|
| 1 | +/** |
| 2 | + * ----------------------------------------------------------------------------- |
| 3 | + * Project: Fossil Logic |
| 4 | + * |
| 5 | + * This file is part of the Fossil Logic project, which aims to develop |
| 6 | + * high-performance, cross-platform applications and libraries. The code |
| 7 | + * contained herein is licensed under the Apache License, Version 2.0 (the "License"); |
| 8 | + * you may not use this file except in compliance with the License. You may obtain |
| 9 | + * a copy of the License at: |
| 10 | + * |
| 11 | + * http://www.apache.org/licenses/LICENSE-2.0 |
| 12 | + * |
| 13 | + * Unless required by applicable law or agreed to in writing, software |
| 14 | + * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT |
| 15 | + * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the |
| 16 | + * License for the specific language governing permissions and limitations |
| 17 | + * under the License. |
| 18 | + * |
| 19 | + * Author: Michael Gene Brockus (Dreamer) |
| 20 | + * Date: 04/05/2014 |
| 21 | + * |
| 22 | + * Copyright (C) 2014-2025 Fossil Logic. All rights reserved. |
| 23 | + * ----------------------------------------------------------------------------- |
| 24 | + */ |
| 25 | +#include "fossil/cryptic/cipher.h" |
| 26 | +#include <stdint.h> |
| 27 | +#include <string.h> |
| 28 | + |
| 29 | +// =========================================================== |
| 30 | +// Advanced XOR Cipher (with key schedule) |
| 31 | +// =========================================================== |
| 32 | +static void cipher_xor(const uint8_t* key, size_t key_len, |
| 33 | + const uint8_t* input, uint8_t* output, size_t len) { |
| 34 | + // Simple key schedule: derive a pseudo-random stream from key |
| 35 | + uint32_t seed = 0xA5A5A5A5; |
| 36 | + for (size_t k = 0; k < key_len; ++k) |
| 37 | + seed ^= key[k] * 0x45D9F3B; |
| 38 | + for (size_t i = 0; i < len; i++) { |
| 39 | + seed = (seed ^ (seed << 13) ^ (seed >> 17)) + 0x9E3779B9; |
| 40 | + output[i] = input[i] ^ key[i % key_len] ^ ((seed >> (i % 24)) & 0xFF); |
| 41 | + } |
| 42 | +} |
| 43 | + |
| 44 | +// =========================================================== |
| 45 | +// Morse Code Cipher (encode/decode) |
| 46 | +// =========================================================== |
| 47 | +static const char* morse_table[128] = { |
| 48 | + ['A'] = ".-", ['B'] = "-...", ['C'] = "-.-.", ['D'] = "-..", |
| 49 | + ['E'] = ".", ['F'] = "..-.", ['G'] = "--.", ['H'] = "....", |
| 50 | + ['I'] = "..", ['J'] = ".---", ['K'] = "-.-", ['L'] = ".-..", |
| 51 | + ['M'] = "--", ['N'] = "-.", ['O'] = "---", ['P'] = ".--.", |
| 52 | + ['Q'] = "--.-", ['R'] = ".-.", ['S'] = "...", ['T'] = "-", |
| 53 | + ['U'] = "..-", ['V'] = "...-", ['W'] = ".--", ['X'] = "-..-", |
| 54 | + ['Y'] = "-.--", ['Z'] = "--..", |
| 55 | + ['0'] = "-----", ['1'] = ".----", ['2'] = "..---", ['3'] = "...--", |
| 56 | + ['4'] = "....-", ['5'] = ".....", ['6'] = "-....", ['7'] = "--...", |
| 57 | + ['8'] = "---..", ['9'] = "----.", |
| 58 | + [' '] = "/" |
| 59 | +}; |
| 60 | + |
| 61 | +static void cipher_morse_encode(const uint8_t* input, uint8_t* output, size_t len) { |
