We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
There was an error while loading. Please reload this page.
1 parent ae85ad0 commit aa2be8bCopy full SHA for aa2be8b
Mathlib/CategoryTheory/Closed/PowerObjects.lean
@@ -57,7 +57,7 @@ lemma compose (h : B ⟶ C) (h' : C ⟶ D) :
57
_ = F.map ((𝟙 _ ×ₘ Ph.op) ≫ (𝟙 _ ×ₘ Ph'.op)) (hPB.homEquiv (𝟙 PB)) := by
58
rw[FunctorToTypes.map_comp_apply, ← map_universal, ← FunctorToTypes.map_comp_apply]
59
_ = (F.curryObj.obj _).map (Ph' ≫ Ph).op (hPB.homEquiv (𝟙 PB)) := by
60
- simp only [prod_comp, comp_id, op_comp, curryObj]
+ rw[prod_comp, comp_id, op_comp]; simp only [curryObj]
61
_ = hPB.homEquiv (Ph' ≫ Ph) := by rw[← hPB.homEquiv_eq]
62
63
/-- Let `F : ℰᵒᵖ × ℰᵒᵖ ⥤ Type`. If for each `B` we choose an object `P B` representing
0 commit comments