|
| 1 | +#:include "common.fypp" |
| 2 | +#:set RC_KINDS_TYPES = REAL_KINDS_TYPES + CMPLX_KINDS_TYPES |
| 3 | +#:set RHS_SUFFIX = ["one","many"] |
| 4 | +#:set RHS_SYMBOL = [ranksuffix(r) for r in [1,2]] |
| 5 | +#:set RHS_EMPTY = [emptyranksuffix(r) for r in [1,2]] |
| 6 | +#:set ALL_RHS = list(zip(RHS_SYMBOL,RHS_SUFFIX,RHS_EMPTY)) |
| 7 | +module stdlib_linalg_least_squares |
| 8 | + use stdlib_linalg_constants |
| 9 | + use stdlib_linalg_lapack, only: gelsd, stdlib_ilaenv |
| 10 | + use stdlib_linalg_state, only: linalg_state_type, linalg_error_handling, LINALG_ERROR, & |
| 11 | + LINALG_INTERNAL_ERROR, LINALG_VALUE_ERROR |
| 12 | + implicit none(type,external) |
| 13 | + private |
| 14 | + |
| 15 | + !> Compute a least squares solution to system Ax=b, i.e. such that the 2-norm abs(b-Ax) is minimized. |
| 16 | + public :: lstsq |
| 17 | + |
| 18 | + ! NumPy: lstsq(a, b, rcond='warn') |
| 19 | + ! Scipy: lstsq(a, b, cond=None, overwrite_a=False, overwrite_b=False, check_finite=True, lapack_driver=None) |
| 20 | + ! IMSL: Result = IMSL_QRSOL(B, [A] [, AUXQR] [, BASIS] [, /DOUBLE] [, QR] [, PIVOT] [, RESIDUAL] [, TOLERANCE]) |
| 21 | + |
| 22 | + interface lstsq |
| 23 | + #:for nd,ndsuf,nde in ALL_RHS |
| 24 | + #:for rk,rt,ri in RC_KINDS_TYPES |
| 25 | + module procedure stdlib_linalg_${ri}$_lstsq_${ndsuf}$ |
| 26 | + #:endfor |
| 27 | + #:endfor |
| 28 | + end interface lstsq |
| 29 | + |
| 30 | + |
| 31 | + contains |
| 32 | + |
| 33 | + #:for rk,rt,ri in RC_KINDS_TYPES |
| 34 | + ! Workspace needed by gesv |
| 35 | + subroutine ${ri}$gesv_space(m,n,nrhs,lrwork,liwork,lcwork) |
| 36 | + integer(ilp), intent(in) :: m,n,nrhs |
| 37 | + integer(ilp), intent(out) :: lrwork,liwork,lcwork |
| 38 | + |
| 39 | + integer(ilp) :: smlsiz,mnmin,nlvl |
| 40 | + |
| 41 | + mnmin = min(m,n) |
| 42 | + |
| 43 | + ! Maximum size of the subproblems at the bottom of the computation (~25) |
| 44 | + smlsiz = stdlib_ilaenv(9,'${ri}$gelsd',' ',0,0,0,0) |
| 45 | + |
| 46 | + ! The exact minimum amount of workspace needed depends on M, N and NRHS. As long as LWORK is at least |
| 47 | + nlvl = max(0, ilog2(mnmin/(smlsiz+1))+1) |
| 48 | + |
| 49 | + ! Real space |
| 50 | + #:if rt.startswith('complex') |
| 51 | + lrwork = 10*mnmin+2*mnmin*smlsiz+8*mnmin*nlvl+3*smlsiz*nrhs+max((smlsiz+1)**2,n*(1+nrhs)+2*nrhs) |
| 52 | + #:else |
| 53 | + lrwork = 12*mnmin+2*mnmin*smlsiz+8*mnmin*nlvl+mnmin*nrhs+(smlsiz+1)**2 |
| 54 | + #:endif |
| 55 | + lrwork = max(1,lrwork) |
| 56 | + |
| 57 | + ! Complex space |
| 58 | + lcwork = 2*mnmin + nrhs*mnmin |
| 59 | + |
| 60 | + ! Integer space |
| 61 | + liwork = max(1, 3*mnmin*nlvl+11*mnmin) |
| 62 | + |
| 63 | + ! For good performance, the workspace should generally be larger. |
| 64 | + lrwork = ceiling(1.25*lrwork,kind=ilp) |
