@@ -92,15 +92,78 @@ gap> C.cano.tab;
9292# ####################################################################
9393# Chapter 4
9494# ####################################################################
95+ # # classical way to find bins
9596gap> bins := BinsByGT(2 ,6 );
9697[ [ 156 , 158 , 160 ] , [ 155 , 157 ] , [ 173 , 176 ] , [ 179 , 180 ] ]
9798
9899# ####################################################################
100+ # split the bins by algebras
99101gap> MIPSplitGroupsByAlgebras(2 ,6 ,[ 156 ,158 ,160 ] ).bins;
100102[ ]
101103gap> MIPSplitGroupsByAlgebras(2 ,6 ,[ 156 ,158 ,160 ] ).splits;
102104[ [ 7 , [ 156 , 158 , 160 ] ] ]
103105
106+ # ########################################################################
107+ # variations if bin splitting. These involve all the funcions in detbins
108+ gap> L := AllGroups(2 ^ 6 );;
109+ gap> binsNC := MIPSplitGroupsByGroupTheoreticalInvariantsNoCohomology(L);;
110+ gap> binsAF := MIPSplitGroupsByGroupTheoreticalInvariantsAllFields(L);;
111+ gap> binsAFNC := MIPSplitGroupsByGroupTheoreticalInvariantsAllFieldsNoCohomology(L);;
112+ gap> List(binsNC, x -> List(x, y -> IdGroup(y)[ 2 ] ));
113+ [ [ 156 , 158 , 160 ] , [ 155 , 157 , 159 ] , [ 173 , 176 ] , [ 179 , 180 , 181 ] ]
114+ gap> List(binsAF, x -> List(x, y -> IdGroup(y)[ 2 ] ));
115+ [ [ 172 , 182 ] , [ 156 , 158 , 160 ] , [ 168 , 179 , 180 ] , [ 175 , 181 ] ,
116+ [ 167 , 173 , 176 ] , [ 142 , 155 , 157 ] , [ 238 , 239 ] , [ 65 , 70 ] ,
117+ [ 104 , 105 ] , [ 13 , 14 ] ]
118+ gap> List(binsAFNC, x -> List(x, y -> IdGroup(y)[ 2 ] ));
119+ [ [ 172 , 182 ] , [ 170 , 178 ] , [ 143 , 156 , 158 , 160 ] , [ 142 , 155 , 157 , 159 ] ,
120+ [ 168 , 175 , 179 , 180 , 181 ] , [ 167 , 173 , 176 ] , [ 76 , 79 ] , [ 74 , 80 ] ,
121+ [ 238 , 239 ] , [ 236 , 240 ] , [ 208 , 212 ] , [ 65 , 70 ] , [ 63 , 68 ] ,
122+ [ 104 , 105 ] , [ 13 , 14 ] ]
123+
124+ # #########################################################
125+ # splitting algebras over different fields
126+ gap> MIPSplitGroupsByAlgebras(2 ,6 ,[ 142 ,155 ] ).splits;
127+ [ [ 2 , [ 142 , 155 ] ] ]
128+ gap> MIPSplitGroupsByAlgebras(2 ,6 ,[ 142 ,155 ] ,2 ).splits;
129+ [ [ 3 , [ 142 , 155 ] ] ]
130+
131+ # ########################################################
132+ # kernel sizes
133+ gap> G := SmallGroup(64 , 20 );;
134+ gap> H := SmallGroup(64 , 22 );;
135+ gap> TG := ModIsomTable(G, 5 );;
136+ gap> TH := ModIsomTable(H, 5 );;
137+ gap> KernelSizePowerMap(TG, 1 , 1 , 2 );
138+ 3
139+ gap> KernelSizePowerMap(TH, 1 , 1 , 2 );
140+ 1
141+ gap> TG := ModIsomTable(G, 5 , 2 );;
142+ gap> TH := ModIsomTable(H, 5 , 2 );;
143+ gap> KernelSizePowerMap(TG, 1 , 1 , 2 );
144+ 7
145+ gap> KernelSizePowerMap(TH, 1 , 1 , 2 );
146+ 7
147+
148+ # ###############
149+ # # table generation
150+ gap> G := DihedralGroup(8 );;
151+ gap> TG := ModIsomTable(G, 3 );;
152+ gap> TG.powwords;
153+ [ [ ] , [ [ Z(2 )^ 0 , [ [ 3 , 1 ] ] ] ] , [ ] ]
154+ gap> TG.pre.exps;
155+ [ [ 1 , 0 , 0 ] , [ 0 , 1 , 0 ] , [ 1 , 1 , 0 ] , [ 0 , 0 , 1 ] , [ 1 , 0 , 1 ] ,
156+ [ 0 , 1 , 1 ] , [ 1 , 1 , 1 ] ]
157+ gap> TG.pre.jen.coms;
158+ [ [ [ 1 , 2 ] , [ 0 , 0 , 1 ] ] , [ [ 1 , 3 ] , [ 0 , 0 , 0 ] ] ,
159+ [ [ 2 , 3 ] , [ 0 , 0 , 0 ] ] ]
160+ gap> TG.pre.jen.weights;
161+ [ 1 , 1 , 2 ]
162+ gap> TG.wds;
163+ [ ,, [ 1 , 2 ] ,, [ 1 , 4 ] , [ 2 , 4 ] ]
164+ gap> TG.wgs;
165+ [ 1 , 1 , 2 , 2 , 3 , 3 ]
166+
104167# ####################################################################
105168# Chapter 5
106169# ####################################################################
0 commit comments