@@ -10,12 +10,12 @@ function prepare_data!(settings, mask)
1010 xclimh_reduced, scaler_clim_m, ae_clim_m = train_autoencode_clim(settings, mask, ign_growth)
1111 xclimf_reduced = GenFSM. Res_fr. predict_autoencoder_clim(settings, mask, scaler_clim_m, ae_clim_m)
1212 scaler_clim_m, ae_clim_m = nothing , nothing # removing the climatic ae models from memory, as they are not needed anymore
13- # Filtering out x,y that are not in the mask (yes, it could have been done earlier..)
14- xclimh_reduced = xclimh_reduced[getindex.(Ref(mask),xclimh_reduced. C,xclimh_reduced. R) .== 1 ,:]
15- xclimf_reduced = xclimf_reduced[getindex.(Ref(mask),xclimf_reduced. C,xclimf_reduced. R) .== 1 ,:]
13+ # Filtering out x,y that are not in the mask (yes, it could have been done earlier..) NO LONGER NEEDEED
14+ # xclimh_reduced = xclimh_reduced[getindex.(Ref(mask),xclimh_reduced.C,xclimh_reduced.R) .== 1,:]
15+ # xclimf_reduced = xclimf_reduced[getindex.(Ref(mask),xclimf_reduced.C,xclimf_reduced.R) .== 1,:]
1616 xfixedpx_reduced = trainpredict_autoencode_fixedpxdata(settings, mask) # dtm and soil
1717
18- res_growth_m = train_growth_model(settings, ign_growth, xclimh_reduced, xfixedpx_reduced)
18+ sm,mgrs = GenFSM . Res_fr . train_growth_model(settings, ign_growth, xclimh_reduced, xfixedpx_reduced)
1919 # res_mortality_m = train_mortality_model(settings, ign_state, ign_growth, xclimh_reduced, xfixedpx_reduced)
2020 # define_state(settings,mask)
2121
@@ -529,7 +529,8 @@ function train_autoencode_clim(settings, mask, ign_growth)
529529 ae_encoded_size = settings[" res" ][" fr" ][" data_sources" ][" clim" ][" ae_encoded_size" ]
530530 verbosity = settings[" verbosity" ]
531531 nC,nR = size(mask)
532- nxclimh = nC* nR* (length(hyears)- ae_nyears+ 1 )
532+ # nxclimh = nC*nR*(length(hyears)-ae_nyears+1)
533+ nxclimh = sum(mask)* (length(hyears)- ae_nyears+ 1 )
533534
534535 if (! (" xclimh" in force_other)) && (isfile(joinpath(basefolder," xclimh.csv.gz" )))
535536 verbosity >= STD && @info(" -- reading xclimh df from saved CSV file" )
@@ -548,6 +549,7 @@ function train_autoencode_clim(settings, mask, ign_growth)
548549 verbosity > HIGH && @info(" -- creating xclimh data for year: $y " )
549550 for c in 1 : nC
550551 for r in 1 : nR
552+ mask[c,r] == 1 || continue # skip pixels outside the mask
551553 xclimh[ridx,[1 ,2 ,3 ]] .= [c,r,y]
552554 cidx = 4
553555 for v in vars
@@ -650,7 +652,8 @@ function predict_autoencoder_clim(settings, mask, scaler_clim_m, ae_clim_m)
650652 vars = settings[" res" ][" fr" ][" data_sources" ][" clim" ][" vars" ]
651653 verbosity = settings[" verbosity" ]
652654 nC,nR = size(mask)
653- nxclimf = nC* nR* (length(fyears))
655+ # nxclimf = nC*nR*(length(fyears))
656+ nxclimf = sum(mask)* (length(fyears))
654657 ae_encoded_size = settings[" res" ][" fr" ][" data_sources" ][" clim" ][" ae_encoded_size" ]
655658
656659 xnames_h = collect(keys(datafiles_h))
@@ -665,6 +668,7 @@ function predict_autoencoder_clim(settings, mask, scaler_clim_m, ae_clim_m)
665668 verbosity >= HIGH && @info(" -- creating xclimf_reduced data for year: $y " )
666669 for c in 1 : nC
667670 for r in 1 : nR
671+ mask[c,r] == 1 || continue # skip pixels outside the mask
668672 cidx = 1
669673 clim_data_y_px = Array{Float64,1 }(undef,ae_nyears* 12 * length(vars))
670674 for v in vars
0 commit comments