Skip to content

Releases: foss-for-synopsys-dwc-arc-processors/synopsys-caffe-models

MWEV2019.09.RC2

18 Oct 10:49

Choose a tag to compare

This is release 2019.09-RC2 of the Synopsys-caffe-models, a set of Caffe Deep Learning Models adapted for use with DesignWare EV6x Processors.

These models must be used together with Synopsys-Caffe v2019.09-RC2 and the MetaWare EV Development Toolkit v2019.09-RC2 from Synopsys.

Supported Models

  • alexnet
  • DAN
  • DeepTesla
  • denoiser
  • densenet
  • deeplab
  • facedetect_v1
  • facedetect_v2
  • faster_rcnn_resnet101
  • googlenet
  • icnet
  • inception_resnet_v1
  • inception_resnet_v2
  • inception_v1
  • inception_v2
  • inception_v3
  • inception_v4
  • lenet
  • mobilenet
  • mobilenet_ssd
  • mtcnn_v1
  • openpose
  • pspnet
  • resnet_101
  • resnet_152
  • resnet_50
  • resnet50_ssd
  • segnet
  • srgan
  • squeezenet
  • srcnn
  • ssd
  • pspnet
  • unet
  • vdcr
  • vgg16
  • yolo_tiny
  • yolo_v1
  • yolo_v2_coco
  • yolo_v2_voc
  • yolo_v3 (yolo_v3_tiny included)

Images

  • imagenet_mean - mean images for different image sizes
  • imagenet_test_images - simple set of test images
  • images - different image data sub-sets

Changes vs v2019.06

New models

  • deeplab
  • srcnn
  • vdcr

Updated models

  • denoiser - added test images
  • srgan - added models and test images
  • mobilnet - added a new new model v1_1.0_224
  • resnet 50/101/152 - added optimized models

Other changes

  • removed obsolete C headers with test image arrays

Helper tools

git_sparse_download.sh(bat) - helps to download only part of models.

MWEV2019.09

07 Nov 13:14

Choose a tag to compare

This is release 2019.09 of the Synopsys-caffe-models, a set of Caffe Deep Learning Models adapted for use with DesignWare EV6x Processors.

These models must be used together with Synopsys-Caffe v2019.09 and the MetaWare EV Development Toolkit v2019.09 from Synopsys.

Supported Models

  • alexnet
  • DAN
  • DeepTesla
  • denoiser
  • densenet
  • deeplab
  • facedetect_v1
  • facedetect_v2
  • faster_rcnn_resnet101
  • googlenet
  • icnet
  • inception_resnet_v1
  • inception_resnet_v2
  • inception_v1
  • inception_v2
  • inception_v3
  • inception_v4
  • lenet
  • mobilenet
  • mobilenet_ssd
  • mtcnn_v1
  • openpose
  • pspnet
  • resnet_101
  • resnet_152
  • resnet_50
  • resnet50_ssd
  • segnet
  • srgan
  • squeezenet
  • srcnn
  • ssd
  • pspnet
  • unet
  • vdcr
  • vgg16
  • yolo_tiny
  • yolo_v1
  • yolo_v2_coco
  • yolo_v2_voc
  • yolo_v3 (yolo_v3_tiny included)

Images

  • imagenet_mean - mean images for different image sizes
  • imagenet_test_images - simple set of test images
  • images - different image data sub-sets

Changes vs v2019.06

New models

  • deeplab
  • srcnn
  • vdcr

Updated models

  • denoiser - added test images
  • srgan - added models and test images
  • mobilnet - added a new new model v1_1.0_224
  • resnet 50/101/152 - added optimized models

Other changes

  • removed obsolete C headers with test image arrays

Helper tools

git_sparse_download.sh(bat) - helps to download only part of models.

MWEV2019.09.RC1

19 Sep 13:45

Choose a tag to compare

This is release 2019.09-RC1 of the Synopsys-caffe-models, a set of Caffe Deep Learning Models adapted for use with DesignWare EV6x Processors.

These models must be used together with Synopsys-Caffe v2019.09-RC1 and the MetaWare EV Development Toolkit v2019.09-RC1 from Synopsys.

