@@ -4594,6 +4594,14 @@ def set_gguf_parameters(self):
45944594class MambaModel (TextModel ):
45954595 model_arch = gguf .MODEL_ARCH .MAMBA
45964596
4597+ def __init__ (self , dir_model : Path , * args , ** kwargs ):
4598+ # Avoid using AutoConfig for hparams
4599+ hparams = kwargs .pop ("hparams" , None )
4600+ if hparams is None :
4601+ with open (dir_model / "config.json" , "r" , encoding = "utf-8" ) as f :
4602+ hparams = json .load (f )
4603+ super ().__init__ (dir_model , * args , hparams = hparams , ** kwargs )
4604+
45974605 def set_vocab (self ):
45984606 vocab_size = self .hparams ["vocab_size" ]
45994607 # Round vocab size to next multiple of 8
@@ -4668,6 +4676,100 @@ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iter
46684676 return [(new_name , data_torch )]
46694677
46704678
4679+ @ModelBase .register ("Mamba2ForCausalLM" )
4680+ class Mamba2Model (TextModel ):
4681+ model_arch = gguf .MODEL_ARCH .MAMBA2
4682+
4683+ def __init__ (self , dir_model : Path , * args , ** kwargs ):
4684+ # Avoid using AutoConfig for hparams
4685+ # It wrongly assumes all Mamba2 models are Mamba-Codestral-7B-v0.1
4686+ hparams = kwargs .pop ("hparams" , None )
4687+ if hparams is None :
4688+ with open (dir_model / "config.json" , "r" , encoding = "utf-8" ) as f :
4689+ hparams = json .load (f )
4690+ super ().__init__ (dir_model , * args , hparams = hparams , ** kwargs )
4691+
4692+ def set_vocab (self ):
4693+ vocab_size = self .hparams ["vocab_size" ]
4694+ # Round vocab size to next multiple of 16
4695+ pad_vocab = self .hparams .get ("pad_vocab_size_multiple" , 16 )
4696+ # pad using ceiling division
4697+ # ref: https://stackoverflow.com/a/17511341/22827863
4698+ vocab_size = - (vocab_size // - pad_vocab ) * pad_vocab
4699+ self .hparams ["vocab_size" ] = vocab_size
4700+
4701+ if (self .dir_model / "tokenizer.model" ).is_file ():
4702+ self ._set_vocab_sentencepiece ()
4703+ elif (self .dir_model / "tokenizer.model.v3" ).is_file ():
4704+ # mamba-codestral
4705+ raise NotImplementedError (f"Please rename { self .dir_model / 'tokenizer.model.v3' } to { self .dir_model / 'tokenizer.model' } " )
4706+ elif (self .dir_model / "tokenizer.json" ).is_file ():
4707+ self ._set_vocab_gpt2 ()
4708+ else :
4709+ # Use the GPT-NeoX tokenizer when no tokenizer files are present
4710+ self ._set_vocab_builtin ("gpt-neox" , vocab_size )
4711+
4712+ def set_gguf_parameters (self ):
4713+ d_model = self .find_hparam (["hidden_size" , "d_model" , "dim" ])
4714+ d_conv = self .find_hparam (["conv_kernel" , "d_conv" ], optional = True ) or 4
4715+ d_inner = self .find_hparam (["intermediate_size" , "d_inner" ], optional = True ) or 2 * d_model
4716+ d_state = self .find_hparam (["state_size" , "d_state" ], optional = True ) or 128
4717+ head_dim = self .find_hparam (["head_dim" ], optional = True ) or 64
4718+ n_group = self .find_hparam (["n_groups" ], optional = True ) or 1
4719+
4720+ rms_norm_eps = self .find_hparam (["layer_norm_epsilon" , "rms_norm_eps" ], optional = True ) or 1e-5
4721+
4722+ # Fail early for models which don't have a block expansion factor of 2
4723+ # TODO: does this really matter?
