You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
from lotka_volterra_case_study.sim import HierarchicalSimulation
33
28
34
29
sim = HierarchicalSimulation(config)
35
30
sim.initialize_from_script()
@@ -237,13 +232,17 @@ except RuntimeError:
237
232
value 120 12 |
238
233
wolves_obs dist 120 12 |
239
234
value 120 12 |
240
-
Likelihood is not well defined, there are zeros in the observations, while support excludes zeros.
241
235
242
236
243
237
/home/flo-schu/projects/pymob/pymob/inference/numpyro_backend.py:652: UserWarning: Site rabbits_obs: Out-of-support values provided to log prob method. The value argument should be within the support.
244
238
mcmc.run(next(keys))
245
239
/home/flo-schu/projects/pymob/pymob/inference/numpyro_backend.py:652: UserWarning: Site wolves_obs: Out-of-support values provided to log prob method. The value argument should be within the support.
246
240
mcmc.run(next(keys))
241
+
242
+
243
+
Likelihood is not well defined, there are zeros in the observations, while support excludes zeros.
244
+
245
+
247
246
/home/flo-schu/projects/pymob/pymob/inference/numpyro_backend.py:934: UserWarning: Log-likelihoods ['rabbits_obs', 'wolves_obs'] contained NaN or inf values. The gradient based samplers will not be able to sample from this model. Make sure that all functions are numerically well behaved. Inspect the model with `jax.debug.print('{}',x)` https://jax.readthedocs.io/en/latest/notebooks/external_callbacks.html#exploring-debug-callback Or look at the functions step by step to find the position where jnp.grad(func)(x) evaluates to NaN
0 commit comments