Supported Models

  • alexnet
  • DAN
  • DeepTesla
  • denoiser
  • densenet
  • facedetect_v1
  • facedetect_v2
  • faster_rcnn_resnet101
  • googlenet
  • icnet
  • inception_resnet_v1
  • inception_resnet_v2
  • inception_v1
  • inception_v2
  • inception_v3
  • inception_v4
  • lenet
  • mobilenet
  • mobilenet_ssd
  • mtcnn_v1
  • openpose
  • pspnet
  • resnet_101
  • resnet_152
  • resnet_50
  • resnet50_ssd
  • segnet
  • srgan
  • squeezenet
  • ssd
  • pspnet
  • unet
  • vgg16
  • yolo_tiny
  • yolo_v1
  • yolo_v2_coco
  • yolo_v2_voc
  • yolo_v3 (yolo_v3_tiny included)

Images

  • imagenet_mean - mean images for different image sizes
  • imagenet_test_images - simple set of test images
  • images - different image data sub-sets

Changes vs v2019.06

Updated models

  • denoiser - added test images
  • srgan - added models and test images
  • mobilnet - added a new new model v1_1.0_224
  • resnet 50/101/152 - added optimized models

Other changes

  • removed obsolete C headers with test image arrays

Helper tools

git_sparse_download.sh(bat) - helps to download only part of models.

MWEV2019.06.1

07 Aug 14:01

Choose a tag to compare

This is release 2019.06-1 of the Synopsys-caffe-models, a set of Caffe Deep Learning Models adapted for use with DesignWare EV6x Processors.

These models must be used together with Synopsys-Caffe v2019.06 and the MetaWare EV Development Toolkit v2019.06-1 from Synopsys.

Supported Models

  • alexnet
  • DAN
  • DeepTesla
  • denoiser
  • densenet
  • facedetect_v1
  • facedetect_v2
  • faster_rcnn_resnet101
  • googlenet
  • icnet
  • inception_resnet_v1
  • inception_resnet_v2
  • inception_v1
  • inception_v2
  • inception_v3
  • inception_v4
  • lenet
  • mobilenet
  • mobilenet_ssd
  • mtcnn_v1
  • openpose
  • pspnet
  • resnet_101_cnn
  • resnet_152_cnn
  • resnet_50
  • resnet50_ssd
  • segnet
  • srgan
  • squeezenet
  • ssd
  • pspnet
  • unet
  • vgg16
  • yolo_tiny
  • yolo_v1
  • yolo_v2_coco
  • yolo_v2_voc
  • yolo_v3 (yolo_v3_tiny included)

Images

  • imagenet_mean - mean images for different image sizes
  • imagenet_test_images - simple set of test images
  • images - different image data sub-sets

Changes vs v2019.06

Updated models

  • srgan

Helper tools

git_sparse_download.sh(bat) - helps to download only part of models.

MWEV2019.06

16 Jul 10:54

Choose a tag to compare

This is release 2019.06 of the Synopsys-caffe-models, a set of Caffe Deep Learning Models adapted for use with DesignWare EV6x Processors.

These models must be used together with Synopsys-Caffe v2019.06 and the MetaWare EV Development Toolkit v2019.06 from Synopsys.

Supported Models

  • alexnet
  • DAN
  • DeepTesla
  • denoiser
  • densenet
  • facedetect_v1
  • facedetect_v2
  • faster_rcnn_resnet101
  • googlenet
  • icnet
  • inception_resnet_v1
  • inception_resnet_v2
  • inception_v1
  • inception_v2
  • inception_v3
  • inception_v4
  • lenet
  • mobilenet
  • mobilenet_ssd
  • mtcnn_v1
  • openpose
  • pspnet
  • resnet_101_cnn
  • resnet_152_cnn
  • resnet_50
  • resnet50_ssd
  • segnet
  • srgan
  • squeezenet
  • ssd
  • pspnet
  • unet
  • vgg16
  • yolo_tiny
  • yolo_v1
  • yolo_v2_coco
  • yolo_v2_voc
  • yolo_v3 (yolo_v3_tiny included)

Images

  • imagenet_mean - mean images for different image sizes
  • imagenet_test_images - simple set of test images
  • images - different image data sub-sets

Changes vs v2019.03

Updated models

  • alexnet
  • facedetect_v1
  • googlenet
  • inception_v1
  • inception_v4
  • mtcnn_v1

Helper tools

git_sparse_download.sh(bat) - helps to download only part of models.

MWEV_O_2019_06_RC1

18 Jun 17:06

Choose a tag to compare

This is release 2019.06.RC1 of the Synopsys-caffe-models, a set of Caffe Deep Learning Models adapted for use with DesignWare EV6x Processors.

