|
| 1 | +#:include "common.fypp" |
| 2 | +#:set RANKS = range(1, 2+1) |
| 3 | +#:set R_KINDS_TYPES = list(zip(REAL_KINDS, REAL_TYPES, REAL_SUFFIX)) |
| 4 | +#:set C_KINDS_TYPES = list(zip(CMPLX_KINDS, CMPLX_TYPES, CMPLX_SUFFIX)) |
| 5 | +#:set KINDS_TYPES = R_KINDS_TYPES+C_KINDS_TYPES |
| 6 | +submodule (stdlib_specialmatrices) tridiagonal_matrices |
| 7 | + use stdlib_linalg_lapack, only: lagtm |
| 8 | + |
| 9 | + character(len=*), parameter :: this = "tridiagonal matrices" |
| 10 | + contains |
| 11 | + |
| 12 | + !-------------------------------- |
| 13 | + !----- ----- |
| 14 | + !----- CONSTRUCTORS ----- |
| 15 | + !----- ----- |
| 16 | + !-------------------------------- |
| 17 | + |
| 18 | + #:for k1, t1, s1 in (KINDS_TYPES) |
| 19 | + pure module function initialize_tridiagonal_pure_${s1}$(dl, dv, du) result(A) |
| 20 | + !! Construct a `tridiagonal` matrix from the rank-1 arrays |
| 21 | + !! `dl`, `dv` and `du`. |
| 22 | + ${t1}$, intent(in) :: dl(:), dv(:), du(:) |
| 23 | + !! tridiagonal matrix elements. |
| 24 | + type(tridiagonal_${s1}$_type) :: A |
| 25 | + !! Corresponding tridiagonal matrix. |
| 26 | + |
| 27 | + ! Internal variables. |
| 28 | + integer(ilp) :: n |
| 29 | + type(linalg_state_type) :: err0 |
| 30 | + |
| 31 | + ! Sanity check. |
| 32 | + n = size(dv, kind=ilp) |
| 33 | + if (n <= 0) then |
| 34 | + err0 = linalg_state_type(this, LINALG_VALUE_ERROR, "Matrix size needs to be positive, n = ", n, ".") |
| 35 | + call linalg_error_handling(err0) |
| 36 | + endif |
| 37 | + if (size(dl, kind=ilp) /= n-1) then |
| 38 | + err0 = linalg_state_type(this, LINALG_VALUE_ERROR, "Vector dl does not have the correct length.") |
| 39 | + call linalg_error_handling(err0) |
| 40 | + endif |
| 41 | + if (size(du, kind=ilp) /= n-1) then |
| 42 | + err0 = linalg_state_type(this, LINALG_VALUE_ERROR, "Vector du does not have the correct length.") |
| 43 | + call linalg_error_handling(err0) |
| 44 | + endif |
| 45 | + |
| 46 | + ! Description of the matrix. |
| 47 | + A%n = n |
| 48 | + ! Matrix elements. |
| 49 | + A%dl = dl ; A%dv = dv ; A%du = du |
| 50 | + end function |
| 51 | + |
| 52 | + pure module function initialize_constant_tridiagonal_pure_${s1}$(dl, dv, du, n) result(A) |
| 53 | + !! Construct a `tridiagonal` matrix with constant elements. |
| 54 | + ${t1}$, intent(in) :: dl, dv, du |
| 55 | + !! tridiagonal matrix elements. |
| 56 | + integer(ilp), intent(in) :: n |
| 57 | + !! Matrix dimension. |
| 58 | + type(tridiagonal_${s1}$_type) :: A |
| 59 | + !! Corresponding tridiagonal matrix. |
| 60 | + |
| 61 | + ! Internal variables. |
| 62 | + integer(ilp) :: i |
| 63 | + type(linalg_state_type) :: err0 |
| 64 | + |
| 65 | + ! Description of the matrix. |
| 66 | + A%n = n |
| 67 | + if (n <= 0) then |
| 68 | + err0 = linalg_state_type(this, LINALG_VALUE_ERROR, "Matrix size needs to be positive, n = ", n, ".") |
