@@ -122,8 +122,7 @@ cdef class fmpq_mpoly_ctx(flint_mpoly_context):
122122 """
123123 Return the number of variables in the context
124124
125- >>> from flint import Ordering
126- >>> ctx = fmpq_mpoly_ctx.get_context(4, Ordering.lex, 'x')
125+ >>> ctx = fmpq_mpoly_ctx.get_context(('x', 4), 'lex')
127126 >>> ctx.nvars()
128127 4
129128 """
@@ -133,19 +132,17 @@ cdef class fmpq_mpoly_ctx(flint_mpoly_context):
133132 """
134133 Return the term order of the context object.
135134
136- >>> from flint import Ordering
137- >>> ctx = fmpq_mpoly_ctx.get_context(4, Ordering.deglex, 'w')
135+ >>> ctx = fmpq_mpoly_ctx.get_context(('w', 4), 'deglex')
138136 >>> ctx.ordering()
139- <Ordering.deglex: 1 >
137+ <Ordering.deglex: 'deglex' >
140138 """
141139 return ordering_c_to_py(self .val.zctx.minfo.ord)
142140
143141 def gen (self , slong i ):
144142 """
145143 Return the ``i`` th generator of the polynomial ring
146144
147- >>> from flint import Ordering
148- >>> ctx = fmpq_mpoly_ctx.get_context(3, Ordering.degrevlex, 'z')
145+ >>> ctx = fmpq_mpoly_ctx.get_context(('z', 3), 'degrevlex')
149146 >>> ctx.gen(1)
150147 z1
151148 """
@@ -175,8 +172,7 @@ cdef class fmpq_mpoly_ctx(flint_mpoly_context):
175172 The dictionary's keys are tuples of ints (or anything that implicitly converts
176173 to fmpz) representing exponents, and corresponding coefficient values of fmpq.
177174
178- >>> from flint import Ordering
179- >>> ctx = fmpq_mpoly_ctx.get_context(2, Ordering.lex, 'x,y')
175+ >>> ctx = fmpq_mpoly_ctx.get_context(('x', 'y'), 'lex')
180176 >>> ctx.from_dict({(1,0):2, (1,1):3, (0,1):1})
181177 3*x*y + 2*x + y
182178 """
@@ -306,8 +302,7 @@ cdef class fmpq_mpoly(flint_mpoly):
306302 Always returns a value, missing keys will return ``0``.
307303 Negative exponents are made positive.
308304
309- >>> from flint import Ordering
310- >>> ctx = fmpq_mpoly_ctx.get_context(2, Ordering.lex, 'x')
305+ >>> ctx = fmpq_mpoly_ctx.get_context(('x', 2), 'lex')
311306 >>> p = ctx.from_dict({(0, 1): 2, (1, 1): 3})
312307 >>> p[1, 1]
313308 3
@@ -332,8 +327,7 @@ cdef class fmpq_mpoly(flint_mpoly):
332327 Will always set a value, missing keys will create a new term.
333328 Negative exponents are made positive.
334329
335- >>> from flint import Ordering
336- >>> ctx = fmpq_mpoly_ctx.get_context(2, Ordering.lex, 'x')
330+ >>> ctx = fmpq_mpoly_ctx.get_context(('x', 2), 'lex')
337331 >>> p = ctx.from_dict({(0, 1): 2, (1, 1): 3})
338332 >>> p[1, 1] = 20
339333 >>> p
@@ -511,8 +505,7 @@ cdef class fmpq_mpoly(flint_mpoly):
511505 """
512506 Return the exponent vectors of each term as a tuple of fmpz.
513507
514- >>> from flint import Ordering
515- >>> ctx = fmpq_mpoly_ctx.get_context(2, Ordering.lex, 'x')
508+ >>> ctx = fmpq_mpoly_ctx.get_context(('x', 2), 'lex')
516509 >>> f = ctx.from_dict({(0, 0): 1, (1, 0): 2, (0, 1): 3, (1, 1): 4})
517510 >>> f.monoms()
518511 [(1, 1), (1, 0), (0, 1), (0, 0)]
@@ -533,8 +526,7 @@ cdef class fmpq_mpoly(flint_mpoly):
533526 """
