|
17 | 17 | from typing import Any, Mapping |
18 | 18 | import functools |
19 | 19 |
|
20 | | -# Third Party |
21 | | -from fms.modules.linear import get_linear_type |
22 | | -from fms.utils import serialization |
23 | | -from fms.utils.config import ModelConfig |
| 20 | +# Local |
| 21 | +from fms_mo.prep import available_packages |
24 | 22 |
|
25 | | -# pylint: disable=unused-argument |
26 | | -# Retaining kwargs input arguments for consistency with other adapter steps. |
| 23 | +if available_packages["fms"]: |
| 24 | + # Third Party |
| 25 | + from fms.modules.linear import get_linear_type |
| 26 | + from fms.utils import serialization |
| 27 | + from fms.utils.config import ModelConfig |
27 | 28 |
|
| 29 | + # pylint: disable=unused-argument |
| 30 | + # Retaining kwargs input arguments for consistency with other adapter steps. |
| 31 | + # TODO: may be shared with gptq llama |
| 32 | + def _hf_fp8_check( |
| 33 | + input_sd: Mapping[str, Any], |
| 34 | + model_config: ModelConfig | None = None, |
| 35 | + checkpoint_is_fused: bool = False, |
| 36 | + **kwargs, |
| 37 | + ) -> Mapping[str, Any]: |
| 38 | + """Implementation of adapter step for FMS: ensure that when FP8 quantization |
| 39 | + is in use, weights are fused like the model checkpoint. |
| 40 | + """ |
28 | 41 |
|
29 | | -# TODO: may be shared with gptq llama |
30 | | -def _hf_fp8_check( |
31 | | - input_sd: Mapping[str, Any], |
32 | | - model_config: ModelConfig | None = None, |
33 | | - checkpoint_is_fused: bool = False, |
34 | | - **kwargs, |
35 | | -) -> Mapping[str, Any]: |
36 | | - """Implementation of adapter step for FMS: ensure that when FP8 quantization |
37 | | - is in use, weights are fused like the model checkpoint. |
38 | | - """ |
| 42 | + has_fused_weights = True |
| 43 | + linear_type = "torch_linear" |
| 44 | + if model_config: |
| 45 | + if not model_config.fused_weights: |
| 46 | + has_fused_weights = False |
| 47 | + if model_config.linear_config: |
| 48 | + linear_type = model_config.linear_config["linear_type"] |
| 49 | + if callable(linear_type): |
| 50 | + # Calling this function with "any" guarantees "fp8" to be returned |
| 51 | + # when loading an HF fp8 checkpoint, and never in any other condition |
| 52 | + linear_type = get_linear_type(model_config.linear_config, "any") |
39 | 53 |
|
40 | | - has_fused_weights = True |
41 | | - linear_type = "torch_linear" |
42 | | - if model_config: |
43 | | - if not model_config.fused_weights: |
44 | | - has_fused_weights = False |
45 | | - if model_config.linear_config: |
46 | | - linear_type = model_config.linear_config["linear_type"] |
47 | | - if callable(linear_type): |
48 | | - # Calling this function with "any" guarantees "fp8" to be returned |
49 | | - # when loading an HF fp8 checkpoint, and never in any other condition |
50 | | - linear_type = get_linear_type(model_config.linear_config, "any") |
| 54 | + if "fp8" in linear_type and has_fused_weights != checkpoint_is_fused: |
| 55 | + raise ValueError( |
| 56 | + "FP8 HF llama checkpoints cannot be loaded into a model with fused weights" |
| 57 | + ) |
51 | 58 |
|
52 | | - if "fp8" in linear_type and has_fused_weights != checkpoint_is_fused: |
53 | | - raise ValueError( |
54 | | - "FP8 HF llama checkpoints cannot be loaded into a model with fused weights" |
55 | | - ) |
| 59 | + return input_sd |
56 | 60 |
|
57 | | - return input_sd |
| 61 | + serialization.register_adapter_step( |
| 62 | + "llama", |
| 63 | + "hf_fp8_check", |
| 64 | + functools.partial(_hf_fp8_check, checkpoint_is_fused=False), |
| 65 | + ) |
| 66 | + serialization.extend_adapter("llama", "hf", ["hf_fp8_check"]) |
58 | 67 |
|
59 | | - |
60 | | -serialization.register_adapter_step( |
61 | | - "llama", "hf_fp8_check", functools.partial(_hf_fp8_check, checkpoint_is_fused=False) |
62 | | -) |
63 | | -serialization.extend_adapter("llama", "hf", ["hf_fp8_check"]) |
64 | | - |
65 | | -serialization.register_adapter_step( |
66 | | - "granite", |
67 | | - "hf_fp8_check", |
68 | | - functools.partial(_hf_fp8_check, checkpoint_is_fused=False), |
69 | | -) |
70 | | -serialization.extend_adapter("granite", "hf", ["hf_fp8_check"]) |
| 68 | + serialization.register_adapter_step( |
| 69 | + "granite", |
| 70 | + "hf_fp8_check", |
| 71 | + functools.partial(_hf_fp8_check, checkpoint_is_fused=False), |
| 72 | + ) |
| 73 | + serialization.extend_adapter("granite", "hf", ["hf_fp8_check"]) |
0 commit comments