|
| 1 | +use std::ffi::{CStr, CString, c_char}; |
| 2 | + |
| 3 | +use arrayvec::ArrayString; |
| 4 | + |
| 5 | +use crate::{CStrError, ContainsNulError}; |
| 6 | + |
| 7 | +#[derive(Debug, Clone, Eq, Ord, PartialEq, PartialOrd, Hash)] |
| 8 | +pub enum CArrayString<const N: usize> { |
| 9 | + Stack(ArrayString<N>), |
| 10 | + Heap(CString), |
| 11 | +} |
| 12 | + |
| 13 | +impl<const N: usize> From<&CStr> for CArrayString<N> { |
| 14 | + fn from(value: &CStr) -> Self { |
| 15 | + if value.count_bytes() < N { |
| 16 | + let mut buf = ArrayString::<N>::new(); |
| 17 | + buf.push_str(unsafe { str::from_utf8_unchecked(value.to_bytes()) }); |
| 18 | + buf.push('\0'); |
| 19 | + Self::Stack(buf) |
| 20 | + } else { |
| 21 | + Self::Heap(value.to_owned()) |
| 22 | + } |
| 23 | + } |
| 24 | +} |
| 25 | + |
| 26 | +impl<const N: usize> TryFrom<&[u8]> for CArrayString<N> { |
| 27 | + type Error = CStrError; |
| 28 | + |
| 29 | + fn try_from(value: &[u8]) -> Result<Self, Self::Error> { |
| 30 | + CStr::from_bytes_with_nul(value) |
| 31 | + .map(CArrayString::from) |
| 32 | + .map_err(Into::into) |
| 33 | + } |
| 34 | +} |
| 35 | + |
| 36 | +impl<const N: usize> From<&CString> for CArrayString<N> { |
| 37 | + fn from(value: &CString) -> Self { |
| 38 | + From::<&CStr>::from(value) |
| 39 | + } |
| 40 | +} |
| 41 | + |
| 42 | +impl<const N: usize> From<CString> for CArrayString<N> { |
| 43 | + fn from(value: CString) -> Self { |
| 44 | + Self::Heap(value) |
| 45 | + } |
| 46 | +} |
| 47 | + |
| 48 | +impl<const N: usize> TryFrom<&str> for CArrayString<N> { |
| 49 | + type Error = CStrError; |
| 50 | + |
| 51 | + fn try_from(value: &str) -> Result<Self, Self::Error> { |
| 52 | + if value.len() < N { |
| 53 | + let bytes = value.as_bytes(); |
| 54 | + match core::slice::memchr::memchr(0, bytes) { |
| 55 | + Some(_i) => Err(Into::into(ContainsNulError)), |
| 56 | + None => Ok({ |
| 57 | + let mut buf = ArrayString::<N>::new(); |
| 58 | + buf.push_str(value); |
| 59 | + buf.push('\0'); |
| 60 | + Self::Stack(buf) |
| 61 | + }), |
| 62 | + } |
| 63 | + } else { |
| 64 | + CString::new(value).map(Self::Heap).map_err(Into::into) |
| 65 | + } |
| 66 | + } |
| 67 | +} |
| 68 | + |
| 69 | +impl<const N: usize> TryFrom<&String> for CArrayString<N> { |
| 70 | + type Error = CStrError; |
| 71 | + |
| 72 | + fn try_from(value: &String) -> Result<Self, Self::Error> { |
| 73 | + TryFrom::<&str>::try_from(value) |
| 74 | + } |
| 75 | +} |
| 76 | + |
| 77 | +/// A C-compatible string type that can be stored on the stack or heap. |
| 78 | +/// |
| 79 | +/// `CArrayString<N>` provides a unified abstraction over two storage strategies: |
| 80 | +/// |
| 81 | +/// 1. **Stack-allocated:** Uses [`ArrayString<N>`] for small strings that fit into |
| 82 | +/// a fixed-size buffer. This avoids heap allocation and is very efficient. |
| 83 | +/// 2. **Heap-allocated:** Uses [`CString`] when the string exceeds the stack buffer, |
| 84 | +/// ensuring the string is always valid and null-terminated. |
| 85 | +/// |
| 86 | +/// This type guarantees: |
| 87 | +/// - [`as_ptr`] always returns a valid, null-terminated C string pointer for the lifetime of `self`. |
| 88 | +/// - [`as_c_str`] always returns a valid [`CStr`] reference. |
| 89 | +/// |
| 90 | +/// # Stack vs Heap Behavior |
| 91 | +/// |
| 92 | +/// When creating a `CArrayString` via [`new`], the string is first attempted to be stored on |