534527 Return the coefficients of each term as a fmpq.
535528
536- >>> from flint import Ordering
537- >>> ctx = fmpq_mpoly_ctx.get_context(2, Ordering.lex, 'x')
529+ >>> ctx = fmpq_mpoly_ctx.get_context(('x', 2), 'lex')
538530 >>> f = ctx.from_dict({(0, 0): 1, (1, 0): 2, (0, 1): 3, (1, 1): 4})
539531 >>> f.coeffs()
540532 [4, 2, 3, 1]
@@ -556,8 +548,7 @@ cdef class fmpq_mpoly(flint_mpoly):
556548 # """
557549 # Return the terms of this polynomial as a list of fmpq_mpolys.
558550
559- # >>> from flint import Ordering
560- # >>> ctx = fmpq_mpoly_ctx.get_context(2, Ordering.lex, 'x')
551+ # >>> ctx = fmpq_mpoly_ctx.get_context(('x', 2), 'lex')
561552 # >>> f = ctx.from_dict({(0, 0): 1, (1, 0): 2, (0, 1): 3, (1, 1): 4})
562553 # >>> f.terms()
563554 # [4*x0*x1, 2*x0, 3*x1, 1]
@@ -580,8 +571,7 @@ cdef class fmpq_mpoly(flint_mpoly):
580571 Partial evaluate this polynomial with select constants. Keys must be generator names or generator indices ,
581572 all values must be fmpq.
582573
583- >>> from flint import Ordering
584- >>> ctx = fmpq_mpoly_ctx.get_context(2 , Ordering.lex, ' x' )
574+ >>> ctx = fmpq_mpoly_ctx.get_context((' x' , 2 ), ' lex' )
585575 >>> f = ctx.from_dict({(0 , 0 ): 1 , (1 , 0 ): 2 , (0 , 1 ): 3 , (1 , 1 ): 4 })
586576 >>> f.subs({"x1": 0})
587577 2*x0 + 1
@@ -610,9 +600,8 @@ cdef class fmpq_mpoly(flint_mpoly):
610600 Compose this polynomial with other fmpq_mpolys. All arguments must share the same context , it may different
611601 from this polynomials context.
612602
613- >>> from flint import Ordering
614- >>> ctx = fmpq_mpoly_ctx.get_context(1 , Ordering.lex, ' x' )
615- >>> ctx1 = fmpq_mpoly_ctx.get_context(2 , Ordering.lex, ' y' )
603+ >>> ctx = fmpq_mpoly_ctx.get_context((' x' ,), ' lex' )
604+ >>> ctx1 = fmpq_mpoly_ctx.get_context((' y' , 2 ), ' lex' )
616605 >>> f = ctx.from_dict({(2 ,): 1 })
617606 >>> g = ctx1.from_dict({(1 , 0 ): 1 , (0 , 1 ): 1 })
618607 >>> f
@@ -660,8 +649,7 @@ cdef class fmpq_mpoly(flint_mpoly):
660649 """
661650 Return the context object for this polynomials.
662651
663- >>> from flint import Ordering
664- >>> ctx = fmpq_mpoly_ctx.get_context(2, Ordering.lex, 'x')
652+ >>> ctx = fmpq_mpoly_ctx.get_context(('x', 2), 'lex')
665653 >>> p = ctx.from_dict({(0, 1): 2})
666654 >>> ctx is p.context()
667655 True
@@ -672,8 +660,7 @@ cdef class fmpq_mpoly(flint_mpoly):
672660 """