| 69 | + call linalg_error_handling(err0) |
| 70 | + endif |
| 71 | + ! Matrix elements. |
| 72 | + A%dl = [(dl, i = 1, n-1)] |
| 73 | + A%dv = [(dv, i = 1, n)] |
| 74 | + A%du = [(du, i = 1, n-1)] |
| 75 | + end function |
| 76 | + |
| 77 | + module function initialize_tridiagonal_impure_${s1}$(dl, dv, du, err) result(A) |
| 78 | + !! Construct a `tridiagonal` matrix from the rank-1 arrays |
| 79 | + !! `dl`, `dv` and `du`. |
| 80 | + ${t1}$, intent(in) :: dl(:), dv(:), du(:) |
| 81 | + !! tridiagonal matrix elements. |
| 82 | + type(linalg_state_type), intent(out) :: err |
| 83 | + !! Error handling. |
| 84 | + type(tridiagonal_${s1}$_type) :: A |
| 85 | + !! Corresponding tridiagonal matrix. |
| 86 | + |
| 87 | + ! Internal variables. |
| 88 | + integer(ilp) :: n |
| 89 | + type(linalg_state_type) :: err0 |
| 90 | + |
| 91 | + ! Sanity check. |
| 92 | + n = size(dv, kind=ilp) |
| 93 | + if (n <= 0) then |
| 94 | + err0 = linalg_state_type(this, LINALG_VALUE_ERROR, "Matrix size needs to be positive, n = ", n, ".") |
| 95 | + call linalg_error_handling(err0, err) |
| 96 | + endif |
| 97 | + if (size(dl, kind=ilp) /= n-1) then |
| 98 | + err0 = linalg_state_type(this, LINALG_VALUE_ERROR, "Vector dl does not have the correct length.") |
| 99 | + call linalg_error_handling(err0, err) |
| 100 | + endif |
| 101 | + if (size(du, kind=ilp) /= n-1) then |
| 102 | + err0 = linalg_state_type(this, LINALG_VALUE_ERROR, "Vector du does not have the correct length.") |
| 103 | + call linalg_error_handling(err0, err) |
| 104 | + endif |
| 105 | + |
| 106 | + ! Description of the matrix. |
| 107 | + A%n = n |
| 108 | + ! Matrix elements. |
| 109 | + A%dl = dl ; A%dv = dv ; A%du = du |
| 110 | + end function |
| 111 | + |
| 112 | + module function initialize_constant_tridiagonal_impure_${s1}$(dl, dv, du, n, err) result(A) |
| 113 | + !! Construct a `tridiagonal` matrix with constant elements. |
| 114 | + ${t1}$, intent(in) :: dl, dv, du |
| 115 | + !! tridiagonal matrix elements. |
| 116 | + integer(ilp), intent(in) :: n |
| 117 | + !! Matrix dimension. |
| 118 | + type(linalg_state_type), intent(out) :: err |
| 119 | + !! Error handling |
| 120 | + type(tridiagonal_${s1}$_type) :: A |
| 121 | + !! Corresponding tridiagonal matrix. |
| 122 | + |
| 123 | + ! Internal variables. |
| 124 | + integer(ilp) :: i |
| 125 | + type(linalg_state_type) :: err0 |
| 126 | + |
| 127 | + ! Description of the matrix. |
| 128 | + A%n = n |
| 129 | + if (n <= 0) then |
| 130 | + err0 = linalg_state_type(this, LINALG_VALUE_ERROR, "Matrix size needs to be positive, n = ", n, ".") |
| 131 | + call linalg_error_handling(err0, err) |
| 132 | + endif |
| 133 | + ! Matrix elements. |
| 134 | + A%dl = [(dl, i = 1, n-1)] |
| 135 | + A%dv = [(dv, i = 1, n)] |
| 136 | + A%du = [(du, i = 1, n-1)] |
| 137 | + end function |
| 138 | + #:endfor |
| 139 | + |
