46
46
from torch .utils .data import DataLoader
47
47
from torch .utils .tensorboard import SummaryWriter
48
48
49
- from rvc .layers import utils
50
49
from infer .lib .train .data_utils import (
51
50
DistributedBucketSampler ,
52
51
TextAudioCollate ,
77
76
from infer .lib .train .mel_processing import mel_spectrogram_torch , spec_to_mel_torch
78
77
from infer .lib .train .process_ckpt import save_small_model
79
78
79
+ from rvc .layers .utils import (
80
+ slice_on_last_dim ,
81
+ total_grad_norm ,
82
+ )
83
+
80
84
global_step = 0
81
85
82
86
@@ -118,7 +122,7 @@ def main():
118
122
children [i ].join ()
119
123
120
124
121
- def run (rank , n_gpus , hps , logger : logging .Logger ):
125
+ def run (rank , n_gpus , hps : utils . HParams , logger : logging .Logger ):
122
126
global global_step
123
127
if rank == 0 :
124
128
# logger = utils.get_logger(hps.model_dir)
@@ -163,20 +167,20 @@ def run(rank, n_gpus, hps, logger: logging.Logger):
163
167
persistent_workers = True ,
164
168
prefetch_factor = 8 ,
165
169
)
170
+ mdl = hps .copy ().model
171
+ del mdl .use_spectral_norm
166
172
if hps .if_f0 == 1 :
167
173
net_g = RVC_Model_f0 (
168
174
hps .data .filter_length // 2 + 1 ,
169
175
hps .train .segment_size // hps .data .hop_length ,
170
- ** hps .model ,
171
- is_half = hps .train .fp16_run ,
176
+ ** mdl ,
172
177
sr = hps .sample_rate ,
173
178
)
174
179
else :
175
180
net_g = RVC_Model_nof0 (
176
181
hps .data .filter_length // 2 + 1 ,
177
182
hps .train .segment_size // hps .data .hop_length ,
178
- ** hps .model ,
179
- is_half = hps .train .fp16_run ,
183
+ ** mdl ,
180
184
)
181
185
if torch .cuda .is_available ():
182
186
net_g = net_g .cuda (rank )
@@ -459,7 +463,7 @@ def train_and_evaluate(
459
463
hps .data .mel_fmin ,
460
464
hps .data .mel_fmax ,
461
465
)
462
- y_mel = utils . slice_on_last_dim (
466
+ y_mel = slice_on_last_dim (
463
467
mel , ids_slice , hps .train .segment_size // hps .data .hop_length
464
468
)
465
469
with autocast (enabled = False ):
@@ -475,7 +479,7 @@ def train_and_evaluate(
475
479
)
476
480
if hps .train .fp16_run == True :
477
481
y_hat_mel = y_hat_mel .half ()
478
- wave = utils . slice_on_last_dim (
482
+ wave = slice_on_last_dim (
479
483
wave , ids_slice * hps .data .hop_length , hps .train .segment_size
480
484
) # slice
481
485
@@ -488,7 +492,7 @@ def train_and_evaluate(
488
492
optim_d .zero_grad ()
489
493
scaler .scale (loss_disc ).backward ()
490
494
scaler .unscale_ (optim_d )
491
- grad_norm_d = utils . total_grad_norm (net_d .parameters ())
495
+ grad_norm_d = total_grad_norm (net_d .parameters ())
492
496
scaler .step (optim_d )
493
497
494
498
with autocast (enabled = hps .train .fp16_run ):
@@ -503,7 +507,7 @@ def train_and_evaluate(
503
507
optim_g .zero_grad ()
504
508
scaler .scale (loss_gen_all ).backward ()
505
509
scaler .unscale_ (optim_g )
506
- grad_norm_g = utils . total_grad_norm (net_g .parameters ())
510
+ grad_norm_g = total_grad_norm (net_g .parameters ())
507
511
scaler .step (optim_g )
508
512
scaler .update ()
509
513
0 commit comments