|
1 | 1 | from keras_core.api_export import keras_core_export |
| 2 | +from keras_core.losses.losses import binary_crossentropy |
| 3 | +from keras_core.losses.losses import categorical_crossentropy |
2 | 4 | from keras_core.losses.losses import kl_divergence |
3 | 5 | from keras_core.losses.losses import poisson |
| 6 | +from keras_core.losses.losses import sparse_categorical_crossentropy |
4 | 7 | from keras_core.metrics import reduction_metrics |
5 | 8 |
|
6 | 9 |
|
@@ -62,6 +65,8 @@ class Poisson(reduction_metrics.MeanMetricWrapper): |
62 | 65 | name: (Optional) string name of the metric instance. |
63 | 66 | dtype: (Optional) data type of the metric result. |
64 | 67 |
|
| 68 | + Examples: |
| 69 | +
|
65 | 70 | Standalone usage: |
66 | 71 |
|
67 | 72 | >>> m = keras_core.metrics.Poisson() |
@@ -89,3 +94,244 @@ def __init__(self, name="poisson", dtype=None): |
89 | 94 |
|
90 | 95 | def get_config(self): |
91 | 96 | return {"name": self.name, "dtype": self.dtype} |
| 97 | + |
| 98 | + |
| 99 | +@keras_core_export("keras_core.metrics.BinaryCrossentropy") |
| 100 | +class BinaryCrossentropy(reduction_metrics.MeanMetricWrapper): |
| 101 | + """Computes the crossentropy metric between the labels and predictions. |
| 102 | +
|
| 103 | + This is the crossentropy metric class to be used when there are only two |
| 104 | + label classes (0 and 1). |
| 105 | +
|
| 106 | + Args: |
| 107 | + name: (Optional) string name of the metric instance. |
| 108 | + dtype: (Optional) data type of the metric result. |
| 109 | + from_logits: (Optional) Whether output is expected |
| 110 | + to be a logits tensor. By default, we consider |
| 111 | + that output encodes a probability distribution. |
| 112 | + label_smoothing: (Optional) Float in `[0, 1]`. |
| 113 | + When > 0, label values are smoothed, |
| 114 | + meaning the confidence on label values are relaxed. |
| 115 | + e.g. `label_smoothing=0.2` means that we will use |
| 116 | + a value of 0.1 for label "0" and 0.9 for label "1". |
| 117 | +
|
| 118 | + Examples: |
| 119 | +
|
| 120 | + Standalone usage: |
| 121 | +
|
| 122 | + >>> m = keras_core.metrics.BinaryCrossentropy() |
| 123 | + >>> m.update_state([[0, 1], [0, 0]], [[0.6, 0.4], [0.4, 0.6]]) |
| 124 | + >>> m.result() |
| 125 | + 0.81492424 |
| 126 | +
|
| 127 | + >>> m.reset_state() |
| 128 | + >>> m.update_state([[0, 1], [0, 0]], [[0.6, 0.4], [0.4, 0.6]], |
| 129 | + ... sample_weight=[1, 0]) |
| 130 | + >>> m.result() |
| 131 | + 0.9162905 |
| 132 | +
|
| 133 | + Usage with `compile()` API: |
| 134 | +
|
| 135 | + ```python |
| 136 | + model.compile( |
| 137 | + optimizer='sgd', |
| 138 | + loss='mse', |
| 139 | + metrics=[keras_core.metrics.BinaryCrossentropy()]) |
| 140 | + ``` |
| 141 | + """ |
| 142 | + |
| 143 | + def __init__( |
| 144 | + self, |
| 145 | + name="binary_crossentropy", |
| 146 | + dtype=None, |
| 147 | + from_logits=False, |
| 148 | + label_smoothing=0, |
| 149 | + ): |
| 150 | + super().__init__( |
| 151 | + binary_crossentropy, |
| 152 | + name, |
| 153 | + dtype=dtype, |
| 154 | + from_logits=from_logits, |
| 155 | + label_smoothing=label_smoothing, |
| 156 | + ) |
| 157 | + self.from_logits = from_logits |
| 158 | + self.label_smoothing = label_smoothing |
| 159 | + |
| 160 | + def get_config(self): |
| 161 | + return { |
| 162 | + "name": self.name, |
| 163 | + "dtype": self.dtype, |
