7jrwfAAAAAIyvaYLHAAAAAMAkNDc3x1JLLVV1GQAAAAC0M52oAAAAgJnejjvuGHfeeWe5tY5Se+edd+J73/terLLKKjF8+PD4yle+Erfddtt47/vXv/5Vnl966aVj+eWXjz333LOt89Rhhx0Wf/nLX+LFF18s67zkkkumuJ5c/le/+tV4z+XjfL7VW2+9FQcddFCsuuqqpb7NN988Lr300vHe89JLL8WBBx4YK6ywQiy55JKx0047xcMPP9z2+gsvvFDWeeaZZ8aGG25Ylvnzn/8cn3zySRx11FGx+uqrx+KLL15e+/3vfz/ZmnN/8zhefPHFsdZaa5Vjktt79NFHy+t5PLPOE044Ybz3ffzxx7HsssvGqaee2rae1v3M8/C1r32tfJ33uf5W1113XWy55ZZlnXkMfvjDH8ZHH33U9vrk9iH3e5111ilfH3744bH22mtP4ZmJch4XXXTR0mUst5vH9oknnpiimtKNN95YllliiSVigw02iL/+9a+x3nrrtZ3vCcf5fd79yPGHO+ywQzmnWWOOqsxrZkr247PkOZrwmLVeS+Ne59khK+vN47HaaquV/fjggw+m+FgDAAAAdCY6UQEAAAAzve9///txyCGHtH29wAILxPbbbx9vvPFGHHDAATFgwIASLvrmN78Zp59+eqy88srx/PPPx1577RVbbbVVCSq99957JSC02267xbXXXltey9BKhpZOPvnkmGeeedq15qz3zTffjKOPPrp0L8qRdxmUmWOOOWKllVYq2952222jR48eceSRR5b7DLXkfmXQaejQoW3rygDPEUccUdaToZvjjjsubrnllrK+/v37x8033xw//elPY9ZZZy37O7nRe0899VQ5HrPMMkv88pe/LEGeq666qhzDddddN6644opyTGu1WnlPHqsMGn3pS18qj/O4Zd0pR9plkO2YY44p9yuuuGJ5Ptdx8MEHx6abbhr7779/CaqdeOKJJQSUgbBc9+T2Id+X52SfffYpwbf1119/qo79mDFj4owzzohjjz023n777XIsp6Sm22+/vexfhsz222+/ePbZZ8v1NmLEiElu6/Psx1133RU777xzuQ5+8YtfxLvvvhsnnXRSCaLlue/evfsk96O9ZDjsZz/7Wak7w1V5XfzkJz8pobm8BwAAAKg3QlQAAADATC9DUxkgSjlK7aKLLiodlPI+Q0UpOwFlJ6Sf//znJVD1wAMPlC5Bu+++ewwcOLAskwGm66+/voSCMjTVr1+/6Nq163QZz5Zds/bee+8STErZSSiDNbm9lIGp7P50wQUXxKBBg9r2YeONNy6Bmgw4tdpoo43GC0flurM70SabbFIeZ3ipZ8+eMdtss022pvfffz9+85vfxHLLLVceZ7elrO+cc84pAaPcRgaqsstSBnxSds/Kbl9zzjlneZzHrTVwluckz03K+7y1tLSUc5CdjfK+1XzzzRdf//rX46abboo111xzsvuQx2iRRRZp2152ZJpae+yxR9lOmtKaMqy24IILluBTa4gs68nQ2aR8nv04/vjjY8iQIfHb3/42Ghsby3N5Hec68trNIN3E9qM9Zd2DBw8u22poaCjXZ9adgS4AAACAeiREBQAAAHQ4ObZv9tlnL52QRo8e3fZ8dhDKLkAZBMlQSrdu3WLrrbcuI8syoJQBlwwOzQi5rQzlZKerDO+sscYapevPuPuQAZsMeLXuQ4ZZss7LL798vHW1BnHGXfeFF14Yr7zySllv3jKw9VkyNNMaoErZfSrH+mVnpJRhqbnmmqt0zcoQVa4/68yORVMqOxrl+zK8Nu65yXGKGbrKEYsZCvq8+zClxj1mU1JT7vt9991XamgNUKW8dg499NBJbmdq9yM7Pd1///3xjW98o4S7WuuZe+65S6eprGXcENWE57695Pn94x//WEYXZpAu687OWePuOwAAAEA9EaICAAAAOpzs4PT666+XENXE5GvZFekPf/hDnHbaaWVEWnZb6tOnT2y33XZlnNv0DovkqLjs+nT11VfHNddcUwJSGdTJ0XfZeSr3IcfFTWofMmzTKjsEjStH+2VXrQxb/eAHPyi3DEMdddRRsfDCC0+yptaOXOPKjkkPPfRQ+TprzFBNjrfLMXYZpsqQ0XrrrTfF+537lXKMYd4m9Nprr03TPkypcY/ZlNSUy+T4vAm7eWWnqOwgNilTux85VnLs2LHxu9/9rtwmlMG/Se1He8qOZ1nH+eefH6ecckoJ/OV1mR3J8jUAAACAeiNEBQAAAHQ4vXv3LqPYxh3NNmHHpZRdp3I028iRI+Oee+4pnXcy2JThlhyRNy0ycDOuHBE4YY2HHHJIuWUnpBwjmGGVDPFksCtfzxFqk+py1Dr2b1Kv7bnnnuX20ksvxT/+8Y+y7oMOOiiuvPLKSb7v7bff/tRzb7zxxnjBoQxR/frXv46bb765BMAyUDNhsGdyMqiWcr9y/yY0yyyzTNM+fB5TUlMegy5dupTjMa4MGrWGsCZmavejV69eJcCXYwRbRwCOq0ePHjGtcv2fdX2mL37xi+WWYx5vueWWEurK63XZZZedaOAOAAAAoDNrqLoAAAAAgCmRXZJaZRDm5ZdfLsGX4cOHt91yFNrpp59eugedddZZZbxfBqgy6LLyyiuXLkEpwy4TrnNqZHemV199dbzn7r333ravX3zxxTIe7W9/+1t5PP/888euu+5aOlG1bjv34emnn44hQ4aMtw/Z/Sk7Z+U+TMwnn3wSG2ywQZxxxhnlcY7fy/FvGchpXfekPPPMM/Hkk0+2Pc59yBF2eWxaZTeifJydux555JESqpqcCevMfc3z8sILL4y3XxnKOf7448t4wynZh0nt/+cxJTXl9pZZZpkSdhvXDTfcMN4IwHF9nv3Ia2fRRRctwbpxa1lwwQVLN6g77rhjmvc3g1oZmBsxYkTbcxkiHFd2Y2sdO5iBvgwV7rXXXmVfW7uFAQAAANQTnagAAACADiG7CWXg57bbbivj5XJU38477xx77LFHzDnnnHHrrbeWTjo77LBD6Si00korlU5VGRTJ5zLMcuGFF5ZAVYarWteZnYduuummWGSRRWLAgAFTVMuaa65ZugwtueSSMe+888Yll1xSRvONG0TKEW8//OEP44MPPoh55pkn/vOf/5Tt7L777mWZ7ESUgam832WXXaJv375x1VVXxUUXXRSHH374JLfdvXv3MgIwO2zlfg4bNqyEsf7yl7+UQE+rDAblvuZYw1YtLS3leB1wwAHleOQ6sgvTjjvuON42tt566zjwwANj6NChZR/H9dxzz8Vbb70VSy21VFsAJ914441lXdnlK9f/ve99r2wjj3WOsMvuTBnaytqnZB9a15vne2J1TI2s47NqSt/61rfKscj7PAYZhDrppJPKaxMb//h59yOP7W677Va6VW222Wala1QGse6///4SZJpWuX/nnntuGTWY+/H444+XEY3jBrry+yNHNv7kJz+J1VdfvRyP3I/s8NY6hnDCc53+/e9/R79+/co1nfL1XC6vswyIAQAAAHRUQlQAAABAh5AdfjKIlB2dfvSjH8V5551Xugj97Gc/K+PIMriUoZQMJKUMguTovhxNl6GVDKosvvjiJaySnYlSdlnKYFMGrTI4k8GWKZEhp+zYkwGUpqamMvIut/3d7363bZkMpJxwwgklhJNdgTLotc8++7RtI7sgZagr9+Goo44qXYMywHLssceW4MvkHHPMMfGLX/yi7Mvrr79euizle/bbb7+2ZXJbeUwyTNMqOyXl8TnuuOPi448/Lp2xTj311Jh11lnHW3920crQ0MS6UGXwKENCjz32WHmcHZRyJFyej3/+85/x17/+Nb785S+XbkjZFSxHKPbs2bN0ecpQ29xzzz1F+5CBnAzJ5fvzHGWXsQwqfV5TUtNyyy1XukHlOcswUx6/I488sgSw8r2f51xMbD++8IUvxO9///tyjeR1l/uVYawMOo0bWPq8Vl111fj2t79dzv0111zTFvTadttt25bJr0eNGlWuwfPPP78EwrIDWY7zaz3OE57rtM0228QWW2wRP/7xj9vCc/n9kJ3LVlxxxWmuHQAAAKAqtZb8FUQAAAAAOrXDDjss7rzzzjKe7rNkR6xDDz20hH4yFFQvcpRfdhBr7UyV/vvf/5aQWAaK1llnnUrrqwdjn3guRp5yYdVlAAAAQN3pfsKhUe90ogIAAADI8MbYseX2WbLzVGd13XXXxYMPPli6E2UXqpkpQJWdvz5LQ0NDuX1et9xySwmQHXzwwTFkyJAy6i87dWXnsuweVQ/HAAAAAKBedd7/9QMAAACYCjn2L0eeTUm3osGDB0dn9MILL8TZZ58dyy67bBnrNjMZtzvUpIw7Zu7zyBF4OdYug1OvvfZaGXO42mqrlVGN3bp1i6rPzZR0wsoxjvvuu+8MqQkAAACgMzHODwAAACCidB3K4MxnGTZsWHTt2nWG1MT/yQ5Zn6Vv376dNuA2cuTIeOyxxz5zuQEDBsTAgQOjozLODwAAAKrR3Tg/nagAAAAAUgZPOnL4pLMbPnx41LMM7tX7MQAAAACYnhqm69oBAAAAAAAAAABmckJUAAAAAAAAAABAXROiAgAAAAAAAAAA6poQFQAAAAAAAAAAUNeEqAAAAAAAAAAAgLomRAUAAAAAAAAAANQ1ISoAAAAAAAAAAKCuCVEBAAAAAAAAAAB1TYgKAAAAAAAAAACoa0JUAAAAAAAAAABAXROiAgAAAAAAAAAA6poQFQAAAAAAAAAAUNeEqAAAAAAAAAAAgLomRAUAAAAAAAAAANQ1ISoAAAAAAAAAAKCuCVEBAAAAAAAAAAB1rdbS0tJSdREAAAAAAAAAAABV0YkKAAAAAAAAAACoa0JUAAAAAAAAAABAXROiAgAAAAAAAAAA6poQFQAAAAAAAAAAUNeEqAAAAAAAAAAAgLomRAUAAAAAAAAAANQ1ISoAAAAAAAAAAKCuCVEBAAAAAAAAAAB1TYgKAAAAAAAAAACoa0JUAAAAAAAAAABAXROiAgAAAAAAAAAA6poQFQAAAAAAAAAAUNeEqAAAAAAAAAAAgLomRAUAAAAAAAAAANQ1ISoAAAAAAAAAAKCuCVEBAAAAAAAAAAB1TYgKAAAAAAAAAACoa0JUAAAAAAAAAABAXROiAgAAAAAAAAAA6poQFQAAAAAAAAAAUNeEqAAAAAAAAAAAgLomRAUAAAAAAAAAANQ1ISoAAAAAAAAAAKCuCVEBAAAAAAAAAAB1TYgKAAAAAAAAAACoa0JUAAAAAAAAAABAXROiAgAAAAAAAAAA6poQFQAAAAAAAAAAUNeEqAAAAAAAAAAAgLomRAUAAAAAAAAAANQ1ISoAAAAAAAAAAKCuCVEBAAAAAAAAAAB1TYgKAAAAAAAAAACoa0JUAAAAAAAAAABAXROiAgAAAAAAAAAA6poQFQAAAAAAAAAAUNeEqAAAAAAAAAAAgLomRAUAAAAAAAAAANQ1ISoAAAAAAAAAAKCuCVEBAAAAAAAAAAB1TYgKAAAAAAAAAACoa0JUAAAAAAAAAABAXROiAgAAAAAAAAAA6poQFQAAAAAAAAAAUNeEqAAAAAAAAAAAgLomRAUAAAAAAAAAANQ1ISoAAAAAAAAAAKCuCVEBAAAAAAAAAAB1ranqAgAAAACA+nXppZfGOeecE08//XR07949Vl111TjggANi0KBBVZfGDLD//vvHvffeGzfffHPVpTCdfPjhh/Hb3/42/v73v8eLL74YXbp0iUUXXTR22mmnWG+99aouj+ngnXfeKef8hhtuiJdffjlmm222WGeddWKvvfaKfv36VV0e09ntt98eX//61+NLX/pS/PjHP666HKaDCy64II466qhJvn7bbbf5Xu+EbrrppjjzzDPjwQcfjFqtFkOHDi1/l2+88cZVl0Y7GjZs2Gcus8UWW/jzvZMZPXp0nHHGGfGXv/wlnn/++ejRo0csvfTSsffee8eSSy4Z9UaICgAAAACoxIknnhi/+c1vYoEFFojtttuufNh+1VVXxS233BJ/+tOfYu655666RKajk08+Oa6++uoYOHBg1aUwnXzwwQfle/uxxx6LxRZbrHz9/vvvl0DVPvvsEwceeGDsvvvuVZdJO8rzm+f5ySefjJVXXrmEp5566qk499xz45prromLLroo5pxzzqrLZDp+z3/nO9+JlpaWqkthOnrkkUfKfYblmpubP/V6fvhO53LWWWfFj370oxKK3XzzzWPs2LHlz/T8xYdXXnkldtlll6pLpJ3kz2cTk3+u53WQ4fiVVlpphtfF9LXffvvFddddF/POO2/5Oe7tt98u/0679dZby7/Xv/CFL0Q9qbX4SQYAAAAAmMEeffTR8iHMsssuW/5DvmvXruX5a6+9tvzn/VprrVX+w5bOZ8SIEfGDH/ygBOVShqh0ourcQcltt922dC3JzhXp1Vdfja222ireeuut8gFNfmBD55Afsuef6fvuu+94H8T+4Q9/KN/3W265ZVmGzunwww+PSy65pHytU0nn9ZWvfKWEY++7775oaGiouhymszzX+Wd3/l2dgdgMUqU33nij/Cz/7rvvlu5jvXv3rrpUpqPsUvSTn/wkttlmmzjmmGOqLod29K9//asEIRdffPE4//zzo1u3bm2dJXfeeecYPHhw+Td6PfE3GwAAAAAww+UIv5QjAloDVCnHey2//PJx4403lqAFnUuO99poo41KgGqNNdaouhymswxIZXDqoIMOagtQtQbnvvrVr8aYMWPKeCA6jxdeeCH69+8f3/jGN8Z7Pj9oTxm6oPP++Z4BqrXXXrvqUpiOsgPR448/HgsuuKAAVZ3I4FSO+jr66KPbAlQp/6zPTlQZsMpAFZ3Xf//73zjhhBNKl+AMy9K53H///W0/q7UGqFJ2HJt//vnjueeeizfffDPqiXF+AAAAAMAMl7/Z2tTUVAJTE8r/sL3rrrvKMq0fvNM5XHzxxWUMyPe///0Soll44YWrLonpaKeddirj3fr06fOp11rDk3k90Hn8+te/nujzOd4vzT777DO4ImaE7Cp35JFHxgorrBA77LBDCVTROT3zzDPx8ccf+/u7juQvNuSf3RP7mX3rrbcuNzq37CA5atSo8ue8cZ2dT9++fcv9iy++ON7zI0eOLGP9unTpUned5kSEAQAAAIAZKv9D9qWXXoo55phjvC5UrfK3nNNTTz1VQXVM71DN9ddfH9ttt914nYnonLbffvvYY489PvV8S0tL/P3vfy9fDxs2rILKmFFyzNM111xTupVkcHavvfaquiSmgxzX+dFHH8Vxxx3nz/Y6GMec8jzn9/Vqq60WSyyxRAnS/PWvf626PKZDQPL111+PhRZaKF577bU44ogjYtVVV20759ddd13VJTKdZcfQHPeW510X2c5pww03LF3mcpTfX/7yl/jggw/Kv9UPO+yw0oFqxx13nOi/2TszISoAAAAAYIZ/qJ4hillmmWWir7f+pmt2sKFzWXHFFaO5ubnqMqhYfkjzwAMPlMBkfgBP53TBBReUzkTf+ta3ynjWn/70p7HyyitXXRbt7PLLLy9BuYMPPrgtBE3nD1FddNFF5cP1zTbbrIxizm5zObo1R37ReWRwKmWoIsf23XHHHSVwkaOZ85znWO4c90fndfrpp5d7IejO3YnqwgsvjOHDh5fg1LLLLhtrrbVWXHnllSUse+ihh0a9Mc4PAAAAAJihchxEmtRvtLY+P2LEiBlaFzD9XXXVVXHssceWrkQ//vGPy4gQOqd+/frFrrvuWrqYZOexDNm8/PLL8c1vfrPq0mgnGY77wQ9+UMJx2WGQzi9D8IMGDYp99903tthii7bnn3/++TKm97e//W2svvrqsdxyy1VaJ+2jdeTu/fffX8Ztn3rqqdGzZ8/y3G677RZf/vKX4yc/+Umsvfba5bqgc3n44YfjzjvvLN/Pvqc7d5foU045Je67775YbLHFyrnOX3q69tpry5/pAwcOHO/P+3qgExUAAAAAMEN17959vDDVxP4jN7V+SAN0ng5U2akk5YeuPpDr3DbYYIMSnMpzfcUVV5RQ1c9+9rN48MEHqy6NdvKd73wnxowZU4KRxvjVh/wz/IYbbvjUB+rZhSy7zrV2J6NzaGxsbPv6yCOPHO9n86FDh5YxX/nzfHajo/O55JJL2sYz03nlz2k5xm+HHXaIP//5z+Xv9nwuR7Rm5+jDDz+8dJCtJ0JUAAAAAMAMlePcGhoaJjmur/X51rF+QMc2duzY0nXq6KOPLh2ofvGLX8QXv/jFqstiBho8eHBbB6rrr7++6nJop3GNt9xyS3z729/WgYZiiSWWKPfPPfdc1aXQTlp/Fs/wVIamJrTooouW+2effXaG18b0l39f57nP0W503p/R//SnP5Xv9UMOOWS8QPRcc80V+++/f+lAePHFF0c9EaICAAAAAGaoHNeXHQteeumliXajypEwaYEFFqigOqA9ZWe5/fbbL84888yYddZZy/36669fdVlMp3P9r3/9K26++eaJvp5/7qe33nprBlfG9BrNmb73ve/FsGHD2m4777xzeT67WuTjww47rOJKac8P2//zn/+U8V4T89FHH43XcZSOL//czvDz6NGjS5BiQq0/x/fo0aOC6pieHn300fJvtQxQOb+d15tvvhkjRoyIeeaZp/wbfULDhg0r9y+++GLUk6aqCwAAAAAA6s8KK6xQfuv13nvvjRVXXHG812677bbyW7DLLLNMZfUB0y7HfGWAKkc/ZSei3/3udzH//PNXXRbTMUS16667lq4Vt95666c+jHvooYfK/ZAhQyqqkPaU49zy7/KJBaEvu+yyWHjhhWPdddeNRRZZpJL6mD5yfNvHH39cApOzzTbbeK/dfffd5X748OEVVUd7yz/Hl1pqqXJu