@@ -3,25 +3,25 @@ index f256701817..21cb5732e6 100644
33--- a/Mathlib/CategoryTheory/Closed/PowerObjects.lean
44+++ b/Mathlib/CategoryTheory/Closed/PowerObjects.lean
55@@ -25,35 +25,43 @@ variable {ℰ : Type u} [Category.{v} ℰ]
6-
6+
77 namespace LeftRepresentable
8-
8+
99-variable {F : ℰᵒᵖ × ℰᵒᵖ ⥤ Type (max u v)}
1010+variable (F : (ℰ × ℰ)ᵒᵖ ⥤ Type (max u v))
11-
11+
1212-variable {B PB : ℰ} (hPB : ((curryObj F).obj (op B)).RepresentableBy PB)
1313- {C PC : ℰ} (hPC : ((curryObj F).obj (op C)).RepresentableBy PC)
1414+def curryObj' : ℰᵒᵖ ⥤ ℰᵒᵖ ⥤ Type (max u v) := curryObj ((prodOpEquiv ℰ).inverse ⋙ F)
1515+
1616+variable {F} {B PB : ℰ} (hPB : ((curryObj' F).obj (op B)).RepresentableBy PB)
1717+ {C PC : ℰ} (hPC : ((curryObj' F).obj (op C)).RepresentableBy PC)
18-
18+
1919 /-- The morphism induced by a morphism between the base objects. -/
2020-def map (h : B ⟶ C) : PC ⟶ PB :=
2121- hPB.homEquiv.symm (F.map (h.op ×ₘ 𝟙 (op PC)) (hPC.homEquiv (𝟙 PC)))
2222+def Pmap (h : B ⟶ C) : PC ⟶ PB :=
2323+ hPB.homEquiv.symm (F.map (h ×ₘ 𝟙 PC).op (hPC.homEquiv (𝟙 PC)))
24-
24+
2525 lemma map_universal (h : B ⟶ C) :
2626- F.map (𝟙 (op B) ×ₘ (map hPB hPC h).op) (hPB.homEquiv (𝟙 PB))
2727- = F.map (h.op ×ₘ 𝟙 (op PC)) (hPC.homEquiv (𝟙 PC)) := by
@@ -36,12 +36,12 @@ index f256701817..21cb5732e6 100644
3636+ rw [← hPB.homEquiv_eq, Pmap, hPB.homEquiv.apply_symm_apply]
3737+
3838+variable {D PD : ℰ} (hPD : ((curryObj' F).obj (op D)).RepresentableBy PD)
39-
39+
4040-variable {D PD : ℰ} (hPD : ((curryObj F).obj (op D)).RepresentableBy PD)
4141+lemma comm {PB PC : ℰ} (f : B ⟶ C) (Pf : PC ⟶ PB) :
4242+ (f ×ₘ 𝟙 PB).op ≫ (𝟙 B ×ₘ Pf).op = (𝟙 C ×ₘ Pf).op ≫ (f ×ₘ 𝟙 PC).op :=
4343+ congrArg Quiver.Hom.op (by simp)
44-
44+
4545 lemma compose (h : B ⟶ C) (h' : C ⟶ D) :
4646- map hPB hPD (h ≫ h') = map hPC hPD h' ≫ map hPB hPC h := by
4747- let Ph := map hPB hPC h
0 commit comments