Releases: foss-for-synopsys-dwc-arc-processors/synopsys-caffe-models
MWEV2019.09.RC2
This is release 2019.09-RC2 of the Synopsys-caffe-models, a set of Caffe Deep Learning Models adapted for use with DesignWare EV6x Processors.
These models must be used together with Synopsys-Caffe v2019.09-RC2 and the MetaWare EV Development Toolkit v2019.09-RC2 from Synopsys.
Supported Models
- alexnet
- DAN
- DeepTesla
- denoiser
- densenet
- deeplab
- facedetect_v1
- facedetect_v2
- faster_rcnn_resnet101
- googlenet
- icnet
- inception_resnet_v1
- inception_resnet_v2
- inception_v1
- inception_v2
- inception_v3
- inception_v4
- lenet
- mobilenet
- mobilenet_ssd
- mtcnn_v1
- openpose
- pspnet
- resnet_101
- resnet_152
- resnet_50
- resnet50_ssd
- segnet
- srgan
- squeezenet
- srcnn
- ssd
- pspnet
- unet
- vdcr
- vgg16
- yolo_tiny
- yolo_v1
- yolo_v2_coco
- yolo_v2_voc
- yolo_v3 (yolo_v3_tiny included)
Images
- imagenet_mean - mean images for different image sizes
- imagenet_test_images - simple set of test images
- images - different image data sub-sets
Changes vs v2019.06
New models
- deeplab
- srcnn
- vdcr
Updated models
- denoiser - added test images
- srgan - added models and test images
- mobilnet - added a new new model v1_1.0_224
- resnet 50/101/152 - added optimized models
Other changes
- removed obsolete C headers with test image arrays
Helper tools
git_sparse_download.sh(bat) - helps to download only part of models.
MWEV2019.09
This is release 2019.09 of the Synopsys-caffe-models, a set of Caffe Deep Learning Models adapted for use with DesignWare EV6x Processors.
These models must be used together with Synopsys-Caffe v2019.09 and the MetaWare EV Development Toolkit v2019.09 from Synopsys.
Supported Models
- alexnet
- DAN
- DeepTesla
- denoiser
- densenet
- deeplab
- facedetect_v1
- facedetect_v2
- faster_rcnn_resnet101
- googlenet
- icnet
- inception_resnet_v1
- inception_resnet_v2
- inception_v1
- inception_v2
- inception_v3
- inception_v4
- lenet
- mobilenet
- mobilenet_ssd
- mtcnn_v1
- openpose
- pspnet
- resnet_101
- resnet_152
- resnet_50
- resnet50_ssd
- segnet
- srgan
- squeezenet
- srcnn
- ssd
- pspnet
- unet
- vdcr
- vgg16
- yolo_tiny
- yolo_v1
- yolo_v2_coco
- yolo_v2_voc
- yolo_v3 (yolo_v3_tiny included)
Images
- imagenet_mean - mean images for different image sizes
- imagenet_test_images - simple set of test images
- images - different image data sub-sets
Changes vs v2019.06
New models
- deeplab
- srcnn
- vdcr
Updated models
- denoiser - added test images
- srgan - added models and test images
- mobilnet - added a new new model v1_1.0_224
- resnet 50/101/152 - added optimized models
Other changes
- removed obsolete C headers with test image arrays
Helper tools
git_sparse_download.sh(bat) - helps to download only part of models.
MWEV2019.09.RC1
This is release 2019.09-RC1 of the Synopsys-caffe-models, a set of Caffe Deep Learning Models adapted for use with DesignWare EV6x Processors.
These models must be used together with Synopsys-Caffe v2019.09-RC1 and the MetaWare EV Development Toolkit v2019.09-RC1 from Synopsys.
