Skip to content

Commit 32dfb47

Browse files
committed
move refs to footnote
1 parent fa4758f commit 32dfb47

File tree

1 file changed

+8
-3
lines changed

1 file changed

+8
-3
lines changed

doc/specs/stdlib_stats_distribution_normal.md

Lines changed: 8 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -22,7 +22,8 @@ With two arguments, the function returns a normal distributed random variate $N(
2222

2323
With three arguments, the function returns a rank-1 array of normal distributed random variates.
2424

25-
Note: the algorithm used for generating normal random variates is fundamentally limited to double precision.
25+
@note
26+
The algorithm used for generating exponential random variates is fundamentally limited to double precision.[^1]
2627

2728
### Syntax
2829

@@ -64,7 +65,7 @@ The probability density function (pdf) of the single real variable normal distri
6465

6566
$$f(x) = \frac{1}{\sigma \sqrt{2}} \exp{\left[-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right]}$$
6667

67-
For a complex varible $z=(x + y i)$ with independent real $x$ and imaginary $y$ parts, the joint probability density function is the product of the the corresponding real and imaginary marginal pdfs (ref. "Probability and Random Processes with Applications to Signal Processing and Communications", 2nd ed., Scott L. Miller and Donald Childers, 2012, p.197):
68+
For a complex varible $z=(x + y i)$ with independent real $x$ and imaginary $y$ parts, the joint probability density function is the product of the the corresponding real and imaginary marginal pdfs:[^2]
6869

6970
$$f(x + y \mathit{i}) = f(x) f(y) = \frac{1}{2\sigma_{x}\sigma_{y}} \exp{\left[-\frac{1}{2}\left(\left(\frac{x-\mu_x}{\sigma_{x}}\right)^{2}+\left(\frac{y-\mu_y}{\sigma_{y}}\right)^{2}\right)\right]}$$
7071

@@ -108,7 +109,7 @@ Cumulative distribution function of the single real variable normal distribution
108109

109110
$$F(x) = \frac{1}{2}\left [ 1+\text{erf}\left(\frac{x-\mu}{\sigma \sqrt{2}}\right) \right ]$$
110111

111-
For the complex variable $z=(x + y i)$ with independent real $x$ and imaginary $y$ parts, the joint cumulative distribution function is the product of the corresponding real and imaginary marginal cdfs (ref. "Probability and Random Processes with Applications to Signal Processing and Communications", 2nd ed., Scott L. Miller and Donald Childers, 2012, p.197):
112+
For the complex variable $z=(x + y i)$ with independent real $x$ and imaginary $y$ parts, the joint cumulative distribution function is the product of the corresponding real and imaginary marginal cdfs:[^2]
112113

113114
$$ F(x+y\mathit{i})=F(x)F(y)=\frac{1}{4} \
114115
\left[ 1+\text{erf}\left(\frac{x-\mu_x}{\sigma_x \sqrt{2}}\right) \right] \
@@ -141,3 +142,7 @@ The result is a scalar or an array, with a shape conformable to arguments, as th
141142
```fortran
142143
{!example/stats_distribution_normal/example_norm_cdf.f90!}
143144
```
145+
146+
[^1] Marsaglia, George, and Wai Wan Tsang. "The ziggurat method for generating random variables." _Journal of statistical software_ 5 (2000): 1-7.
147+
148+
[^2] Miller, Scott, and Donald Childers. _Probability and random processes: With applications to signal processing and communications_. Academic Press, 2012 (p. 197).

0 commit comments

Comments
 (0)