|
| 1 | +#![feature(specialization)] |
| 2 | + |
| 3 | +extern crate failure; |
| 4 | +extern crate finalfrontier; |
| 5 | +extern crate pyo3; |
| 6 | + |
| 7 | +use std::fs::File; |
| 8 | +use std::io::BufReader; |
| 9 | + |
| 10 | +use failure::Error; |
| 11 | +use finalfrontier::similarity::{Analogy, Similarity}; |
| 12 | +use finalfrontier::{MmapModelBinary, ReadModelBinary}; |
| 13 | +use pyo3::prelude::*; |
| 14 | + |
| 15 | +/// This is a binding for finalfrontier. |
| 16 | +/// |
| 17 | +/// finalfrontier is a library and set of programs for training |
| 18 | +/// word embeddings with subword units. The Python binding can |
| 19 | +/// be used to query the resulting embeddings and do similarity |
| 20 | +/// queries. |
| 21 | +#[pymodinit] |
| 22 | +fn finalfrontier(_py: Python, m: &PyModule) -> PyResult<()> { |
| 23 | + m.add_class::<PythonModel>()?; |
| 24 | + m.add_class::<PythonWordSimilarity>()?; |
| 25 | + Ok(()) |
| 26 | +} |
| 27 | + |
| 28 | +/// A word and its similarity to a query word. |
| 29 | +/// |
| 30 | +/// The similarity is normally a value between -1 (opposite |
| 31 | +/// vectors) and 1 (identical vectors). |
| 32 | +#[pyclass(name=WordSimilarity)] |
| 33 | +struct PythonWordSimilarity { |
| 34 | + #[prop(get)] |
| 35 | + word: String, |
| 36 | + |
| 37 | + #[prop(get)] |
| 38 | + similarity: f32, |
| 39 | + |
| 40 | + token: PyToken, |
| 41 | +} |
| 42 | + |
| 43 | +#[pyproto] |
| 44 | +impl PyObjectProtocol for PythonWordSimilarity { |
| 45 | + fn __repr__(&self) -> PyResult<String> { |
| 46 | + Ok(format!( |
| 47 | + "WordSimilarity('{}', {})", |
| 48 | + self.word, self.similarity |
| 49 | + )) |
| 50 | + } |
| 51 | + |
| 52 | + fn __str__(&self) -> PyResult<String> { |
| 53 | + Ok(format!("{}: {}", self.word, self.similarity)) |
| 54 | + } |
| 55 | +} |
| 56 | + |
| 57 | +/// A finalfrontier model. |
| 58 | +#[pyclass(name=Model)] |
| 59 | +struct PythonModel { |
| 60 | + model: finalfrontier::Model, |
| 61 | + token: PyToken, |
| 62 | +} |
| 63 | + |
| 64 | +#[pymethods] |
| 65 | +impl PythonModel { |
| 66 | + /// Load a model from the given `path`. |
| 67 | + /// |
| 68 | + /// When the `mmap` argument is `True`, the embedding matrix is |
| 69 | + /// not loaded into memory, but memory mapped. This results in |
| 70 | + /// lower memory use and shorter model load times, while sacrificing |
| 71 | + /// some query efficiency. |
| 72 | + #[new] |
| 73 | + #[args(mmap = false)] |
| 74 | + fn __new__(obj: &PyRawObject, path: &str, mmap: bool) -> PyResult<()> { |
| 75 | + let model = match load_model(path, mmap) { |
| 76 | + Ok(model) => model, |
| 77 | + Err(err) => { |
| 78 | + return Err(exc::IOError::new(err.to_string())); |
| 79 | + } |
| 80 | + }; |
| 81 | + |
| 82 | + obj.init(|token| PythonModel { model, token }) |
| 83 | + } |
| 84 | + |
| 85 | + /// Perform an anology query. |
| 86 | + /// |
| 87 | + /// This returns words for the analogy query *w1* is to *w2* |
| 88 | + /// as *w3* is to ?. |
| 89 | + #[args(limit = 10)] |
| 90 | + fn analogy( |
| 91 | + &self, |
| 92 | + py: Python, |
| 93 | + word1: &str, |
| 94 | + word2: &str, |
| 95 | + word3: &str, |
| 96 | + limit: usize, |
| 97 | + ) -> PyResult<Vec<PyObject>> { |
| 98 | + let results = match self.model.analogy(word1, word2, word3, limit) { |
| 99 | + Some(results) => results, |
| 100 | + None => return Err(exc::KeyError::new("Unknown word and n-grams")), |
| 101 | + }; |
| 102 | + |
| 103 | + let mut r = Vec::with_capacity(results.len()); |
| 104 | + for ws in results { |
| 105 | + r.push( |
| 106 | + Py::new(py, |token| PythonWordSimilarity { |
| 107 | + word: ws.word.to_owned(), |
| 108 | + similarity: ws.similarity.into_inner(), |
| 109 | + token, |
| 110 | + })?.into_object(py), |
| 111 | + ) |
| 112 | + } |
| 113 | + |
| 114 | + Ok(r) |
| 115 | + } |
| 116 | + |
| 117 | + /// Get the embedding for the given word. |
| 118 | + /// |
| 119 | + /// If the word is not known, its representation is approximated |
| 120 | + /// using subword units. |
| 121 | + fn embedding(&self, word: &str) -> PyResult<Vec<f32>> { |
| 122 | + match self.model.embedding(word) { |
| 123 | + Some(embedding) => Ok(embedding.to_vec()), |
| 124 | + None => Err(exc::KeyError::new("Unknown word and n-grams")), |
| 125 | + } |
| 126 | + } |
| 127 | + |
| 128 | + /// Perform a similarity query. |
| 129 | + #[args(limit = 10)] |
| 130 | + fn similarity(&self, py: Python, word: &str, limit: usize) -> PyResult<Vec<PyObject>> { |
| 131 | + let results = match self.model.similarity(word, limit) { |
| 132 | + Some(results) => results, |
| 133 | + None => return Err(exc::KeyError::new("Unknown word and n-grams")), |
| 134 | + }; |
| 135 | + |
| 136 | + let mut r = Vec::with_capacity(results.len()); |
| 137 | + for ws in results { |
| 138 | + r.push( |
| 139 | + Py::new(py, |token| PythonWordSimilarity { |
| 140 | + word: ws.word.to_owned(), |
| 141 | + similarity: ws.similarity.into_inner(), |
| 142 | + token, |
| 143 | + })?.into_object(py), |
| 144 | + ) |
| 145 | + } |
| 146 | + |
| 147 | + Ok(r) |
| 148 | + } |
| 149 | +} |
| 150 | + |
| 151 | +fn load_model(path: &str, mmap: bool) -> Result<finalfrontier::Model, Error> { |
| 152 | + let f = File::open(path)?; |
| 153 | + |
| 154 | + let model = if mmap { |
| 155 | + finalfrontier::Model::mmap_model_binary(f)? |
| 156 | + } else { |
| 157 | + finalfrontier::Model::read_model_binary(&mut BufReader::new(f))? |
| 158 | + }; |
| 159 | + |
| 160 | + Ok(model) |
| 161 | +} |
0 commit comments