| 140 | + !----------------------------------------- |
| 141 | + !----- ----- |
| 142 | + !----- MATRIX-VECTOR PRODUCT ----- |
| 143 | + !----- ----- |
| 144 | + !----------------------------------------- |
| 145 | + |
| 146 | + !! spmv_tridiag |
| 147 | + #:for k1, t1, s1 in (KINDS_TYPES) |
| 148 | + #:for rank in RANKS |
| 149 | + module subroutine spmv_tridiag_${rank}$d_${s1}$(A, x, y, alpha, beta, op) |
| 150 | + type(tridiagonal_${s1}$_type), intent(in) :: A |
| 151 | + ${t1}$, intent(in), contiguous, target :: x${ranksuffix(rank)}$ |
| 152 | + ${t1}$, intent(inout), contiguous, target :: y${ranksuffix(rank)}$ |
| 153 | + real(${k1}$), intent(in), optional :: alpha |
| 154 | + real(${k1}$), intent(in), optional :: beta |
| 155 | + character(1), intent(in), optional :: op |
| 156 | + |
| 157 | + ! Internal variables. |
| 158 | + real(${k1}$) :: alpha_, beta_ |
| 159 | + integer(ilp) :: n, nrhs, ldx, ldy |
| 160 | + character(1) :: op_ |
| 161 | + #:if rank == 1 |
| 162 | + ${t1}$, pointer :: xmat(:, :), ymat(:, :) |
| 163 | + #:endif |
| 164 | + |
| 165 | + ! Deal with optional arguments. |
| 166 | + alpha_ = 1.0_${k1}$ ; if (present(alpha)) alpha_ = alpha |
| 167 | + beta_ = 0.0_${k1}$ ; if (present(beta)) beta_ = beta |
| 168 | + op_ = "N" ; if (present(op)) op_ = op |
| 169 | + |
| 170 | + ! Prepare Lapack arguments. |
| 171 | + n = A%n ; ldx = n ; ldy = n ; y = 0.0_${k1}$ |
| 172 | + nrhs = #{if rank==1}# 1 #{else}# size(x, dim=2, kind=ilp) #{endif}# |
| 173 | + |
| 174 | + #:if rank == 1 |
| 175 | + ! Pointer trick. |
| 176 | + xmat(1:n, 1:nrhs) => x ; ymat(1:n, 1:nrhs) => y |
| 177 | + call lagtm(op_, n, nrhs, alpha_, A%dl, A%dv, A%du, xmat, ldx, beta_, ymat, ldy) |
| 178 | + #:else |
| 179 | + call lagtm(op_, n, nrhs, alpha_, A%dl, A%dv, A%du, x, ldx, beta_, y, ldy) |
| 180 | + #:endif |
| 181 | + end subroutine |
| 182 | + #:endfor |
| 183 | + #:endfor |
| 184 | + |
| 185 | + !------------------------------------- |
| 186 | + !----- ----- |
| 187 | + !----- UTILITY FUNCTIONS ----- |
| 188 | + !----- ----- |
| 189 | + !------------------------------------- |
| 190 | + |
| 191 | + #:for k1, t1, s1 in (KINDS_TYPES) |
| 192 | + pure module function tridiagonal_to_dense_${s1}$(A) result(B) |
| 193 | + !! Convert a `tridiagonal` matrix to its dense representation. |
| 194 | + type(tridiagonal_${s1}$_type), intent(in) :: A |
| 195 | + !! Input tridiagonal matrix. |
| 196 | + ${t1}$, allocatable :: B(:, :) |
| 197 | + !! Corresponding dense matrix. |
| 198 | + |
| 199 | + ! Internal variables. |
| 200 | + integer(ilp) :: i |
| 201 | + |
| 202 | + associate (n => A%n) |
| 203 | + #:if t1.startswith('complex') |
| 204 | + allocate(B(n, n), source=zero_c${k1}$) |
| 205 | + #:else |
| 206 | + allocate(B(n, n), source=zero_${k1}$) |
| 207 | + #:endif |
| 208 | + B(1, 1) = A%dv(1) ; B(1, 2) = A%du(1) |
| 209 | + do concurrent (i=2:n-1) |
