You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
[](http://isitmaintained.com/project/firefly-cpp/niaarm"Average time to resolve an issue")
NiaARM is a framework for Association Rule Mining based on nature-inspired algorithms for optimization. 🌿 The framework is written fully in Python and runs on all platforms. NiaARM allows users to preprocess the data in a transaction database automatically, to search for association rules and provide a pretty output of the rules found. 📊 This framework also supports integral and real-valued types of attributes besides the categorical ones. Mining the association rules is defined as an optimization problem, and solved using the nature-inspired algorithms that come from the related framework called [NiaPy](https://github.com/NiaOrg/NiaPy). 🔗
***Tested OS:** Windows, Ubuntu, Fedora, Alpine, Arch, macOS. **However, that does not mean it does not work on others**
72
+
73
+
## 🔍 Detailed insights
27
74
The current version includes (but is not limited to) the following functions:
28
75
29
76
- loading datasets in CSV format 📁
@@ -34,41 +81,41 @@ The current version includes (but is not limited to) the following functions:
34
81
- visualization of association rules 📈
35
82
- association rule text mining (experimental) 📄
36
83
37
-
## Installation 📦
84
+
## 📦 Installation
38
85
39
86
### pip
40
87
41
-
Install NiaARM with pip:
88
+
To install `NiaARM` with pip, use:
42
89
43
90
```sh
44
91
pip install niaarm
45
92
```
46
93
47
-
To install NiaARM on Alpine Linux, please enable Community repository and use:
94
+
To install `NiaARM` on Alpine Linux, enable Community repository and use:
48
95
49
96
```sh
50
97
$ apk add py3-niaarm
51
98
```
52
99
53
-
To install NiaARM on Arch Linux, please use an [AUR helper](https://wiki.archlinux.org/title/AUR_helpers):
100
+
To install `NiaARM` on Arch Linux, use an [AUR helper](https://wiki.archlinux.org/title/AUR_helpers):
54
101
55
102
```sh
56
103
$ yay -Syyu python-niaarm
57
104
```
58
105
59
-
To install NiaARM on Fedora, use:
106
+
To install `NiaARM` on Fedora, use:
60
107
61
108
```sh
62
109
$ dnf install python3-niaarm
63
110
```
64
111
65
-
To install NiaARM on NixOS, please use:
112
+
To install `NiaARM` on NixOS, use:
66
113
67
114
```sh
68
115
nix-env -iA nixos.python311Packages.niaarm
69
116
```
70
117
71
-
## Usage 🚀
118
+
## 🚀 Usage
72
119
73
120
### Loading data
74
121
@@ -345,7 +392,11 @@ options:
345
392
```
346
393
Note: The CLI script can also run as a python module (`python -m niaarm ...`)
347
394
348
-
## Reference Papers 📚
395
+
## 📄 Cite us
396
+
397
+
Stupan, Ž., & Fister Jr., I. (2022). [NiaARM: A minimalistic framework for Numerical Association Rule Mining](https://www.theoj.org/joss-papers/joss.04448/10.21105.joss.04448.pdf). Journal of Open Source Software, 7(77), 4448.
398
+
399
+
## 📚 References
349
400
350
401
Ideas are based on the following research papers:
351
402
@@ -365,25 +416,21 @@ Ideas are based on the following research papers:
365
416
366
417
[6] I. Fister, I. Fister Jr., D. Novak and D. Verber, [Data squashing as preprocessing in association rule mining](https://iztok-jr-fister.eu/static/publications/300.pdf), 2022 IEEE Symposium Series on Computational Intelligence (SSCI), Singapore, Singapore, 2022, pp. 1720-1725, doi: [10.1109/SSCI51031.2022.10022240](https://doi.org/10.1109/SSCI51031.2022.10022240).
367
418
368
-
## See also
419
+
## 📖 See also
369
420
370
421
[1][NiaARM.jl: Numerical Association Rule Mining in Julia](https://github.com/firefly-cpp/NiaARM.jl)
371
422
372
423
[2][arm-preprocessing: Implementation of several preprocessing techniques for Association Rule Mining (ARM)](https://github.com/firefly-cpp/arm-preprocessing)
373
424
374
-
## License
425
+
## 🔑 License
375
426
376
427
This package is distributed under the MIT License. This license can be found online at <http://www.opensource.org/licenses/MIT>.
377
428
378
429
## Disclaimer
379
430
380
431
This framework is provided as-is, and there are no guarantees that it fits your purposes or that it is bug-free. Use it at your own risk!
381
432
382
-
## Cite us
383
-
384
-
Stupan, Ž., & Fister Jr., I. (2022). [NiaARM: A minimalistic framework for Numerical Association Rule Mining](https://www.theoj.org/joss-papers/joss.04448/10.21105.joss.04448.pdf). Journal of Open Source Software, 7(77), 4448.
385
-
386
-
## Contributors ✨
433
+
## 🫂 Contributors
387
434
388
435
Thanks goes to these wonderful people ([emoji key](https://allcontributors.org/docs/en/emoji-key)):
0 commit comments