|
1 | 1 | namespace FSharp.Stats.Algebra |
2 | 2 |
|
| 3 | + |
| 4 | +open System |
3 | 5 | open FSharp.Stats |
| 6 | +open FSharp.Stats.Acceleration |
| 7 | + |
| 8 | +[<Struct>] |
| 9 | +type Householder<'T when 'T :> Numerics.INumber<'T>> = |
| 10 | + { |
| 11 | + V: Vector<'T> |
| 12 | + Tau: 'T |
| 13 | + Beta: 'T |
| 14 | + } |
| 15 | + |
| 16 | + |
| 17 | +type Householder() = |
| 18 | + |
| 19 | + static member inline create<'T when 'T :> Numerics.INumber<'T> |
| 20 | + and 'T : (new: unit -> 'T) |
| 21 | + and 'T : struct |
| 22 | + and 'T : comparison |
| 23 | + and 'T :> ValueType |
| 24 | + and 'T :> Numerics.IRootFunctions<'T>> |
| 25 | + (x: Vector<'T>) : Householder<'T> = |
| 26 | + |
| 27 | + let xSpan = x.AsSpan() |
| 28 | + let alpha = xSpan[0] |
| 29 | + let tail = xSpan.Slice(1) |
| 30 | + |
| 31 | + let zero = GenericMath.zero<'T> |
| 32 | + let one = GenericMath.one<'T> |
| 33 | + |
| 34 | + let sigma = |
| 35 | + SIMDUtils.mapFoldUnchecked( |
| 36 | + (fun v -> v * v), |
| 37 | + (fun x -> x * x), |
| 38 | + (+), |
| 39 | + (+), |
| 40 | + zero, |
| 41 | + tail |
| 42 | + ) |
| 43 | + |
| 44 | + if sigma.Equals(zero) then |
| 45 | + let v = Vector.zeroCreate x.Length |
| 46 | + v.[0] <- one |
| 47 | + { |
| 48 | + V = v |
| 49 | + Tau = zero |
| 50 | + Beta = alpha |
| 51 | + } |
| 52 | + else |
| 53 | + let sum = alpha * alpha + sigma |
| 54 | + let beta = GenericMath.sqrt sum |
| 55 | + |
| 56 | + let v0 = |
| 57 | + if alpha <= zero then alpha - beta |
| 58 | + else -sigma / (alpha + beta) |
| 59 | + |
| 60 | + let tau = |
| 61 | + let v0Sq = v0 * v0 |
| 62 | + (v0Sq + v0Sq) / (sigma + v0Sq) |
| 63 | + |
| 64 | + let v = Vector.divideScalar v0 x // SIMD-aware scalar division |
| 65 | + v.[0] <- one |
| 66 | + |
| 67 | + { |
| 68 | + V = v |
| 69 | + Tau = tau |
| 70 | + Beta = beta |
| 71 | + } |
| 72 | + |
| 73 | + static member inline applyLeft<'T when 'T :> Numerics.INumber<'T> |
| 74 | + and 'T : (new: unit -> 'T) |
| 75 | + and 'T : struct |
| 76 | + and 'T : equality |
| 77 | + and 'T :> ValueType> |
| 78 | + (h: Householder<'T>, A: Matrix<'T>, rowOffset: int) = |
| 79 | + |
| 80 | + let v = h.V |
| 81 | + let tau = h.Tau |
| 82 | + let m = A.NumRows |
| 83 | + let n = A.NumCols |
| 84 | + let vLen = v.Length |
| 85 | + |
| 86 | + for j = 0 to n - 1 do |
| 87 | + let mutable dot = GenericMath.zero<'T> |
| 88 | + for i = 0 to vLen - 1 do |
| 89 | + dot <- dot + v.[i] * A.[rowOffset + i, j] |
| 90 | + let scale = tau * dot |
| 91 | + for i = 0 to vLen - 1 do |
| 92 | + A.[rowOffset + i, j] <- A.[rowOffset + i, j] - scale * v.[i] |
| 93 | + |
| 94 | + |
| 95 | + static member inline applyRight<'T when 'T :> Numerics.INumber<'T> |
| 96 | + and 'T : (new: unit -> 'T) |
| 97 | + and 'T : struct |
| 98 | + and 'T : equality |
| 99 | + and 'T :> ValueType> |
