|
| 1 | +/* |
| 2 | +The code below is inserted in caffe's conv_layer.cpp to change rounding behavior |
| 3 | +for a convolution. |
| 4 | +
|
| 5 | +In EV hardware an accumulated value in a convolution or innerproduct is reduced |
| 6 | +to fit into the destination blob size (e.g. 8 bits). |
| 7 | +
|
| 8 | +To implement the reduction, the accumulator is effectively multiplied by a |
| 9 | +floating-point number with a 15-bit mantissa. Integer multiplication and shift |
| 10 | +implement this multiplication, as the hardware does not have floating point: |
| 11 | +
|
| 12 | +- A s32 x s16 multiplication is done, producing an s48-bit result |
| 13 | +- The s48 result is shifted right and rounded symmetrically (also called round-to-even). |
| 14 | +
|
| 15 | +Next: |
| 16 | +- If there is a zero point, it is added, |
| 17 | + and the result saturated in the range [0,2*N-1] for an N-bit blob |
| 18 | +- otherwise, relu bounds, if any, are applied before storing into the destination blob. |
| 19 | +
|
| 20 | +The computation of the 15-bit mantissa is derived from a floating-point number F. |
| 21 | +F is the scale of the output blob divided by the scale of the accumulator. |
| 22 | +Note: the EV notion of scale is the inverse of Tensorflow; i.e. the floating |
| 23 | +point number represented by a pixel is F = (pixel - zero_point) / scale . |
| 24 | +Thus in Synopsys caffe, |
| 25 | +
|
| 26 | + F = input_scale * (double)weight_scale / output_scale; |
| 27 | + ^^^ compute accumulator scale ^^^ |
| 28 | +
|
| 29 | +The function normalize_fractional below takes the floating point number and computes |
| 30 | +the 15-bit mantiss and its accompanying shift, taking care to produce a number |
| 31 | +<= 32767 and a shift >= 1, in case hardware doesn't support a shift of 0. |
| 32 | +In addition if the computed integer is even it's shifted right to remove 0s |
| 33 | +solely for representational efficiency. |
| 34 | +
|
| 35 | +So, in summary: |
| 36 | +- compute a floating-point number that reduces the accumulator to the desired |
| 37 | + output scale |
| 38 | +- Convert the floating-point number to a 15-bit integer and 6-bit shift |
| 39 | +- Multiply the accumulator by the integer and shift with convergent rounding |
| 40 | +
|
| 41 | +The macro |
| 42 | + define LL_ROUND(X,shift) / (unbiased) round-to-even / \ |
| 43 | + ((X + ((X >> (shift)) & 1) + (LLSHL1(shift-1)-1)) >> (shift)) |
| 44 | +implements round-to-even -- i.e., unbiased (convergent) rounding. |
| 45 | +
|
| 46 | +The environment variable |
| 47 | + set CAFFE_QUANTIZED_ROUND=EV |
| 48 | +engages this alternative rounding. |
| 49 | +
|
| 50 | + */ |
| 51 | + |
| 52 | + |
| 53 | + |
| 54 | +typedef double Scale_type; |
| 55 | +#include <stdlib.h> |
| 56 | +#include <cmath> |
| 57 | + |
| 58 | +static void normalize_fractional(Scale_type F, unsigned &mpy, unsigned &shift) { |
| 59 | + // Adapted from python code in evgencnn. |
| 60 | + int frac_bits = 16; |
| 61 | + Scale_type hi = 0.5; |
| 62 | + int nudge_power = frac_bits; |
