|
3 | 3 |
|
4 | 4 | import flashinfer
|
5 | 5 | import flashinfer.triton
|
6 |
| -from flashinfer.utils import GPUArchitectureError |
| 6 | +from conftest import skip_on_gpu_arch_error |
7 | 7 |
|
8 | 8 |
|
| 9 | +@skip_on_gpu_arch_error |
9 | 10 | @pytest.mark.parametrize("seq_len", [2048])
|
10 | 11 | @pytest.mark.parametrize("num_heads", [32])
|
11 | 12 | @pytest.mark.parametrize("head_dim", [128])
|
12 | 13 | def test_merge_state(seq_len, num_heads, head_dim):
|
13 |
| - try: |
14 |
| - va = torch.randn(seq_len, num_heads, head_dim).half().to("cuda:0") |
15 |
| - sa = torch.randn(seq_len, num_heads, dtype=torch.float32).to("cuda:0") |
16 |
| - vb = torch.randn(seq_len, num_heads, head_dim).half().to("cuda:0") |
17 |
| - sb = torch.randn(seq_len, num_heads, dtype=torch.float32).to("cuda:0") |
18 |
| - v_merged, s_merged = flashinfer.triton.cascade.merge_state(va, sa, vb, sb) |
19 |
| - v_merged_std, s_merged_std = flashinfer.merge_state(va, sa, vb, sb) |
| 14 | + va = torch.randn(seq_len, num_heads, head_dim).half().to("cuda:0") |
| 15 | + sa = torch.randn(seq_len, num_heads, dtype=torch.float32).to("cuda:0") |
| 16 | + vb = torch.randn(seq_len, num_heads, head_dim).half().to("cuda:0") |
| 17 | + sb = torch.randn(seq_len, num_heads, dtype=torch.float32).to("cuda:0") |
| 18 | + v_merged, s_merged = flashinfer.triton.cascade.merge_state(va, sa, vb, sb) |
| 19 | + v_merged_std, s_merged_std = flashinfer.merge_state(va, sa, vb, sb) |
20 | 20 |
|
21 |
| - assert torch.allclose(v_merged, v_merged_std, atol=1e-2) |
22 |
| - assert torch.allclose(s_merged, s_merged_std, atol=1e-2) |
23 |
| - except GPUArchitectureError as e: |
24 |
| - pytest.skip(str(e)) |
| 21 | + assert torch.allclose(v_merged, v_merged_std, atol=1e-2) |
| 22 | + assert torch.allclose(s_merged, s_merged_std, atol=1e-2) |
25 | 23 |
|
26 | 24 |
|
| 25 | +@skip_on_gpu_arch_error |
27 | 26 | @pytest.mark.parametrize("seq_len", [2048])
|
28 | 27 | @pytest.mark.parametrize("num_heads", [32])
|
29 | 28 | @pytest.mark.parametrize("head_dim", [128])
|
30 | 29 | def test_merge_state_in_place(seq_len, num_heads, head_dim):
|
31 |
| - try: |
32 |
| - v = torch.randn(seq_len, num_heads, head_dim).half() |
33 |
| - v_std = v.clone() |
34 |
| - v, v_std = v.to("cuda:0"), v_std.to("cuda:0") |
35 |
| - s = torch.randn(seq_len, num_heads, dtype=torch.float32) |
36 |
| - s_std = s.clone() |
37 |
| - s, s_std = s.to("cuda:0"), s_std.to("cuda:0") |
38 |
| - v_other = torch.randn(seq_len, num_heads, head_dim).half().to("cuda:0") |
39 |
| - s_other = torch.randn(seq_len, num_heads, dtype=torch.float32).to("cuda:0") |
40 |
| - flashinfer.merge_state_in_place(v_std, s_std, v_other, s_other) |
41 |
| - flashinfer.triton.cascade.merge_state_in_place(v, s, v_other, s_other) |
| 30 | + v = torch.randn(seq_len, num_heads, head_dim).half() |
| 31 | + v_std = v.clone() |
| 32 | + v, v_std = v.to("cuda:0"), v_std.to("cuda:0") |
| 33 | + s = torch.randn(seq_len, num_heads, dtype=torch.float32) |
| 34 | + s_std = s.clone() |
| 35 | + s, s_std = s.to("cuda:0"), s_std.to("cuda:0") |
| 36 | + v_other = torch.randn(seq_len, num_heads, head_dim).half().to("cuda:0") |
| 37 | + s_other = torch.randn(seq_len, num_heads, dtype=torch.float32).to("cuda:0") |
| 38 | + flashinfer.merge_state_in_place(v_std, s_std, v_other, s_other) |
| 39 | + flashinfer.triton.cascade.merge_state_in_place(v, s, v_other, s_other) |
42 | 40 |
|
43 |
| - assert torch.allclose(v, v_std, atol=1e-2) |
44 |
| - assert torch.allclose(s, s_std, atol=1e-2) |
45 |
| - |
46 |
| - except GPUArchitectureError as e: |
47 |
| - pytest.skip(str(e)) |
| 41 | + assert torch.allclose(v, v_std, atol=1e-2) |
| 42 | + assert torch.allclose(s, s_std, atol=1e-2) |
48 | 43 |
|
49 | 44 |
|
| 45 | +@skip_on_gpu_arch_error |
50 | 46 | @pytest.mark.parametrize("seq_len", [2048])
|
51 | 47 | @pytest.mark.parametrize("num_heads", [32])
|
52 | 48 | @pytest.mark.parametrize("head_dim", [128])
|
53 | 49 | @pytest.mark.parametrize("num_states", [100])
