|
1 | 1 | @article{marxer_long-distance_2023, |
2 | | - title = {Long-Distance Transmon Coupler with cz-Gate Fidelity above 99.8 \%}, |
3 | | - author = {Marxer, Fabian and Veps\"{a}l\"{a}inen, Antti and Jolin, Shan W. and Tuorila, Jani and Landra, Alessandro and Ockeloen-Korppi, Caspar and Liu, Wei and Ahonen, Olli and Auer, Adrian and Belzane, Lucien and Bergholm, Ville and Chan, Chun Fai and Chan, Kok Wai and Hiltunen, Tuukka and Hotari, Juho and Hyypp\"{a}, Eric and Ikonen, Joni and Janzso, David and Koistinen, Miikka and Kotilahti, Janne and Li, Tianyi and Luus, Jyrgen and Papic, Miha and Partanen, Matti and R\"{a}bin\"{a}, Jukka and Rosti, Jari and Savytskyi, Mykhailo and Sepp\"{a}l\"{a}, Marko and Sevriuk, Vasilii and Takala, Eelis and Tarasinski, Brian and Thapa, Manish J. and Tosto, Francesca and Vorobeva, Natalia and Yu, Liuqi and Tan, Kuan Yen and Hassel, Juha and M\"{o}tt\"{o}nen, Mikko and Heinsoo, Johannes}, |
4 | | - year = {2023}, |
5 | | - journal = {{PRX} Quantum}, |
6 | | - volume = {4}, |
7 | | - number = {1}, |
8 | | - pages = {010314}, |
9 | | - doi = {10.1103/PRXQuantum.4.010314}, |
10 | | - issn = {2691-3399}, |
11 | | - url = {https://link.aps.org/doi/10.1103/PRXQuantum.4.010314}, |
12 | | - urldate = {2023-08-17}, |
13 | | - shortjournal = {{PRX} Quantum}, |
14 | | - date = {2023-02-06}, |
15 | | - langid = {english} |
| 2 | + title = {Long-Distance Transmon Coupler with cz-Gate Fidelity above 99.8 \%}, |
| 3 | + author = {Marxer, Fabian and Veps\"{a}l\"{a}inen, Antti and Jolin, Shan W. and Tuorila, Jani and Landra, Alessandro and Ockeloen-Korppi, Caspar and Liu, Wei and Ahonen, Olli and Auer, Adrian and Belzane, Lucien and Bergholm, Ville and Chan, Chun Fai and Chan, Kok Wai and Hiltunen, Tuukka and Hotari, Juho and Hyypp\"{a}, Eric and Ikonen, Joni and Janzso, David and Koistinen, Miikka and Kotilahti, Janne and Li, Tianyi and Luus, Jyrgen and Papic, Miha and Partanen, Matti and R\"{a}bin\"{a}, Jukka and Rosti, Jari and Savytskyi, Mykhailo and Sepp\"{a}l\"{a}, Marko and Sevriuk, Vasilii and Takala, Eelis and Tarasinski, Brian and Thapa, Manish J. and Tosto, Francesca and Vorobeva, Natalia and Yu, Liuqi and Tan, Kuan Yen and Hassel, Juha and M\"{o}tt\"{o}nen, Mikko and Heinsoo, Johannes}, |
| 4 | + year = {2023}, |
| 5 | + journal = {{PRX} Quantum}, |
| 6 | + volume = {4}, |
| 7 | + number = {1}, |
| 8 | + pages = {010314}, |
| 9 | + doi = {10.1103/PRXQuantum.4.010314}, |
| 10 | + issn = {2691-3399}, |
| 11 | + url = {https://link.aps.org/doi/10.1103/PRXQuantum.4.010314}, |
| 12 | + urldate = {2023-08-17}, |
| 13 | + shortjournal = {{PRX} Quantum}, |
| 14 | + date = {2023-02-06}, |
| 15 | + langid = {english} |
16 | 16 | } |
17 | 17 | @article{smolic_capacitance_2021, |
18 | | - title = {Capacitance matrix revisited}, |
19 | | - author = {Smoli\'{c}, Ivica and Klajn, Bruno}, |
20 | | - year = {2021}, |
21 | | - journal = {Progress In Electromagnetics Research B}, |
22 | | - volume = {92}, |
23 | | - pages = {1--18}, |
24 | | - doi = {10.2528/PIERB21011501}, |
25 | | - issn = {1937-6472}, |
26 | | - url = {http://www.jpier.org/PIERB/pier.php?paper=21011501}, |
27 | | - urldate = {2023-08-17}, |
28 | | - shortjournal = {{PIER} B}, |
29 | | - date = {2021}, |
30 | | - langid = {english} |
| 18 | + title = {Capacitance matrix revisited}, |
| 19 | + author = {Smoli\'{c}, Ivica and Klajn, Bruno}, |
| 20 | + year = {2021}, |
| 21 | + journal = {Progress In Electromagnetics Research B}, |
| 22 | + volume = {92}, |
| 23 | + pages = {1--18}, |
| 24 | + doi = {10.2528/PIERB21011501}, |
| 25 | + issn = {1937-6472}, |
| 26 | + url = {http://www.jpier.org/PIERB/pier.php?paper=21011501}, |
| 27 | + urldate = {2023-08-17}, |
| 28 | + shortjournal = {{PIER} B}, |
| 29 | + date = {2021}, |
| 30 | + langid = {english} |
| 31 | +} |
| 32 | +@misc{weisstein_radius, |
| 33 | + type = {Text}, |
| 34 | + title = {Radius of {Curvature}}, |
| 35 | + copyright = {Copyright 1999-2025 Wolfram Research, Inc. See https://mathworld.wolfram.com/about/terms.html for a full terms of use statement.}, |
| 36 | + url = {https://mathworld.wolfram.com/RadiusofCurvature.html}, |
| 37 | + abstract = {The radius of curvature is given by R=1/({\textbar}kappa{\textbar}), (1) where kappa is the curvature. At a given point on a curve, R is the radius of the osculating circle. The symbol rho is sometimes used instead of R to denote the radius of curvature (e.g., Lawrence 1972, p. 4). Let x and y be given parametrically by x = x(t) (2) y = y(t), (3) then R=((x{\textasciicircum}('2)+y{\textasciicircum}('2)){\textasciicircum}(3/2))/({\textbar}x{\textasciicircum}'y{\textasciicircum}('')-y{\textasciicircum}'x{\textasciicircum}(''){\textbar}), (4) where x{\textasciicircum}'=dx/dt and y{\textasciicircum}'=dy/dt. Similarly, if the curve is written in the form y=f(x), then the...}, |
| 38 | + language = {en}, |
| 39 | + urldate = {2025-06-25}, |
| 40 | + journal = {MathWorld--A Wolfram Resource.}, |
| 41 | + author = {Weisstein, Eric W.} |
31 | 42 | } |
0 commit comments