- "description": ":class:`Monitor` that stores the mode field profiles returned by the mode solver in the\nmonitor plane.\n\nParameters\n----------\nattrs : dict = {}\n Dictionary storing arbitrary metadata for a Tidy3D object. This dictionary can be freely used by the user for storing data without affecting the operation of Tidy3D as it is not used internally. Note that, unlike regular Tidy3D fields, ``attrs`` are mutable. For example, the following is allowed for setting an ``attr`` ``obj.attrs['foo'] = bar``. Also note that `Tidy3D`` will raise a ``TypeError`` if ``attrs`` contain objects that can not be serialized. One can check if ``attrs`` are serializable by calling ``obj.json()``.\ncenter : Union[tuple[Union[float, autograd.tracer.Box], Union[float, autograd.tracer.Box], Union[float, autograd.tracer.Box]], Box] = (0.0, 0.0, 0.0)\n [units = um]. Center of object in x, y, and z.\nsize : Union[tuple[Union[pydantic.v1.types.NonNegativeFloat, autograd.tracer.Box], Union[pydantic.v1.types.NonNegativeFloat, autograd.tracer.Box], Union[pydantic.v1.types.NonNegativeFloat, autograd.tracer.Box]], Box]\n [units = um]. Size in x, y, and z directions.\nname : ConstrainedStrValue\n Unique name for monitor.\ninterval_space : Tuple[Literal[1], Literal[1], Literal[1]] = (1, 1, 1)\n Number of grid step intervals between monitor recordings. If equal to 1, there will be no downsampling. If greater than 1, the step will be applied, but the first and last point of the monitor grid are always included. Not all monitors support values different from 1.\ncolocate : bool = True\n Toggle whether fields should be colocated to grid cell boundaries (i.e. primal grid nodes).\nfreqs : Union[tuple[float, ...], ArrayLike[dtype=float, ndim=1]]\n [units = Hz]. Array or list of frequencies stored by the field monitor.\napodization : ApodizationSpec = ApodizationSpec(attrs={}, start=None, end=None, width=None, type='ApodizationSpec')\n Sets parameters of (optional) apodization. Apodization applies a windowing function to the Fourier transform of the time-domain fields into frequency-domain ones, and can be used to truncate the beginning and/or end of the time signal, for example to eliminate the source pulse when studying the eigenmodes of a system. Note: apodization affects the normalization of the frequency-domain fields.\nmode_spec : ModeSpec = ModeSpec(attrs={}, num_modes=1, target_neff=None, num_pml=(0,, 0), filter_pol=None, angle_theta=0.0, angle_phi=0.0, precision='double', bend_radius=None, bend_axis=None, angle_rotation=False, track_freq='central', group_index_step=False, type='ModeSpec')\n Parameters to feed to mode solver which determine modes measured by monitor.\nstore_fields_direction : Optional[Literal['+', '-']] = None\n Propagation direction for the mode field profiles stored from mode solving.\ndirection : Literal['+', '-'] = +\n Direction of waveguide mode propagation along the axis defined by its normal dimension.\nfields : Tuple[Literal['Ex', 'Ey', 'Ez', 'Hx', 'Hy', 'Hz'], ...] = ['Ex', 'Ey', 'Ez', 'Hx', 'Hy', 'Hz']\n Collection of field components to store in the monitor. Note that some methods like ``flux``, ``dot`` require all tangential field components, while others like ``mode_area`` require all E-field components.\n\nExample\n-------\n>>> mode_spec = ModeSpec(num_modes=3)\n>>> monitor = ModeSolverMonitor(\n... center=(1,2,3),\n... size=(2,2,0),\n... freqs=[200e12, 210e12],\n... mode_spec=mode_spec,\n... name='mode_monitor')",
0 commit comments