Supported Models
- alexnet
- DAN
- DeepTesla
- denoiser
- densenet
- facedetect_v1
- facedetect_v2
- faster_rcnn_resnet101
- googlenet
- icnet
- inception_resnet_v1
- inception_resnet_v2
- inception_v1
- inception_v2
- inception_v3
- inception_v4
- lenet
- mobilenet
- mobilenet_ssd
- mtcnn_v1
- openpose
- pspnet
- resnet_101
- resnet_152
- resnet_50
- resnet50_ssd
- segnet
- srgan
- squeezenet
- ssd
- pspnet
- unet
- vgg16
- yolo_tiny
- yolo_v1
- yolo_v2_coco
- yolo_v2_voc
- yolo_v3 (yolo_v3_tiny included)
Images
- imagenet_mean - mean images for different image sizes
- imagenet_test_images - simple set of test images
- images - different image data sub-sets
Changes vs v2019.06
Updated models
- denoiser - added test images
- srgan - added models and test images
- mobilnet - added a new new model v1_1.0_224
- resnet 50/101/152 - added optimized models
Other changes
- removed obsolete C headers with test image arrays
Helper tools
git_sparse_download.sh(bat) - helps to download only part of models.
MWEV2019.06.1
This is release 2019.06-1 of the Synopsys-caffe-models, a set of Caffe Deep Learning Models adapted for use with DesignWare EV6x Processors.
These models must be used together with Synopsys-Caffe v2019.06 and the MetaWare EV Development Toolkit v2019.06-1 from Synopsys.
Supported Models
- alexnet
- DAN
- DeepTesla
- denoiser
- densenet
- facedetect_v1
- facedetect_v2
- faster_rcnn_resnet101
- googlenet
- icnet
- inception_resnet_v1
- inception_resnet_v2
- inception_v1
- inception_v2
- inception_v3
- inception_v4
- lenet
- mobilenet
- mobilenet_ssd
- mtcnn_v1
- openpose
- pspnet
- resnet_101_cnn
- resnet_152_cnn
- resnet_50
- resnet50_ssd
- segnet
- srgan
- squeezenet
- ssd
- pspnet
- unet
- vgg16
- yolo_tiny
- yolo_v1
- yolo_v2_coco
- yolo_v2_voc
- yolo_v3 (yolo_v3_tiny included)
Images
- imagenet_mean - mean images for different image sizes
- imagenet_test_images - simple set of test images
- images - different image data sub-sets
Changes vs v2019.06
Updated models
- srgan
Helper tools
git_sparse_download.sh(bat) - helps to download only part of models.
MWEV2019.06
This is release 2019.06 of the Synopsys-caffe-models, a set of Caffe Deep Learning Models adapted for use with DesignWare EV6x Processors.
These models must be used together with Synopsys-Caffe v2019.06 and the MetaWare EV Development Toolkit v2019.06 from Synopsys.
Supported Models
- alexnet
- DAN
- DeepTesla
- denoiser
- densenet
- facedetect_v1
- facedetect_v2
- faster_rcnn_resnet101
- googlenet
- icnet
- inception_resnet_v1
- inception_resnet_v2
- inception_v1
- inception_v2
- inception_v3
- inception_v4
- lenet
- mobilenet
- mobilenet_ssd
- mtcnn_v1
- openpose
- pspnet
- resnet_101_cnn
- resnet_152_cnn
- resnet_50
- resnet50_ssd
- segnet
- srgan
- squeezenet
- ssd
- pspnet
- unet
- vgg16
- yolo_tiny
- yolo_v1
- yolo_v2_coco
- yolo_v2_voc
- yolo_v3 (yolo_v3_tiny included)
Images
- imagenet_mean - mean images for different image sizes
- imagenet_test_images - simple set of test images
- images - different image data sub-sets
Changes vs v2019.03
Updated models
- alexnet
- facedetect_v1
- googlenet
- inception_v1
- inception_v4
- mtcnn_v1
Helper tools
git_sparse_download.sh(bat) - helps to download only part of models.
MWEV_O_2019_06_RC1
This is release 2019.06.RC1 of the Synopsys-caffe-models, a set of Caffe Deep Learning Models adapted for use with DesignWare EV6x Processors.