| 93 | +/// the stack. If it does not fit, it falls back to a heap allocation: |
| 94 | +/// |
| 95 | +/// ```text |
| 96 | +/// ┌───────────────┐ |
| 97 | +/// │ Stack Buffer │ (ArrayString<N>) |
| 98 | +/// └───────────────┘ |
| 99 | +/// │ fits |
| 100 | +/// └─> use stack |
| 101 | +/// |
| 102 | +/// │ does not fit |
| 103 | +/// └─> allocate heap (CString) |
| 104 | +/// ``` |
| 105 | +/// |
| 106 | +/// # Performance Considerations |
| 107 | +/// |
| 108 | +/// - Small strings that fit in the stack buffer avoid heap allocations and are faster. |
| 109 | +/// - Large strings trigger heap allocation, which may be slower and use more memory. |
| 110 | +/// - Prefer choosing `N` large enough for your common use case to minimize heap fallbacks. |
| 111 | +/// |
| 112 | +/// # Examples |
| 113 | +/// |
| 114 | +/// ``` |
| 115 | +/// use std::ffi::CStr; |
| 116 | +/// |
| 117 | +/// use stack_cstr::CArrayString; |
| 118 | +/// |
| 119 | +/// // Small string fits on stack |
| 120 | +/// let stack_str = CArrayString::<16>::new(format_args!("hello")); |
| 121 | +/// assert!(matches!(stack_str, CArrayString::Stack(_))); |
| 122 | +/// |
| 123 | +/// // Large string falls back to heap |
| 124 | +/// let heap_str = CArrayString::<4>::new(format_args!("this is too long")); |
| 125 | +/// assert!(matches!(heap_str, CArrayString::Heap(_))); |
| 126 | +/// |
| 127 | +/// // Accessing as CStr |
| 128 | +/// let cstr: &CStr = heap_str.as_c_str(); |
| 129 | +/// assert_eq!(cstr.to_str().unwrap(), "this is too long"); |
| 130 | +/// |
| 131 | +/// // Raw pointer for FFI |
| 132 | +/// let ptr = stack_str.as_ptr(); |
| 133 | +/// unsafe { |
| 134 | +/// assert_eq!(CStr::from_ptr(ptr).to_str().unwrap(), "hello"); |
| 135 | +/// } |
| 136 | +/// ``` |
| 137 | +impl<const N: usize> CArrayString<N> { |
| 138 | + /// Creates a new C-compatible string using `format_args!`. |
| 139 | + /// |
| 140 | + /// Attempts to store the formatted string in a stack buffer of size `N`. |
| 141 | + /// Falls back to a heap allocation if the string does not fit. |
| 142 | + /// |
| 143 | + /// # Parameters |
| 144 | + /// |
| 145 | + /// - `fmt`: The formatted arguments, typically produced by `format_args!`. |
| 146 | + /// |
| 147 | + /// # Returns |
| 148 | + /// |
| 149 | + /// A `CArrayString<N>` containing the formatted string. |
| 150 | + /// |
| 151 | + /// # Notes |
| 152 | + /// |
| 153 | + /// - If the stack buffer overflows or writing fails, the string is stored on the heap. |
| 154 | + /// |
| 155 | + /// # Examples |
| 156 | + /// |
| 157 | + /// ``` |
| 158 | + /// use stack_cstr::CArrayString; |
| 159 | + /// |
| 160 | + /// let s = CArrayString::<8>::new(format_args!("hi {}!", "you")); |
| 161 | + /// assert!(s.as_c_str().to_str().unwrap().starts_with("hi")); |
| 162 | + /// ``` |
| 163 | + pub fn new(fmt: std::fmt::Arguments) -> CArrayString<N> { |
| 164 | + fn try_stack<const N: usize>( |
| 165 | + fmt: std::fmt::Arguments, |
| 166 | + ) -> Result<ArrayString<N>, CStrError> { |
| 167 | + let mut buf: ArrayString<N> = ArrayString::new(); |
| 168 | + std::fmt::write(&mut buf, fmt)?; |
| 169 | + buf.try_push('\0')?; |
| 170 | + Ok(buf) |
| 171 | + } |
| 172 | + |
| 173 | + match try_stack::<N>(fmt) { |
| 174 | + Ok(arr) => Self::Stack(arr), |
| 175 | + Err(_) => Self::Heap(CString::new(std::fmt::format(fmt)).unwrap()), |
| 176 | + } |