77rrrk/9zN46njW/3+lc8t9oyejlzi3H9eX3+QsvvFB+jpvwZ7enn3663A8YMCDqiU5UAAAAAMAMt9VWW5X7E088MT755JO256+99tryQc3aa68dc8wxR4UVAtPqtNNOKwGqHAdy/vnnC1DVwajWddZZp4xkPfnkk8d7LbvXnHXWWSVgZZRj57DlllvGvvvu+6nbl770pfJ6hqfycQap6BxyFPOGG25YOhL97Gc/K52pxu1a89vf/rZ8j2+99daV1kn72m677cp9juUddxR3nvMLL7ywdJn0fd755N/bafHFF6+6FKajDE1lh9h33303TjrppPFee+utt9qe22yzzaKe6EQFAAAAAMxwSy+9dGy//fZx3nnnxeabb14+eH/11Vfj6quvjv79+8fhhx9edYnANHjnnXdKiKo1THHRRRdNdLnscLDyyivP4OqYXo444ojywWuGKTIQu+SSS5ZxQNdff33pMJjB2dlnn73qMoHP6eCDD4577rmnjGt87LHHSmei/PntuuuuK6Gq/B4fOHBg1WXSjjbZZJO45ZZb4pJLLilfZ+Digw8+iL/97W+l4+Sxxx5bQrR0Ls8991y59/3c+eW/u/Nnt9NPPz1uv/320mUyQ1X5s1v+PL/LLrvU3c/qtZaJDTAFAAAAAJjO8r8mM0T1xz/+MZ555pnym+z5YVyO/5p77rmrLo8ZYNiwYeXDmZtvvrnqUmhn+YH63nvv/ZnL7bHHHnHAAQfMkJqYMbJzwSmnnFI+fHvttdeiT58+5c/2PNdGPnV+Ocpx5513LuP+snMNnU9+uH7qqaeW7qEZoOrVq1csv/zy5Xtc15rO+zN7hqguuOCCeOKJJ0r3mgzJ7rnnnsZvd1Ibb7xxPPnkk3HfffeVDnN0btllLgPw+ef6iy++WL7HF1100dhhhx1KB8J6I0QFAAAAAAAAAADUtYaqCwAAAAAAAAAAAKiSEBUAAAAAAAAAAFDXhKgAAAAAAAAAAIC6JkQFAAAAAAAAAADUNSEqAAAAAAAAAACgrglRAQAAAAAAAAAAdU2ICgAAAAAAAAAAqGtCVAAAAAAAAAAAQF0TogIAAAAAAAAAAOqaEBUAAAAAAAAAAFDXhKgAAAAAAACATqGlpaXqEgCADqqp6gIAAAAAAACgMxkzZkzccsstcdlll8XDDz8cr7zySnl+0KBBscoqq8SOO+4Y88wzT3R0l1xySRx++OGxzjrrxCmnnDLDtjts2LByf9ddd0WfPn3K1x9//HGcdtpp0aNHj9htt92m27bffPPNOPfcc+Pmm2+O559/vmx31llnjYUXXjjWXXfd2HLLLaNr167TbfsAwPSjExUAAAAAAAC0kwzWbLfddiXIc/XVV0f37t1j1VVXjaWXXjrefvvtOOecc2LjjTeOK6+8supSO5WTTjqpBLlGjBgx3bZxxx13xHrrrRennnpqvPvuu7H88svH2muvHYMHD47bb789vv/978dmm20Wr7766nSrAQCYfnSiAgAAAAAAgHaQHae+/OUvl7BUdmc69NBDY7755mt7feTIkSVE9fOf/zwOOeSQ6NatW+lexNS56qqryn1zc/N43b+mp/fffz/23Xff0nnqJz/5SXzpS18a7/UMTuX5zjDVfvvtFxdeeOF0rQcAaH86UQEAAAAAAEA7OPjgg0uAaoMNNoiTTz55vABVyjFv3/zmN2PPPfcsoZ8M44wePbqyejuqoUOHlltDw4z7qPP6668v3afWWmutTwWo0sCBA0s3rAzG3XffffHII4/MsNoAgPYhRAUAAAAAAADT6P7774+77rqrhGiOOOKIyQZ8vvGNb8Siiy4ayyyzTLz++uvjvfbGG2+UcFUGsYYPHx7LLbdc7LDDDnHppZdGS0vLp8bLDRs2LL73ve+VMYIHHXRQrLTSSrHUUkuVjlg33nhjWe7FF19sey23+ZWvfKXttVYvvPBCWddXv/rVePPNN+Pb3/52WT7HEG655ZZx0UUXfWr7k5PbzPF2Oe5u8cUXL+vaa6+9SsBoXI8++mh5Pbd9zTXXjPdaBs223Xbb8lquq1U+ztt7773X9jg7fKUMr+XjX/3qV3HuueeWr/N4T0x2BltxxRXLcX7nnXcmuz95XlKtVpvkMrPOOmvssssusfXWW0/0/Oe+H3DAAbH66qvHEkssUc7x0UcfPdHxf5/nOsjrLl9fc801y3tybGSey1b33HNP7LPPPrHKKquUY56BsLx2XnrppcnuOwDUCyEqAAAAAAAAmEZXXHFFuV9++eVLV6LJyTF0f/nLX0pIZs455xwvUPTFL34xzjjjjPjoo4/awjAZ0MpQ07e+9a2Jdq566qmnStApR8ktu+yyMffcc8cDDzxQOl796U9/Kq9l0CYDUfPMM09Z3+677x433XTTRMfWbbfddmVkXgZtMrzz3//+N4488sgygnBKZJhs8803LyPtmpqayn5kV64bbrihrPuPf/xj27ILL7xwGX+XfvCDH5RuT61OPfXUEjxacMEF4/DDD5/k9jbddNOYf/75y9cLLbRQeZyhos0226yE2m699daJBpWuvfbaEp5af/31SwBqcjL01tqR6rTTTivHaWL233//OPbYY8v2x5WBru23374c19lnn70ckwxDnX/++eX8ZAhuWq+Du+++Ow477LCYY445YuWVV45ZZpklZptttvLaWWedVbZ/3XXXlWsuw23du3cv52KLLbYo1wsA1DshKgAAAAAAAJhGGWRKGVT6PLIrUnZqynGAGTTKsE52UzrzzDNL8CZDSH//+99Lp6WJhZayw1SGlH7961/H5ZdfHuuss06MHTs2vvvd75YgVAaGMpSUnYqyS1W64IILPrWuDEx9/PHHZbnTTz89fve735WvBwwYUIJirWGxSckQVIZ8MmSUXY6yu1TWnIGqDBL17NkzjjnmmHj44Yfb3pOdorLG7Mr14x//uDyXoZ6sN0NQxx9/fAn8TMrPf/7z+MIXvlC+zkBUPs77DBFlJ6c8Dpdddtmn3nfxxReX++wc9Vmye1N2bsrgU9aTIaUdd9yxjPC75ZZbSthpUnK0X+5XY2NjCWD9+c9/jl/+8pdx9dVXl85f2XUqj8m0XgfPPPNM7LrrruVY53bOO++8tusjt9+nT5/4wx/+MN72v/Od75Qg2b777huffPLJZx4HAOjMhKgAAAAAAABgGrV2Ourfv//nen8GWnIEXnZmyq5PXbt2bXstO0tlcCedffbZEw275HsycNQ6ci47GbV+fdRRR0WPHj3alt1kk03aQjcTkyPmhg4d2vY4v27tBNUazJmU7Hz11ltvle1n56Nxx99ll6499tijdFHKLkutcvRdduXq1atXXHLJJfGPf/yjdL3K5bLz0oRdnabGNttsU+6z89e48lhn567szJWjBqdEBo+y/jyWo0aNijvvvDNOOeWUEgJbYYUVyn0GqiaUYbXcl5133jnWWGONtuczVJX7N2TIkLK+DFBN63Ww0047tX3dOlIwg3AZ/jr44INLWG3C5XO84CuvvPKZATkA6OyEqAAAAAAAAGAa5di6NLExa1MiAzlp4403bgu/jCtH62XYJjsePfjgg+O9luPhBg8ePN5z/fr1K/fZQSpfH1d2aEoZ2plQ7969xwv6tMrxbxn6yZFyH3744ST347bbbmvr3DQx2c0pZYBpXFn/EUccUb7eZ599SsArt5lBrGmRoaEc9ZedwnI0YKsMa2WHqq222mq8oNfkZKDpgAMOKEGpE088Mb7yla+Uc5IyBJXPZ5AqQ2sZWmqVoxTTuuuu+6l1ZiDrb3/7Wxm3l+uflusgz/WEIb4xY8a0rTO7Z01Mjguc2DkBgHrzv5/mAAAAAAAAgM8tg0qPPvpovPnmm5/r/a+99lpbt6FJydeefvrptmUnDEWNqzUY1Ldv30m+NjHZmWli4Z0cp5fBrBy5l7fsGjUxL7/8crnPMXF5m5RcRwaPunTp0vZcBppyZF2GkTJQdOyxx0Z7yLBTjrPLblQ5bjHDU/l1hsK22GKLqV5fc3NzCTnlLeU5v/XWW+P888+Pe++9t3SeWmyxxdrGJraer7nmmmu6Xgezzjrrp5bNUX05nnFSIa5xvfTSS59ZHwB0ZkJUAAAAAAAAMI2GDx8e//znP8frdjQ5F154YQkzfeELX4hBgwaN17loUjL8k8Yd8TZuF6z2kMGiSWmtcXLLtNaYI+ImFu4aV3btGjdE9cYbb8RDDz3U1iXr8ssvj69//esxrTbffPMyBi8DWt/97nfj7rvvLiPzsivWwIEDP/P9Wefjjz8e77777kS7Oc0222yx6aablhGGhx12WFx66aVx2WWXtYWoWruTTUnHq2m5DiYWfmtdNq+RjTbaaLLrzesQAOqZEBUAAAAAAABMo/XXXz9OOeWUuOeee0qHoBytNinZGehnP/tZfPDBB3H00UfHtttu27b8888/P8n3Pffcc22hnenllVdemejzOT7urbfeKmGcyQWPsiNXdknK8NOqq646VdvOcX5vv/12OZY33nhjnHDCCWUdCy64YEyL7KC13nrrlRBVBt1y3WnrrbeeovdnCGrLLbcsAaebb755kvufIakMTmWIKjtAjXtMMrSVXbomdu6uvfba0pUrA1rtfR1kd6oMquVYv+zs1a1btynaZwCoR5+OIwMAAAAAAABTZZFFFildpbKD0nHHHTfZjkK/+MUvSoAqwz3ZvSitsMIK5T6DPq3dg8b1wAMPlPBM7969Y/HFF59u+5EBsIcffvhTz//9738vda200kqf6oA0rhVXXLHcX3/99RN9Pdez4YYbxuGHHz7e83/84x9LuClH1f30pz+NffbZJ0aMGBGHHHJICRh9ls/q8pQj/dLVV19dastg05prrhlTIkcZ5ni+dNZZZ0122QyQpWHDhrU9t+yyy5b7f/zjHxMNaH3ve9+LAw44oHS6au/rIANUrSMMJ7b99JOf/KR06zrnnHM+c30A0JkJUQEAAAAAAEA7OOqoo0q4JYM6++67b7zwwgvjvf7JJ5/EiSee2BbEOfLII6O5ubl8vfHGG8dcc80Vjz76aAlhjRscyq5Ehx56aPl6m222mWyIqT1kR6jsOtXqscceK8GmtMsuu3xmWKlXr15lXOF55503XpjsySefjB/+8IclaDTffPO1PZ+hoB//+MclCJWv9+jRI77xjW+UYNojjzwSv/zlL6co6JQyiDQxGf6ad95548orr4w333wztthii6kag7jffvuVcXlnnHFGCR29//77n1omQ0rZYSzXu/POO7c9v+OOO5b3/v73v4877rij7fnsDpX7ncc6w1N5TKbHdZDHMh1zzDHjbb811HbuueeW7U3PcB4AdATG+QEAAAAAAEA7yC5KF1xwQey+++5lRFt2PFp00UVj0KBBZRze/fffH++9914J/GT3oQzMtMpAzK9+9avYddddS6glwy1LLbVU6Vh11113lQ5Xa6+9duy///7TdR+yjldffbWMv8uuUhn8uvPOO0uYZ6+99vrMEX05ji7H8GXoKEM7GTrKrkwZOspRhxkcyv1oDWPl4wwG5fHJYFCGnVIGkXL8XIayTj/99NI1qrWj08TMP//85f6iiy4qY/PWWGONtu5TKQNaOb7v+OOPb/t6aqy++uol4PWDH/yg7FOeo+HDh5f9zY5ZGULK7WYALANn4waSllhiidJRK5/faaedSmeo/v37l4BYBqOyK1bu6/S6DvLY5bnLcZNf+9rXyjU5ePDgsu2sIR188MGxzDLLTNUxAYDORogKAAAAAAAA2smCCy4Yl19+eVx88cVxww03xH//+98SsMmxahmyyvDODjvsUIJVE8rgzWWXXVZCQznaLt+fXZ0y3JLv23TTTad7/d26dSuj9TJsdMstt5TA0XLLLVc6K2UwaUpDO5deemnpvHTrrbfGzTffHH369ClhoC9/+ctlP1q7QJ122mlx3333xZxzztnWZalVjtDLsFUu8+1vf7scmzweE5NjEXPUXXaayu3lcuOGqFJrCGv55ZcvXamm1lZbbVVCZNll6/bbby8dtB588MESisvuUZtsskk5t7kvE8r9yP0588wzy/5mrRnA2n777UvAKUNV0/M6yFBbdrvKkX3//ve/y3WZ4a211lqrnNvWMYwAUM9qLZMbyAwAAAAAAAB0ejl6cJ111injCO++++7ojLKL1B/+8IcSEMvQFQDAuBrGewQAAAAAAADQSeQ4wpQdsbI72MCBA2ODDTaouiwAYCZknB8AAAAAAADQKe29996ls1ZrmOqHP/xhGa0IADAhnagAAAAAAACATmn48OHR0tISc801V3z/+9+PTTfdtOqSAICZVK0lf2oAAAAAAAAAAACoUzpRAQAAAAAAAAAAdU2ICgAAAAAAAAAAqGtCVAAAAAAAAAAAQF0TogIAAAAAAAAAAOqaEBUAAAAAAAAAAFDXhKgAAAAAAAAAAIC6JkQFAAAAAAAAAADUNSEqAAAAAAAAAACgrglRAQAAAAAAAAAAdU2ICgAAAAAAAAAAqGtCVAAAAAAAAAAAQF0TogIAAAAAAAAAAOqaEBUAAAAAAAAAAFDXhKgAAAAAAAAAAICoZ/8Puyp7l7oZP6wAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -962,7 +986,7 @@ }, { "cell_type": "code", - "execution_count": 39, + "execution_count": 16, "id": "9f184293", "metadata": {}, "outputs": [ @@ -977,37 +1001,38 @@ "Note: Radon cyclomatic complexity and maintainability entries with rank 'A' are treated as non-issues and excluded from issue counts while still used in distribution plots.\n", "\n", "📊 OVERALL METRICS:\n", - " Total Issues Found (excluding Radon A ranks): 11\n", - " Files Analyzed (max across tools): 3\n", - " Average Issues per File: 3.67\n", + " Total Issues Found (excluding Radon A ranks): 122\n", + " Files Analyzed (max across tools): 5\n", + " Average Issues per File: 24.40\n", "\n", "🔍 TOOL BREAKDOWN:\n", " BANDIT: 2 issues across 2 files\n", - " RUFF: 0 issues across 0 files\n", - " MYPY: 0 issues across 0 files\n", - " RADON_CC: 6 issues across 3 files\n", + " RUFF: 88 issues across 3 files\n", + " MYPY: 9 issues across 2 files\n", + " RADON_CC: 7 issues across 4 files\n", " RADON_MI: 0 issues across 0 files\n", - " FLAKE8_WPS: 3 issues across 3 files\n", + " FLAKE8_WPS: 16 issues across 5 files\n", "\n", "💡 QUALITY INSIGHTS:\n", " 🚨 Security: 0 high-severity security issues found\n", - " 🔄 Complexity: Average CC (all ranks) = 2.33, 0 functions with CC > 10\n", - " 🛠️ Maintainability: Average MI (all ranks) = 81.39, 0 files with MI < 20 (needs attention)\n", + " 🔄 Complexity: Average CC (all ranks) = 2.24, 0 functions with CC > 10\n", + " 🛠️ Maintainability: Average MI (all ranks) = 80.75, 0 files with MI < 20 (needs attention)\n", "\n", "📋 RECOMMENDATIONS:\n", - " 1. Address 11 total issues found across all tools\n", + " 1. Address 122 total issues found across all tools\n", " 2. Security: Review and fix 2 security issues\n", + " 5. Style: Focus on fixing Q000 rule violations first\n", "\n", "================================================================================\n", "\n", "FINAL SUMMARY TABLE:\n", " Tool Total Issues (A excl) Files Analyzed Issues per File\n", - " bandit 2 2 1.0\n", - " ruff 0 0 0.0\n", - " mypy 0 0 0.0\n", - " radon_cc 6 3 2.0\n", - " radon_mi 0 0 0.0\n", - "flake8_wps 3 3 1.0\n", + " bandit 2 2 1.000000\n", + " ruff 88 3 29.333333\n", + " mypy 9 2 4.500000\n", + " radon_cc 7 4 1.750000\n", + " radon_mi 0 0 