These models must be used together with Synopsys-Caffe v2019.06.RC1 and the MetaWare EV Development Toolkit v2019.06.RC1 from Synopsys.

Supported Models

  • alexnet
  • DAN
  • DeepTesla
  • denoiser
  • densenet
  • facedetect_v1
  • facedetect_v2
  • faster_rcnn_resnet101
  • googlenet
  • icnet
  • inception_resnet_v1
  • inception_resnet_v2
  • inception_v1
  • inception_v2
  • inception_v3
  • inception_v4
  • lenet
  • mobilenet
  • mobilenet_ssd
  • mtcnn_v1
  • openpose
  • pspnet
  • resnet_101_cnn
  • resnet_152_cnn
  • resnet_50
  • resnet50_ssd
  • segnet
  • srgan
  • squeezenet
  • ssd
  • pspnet
  • unet
  • vgg16
  • yolo_tiny
  • yolo_v1
  • yolo_v2_coco
  • yolo_v2_voc
  • yolo_v3 (yolo_v3_tiny included)

Images

  • imagenet_mean - mean images for different image sizes
  • imagenet_test_images - simple set of test images
  • images - different image data sub-sets

Changes vs v2019.03

Updated models

  • googlenet
  • inception_v1
  • inception_v4
  • mtcnn_v1

Helper tools

git_sparse_download.sh(bat) - helps to download only part of models.

MWEV_O_2019_03_RC1

22 Apr 17:04

Choose a tag to compare

This is release 2019.03.RC1 of the Synopsys-caffe-models, a set of Caffe Deep Learning Models adapted for use with DesignWare EV6x Processors.

These models must be used together with Synopsys-Caffe v2019.03.RC1 and the MetaWare EV Development Toolkit v2019.03.RC1 from Synopsys.

Supported Models

  • alexnet
  • DAN
  • DeepTesla
  • denoiser
  • densenet
  • facedetect_v1
  • facedetect_v2
  • faster_rcnn_resnet101
  • fcn
  • googlenet
  • icnet
  • inception_resnet_v1
  • inception_resnet_v2
  • inception_v1
  • inception_v2
  • inception_v3
  • inception_v4
  • lenet
  • mobilenet
  • mobilenet_ssd
  • mtcnn_v1
  • openpose
  • pspnet
  • resnet_101_cnn
  • resnet_152_cnn
  • resnet_50
  • resnet50_ssd
  • segnet
  • srgan
  • squeezenet
  • ssd
  • pspnet
  • unet
  • vgg16
  • yolo_tiny
  • yolo_v1
  • yolo_v2_coco
  • yolo_v2_voc
  • yolo_v3 (yolo_v3_tiny included)

Images

  • imagenet_mean - mean images for different image sizes
  • imagenet_test_images - simple set of test images
  • images - different image data sub-sets

Changes vs v2018.12

New models

  • DAN
  • DeepTesla
  • mtcnn_v1
  • resnet50_ssd
  • srgan

Updated models

  • faster_rcnn_resnet101
  • gogglenet
  • icnet
  • inception_resnet_v1
  • inception_v3
  • mobilenet_ssd. Update images
  • openpose
  • segnet
  • unet
  • yolo_v2
  • yolo_v3

New image sets

  • COCO2017
  • VOC2007. Annotation
  • detect_test

Helper tools

git_sparse_download.sh(bat) - helps to download only part of models.

MWEV_O_2019_03

20 May 10:26

Choose a tag to compare

This is release 2019.03 of the Synopsys-caffe-models, a set of Caffe Deep Learning Models adapted for use with DesignWare EV6x Processors.

These models must be used together with Synopsys-Caffe v2019.03 and the MetaWare EV Development Toolkit v2019.03 from Synopsys.