4724+ assert d_inner == 2 * d_model
4725+ assert d_inner % head_dim == 0
4726+
4727+ self .gguf_writer .add_context_length (2 ** 20 ) # arbitrary value; for those who use the default
4728+ self .gguf_writer .add_embedding_length (d_model )
4729+ self .gguf_writer .add_feed_forward_length (0 ) # unused, but seemingly required when loading
4730+ self .gguf_writer .add_head_count (0 ) # unused, but seemingly required when loading
4731+ self .gguf_writer .add_block_count (self .block_count )
4732+ self .gguf_writer .add_ssm_conv_kernel (d_conv )
4733+ self .gguf_writer .add_ssm_inner_size (d_inner )
4734+ self .gguf_writer .add_ssm_state_size (d_state )
4735+ self .gguf_writer .add_ssm_time_step_rank (d_inner // head_dim )
4736+ self .gguf_writer .add_ssm_group_count (n_group )
4737+ self .gguf_writer .add_layer_norm_rms_eps (rms_norm_eps )
4738+ self .gguf_writer .add_file_type (self .ftype )
4739+
4740+ def modify_tensors (self , data_torch : Tensor , name : str , bid : int | None ) -> Iterable [tuple [str , Tensor ]]:
4741+
4742+ if name .startswith ("model.backbone" ) or name .startswith ("model.lm_head" ):
4743+ # map Mamba-Codestral-7B-v0.1 tensor names to the names used by Mamba-2
4744+ name = name .removeprefix ("model." )
4745+
4746+ if name .endswith (".dt_bias" ):
4747+ name = name .rpartition (".dt_bias" )[0 ] + ".dt_proj.bias"
4748+
4749+ new_name = self .map_tensor_name (name )
4750+
4751+ if self .match_model_tensor_name (new_name , gguf .MODEL_TENSOR .SSM_CONV1D , bid ):
4752+ data_torch = data_torch .squeeze ()
4753+ elif any (self .match_model_tensor_name (new_name , t , bid , suffix = "" ) for t in [
4754+ gguf .MODEL_TENSOR .SSM_A ,
4755+ gguf .MODEL_TENSOR .SSM_D ,
4756+ ]):
4757+ # unsqueeze A to use similar shape semantics as Mamba-1
4758+ # (D is also unsqueezed, but for more straightforward broadcast internally)
4759+ data_torch = data_torch .reshape ((* data_torch .shape , 1 ))
4760+ elif self .match_model_tensor_name (new_name , gguf .MODEL_TENSOR .SSM_NORM , bid ):
4761+ d_model = self .find_hparam (["hidden_size" , "d_model" , "dim" ])
4762+ d_inner = self .find_hparam (["intermediate_size" , "d_inner" ], optional = True ) or 2 * d_model
4763+ n_group = self .hparams .get ("n_groups" , 1 )
4764+ data_torch = data_torch .reshape ((n_group , d_inner // n_group ))
4765+
4766+ if name .endswith (".A_log" ):
4767+ logger .debug ("A_log --> A ==> " + new_name )
4768+ data_torch = - torch .exp (data_torch )
4769+
4770+ yield (new_name , data_torch )
4771+
4772+
46714773@ModelBase .register ("CohereForCausalLM" )
46724774class CommandR2Model (TextModel ):
46734775 model_arch = gguf .MODEL_ARCH .COMMAND_R
@@ -6407,12 +6509,20 @@ def get_model_architecture(hparams: dict[str, Any], model_type: ModelType) -> st
64076509 # maybe we should fallback to text model's arch in that case, since not many models have both
64086510 text_config = hparams .get ("text_config" , {})
64096511 vision_config = hparams .get ("vision_config" , {})
6410- arch = hparams ["architectures" ][0 ]
6512+ arch = None
6513+ if (arches := hparams .get ("architectures" )) is not None and len (arches ) > 0 :
6514+ arch = arches [0 ]
6515+ elif "ssm_cfg" in hparams :
6516+ # For non-hf Mamba and Mamba2 models
6517+ arch = hparams ["ssm_cfg" ].get ("layer" , "Mamba" ) + "ForCausalLM"
6518+
64116519 # if "architectures" is found in the sub-config, use that instead
64126520 if model_type == ModelType .TEXT and text_config .get ("architectures" ) is not None :
64136521 arch = text_config ["architectures" ][0 ]
64146522 elif model_type == ModelType .MMPROJ and vision_config .get ("architectures" ) is not None :
64156523 arch = vision_config ["architectures" ][0 ]
6524+ if arch is None :
6525+ raise ValueError ("Failed to detect model architecture" )
64166526 return arch
64176527
64186528
0 commit comments