|
54 | 50 | def test_merge_states(seq_len, num_states, num_heads, head_dim):
|
55 |
| - try: |
56 |
| - v = torch.randn(seq_len, num_states, num_heads, head_dim).half().to("cuda:0") |
57 |
| - s = torch.randn(seq_len, num_states, num_heads, dtype=torch.float32).to( |
58 |
| - "cuda:0" |
59 |
| - ) |
60 |
| - v_merged_std, s_merged_std = flashinfer.merge_states(v, s) |
61 |
| - v_merged, s_merged = flashinfer.triton.cascade.merge_states(v, s) |
| 51 | + v = torch.randn(seq_len, num_states, num_heads, head_dim).half().to("cuda:0") |
| 52 | + s = torch.randn(seq_len, num_states, num_heads, dtype=torch.float32).to("cuda:0") |
| 53 | + v_merged_std, s_merged_std = flashinfer.merge_states(v, s) |
| 54 | + v_merged, s_merged = flashinfer.triton.cascade.merge_states(v, s) |
62 | 55 |
|
63 |
| - assert torch.allclose(v_merged, v_merged_std, atol=1e-2) |
64 |
| - assert torch.allclose(s_merged, s_merged_std, atol=1e-2) |
65 |
| - except GPUArchitectureError as e: |
66 |
| - pytest.skip(str(e)) |
| 56 | + assert torch.allclose(v_merged, v_merged_std, atol=1e-2) |
| 57 | + assert torch.allclose(s_merged, s_merged_std, atol=1e-2) |
67 | 58 |
|
68 | 59 |
|
| 60 | +@skip_on_gpu_arch_error |
69 | 61 | @pytest.mark.parametrize("seq_len", [2048])
|
70 | 62 | @pytest.mark.parametrize("num_heads", [32])
|
71 | 63 | @pytest.mark.parametrize("head_dim", [128])
|
72 | 64 | def test_variable_length_merge_states(seq_len, num_heads, head_dim):
|
73 |
| - try: |
74 |
| - max_index_sets = 512 |
75 |
| - lengths = torch.randint(low=1, high=max_index_sets, size=(seq_len,)) |
76 |
| - indptr = [0] |
77 |
| - for i in range(seq_len): |
78 |
| - indptr.append(indptr[-1] + lengths[i]) |
79 |
| - v = torch.randn(indptr[-1], num_heads, head_dim).half().to("cuda:0") |
80 |
| - s = torch.randn(indptr[-1], num_heads, dtype=torch.float32).to("cuda:0") |
81 |
| - indptr = torch.tensor(indptr, dtype=torch.int32).to("cuda:0") |
82 |
| - v_merged, s_merged = flashinfer.triton.cascade.variable_length_merge_states( |
83 |
| - v, s, indptr |
84 |
| - ) |
85 |
| - for i in range(seq_len): |
86 |
| - sub_v = v[indptr[i] : indptr[i + 1]] |
87 |
| - sub_s = s[indptr[i] : indptr[i + 1]] |
88 |
| - sub_v = torch.unsqueeze(sub_v, 0) |
89 |
| - sub_s = torch.unsqueeze(sub_s, 0) |
90 |
| - v_merged_std, s_merged_std = flashinfer.merge_states(sub_v, sub_s) |
91 |
| - v_merged_std = torch.squeeze(v_merged_std, 0) |
92 |
| - s_merged_std = torch.squeeze(s_merged_std, 0) |
93 |
| - assert v_merged[i].shape == v_merged_std.shape |
94 |
| - assert torch.allclose(v_merged[i], v_merged_std, atol=1e-2) |
95 |
| - assert torch.allclose(s_merged[i], s_merged_std, atol=1e-2) |
96 |
| - except GPUArchitectureError as e: |
97 |
| - pytest.skip(str(e)) |
| 65 | + max_index_sets = 512 |
| 66 | + lengths = torch.randint(low=1, high=max_index_sets, size=(seq_len,)) |
| 67 | + indptr = [0] |
| 68 | + for i in range(seq_len): |
| 69 | + indptr.append(indptr[-1] + lengths[i]) |
| 70 | + v = torch.randn(indptr[-1], num_heads, head_dim).half().to("cuda:0") |
| 71 | + s = torch.randn(indptr[-1], num_heads, dtype=torch.float32).to("cuda:0") |
| 72 | + indptr = torch.tensor(indptr, dtype=torch.int32).to("cuda:0") |
| 73 | + v_merged, s_merged = flashinfer.triton.cascade.variable_length_merge_states( |
| 74 | + v, s, indptr |
| 75 | + ) |
| 76 | + for i in range(seq_len): |
| 77 | + sub_v = v[indptr[i] : indptr[i + 1]] |
| 78 | + sub_s = s[indptr[i] : indptr[i + 1]] |
| 79 | + sub_v = torch.unsqueeze(sub_v, 0) |
| 80 | + sub_s = torch.unsqueeze(sub_s, 0) |
| 81 | + v_merged_std, s_merged_std = flashinfer.merge_states(sub_v, sub_s) |
| 82 | + v_merged_std = torch.squeeze(v_merged_std, 0) |
| 83 | + s_merged_std = torch.squeeze(s_merged_std, 0) |
| 84 | + assert v_merged[i].shape == v_merged_std.shape |
| 85 | + assert torch.allclose(v_merged[i], v_merged_std, atol=1e-2) |
| 86 | + assert torch.allclose(s_merged[i], s_merged_std, atol=1e-2) |
0 commit comments