| 177 | + } |
| 178 | + |
| 179 | + /// Returns a raw pointer to the null-terminated C string. |
| 180 | + /// |
| 181 | + /// The pointer is valid for the lifetime of `self`. |
| 182 | + /// This is useful for passing the string to C APIs via FFI. |
| 183 | + /// |
| 184 | + /// # Examples |
| 185 | + /// |
| 186 | + /// ``` |
| 187 | + /// use std::ffi::CStr; |
| 188 | + /// |
| 189 | + /// use stack_cstr::CArrayString; |
| 190 | + /// |
| 191 | + /// let s = CArrayString::<8>::new(format_args!("hello")); |
| 192 | + /// let ptr = s.as_ptr(); |
| 193 | + /// unsafe { |
| 194 | + /// assert_eq!(CStr::from_ptr(ptr).to_str().unwrap(), "hello"); |
| 195 | + /// } |
| 196 | + /// ``` |
| 197 | + pub fn as_ptr(&self) -> *const c_char { |
| 198 | + match self { |
| 199 | + CArrayString::Stack(s) => s.as_ptr() as _, |
| 200 | + CArrayString::Heap(s) => s.as_ptr(), |
| 201 | + } |
| 202 | + } |
| 203 | + |
| 204 | + /// Returns a reference to the underlying [`CStr`]. |
| 205 | + /// |
| 206 | + /// Provides safe access to the string as a `&CStr` without exposing the |
| 207 | + /// underlying storage strategy. |
| 208 | + /// |
| 209 | + /// # Examples |
| 210 | + /// |
| 211 | + /// ``` |
| 212 | + /// use std::ffi::CStr; |
| 213 | + /// |
| 214 | + /// use stack_cstr::CArrayString; |
| 215 | + /// |
| 216 | + /// let s = CArrayString::<8>::new(format_args!("hello")); |
| 217 | + /// let cstr: &CStr = s.as_c_str(); |
| 218 | + /// assert_eq!(cstr.to_str().unwrap(), "hello"); |
| 219 | + /// ``` |
| 220 | + pub fn as_c_str(&self) -> &CStr { |
| 221 | + match self { |
| 222 | + CArrayString::Stack(s) => unsafe { CStr::from_bytes_with_nul_unchecked(s.as_bytes()) }, |
| 223 | + CArrayString::Heap(s) => s.as_c_str(), |
| 224 | + } |
| 225 | + } |
| 226 | +} |
| 227 | + |
| 228 | +#[cfg(test)] |
| 229 | +mod tests { |
| 230 | + use super::*; |
| 231 | + |
| 232 | + #[test] |
| 233 | + fn test_stack_overflow() { |
| 234 | + assert_eq!( |
| 235 | + CArrayString::<12>::try_from("hello world") |
| 236 | + .unwrap() |
| 237 | + .as_c_str() |
| 238 | + .to_str() |
| 239 | + .unwrap(), |
| 240 | + "hello world" |
| 241 | + ); |
| 242 | + assert_eq!( |
| 243 | + CArrayString::<11>::try_from("hello world") |
| 244 | + .unwrap() |
| 245 | + .as_c_str() |
| 246 | + .to_str() |
| 247 | + .unwrap(), |
| 248 | + "hello world" |
| 249 | + ); |
| 250 | + } |
| 251 | + |
| 252 | + #[test] |
| 253 | + fn test_cstr() { |
| 254 | + assert_eq!( |
| 255 | + CArrayString::<12>::from(c"hello world") |
| 256 | + .as_c_str() |
| 257 | + .to_str() |
| 258 | + .unwrap(), |
| 259 | + "hello world" |
| 260 | + ); |
| 261 | + assert_eq!( |
| 262 | + CArrayString::<11>::from(c"hello world") |
| 263 | + .as_c_str() |
| 264 | + .to_str() |
| 265 | + .unwrap(), |
| 266 | + "hello world" |
| 267 | + ); |
| 268 | + } |
| 269 | + |
| 270 | + #[test] |
| 271 | + fn test_format_args() { |
| 272 | + let s1 = "hello"; |
| 273 | + let s2 = "world"; |
| 274 | + assert_eq!( |
| 275 | + CArrayString::<12>::new(format_args!("{s1} world")) |
| 276 | + .as_c_str() |
| 277 | + .to_str() |
| 278 | + .unwrap(), |
| 279 | + "hello world" |
| 280 | + ); |
| 281 | + assert_eq!( |
| 282 | + CArrayString::<11>::new(format_args!("hello {s2}")) |
| 283 | + .as_c_str() |
| 284 | + .to_str() |
| 285 | + .unwrap(), |
| 286 | + "hello world" |
| 287 | + ); |
| 288 | + } |
| 289 | +} |
0 commit comments