-
Notifications
You must be signed in to change notification settings - Fork 12
Open
Description
See the issue described here: https://github.com/prabinov42/Greta_causact_question/blob/main/greta_causact_2.md
If a child node is deterministic and not used as a parent node, causact incorrectly labels it as a distribution.
Temporary fix (use mcmc=FALSE):
graph %>% dag_greta(mcmc=FALSE)
Then delete distribution(lbs) <- kgs * 2.2 #LIKELIHOOD in the output code so you are left with the below:
## The below greta code will return a posterior distribution
## for the given DAG. Either copy and paste this code to use greta
## directly, evaluate the output object using 'eval', or
## or (preferably) use dag_greta(mcmc=TRUE) to return a data frame of
## the posterior distribution:
lbs <- as_data(df$weight_lbs) #DATA
mu <- normal(mean = 90, sd = 10) #PRIOR
sigma <- exponential(rate = 1/20) #PRIOR
kgs <- normal(mean = mu, sd = sigma) #PRIOR
lbs <- kgs * 2.2 #OPERATION
#### DELETED LINE LOCATION ##########
gretaModel <- model(kgs,mu,sigma) #MODEL
meaningfulLabels(graph)
draws <- mcmc(gretaModel) #POSTERIOR
drawsDF <- replaceLabels(draws) %>% as.matrix() %>%
dplyr::as_tibble() #POSTERIOR
tidyDrawsDF <- drawsDF %>% addPriorGroups() #POSTERIOR
Run the above code to get drawsDF. If you now do drawsDF %>% dagp_plot(), you will see kgs as a column.
Metadata
Metadata
Assignees
Labels
No labels