@@ -4717,6 +4717,9 @@ def __init__(self, dir_model: Path, *args, **kwargs):
47174717 with open (dir_model / "config.json" , "r" , encoding = "utf-8" ) as f :
47184718 hparams = json .load (f )
47194719 super ().__init__ (dir_model , * args , hparams = hparams , ** kwargs )
4720+ self .d_model = self .find_hparam (["hidden_size" , "d_model" , "dim" ])
4721+ self .d_inner = self .find_hparam (["intermediate_size" , "d_inner" ], optional = True ) or 2 * self .d_model
4722+ self .n_group = self .hparams .get ("n_groups" , 1 )
47204723
47214724 def set_vocab (self ):
47224725 vocab_size = self .hparams ["vocab_size" ]
@@ -4787,10 +4790,7 @@ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iter
47874790 # (D is also unsqueezed, but for more straightforward broadcast internally)
47884791 data_torch = data_torch .reshape ((* data_torch .shape , 1 ))
47894792 elif self .match_model_tensor_name (new_name , gguf .MODEL_TENSOR .SSM_NORM , bid ):
4790- d_model = self .find_hparam (["hidden_size" , "d_model" , "dim" ])
4791- d_inner = self .find_hparam (["intermediate_size" , "d_inner" ], optional = True ) or 2 * d_model
4792- n_group = self .hparams .get ("n_groups" , 1 )
4793- data_torch = data_torch .reshape ((n_group , d_inner // n_group ))
4793+ data_torch = data_torch .reshape ((self .n_group , self .d_inner // self .n_group ))
47944794
47954795 if name .endswith (".A_log" ):
47964796 logger .debug ("A_log --> A ==> " + new_name )
@@ -4799,6 +4799,107 @@ def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iter
47994799 yield (new_name , data_torch )
48004800
48014801
4802+ @ModelBase .register ("BambaForCausalLM" )
4803+ class BambaModel (Mamba2Model ):
4804+ """Bamba is a hybrid SSM + Attention model that uses Mamba2 SSM layers"""
4805+ model_arch = gguf .MODEL_ARCH .BAMBA
4806+ undo_permute = True
4807+
4808+ def __init__ (self , * args , ** kwargs ):
4809+
4810+ # Hybrid mamba models use a prefix for the mamba-specific params.
4811+ # TODO: Extend this if the prefix(es) need to be configurable
4812+ self .hparam_prefixes = ["mamba" ]
4813+
4814+ super ().__init__ (* args , ** kwargs )
4815+
4816+ # Use Llama conversion for attention
4817+ self ._transformer_model_class : type [TextModel ] = LlamaModel
4818+
4819+ # Lists of which layers use ssm vs attention
4820+ self ._attn_layers = self .hparams .get ("attn_layer_indices" , [])
4821+ if not self ._attn_layers :
4822+ attn_period = self .hparams .get ("attn_layer_period" )
4823+ assert attn_period , "Didn't find attn_layer_indices or attn_layer_period"
4824+ attn_offset = self .hparams .get ("attn_layer_offset" )
4825+ assert attn_offset is not None , "No attention layer offset set with attn_layer_period"
4826+ self ._attn_layers = [
4827+ i for i in range (self .block_count )
4828+ if i % attn_period == attn_offset
4829+ ]
4830+ self ._ssm_layers = [
4831+ i for i in range (self .block_count )
4832+ if i not in self ._attn_layers
4833+ ]
4834+
4835+ # n_group and d_inner are used during reshape_tensors for mamaba2
4836+ self .d_model = self .find_hparam (["hidden_size" , "d_model" ])
4837+ self .n_group = self .find_hparam (["n_groups" ])
4838+ self .d_inner = self .find_hparam (["expand" ]) * self .d_model
4839+
4840+ def find_hparam (self , keys : Iterable [str ], * args , ** kwargs ) -> Any :
4841+ prefixed = []
4842+ for pfx in self .hparam_prefixes :
4843+ prefixed .extend (
4844+ "_" .join ([pfx , k ])
4845+ for k in keys
4846+ )
4847+ keys = list (keys ) + prefixed
4848+ return super ().find_hparam (keys , * args , ** kwargs )
4849+
4850+ def set_gguf_parameters (self ):
4851+
4852+ ## General Params ##
4853+ self .gguf_writer .add_embedding_length (self .d_model )
4854+ self .gguf_writer .add_block_count (self .block_count )
4855+ self .gguf_writer .add_context_length (self .hparams .get ("max_position_embeddings" , 0 ))
4856+ self .gguf_writer .add_vocab_size (self .hparams ["vocab_size" ])
4857+ self .gguf_writer .add_feed_forward_length (self .hparams ["intermediate_size" ])
4858+
4859+ ## Mamba mixer params ##
4860+ self .gguf_writer .add_ssm_conv_kernel (self .find_hparam (["conv_kernel" , "d_conv" ]))
4861+ self .gguf_writer .add_ssm_state_size (self .find_hparam (["state_size" , "d_state" ]))
4862+ self .gguf_writer .add_ssm_group_count (self .n_group )
4863+ self .gguf_writer .add_ssm_inner_size (self .d_inner )
4864+ # NOTE: The mamba_dt_rank is _not_ the right field for how this is used
4865+ # in llama.cpp
4866+ self .gguf_writer .add_ssm_time_step_rank (self .find_hparam (["n_heads" ]))
4867+
4868+ ## Attention params ##
4869+ self .gguf_writer .add_attn_layer_indices (self ._attn_layers )
4870+ self .gguf_writer .add_rope_dimension_count (self .hparams ["attn_rotary_emb" ])
4871+ self .gguf_writer .add_head_count (self .hparams ["num_attention_heads" ])
4872+ self .gguf_writer .add_head_count_kv (self .find_hparam (["num_key_value_heads" , "n_head_kv" ]))
4873+
4874+ ## Feed Forward Params ##
4875+ self .gguf_writer .add_layer_norm_rms_eps (
4876+ self .find_hparam (["layer_norm_epsilon" , "rms_norm_eps" ], optional = True ) or 1e-5
4877+ )
4878+
4879+ ## Validation ##
4880+ d_head = self .find_hparam (["d_head" ], optional = True ) or 64
4881+ assert self .hparams .get ("hidden_act" ) in [None , "silu" ], "Only SILU activation supported"
4882+ assert self .d_inner % d_head == 0 , f"SSM inner size { self .d_inner } not a multiple of head dim { d_head } "
4883+
4884+ def modify_tensors (
4885+ self , data_torch : Tensor , name : str , bid : int | None
4886+ ) -> Iterable [tuple [str , Tensor ]]:
4887+
4888+ # Determine whether this is a mamaba layer or an attention layer
4889+ if bid in self ._ssm_layers :
4890+ for mamba_new_name , data_torch in super ().modify_tensors (
4891+ data_torch , name , bid
4892+ ):
4893+ yield mamba_new_name , data_torch
4894+ elif bid in self ._attn_layers :
4895+ for llama_new_name , data_torch in self ._transformer_model_class .modify_tensors (
4896+ self , data_torch , name , bid
4897+ ):
4898+ yield llama_new_name , data_torch
4899+ else :
4900+ yield self .map_tensor_name (name ), data_torch
4901+
4902+
48024903@ModelBase .register ("CohereForCausalLM" )
48034904class CommandR2Model (TextModel ):
48044905 model_arch = gguf .MODEL_ARCH .COMMAND_R
0 commit comments