|
| 1 | +#:include "common.fypp" |
| 2 | +#:set RC_KINDS_TYPES = REAL_KINDS_TYPES + CMPLX_KINDS_TYPES |
| 3 | +! Test linear system solver |
| 4 | +module test_linalg_solve |
| 5 | + use stdlib_linalg_constants |
| 6 | + use stdlib_linalg_state |
| 7 | + use stdlib_linalg, only: solve |
| 8 | + use testdrive, only: error_type, check, new_unittest, unittest_type |
| 9 | + |
| 10 | + implicit none (type,external) |
| 11 | + private |
| 12 | + |
| 13 | + public :: test_linear_systems |
| 14 | + |
| 15 | + contains |
| 16 | + |
| 17 | + !> Solve real and complex linear systems |
| 18 | + subroutine test_linear_systems(tests) |
| 19 | + !> Collection of tests |
| 20 | + type(unittest_type), allocatable, intent(out) :: tests(:) |
| 21 | + |
| 22 | + allocate(tests(0)) |
| 23 | + |
| 24 | + #:for rk,rt,ri in REAL_KINDS_TYPES |
| 25 | + #:if rk!="xdp" |
| 26 | + tests = [tests,new_unittest("solve_${ri}$",test_${ri}$_solve), & |
| 27 | + new_unittest("solve_${ri}$_multiple",test_${ri}$_solve_multiple)] |
| 28 | + #:endif |
| 29 | + #:endfor |
| 30 | + |
| 31 | + #:for ck,ct,ci in CMPLX_KINDS_TYPES |
| 32 | + #:if ck!="xdp" |
| 33 | + tests = [tests,new_unittest("solve_complex_${ci}$",test_${ci}$_solve), & |
| 34 | + new_unittest("solve_2x2_complex_${ci}$",test_2x2_${ci}$_solve)] |
| 35 | + #:endif |
| 36 | + #:endfor |
| 37 | + |
| 38 | + end subroutine test_linear_systems |
| 39 | + |
| 40 | + #:for rk,rt,ri in REAL_KINDS_TYPES |
| 41 | + #:if rk!="xdp" |
| 42 | + !> Simple linear system |
| 43 | + subroutine test_${ri}$_solve(error) |
| 44 | + type(error_type), allocatable, intent(out) :: error |
| 45 | + |
| 46 | + type(linalg_state_type) :: state |
| 47 | + |
| 48 | + ${rt}$ :: A(3,3) = transpose(reshape([${rt}$ :: 1, 3, 3, & |
| 49 | + 1, 3, 4, & |
| 50 | + 1, 4, 3], [3,3])) |
| 51 | + ${rt}$ :: b (3) = [${rt}$ :: 1, 4, -1] |
| 52 | + ${rt}$ :: res(3) = [${rt}$ :: -2, -2, 3] |
| 53 | + ${rt}$ :: x(3) |
| 54 | + |
| 55 | + x = solve(a,b,err=state) |
| 56 | + |
| 57 | + call check(error,state%ok(),state%print()) |
| 58 | + if (allocated(error)) return |
| 59 | + |
| 60 | + call check(error, all(abs(x-res)<abs(res*epsilon(0.0_${rk}$))), 'results match expected') |
| 61 | + if (allocated(error)) return |
| 62 | + |
| 63 | + end subroutine test_${ri}$_solve |
| 64 | + |
| 65 | + !> Simple linear system with multiple right hand sides |
| 66 | + subroutine test_${ri}$_solve_multiple(error) |
| 67 | + type(error_type), allocatable, intent(out) :: error |
| 68 | + |
| 69 | + type(linalg_state_type) :: state |
| 70 | + |
| 71 | + ${rt}$ :: A(3,3) = transpose(reshape([${rt}$ :: 1,-1, 2, & |
| 72 | + 0, 1, 1, & |
| 73 | + 1,-1, 3], [3,3])) |
| 74 | + ${rt}$ :: b(3,3) = transpose(reshape([${rt}$ :: 0, 1, 2, & |
| 75 | + 1,-2,-1, & |
| 76 | + 2, 3,-1], [3,3])) |
| 77 | + ${rt}$ :: res(3,3) = transpose(reshape([${rt}$ ::-5,-7,10, & |
| 78 | + -1,-4, 2, & |
| 79 | + 2, 2,-3], [3,3])) |
| 80 | + ${rt}$ :: x(3,3) |
| 81 | + |
| 82 | + x = solve(a,b,err=state) |
| 83 | + |
| 84 | + call check(error,state%ok(),state%print()) |
| 85 | + if (allocated(error)) return |
| 86 | + |
| 87 | + call check(error, all(abs(x-res)<abs(res*epsilon(0.0_${rk}$))), 'results match expected') |
| 88 | + if (allocated(error)) return |
| 89 | + |
| 90 | + end subroutine test_${ri}$_solve_multiple |
| 91 | + #:endif |
| 92 | + #:endfor |
| 93 | + |
| 94 | + #:for rk,rt,ri in CMPLX_KINDS_TYPES |
| 95 | + #:if rk!="xdp" |
| 96 | + !> Complex linear system |
| 97 | + !> Militaru, Popa, "On the numerical solving of complex linear systems", |
| 98 | + !> Int J Pure Appl Math 76(1), 113-122, 2012. |
| 99 | + subroutine test_${ri}$_solve(error) |
| 100 | + type(error_type), allocatable, intent(out) :: error |
| 101 | + |
| 102 | + type(linalg_state_type) :: state |
| 103 | + |