| 210 | + B(i, i-1) = A%dl(i-1) |
| 211 | + B(i, i) = A%dv(i) |
| 212 | + B(i, i+1) = A%du(i) |
| 213 | + enddo |
| 214 | + B(n, n-1) = A%dl(n-1) ; B(n, n) = A%dv(n) |
| 215 | + end associate |
| 216 | + end function |
| 217 | + #:endfor |
| 218 | + |
| 219 | + #:for k1, t1, s1 in (KINDS_TYPES) |
| 220 | + pure module function transpose_tridiagonal_${s1}$(A) result(B) |
| 221 | + type(tridiagonal_${s1}$_type), intent(in) :: A |
| 222 | + !! Input matrix. |
| 223 | + type(tridiagonal_${s1}$_type) :: B |
| 224 | + B = tridiagonal(A%du, A%dv, A%dl) |
| 225 | + end function |
| 226 | + #:endfor |
| 227 | + |
| 228 | + #:for k1, t1, s1 in (KINDS_TYPES) |
| 229 | + pure module function hermitian_tridiagonal_${s1}$(A) result(B) |
| 230 | + type(tridiagonal_${s1}$_type), intent(in) :: A |
| 231 | + !! Input matrix. |
| 232 | + type(tridiagonal_${s1}$_type) :: B |
| 233 | + #:if t1.startswith("complex") |
| 234 | + B = tridiagonal(conjg(A%du), conjg(A%dv), conjg(A%dl)) |
| 235 | + #:else |
| 236 | + B = tridiagonal(A%du, A%dv, A%dl) |
| 237 | + #:endif |
| 238 | + end function |
| 239 | + #:endfor |
| 240 | + |
| 241 | + #:for k1, t1, s1 in (KINDS_TYPES) |
| 242 | + pure module function scalar_multiplication_tridiagonal_${s1}$(alpha, A) result(B) |
| 243 | + ${t1}$, intent(in) :: alpha |
| 244 | + type(tridiagonal_${s1}$_type), intent(in) :: A |
| 245 | + type(tridiagonal_${s1}$_type) :: B |
| 246 | + B = tridiagonal(A%dl, A%dv, A%du) |
| 247 | + B%dl = alpha*B%dl; B%dv = alpha*B%dv; B%du = alpha*B%du |
| 248 | + end function |
| 249 | + |
| 250 | + pure module function scalar_multiplication_bis_tridiagonal_${s1}$(A, alpha) result(B) |
| 251 | + type(tridiagonal_${s1}$_type), intent(in) :: A |
| 252 | + ${t1}$, intent(in) :: alpha |
| 253 | + type(tridiagonal_${s1}$_type) :: B |
| 254 | + B = tridiagonal(A%dl, A%dv, A%du) |
| 255 | + B%dl = alpha*B%dl; B%dv = alpha*B%dv; B%du = alpha*B%du |
| 256 | + end function |
| 257 | + #:endfor |
| 258 | + |
| 259 | + #:for k1, t1, s1 in (KINDS_TYPES) |
| 260 | + pure module function matrix_add_tridiagonal_${s1}$(A, B) result(C) |
| 261 | + type(tridiagonal_${s1}$_type), intent(in) :: A |
| 262 | + type(tridiagonal_${s1}$_type), intent(in) :: B |
| 263 | + type(tridiagonal_${s1}$_type) :: C |
| 264 | + C = tridiagonal(A%dl, A%dv, A%du) |
| 265 | + C%dl = C%dl + B%dl; C%dv = C%dv + B%dv; C%du = C%du + B%du |
| 266 | + end function |
| 267 | + |
| 268 | + pure module function matrix_sub_tridiagonal_${s1}$(A, B) result(C) |
| 269 | + type(tridiagonal_${s1}$_type), intent(in) :: A |
| 270 | + type(tridiagonal_${s1}$_type), intent(in) :: B |
| 271 | + type(tridiagonal_${s1}$_type) :: C |
| 272 | + C = tridiagonal(A%dl, A%dv, A%du) |
| 273 | + C%dl = C%dl - B%dl; C%dv = C%dv - B%dv; C%du = C%du - B%du |
| 274 | + end function |
| 275 | + #:endfor |
| 276 | + |
| 277 | +end submodule |
0 commit comments