| 63 | + // Due to symmetric rounding, >= 32767.5 rounds to 32768, which is invalid |
| 64 | + // as a 16-bit signed number. |
| 65 | + // So the high value should be shifted by 32767.49/32768 so rounding |
| 66 | + // will produce at most 32767. Nudge avoids that. |
| 67 | + unsigned two_to_nudge = 1<<nudge_power; |
| 68 | + hi *= (Scale_type(two_to_nudge)-0.51)/two_to_nudge; |
| 69 | + Scale_type lo = hi/2; |
| 70 | + int frac_adjust_shift = 0; |
| 71 | + F = fabs(F); |
| 72 | + Scale_type oldF = F; |
| 73 | + while (F >= hi) { |
| 74 | + frac_adjust_shift -= 1; F /= 2; |
| 75 | + } |
| 76 | + while (F < lo) { |
| 77 | + frac_adjust_shift += 1; F *= 2; |
| 78 | + } |
| 79 | + |
| 80 | + int max_shift = 63; |
| 81 | + while (frac_bits + frac_adjust_shift > max_shift) { |
| 82 | + frac_adjust_shift--; |
| 83 | + } |
| 84 | + int total_shift = frac_bits + frac_adjust_shift; |
| 85 | + 0 && printf("F=%f fas=%d\n",F,frac_adjust_shift); |
| 86 | + 0 && printf("newF=%f\n",oldF*(1<<total_shift)); |
| 87 | + mpy = std::round(oldF * (1<<frac_bits) * (1<<frac_adjust_shift)); |
| 88 | + // Now if mpy is even, divide by 2 and reduce the shift. |
| 89 | + shift = frac_bits + frac_adjust_shift; |
| 90 | + const int MINSHIFT = 1; // Not knowing whether HW likes shift of 0, we make min 1. |
| 91 | + while ((mpy & 1) == 0 && shift > MINSHIFT) { |
| 92 | + // The end result is an odd fractional. |
| 93 | + mpy >>= 1; shift -= 1; |
| 94 | + } |
| 95 | + } |
| 96 | + |
| 97 | +template <typename Dtype> |
| 98 | +void caffe_cpu_scale_better_round(const std::string &name, const int n, const Scale_type scale, Dtype* x){ |
| 99 | + // refer to https://github.com/google/gemmlowp/blob/master/doc/quantization.md#implementation-of-quantized-matrix-multiplication |
| 100 | + Scale_type mul = scale; // multiplier in normalized interval [0.5, 1.0) |
| 101 | + enum Rmode { R_double_round, R_single_round, R_ev_round }; |
| 102 | + auto tell = []() { |
| 103 | + const char* QR = getenv("CAFFE_QUANTIZED_ROUND"); |
| 104 | + if (QR == 0) return R_double_round; |
| 105 | + return |
| 106 | + strcmp(QR,"SR")==0?R_single_round: |
| 107 | + strcmp(QR,"EV")==0?R_ev_round: |
| 108 | + (printf("Unrecognized rounding mode %s\n",QR), R_double_round); |
| 109 | + }; |
| 110 | + static const Rmode QR = tell(); |
| 111 | + switch(QR) { |
| 112 | + case R_double_round: case R_single_round: { |
| 113 | + if (QR != R_double_round) |
| 114 | + printf(" Layer %s: round mode %d by %18.15f\n",name.c_str(),QR,scale); |
| 115 | + bool SR = QR == R_single_round; |
| 116 | + int shift = 0; |
| 117 | + while (mul < 0.5) { |
| 118 | + mul *= 2.0; |
| 119 | + ++shift; |
| 120 | + } |
| 121 | + shift = (1<<shift); |
| 122 | + for (int i = 0; i < n; ++i) { |
| 123 | + x[i] = SR ? x[i] * mul : std::round(x[i] * mul); |
| 124 | + x[i] = std::round(x[i]/shift); |
| 125 | + } |
| 126 | + } break; |
| 127 | + case R_ev_round: { |
| 128 | + #define LLSHL1(x) (1LL<<(x)) |
| 129 | + #define LL_ROUND(X,shift) /* (unbiased) round-to-even */ \ |
| 130 | + ((X + ((X >> (shift)) & 1) + (LLSHL1(shift-1)-1)) >> (shift)) |