These models must be used together with Synopsys-Caffe v2019.06.RC1 and the MetaWare EV Development Toolkit v2019.06.RC1 from Synopsys.
Supported Models
- alexnet
- DAN
- DeepTesla
- denoiser
- densenet
- facedetect_v1
- facedetect_v2
- faster_rcnn_resnet101
- googlenet
- icnet
- inception_resnet_v1
- inception_resnet_v2
- inception_v1
- inception_v2
- inception_v3
- inception_v4
- lenet
- mobilenet
- mobilenet_ssd
- mtcnn_v1
- openpose
- pspnet
- resnet_101_cnn
- resnet_152_cnn
- resnet_50
- resnet50_ssd
- segnet
- srgan
- squeezenet
- ssd
- pspnet
- unet
- vgg16
- yolo_tiny
- yolo_v1
- yolo_v2_coco
- yolo_v2_voc
- yolo_v3 (yolo_v3_tiny included)
Images
- imagenet_mean - mean images for different image sizes
- imagenet_test_images - simple set of test images
- images - different image data sub-sets
Changes vs v2019.03
Updated models
- googlenet
- inception_v1
- inception_v4
- mtcnn_v1
Helper tools
git_sparse_download.sh(bat) - helps to download only part of models.
MWEV_O_2019_03_RC1
This is release 2019.03.RC1 of the Synopsys-caffe-models, a set of Caffe Deep Learning Models adapted for use with DesignWare EV6x Processors.
These models must be used together with Synopsys-Caffe v2019.03.RC1 and the MetaWare EV Development Toolkit v2019.03.RC1 from Synopsys.
Supported Models
- alexnet
- DAN
- DeepTesla
- denoiser
- densenet
- facedetect_v1
- facedetect_v2
- faster_rcnn_resnet101
- fcn
- googlenet
- icnet
- inception_resnet_v1
- inception_resnet_v2
- inception_v1
- inception_v2
- inception_v3
- inception_v4
- lenet
- mobilenet
- mobilenet_ssd
- mtcnn_v1
- openpose
- pspnet
- resnet_101_cnn
- resnet_152_cnn
- resnet_50
- resnet50_ssd
- segnet
- srgan
- squeezenet
- ssd
- pspnet
- unet
- vgg16
- yolo_tiny
- yolo_v1
- yolo_v2_coco
- yolo_v2_voc
- yolo_v3 (yolo_v3_tiny included)
Images
- imagenet_mean - mean images for different image sizes
- imagenet_test_images - simple set of test images
- images - different image data sub-sets
Changes vs v2018.12
New models
- DAN
- DeepTesla
- mtcnn_v1
- resnet50_ssd
- srgan
Updated models
- faster_rcnn_resnet101
- gogglenet
- icnet
- inception_resnet_v1
- inception_v3
- mobilenet_ssd. Update images
- openpose
- segnet
- unet
- yolo_v2
- yolo_v3
New image sets
- COCO2017
- VOC2007. Annotation
- detect_test
Helper tools
git_sparse_download.sh(bat) - helps to download only part of models.
MWEV_O_2019_03
This is release 2019.03 of the Synopsys-caffe-models, a set of Caffe Deep Learning Models adapted for use with DesignWare EV6x Processors.
These models must be used together with Synopsys-Caffe v2019.03 and the MetaWare EV Development Toolkit v2019.03 from Synopsys.