673661 Return the coefficient at index ``i``.
674662
675- >>> from flint import Ordering
676- >>> ctx = fmpq_mpoly_ctx.get_context(2, Ordering.lex, 'x')
663+ >>> ctx = fmpq_mpoly_ctx.get_context(('x', 2), 'lex')
677664 >>> p = ctx.from_dict({(0, 1): 2, (1, 1): 3})
678665 >>> p.coefficient(1)
679666 2
@@ -690,8 +677,7 @@ cdef class fmpq_mpoly(flint_mpoly):
690677 """
691678 Return the exponent vector at index ``i`` as a tuple.
692679
693- >>> from flint import Ordering
694- >>> ctx = fmpq_mpoly_ctx.get_context(2, Ordering.lex, 'x')
680+ >>> ctx = fmpq_mpoly_ctx.get_context(('x', 2), 'lex')
695681 >>> p = ctx.from_dict({(0, 1): 2, (1, 1): 3})
696682 >>> p.monomial(1)
697683 (0, 1)
@@ -709,8 +695,7 @@ cdef class fmpq_mpoly(flint_mpoly):
709695 """
710696 Return a dictionary of variable name to degree.
711697
712- >>> from flint import Ordering
713- >>> ctx = fmpq_mpoly_ctx.get_context(4, Ordering.lex, 'x')
698+ >>> ctx = fmpq_mpoly_ctx.get_context(('x', 4), 'lex')
714699 >>> p = ctx.from_dict({(1, 0, 0, 0): 1, (0, 2, 0, 0): 2, (0, 0, 3, 0): 3})
715700 >>> p.degrees()
716701 (1, 2, 3, 0)
@@ -726,8 +711,7 @@ cdef class fmpq_mpoly(flint_mpoly):
726711 """
727712 Return the total degree.
728713
729- >>> from flint import Ordering
730- >>> ctx = fmpq_mpoly_ctx.get_context(4, Ordering.lex, 'x')
714+ >>> ctx = fmpq_mpoly_ctx.get_context(('x', 4), 'lex')
731715 >>> p = ctx.from_dict({(1, 0, 0, 0): 1, (0, 2, 0, 0): 2, (0, 0, 3, 0): 3})
732716 >>> p.total_degree()
733717 3
@@ -740,8 +724,7 @@ cdef class fmpq_mpoly(flint_mpoly):
740724 """
741725 Leading coefficient in the monomial ordering.
742726
743- >>> from flint import Ordering
744- >>> ctx = fmpq_mpoly_ctx(2, Ordering.lex, ['x', 'y'])
727+ >>> ctx = fmpq_mpoly_ctx.get_context(('x', 'y'), 'lex')
745728 >>> x, y = ctx.gens()
746729 >>> p = 2*x*y + 3*x + 4*y**2 + 5
747730 >>> p
@@ -770,8 +753,7 @@ cdef class fmpq_mpoly(flint_mpoly):
770753 """
771754 Return the gcd of self and other.
772755
773- >>> from flint import Ordering
774- >>> ctx = fmpq_mpoly_ctx.get_context(2, Ordering.lex, 'x')
756+ >>> ctx = fmpq_mpoly_ctx.get_context(('x', 2), 'lex')
775757 >>> f = ctx.from_dict({(1, 1): 4, (0, 0): 1})
776758 >>> g = ctx.from_dict({(0, 1): 2, (1, 0): 2})
777759 >>> (f * g).gcd(f)
@@ -792,8 +774,7 @@ cdef class fmpq_mpoly(flint_mpoly):
792774 Return the GCD of the terms of ``self``. If ``self`` is zero, then the result will
793775 be zero, otherwise it will be a monomial with positive coefficient.