| 65 | + lcwork = ceiling(1.25*lcwork,kind=ilp) |
| 66 | + liwork = ceiling(1.25*liwork,kind=ilp) |
| 67 | + |
| 68 | + end subroutine ${ri}$gesv_space |
| 69 | + |
| 70 | + #:endfor |
| 71 | + |
| 72 | + #:for nd,ndsuf,nde in ALL_RHS |
| 73 | + #:for rk,rt,ri in RC_KINDS_TYPES |
| 74 | + |
| 75 | + ! Compute the least-squares solution to a real system of linear equations Ax = B |
| 76 | + function stdlib_linalg_${ri}$_lstsq_${ndsuf}$(a,b,cond,overwrite_a,rank,err) result(x) |
| 77 | + !> Input matrix a[n,n] |
| 78 | + ${rt}$, intent(inout), target :: a(:,:) |
| 79 | + !> Right hand side vector or array, b[n] or b[n,nrhs] |
| 80 | + ${rt}$, intent(in) :: b${nd}$ |
| 81 | + !> [optional] cutoff for rank evaluation: singular values s(i)<=cond*maxval(s) are considered 0. |
| 82 | + real(${rk}$), optional, intent(in) :: cond |
| 83 | + !> [optional] Can A,b data be overwritten and destroyed? |
| 84 | + logical(lk), optional, intent(in) :: overwrite_a |
| 85 | + !> [optional] Return rank of A |
| 86 | + integer(ilp), optional, intent(out) :: rank |
| 87 | + !> [optional] state return flag. On error if not requested, the code will stop |
| 88 | + type(linalg_state_type), optional, intent(out) :: err |
| 89 | + !> Result array/matrix x[n] or x[n,nrhs] |
| 90 | + ${rt}$, allocatable, target :: x${nd}$ |
| 91 | + |
| 92 | + !> Local variables |
| 93 | + type(linalg_state_type) :: err0 |
| 94 | + integer(ilp) :: m,n,lda,ldb,nrhs,info,mnmin,mnmax,arank,lrwork,liwork,lcwork |
| 95 | + integer(ilp), allocatable :: iwork(:) |
| 96 | + logical(lk) :: copy_a |
| 97 | + real(${rk}$) :: acond,rcond |
| 98 | + real(${rk}$), allocatable :: singular(:),rwork(:) |
| 99 | + ${rt}$, pointer :: xmat(:,:),amat(:,:) |
| 100 | + ${rt}$, allocatable :: cwork(:) |
| 101 | + character(*), parameter :: this = 'lstsq' |
| 102 | + |
| 103 | + !> Problem sizes |
| 104 | + m = size(a,1,kind=ilp) |
| 105 | + lda = size(a,1,kind=ilp) |
| 106 | + n = size(a,2,kind=ilp) |
| 107 | + ldb = size(b,1,kind=ilp) |
| 108 | + nrhs = size(b ,kind=ilp)/ldb |
| 109 | + mnmin = min(m,n) |
| 110 | + mnmax = max(m,n) |
| 111 | + |
| 112 | + if (lda<1 .or. n<1 .or. ldb<1 .or. ldb/=m) then |
| 113 | + err0 = linalg_state_type(this,LINALG_VALUE_ERROR,'invalid sizes: a=',[lda,n], & |
| 114 | + 'b=',[ldb,nrhs]) |
| 115 | + allocate(x${nde}$) |
| 116 | + arank = 0 |
| 117 | + goto 1 |
| 118 | + end if |
| 119 | + |
| 120 | + ! Can A be overwritten? By default, do not overwrite |
| 121 | + if (present(overwrite_a)) then |
| 122 | + copy_a = .not.overwrite_a |
| 123 | + else |
| 124 | + copy_a = .true._lk |
| 125 | + endif |
| 126 | + |
| 127 | + ! Initialize a matrix temporary |
| 128 | + if (copy_a) then |
| 129 | + allocate(amat(lda,n),source=a) |
| 130 | + else |
| 131 | + amat => a |
| 132 | + endif |
| 133 | + |
| 134 | + ! Initialize solution with the rhs |
| 135 | + allocate(x,source=b) |
| 136 | + xmat(1:n,1:nrhs) => x |
| 137 | + |
| 138 | + ! Singular values array (in degreasing order) |
| 139 | + allocate(singular(mnmin)) |
| 140 | + |
| 141 | + ! rcond is used to determine the effective rank of A. |
| 142 | + ! Singular values S(i) <= RCOND*maxval(S) are treated as zero. |
| 143 | + ! Use same default value as NumPy |
| 144 | + if (present(cond)) then |
| 145 | + rcond = cond |
| 146 | + else |
| 147 | + rcond = epsilon(0.0_${rk}$)*mnmax |
| 148 | + endif |
| 149 | + if (rcond<0) rcond = epsilon(0.0_${rk}$)*mnmax |
| 150 | + |
| 151 | + ! Allocate working space |
| 152 | + call ${ri}$gesv_space(m,n,nrhs,lrwork,liwork,lcwork) |
| 153 | + #:if rt.startswith('complex') |
| 154 | + allocate(rwork(lrwork),cwork(lcwork),iwork(liwork)) |
| 155 | + #:else |
| 156 | + allocate(rwork(lrwork),iwork(liwork)) |
| 157 | + #:endif |
| 158 | + |
| 159 | + ! Solve system using singular value decomposition |
| 160 | + #:if rt.startswith('complex') |
| 161 | + call gelsd(m,n,nrhs,amat,lda,xmat,ldb,singular,rcond,arank,cwork,lrwork,rwork,iwork,info) |
| 162 | + #:else |
| 163 | + call gelsd(m,n,nrhs,amat,lda,xmat,ldb,singular,rcond,arank,rwork,lrwork,iwork,info) |
| 164 | + #:endif |
| 165 | + |
| 166 | + ! The condition number of A in the 2-norm = S(1)/S(min(m,n)). |
| 167 | + acond = singular(1)/singular(mnmin) |
| 168 | + |
| 169 | + ! Process output |
| 170 | + select case (info) |
| 171 | + case (0) |
| 172 | + ! Success |
| 173 | + case (:-1) |
| 174 | + err0 = linalg_state_type(this,LINALG_VALUE_ERROR,'invalid problem size a=[',lda,',',n,'], b[',ldb,',',nrhs,']') |
| 175 | + case (1:) |
| 176 | + err0 = linalg_state_type(this,LINALG_ERROR,'SVD did not converge.') |
| 177 | + case default |
| 178 | + err0 = linalg_state_type(this,LINALG_INTERNAL_ERROR,'catastrophic error') |
| 179 | + end select |
| 180 | + |
| 181 | + if (.not.copy_a) deallocate(amat) |
| 182 | + |
| 183 | + ! Process output and return |
| 184 | + 1 call linalg_error_handling(err0,err) |
| 185 | + if (present(rank)) rank = arank |
| 186 | + |
| 187 | + end function stdlib_linalg_${ri}$_lstsq_${ndsuf}$ |
| 188 | + |
| 189 | + #:endfor |
| 190 | + #:endfor |
| 191 | + |
| 192 | + ! Simple integer log2 implementation |
| 193 | + elemental integer(ilp) function ilog2(x) |
| 194 | + integer(ilp), intent(in) :: x |
| 195 | + |
| 196 | + integer(ilp) :: remndr |
| 197 | + |
| 198 | + if (x>0) then |
| 199 | + remndr = x |
| 200 | + ilog2 = -1_ilp |
| 201 | + do while (remndr>0) |
| 202 | + ilog2 = ilog2 + 1_ilp |
| 203 | + remndr = shiftr(remndr,1) |
| 204 | + end do |
| 205 | + else |
| 206 | + ilog2 = -huge(0_ilp) |
| 207 | + endif |
| 208 | + end function ilog2 |
| 209 | + |
| 210 | +end module stdlib_linalg_least_squares |
0 commit comments