Supported Models
- alexnet
- DAN
- DeepTesla
- denoiser
- densenet
- facedetect_v1
- facedetect_v2
- faster_rcnn_resnet101
- fcn
- googlenet
- icnet
- inception_resnet_v1
- inception_resnet_v2
- inception_v1
- inception_v2
- inception_v3
- inception_v4
- lenet
- mobilenet
- mobilenet_ssd
- mtcnn_v1
- openpose
- pspnet
- resnet_101_cnn
- resnet_152_cnn
- resnet_50
- resnet50_ssd
- segnet
- srgan
- squeezenet
- ssd
- pspnet
- unet
- vgg16
- yolo_tiny
- yolo_v1
- yolo_v2_coco
- yolo_v2_voc
- yolo_v3 (yolo_v3_tiny included)
Images
- imagenet_mean - mean images for different image sizes
- imagenet_test_images - simple set of test images
- images - different image data sub-sets
Changes vs v2018.12
New models
- DAN
- DeepTesla
- mtcnn_v1
- resnet50_ssd
- srgan
Updated models
- faster_rcnn_resnet101
- gogglenet
- icnet
- inception_resnet_v1
- inception_v3
- mobilenet_ssd. Update images
- openpose
- segnet
- unet
- yolo_v2
- yolo_v3
New image sets
- COCO2017
- VOC2007. Annotation
- detect_test
Helper tools
git_sparse_download.sh(bat) - helps to download only part of models.
MWEV_O_2018_12
This is release 2018.12 of the Synopsys-caffe-models, a set of Caffe Deep Learning Models adapted for use with DesignWare EV6x Processors.
These models must be used together with Synopsys-Caffe v2018.12 and the MetaWare EV Development Toolkit v2018.12 from Synopsys.
Supported Models
- alexnet
- denoiser
- densenet
- facedetect_v1
- facedetect_v2
- faster_rcnn_resnet101
- fcn
- googlenet
- icnet
- inception_resnet_v1
- inception_resnet_v2
- inception_v1
- inception_v2
- inception_v3
- inception_v4
- lenet
- mobilenet
- mobilenet_ssd
- openpose
- pspnet
- resnet_101_cnn
- resnet_152_cnn
- resnet_50
- segnet
- SRGAN
- squeezenet
- ssd
- pspnet
- unet
- vgg16
- yolo_tiny
- yolo_v1
- yolo_v2_coco
- yolo_v2_voc
- yolo_v3 (yolo_v3_tiny included)
Images
- imagenet_mean - mean images for different image sizes
- imagenet_test_images - simple set of test images
- images - different image data sub-sets
Changes vs v2018.09
New models
- fcn
- openpose
- segnet
- SRGAN
- pspnet
- unet
- yolo_v3 (yolo_v3_tiny included)
Improved parts
- improved compressed, pruned and random-pruned models
- new ssd/VGG* models
- added images/COCO2014
Helper tools
git_sparse_download.sh(bat) - helps to download only part of models.
MWEV_O_2018_12_RC2
This is release 2018.12.RC2 of the Synopsys-caffe-models, a set of Caffe Deep Learning Models adapted for use with DesignWare EV6x Processors.
These models must be used together with Synopsys-Caffe v2018.12.RC2 and the MetaWare EV Development Toolkit v2018.12.RC2 from Synopsys.
Supported Models
- alexnet
- denoiser
- densenet
- facedetect_v1
- facedetect_v2
- faster_rcnn_resnet101
- fcn
- googlenet
- icnet
- inception_resnet_v1
- inception_resnet_v2
- inception_v1
- inception_v2
- inception_v3
- inception_v4
- lenet
- mobilenet
- mobilenet_ssd
- openpose
- pspnet
- resnet_101_cnn
- resnet_152_cnn
- resnet_50
- segnet
- SRGAN
- squeezenet
- ssd
- pspnet
- unet
- vgg16
- yolo_tiny
- yolo_v1
- yolo_v2_coco
- yolo_v2_voc
- yolo_v3 (yolo_v3_tiny included)
Images
- imagenet_mean - mean images for different image sizes
- imagenet_test_images - simple set of test images
- images - different image data sub-sets
Changes vs v2018.09
New models
- fcn
- openpose
- segnet
- SRGAN
- pspnet
- unet
- yolo_v3 (yolo_v3_tiny included)
Improved parts
- improved compressed, pruned and random-pruned models
- new ssd/VGG* models
- added images/COCO2014
Helper tools
git_sparse_download.sh(bat) - helps to download only part of models.