@@ -179,8 +179,15 @@ and equations can be found [here](interest_measures.md).
179179
180180### Visualization
181181
182- The framework currently supports the hill slopes visualization method presented in [ 4] . More visualization methods are planned
183- to be implemented in future releases.
182+ The framework currently supports:
183+
184+ - hill slopes (presented in [ 4] ),
185+ - scatter plot and
186+ - grouped matrix plot visualization methods.
187+
188+ More visualization methods are planned to be implemented in future releases.
189+
190+ #### Hill Slopes
184191
185192``` python
186193from matplotlib import pyplot as plt
@@ -199,6 +206,67 @@ plt.show()
199206 <img alt="logo" src="https://raw.githubusercontent.com/firefly-cpp/NiaARM/main/.github/images/hill_slopes.png">
200207</p >
201208
209+ #### Scatter Plot
210+
211+ ``` python
212+ from examples.visualization_examples.prepare_datasets import get_weather_data
213+ from niaarm import Dataset, get_rules
214+ from niaarm.visualize import scatter_plot
215+
216+ # Get prepared data
217+ arm_df = get_weather_data()
218+
219+ # Prepare Dataset
220+ dataset = Dataset(path_or_df = arm_df,delimiter = " ," )
221+
222+ # Get rules
223+ metrics = (" support" , " confidence" )
224+ rules, run_time = get_rules(dataset, " DifferentialEvolution" , metrics, max_evals = 500 )
225+
226+ # Add lift to metrics
227+ metrics = list (metrics)
228+ metrics.append(" lift" )
229+ metrics = tuple (metrics)
230+
231+ # Visualize scatter plot
232+ fig = scatter_plot(rules = rules, metrics = metrics, interactive = False )
233+ fig.show()
234+ ```
235+
236+ <p >
237+ <img alt="logo" src=".github/images/scatter_plot.png">
238+ </p >
239+
240+ #### Grouped Matrix Plot
241+
242+ ``` python
243+ from examples.visualization_examples.prepare_datasets import get_football_player_data
244+ from niaarm import Dataset, get_rules
245+ from niaarm.visualize import grouped_matrix_plot
246+
247+ # Get prepared data
248+ arm_df = get_football_player_data()
249+
250+ # Prepare Dataset
251+ dataset = Dataset(path_or_df = arm_df, delimiter = " ," )
252+
253+ # Get rules
254+ metrics = (" support" , " confidence" )
255+ rules, run_time = get_rules(dataset, " DifferentialEvolution" , metrics, max_evals = 500 )
256+
257+ # Add lift to metrics
258+ metrics = list (metrics)
259+ metrics.append(" lift" )
260+ metrics = tuple (metrics)
261+
262+ # Visualize grouped matrix plot
263+ fig = grouped_matrix_plot(rules = rules, metrics = metrics, k = 5 , interactive = False )
264+ fig.show()
265+ ```
266+
267+ <p >
268+ <img alt="logo" src=".github/images/grouped_matrix_plot.png">
269+ </p >
202270
203271### Text Mining (Experimental)
204272
0 commit comments