@@ -156,6 +156,26 @@ def __init__(
156
156
self .sampling_rate = samp_rate
157
157
self .voiced_threshold = voiced_threshold
158
158
159
+ def _f02sine (self , f0 : torch .Tensor , upp : int ):
160
+ """
161
+ f0: (batchsize, length, dim)
162
+
163
+ where dim indicates fundamental tone and overtones
164
+ """
165
+ a = torch .arange (1 , upp + 1 , dtype = f0 .dtype , device = f0 .device )
166
+ rad = f0 / self .sampling_rate * a
167
+ rad2 = torch .fmod (rad [:, :- 1 , - 1 :].float () + 0.5 , 1.0 ) - 0.5
168
+ rad_acc = rad2 .cumsum (dim = 1 ).fmod (1.0 ).to (f0 )
169
+ rad += F .pad (rad_acc , (0 , 0 , 1 , 0 ), mode = 'constant' )
170
+ rad = rad .reshape (f0 .shape [0 ], - 1 , 1 )
171
+ b = torch .arange (1 , self .dim + 1 , dtype = f0 .dtype , device = f0 .device ).reshape (1 , 1 , - 1 )
172
+ rad *= b
173
+ rand_ini = torch .rand (1 , 1 , self .dim , device = f0 .device )
174
+ rand_ini [..., 0 ] = 0
175
+ rad += rand_ini
176
+ sines = torch .sin (2 * torch .pi * rad )
177
+ return sines
178
+
159
179
def __call__ (
160
180
self , f0 : torch .Tensor , upp : int
161
181
) -> Tuple [torch .Tensor , torch .Tensor , torch .Tensor ]:
@@ -171,45 +191,8 @@ def forward(
171
191
output uv: tensor(batchsize=1, length, 1)
172
192
"""
173
193
with torch .no_grad ():
174
- f0 = f0 [:, None ].transpose (1 , 2 )
175
- f0_buf = torch .zeros (f0 .shape [0 ], f0 .shape [1 ], self .dim , device = f0 .device )
176
- # fundamental component
177
- f0_buf [:, :, 0 ] = f0 [:, :, 0 ]
178
- for idx in range (self .harmonic_num ):
179
- f0_buf [:, :, idx + 1 ] = f0_buf [:, :, 0 ] * (
180
- idx + 2
181
- ) # idx + 2: the (idx+1)-th overtone, (idx+2)-th harmonic
182
- rad_values = (
183
- f0_buf / self .sampling_rate
184
- ) % 1 ###%1意味着n_har的乘积无法后处理优化
185
- rand_ini = torch .rand (
186
- f0_buf .shape [0 ], f0_buf .shape [2 ], device = f0_buf .device
187
- )
188
- rand_ini [:, 0 ] = 0
189
- rad_values [:, 0 , :] = rad_values [:, 0 , :] + rand_ini
190
- tmp_over_one = torch .cumsum (
191
- rad_values , 1
192
- ) # % 1 #####%1意味着后面的cumsum无法再优化
193
- tmp_over_one *= upp
194
- tmp_over_one : torch .Tensor = F .interpolate (
195
- tmp_over_one .transpose (2 , 1 ),
196
- scale_factor = float (upp ),
197
- mode = "linear" ,
198
- align_corners = True ,
199
- ).transpose (2 , 1 )
200
- rad_values : torch .Tensor = F .interpolate (
201
- rad_values .transpose (2 , 1 ), scale_factor = float (upp ), mode = "nearest"
202
- ).transpose (
203
- 2 , 1
204
- ) #######
205
- tmp_over_one %= 1
206
- tmp_over_one_idx = (tmp_over_one [:, 1 :, :] - tmp_over_one [:, :- 1 , :]) < 0
207
- cumsum_shift = torch .zeros_like (rad_values )
208
- cumsum_shift [:, 1 :, :] = tmp_over_one_idx * - 1.0
209
- sine_waves = torch .sin (
210
- torch .cumsum (rad_values + cumsum_shift , dim = 1 ) * 2 * torch .pi
211
- )
212
- sine_waves = sine_waves * self .sine_amp
194
+ f0 = f0 .unsqueeze (- 1 )
195
+ sine_waves = self ._f02sine (f0 , upp ) * self .sine_amp
213
196
uv = self ._f02uv (f0 )
214
197
uv : torch .Tensor = F .interpolate (
215
198
uv .transpose (2 , 1 ), scale_factor = float (upp ), mode = "nearest"
0 commit comments