| 131 | + unsigned mpy,shift; |
| 132 | + // Produces 15-bit mantissa and an exponent. The mantissa is |
| 133 | + // thus less precise than that of a 32-bit floating-point number. |
| 134 | + normalize_fractional(scale,mpy,shift); |
| 135 | + printf(" Layer %s: round mode %d by %18.15f = mpy %d shift %d\n", |
| 136 | + name.c_str(),QR,scale,mpy,shift); |
| 137 | + typedef signed long long SLL; |
| 138 | + for (int i = 0; i < n; ++i) { |
| 139 | + SLL acc = SLL(x[i]); // Assumed to be an integer already. |
| 140 | + acc *= mpy; |
| 141 | + x[i] = LL_ROUND(acc,shift); |
| 142 | + } |
| 143 | + } break; |
| 144 | + } |
| 145 | + } |
| 146 | + |
| 147 | +//#define caffe_cpu_scale_double_round(A,B,C) \ |
| 148 | +// caffe_cpu_scale_better_round(this->layer_param_.name(),A,B,C) |
| 149 | + |
| 150 | +template <typename Dtype> |
| 151 | +void Multiply_better( |
| 152 | + const int n, Dtype* x, const int mul, |
| 153 | + const int shift, const int round_mode, |
| 154 | + const std::string &name, const Scale_type scale) |
| 155 | + { |
| 156 | + enum Rmode { R_double_round, R_ev_round }; |
| 157 | + auto tell = []() { |
| 158 | + const char* QR = getenv("CAFFE_QUANTIZED_ROUND"); |
| 159 | + if (QR == 0) return R_double_round; |
| 160 | + return |
| 161 | + strcmp(QR,"EV")==0?R_ev_round: |
| 162 | + (printf("Unrecognized rounding mode %s\n",QR), R_double_round); |
| 163 | + }; |
| 164 | + static const Rmode QR = tell(); |
| 165 | + static bool show_data_bool = getenv("CAFFE_SHOW_DATA") != 0; |
| 166 | + auto show_data = [&](const char *when) { |
| 167 | + printf("Data %s\n",when); |
| 168 | + for (int i = 0; i < n; i++) { |
| 169 | + printf("%4d = %f\n",i,x[i]); |
| 170 | + } |
| 171 | + return 0; |
| 172 | + }; |
| 173 | + switch(QR) { |
| 174 | + case R_double_round: { |
| 175 | + MultiplyByQuantizedMultiplierVR(n, x, mul, shift, round_mode); |
| 176 | + } break; |
| 177 | + case R_ev_round: { |
| 178 | + #define LLSHL1(x) (1LL<<(x)) |
| 179 | + #define LL_ROUND(X,shift) /* (unbiased) round-to-even */ \ |
| 180 | + ((X + ((X >> (shift)) & 1) + (LLSHL1(shift-1)-1)) >> (shift)) |
| 181 | + unsigned mpy,shift; |
| 182 | + // Produces 15-bit mantissa and an exponent. The mantissa is |
| 183 | + // thus less precise than that of a 32-bit floating-point number. |
| 184 | + normalize_fractional(scale,mpy,shift); |
| 185 | + printf(" Layer %s: round mode %d by %18.15f = mpy %d shift %d\n", |
| 186 | + name.c_str(),QR,scale,mpy,shift); |
| 187 | + typedef signed long long SLL; |
| 188 | + if (show_data_bool) show_data("before scaling {"); |
| 189 | + for (int i = 0; i < n; ++i) { |
| 190 | + SLL acc = SLL(x[i]); // Assumed to be an integer already. |
| 191 | + acc *= mpy; |
| 192 | + x[i] = double(LL_ROUND(acc,shift)); |
| 193 | + } |
| 194 | + if (show_data_bool) show_data("after scaling }"); |
| 195 | + } break; |
| 196 | + } |
| 197 | + } |
| 198 | + |
| 199 | +#define MultiplyByQuantizedMultiplierVR(A,B,C,D,E) \ |
| 200 | + Multiply_better(A,B,C,D,E,this->layer_param_.name(), out_scal) |
0 commit comments