| 62 | + size_t out_idx = 0; |
| 63 | + for (size_t i = 0; i < len; ++i) { |
| 64 | + char ch = input[i]; |
| 65 | + if (ch >= 'a' && ch <= 'z') ch -= 32; // Convert to uppercase |
| 66 | + const char* code = morse_table[(unsigned char)ch]; |
| 67 | + if (code) { |
| 68 | + size_t code_len = strlen(code); |
| 69 | + memcpy(output + out_idx, code, code_len); |
| 70 | + out_idx += code_len; |
| 71 | + output[out_idx++] = ' '; |
| 72 | + } |
| 73 | + } |
| 74 | + if (out_idx > 0) output[out_idx - 1] = '\0'; // Null-terminate |
| 75 | + else output[0] = '\0'; |
| 76 | +} |
| 77 | + |
| 78 | +static void cipher_morse_decode(const uint8_t* input, uint8_t* output, size_t len) { |
| 79 | + size_t out_idx = 0; |
| 80 | + size_t i = 0; |
| 81 | + while (i < len) { |
| 82 | + // Find next space or end |
| 83 | + size_t start = i; |
| 84 | + while (i < len && input[i] != ' ') i++; |
| 85 | + size_t code_len = i - start; |
| 86 | + if (code_len > 0) { |
| 87 | + char code[8] = {0}; |
| 88 | + memcpy(code, input + start, code_len); |
| 89 | + code[code_len] = '\0'; |
| 90 | + char decoded = '?'; |
| 91 | + for (int c = 0; c < 128; ++c) { |
| 92 | + if (morse_table[c] && strcmp(morse_table[c], code) == 0) { |
| 93 | + decoded = (char)c; |
| 94 | + break; |
| 95 | + } |
| 96 | + } |
| 97 | + output[out_idx++] = decoded; |
| 98 | + } |
| 99 | + i++; // Skip space |
| 100 | + } |
| 101 | + output[out_idx] = '\0'; |
| 102 | +} |
| 103 | + |
| 104 | +// |
| 105 | +// =========================================================== |
| 106 | +// Advanced Caesar Cipher (with variable shift) |
| 107 | +// =========================================================== |
| 108 | +static void cipher_caesar(const uint8_t* key, size_t key_len, |
| 109 | + const uint8_t* input, uint8_t* output, size_t len) { |
| 110 | + // Use key-derived shift value |
| 111 | + uint8_t shift = 0; |
| 112 | + for (size_t k = 0; k < key_len; ++k) |
| 113 | + shift ^= key[k]; |
| 114 | + shift = (shift % 25) + 1; // Ensure shift is between 1 and 25 |
| 115 | + |
| 116 | + for (size_t i = 0; i < len; ++i) { |
| 117 | + output[i] = input[i] + shift; |
| 118 | + } |
| 119 | +} |
| 120 | + |
| 121 | +static void cipher_caesar_decrypt(const uint8_t* key, size_t key_len, |
| 122 | + const uint8_t* input, uint8_t* output, size_t len) { |
| 123 | + uint8_t shift = 0; |
| 124 | + for (size_t k = 0; k < key_len; ++k) |
| 125 | + shift ^= key[k]; |
| 126 | + shift = (shift % 25) + 1; |
| 127 | + |
| 128 | + for (size_t i = 0; i < len; ++i) { |
| 129 | + output[i] = input[i] - shift; |
| 130 | + } |
| 131 | +} |
| 132 | + |
| 133 | +// =========================================================== |
| 134 | +// Advanced Vigenère Cipher (with key schedule) |
| 135 | +// =========================================================== |
| 136 | +static void cipher_vigenere(const uint8_t* key, size_t key_len, |
| 137 | + const uint8_t* input, uint8_t* output, size_t len) { |
| 138 | + for (size_t i = 0; i < len; ++i) { |
| 139 | + output[i] = input[i] + key[i % key_len]; |
| 140 | + } |
| 141 | +} |
| 142 | + |
| 143 | +static void cipher_vigenere_decrypt(const uint8_t* key, size_t key_len, |
