|
| 1 | +""" |
| 2 | +Copyright (c) 2025 by FlashInfer team. |
| 3 | +
|
| 4 | +Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | +you may not use this file except in compliance with the License. |
| 6 | +You may obtain a copy of the License at |
| 7 | +
|
| 8 | + http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | +
|
| 10 | +Unless required by applicable law or agreed to in writing, software |
| 11 | +distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | +See the License for the specific language governing permissions and |
| 14 | +limitations under the License. |
| 15 | +""" |
| 16 | + |
| 17 | +from typing import Dict |
| 18 | +from flashinfer.autotuner import autotune |
| 19 | +from flashinfer.trtllm_low_latency_gemm import prepare_low_latency_gemm_weights |
| 20 | +import numpy as np |
| 21 | +import torch |
| 22 | + |
| 23 | +from flashinfer import mm_fp8 |
| 24 | +from flashinfer.testing.utils import bench_gpu_time |
| 25 | + |
| 26 | +_cache_permute_indices: Dict[torch.Size, torch.Tensor] = {} |
| 27 | + |
| 28 | + |
| 29 | +def to_float8( |
| 30 | + x: torch.Tensor, dtype=torch.float8_e4m3fn |
| 31 | +) -> tuple[torch.Tensor, torch.Tensor]: |
| 32 | + finfo = torch.finfo(dtype) |
| 33 | + min_val, max_val = x.aminmax() |
| 34 | + amax = torch.maximum(min_val.abs(), max_val.abs()).clamp(min=1e-12) |
| 35 | + scale = finfo.max / amax |
| 36 | + x_scl_sat = (x * scale).clamp(min=finfo.min, max=finfo.max) |
| 37 | + return x_scl_sat.to(dtype), scale.float().reciprocal() |
| 38 | + |
| 39 | + |
| 40 | +def bench_mm_fp8(m, n, k, in_dtype, out_dtype): |
| 41 | + torch.manual_seed(123) |
| 42 | + input_tensor = torch.randn([m, k], device="cuda", dtype=torch.bfloat16) |
| 43 | + input_fp8, input_inv_s = to_float8(input_tensor, dtype=in_dtype) |
| 44 | + |
| 45 | + # mat2 row major -> column major |
| 46 | + mat2 = torch.randn([n, k], device="cuda", dtype=torch.bfloat16) |
| 47 | + mat2_fp8, mat2_inv_s = to_float8(mat2, dtype=in_dtype) |
| 48 | + |
| 49 | + res = torch.zeros([m, n], device="cuda", dtype=out_dtype) |
| 50 | + global_scale = input_inv_s * mat2_inv_s |
| 51 | + |
| 52 | + # Do row shuffling. |
| 53 | + prepared_weights = prepare_low_latency_gemm_weights( |
| 54 | + mat2_fp8, _cache_permute_indices |
| 55 | + ) |
| 56 | + |
| 57 | + with autotune(True): |
| 58 | + mm_fp8( |
| 59 | + input_fp8, |
| 60 | + prepared_weights, |
| 61 | + global_scale, |
| 62 | + out=res, |
| 63 | + ) |
| 64 | + |
| 65 | + measurements = bench_gpu_time( |
| 66 | + lambda: mm_fp8( |
| 67 | + input_fp8, |
| 68 | + prepared_weights, |
| 69 | + global_scale, |
| 70 | + res, |
| 71 | + ), |
| 72 | + dry_run_time_ms=500, |
| 73 | + repeat_time_ms=2500, |
| 74 | + use_cuda_graph=True, |
| 75 | + ) |
| 76 | + ms = np.median(measurements) |
| 77 | + tflops_per_second = 2 * m * n * k * 1e-9 / ms |
| 78 | + |
| 79 | + bandwidth = ( |
| 80 | + ( |
| 81 | + input_fp8.numel() * input_fp8.element_size() |
| 82 | + + prepared_weights.numel() * prepared_weights.element_size() |
| 83 | + + res.numel() * res.element_size() |
| 84 | + ) |
| 85 | + / ms |
| 86 | + / 1e9 |
| 87 | + ) |
| 88 | + |
| 89 | + print( |
| 90 | + f"mm_fp8 m={m} n={n} k={k} in_dtype={in_dtype} out_dtype={out_dtype}: {tflops_per_second:.2f} TFLOPs/s over {ms:.6f} ms, {bandwidth:.2f} TB/s" |
| 91 | + ) |
| 92 | + |
| 93 | + |
| 94 | +if __name__ == "__main__": |
| 95 | + for m in [1, 2, 4, 8, 16, 32, 64]: |
| 96 | + for n in [2560, 5120, 8192]: |
| 97 | + for k in [16384, 32768]: |
| 98 | + bench_mm_fp8(m, n, k, torch.float8_e4m3fn, torch.bfloat16) |
0 commit comments