| 164 | + "from_logits": self.from_logits, |
| 165 | + "label_smoothing": self.label_smoothing, |
| 166 | + } |
| 167 | + |
| 168 | + |
| 169 | +@keras_core_export("keras_core.metrics.CategoricalCrossentropy") |
| 170 | +class CategoricalCrossentropy(reduction_metrics.MeanMetricWrapper): |
| 171 | + """Computes the crossentropy metric between the labels and predictions. |
| 172 | +
|
| 173 | + This is the crossentropy metric class to be used when there are multiple |
| 174 | + label classes (2 or more). It assumes that labels are one-hot encoded, |
| 175 | + e.g., when labels values are `[2, 0, 1]`, then |
| 176 | + `y_true` is `[[0, 0, 1], [1, 0, 0], [0, 1, 0]]`. |
| 177 | +
|
| 178 | + Args: |
| 179 | + name: (Optional) string name of the metric instance. |
| 180 | + dtype: (Optional) data type of the metric result. |
| 181 | + from_logits: (Optional) Whether output is expected to be |
| 182 | + a logits tensor. By default, we consider that output |
| 183 | + encodes a probability distribution. |
| 184 | + label_smoothing: (Optional) Float in `[0, 1]`. |
| 185 | + When > 0, label values are smoothed, meaning the confidence |
| 186 | + on label values are relaxed. e.g. `label_smoothing=0.2` means |
| 187 | + that we will use a value of 0.1 for label |
| 188 | + "0" and 0.9 for label "1". |
| 189 | + axis: (Optional) Defaults to -1. |
| 190 | + The dimension along which entropy is computed. |
| 191 | +
|
| 192 | + Examples: |
| 193 | +
|
| 194 | + Standalone usage: |
| 195 | +
|
| 196 | + >>> # EPSILON = 1e-7, y = y_true, y` = y_pred |
| 197 | + >>> # y` = clip_ops.clip_by_value(output, EPSILON, 1. - EPSILON) |
| 198 | + >>> # y` = [[0.05, 0.95, EPSILON], [0.1, 0.8, 0.1]] |
| 199 | + >>> # xent = -sum(y * log(y'), axis = -1) |
| 200 | + >>> # = -((log 0.95), (log 0.1)) |
| 201 | + >>> # = [0.051, 2.302] |
| 202 | + >>> # Reduced xent = (0.051 + 2.302) / 2 |
| 203 | + >>> m = keras_core.metrics.CategoricalCrossentropy() |
| 204 | + >>> m.update_state([[0, 1, 0], [0, 0, 1]], |
| 205 | + ... [[0.05, 0.95, 0], [0.1, 0.8, 0.1]]) |
| 206 | + >>> m.result() |
| 207 | + 1.1769392 |
| 208 | +
|
| 209 | + >>> m.reset_state() |
| 210 | + >>> m.update_state([[0, 1, 0], [0, 0, 1]], |
| 211 | + ... [[0.05, 0.95, 0], [0.1, 0.8, 0.1]], |
| 212 | + ... sample_weight=np.array([0.3, 0.7])) |
| 213 | + >>> m.result() |
| 214 | + 1.6271976 |
| 215 | +
|
| 216 | + Usage with `compile()` API: |
| 217 | +
|
| 218 | + ```python |
| 219 | + model.compile( |
| 220 | + optimizer='sgd', |
| 221 | + loss='mse', |
| 222 | + metrics=[keras_core.metrics.CategoricalCrossentropy()]) |
| 223 | + ``` |
| 224 | + """ |
| 225 | + |
| 226 | + def __init__( |
| 227 | + self, |
| 228 | + name="categorical_crossentropy", |
| 229 | + dtype=None, |
| 230 | + from_logits=False, |
| 231 | + label_smoothing=0, |
| 232 | + axis=-1, |
| 233 | + ): |
| 234 | + super().__init__( |
| 235 | + categorical_crossentropy, |
| 236 | + name, |
| 237 | + dtype=dtype, |
| 238 | + from_logits=from_logits, |
| 239 | + label_smoothing=label_smoothing, |
| 240 | + axis=axis, |
| 241 | + ) |
| 242 | + self.from_logits = from_logits |
| 243 | + self.label_smoothing = label_smoothing |
| 244 | + self.axis = axis |
| 245 | + |
| 246 | + def get_config(self): |
| 247 | + return { |
| 248 | + "name": self.name, |
| 249 | + "dtype": self.dtype, |
| 250 | + "from_logits": self.from_logits, |