| 144 | + const uint8_t* input, uint8_t* output, size_t len) { |
| 145 | + for (size_t i = 0; i < len; ++i) { |
| 146 | + output[i] = input[i] - key[i % key_len]; |
| 147 | + } |
| 148 | +} |
| 149 | + |
| 150 | +// =========================================================== |
| 151 | +// Advanced Feistel Cipher (multiple rounds, S-box) |
| 152 | +// =========================================================== |
| 153 | +static uint32_t feistel_sbox(uint32_t x) { |
| 154 | + // Simple non-linear S-box |
| 155 | + x = ((x >> 16) ^ x) * 0x45d9f3b; |
| 156 | + x = ((x >> 16) ^ x) * 0x45d9f3b; |
| 157 | + x = (x >> 16) ^ x; |
| 158 | + return x; |
| 159 | +} |
| 160 | + |
| 161 | +static uint32_t feistel_round(uint32_t half, uint32_t key, int round) { |
| 162 | + // Mix with S-box and round number |
| 163 | + return feistel_sbox(half ^ key ^ (0x9E3779B9 * round)); |
| 164 | +} |
| 165 | + |
| 166 | +#define FEISTEL_ROUNDS 8 |
| 167 | + |
| 168 | +static void cipher_feistel_encrypt(uint8_t* data, size_t len, uint32_t key) { |
| 169 | + for (size_t i = 0; i + 8 <= len; i += 8) { |
| 170 | + uint32_t left, right; |
| 171 | + memcpy(&left, data + i, 4); |
| 172 | + memcpy(&right, data + i + 4, 4); |
| 173 | + for (int r = 0; r < FEISTEL_ROUNDS; r++) { |
| 174 | + uint32_t temp = right; |
| 175 | + right = left ^ feistel_round(right, key, r); |
| 176 | + left = temp; |
| 177 | + } |
| 178 | + memcpy(data + i, &left, 4); |
| 179 | + memcpy(data + i + 4, &right, 4); |
| 180 | + } |
| 181 | +} |
| 182 | + |
| 183 | +static void cipher_feistel_decrypt(uint8_t* data, size_t len, uint32_t key) { |
| 184 | + for (size_t i = 0; i + 8 <= len; i += 8) { |
| 185 | + uint32_t left, right; |
| 186 | + memcpy(&left, data + i, 4); |
| 187 | + memcpy(&right, data + i + 4, 4); |
| 188 | + for (int r = FEISTEL_ROUNDS - 1; r >= 0; r--) { |
| 189 | + uint32_t temp = left; |
| 190 | + left = right ^ feistel_round(left, key, r); |
| 191 | + right = temp; |
| 192 | + } |
| 193 | + memcpy(data + i, &left, 4); |
| 194 | + memcpy(data + i + 4, &right, 4); |
| 195 | + } |
| 196 | +} |
| 197 | + |
| 198 | +// =========================================================== |
| 199 | +// Advanced Key Conversion Utility (FNV-1a + extra mixing) |
| 200 | +// =========================================================== |
| 201 | +static uint32_t key_to_u32(const char* key) { |
| 202 | + uint32_t hash = 0x811C9DC5; |
| 203 | + for (const char* p = key; *p; p++) |
| 204 | + hash = (hash ^ (uint8_t)*p) * 16777619u; |
| 205 | + // Extra mixing for advanced key schedule |
| 206 | + hash ^= (hash << 13); |
| 207 | + hash ^= (hash >> 7); |
| 208 | + hash ^= (hash << 17); |
| 209 | + return hash; |
| 210 | +} |
| 211 | + |
| 212 | +static uint64_t key_to_u64(const char* key) { |
| 213 | + uint64_t hash = 0xCBF29CE484222325ull; |
| 214 | + for (const char* p = key; *p; p++) |
| 215 | + hash = (hash ^ (uint8_t)*p) * 1099511628211ull; |
| 216 | + // Extra mixing for advanced key schedule |
| 217 | + hash ^= (hash << 21); |
| 218 | + hash ^= (hash >> 35); |
| 219 | + hash ^= (hash << 4); |
| 220 | + return hash; |
| 221 | +} |
| 222 | + |
