|
1 |
| -import random |
2 |
| -import math |
3 |
| - |
4 |
| - |
5 |
| -class FireflyAlgorithm(): |
6 |
| - |
7 |
| - def __init__(self, D, NP, nFES, alpha, betamin, gamma, LB, UB, function): |
8 |
| - self.D = D # dimension of the problem |
9 |
| - self.NP = NP # population size |
10 |
| - self.nFES = nFES # number of function evaluations |
11 |
| - self.alpha = alpha # alpha parameter |
12 |
| - self.betamin = betamin # beta parameter |
13 |
| - self.gamma = gamma # gamma parameter |
14 |
| - # sort of fireflies according to fitness value |
15 |
| - self.Index = [0] * self.NP |
16 |
| - self.Fireflies = [[0 for i in range(self.D)] |
17 |
| - for j in range(self.NP)] # firefly agents |
18 |
| - self.Fireflies_tmp = [[0 for i in range(self.D)] for j in range( |
19 |
| - self.NP)] # intermediate pop |
20 |
| - self.Fitness = [0.0] * self.NP # fitness values |
21 |
| - self.I = [0.0] * self.NP # light intensity |
22 |
| - self.nbest = [0.0] * self.D # the best solution found so far |
23 |
| - self.LB = LB # lower bound |
24 |
| - self.UB = UB # upper bound |
25 |
| - self.fbest = None # the best |
26 |
| - self.evaluations = 0 |
27 |
| - self.Fun = function |
28 |
| - |
29 |
| - def init_ffa(self): |
30 |
| - for i in range(self.NP): |
31 |
| - for j in range(self.D): |
32 |
| - self.Fireflies[i][j] = random.uniform( |
33 |
| - 0, 1) * (self.UB - self.LB) + self.LB |
34 |
| - self.Fitness[i] = 1.0 # initialize attractiveness |
35 |
| - self.I[i] = self.Fitness[i] |
36 |
| - |
37 |
| - def alpha_new(self, a): |
38 |
| - delta = 1.0 - math.pow((math.pow(10.0, -4.0) / 0.9), 1.0 / float(a)) |
39 |
| - return (1 - delta) * self.alpha |
40 |
| - |
41 |
| - def sort_ffa(self): |
42 |
| - self.Index = [i for i in range(self.NP)] |
43 |
| - self.I, self.Fitness, self.Index = [list(l) for l in zip(*sorted(zip(self.I, self.Fitness, self.Index)))] |
44 |
| - |
45 |
| - def replace_ffa(self): # replace the old population according to the new Index values |
46 |
| - # copy original population to a temporary area |
47 |
| - for i in range(self.NP): |
48 |
| - for j in range(self.D): |
49 |
| - self.Fireflies_tmp[i][j] = self.Fireflies[i][j] |
50 |
| - |
51 |
| - # generational selection in the sense of an EA |
52 |
| - for i in range(self.NP): |
53 |
| - for j in range(self.D): |
54 |
| - self.Fireflies[i][j] = self.Fireflies_tmp[self.Index[i]][j] |
55 |
| - |
56 |
| - def FindLimits(self, k): |
57 |
| - for i in range(self.D): |
58 |
| - if self.Fireflies[k][i] < self.LB: |
59 |
| - self.Fireflies[k][i] = self.LB |
60 |
| - if self.Fireflies[k][i] > self.UB: |
61 |
| - self.Fireflies[k][i] = self.UB |
62 |
| - |
63 |
| - def move_ffa(self): |
64 |
| - for i in range(self.NP): |
65 |
| - scale = abs(self.UB - self.LB) |
66 |
| - for j in range(self.NP): |
67 |
| - r = 0.0 |
68 |
| - for k in range(self.D): |
69 |
| - r += (self.Fireflies[i][k] - self.Fireflies[j][k]) * \ |
70 |
| - (self.Fireflies[i][k] - self.Fireflies[j][k]) |
71 |
| - r = math.sqrt(r) |
72 |
| - if self.I[i] > self.I[j]: # brighter and more attractive |
73 |
| - beta0 = 1.0 |
74 |
| - beta = (beta0 - self.betamin) * \ |
75 |
| - math.exp(-self.gamma * math.pow(r, 2.0)) + self.betamin |
76 |
| - for k in range(self.D): |
77 |
| - r = random.uniform(0, 1) |
78 |
| - tmpf = self.alpha * (r - 0.5) * scale |
79 |
| - self.Fireflies[i][k] = self.Fireflies[i][ |
80 |
| - k] * (1.0 - beta) + self.Fireflies_tmp[j][k] * beta + tmpf |
81 |
| - self.FindLimits(i) |
82 |
| - |
83 |
| - def Run(self): |
84 |
| - self.init_ffa() |
85 |
| - |
86 |
| - while self.evaluations < self.nFES: |
87 |
| - |
88 |
| - # optional reducing of alpha |
89 |
| - self.alpha = self.alpha_new(self.nFES/self.NP) |
90 |
| - |
91 |
| - # evaluate new solutions |
92 |
| - for i in range(self.NP): |
93 |
| - self.Fitness[i] = self.Fun(self.D, self.Fireflies[i]) |
94 |
| - self.evaluations = self.evaluations + 1 |
95 |
| - self.I[i] = self.Fitness[i] |
96 |
| - |
97 |
| - # ranking fireflies by their light intensity |
98 |
| - self.sort_ffa() |
99 |
| - # replace old population |
100 |
| - self.replace_ffa() |
101 |
| - # find the current best |
102 |
| - self.fbest = self.I[0] |
103 |
| - # move all fireflies to the better locations |
104 |
| - self.move_ffa() |
105 |
| - |
106 |
| - return self.fbest |
| 1 | +import numpy as np |
| 2 | +from numpy.random import default_rng |
| 3 | + |
| 4 | + |
| 5 | +def FireflyAlgorithm(function, dim, lb, ub, max_evals, pop_size=20, alpha=1.0, betamin=1.0, gamma=0.01, seed=None): |
| 6 | + rng = default_rng(seed) |
| 7 | + fireflies = rng.uniform(lb, ub, (pop_size, dim)) |
| 8 | + intensity = np.apply_along_axis(function, 1, fireflies) |
| 9 | + best = np.min(intensity) |
| 10 | + |
| 11 | + evaluations = pop_size |
| 12 | + new_alpha = alpha |
| 13 | + search_range = ub - lb |
| 14 | + |
| 15 | + while evaluations <= max_evals: |
| 16 | + new_alpha *= 0.97 |
| 17 | + for i in range(pop_size): |
| 18 | + for j in range(pop_size): |
| 19 | + if intensity[i] >= intensity[j]: |
| 20 | + r = np.sum(np.square(fireflies[i] - fireflies[j]), axis=-1) |
| 21 | + beta = betamin * np.exp(-gamma * r) |
| 22 | + steps = new_alpha * (rng.random(dim) - 0.5) * search_range |
| 23 | + fireflies[i] += beta * (fireflies[j] - fireflies[i]) + steps |
| 24 | + fireflies[i] = np.clip(fireflies[i], lb, ub) |
| 25 | + intensity[i] = function(fireflies[i]) |
| 26 | + evaluations += 1 |
| 27 | + best = min(intensity[i], best) |
| 28 | + return best |
0 commit comments