794776
795- >>> from flint import Ordering
796- >>> ctx = fmpq_mpoly_ctx.get_context(2, Ordering.lex, 'x')
777+ >>> ctx = fmpq_mpoly_ctx.get_context(('x', 2), 'lex')
797778 >>> x0, x1 = ctx.gens()
798779 >>> f = 3 * x0**2 * x1 + 6 * x0 * x1
799780 >>> f.term_content()
@@ -807,8 +788,7 @@ cdef class fmpq_mpoly(flint_mpoly):
807788 """
808789 Return the resultant of ``self`` and ``other`` with respect to variable ``var``.
809790
810- >>> from flint import Ordering
811- >>> ctx = fmpq_mpoly_ctx.get_context(2, Ordering.lex, 'x')
791+ >>> ctx = fmpq_mpoly_ctx.get_context(('x', 2), 'lex')
812792 >>> x0, x1 = ctx.gens()
813793 >>> f = x0**2 * x1 + x0 * x1
814794 >>> g = x0 + x1
@@ -834,8 +814,7 @@ cdef class fmpq_mpoly(flint_mpoly):
834814 """
835815 Return the discriminant of ``self`` with respect to variable ``var``.
836816
837- >>> from flint import Ordering
838- >>> ctx = fmpq_mpoly_ctx.get_context(2, Ordering.lex, 'x')
817+ >>> ctx = fmpq_mpoly_ctx.get_context(('x', 2), 'lex')
839818 >>> x0, x1 = ctx.gens()
840819 >>> f = (x0 + x1)**2 + 1
841820 >>> f.discriminant('x1')
@@ -856,8 +835,7 @@ cdef class fmpq_mpoly(flint_mpoly):
856835 """
857836 Return the square root of self.
858837
859- >>> from flint import Ordering
860- >>> ctx = fmpq_mpoly_ctx.get_context(2, Ordering.lex, 'x')
838+ >>> ctx = fmpq_mpoly_ctx.get_context(('x', 2), 'lex')
861839 >>> f = ctx.from_dict({(1, 1): 4, (0, 0): 1})
862840 >>> (f * f).sqrt()
863841 4*x0*x1 + 1
@@ -876,9 +854,8 @@ cdef class fmpq_mpoly(flint_mpoly):
876854 (c, factors) where c is the content of the coefficients and
877855 factors is a list of (poly, exp) pairs.
878856
879- >>> from flint import Ordering
880857 >>> Zm = fmpq_mpoly
881- >>> ctx = fmpq_mpoly_ctx.get_context(3, Ordering.lex, 'x,y,z ')
858+ >>> ctx = fmpq_mpoly_ctx.get_context(('x', 'y', 'z'), 'lex ')
882859 >>> p1 = Zm("2*x + 4", ctx)
883860 >>> p2 = Zm("3*x*z + 3*x + 3*z + 3", ctx)
884861 >>> (p1 * p2).factor()
@@ -915,9 +892,8 @@ cdef class fmpq_mpoly(flint_mpoly):
915892 (c, factors) where c is the content of the coefficients and
916893 factors is a list of (poly, exp) pairs.
917894
918- >>> from flint import Ordering
919895 >>> Zm = fmpq_mpoly
920- >>> ctx = fmpq_mpoly_ctx.get_context(3, Ordering.lex, 'x,y,z ')
896+ >>> ctx = fmpq_mpoly_ctx.get_context(('x', 'y', 'z'), 'lex ')
921897 >>> p1 = Zm("2*x + 4", ctx)
922898 >>> p2 = Zm("3*x*y + 3*x + 3*y + 3", ctx)
923899 >>> (p1 * p2).factor_squarefree()
@@ -954,8 +930,7 @@ cdef class fmpq_mpoly(flint_mpoly):
954930 The argument can either be the variable as a string, or the index of the
955931 variable in the context.
956932
957- >>> from flint import Ordering
958- >>> ctx = fmpq_mpoly_ctx.get_context(2, Ordering.lex, 'x')
933+ >>> ctx = fmpq_mpoly_ctx.get_context(('x', 2), 'lex')
959934 >>> p = ctx.from_dict({(0, 3): 2, (2, 1): 3})
960935 >>> p
961936 3*x0^2*x1 + 2*x1^3
@@ -979,8 +954,7 @@ cdef class fmpq_mpoly(flint_mpoly):
979954 Return the integral of this polynomial with respect to the provided variable The argument can either be the
980955 variable as a string, or the index of the variable in the context.