| 104 | + ${rt}$ :: A(5,5), b(5), res(5), x(5) |
| 105 | + integer(ilp) :: i |
| 106 | + |
| 107 | + ! Fill in linear system |
| 108 | + A = (0.0_${rk}$,0.0_${rk}$) |
| 109 | + |
| 110 | + A(1:2,1) = [(19.73_${rk}$,0.0_${rk}$),(0.0_${rk}$,-0.51_${rk}$)] |
| 111 | + A(1:3,2) = [(12.11_${rk}$,-1.0_${rk}$),(32.3_${rk}$,7.0_${rk}$),(0.0_${rk}$,-0.51_${rk}$)] |
| 112 | + A(1:4,3) = [(0.0_${rk}$,5.0_${rk}$),(23.07_${rk}$,0.0_${rk}$),(70.0_${rk}$,7.3_${rk}$),(1.0_${rk}$,1.1_${rk}$)] |
| 113 | + A(2:5,4) = [(0.0_${rk}$,1.0_${rk}$),(3.95_${rk}$,0.0_${rk}$),(50.17_${rk}$,0.0_${rk}$),(0.0_${rk}$,-9.351_${rk}$)] |
| 114 | + A(3:5,5) = [(19.0_${rk}$,31.83_${rk}$),(45.51_${rk}$,0.0_${rk}$),(55.0_${rk}$,0.0_${rk}$)] |
| 115 | + |
| 116 | + b = [(77.38_${rk}$,8.82_${rk}$),(157.48_${rk}$,19.8_${rk}$),(1175.62_${rk}$,20.69_${rk}$),(912.12_${rk}$,-801.75_${rk}$),(550.0_${rk}$,-1060.4_${rk}$)] |
| 117 | + |
| 118 | + ! Exact result |
| 119 | + res = [(3.3_${rk}$,-1.0_${rk}$),(1.0_${rk}$,0.17_${rk}$),(5.5_${rk}$,0.0_${rk}$),(9.0_${rk}$,0.0_${rk}$),(10.0_${rk}$,-17.75_${rk}$)] |
| 120 | + |
| 121 | + x = solve(a,b,err=state) |
| 122 | + |
| 123 | + call check(error,state%ok(),state%print()) |
| 124 | + if (allocated(error)) return |
| 125 | + |
| 126 | + call check(error, all(abs(x-res)<abs(res)*1.0e-3_${rk}$), 'results match expected') |
| 127 | + if (allocated(error)) return |
| 128 | + |
| 129 | + end subroutine test_${ri}$_solve |
| 130 | + |
| 131 | + !> 2x2 Complex linear system |
| 132 | + !> https://math.stackexchange.com/questions/1996540/solving-linear-equation-systems-with-complex-coefficients-and-variables |
| 133 | + subroutine test_2x2_${ri}$_solve(error) |
| 134 | + type(error_type), allocatable, intent(out) :: error |
| 135 | + |
| 136 | + type(linalg_state_type) :: state |
| 137 | + |
| 138 | + ${rt}$ :: A(2,2), b(2), res(2), x(2) |
| 139 | + integer(ilp) :: i |
| 140 | + |
| 141 | + ! Fill in linear system |
| 142 | + A(1,:) = [(+1.0_${rk}$,+1.0_${rk}$),(-1.0_${rk}$,0.0_${rk}$)] |
| 143 | + A(2,:) = [(+1.0_${rk}$,-1.0_${rk}$),(+1.0_${rk}$,1.0_${rk}$)] |
| 144 | + |
| 145 | + b = [(0.0_${rk}$,1.0_${rk}$),(1.0_${rk}$,0.0_${rk}$)] |
| 146 | + |
| 147 | + ! Exact result |
| 148 | + res = [(0.5_${rk}$,0.5_${rk}$),(0.0_${rk}$,0.0_${rk}$)] |
| 149 | + |
| 150 | + x = solve(a,b,err=state) |
| 151 | + |
| 152 | + call check(error,state%ok(),state%print()) |
| 153 | + if (allocated(error)) return |
| 154 | + |
| 155 | + call check(error, all(abs(x-res)<max(tiny(0.0_${rk}$),abs(res)*epsilon(0.0_${rk}$))), 'results match expected') |
| 156 | + if (allocated(error)) return |
| 157 | + |
| 158 | + |
| 159 | + end subroutine test_2x2_${ri}$_solve |
| 160 | + #:endif |
| 161 | + #:endfor |
| 162 | + |
| 163 | +end module test_linalg_solve |
| 164 | + |
| 165 | +program test_solve |
| 166 | + use, intrinsic :: iso_fortran_env, only : error_unit |
| 167 | + use testdrive, only : run_testsuite, new_testsuite, testsuite_type |
| 168 | + use test_linalg_solve, only : test_linear_systems |
| 169 | + implicit none |
| 170 | + integer :: stat, is |
| 171 | + type(testsuite_type), allocatable :: testsuites(:) |
| 172 | + character(len=*), parameter :: fmt = '("#", *(1x, a))' |
| 173 | + |
| 174 | + stat = 0 |
| 175 | + |
| 176 | + testsuites = [ & |
| 177 | + new_testsuite("linalg_solve", test_linear_systems) & |
| 178 | + ] |
| 179 | + |
| 180 | + do is = 1, size(testsuites) |
| 181 | + write(error_unit, fmt) "Testing:", testsuites(is)%name |
| 182 | + call run_testsuite(testsuites(is)%collect, error_unit, stat) |
| 183 | + end do |
| 184 | + |
| 185 | + if (stat > 0) then |
| 186 | + write(error_unit, '(i0, 1x, a)') stat, "test(s) failed!" |
| 187 | + error stop |
| 188 | + end if |
| 189 | +end program test_solve |
| 190 | + |
0 commit comments