| 251 | + "label_smoothing": self.label_smoothing, |
| 252 | + "axis": self.axis, |
| 253 | + } |
| 254 | + |
| 255 | + |
| 256 | +@keras_core_export("keras_core.metrics.SparseCategoricalCrossentropy") |
| 257 | +class SparseCategoricalCrossentropy(reduction_metrics.MeanMetricWrapper): |
| 258 | + """Computes the crossentropy metric between the labels and predictions. |
| 259 | +
|
| 260 | + Use this crossentropy metric when there are two or more label classes. |
| 261 | + It expects labels to be provided as integers. If you want to provide labels |
| 262 | + that are one-hot encoded, please use the `CategoricalCrossentropy` |
| 263 | + metric instead. |
| 264 | +
|
| 265 | + There should be `num_classes` floating point values per feature for `y_pred` |
| 266 | + and a single floating point value per feature for `y_true`. |
| 267 | +
|
| 268 | + Args: |
| 269 | + name: (Optional) string name of the metric instance. |
| 270 | + dtype: (Optional) data type of the metric result. |
| 271 | + from_logits: (Optional) Whether output is expected |
| 272 | + to be a logits tensor. By default, we consider that output |
| 273 | + encodes a probability distribution. |
| 274 | + axis: (Optional) Defaults to -1. |
| 275 | + The dimension along which entropy is computed. |
| 276 | +
|
| 277 | + Examples: |
| 278 | +
|
| 279 | + Standalone usage: |
| 280 | +
|
| 281 | + >>> # y_true = one_hot(y_true) = [[0, 1, 0], [0, 0, 1]] |
| 282 | + >>> # logits = log(y_pred) |
| 283 | + >>> # softmax = exp(logits) / sum(exp(logits), axis=-1) |
| 284 | + >>> # softmax = [[0.05, 0.95, EPSILON], [0.1, 0.8, 0.1]] |
| 285 | + >>> # xent = -sum(y * log(softmax), 1) |
| 286 | + >>> # log(softmax) = [[-2.9957, -0.0513, -16.1181], |
| 287 | + >>> # [-2.3026, -0.2231, -2.3026]] |
| 288 | + >>> # y_true * log(softmax) = [[0, -0.0513, 0], [0, 0, -2.3026]] |
| 289 | + >>> # xent = [0.0513, 2.3026] |
| 290 | + >>> # Reduced xent = (0.0513 + 2.3026) / 2 |
| 291 | + >>> m = keras_core.metrics.SparseCategoricalCrossentropy() |
| 292 | + >>> m.update_state([1, 2], |
| 293 | + ... [[0.05, 0.95, 0], [0.1, 0.8, 0.1]]) |
| 294 | + >>> m.result() |
| 295 | + 1.1769392 |
| 296 | +
|
| 297 | + >>> m.reset_state() |
| 298 | + >>> m.update_state([1, 2], |
| 299 | + ... [[0.05, 0.95, 0], [0.1, 0.8, 0.1]], |
| 300 | + ... sample_weight=np.array([0.3, 0.7])) |
| 301 | + >>> m.result() |
| 302 | + 1.6271976 |
| 303 | +
|
| 304 | + Usage with `compile()` API: |
| 305 | +
|
| 306 | + ```python |
| 307 | + model.compile( |
| 308 | + optimizer='sgd', |
| 309 | + loss='mse', |
| 310 | + metrics=[keras_core.metrics.SparseCategoricalCrossentropy()]) |
| 311 | + ``` |
| 312 | + """ |
| 313 | + |
| 314 | + def __init__( |
| 315 | + self, |
| 316 | + name="sparse_categorical_crossentropy", |
| 317 | + dtype=None, |
| 318 | + from_logits=False, |
| 319 | + axis=-1, |
| 320 | + ): |
| 321 | + super().__init__( |
| 322 | + sparse_categorical_crossentropy, |
| 323 | + name=name, |
| 324 | + dtype=dtype, |
| 325 | + from_logits=from_logits, |
| 326 | + axis=axis, |
| 327 | + ) |
| 328 | + self.from_logits = from_logits |
| 329 | + self.axis = axis |
| 330 | + |
| 331 | + def get_config(self): |
| 332 | + return { |
| 333 | + "name": self.name, |
| 334 | + "dtype": self.dtype, |
| 335 | + "from_logits": self.from_logits, |
| 336 | + "axis": self.axis, |
| 337 | + } |
0 commit comments