|
| 1 | +// https://leetcode.com/problems/min-stack |
| 2 | +// |
| 3 | +// Design a stack that supports push, pop, top, and retrieving the minimum element in constant time. |
| 4 | +// |
| 5 | +// Implement the `MinStack` class: |
| 6 | +// |
| 7 | +// * `MinStack()` initializes the stack object. |
| 8 | +// * `void push(int val)` pushes the element `val` onto the stack. |
| 9 | +// * `void pop()` removes the element on the top of the stack. |
| 10 | +// * `int top()` gets the top element of the stack. |
| 11 | +// * `int getMin()` retrieves the minimum element in the stack. |
| 12 | +// |
| 13 | +// **Example 1:** |
| 14 | +// |
| 15 | +// ``` |
| 16 | +// **Input** |
| 17 | +// ["MinStack","push","push","push","getMin","pop","top","getMin"] |
| 18 | +// [[],[-2],[0],[-3],[],[],[],[]] |
| 19 | +// |
| 20 | +// **Output** |
| 21 | +// [null,null,null,null,-3,null,0,-2] |
| 22 | +// |
| 23 | +// **Explanation** |
| 24 | +// MinStack minStack = new MinStack(); |
| 25 | +// minStack.push(-2); |
| 26 | +// minStack.push(0); |
| 27 | +// minStack.push(-3); |
| 28 | +// minStack.getMin(); // return -3 |
| 29 | +// minStack.pop(); |
| 30 | +// minStack.top(); // return 0 |
| 31 | +// minStack.getMin(); // return -2 |
| 32 | +// ``` |
| 33 | +// |
| 34 | +// **Constraints:** |
| 35 | +// |
| 36 | +// * `-2<sup>31</sup> <= val <= 2<sup>31</sup> - 1` |
| 37 | +// * Methods `pop`, `top` and `getMin` operations will always be called on **non-empty** stacks. |
| 38 | +// * At most `3 * 10<sup>4</sup>` calls will be made to `push`, `pop`, `top`, and `getMin`. |
| 39 | + |
| 40 | +struct MinStack { |
| 41 | + data: Vec<i32>, |
| 42 | + min: i32, |
| 43 | +} |
| 44 | + |
| 45 | +impl MinStack { |
| 46 | + fn new() -> Self { |
| 47 | + MinStack { |
| 48 | + data: Vec::new(), |
| 49 | + min: std::i32::MAX, |
| 50 | + } |
| 51 | + } |
| 52 | + |
| 53 | + fn push(&mut self, val: i32) { |
| 54 | + self.data.push(val); |
| 55 | + if self.min > val { |
| 56 | + self.min = val; |
| 57 | + } |
| 58 | + } |
| 59 | + |
| 60 | + fn pop(&mut self) { |
| 61 | + let pop = self.data.pop().unwrap(); |
| 62 | + if pop == self.min { |
| 63 | + if !(self.data.is_empty()) { |
| 64 | + self.min = *self.data.iter().min().unwrap(); |
| 65 | + } else { |
| 66 | + self.min = std::i32::MAX; |
| 67 | + } |
| 68 | + } |
| 69 | + } |
| 70 | + |
| 71 | + fn top(&self) -> i32 { |
| 72 | + *self.data.last().unwrap() |
| 73 | + } |
| 74 | + |
| 75 | + fn get_min(&self) -> i32 { |
| 76 | + return self.min; |
| 77 | + } |
| 78 | +} |
| 79 | + |
| 80 | +/** |
| 81 | + * Your MinStack object will be instantiated and called as such: |
| 82 | + * let obj = MinStack::new(); |
| 83 | + * obj.push(val); |
| 84 | + * obj.pop(); |
| 85 | + * let ret_3: i32 = obj.top(); |
| 86 | + * let ret_4: i32 = obj.get_min(); |
| 87 | + */ |
| 88 | + |
| 89 | +#[test] |
| 90 | +pub fn t1() { |
| 91 | + let mut obj = MinStack::new(); |
| 92 | + obj.push(-2); |
| 93 | + obj.push(0); |
| 94 | + obj.push(-3); |
| 95 | + assert_eq!(obj.get_min(), -3); |
| 96 | + obj.pop(); |
| 97 | + assert_eq!(obj.top(), 0); |
| 98 | + assert_eq!(obj.get_min(), -2); |
| 99 | +} |
0 commit comments