| 100 | + (h: Householder<'T>, A: Matrix<'T>, colOffset: int) = |
| 101 | + |
| 102 | + let v = h.V |
| 103 | + let tau = h.Tau |
| 104 | + let m = A.NumRows |
| 105 | + let vLen = v.Length |
| 106 | + |
| 107 | + for i = 0 to m - 1 do |
| 108 | + let mutable dot = GenericMath.zero<'T> |
| 109 | + for j = 0 to vLen - 1 do |
| 110 | + dot <- dot + A.[i, colOffset + j] * v.[j] |
| 111 | + let scale = tau * dot |
| 112 | + for j = 0 to vLen - 1 do |
| 113 | + A.[i, colOffset + j] <- A.[i, colOffset + j] - scale * v.[j] |
| 114 | + |
| 115 | +type Bidiagonalization() = |
| 116 | + |
| 117 | + static member inline bidiagonalizeInPlace<'T |
| 118 | + when 'T :> Numerics.INumber<'T> |
| 119 | + and 'T : (new: unit -> 'T) |
| 120 | + and 'T : struct |
| 121 | + and 'T : comparison |
| 122 | + and 'T :> ValueType |
| 123 | + and 'T :> Numerics.IRootFunctions<'T>> |
| 124 | + (A: Matrix<'T>) : unit = |
| 125 | + |
| 126 | + let m = A.NumCols |
| 127 | + let n = A.NumRows |
| 128 | + let minMN = min m n |
| 129 | + |
| 130 | + for k = 0 to minMN - 1 do |
| 131 | + // --- LEFT REFLECTION: Column k (zero below diagonal) --- |
| 132 | + let colLen = m - k |
| 133 | + let colVector = Array.init colLen (fun i -> A.[k + i, k]) |
| 134 | + let hLeft = Householder.create colVector |
| 135 | + |
| 136 | + Householder.applyLeft(hLeft, A, k) |
| 137 | + |
| 138 | + // Overwrite A[k..,k] with Householder beta at top and zeros below |
| 139 | + A.[k, k] <- hLeft.Beta |
| 140 | + for i = k + 1 to m - 1 do |
| 141 | + A.[i, k] <- GenericMath.zero<'T> |
| 142 | + |
| 143 | + |
| 144 | + |
| 145 | + // --- RIGHT REFLECTION: Row k (zero right of superdiagonal) --- |
| 146 | + if k < n - 1 then |
| 147 | + let rowLen = n - (k + 1) |
| 148 | + let rowVector = Array.init rowLen (fun j -> A.[k, k + 1 + j]) |
| 149 | + let hRight = Householder.create rowVector |
| 150 | + |
| 151 | + Householder.applyRight(hRight, A, k + 1) |
| 152 | + |
| 153 | + // Overwrite A[k,k+1..] with Householder beta at front, zeros right |
| 154 | + A.[k, k + 1] <- hRight.Beta |
| 155 | + for j = k + 2 to n - 1 do |
| 156 | + A.[k, j] <- GenericMath.zero<'T> |
| 157 | + |
| 158 | + |
| 159 | +[<Struct>] |
| 160 | +type Bidiagonal<'T when 'T :> Numerics.INumber<'T>> = { |
| 161 | + D : Vector<'T> // main diagonal |
| 162 | + E : Vector<'T> // superdiagonal (length n-1) |
| 163 | +} |
| 164 | + |
| 165 | + |
| 166 | +/// Givens Rotation (Generic) |
| 167 | +module Givens = |
| 168 | + |
| 169 | + let inline compute<'T |
| 170 | + when 'T :> Numerics.INumber<'T> |
| 171 | + and 'T : comparison |
| 172 | + and 'T :> Numerics.IRootFunctions<'T> |
| 173 | + and 'T :> Numerics.IFloatingPointIeee754<'T>> |
| 174 | + (a: 'T) (b: 'T) : 'T * 'T = |
| 175 | + |
| 176 | + if b = GenericMath.zero then GenericMath.one, GenericMath.zero |
