Releases: fracpete/python-weka-wrapper3
Releases · fracpete/python-weka-wrapper3
Release v0.2.9
- method
JavaObject.new_instancein moduleweka.core.classesnow automatically installs packages based on suggestions if the JVM was started with theauto_installflag enabled. - method
test_model_onceof classEvaluation(module:weka.classifiers) now has the additional parameterstore, which allows the recording of the predictions (necessary for statistics like AUC)
Release v0.2.8
- methods
create_instances_from_listsandcreate_instances_from_matrices(moduleweka.core.dataset) now allow the specification of column names, for input and output variables.
Release v0.2.7
- Added property for attribute indices to
DistanceFunctionclass (moduleweka.core.distances) (thanks to Martin Trat, #39) - improved instantiation of classes, avoiding misleading output of exceptions
JavaArrayclass (module:weka.core.classes) now has__str__and__repr__methods that output classname and size
Release v0.2.6
- upgraded bundled Weka to 3.9.6
Release v0.2.5
- switched to
python-javabridge, the new name (fork?) of thejavabridgelibrary Package.__str__(weka.core.packagesmodule) method now returns a string rather than printing the name/version- added
to_numpy(...)methods toInstanceandInstancesclasses (moduleweka.core.dataset) to make it easy to obtain a numpy array from the Weka dataset
Release v0.2.4
- added method
help_fortoweka.core.classesmodule to generate a help screen for anweka.core.OptionHandlerclass using just the classname. - the
to_helpmethod of theweka.core.classes.OptionHandlerclass now allows to tweak the generated output a bit better (e.g., what sections to output). - setting window title of Matplotlib is now dependent on version (to avoid deprecation notice being output)
plot_classifier_errors(moduleweka.plot.classifiers) now plots the diagonal after adding all the plot data to get the right limits
Release v0.2.3
- added
weka.core.distancesmodule for distance functions, withDistanceFunctionbase class - added
avg_silhouette_coefficientmethod toweka.clusterersto calculate the average silhouette coefficient
Release v0.2.2
- the
Packageclass of theweka.core.packagesmodule now has aversionproperty to quickly access the version which is stored in the meta-data; themetadataproperty now returns a proper Python dictionary - added convenience methods to the
weka.core.packagesmodule:install_packagesto install more than one package,install_missing_packageandinstall_missing_packagesto install one or more packages if missing (can automatically stop the JVM and exit the process),uninstall_packagesto remove more than one package in one operation
Release v0.2.1
- the
ASEvaluationclass in theweka.attribute_selectionmodule now offers the following methods for attribute transformers like PCA:transformed_header,transformed_data,convert_instance - classes derived from
weka.core.classes.JavaObjectare now serializable via pickle - added the method
copy_structureto theweka.core.dataset.Instancesclass to quickly get the header of a dataset - added the property
headerto the following classes that returns the training data structure:ASEvaluation,ASSearch,Associator,Classifier,Clusterer,TSForecaster - methods from
weka.core.serializationhave been moved intoweka.core.classes, with the following methods getting theserialization_prefix:write,write_all,read,read_all
Release v0.2.0
classes.new_instancemethod can take an options list now as well- added
classes.get_enummethod to return the instance of a Java enum item - added
classes.new_instancemethod to create new instance of Java class - added
typeconv.jstring_list_to_string_listmethod to convert ajava.util.Listcontaining strings into a Python list - added
typeconv.jdouble_to_floatmethod to convert ajava.lang.Doubleto a Python float - in module
typeconvrenamed methods:string_array_to_listtojstring_array_to_list,string_list_to_arraytostring_list_to_jarray,double_matrix_to_ndarraytojdouble_matrix_to_ndarray,enumeration_to_listtojenumeration_to_list,double_to_floattofloat_to_jfloat - added
weka.timeseriesmodule that wraps thetimeseriesForecastingWeka package