@@ -304,7 +304,7 @@ cdef class arb(flint_scalar):
304304 return x
305305
306306 def lower (self ):
307- """
307+ r """
308308 Lower bound for * self* ( towards `-\i nfty`) .
309309 The output is an * arb* holding an exact floating-point number
310310 that has been rounded down to the current precision.
@@ -317,7 +317,7 @@ cdef class arb(flint_scalar):
317317 return x
318318
319319 def upper (self ):
320- """
320+ r """
321321 Upper bound for * self* ( towards `+ \i nfty`) .
322322 The output is an * arb* holding an exact floating-point number
323323 that has been rounded up to the current precision.
@@ -330,7 +330,7 @@ cdef class arb(flint_scalar):
330330 return x
331331
332332 def mid_rad_10exp (self , long n = 0 ):
333- """
333+ r """
334334 Returns an * fmpz* triple ( * mid* , * rad* , * exp* ) where the larger of * mid*
335335 and * rad* has * n* digits plus a few digits ( * n* defaults to the current
336336 precision) , such that * self* is contained in
@@ -670,7 +670,7 @@ cdef class arb(flint_scalar):
670670 return u
671671
672672 def floor (s ):
673- ur """
673+ r """
674674 Floor function `\l floor s \r floor`.
675675
676676 >>> print( arb. pi( ) . floor( ))
@@ -683,7 +683,7 @@ cdef class arb(flint_scalar):
683683 return u
684684
685685 def ceil (s ):
686- ur """
686+ r """
687687 Ceiling function `\l ceil s \r ceil`.
688688
689689 >>> print( arb. pi( ) . ceil( ))
@@ -986,7 +986,7 @@ cdef class arb(flint_scalar):
986986 return u, v
987987
988988 def sec (s ):
989- """
989+ r """
990990 Secant function `\o peratorname{sec}( s) `.
991991
992992 >>> from flint import showgood
@@ -998,7 +998,7 @@ cdef class arb(flint_scalar):
998998 return u
999999
10001000 def csc (s ):
1001- """
1001+ r """
10021002 Cosecant function `\o peratorname{csc}( s) `.
10031003
10041004 >>> from flint import showgood
@@ -1208,7 +1208,7 @@ cdef class arb(flint_scalar):
12081208 return u
12091209
12101210 def gamma (s ):
1211- """
1211+ r """
12121212 Gamma function `\G amma( s) `.
12131213
12141214 >>> from flint import showgood
@@ -1229,7 +1229,7 @@ cdef class arb(flint_scalar):
12291229
12301230 @staticmethod
12311231 def gamma_fmpq (fmpq s ):
1232- """
1232+ r """
12331233 Computes the gamma function `\G amma( s) ` of a given * fmpq* * s* ,
12341234 exploiting the fact that * s* is an exact rational number to
12351235 improve performance.
@@ -1244,7 +1244,7 @@ cdef class arb(flint_scalar):
12441244 return u
12451245
12461246 def rgamma (s ):
1247- ur """
1247+ r """
12481248 Reciprocal gamma function `1/\G amma( s) `, avoiding
12491249 division by zero at the poles of the gamma function.
12501250
@@ -1263,7 +1263,7 @@ cdef class arb(flint_scalar):
12631263 return u
12641264
12651265 def lgamma (s ):
1266- """
1266+ r """
12671267 Logarithmic gamma function `\l og \G amma( s) `.
12681268
12691269 >>> from flint import showgood
@@ -1278,7 +1278,7 @@ cdef class arb(flint_scalar):
12781278 return u
12791279
12801280 def digamma (s ):
1281- """
1281+ r """
12821282 Digamma function `\p si( s) `.
12831283
12841284 >>> from flint import showgood
@@ -1326,6 +1326,7 @@ cdef class arb(flint_scalar):
13261326 """
13271327 Computes the rising factorial `(s)_n` where *n* is an unsigned
13281328 integer, along with the first derivative with respect to `(s)_n`.
1329+
13291330 The current implementation does not use the gamma function,
13301331 so *n* should be moderate.
13311332
@@ -1340,7 +1341,7 @@ cdef class arb(flint_scalar):
13401341 return u, v
13411342
13421343 def zeta (s , a = None ):
1343- """
1344+ r """
13441345 Riemann zeta function `\z eta( s) ` or the Hurwitz
13451346 zeta function `\z eta( s,a) ` if a second parameter is passed.
13461347
@@ -1488,7 +1489,7 @@ cdef class arb(flint_scalar):
14881489 return u
14891490
14901491 def bin (s , ulong k ):
1491- """
1492+ r """
14921493 Binomial coefficient `{s \c hoose k}`. Currently * k* is limited
14931494 to an integer; this restriction will be removed in the future
14941495 by using the gamma function.
@@ -1505,7 +1506,7 @@ cdef class arb(flint_scalar):
15051506
15061507 @staticmethod
15071508 def bin_uiui (ulong n , ulong k ):
1508- """
1509+ r """
15091510 Binomial coefficient `{n \c hoose k}`.
15101511
15111512 >>> print( arb. bin_uiui( 10, 5))
@@ -1533,7 +1534,7 @@ cdef class arb(flint_scalar):
15331534 return u
15341535
15351536 def polylog (self , s ):
1536- """
1537+ r """
15371538 Polylogarithm `\o peratorname{Li}_s( z) ` where
15381539 the argument * z* is given by * self* and the order * s* is given
15391540 as an extra parameter.
@@ -2261,7 +2262,7 @@ cdef class arb(flint_scalar):
22612262
22622263 @staticmethod
22632264 def pi ():
2264- """
2265+ r """
22652266 Returns the constant `\p i` as an * arb* .
22662267
22672268 >>> from flint import showgood
@@ -2274,7 +2275,7 @@ cdef class arb(flint_scalar):
22742275
22752276 @staticmethod
22762277 def const_sqrt_pi ():
2277- """
2278+ r """
22782279 The constant `\s qrt{\p i}`.
22792280
22802281 >>> from flint import showgood
@@ -2287,7 +2288,7 @@ cdef class arb(flint_scalar):
22872288
22882289 @staticmethod
22892290 def const_log2 ():
2290- """
2291+ r """
22912292 The constant `\l og( 2) `.
22922293
22932294 >>> from flint import showgood
@@ -2300,7 +2301,7 @@ cdef class arb(flint_scalar):
23002301
23012302 @staticmethod
23022303 def const_log10 ():
2303- """
2304+ r """
23042305 The constant `\l og( 10) `.
23052306
23062307 >>> from flint import showgood
@@ -2313,7 +2314,7 @@ cdef class arb(flint_scalar):
23132314
23142315 @staticmethod
23152316 def const_euler ():
2316- """
2317+ r """
23172318 Euler's constant `\g amma`.
23182319
23192320 >>> from flint import showgood
0 commit comments