@@ -143,8 +143,8 @@ typedef union _mli_element_params {
143143 *
144144 * Tensor is the main container type for all input and output data which must be processed by ML algo-rithm.
145145 * In general data for neural networks and other machine learning tasks is a multi-dimensional arrays of some
146- * particular shape. So tensor structure includes not only data, but it’ s shape, it’ s type, and other data specific
147- * parameters. To be more precise, saying “ data” we mean input features, out-put features, layer weights and biases
146+ * particular shape. So tensor structure includes not only data, but it' s shape, it' s type, and other data specific
147+ * parameters. To be more precise, saying " data" we mean input features, out-put features, layer weights and biases
148148 * but not layer parameters like padding or stride for convolution-al layers.
149149 */
150150typedef struct _mli_tensor {
@@ -411,7 +411,7 @@ typedef struct {
411411 * Data structure to provide the configuration for Concatenation primitives.
412412 */
413413typedef struct {
414- uint8_t tensors_num ; /**< Number of tensors to concatenate (number of pointers in “ inputs” array) */
414+ uint8_t tensors_num ; /**< Number of tensors to concatenate (number of pointers in " inputs" array) */
415415 uint8_t axis ; /**< Axis for concatenation (dimension number starting from 0)*/
416416} mli_concat_cfg ;
417417
@@ -464,7 +464,7 @@ typedef struct _mli_mov_cfg {
464464 * number of indexes per slice to be returned.
465465 */
466466typedef struct {
467- int32_t axis ; /**< An axis along which the function will be computed. Axis corresponds to index of tensor’ s
467+ int32_t axis ; /**< An axis along which the function will be computed. Axis corresponds to index of tensor' s
468468 dimension starting from 0. For instance, having future map in HWC layout, axis == 0
469469 corresponds to H dimension. If axis < 0 the function will be applied to the whole tensor. */
470470 int32_t topk ; /**< Number of indexes per slice to be returned.*/
0 commit comments