Supported Models

  • alexnet
  • DAN
  • DeepTesla
  • denoiser
  • densenet
  • facedetect_v1
  • facedetect_v2
  • faster_rcnn_resnet101
  • fcn
  • googlenet
  • icnet
  • inception_resnet_v1
  • inception_resnet_v2
  • inception_v1
  • inception_v2
  • inception_v3
  • inception_v4
  • lenet
  • mobilenet
  • mobilenet_ssd
  • mtcnn_v1
  • openpose
  • pspnet
  • resnet_101_cnn
  • resnet_152_cnn
  • resnet_50
  • resnet50_ssd
  • segnet
  • srgan
  • squeezenet
  • ssd
  • pspnet
  • unet
  • vgg16
  • yolo_tiny
  • yolo_v1
  • yolo_v2_coco
  • yolo_v2_voc
  • yolo_v3 (yolo_v3_tiny included)

Images

  • imagenet_mean - mean images for different image sizes
  • imagenet_test_images - simple set of test images
  • images - different image data sub-sets

Changes vs v2018.12

New models

  • DAN
  • DeepTesla
  • mtcnn_v1
  • resnet50_ssd
  • srgan

Updated models

  • faster_rcnn_resnet101
  • gogglenet
  • icnet
  • inception_resnet_v1
  • inception_v3
  • mobilenet_ssd. Update images
  • openpose
  • segnet
  • unet
  • yolo_v2
  • yolo_v3

New image sets

  • COCO2017
  • VOC2007. Annotation
  • detect_test

Helper tools

git_sparse_download.sh(bat) - helps to download only part of models.

MWEV_O_2018_12

08 Feb 16:19
4ac82eb

Choose a tag to compare

This is release 2018.12 of the Synopsys-caffe-models, a set of Caffe Deep Learning Models adapted for use with DesignWare EV6x Processors.

These models must be used together with Synopsys-Caffe v2018.12 and the MetaWare EV Development Toolkit v2018.12 from Synopsys.

Supported Models

  • alexnet
  • denoiser
  • densenet
  • facedetect_v1
  • facedetect_v2
  • faster_rcnn_resnet101
  • fcn
  • googlenet
  • icnet
  • inception_resnet_v1
  • inception_resnet_v2
  • inception_v1
  • inception_v2
  • inception_v3
  • inception_v4
  • lenet
  • mobilenet
  • mobilenet_ssd
  • openpose
  • pspnet
  • resnet_101_cnn
  • resnet_152_cnn
  • resnet_50
  • segnet
  • SRGAN
  • squeezenet
  • ssd
  • pspnet
  • unet
  • vgg16
  • yolo_tiny
  • yolo_v1
  • yolo_v2_coco
  • yolo_v2_voc
  • yolo_v3 (yolo_v3_tiny included)

Images

  • imagenet_mean - mean images for different image sizes
  • imagenet_test_images - simple set of test images
  • images - different image data sub-sets

Changes vs v2018.09

New models

  • fcn
  • openpose
  • segnet
  • SRGAN
  • pspnet
  • unet
  • yolo_v3 (yolo_v3_tiny included)

Improved parts

  • improved compressed, pruned and random-pruned models
  • new ssd/VGG* models
  • added images/COCO2014

Helper tools

git_sparse_download.sh(bat) - helps to download only part of models.

MWEV_O_2018_12_RC2

17 Jan 11:56

Choose a tag to compare

This is release 2018.12.RC2 of the Synopsys-caffe-models, a set of Caffe Deep Learning Models adapted for use with DesignWare EV6x Processors.

These models must be used together with Synopsys-Caffe v2018.12.RC2 and the MetaWare EV Development Toolkit v2018.12.RC2 from Synopsys.

Supported Models

  • alexnet
  • denoiser
  • densenet
  • facedetect_v1
  • facedetect_v2
  • faster_rcnn_resnet101
  • fcn
  • googlenet
  • icnet
  • inception_resnet_v1
  • inception_resnet_v2
  • inception_v1
  • inception_v2
  • inception_v3
  • inception_v4
  • lenet
  • mobilenet
  • mobilenet_ssd
  • openpose
  • pspnet
  • resnet_101_cnn
  • resnet_152_cnn
  • resnet_50
  • segnet
  • SRGAN
  • squeezenet
  • ssd
  • pspnet
  • unet
  • vgg16
  • yolo_tiny
  • yolo_v1
  • yolo_v2_coco
  • yolo_v2_voc
  • yolo_v3 (yolo_v3_tiny included)

Images

  • imagenet_mean - mean images for different image sizes
  • imagenet_test_images - simple set of test images
  • images - different image data sub-sets

Changes vs v2018.09

New models

  • fcn
  • openpose
  • segnet
  • SRGAN
  • pspnet
  • unet
  • yolo_v3 (yolo_v3_tiny included)

Improved parts

  • improved compressed, pruned and random-pruned models
  • new ssd/VGG* models
  • added images/COCO2014

Helper tools

git_sparse_download.sh(bat) - helps to download only part of models.