1313from .ellipsoid import Ellipsoid
1414from .utils import sanitize
1515
16- __all__ = ["rcurve_parallel " , "rcurve_meridian " , "rcurve_transverse " , "geocentric_radius" ]
16+ __all__ = ["parallel " , "meridian " , "transverse " , "geocentric_radius" ]
1717
1818
1919def geocentric_radius (geodetic_lat : float , ell : Ellipsoid = None , deg : bool = True ) -> float :
@@ -36,7 +36,7 @@ def geocentric_radius(geodetic_lat: float, ell: Ellipsoid = None, deg: bool = Tr
3636 )
3737
3838
39- def rcurve_parallel (lat : ndarray , ell : Ellipsoid = None , deg : bool = True ) -> float :
39+ def parallel (lat : ndarray , ell : Ellipsoid = None , deg : bool = True ) -> float :
4040 """
4141 computes the radius of the small circle encompassing the globe at the specified latitude
4242
@@ -58,10 +58,10 @@ def rcurve_parallel(lat: ndarray, ell: Ellipsoid = None, deg: bool = True) -> fl
5858 if deg :
5959 lat = radians (lat )
6060
61- return cos (lat ) * rcurve_transverse (lat , ell , deg = False )
61+ return cos (lat ) * transverse (lat , ell , deg = False )
6262
6363
64- def rcurve_meridian (lat : float , ell : Ellipsoid = None , deg : bool = True ) -> float :
64+ def meridian (lat : float , ell : Ellipsoid = None , deg : bool = True ) -> float :
6565 """computes the meridional radius of curvature for the ellipsoid
6666
6767 like Matlab rcurve('meridian', ...)
@@ -91,7 +91,7 @@ def rcurve_meridian(lat: float, ell: Ellipsoid = None, deg: bool = True) -> floa
9191 return f1 / sqrt (f2 ** 3 )
9292
9393
94- def rcurve_transverse (lat : float | ndarray , ell : Ellipsoid = None , deg : bool = True ) -> float :
94+ def transverse (lat : float | ndarray , ell : Ellipsoid = None , deg : bool = True ) -> float :
9595 """computes the radius of the curve formed by a plane
9696 intersecting the ellipsoid at the latitude which is
9797 normal to the surface of the ellipsoid
0 commit comments