|
| 1 | +import caffe |
| 2 | +import numpy as np |
| 3 | + |
| 4 | + |
| 5 | +class TensorSlice(caffe.Layer): |
| 6 | + """ |
| 7 | + Get a tensor's slicing: realize the function of the tf.strided_slice(). |
| 8 | +
|
| 9 | + TO OPTIMIZE: For simplification, assume all the input tensors are 4 dimensions now. |
| 10 | + """ |
| 11 | + |
| 12 | + def setup(self, bottom, top): |
| 13 | + # check number of inputs and outputs |
| 14 | + if len(bottom) != 1: |
| 15 | + raise Exception("Only input one Tensor at a time!") |
| 16 | + if len(top) != 1: |
| 17 | + raise Exception("Only output one Tensor at a time!") |
| 18 | + |
| 19 | + params = eval(self.param_str) |
| 20 | + self.begin = np.array(params["begins"]) |
| 21 | + self.end = np.array(params["ends"]) |
| 22 | + if params["strides"] != None: |
| 23 | + self.strides = np.array(params["strides"]) |
| 24 | + else: |
| 25 | + self.strides = np.array([1, 1, 1, 1]) |
| 26 | + |
| 27 | + if params["beginmask"] != None: |
| 28 | + self.beginmask = int(params["beginmask"]) |
| 29 | + else: |
| 30 | + self.beginmask = None |
| 31 | + if params["endmask"] != None: |
| 32 | + self.endmask = int(params["endmask"]) |
| 33 | + else: |
| 34 | + self.endmask = None |
| 35 | + |
| 36 | + # Handles the condition where the "ends" is assigned (0, 0, 0, 0) meaning the end of the input Tensor |
| 37 | + if ((self.end==0).all() and (self.strides>0).all()): |
| 38 | + self.end = bottom[0].shape |
| 39 | + |
| 40 | + # According to the tf.strided_slice(): |
| 41 | + # If the ith bit of beginmask is set, begin[i] is ignored and the fullest possible range in that dimension is used instead; |
| 42 | + # The endmask works analogously, except with the end range. |
| 43 | + if self.beginmask != None: |
| 44 | + self.begin[self.beginmask] = 0 |
| 45 | + if self.endmask != None: |
| 46 | + self.end[self.endmask] = bottom[0].shape[self.endmask] |
| 47 | + |
| 48 | + # other parameters... |
| 49 | + |
| 50 | + |
| 51 | + def reshape(self, bottom, top): |
| 52 | + # check input dimensions |
| 53 | + if bottom[0].count == 0: |
| 54 | + raise Exception("Input must not be empty!") |
| 55 | + |
| 56 | + #top[0].reshape(*bottom[0].data.shape) |
| 57 | + #dim = len(self.begin) |
| 58 | + num = [0, 0, 0, 0] |
| 59 | + for i in range(4): |
| 60 | + if self.strides[i]==0: |
| 61 | + raise Exception("Strides should never equal to 0!") |
| 62 | + else: |
| 63 | + num[i] = (abs(self.end[i]-self.begin[i])/abs(self.strides[i])) |
| 64 | + top[0].reshape(num[0], num[1], num[2], num[3]) |
| 65 | + |
| 66 | + |
| 67 | + def forward(self, bottom, top): |
| 68 | + #pass |
| 69 | + #top[0].data[...] = bottom[0].data[:] |
| 70 | + top[0].data[...] = np.zeros(top[0].shape) |
| 71 | + for i in range(len(self.begin)): |
| 72 | + top[0].data[...] = bottom[0].data[self.begin[0]:self.end[0]:self.strides[0], self.begin[1]:self.end[1]:self.strides[1], self.begin[2]:self.end[2]:self.strides[2], self.begin[3]:self.end[3]:self.strides[3]] |
| 73 | + |
| 74 | + |
| 75 | + def backward(self, top, propagate_down, bottom): |
| 76 | + for i in range(len(propagate_down)): |
| 77 | + if not propagate_down[i]: |
| 78 | + continue |
| 79 | + bottom[i].diff[...] = top[i].diff[:] |
| 80 | + |
0 commit comments