Skip to content

Commit a8c7661

Browse files
[pre-commit.ci lite] apply automatic fixes
1 parent 0d314e4 commit a8c7661

File tree

1 file changed

+7
-7
lines changed

1 file changed

+7
-7
lines changed

Mathlib/xclip

Lines changed: 7 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -3,25 +3,25 @@ index f256701817..21cb5732e6 100644
33
--- a/Mathlib/CategoryTheory/Closed/PowerObjects.lean
44
+++ b/Mathlib/CategoryTheory/Closed/PowerObjects.lean
55
@@ -25,35 +25,43 @@ variable {ℰ : Type u} [Category.{v} ℰ]
6-
6+
77
namespace LeftRepresentable
8-
8+
99
-variable {F : ℰᵒᵖ × ℰᵒᵖ ⥤ Type (max u v)}
1010
+variable (F : (ℰ × ℰ)ᵒᵖ ⥤ Type (max u v))
11-
11+
1212
-variable {B PB : ℰ} (hPB : ((curryObj F).obj (op B)).RepresentableBy PB)
1313
- {C PC : ℰ} (hPC : ((curryObj F).obj (op C)).RepresentableBy PC)
1414
+def curryObj' : ℰᵒᵖ ⥤ ℰᵒᵖ ⥤ Type (max u v) := curryObj ((prodOpEquiv ℰ).inverse ⋙ F)
1515
+
1616
+variable {F} {B PB : ℰ} (hPB : ((curryObj' F).obj (op B)).RepresentableBy PB)
1717
+ {C PC : ℰ} (hPC : ((curryObj' F).obj (op C)).RepresentableBy PC)
18-
18+
1919
/-- The morphism induced by a morphism between the base objects. -/
2020
-def map (h : B ⟶ C) : PC ⟶ PB :=
2121
- hPB.homEquiv.symm (F.map (h.op ×ₘ 𝟙 (op PC)) (hPC.homEquiv (𝟙 PC)))
2222
+def Pmap (h : B ⟶ C) : PC ⟶ PB :=
2323
+ hPB.homEquiv.symm (F.map (h ×ₘ 𝟙 PC).op (hPC.homEquiv (𝟙 PC)))
24-
24+
2525
lemma map_universal (h : B ⟶ C) :
2626
- F.map (𝟙 (op B) ×ₘ (map hPB hPC h).op) (hPB.homEquiv (𝟙 PB))
2727
- = F.map (h.op ×ₘ 𝟙 (op PC)) (hPC.homEquiv (𝟙 PC)) := by
@@ -36,12 +36,12 @@ index f256701817..21cb5732e6 100644
3636
+ rw [← hPB.homEquiv_eq, Pmap, hPB.homEquiv.apply_symm_apply]
3737
+
3838
+variable {D PD : ℰ} (hPD : ((curryObj' F).obj (op D)).RepresentableBy PD)
39-
39+
4040
-variable {D PD : ℰ} (hPD : ((curryObj F).obj (op D)).RepresentableBy PD)
4141
+lemma comm {PB PC : ℰ} (f : B ⟶ C) (Pf : PC ⟶ PB) :
4242
+ (f ×ₘ 𝟙 PB).op ≫ (𝟙 B ×ₘ Pf).op = (𝟙 C ×ₘ Pf).op ≫ (f ×ₘ 𝟙 PC).op :=
4343
+ congrArg Quiver.Hom.op (by simp)
44-
44+
4545
lemma compose (h : B ⟶ C) (h' : C ⟶ D) :
4646
- map hPB hPD (h ≫ h') = map hPC hPD h' ≫ map hPB hPC h := by
4747
- let Ph := map hPB hPC h

0 commit comments

Comments
 (0)