|
1 | 1 | <p align="center"> |
2 | | - <img alt="logo" width="300" src="https://raw.githubusercontent.com/firefly-cpp/NiaARM/main/.github/logo/logo.png"> |
| 2 | + <img alt="logo" width="300" src="https://raw.githubusercontent.com/firefly-cpp/NiaARM/main/.github/images/logo.png"> |
3 | 3 | </p> |
4 | 4 |
|
5 | 5 | --- |
@@ -28,6 +28,7 @@ The current version includes (but is not limited to) the following functions: |
28 | 28 | - searching for association rules, |
29 | 29 | - providing output of mined association rules, |
30 | 30 | - generating statistics about mined association rules. |
| 31 | +- visualization of association rules |
31 | 32 |
|
32 | 33 | ## Installation |
33 | 34 |
|
@@ -135,6 +136,25 @@ problem.rules.sort() |
135 | 136 | problem.rules.to_csv('output.csv') |
136 | 137 | ``` |
137 | 138 |
|
| 139 | +### Visualization |
| 140 | + |
| 141 | +The framework currently supports the hill slopes visualization method presented in [4]. |
| 142 | + |
| 143 | +```python |
| 144 | +from matplotlib import pyplot as plt |
| 145 | +from niaarm.visualize import hill_slopes |
| 146 | + |
| 147 | +# load data... |
| 148 | +# mine rules... |
| 149 | + |
| 150 | +hill_slopes(rule, dataset.transactions) |
| 151 | +plt.show() |
| 152 | +``` |
| 153 | +<p> |
| 154 | + <img alt="logo" width="300" src="https://raw.githubusercontent.com/firefly-cpp/NiaARM/main/.github/images/hill_slopes.png"> |
| 155 | +</p> |
| 156 | + |
| 157 | + |
138 | 158 | For a full list of examples see the [examples folder](https://github.com/firefly-cpp/NiaARM/tree/main/examples) |
139 | 159 | in the GitHub repository. |
140 | 160 |
|
@@ -190,6 +210,10 @@ Ideas are based on the following research papers: |
190 | 210 |
|
191 | 211 | [3] I. Fister Jr., I. Fister [A brief overview of swarm intelligence-based algorithms for numerical association rule mining](https://arxiv.org/abs/2010.15524). arXiv preprint arXiv:2010.15524 (2020). |
192 | 212 |
|
| 213 | +[4] Fister, I. et al. (2020). Visualization of Numerical Association Rules by Hill Slopes. |
| 214 | + In: Analide, C., Novais, P., Camacho, D., Yin, H. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2020. |
| 215 | + IDEAL 2020. Lecture Notes in Computer Science(), vol 12489. Springer, Cham. https://doi.org/10.1007/978-3-030-62362-3_10 |
| 216 | + |
193 | 217 | ## License |
194 | 218 |
|
195 | 219 | This package is distributed under the MIT License. This license can be found online at <http://www.opensource.org/licenses/MIT>. |
|
0 commit comments