| 177 | + elif GenericMath.abs b > GenericMath.abs a then |
| 178 | + let t = a / b |
| 179 | + let s = GenericMath.one / GenericMath.sqrt(GenericMath.one + t * t) |
| 180 | + s * t, s |
| 181 | + else |
| 182 | + let t = b / a |
| 183 | + let c = GenericMath.one / GenericMath.sqrt(GenericMath.one + t * t) |
| 184 | + c, c * t |
| 185 | + |
| 186 | +module GolubKahan = |
| 187 | + |
| 188 | + let inline diagonalize<'T |
| 189 | + when 'T :> Numerics.INumber<'T> |
| 190 | + and 'T :> Numerics.IRootFunctions<'T> |
| 191 | + and 'T :> Numerics.IFloatingPointIeee754<'T> |
| 192 | + and 'T : comparison |
| 193 | + and 'T : struct |
| 194 | + and 'T : (new: unit -> 'T) |
| 195 | + and 'T :> ValueType> |
| 196 | + (b: Bidiagonal<'T>) : Vector<'T> = |
| 197 | + |
| 198 | + let d = Array.copy b.D |
| 199 | + let e = Array.copy b.E |
| 200 | + let n = d.Length |
| 201 | + let eps = GenericMath.epsilon() |
| 202 | + let two = GenericMath.one + GenericMath.one |
| 203 | + |
| 204 | + let mutable iter = 0 |
| 205 | + let maxIter = 1000 |
| 206 | + let mutable doneIterating = false |
| 207 | + |
| 208 | + |
| 209 | + |
| 210 | + while iter < maxIter && not doneIterating do |
| 211 | + let mutable converged = true |
| 212 | + |
| 213 | + for i = 0 to n - 2 do |
| 214 | + let tolerance = eps * (GenericMath.abs d.[i] + GenericMath.abs d.[i + 1]) |
| 215 | + if abs e.[i] > tolerance then |
| 216 | + converged <- false |
| 217 | + |
| 218 | + if converged then |
| 219 | + doneIterating <- true |
| 220 | + else |
| 221 | + // Wilkinson shift |
| 222 | + let m = n - 1 |
| 223 | + let dm1 = d.[m - 1] |
| 224 | + let dm = d.[m] |
| 225 | + let em1 = e.[m - 1] |
| 226 | + |
| 227 | + let delta = (dm1 - dm) / two |
| 228 | + let sign = |
| 229 | + if delta >= GenericMath.zero then GenericMath.one |
| 230 | + else -GenericMath.one |
| 231 | + |
| 232 | + let denom = abs delta + sqrt (delta * delta + em1 * em1) |
| 233 | + let mu = dm - sign * (em1 * em1) / denom |
| 234 | + |
| 235 | + // Initial bulge |
| 236 | + let mutable x = d.[0] * d.[0] - mu * mu |
| 237 | + let mutable z = d.[0] * e.[0] |
| 238 | + |
| 239 | + for k = 0 to n - 2 do |
| 240 | + let c, s = Givens.compute x z |
| 241 | + |
| 242 | + let dk = d.[k] |
| 243 | + let ek = e.[k] |
| 244 | + let dk1 = d.[k + 1] |
| 245 | + |
| 246 | + let tau1 = c * dk + s * ek |
| 247 | + let tau2 = -s * dk1 |
| 248 | + |
| 249 | + d.[k] <- c * tau1 + s * tau2 |
| 250 | + e.[k] <- c * ek - s * dk1 |
| 251 | + d.[k + 1] <- s * tau1 - c * tau2 |
| 252 | + |
| 253 | + if k < n - 2 then |
| 254 | + x <- e.[k] |
| 255 | + z <- -s * e.[k + 1] |
| 256 | + e.[k + 1] <- c * e.[k + 1] |
| 257 | + |
| 258 | + iter <- iter + 1 |
| 259 | + |
| 260 | + d |
| 261 | + |
| 262 | + |
4 | 263 |
|
5 | 264 | module SVD = |
6 | 265 |
|
|
0 commit comments