981956
982- >>> from flint import Ordering
983- >>> ctx = fmpq_mpoly_ctx.get_context(2, Ordering.lex, 'x')
957+ >>> ctx = fmpq_mpoly_ctx.get_context(('x', 2), 'lex')
984958 >>> p = ctx.from_dict({(0, 3): 2, (2, 1): 3})
985959 >>> p
986960 3*x0^2*x1 + 2*x1^3
@@ -1004,8 +978,7 @@ cdef class fmpq_mpoly(flint_mpoly):
1004978 Compute the inflation of ``self`` for a provided ``N``, that is return ``q``
1005979 such that ``q(X ) = p(X^N )``.
1006980
1007- >>> from flint import Ordering
1008- >>> ctx = fmpq_mpoly_ctx.get_context(2 , Ordering.lex, nametup = (' x' , ' y' ))
981+ >>> ctx = fmpq_mpoly_ctx.get_context((' x' , ' y' ), ' lex' )
1009982 >>> x , y = ctx.gens()
1010983 >>> f = x + y + 1
1011984 >>> f.inflate([2, 3])
@@ -1033,8 +1006,7 @@ cdef class fmpq_mpoly(flint_mpoly):
10331006 Compute the deflation of ``self`` for a provided ``N``, that is return ``q``
10341007 such that ``q(X ) = p(X^(1/N ))``.
10351008
1036- >>> from flint import Ordering
1037- >>> ctx = fmpq_mpoly_ctx.get_context(2 , Ordering.lex, nametup = (' x' , ' y' ))
1009+ >>> ctx = fmpq_mpoly_ctx.get_context((' x' , ' y' ), ' lex' )
10381010 >>> x , y = ctx.gens()
10391011 >>> f = x** 3 * y + x * y** 4 + x * y
10401012 >>> f.deflate([2, 3])
@@ -1058,8 +1030,7 @@ cdef class fmpq_mpoly(flint_mpoly):
10581030 """
10591031 Compute the deflation of ``self``, that is ``p(X^(1/N ))`` for maximal N.
10601032
1061- >>> from flint import Ordering
1062- >>> ctx = fmpq_mpoly_ctx.get_context(2 , Ordering.lex, nametup = (' x' , ' y' ))
1033+ >>> ctx = fmpq_mpoly_ctx.get_context((' x' , ' y' ), ' lex' )
10631034 >>> x , y = ctx.gens()
10641035 >>> f = x** 2 * y** 2 + x * y** 2
10651036 >>> q , N = f.deflation()
@@ -1091,8 +1062,7 @@ cdef class fmpq_mpoly(flint_mpoly):
10911062 = m * q(X^N )`` for maximal N. The returned monomial allows the undo-ing of the
10921063 deflation.
10931064
1094- >>> from flint import Ordering
1095- >>> ctx = fmpq_mpoly_ctx.get_context(2 , Ordering.lex, nametup = (' x' , ' y' ))
1065+ >>> ctx = fmpq_mpoly_ctx.get_context((' x' , ' y' ), ' lex' )
10961066 >>> x , y = ctx.gens()
10971067 >>> f = x** 3 * y + x * y** 4 + x * y
10981068 >>> fd , N , m = f.deflation_monom()
@@ -1123,8 +1093,7 @@ cdef class fmpq_mpoly(flint_mpoly):
11231093 exponents. It is the exponent vector of the monomial returned by
11241094 ``deflation_monom``.
11251095
1126- >>> from flint import Ordering
1127- >>> ctx = fmpq_mpoly_ctx.get_context(2 , Ordering.lex, nametup = (' x' , ' y' ))
1096+ >>> ctx = fmpq_mpoly_ctx.get_context((' x' , ' y' ), ' lex' )
11281097 >>> x , y = ctx.gens()
11291098 >>> f = x** 3 * y + x * y** 4 + x * y
11301099 >>> N , I = f.deflation_index()
0 commit comments