0.000000\n", + "flake8_wps 16 5 3.200000\n", "\n", "💾 Results saved to 'code_quality_summary.csv'\n", "💾 Detailed issues saved to 'detailed_issues.csv'\n" @@ -1107,7 +1132,7 @@ ], "metadata": { "kernelspec": { - "display_name": "fastapi-moscow-python-demo (3.12.10)", + "display_name": "fastapi-moscow-python-demo", "language": "python", "name": "python3" }, diff --git a/code_quality_summary.csv b/code_quality_summary.csv new file mode 100644 index 0000000000..676098852e --- /dev/null +++ b/code_quality_summary.csv @@ -0,0 +1,7 @@ +Tool,Total Issues (A excl),Files Analyzed,Issues per File +bandit,2,2,1.0 +ruff,88,3,29.333333333333332 +mypy,9,2,4.5 +radon_cc,7,4,1.75 +radon_mi,0,0,0.0 +flake8_wps,16,5,3.2 diff --git a/detailed_issues.csv b/detailed_issues.csv new file mode 100644 index 0000000000..66edec96d4 --- /dev/null +++ b/detailed_issues.csv @@ -0,0 +1,123 @@ +tool,file,line,severity +bandit,backend/app/core/config.py,111,LOW +bandit,backend/app/models.py,19,LOW +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,1,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,1,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,8,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,10,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,14,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,15,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,20,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,20,warning +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,23,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,24,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,25,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,26,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,26,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,26,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,26,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,26,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,26,warning +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,27,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,28,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,28,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,28,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,29,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,29,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,31,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,34,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,35,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,36,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,37,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,38,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,38,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,38,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,38,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,38,warning +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,39,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,39,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,39,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,39,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,39,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,39,warning +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,40,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,41,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,41,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,41,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,42,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,42,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,46,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,46,warning +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,48,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,49,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,51,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,52,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,54,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,55,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/api/routes/wallets.py,56,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/api/routes/wallets.py,62,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/crud.py,3,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/crud.py,105,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/crud.py,107,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/crud.py,111,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/crud.py,113,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/crud.py,118,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/crud.py,119,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/crud.py,121,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/crud.py,125,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/crud.py,127,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/crud.py,130,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/crud.py,146,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/crud.py,154,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/crud.py,155,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/crud.py,156,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/crud.py,161,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/crud.py,166,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/crud.py,168,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/crud.py,173,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/crud.py,181,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/crud.py,188,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/crud.py,193,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/crud.py,195,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/crud.py,202,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/crud.py,205,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/crud.py,211,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/crud.py,216,warning +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/crud.py,216,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/crud.py,218,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/crud.py,222,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/crud.py,226,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/crud.py,237,error +ruff,/Users/somen/Zavodi/opensource/fastapi-moscow-python-demo/backend/app/crud.py,245,error +mypy,backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,16,error +mypy,backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,17,error +mypy,backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,20,error +mypy,backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,20,note +mypy,backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,46,error +mypy,backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py,46,note +mypy,backend/app/crud.py,145,error +mypy,backend/app/crud.py,240,error +mypy,backend/app/crud.py,245,error +radon_cc,backend/app/email_utils.py,36,B +radon_cc,backend/app/crud.py,177,B +radon_cc,backend/app/tests/api/routes/test_items.py,27,B +radon_cc,backend/app/tests/api/routes/test_items.py,45,B +radon_cc,backend/app/tests/api/routes/test_items.py,107,B +radon_cc,backend/app/tests/api/routes/test_users.py,357,B +radon_cc,backend/app/tests/api/routes/test_users.py,232,B +flake8_wps,backend/app/api/routes/transactions.py,51,warning +flake8_wps,backend/app/api/routes/users.py,0,warning +flake8_wps,backend/app/crud.py,0,warning +flake8_wps,backend/app/crud.py,10,warning +flake8_wps,backend/app/crud.py,26,warning +flake8_wps,backend/app/crud.py,27,warning +flake8_wps,backend/app/crud.py,27,warning +flake8_wps,backend/app/crud.py,28,warning +flake8_wps,backend/app/crud.py,110,warning +flake8_wps,backend/app/crud.py,124,warning +flake8_wps,backend/app/crud.py,165,warning +flake8_wps,backend/app/crud.py,187,warning +flake8_wps,backend/app/crud.py,192,warning +flake8_wps,backend/app/crud.py,215,warning +flake8_wps,backend/app/email_utils.py,0,warning +flake8_wps,backend/app/models.py,0,warning From a91944eaac9d199afe841144a9f41db1bc24e85c Mon Sep 17 00:00:00 2001 From: vodkar Date: Sat, 13 Sep 2025 02:39:13 +0500 Subject: [PATCH 15/16] Added changes --- ...8d4fd_add_wallet_and_transaction_models.py | 67 +++++++++++-------- backend/app/api/routes/transactions.py | 6 +- backend/app/api/routes/wallets.py | 10 +-- 3 files changed, 43 insertions(+), 40 deletions(-) diff --git a/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py b/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py index 617218ed37..37383d9287 100644 --- a/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py +++ b/backend/app/alembic/versions/fd8dcfe8d4fd_add_wallet_and_transaction_models.py @@ -5,14 +5,13 @@ Create Date: 2025-09-12 22:28:29.785616 """ -from alembic import op -import sqlalchemy as sa -import sqlmodel.sql.sqltypes +import