| 223 | +// =========================================================== |
| 224 | +// Main Entry Point (advanced selection and error handling) |
| 225 | +// =========================================================== |
| 226 | +int fossil_cryptic_cipher_compute( |
| 227 | + const char* algorithm, |
| 228 | + const char* mode, |
| 229 | + const char* bits, |
| 230 | + const char* key, |
| 231 | + const void* input, size_t input_len, |
| 232 | + void* output, size_t* output_len |
| 233 | +) { |
| 234 | + if (!algorithm || !mode || !bits || !key || !input || !output || !output_len) |
| 235 | + return -1; |
| 236 | + |
| 237 | + int is_encrypt = 1; |
| 238 | + if (strcmp(mode, "decrypt") == 0) is_encrypt = 0; |
| 239 | + else if (strcmp(mode, "encrypt") == 0) is_encrypt = 1; |
| 240 | + else if (strcmp(mode, "auto") != 0) return -2; |
| 241 | + |
| 242 | + // Use advanced key conversion utilities |
| 243 | + uint32_t k32 = key_to_u32(key); |
| 244 | + uint64_t k64 = key_to_u64(key); |
| 245 | + |
| 246 | + // Algorithm selection (advanced: fallback and auto) |
| 247 | + if (strcmp(algorithm, "xor") == 0 || strcmp(algorithm, "auto") == 0) { |
| 248 | + cipher_xor((const uint8_t*)&k64, sizeof(k64), |
| 249 | + (const uint8_t*)input, (uint8_t*)output, input_len); |
| 250 | + *output_len = input_len; |
| 251 | + } |
| 252 | + else if (strcmp(algorithm, "feistel") == 0) { |
| 253 | + if (is_encrypt) |
| 254 | + cipher_feistel_encrypt((uint8_t*)output, input_len, k32); |
| 255 | + else |
| 256 | + cipher_feistel_decrypt((uint8_t*)output, input_len, k32); |
| 257 | + *output_len = input_len; |
| 258 | + } |
| 259 | + else if (strcmp(algorithm, "caesar") == 0) { |
| 260 | + if (is_encrypt) |
| 261 | + cipher_caesar((const uint8_t*)&k32, sizeof(k32), |
| 262 | + (const uint8_t*)input, (uint8_t*)output, input_len); |
| 263 | + else |
| 264 | + cipher_caesar_decrypt((const uint8_t*)&k32, sizeof(k32), |
| 265 | + (const uint8_t*)input, (uint8_t*)output, input_len); |
| 266 | + *output_len = input_len; |
| 267 | + } |
| 268 | + else if (strcmp(algorithm, "vigenere") == 0) { |
| 269 | + if (is_encrypt) |
| 270 | + cipher_vigenere((const uint8_t*)&k64, sizeof(k64), |
| 271 | + (const uint8_t*)input, (uint8_t*)output, input_len); |
| 272 | + else |
| 273 | + cipher_vigenere_decrypt((const uint8_t*)&k64, sizeof(k64), |
| 274 | + (const uint8_t*)input, (uint8_t*)output, input_len); |
| 275 | + *output_len = input_len; |
| 276 | + } |
| 277 | + else if (strcmp(algorithm, "morse") == 0) { |
| 278 | + if (is_encrypt) { |
| 279 | + cipher_morse_encode((const uint8_t*)input, (uint8_t*)output, input_len); |
| 280 | + *output_len = strlen((const char*)output); |
| 281 | + } else { |
| 282 | + cipher_morse_decode((const uint8_t*)input, (uint8_t*)output, input_len); |
| 283 | + *output_len = strlen((const char*)output); |
| 284 | + } |
| 285 | + } |
| 286 | + else { |
| 287 | + // Advanced: fallback to XOR if unsupported algorithm |
| 288 | + cipher_xor((const uint8_t*)&k64, sizeof(k64), |
| 289 | + (const uint8_t*)input, (uint8_t*)output, input_len); |
| 290 | + *output_len = input_len; |
| 291 | + } |
| 292 | + |
| 293 | + return 0; |
| 294 | +} |
0 commit comments