@@ -391,11 +391,11 @@ public struct Pipeline: @unchecked Sendable {
391
391
///
392
392
/// ```swift
393
393
/// // let pipeline: Pipeline = ... // Assume pipeline from a collection with vector embeddings.
394
- /// let queryVector: [Double] = [0.1, 0.2, ..., 0.8] // Example query vector.
394
+ /// let queryVector = VectorValue( [0.1, 0.2, ..., 0.8]) // Example query vector.
395
395
/// let nearestNeighborsPipeline = pipeline.findNearest(
396
396
/// field: Field("embedding_field"), // Field containing the vector.
397
397
/// vectorValue: queryVector, // Query vector for comparison.
398
- /// distanceMeasure: .COSINE , // Distance metric.
398
+ /// distanceMeasure: .cosine , // Distance metric.
399
399
/// limit: 10, // Return top 10 nearest neighbors.
400
400
/// distanceField: "similarityScore" // Optional: field for distance score.
401
401
/// )
@@ -404,13 +404,13 @@ public struct Pipeline: @unchecked Sendable {
404
404
///
405
405
/// - Parameters:
406
406
/// - field: The `Field` containing vector embeddings.
407
- /// - vectorValue: An array of `Double` representing the query vector.
408
- /// - distanceMeasure: The `DistanceMeasure` (e.g., `.EUCLIDEAN `, `.COSINE `) for comparison.
407
+ /// - vectorValue: A `VectorValue` instance representing the query vector.
408
+ /// - distanceMeasure: The `DistanceMeasure` (e.g., `.euclidean `, `.cosine `) for comparison.
409
409
/// - limit: Optional. Maximum number of similar documents to return.
410
410
/// - distanceField: Optional. Name for a new field to store the calculated distance.
411
411
/// - Returns: A new `Pipeline` object with this stage appended.
412
412
public func findNearest( field: Field ,
413
- vectorValue: [ Double ] ,
413
+ vectorValue: VectorValue ,
414
414
distanceMeasure: DistanceMeasure ,
415
415
limit: Int ? = nil ,
416
416
distanceField: String ? = nil ) -> Pipeline {
0 commit comments