sqlalchemy as sa +from alembic import op # revision identifiers, used by Alembic. -revision = 'fd8dcfe8d4fd' -down_revision = '1a31ce608336' +revision = "fd8dcfe8d4fd" +down_revision = "1a31ce608336" branch_labels = None depends_on = None @@ -20,36 +19,48 @@ def upgrade(): # Create wallet table op.create_table( - 'wallet', - sa.Column('id', sa.UUID(), nullable=False), - sa.Column('user_id', sa.UUID(), nullable=False), - sa.Column('currency', sa.Enum('USD', 'EUR', 'RUB', name='currencyenum'), nullable=False), - sa.Column('balance', sa.Numeric(precision=10, scale=2), nullable=False), - sa.ForeignKeyConstraint(['user_id'], ['user.id'], ondelete='CASCADE'), - sa.PrimaryKeyConstraint('id') + "wallet", + sa.Column("id", sa.UUID(), nullable=False), + sa.Column("user_id", sa.UUID(), nullable=False), + sa.Column( + "currency", + sa.Enum("USD", "EUR", "RUB", name="currencyenum"), + nullable=False, + ), + sa.Column("balance", sa.Numeric(precision=10, scale=2), nullable=False), + sa.ForeignKeyConstraint(["user_id"], ["user.id"], ondelete="CASCADE"), + sa.PrimaryKeyConstraint("id"), ) - + # Create transaction table op.create_table( - 'transaction', - sa.Column('id', sa.UUID(), nullable=False), - sa.Column('wallet_id', sa.UUID(), nullable=False), - sa.Column('amount', sa.Numeric(precision=10, scale=2), nullable=False), - sa.Column('type', sa.Enum('credit', 'debit', name='transactiontypeenum'), nullable=False), - sa.Column('currency', sa.Enum('USD', 'EUR', 'RUB', name='currencyenum'), nullable=False), - sa.Column('timestamp', sa.DateTime(), nullable=False), - sa.ForeignKeyConstraint(['wallet_id'], ['wallet.id'], ondelete='CASCADE'), - sa.PrimaryKeyConstraint('id') + "transaction", + sa.Column("id", sa.UUID(), nullable=False), + sa.Column("wallet_id", sa.UUID(), nullable=False), + sa.Column("amount", sa.Numeric(precision=10, scale=2), nullable=False), + sa.Column( + "type", + sa.Enum("credit", "debit", name="transactiontypeenum"), + nullable=False, + ), + sa.Column( + "currency", + sa.Enum("USD", "EUR", "RUB", name="currencyenum"), + nullable=False, + ), + sa.Column("timestamp", sa.DateTime(), nullable=False), + sa.ForeignKeyConstraint(["wallet_id"], ["wallet.id"], ondelete="CASCADE"), + sa.PrimaryKeyConstraint("id"), ) def downgrade(): # Drop transaction table - op.drop_table('transaction') - + op.drop_table("transaction") + # Drop wallet table - op.drop_table('wallet') - + op.drop_table("wallet") + # Drop enums - op.execute('DROP TYPE IF EXISTS transactiontypeenum') - op.execute('DROP TYPE IF EXISTS currencyenum') + op.execute("DROP TYPE IF EXISTS transactiontypeenum") + op.execute("DROP TYPE IF EXISTS currencyenum") diff --git a/backend/app/api/routes/transactions.py b/backend/app/api/routes/transactions.py index efd67a49b9..8e8d1fbb4f 100644 --- a/backend/app/api/routes/transactions.py +++ b/backend/app/api/routes/transactions.py @@ -7,11 +7,7 @@ from app.api.deps import CurrentUser, SessionDep from app.constants import NOT_FOUND_CODE from app.crud import create_transaction, get_wallet_by_id, get_wallet_transactions -from app.models import ( - TransactionCreate, - TransactionPublic, - TransactionsPublic, -) +from app.models import TransactionCreate, TransactionPublic, TransactionsPublic router = APIRouter(prefix="/transactions", tags=["transactions"]) diff --git a/backend/app/api/routes/wallets.py b/backend/app/api/routes/wallets.py index 6415e25cb7..09c2595c2e 100644 --- a/backend/app/api/routes/wallets.py +++ b/backend/app/api/routes/wallets.py @@ -7,11 +7,7 @@ from app.api.deps import CurrentUser, SessionDep from app.constants import BAD_REQUEST_CODE, NOT_FOUND_CODE from app.crud import create_wallet, get_user_wallets, get_wallet_by_id -from app.models import ( - WalletCreate, - WalletPublic, - WalletsPublic, -) +from app.models import WalletCreate, WalletPublic, WalletsPublic router = APIRouter(prefix="/wallets", tags=["wallets"]) @@ -53,11 +49,11 @@ def read_wallet( wallet = get_wallet_by_id(session=session, wallet_id=wallet_id) if not wallet: raise HTTPException(status_code=NOT_FOUND_CODE, detail="Wallet not found") - + if wallet.user_id != current_user.id and not current_user.is_superuser: raise HTTPException( status_code=BAD_REQUEST_CODE, detail="Not enough permissions", ) - + return WalletPublic.model_validate(wallet) From c03642d801c7a52d7e39ac68e7c951e32c78da2d Mon Sep 17 00:00:00 2001 From: vodkar Date: Sat, 13 Sep 2025 03:06:11 +0500 Subject: [PATCH 16/16] Applied format --- backend/app/crud.py | 70 +++++++++++++++++---------------------------- 1 file changed, 26 insertions(+), 44 deletions(-) diff --git a/backend/app/crud.py b/backend/app/crud.py index a6247238ff..08822a9ab7 100644 --- a/backend/app/crud.py +++ b/backend/app/crud.py @@ -104,30 +104,26 @@ def create_wallet( existing_wallets = session.exec( select(Wallet).where(Wallet.user_id == user_id) ).all() - + if len(existing_wallets) >= MAX_WALLETS_PER_USER: raise HTTPException( - status_code=400, - detail="User cannot have more than 3 wallets" + status_code=400, detail="User cannot have more than 3 wallets" ) - + # Check if user already has wallet with this currency existing_currency_wallet = session.exec( select(Wallet).where( - Wallet.user_id == user_id, - Wallet.currency == wallet_in.currency + Wallet.user_id == user_id, Wallet.currency == wallet_in.currency ) ).first() - + if existing_currency_wallet: raise HTTPException( - status_code=400, - detail=f"User already has a {wallet_in.currency} wallet" + status_code=400, detail=f"User already has a {wallet_in.currency} wallet" ) - + db_wallet = Wallet.model_validate( - wallet_in, - update={"user_id": user_id, "balance": Decimal("0.00")} + wallet_in, update={"user_id": user_id, "balance": Decimal("0.00")} ) session.add(db_wallet) session.commit() @@ -142,99 +138,85 @@ def get_wallet_by_id(*, session: Session, wallet_id: uuid.UUID) -> Wallet | None def get_user_wallets(*, session: Session, user_id: uuid.UUID) -> list[Wallet]: """Get all wallets for a user.""" - return session.exec( - select(Wallet).where(Wallet.user_id == user_id) - ).all() + return session.exec(select(Wallet).where(Wallet.user_id == user_id)).all() # Transaction CRUD operations def convert_currency( - amount: Decimal, - from_currency: CurrencyEnum, - to_currency: CurrencyEnum + amount: Decimal, from_currency: CurrencyEnum, to_currency: CurrencyEnum ) -> tuple[Decimal, Decimal]: """Convert amount between currencies and return (converted_amount, fee).""" if from_currency == to_currency: return amount, Decimal("0.00") - + rate_key = (from_currency.value, to_currency.value) if rate_key not in EXCHANGE_RATES: raise HTTPException( status_code=400, - detail=f"Exchange rate not available for {from_currency} to {to_currency}" + detail=f"Exchange rate not available for {from_currency} to {to_currency}", ) - + rate = EXCHANGE_RATES[rate_key] converted_amount = amount * rate fee = converted_amount * CONVERSION_FEE_RATE final_amount = converted_amount - fee - + return final_amount, fee def create_transaction( - *, - session: Session, - transaction_in: TransactionCreate, - user_id: uuid.UUID + *, session: Session, transaction_in: TransactionCreate, user_id: uuid.UUID ) -> Transaction: """Create a new transaction.""" # Get the wallet wallet = session.get(Wallet, transaction_in.wallet_id) if not wallet: raise HTTPException(status_code=404, detail="Wallet not found") - + # Check if wallet belongs to user if wallet.user_id != user_id: raise HTTPException( - status_code=403, - detail="Not authorized to access this wallet" + status_code=403, detail="Not authorized to access this wallet" ) - + # Convert currency if needed transaction_amount = transaction_in.amount if transaction_in.currency != wallet.currency: converted_amount, _ = convert_currency( - transaction_in.amount, - transaction_in.currency, - wallet.currency + transaction_in.amount, transaction_in.currency, wallet.currency ) transaction_amount = converted_amount - + # Calculate new balance if transaction_in.type == TransactionTypeEnum.CREDIT: new_balance = wallet.balance + transaction_amount else: # DEBIT new_balance = wallet.balance - transaction_amount - + # Check for negative balance if new_balance < 0: raise HTTPException( status_code=400, - detail="Insufficient funds: transaction would result in negative balance" + detail="Insufficient funds: transaction would result in negative balance", ) - + # Create transaction db_transaction = Transaction.model_validate(transaction_in) session.add(db_transaction) - + # Update wallet balance wallet.balance = new_balance session.add(wallet) - + session.commit() session.refresh(db_transaction) return db_transaction def get_wallet_transactions( - *, - session: Session, - wallet_id: uuid.UUID, - skip: int = 0, - limit: int = 100 + *, session: Session, wallet_id: uuid.UUID, skip: int = 0, limit: int = 100 ) -> list[Transaction]: """Get transactions for a wallet.""" return session.exec(